WO2010146801A1 - Urethane (meth)acrylate compound and resin composition containing same - Google Patents

Urethane (meth)acrylate compound and resin composition containing same Download PDF

Info

Publication number
WO2010146801A1
WO2010146801A1 PCT/JP2010/003830 JP2010003830W WO2010146801A1 WO 2010146801 A1 WO2010146801 A1 WO 2010146801A1 JP 2010003830 W JP2010003830 W JP 2010003830W WO 2010146801 A1 WO2010146801 A1 WO 2010146801A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
compound
urethane
mixture
Prior art date
Application number
PCT/JP2010/003830
Other languages
French (fr)
Japanese (ja)
Inventor
小木聡
栗橋透
小淵香津美
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43356135&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010146801(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201080026345.4A priority Critical patent/CN102803332B/en
Priority to KR1020117028584A priority patent/KR101664003B1/en
Priority to JP2011519522A priority patent/JP5757664B2/en
Publication of WO2010146801A1 publication Critical patent/WO2010146801A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/673Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention includes at least two selected from the group consisting of dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate.
  • the present invention relates to a resin composition containing an acrylate compound (A) and a photopolymerization initiator, and a cured film of the resin composition. And since the cured film of the resin composition of the present invention is excellent in hardness, adhesion to a substrate, scratch resistance, etc., curl is small and cracks are less likely to occur, it can be used as a hard coat for plastic films and small casings. Useful.
  • the cured film of the resin composition of the present invention has good adhesion to the substrate, has high hardness, and has an appropriate flexibility, so that the resin composition of the present invention is a color filter (for example, Color filters used in color liquid crystal displays, color video cameras, color digital cameras, electronic papers, etc.), black matrixes, or spacers can also be used.
  • a color filter for example, Color filters used in color liquid crystal displays, color video cameras, color digital cameras, electronic papers, etc.
  • black matrixes, or spacers can also be used.
  • plastics that are excellent in various properties such as processability, transparency, and optical properties are used in the industry.
  • plastics are softer than glass and have defects such as the surface being easily scratched, it is common practice to coat a hard coating agent on the plastic surface.
  • the hard coat agent many thermosetting types such as silicone paints, acrylic paints, and melamine paints are known.
  • silicone hard coat agents have been mainly used because of their excellent performance and quality.
  • the silicone-based hard coat agent has a drawback that it has a long curing time and is expensive.
  • a photosensitive acrylic hard coat agent has been developed and used as a hard coat agent that compensates for the disadvantages of silicone hard coat agents (see Patent Document 1).
  • Acrylic hard coat agents are cured immediately upon irradiation with radiation such as ultraviolet rays, so that the processing speed is high, the hardness and the scratch resistance are excellent, and the cost is low. Therefore, at present, the acrylic hard coat agent has become the mainstream in the hard coat field.
  • the acrylic hard coat agent is suitable for coating the surface of the substrate during continuous processing of a substrate film such as polyester.
  • plastic base film examples include a polyester film, an acrylic film, a polycarbonate film, a vinyl chloride film, a triacetyl cellulose film, and a polyethersulfone film.
  • polyester films are most widely used because of various excellent properties. This polyester film is used for applications such as glass shatterproof film, automobile light-shielding film, whiteboard surface film, system kitchen surface antifouling film, and electronic materials. CRT flat TV, touch panel, liquid crystal display (LCD) ), A functional film in plasma display (PDP), organic EL display and the like.
  • electronic device cases such as home appliance bodies and switches, mobile phones, personal computers, and MP3 players are widely used as polyester resin moldings. All of these are hard-coated to prevent the surface from being scratched.
  • a hard-coated sheet or substrate such as polycarbonate or acrylic is used for an optical disk or a liquid crystal related member around a backlight.
  • Patent Document 3 attempts to improve hardness by adding polyfunctional urethane acrylate to the resin composition.
  • polyfunctional urethane acrylate there is a problem that the curing shrinkage of the polyfunctional urethane acrylate being used is large and cracks are observed.
  • Patent Document 4 polyfunctional urethane (meth) acrylate is used in a resin composition for hard coating of an antireflection material.
  • This hard coat is quite excellent in terms of hardness, curl resistance, scratch resistance, etc., but it is not always satisfactory and further improvements are desired.
  • the present inventors arrived at the present invention as a result of intensive studies to solve the above problems.
  • the present invention relates to the following inventions.
  • the polyisocyanate compound (b) of (II) is a diisocyanate compound alone or a combination of a diisocyanate compound and a triisocyanate compound, and the ratio of the diisocyanate compound to the triisocyanate compound is 1 mol of the diisocyanate compound.
  • X is an isocyanate residue
  • n is an integer of 0 to 100
  • Y is an organic group represented by the following general formula (2), wherein a, b and c are integers of 1 ⁇ a ⁇ 4, 0 ⁇ b ⁇ 3 and 0 ⁇ c ⁇ 3, respectively.
  • a + b + c 4
  • the mixture (a) in (I) contains 35 dipentaerythritol penta (meth) acrylate in the area ratio (%) of high performance liquid chromatography (HPLC) with respect to the total amount of the mixture (a).
  • the total of the three components including 90% to 100%, dipentaerythritol tetra (meth) acrylate and dipentaerythritol hexa (meth) acrylate added thereto is 90 to 100%, and the remaining 0 to 10% is dipentaerythritol tri (meta)
  • the urethane (meth) acrylate compound (A) according to any one of the above (1) to (4), (6) or (10), which is a multimeric acrylate of acrylate and tripentaerythritol.
  • the urethane (meth) acrylate compound (A) according to the above (13) or (14), wherein the diisocyanate compound is hexamethylene diisocyanate.
  • the mixture (a) is a ternary mixture of dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, or dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol penta (4) A mixture of acrylate and dipentaerythritol hexaacrylate, wherein the polyisocyanate compound (b) is hexamethylene diisocyanate alone or both hexamethylene diisocyanate and hexamethylene diisocyanate trimer.
  • a cured film having high transparency, hardness and scratch resistance, hardly causing curling and cracking, or high transparency, suitable hardness and Provided are a resin composition that provides a cured film having flexibility and toughness, a cured product of the resin composition, a hard coat agent comprising the resin composition, and a hard coat using the same.
  • the hydroxyl value of the dipentaerythritol polyacrylate mixture (a ′) ⁇ containing is in the range of 80 to 120 mg KOH / g.
  • the desired urethane (meth) acrylate compound (A) ⁇ preferably urethane acrylate compound (A ') ⁇ can be efficiently obtained. it can.
  • a hard coat having high hardness, excellent curl resistance and high flexibility can be obtained.
  • the compound which does not contain skeleton derived from glycerol is a urethane (meth) acrylate compound (A1).
  • dipentaerythritol poly (meth) acrylate mixture (a) (hereinafter also simply referred to as poly (meth) acrylate mixture (a) or the mixture (a)) used as the raw material dehydrates dipentaerythritol and (meth) acrylic acid. It can be obtained by subjecting dipentaerythritol to (meth) acrylate by dehydration condensation reaction in the presence of a condensation catalyst such as an acid catalyst.
  • the mixture (a) is preferably selected from the group consisting of dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate. At least three, more preferably three of dipentaerythritol tetra, penta and hexa (meth) acrylate.
  • the mixture (a) is a mixture containing four kinds of dipentaerythritol tri, tetra, penta and hexa (meth) acrylate, or a mixture containing three kinds of dipentaerythritol tetra, penta and hexa (meth) acrylate. is there.
  • the mixture (a) may further contain a trimeric or higher pentaerythritol acrylate such as tripentaerythritol by-produced during the condensation reaction.
  • acrylated products of dipentaerythritol acrylated products (dipentaerythritol tri, tetra, penta, and hexaacrylate) are more preferable than methacrylated products from the viewpoint of cost.
  • the content rate of each component with respect to the total amount of this mixture (a) is an area ratio (%) of a high performance liquid chromatography (HPLC), and is as follows.
  • Dipentaerythritol penta (meth) acrylate preferably dipentaerythritol pentaacrylate
  • a total of 85 of dipentaerythritol penta (meth) acrylate (preferably dipentaerythritol pentaacrylate) plus dipentaerythritol tetra and hexa (meth) acrylate (preferably dipentaerythritol tetra and hexaacrylate) is 85.
  • the three parties of the total 85 to 98% Ru preferably 90 to 97% der.
  • the remainder contains dipentaerythritol tri (meth) acrylate (preferably dipentaerythritol triacrylate) and / or a multimeric acrylate of the pentaerythritol trimer or more.
  • the contents of dipentaerythritol tetra and hexa (meth) acrylate are about 1 to 40% (preferably about 10 to 30%) and about 15 to 40% (preferably 20 to 20%), respectively.
  • the content of dipentaerythritol tri (meth) acrylate is about 0 to 10%, preferably 5% or less (including zero).
  • the multimeric acrylate may be included.
  • the manufacturing method of the said mixture (a) is demonstrated in detail below. As long as the said mixture (a) used as a raw material by this invention is obtained, it is not restricted to this.
  • Examples of the acid catalyst used in the above dehydration condensation reaction include mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid and trifluoromethanesulfonic acid, and fluorine.
  • Examples thereof include Lewis acids such as boron ether diethyl etherate and acid ion exchange resins. These acid catalysts may be used alone or in admixture of two or more.
  • sulfuric acid can be mentioned as a preferable acid catalyst.
  • the amount of the acid catalyst used is 0.01 to 50 mol%, preferably 0.1 to 20 mol%, relative to 1 mol of dipentaerythritol.
  • (meth) acrylic acid is used in an amount of 0.1 to 20 mol, preferably 1 to 10 mol, per 1 mol of dipentaerythritol.
  • the reaction time in the dehydration condensation reaction may be in the range of 1 to 24 hours, and the reaction temperature may be in the range of 60 to 150 ° C., but is 75 to 120 ° C., more preferably 100 to 120 ° C. from the viewpoint of shortening the reaction time and preventing polymerization. Is preferred.
  • an azeotropic solvent capable of distilling off water generated in the reaction is preferable.
  • the azeotropic solvent here, a solvent having a boiling point of 60 to 130 ° C., azeotropic with water, and easily separable from water is preferable.
  • the amount used is arbitrary, but is preferably 10 to 70% by mass with respect to the reaction mixture.
  • a commercially available (meth) acrylic acid used as a raw material is already added with a polymerization inhibitor such as 4-methoxyphenol, but a polymerization inhibitor may be added again during the reaction.
  • polymerization inhibitors include hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 3-hydroxythiophenol, p-benzoquinone, 2,5-dihydroxy-p-benzoquinone, Examples include phenothiazine.
  • cupric chloride etc. can also be used. The amount used is 0.01 to 1% by mass with respect to the reaction mixture.
  • the urethane (meth) acrylate compound (A) of the present invention is (I) The following (i), (ii) or (iii), (I) including at least two selected from the group consisting of dipentaerythritol tri (meth) acrylate and dipentaerythritol tetra (meth) acrylate and dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate; Dipentaerythritol poly (meth) acrylate mixture (a) (hereinafter referred to as the mixture (a)) having a hydroxyl value of 80 to 120 mgKOH / g, or (Ii) both the mixture (a) and glycerin, or (Iii) the mixture (a), glycerol and (meth) acrylates of C2-C5 aliphatic poly (2-4) ol, (Hereinafter also referred to
  • Any polyisocyanate compound (b) used for the production of the urethane (meth) acrylate compound (A) of the present invention can be used as long as it is a compound containing two or more isocyanate groups in one molecule. It is essential to contain a diisocyanate compound.
  • the polyisocyanate compound (b) is preferably a diisocyanate compound alone or a combination of a diisocyanate compound and another polyisocyanate. In the case of the combined use, the combined use of a diisocyanate compound and a triisocyanate compound is particularly preferable.
  • Examples of the polyisocyanate compound (b) that can be used in the present invention include aliphatic polyisocyanate compounds and aromatic type compounds.
  • polyisocyanate compounds examples thereof include polyisocyanate compounds, alicyclic polyisocyanates, trimer or multimer compounds thereof, burette type polyisocyanates, and allophanate type polyisocyanates.
  • a trimer or multimeric compound means a compound in which three isocyanate groups form one or more isocyanurate ring structures.
  • the polyisocyanate compound (b) used in the present invention may be a diisocyanate compound alone as described above, or may be a combination of a diisocyanate compound and another polyisocyanate compound.
  • any of them may be one kind or plural kinds. Usually, one type is preferable for each.
  • aliphatic polyisocyanate compound examples include hexamethylene diisocyanate (1,6-hexamethylene diisocyanate), isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and 1,3-diisocyanate cyclohexane.
  • a diisocyanate compound alone or a combination of a diisocyanate compound and a triisocyanate compound is preferable.
  • the ratio of the diisocyanate compound and the other polyisocyanate compound, preferably the triisocyanate compound is such that the other polyisocyanate compound (preferably the triisocyanate compound) is 0 to 10 mol, preferably 0 to 7 mol, per 1 mol of the diisocyanate compound. More preferably, it is 0 to 5 mol, and still more preferably about 0 to 3 mol.
  • diisocyanate compounds aliphatic diisocyanates are preferred, and C4 to C12 aliphatic diisocyanates are more preferred. Hexamethylene diisocyanate is most preferred, and among the triisocyanate compounds, hexamethylene diisocyanate trimer is preferred.
  • the use ratio of the polyisocyanate compound (b) to the mixture (a) is equivalent to an isocyanate group equivalent to 1 equivalent of active hydrogen groups in the mixture (a) (the dipentaerythritol poly (meth) acrylate mixture (a)).
  • glycerin is usually in the range of 0.01 to 10 equivalents as active hydrogen group equivalent to 1 equivalent of active hydrogen group in the poly (meth) acrylate mixture (a). It is in the range of 1 to 1 equivalent.
  • the active hydrogen group in the mixture (a) means a hydrogen atom in the hydroxy group
  • the active hydrogen groups in the (meth) acrylates of glycerin and C2 to C5 aliphatic poly (2 to 4) ol are respectively
  • the hydrogen atom in the hydroxy group in the compound of this is meant.
  • the term “hydroxyl equivalent” is also used, but it is used in the same meaning as the active hydrogen group equivalent.
  • the ratio of the polyisocyanate compound (b) to 1 mol of the mixture (a) is such that the hydroxyl group equivalent of the mixture (a), the isocyanate group equivalent in the polyisocyanate compound (b), glycerin and C2 to C5 fat
  • the polyisocyanate compound (b) can be added in an amount of 0.3 mol per 1 mol of the mixture (a). It is preferable to use within the range of about ⁇ 1 mol, preferably about 0.3 to 0.9 mol, more preferably 0.33 to 0.8 mol.
  • the polyisocyanate compound (b) is about 0.3 mol to 0.7 mol with respect to 1 mol of the mixture (a), Preferably about 0.33 mol to 0.6 mol is used.
  • the polyisocyanate compound (b) is further added according to the number of moles of glycerin used together. It is preferable to increase the amount used.
  • the amount of the polyisocyanate compound (b) to be increased is preferably in the range of about half to 1 times the number of moles of glycerin used.
  • the polyisocyanate compound (b) (preferably The amount of diisocyanate compound alone or a combination of diisocyanate compound and triisocyanate compound) is about 0 to 0.3 mol, more preferably about 0 to 0.2 mol, per 1 mol of the mixture (a). It is a ratio.
  • the polyisocyanate compound (b) is increased so that the equivalent number of NCO corresponding to the equivalent number of the hydroxyl group is obtained. It is preferable to do this.
  • the total equivalent number of active hydrogen groups of each component in the mixture (a) is the same as the NCO equivalent number of the polyisocyanate compound (b) to be reacted, or the NCO equivalent number is within 0.1%. It is preferable to react in an excessive amount.
  • 1 mole of the mixture (a) is the content ratio (number of moles) of each component in the mixture (a) to the total amount of the mixture (a) (sum of the number of moles of each component). It is a value when the sum of values calculated by multiplying the respective molecular weights is defined as the molecular weight of the mixture (a).
  • the (meth) acrylate of the C2-C5 aliphatic poly (2-4) ol used in (iii) of (I) includes C2-C5 aliphatic poly (2) such as ethylene glycol, propylene glycol and pentaerythritol. 4) (Meth) acrylate obtained by reaction of ol with (meth) acrylic acid can be mentioned.
  • the (meth) acrylate preferably contains 30 to 100% by mass, preferably 50 to 100% by mass of the (meth) acrylate having a hydroxyl group with respect to the total amount of the (meth) acrylate (the remainder being a hydroxyl group) Acrylate of C2-C5 aliphatic poly (2-4) ol).
  • hydroxyethyl (meth) acrylate poly (2-4) (meth) acrylate of pentaerythritol (preferably, a mixture of pentaerythritol di- or tri (meth) acrylate and pentaerythritol tetra (meth) acrylate),
  • the reaction of the component (I) containing the mixture (a) and the polyisocyanate (b) of (II) can be carried out in the same manner as in a normal urethanization reaction.
  • the reaction may be performed in the presence of an inert organic solvent, for example, a ketone solvent such as butanone and a catalyst, if necessary.
  • the reaction temperature is usually in the range of 30 to 150 ° C., preferably 50 to 100 ° C.
  • the end point of the reaction was calculated by a method in which the residual isocyanate group (NCO) content was reacted with excess n-butylamine and back titrated with 1N hydrochloric acid, and the residual isocyanate group (NCO) content was determined based on the polyisocyanate (b ) Is 0.5% or less, preferably 0.1% or less, based on the isocyanate group (NCO) content.
  • the acidic catalyst examples include copper naphthenate, cobalt naphthenate, zinc naphthenate, tributoxyaluminum, titanium tetrabutoxide, zirconium tetrabutoxide, and other metal alkoxides, aluminum chloride and other Lewis acids, and 2-ethylhexanoic acid tin.
  • Tin compounds such as octyltin trilaurate, dibutyltin dilaurate, and octyltin diacetate.
  • An acidic catalyst of a tin compound is preferable, and dibutyltin dilaurate is more preferable.
  • the addition amount of these catalysts is 0.1 mass part or more normally 1 mass part or less with respect to 100 mass parts of polyisocyanate compounds (b).
  • the urethane (meth) acrylate compound (A) obtained as described above is obtained not as a single urethane compound but as a mixture of urethane compounds having different degrees of polymerization and the like, like a polymer compound.
  • the poly (meth) acrylate mixture (a) is reacted with the polyisocyanate compound (b) in the presence of glycerin and (meth) acrylate of C2 to C5 aliphatic poly (2 to 4) ol.
  • This product becomes a complex polycondensate mixture (urethane (meth) acrylate compound).
  • the resulting urethane (meth) acrylate compound (A) has a viscosity (60 ° C.) of about 5 to 40 Pa ⁇ s, preferably about 10 to 38 Pa ⁇ s, more preferably about 12 to 38 Pa ⁇ s, and most preferably 14 to It is about 35 Pa ⁇ s. Further, among the most preferable, the curling property is less when the viscosity is 15 Pa ⁇ s or more, the curling property is further less when the viscosity is 17 Pa ⁇ s or more, and the curling property is the least when 18 Pa ⁇ s or more.
  • the weight average molecular weight (Mw) is about 3,000 to 50,000, preferably about 4,000 to 35,000, more preferably about 4,500 to 35,000, and still more preferably 5,000 to 35,000. About 000. In order to obtain a cured film with less curl, the weight average molecular weight is about 7,000 to 50,000, preferably about 7,000 to 35,000.
  • the number average molecular weight is about 1,400 to 2,500, preferably about 1,500 to 2,300, more preferably about 1,600 to 2,300, and still more preferably about 1,700 to 2,300. Most preferably, it is about 1,700 to 2,100.
  • One of the more preferred embodiments of the urethane (meth) acrylate compound (A) is that the weight average molecular weight is about 4,500 to 35,000, the number average molecular weight is about 1,500 to 2,300, and the viscosity (60 ° C.) is. 5 to 40 Pa ⁇ s. Further, in a more preferred embodiment, the weight average molecular weight is about 7,000 to 35,000, the number average molecular weight is about 1,700 to 2,300, and the viscosity (60 ° C.) is about 12 to 35 Pa ⁇ s. It is.
  • the urethane (meth) acrylate compound of the present invention is usually a urethane-modified (meth) acrylate (urethane (meth) acrylate) at a ratio calculated from the area ratio of HPLC and GPC (gel permeation chromatography). Is about 60 to 90%, preferably about 60 to 85%, and the remainder is about 10 to 40%, preferably about 15 to 40%, of non-urethane (meth) acrylate (unreacted diester derived from raw materials). It contains pentaerythritol hexa (meth) acrylate and non-urethaneized pentaerythritol multimers (multimers of tri or higher).
  • X represents an isocyanate residue
  • n represents an integer of 0 to 100
  • A, B, and Y represent an organic group represented by the following general formula (2).
  • the general formula (2) is a divalent group, and in the case of A and when B is present at the terminal, each independently The general formula (2) is a monovalent group.
  • the formula (2) can be represented by the following formula (2a).
  • the resin composition of the present invention contains the urethane (meth) acrylate compound (A) of the present invention and a photopolymerization initiator (C), and if necessary, (meth) acrylate (B), a curing accelerator. (D), diluent (E), and other components may be contained. Examples of other components include a leveling agent, an antifoaming agent, an ultraviolet absorber, a light stabilizer, an antioxidant, a polymerization inhibitor, and a crosslinking agent.
  • the resin composition of the present invention is a photosensitive resin composition and can be cured by irradiating energy rays such as ultraviolet rays.
  • the resin composition of this invention contains the organic solvent as a diluent (E) so that it can be easily made into film
  • the content of the urethane (meth) acrylate compound (A) of the present invention is usually 5 to 97% by mass when the solid content of the resin composition of the present invention is 100% by mass,
  • the amount is preferably 20 to 80% by mass, and in some cases, preferably about 40 to 95% by mass, more preferably about 50 to 95% by mass, and more preferably about 70 to 95% by mass.
  • the content of the urethane (meth) acrylate compound (A) with respect to the total amount of the resin composition of the present invention is usually 5 to 97% by mass, preferably about 20 to 95% by mass, and more preferably 40 to 95%. It is about mass%, more preferably about 45 to 95%.
  • Examples of the (meth) acrylate (B) that can be used in the present invention include (meth) acrylate compounds other than the urethane (meth) acrylate compound (A).
  • (meth) acrylate compounds other than the urethane (meth) acrylate compound (A) For example, mono (meth) acrylate (acrylate having one acryloyl group) or polyacrylate (bifunctional (meth) acrylate or trifunctional or higher (meth) acrylate: acrylate having two or more acryloyl groups) It is.
  • polyacrylate examples include polyester (meth) acrylate, urethane (meth) acrylate oligomer (excluding the urethane (meth) acrylate compound (A)), polyester (meth) acrylate oligomer, and epoxy (meth) acrylate oligomer. Including. You may use these individually or in mixture of 2 or more types. In the present invention, a poly (meth) acrylate compound having 2 to 6 (meth) acryloyl groups is preferred.
  • expressions such as “(meth) acrylate” indicate that there may be meta.
  • “(meth) acrylate” is used in the meaning of acrylate or methacrylate.
  • expressions such as “poly (3 to 6)” or “poly (2 to 4)” mean that “poly” is “3 to 6” or “2 to 4” and the like.
  • Examples of mono (meth) acrylates include acryloylmorpholine; hydroxyl group-containing (meth) acrylates such as 2-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; cyclohexane-1,4-dimethanol mono (meta) ) Aliphatic (meth) such as acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate Acrylate, phenoxyethyl (meth) acrylate, phenyl (poly) ethoxy (meth) acrylate, 4-cumylphenoxyethyl (meth) acrylate, tribromophenyloxyethyl (meth) acrylate Aromatic (meth)
  • Bifunctional (meth) acrylates include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol (Meth) acrylate, bisphenol A (poly) ethoxy di (meth) acrylate, bisphenol A (poly) propoxy di (meth) acrylate, bisphenol F (poly) ethoxy di (meth) acrylate, ethylene glycol di (meth) acrylate, (poly) ethylene Di (meth) acrylate of ⁇ -caprolactone adduct of glycol di (meth) acrylate hydroxybivalate neopentyl glycol (for example, KAYARAD HX-220, HX-620, etc., manufactured by Nippon Kayaku Co., Ltd.), bisphenol And the like epoxy acrylates such as Le A
  • trifunctional or more polyfunctional (meth) acrylates ditrimethylolpropane tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethyloloctane tri (meth) acrylate, trimethylolpropane (poly) ethoxytri (meth) Poly (meth) acrylates of methylols such as acrylate, trimethylolpropane (poly) propoxytri (meth) acrylate, trimethylolpropane (poly) ethoxy (poly) propoxytri (meth) acrylate; pentaerythritol tri (meth) acrylate, Pentaerythritol (poly) ethoxytetra (meth) acrylate, pentaerythritol (poly) propoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate Poly (meth)
  • Examples of (poly) ester (meth) acrylate include di (meth) acrylate of (poly) ester diol.
  • (Poly) ester diol can be obtained by reaction of a diol compound with a dibasic acid or an anhydride thereof.
  • propylene glycol having a higher degree of polymerization 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 2-methyl-1,8 -Octanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, cyclohexane-1,4-di C1- such as methanol 12 aliphatic glycols or poly (C2-C4 alkylene) glycols; bisphenol A (poly) C2-C3 alkoxy diols such as bisphenol A (poly) ethoxydiol or bisphenol A (poly) propoxydiol; And polyester diol which is a reaction product with
  • Examples of the organic polyisocyanate used for the synthesis of the urethane (meth) acrylate oligomer include tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate.
  • Linear saturated hydrocarbon isocyanates such as: isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane diisocyanate, methylenebis (4-cyclohexylisocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate; 4-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4-pheni And the like can be given; down diisocyanate, 3,3'-dimethyl-4,4'-diisocyanate, 6-isopropyl-1,3-phenyl diisocyanate, aromatic polyisocyanates such as 1,5-naphthalene diisocyanate.
  • the (poly) ester (meth) acrylate oligomer As said (poly) ester (meth) acrylate oligomer, the (poly) ester (meth) acrylate oligomer etc. which are obtained by reaction of said (poly) ester diol and (meth) acrylic acid etc. are mentioned, for example.
  • an epoxy (meth) acrylate oligomer the epoxy (meth) acrylate oligomer obtained by reaction with an epoxy resin and (meth) acrylic acid is mentioned.
  • the epoxy resin used here is preferably an epoxy resin having a plurality of epoxy groups such as bisphenol A epoxy resin.
  • the content of the (meth) acrylate (B) is usually 0% by mass to 94% by mass when the solid content of the resin composition of the present invention is 100% by mass. Or less, preferably 0 to 60% by mass, and may be larger than zero when used, but preferably 5 to 60% by mass, preferably 10 to 60% by mass. In some cases, 20 to 80% by mass is also preferable.
  • the content of (meth) acrylate (B) with respect to the total amount of the resin composition of the present invention is usually 0 to 50% by mass, preferably about 0 to 40% by mass, more preferably about 0 to 30% by mass. When used, it may be larger than zero, but is preferably 3 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 30% by mass.
  • Examples of the photopolymerization initiator (C) used in the resin composition of the present invention include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy -2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholinopropan-1-one and other acetophenones; 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and other anthraquinones Thioxanthones such as 2,4-diethyl
  • Irgacure RTM 184 (1-hydroxycyclohexyl phenyl ketone) and Irgacure 907 (2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopro manufactured by Ciba Specialty Chemicals, Inc. Pan-1-one), Lucylin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) manufactured by BASF, etc. are easily available. Moreover, you may use these individually or in mixture of 2 or more types. Among these, a photopolymerization initiator belonging to acetophenones is preferable, and 1-hydroxycyclohexyl phenyl ketone (Irgacure RTM ) is more preferable.
  • the content of the photopolymerization initiator (C) is 0.1% by mass or more and 10% by mass or less when the solid content of the resin composition of the present invention is 100% by mass, Preferably they are 1 mass% or more and 7 mass% or less. Further, the content of the photopolymerization initiator (C) relative to 100% by mass of the solid content of the resin composition of the present invention may be about 0.2 to 12% by mass. In this case, it is preferably about 0.5 to 10% by mass, more preferably about 1 to 10% by mass, and further preferably about 2 to 8% by mass.
  • the photopolymerization initiator (C) can be used in combination with a curing accelerator (D).
  • the curing accelerator (D) that can be used in combination include triethanolamine, diethanolamine, N-methyldiethanolamine, 2-methylaminoethylbenzoate, dimethylaminoacetophenone, 4-dimethylaminobenzoic acid isoamyl ester, amines such as EPA, And hydrogen donors such as 2-mercaptobenzothiazole.
  • the amount of these curing accelerators used is 0% by mass or more and 5% by mass or less when the solid content of the resin composition of the present invention is 100% by mass. You may use these individually or in mixture of 2 or more types.
  • a diluent (E) can be used as necessary.
  • a normal temperature (20 ° C.) liquid solvent usually an organic solvent
  • lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -heptalactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -caprolactone; dioxane, 1,2-dimethoxymethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , Ethers such as diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether; carbonates such as ethylene carbonate and prop
  • ester solvents such as ethyl acetate (preferably acetate esters of C2-3 alcohol) and ketones (ketone solvents) are preferable, and C3-C6 aliphatic ketones are more preferable.
  • the content of the diluent (E) is in the range of about 0 to 90% by mass, preferably about 0 to 80% by mass, more preferably the total amount of the resin composition of the present invention. It is about 0 to 60% by mass.
  • the content of the diluent (E) is about 0 to 300% by mass, preferably 0 to 200% by mass, more preferably 0 to About 150% by mass.
  • the content of the component of the composition for example, the content expressed by including “0 to 90% by mass” and 0 as described above does not include the component or is greater than 0 and is 90% by mass. It is meant to be included in the following range.
  • the resin composition of the present invention may be prepared by adding a leveling agent, an antifoaming agent, an ultraviolet absorber, a light stabilizer, an antioxidant, a polymerization inhibitor, a crosslinking agent, as necessary, in addition to the above-mentioned additives. Etc. can be contained. By including them, each intended functionality can be imparted. Fluorine compounds, silicone compounds, acrylic compounds, etc. as leveling agents, benzotriazole compounds, benzophenone compounds, triazine compounds, etc.
  • UV absorbers hindered amine compounds
  • benzoate compounds as light stabilizers
  • polymerization inhibitors include methoquinone, methylhydroquinone, hydroquinone and the like
  • crosslinking agents include the polyisocyanates and melamine compounds.
  • One of the preferable resin compositions of the present invention contains the urethane (meth) acrylate compound (A) of the present invention and a photopolymerization initiator (C), and further comprises (meth) acrylate (B) or a diluent ( It is a resin composition containing at least any one of E). More specifically, preferred resin compositions of the present invention are as follows. The composition ratio is a ratio relative to the solid content of the resin composition of 100% by mass.
  • the resin composition of the present invention is particularly useful as a resin composition (hard coat agent) for hard coating, and can be used as a molding material for electrical product parts and electronic parts described later.
  • the component (A) and the component (C), and the component (B), the component (D), the component (E) and other components are mixed in any order as necessary. Can be obtained.
  • the hard coat of this invention can be obtained by apply
  • the film thickness after drying the above resin composition using a bar coater or the like may be 0.1 ⁇ m or more and 300 ⁇ m or less, usually 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 1 ⁇ m. It can be obtained by coating to a thickness of 20 ⁇ m or less, drying as necessary, and irradiating with ultraviolet rays to form a cured film.
  • the film thickness after curing varies depending on the application, and the film thickness after curing is about 0.1 to 300 ⁇ m, preferably about 1 to 250 ⁇ m.
  • the film thickness after curing is usually 0.1 ⁇ m or more and 50 ⁇ m or less, preferably 1 ⁇ m or more and 20 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 7 ⁇ m or less.
  • the base film examples include polyester, polypropylene, polyethylene, polyacrylate, polycarbonate, triacetyl cellulose, polyether sulfone, and cycloolefin polymer.
  • the film to be used may be one provided with a handle or an easy adhesion layer, one subjected to surface treatment such as corona treatment, or one subjected to release treatment.
  • Examples of the coating method of the resin composition include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, micro reverse gravure coater, and die coater. Examples include coating, dip coating, spin coating, and spray coating.
  • ultraviolet rays are irradiated for curing
  • an electron beam or the like can also be used.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, a metal halide lamp or the like is used as a light source, and the light amount, the arrangement of the light source, etc. are adjusted as necessary.
  • a high-pressure mercury lamp it is preferable to cure at a conveyance speed of 5 to 60 m / min for one lamp having an energy of 80 to 120 W / cm 2 .
  • an electron beam accelerator having an energy of 100 to 500 eV, and the photopolymerization initiator (C) may not be used.
  • the cured film of the resin composition of the present invention has adhesiveness to a substrate, hardness, and appropriate flexibility, so that it can be suitably used as a display device material.
  • a display device material For example, spacers used for LCD, EL, rear projection display, color filter materials used for electronic paper, partition material LCD, FED (SED), etc. for separating fine display elements used for PDP, electronic paper, etc. (Thing which plays a role like a pillar for maintaining a gap) or a solid-state imaging device such as a digital camera.
  • the cured product of the photosensitive resin composition of the present invention is a resin particularly suitable for a color filter such as a liquid crystal display device or a solid-state imaging device such as a digital camera, and among these, it is particularly suitable as a color filter.
  • This color filter has a plurality of patterned colored pixels made of a cured product of the photosensitive resin composition of the present invention prepared as described above, or a black matrix and a photo spacer.
  • the display device is a liquid crystal display device, for example, a backlight, a polarizing film, a display electrode, a liquid crystal, an alignment film, a common electrode, a color filter using the photosensitive resin composition of the present invention
  • a polarized light A film or the like is produced in a laminated structure in this order.
  • a color filter layer using the photosensitive resin composition of the present invention is provided on a silicon wafer provided with transfer electrodes and photodiodes, and then a microlens is laminated. It is produced by this.
  • the photosensitive resin composition of the present invention can be used, for example, in printing inks, paints, adhesives, liquid resist inks, and the like.
  • Raw material synthesis example 1 In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 449.7 g (6.2 mol) of acrylic acid, 9 of sulfuric acid .81 g, cupric chloride 1.03 g and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling off the produced water with the solvent.
  • the ratio of each component of DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the area ratio (%) of high performance liquid chromatography (HPLC) was 10: 43: 37: 10.
  • the viscosity of the mixture was 6,300 mPa ⁇ s (25 ° C.).
  • Raw material synthesis example 2 In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 432.4 g (6.0 mol) of acrylic acid, 9 of sulfuric acid .81 g, cupric chloride 0.99 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling the produced water with the solvent. After the reaction, 849.4 g of toluene was added for dilution, neutralized with 25% aqueous NaOH solution, and then washed 3 times with 600 g of 15% by mass brine.
  • the solvent was distilled off under reduced pressure to obtain 525.3 g of a mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA (hydroxyl value: 92 mg KOH / g, hydroxyl equivalent: 609.9 g / Eq).
  • the ratio of each component of DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the HPLC area ratio (%) was 12: 45: 36: 7.
  • the viscosity of the mixture was 6,300 mPa ⁇ s (25 ° C.).
  • Raw material synthesis example 3 In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 402.1 g (5.6 mol) of acrylic acid, and sulfuric acid 9 .81 g, cupric chloride 0.92 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling off the produced water with the solvent. After the reaction, 849.4 g of toluene was added for dilution, neutralized with 25% aqueous NaOH solution, and then washed 3 times with 600 g of 15% by mass brine.
  • the solvent was distilled off under reduced pressure to obtain 494.9 g of a mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA (hydroxyl value: 120 mgKOH / g, hydroxyl equivalent: 467.6 g / Eq).
  • the ratio of each component of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the area ratio (%) of HPLC was 3: 26: 41: 24: 6.
  • the viscosity of the mixture was 6,000 mPa ⁇ s (25 ° C.).
  • Comparative raw material synthesis example 1 In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 497.2 g (6.9 mol) of acrylic acid, 9 of sulfuric acid 9 .81 g, cupric chloride 1.14 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling off the produced water with the solvent.
  • Comparative raw material synthesis example 2 In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 380.5 g (5.3 mol) of acrylic acid, 9 of sulfuric acid .81 g, cupric chloride 0.88 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling the produced water with the solvent.
  • Example A (Synthesis Example 1) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 1 (hydroxyl value: 80 mgKOH / g, hydroxyl group equivalent: 701) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. .4 g / Eq) 446.47 g (0.64 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform.
  • the content of urethane acrylate is 64% (ratio with respect to the total amount), and the acrylate which is not urethanized (unreacted DPEThexaA and by-product)
  • the content of the acrylate of the pentaerythritol multimer, etc. was 36%.
  • Example B (Synthesis Example 2) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. 9.9 g / Eq) 439.41 g (0.72 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor, and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst, and stirred until uniform.
  • Example C (Synthesis Example 3) A mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 3 (hydroxyl value: 120 mgKOH / g, hydroxyl group equivalent: in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. 467.6 g / Eq) 423.78 g (0.91 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform. The temperature was 50 ° C.
  • Example D (Synthesis Example 4) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller.
  • the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
  • the obtained urethane acrylate had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
  • Example E (Synthesis Example 5) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller.
  • Example F (Synthesis Example 6) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller.
  • the NCO content was 0.1% or less. This was the end point of the reaction.
  • Example G (Synthesis Example 7) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller.
  • the NCO content was 0.1% or less. This was the end point of the reaction.
  • the obtained urethane acrylate had a urethane acrylate content of 75% (ratio to the total amount) and an urethanized acrylate content of 25%.
  • Example H (Synthesis Example 8) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. .9 g / Eq) 330.55 g (0.54 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, and dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst were uniformly added. The mixture was stirred until the internal temperature reached 50 ° C.
  • Example I (Synthesis Example 9) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. .9 g / Eq) 337.88 g (0.55 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst, and uniformly added The mixture was stirred until the internal temperature reached 50 ° C.
  • Example J (Synthesis Example 10) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 1 (hydroxyl value: 80 mgKOH / g, hydroxyl group equivalent: 701) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. .4 g / Eq) 331.80 g (0.54 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst, and uniformly added The mixture was stirred until the internal temperature reached 50 ° C.
  • the urethane acrylate thus obtained had a urethane acrylate content of 66% (ratio to the total amount) and a non-urethane acrylate content of 34%.
  • Example K (Synthesis Example 11) A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 3 (hydroxyl value: 120 mgKOH / g, hydroxyl group equivalent: 467) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. .6 g / Eq) 305.74 g (0.50 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst, and uniformly added The mixture was stirred until the internal temperature reached 50 ° C.
  • the urethane acrylate thus obtained had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
  • Comparative Synthesis Example 1 A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Comparative Raw Material Synthesis Example 1 (hydroxyl value: 45 mgKOH / g, hydroxyl equivalent) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. : 1246.9 g / Eq) 473.39 g (0.38 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor, 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst, and stirred until uniform. The internal temperature was 50 ° C.
  • the urethane acrylate thus obtained had a urethane acrylate content of 48% (ratio to the total amount) and a non-urethane acrylate content of 52%.
  • Comparative Synthesis Example 2 Mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Comparative Raw Material Synthesis Example 2 (hydroxyl value: 140 mgKOH / g, hydroxyl group) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller (Equivalent: 400.8 g / Eq) 413.28 g (1.03 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform. The internal temperature was 50 ° C.
  • Comparative Synthesis Example 3 A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609.) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. 9 g / Eq) 316.79 g (0.52 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform. The temperature was 50 ° C.
  • TLA-100 hexamethylene diisocyanate trimer
  • Comparative Synthesis Example 4 A mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 3 (hydroxyl value: 120 mgKOH / g, hydroxyl group equivalent: in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. 467.6 g / Eq) 297.93 g (0.49 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor, and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst, and stirred until uniform. The temperature was 50 ° C.
  • Examples 1 to 4 and Comparative Examples 1 to 2 Each component was mix
  • Each of the obtained resin compositions was applied onto a PET film (thickness 125 ⁇ m) subjected to easy adhesion treatment by a bar coater and dried at about 80 to 100 ° C.
  • Each of the obtained coating films was irradiated with ultraviolet rays using an ultraviolet irradiator (JAPAN STORE BATTERY CO, LTD .: CS30L-1-1) to cure the coating films.
  • a PET film (hard coat film) having a hard coat thickness of about 5 ⁇ m was obtained.
  • the curing conditions are as follows.
  • the pencil hardness of the obtained hard coat film was measured using a pencil scratch tester. Specifically, on the polyester film having the cured film to be measured, the pencil is applied with a load of 750 g from the top at a 45 degree angle, and is scratched for about 5 mm. expressed.
  • the film having a cured film obtained by curing the resin composition of the present invention has good hardness, adhesion, and scratch resistance, and does not generate cracks. Compared with the curl is small.
  • Examples 5 to 7 and Comparative Example 3 Each component was mix
  • Curing conditions High pressure mercury lamp: 80 W / cm, lamp height: 10 cm, conveyor speed: 5 m / min (irradiation energy: about 900 mW / cm 2 , about 600 mJ / cm 2 ). Moreover, the unit of numerical values in Table 3 represents “parts by mass”.
  • the cured film obtained by curing the resin composition of the present invention has a high stress at break and elongation at break, and is flexible and tough compared to the comparative examples. Recognize.
  • Examples 8 to 15 Each component was mix
  • “MEK” and “Irg.184” have the same meaning as in Table 1.
  • a PET film (hard coat film) having a hard coat with a film thickness of about 5 ⁇ m was obtained in the same manner as in Examples 1 to 4.
  • the obtained hard coat film was evaluated in the same manner as in Examples 1 to 4, and the results are shown in Table 6 below.
  • the film having a cured film obtained by curing the resin composition of the present invention has good hardness, adhesion, and scratch resistance, and does not generate cracks.
  • the cured film obtained by curing the resin composition of the present invention has good hardness, adhesion, scratch resistance, and maintains the required characteristics as a hard cord such as no occurrence of cracks, while curling is small, It is characterized by having both flexible and tough properties.
  • the hard coat film obtained by curing the resin composition of the present invention has good hardness, adhesion, and scratch resistance, and does not cause curling or cracking. Therefore, the resin composition of the present invention is suitable as a material for plastic films, hard coatings for small cases, color filters, black matrices, and spacers.

Abstract

Disclosed is a urethane (meth)acrylate compound (A) obtained by reacting (I) any of (i) a dipentaerythritol poly(meth)acrylate mixture (a) which comprises at least two compounds selected from a group consisting of dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate and which has a hydroxy value of 80-120 mg-KOH/g (hereinafter referred to as mixture (a)), (ii) both the mixture (a) and glycerol, and (iii) all of the mixture (a), glycerol, and a (meth)acrylate of a C2-5 aliphatic polyol (di- to tetrol) with (II) a polyisocyanate compound (b) comprising a diisocyanate compound. Also disclosed are a resin composition comprising the urethane (meth)acrylate compound (A) and a photopolymerizataion initiator (C), a cured object formed from the resin composition, a hard coating material comprising the resin composition, and a hardcoat.

Description

ウレタン(メタ)アクリレート化合物及びそれを含有する樹脂組成物Urethane (meth) acrylate compound and resin composition containing the same
 本発明は、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも2種を含み、水酸基価が80~120mgKOH/gのジペンタエリスリトールポリ(メタ)アクリレート混合物(a)を原料とするウレタン(メタ)アクリレート化合物(A)、それを含む樹脂組成物、特に、該ウレタン(メタ)アクリレート化合物(A)と光重合開始剤を含む樹脂組成物、及び該樹脂組成物の硬化膜に関する。そして、本発明の樹脂組成物の硬化皮膜は硬度、基材への密着性、耐擦傷性等に優れ、カールが小さく、クラックの発生も少ないため、プラスチックフィルムや小型の筐体のハードコートとして有用である。 The present invention includes at least two selected from the group consisting of dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate. A urethane (meth) acrylate compound (A) using a dipentaerythritol poly (meth) acrylate mixture (a) having a hydroxyl value of 80 to 120 mgKOH / g as a raw material, and a resin composition containing the same, in particular, the urethane (meth) The present invention relates to a resin composition containing an acrylate compound (A) and a photopolymerization initiator, and a cured film of the resin composition. And since the cured film of the resin composition of the present invention is excellent in hardness, adhesion to a substrate, scratch resistance, etc., curl is small and cracks are less likely to occur, it can be used as a hard coat for plastic films and small casings. Useful.
 また、本発明の樹脂組成物の硬化皮膜は、基材への密着性が良好で、高い硬度を持ち、かつ適度な柔軟性を有する事から、本発明の樹脂組成物はカラーフィルター(例えば、カラー液晶ディスプレイ、カラービデオカメラ、カラーデジタルカメラ、電子ペーパー等に使用されるカラーフィルター)、ブラックマトリクスまたはスペーサーの作製に使用することもできる。 Further, the cured film of the resin composition of the present invention has good adhesion to the substrate, has high hardness, and has an appropriate flexibility, so that the resin composition of the present invention is a color filter (for example, Color filters used in color liquid crystal displays, color video cameras, color digital cameras, electronic papers, etc.), black matrixes, or spacers can also be used.
 現在、加工性、透明性、光学特性などの種々の特性において優れ、かつ軽量、安価なプラスチックが産業界において活用されている。しかしながら、プラスチックはガラスなどに比べて柔らかく、表面に傷が付きやすいなどの欠点を持つために、プラスチック表面にハードコート剤をコーティングする事が一般的に行われている。ハードコート剤としては、主としてシリコーン系塗料、アクリル系塗料、メラミン系塗料などの熱硬化型のものが数多く知られている。中でもシリコーン系ハードコート剤が、性能・品質が優れているため主に使用されてきた。しかし、該シリコーン系ハードコート剤は硬化時間が長く、高価であるという欠点を有していた。 Currently, lightweight, inexpensive plastics that are excellent in various properties such as processability, transparency, and optical properties are used in the industry. However, since plastics are softer than glass and have defects such as the surface being easily scratched, it is common practice to coat a hard coating agent on the plastic surface. As the hard coat agent, many thermosetting types such as silicone paints, acrylic paints, and melamine paints are known. Among these, silicone hard coat agents have been mainly used because of their excellent performance and quality. However, the silicone-based hard coat agent has a drawback that it has a long curing time and is expensive.
 そこで、シリコーン系ハードコート剤の欠点を補うハードコート剤として、感光性のアクリル系ハードコート剤が開発され、利用されるようになった(特許文献1参照)。アクリル系ハードコート剤は、紫外線などの放射線照射により、直ちに硬化するため、加工処理スピードが速く、硬度、耐擦傷性などに優れ、且つ安価である。そのため、現在では該アクリル系ハードコート剤はハードコート分野の主流になっている。特に、該アクリル系ハードコート剤は、ポリエステルなどの基材フィルムの連続加工に際して、該基材表面をコーティングするのに適している。 Therefore, a photosensitive acrylic hard coat agent has been developed and used as a hard coat agent that compensates for the disadvantages of silicone hard coat agents (see Patent Document 1). Acrylic hard coat agents are cured immediately upon irradiation with radiation such as ultraviolet rays, so that the processing speed is high, the hardness and the scratch resistance are excellent, and the cost is low. Therefore, at present, the acrylic hard coat agent has become the mainstream in the hard coat field. In particular, the acrylic hard coat agent is suitable for coating the surface of the substrate during continuous processing of a substrate film such as polyester.
 プラスチックの基材フィルムとしては、ポリエステルフィルム、アクリルフィルム、ポリカーボネートフィルム、塩化ビニルフィルム、トリアセチルセルロースフィルム、ポリエーテルスルホンフィルムなどがある。その中で、ポリエステルフィルムが種々の優れた特性から最も広く使用されている。このポリエステルフィルムは、ガラスの飛散防止フィルム、あるいは、自動車の遮光フィルム、ホワイトボード用表面フィルム、システムキッチン表面防汚フィルム等の用途、電子材料用には、CRTフラットテレビ、タッチパネル、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイなどにおける機能性フィルムとして使用されている。
 また、フィルム以外では、ポリエステル樹脂成形物として、家電製品のボディーやスイッチ、携帯電話やパソコン、MP3プレイヤー等の電子機器筐体が広く用いられている。これらはいずれもその表面に傷が付かないようにするためにハードコートがなされている。また、ポリエステル以外では例えば、ハードコートをされた、ポリカーボネートやアクリル等のシートや基板が、光ディスクやバックライト周辺の液晶関連部材に使用されている。
Examples of the plastic base film include a polyester film, an acrylic film, a polycarbonate film, a vinyl chloride film, a triacetyl cellulose film, and a polyethersulfone film. Among them, polyester films are most widely used because of various excellent properties. This polyester film is used for applications such as glass shatterproof film, automobile light-shielding film, whiteboard surface film, system kitchen surface antifouling film, and electronic materials. CRT flat TV, touch panel, liquid crystal display (LCD) ), A functional film in plasma display (PDP), organic EL display and the like.
In addition to films, electronic device cases such as home appliance bodies and switches, mobile phones, personal computers, and MP3 players are widely used as polyester resin moldings. All of these are hard-coated to prevent the surface from being scratched. In addition to polyester, for example, a hard-coated sheet or substrate such as polycarbonate or acrylic is used for an optical disk or a liquid crystal related member around a backlight.
 近年、ハードコート層に耐擦傷性というハードコートとしての性能以外の機能を付与したフィルムの開発も行われている。例えば、フィルムを設けたCRT、LCD、PDPなどの表示体では、反射により表示体画面が見難くなり、目が疲れやすいため、例えば特許文献2のように表面反射防止能のあるハードコートの開発も行われている。 In recent years, a film having a hard coat layer with a function other than the performance as a hard coat called scratch resistance has been developed. For example, in the case of a display such as a CRT, LCD, or PDP provided with a film, it is difficult to see the display screen due to reflection, and the eyes are likely to get tired. Has also been done.
 また、その一方で、ハードコート本来の目的である硬度を向上させる検討も行われている。例えば、特許文献3では多官能ウレタンアクリレートを樹脂組成物中に添加することにより硬度の向上を図っている。しかしながら、使用されている多官能ウレタンアクリレートの硬化収縮が大きく、クラックの発生等が見られるという問題がある。 On the other hand, studies are also being made to improve the hardness, which is the original purpose of the hard coat. For example, Patent Document 3 attempts to improve hardness by adding polyfunctional urethane acrylate to the resin composition. However, there is a problem that the curing shrinkage of the polyfunctional urethane acrylate being used is large and cracks are observed.
 特許文献4では、反射防止材料のハードコート用の樹脂組成物中に、多官能ウレタン(メタ)アクリレートを使用している。このハードコートは硬度、耐カール性、耐擦傷性等の点でかなり優れているが、必ずしもまだ満足すべきものではなく、更なる改善が望まれる。 In Patent Document 4, polyfunctional urethane (meth) acrylate is used in a resin composition for hard coating of an antireflection material. This hard coat is quite excellent in terms of hardness, curl resistance, scratch resistance, etc., but it is not always satisfactory and further improvements are desired.
特開平9-48934号公報Japanese Patent Laid-Open No. 9-48934 特開平9-145903号公報Japanese Patent Laid-Open No. 9-145903 特開2001-113648号公報JP 2001-113648 A 特開2000-187102号公報JP 2000-187102 A
 本発明は、硬度や擦傷性に優れると共にカールやクラックの発生も少なく、上記公知のものよりも更に優れる硬化皮膜、及びそれを与えるウレタン(メタ)アクリレート化合物及びそれを含む樹脂組成物を得ることを課題とするものである。 The present invention provides a cured film that is excellent in hardness and scratch resistance and has less curling and cracking, and is further superior to the above-mentioned known ones, and a urethane (meth) acrylate compound that provides the cured film and a resin composition containing the same. Is an issue.
 本発明者らは前記課題を解決するため、鋭意検討を行った結果、本発明に到達した。 The present inventors arrived at the present invention as a result of intensive studies to solve the above problems.
 即ち、本発明は、下記の発明に関するものである。
(1) (I)下記(i)、(ii)又は(iii)、
(i)ジペンタエリスリトールトリ(メタ)アクリレート及びジペンタエリスリトールテトラ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも2種を含み、水酸基価が80~120mgKOH/gであるジペンタエリスリトールポリ(メタ)アクリレート混合物(a)(以下該混合物(a)という)、又は、
(ii)該混合物(a)及びグリセリンの両者、又は、
(iii)該混合物(a)、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの3者、
のいずれかと、
(II)ジイソシアネート化合物を含むポリイソシアネート化合物(b)、
とを反応させて得られるウレタン(メタ)アクリレート化合物(A)。
(2) (I)が(i)の該混合物(a)である上記(1)に記載のウレタン(メタ)アクリレート化合物(A)。
(3) (II)のポリイソシアネート化合物(b)が、ジイソシアネート化合物単独又はジイソシアネート化合物とトリイソシアネート化合物の併用であり、ジイソシアネート化合物とトリイソシアネート化合物の割合がジイソシアネート化合物1モルに対して、トリイソシアネート化合物が0~10モルの割合である上記(1)又は(2)に記載のウレタン(メタ)アクリレート化合物(A)。
That is, the present invention relates to the following inventions.
(1) (I) (i), (ii) or (iii) below,
(I) including at least two selected from the group consisting of dipentaerythritol tri (meth) acrylate and dipentaerythritol tetra (meth) acrylate and dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate; Dipentaerythritol poly (meth) acrylate mixture (a) (hereinafter referred to as the mixture (a)) having a hydroxyl value of 80 to 120 mgKOH / g, or
(Ii) both the mixture (a) and glycerin, or
(Iii) the mixture (a), glycerol and (meth) acrylates of C2-C5 aliphatic poly (2-4) ol,
Either
(II) a polyisocyanate compound (b) containing a diisocyanate compound,
Urethane (meth) acrylate compound (A) obtained by reacting with.
(2) The urethane (meth) acrylate compound (A) according to (1), wherein (I) is the mixture (a) of (i).
(3) The polyisocyanate compound (b) of (II) is a diisocyanate compound alone or a combination of a diisocyanate compound and a triisocyanate compound, and the ratio of the diisocyanate compound to the triisocyanate compound is 1 mol of the diisocyanate compound. The urethane (meth) acrylate compound (A) according to the above (1) or (2), wherein is a ratio of 0 to 10 mol.
(4) 下記一般式(1)で表される上記(1)~(3)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)、 (4) The urethane (meth) acrylate compound (A) according to any one of the above (1) to (3) represented by the following general formula (1):
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
(式中、Xはイソシアネート残基、nは0~100の整数、
Yは下記一般式(2)で表される有機基であり、式中のa、b及びcは、それぞれ、1≦a≦4、0≦b≦3及び0≦c≦3の整数で、かつ、a+b+c=4、
(Wherein X is an isocyanate residue, n is an integer of 0 to 100,
Y is an organic group represented by the following general formula (2), wherein a, b and c are integers of 1 ≦ a ≦ 4, 0 ≦ b ≦ 3 and 0 ≦ c ≦ 3, respectively. And a + b + c = 4,
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
及び、
Aは上記一般式(2)で表される有機基であり、式中のXはイソシアネート残基、cは0であり、a及びbは、1≦a≦5、0≦b≦4の整数であり、かつ、a+b=5、
Bは上記一般式(2)で表される有機基であり、式中、Xはイソシアネート残基であり、cは0であり、aおよびbは、
(i)Bが末端に存在するとき、1≦a≦5、0≦b≦4の整数であり、かつ、a+b=5であり、
(ii)Bが末端以外に存在するとき、式中のaおよびbは、1≦a≦4、0≦b≦3の整数であり、かつ、a+b=4である)。
as well as,
A is an organic group represented by the general formula (2), wherein X is an isocyanate residue, c is 0, and a and b are integers of 1 ≦ a ≦ 5 and 0 ≦ b ≦ 4 And a + b = 5,
B is an organic group represented by the general formula (2), wherein X is an isocyanate residue, c is 0, and a and b are
(I) when B is present at the end, 1 ≦ a ≦ 5, 0 ≦ b ≦ 4, and a + b = 5,
(Ii) When B is present at a position other than the end, a and b in the formula are integers of 1 ≦ a ≦ 4, 0 ≦ b ≦ 3, and a + b = 4).
(5) (I)の(i)該混合物(a)と(II)のポリイソシアネート化合物(b)とを、該混合物(a)中の活性水素基1当量に対し、ポリイソシアネート化合物(b)中のイソシアネート基当量0.1~50当量の割合で反応させる、上記(1)~(4)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)の、製造法。
(6) (I)が(ii)の該混合物(a)及びグリセリンである上記(1)又は(3)に記載のウレタン(メタ)アクリレート化合物(A)。
(7) 上記(1)の該混合物(a)及びグリセリン、と、上記(1)の(II)のポリイソシアネート化合物(b)とを、該混合物(a)中の活性水素基1当量に対して、グリセリン中の活性水素基当量0.01~10当量、(II)のポリイソシアネート化合物(b)中のイソシアネート基当量0.1~50当量の割合で、反応させる上記(6)に記載のウレタン(メタ)アクリレート化合物(A)の製造法。
(8) 上記(1)~(4)及び(6)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)、(メタ)アクリレート(B)及び光重合開始剤(C)を含有する樹脂組成物。
(9) ハードコート用である上記(8)に記載の樹脂組成物。
(10) (I)が(iii)の、該混合物(a)、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの3者である上記(1)、又は(3)に記載のウレタン(メタ)アクリレート化合物(A)。
(5) (i) The polyisocyanate compound (b) is mixed with the mixture (a) and the polyisocyanate compound (b) of (II) with respect to 1 equivalent of the active hydrogen group in the mixture (a). A process for producing the urethane (meth) acrylate compound (A) according to any one of the above (1) to (4), wherein the reaction is carried out at a ratio of 0.1 to 50 equivalents of an isocyanate group in the solvent.
(6) The urethane (meth) acrylate compound (A) according to (1) or (3), wherein (I) is the mixture (a) of (ii) and glycerin.
(7) The mixture (a) and glycerin of (1) above, and the polyisocyanate compound (b) of (II) of (1) above are added to 1 equivalent of active hydrogen groups in the mixture (a). The active hydrogen group equivalent in the glycerol is 0.01 to 10 equivalents, and the isocyanate group equivalent in the polyisocyanate compound (b) (II) is 0.1 to 50 equivalents. Production method of urethane (meth) acrylate compound (A).
(8) Contains the urethane (meth) acrylate compound (A), (meth) acrylate (B) and photopolymerization initiator (C) according to any one of (1) to (4) and (6) above. Resin composition.
(9) The resin composition according to (8), which is used for hard coating.
(10) The above (1) or (3) wherein (I) is a mixture of (iii) (glycerol) and (meth) acrylate of C2 to C5 aliphatic poly (2 to 4) ol. ) Urethane (meth) acrylate compound (A).
(11) 上記(1)の(I)の(iii)の、該混合物(a)、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの3者と、上記(1)の(II)のポリイソシアネート化合物(b)とを、該混合物(a)中の活性水素基1当量に対して、グリセリンの活性水素基当量0.01~10当量及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの活性水素基当量0.01~10当量、ポリイソシアネート化合物(b)のイソシアネート基当量0.1~50当量の割合で、反応させる、上記(1)又は(10)に記載のウレタン(メタ)アクリレート化合物(A)の、製造法。
(12) (I)における該混合物(a)が、該混合物(a)の総量に対して、高速液体クロマトグラフィー(HPLC)の面積割合(%)において、ジペンタエリスリトールペンタ(メタ)アクリレートを35~60%含み、それにジペンタエリスリトールテトラ(メタ)アクリレートおよびジペンタエリスリトールヘキサ(メタ)アクリレートを加えた3者の合計が90~100%であり、残部0~10%がジペンタエリスリトールトリ(メタ)アクリレートおよびトリペンタエリスリトール以上の多量体のアクリレートである、上記(1)~(4)、(6)又は(10)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)。
(13) ポリイソシアネート化合物(b)がジイソシアネート化合物単独である上記(1)~(4)、(6)、(10)又は(12)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)。
(14) ポリイソシアネート化合物(b)がジイソシアネート化合物とトリイソシアネート化合物の併用である上記(1)~(3)、(5)、(6)、(10)、(12)又は(13)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)。
(11) The above (1) (I) (iii), the mixture (a), glycerin and (meth) acrylates of C2-C5 aliphatic poly (2-4) ol, and (1 ) Of the polyisocyanate compound (b) of (II) with respect to 1 equivalent of active hydrogen groups in the mixture (a) and 0.01 to 10 equivalents of active hydrogen groups of glycerin and C2 to C5 aliphatic poly (2-4) The reaction is carried out at a ratio of 0.01 to 10 equivalents of active hydrogen group equivalent of (meth) acrylate of all and 0.1 to 50 equivalent of isocyanate group equivalent of polyisocyanate compound (b), (1) Or the manufacturing method of the urethane (meth) acrylate compound (A) as described in (10).
(12) The mixture (a) in (I) contains 35 dipentaerythritol penta (meth) acrylate in the area ratio (%) of high performance liquid chromatography (HPLC) with respect to the total amount of the mixture (a). The total of the three components including 90% to 100%, dipentaerythritol tetra (meth) acrylate and dipentaerythritol hexa (meth) acrylate added thereto is 90 to 100%, and the remaining 0 to 10% is dipentaerythritol tri (meta) The urethane (meth) acrylate compound (A) according to any one of the above (1) to (4), (6) or (10), which is a multimeric acrylate of acrylate and tripentaerythritol.
(13) The urethane (meth) acrylate compound according to any one of (1) to (4), (6), (10) or (12) above, wherein the polyisocyanate compound (b) is a diisocyanate compound alone ( A).
(14) Any of the above (1) to (3), (5), (6), (10), (12) or (13), wherein the polyisocyanate compound (b) is a combination of a diisocyanate compound and a triisocyanate compound The urethane (meth) acrylate compound (A) according to claim 1.
(15) ジイソシアネート化合物がヘキサメチレンジイソシアネートである上記(13)又は(14)に記載のウレタン(メタ)アクリレート化合物(A)。
(16) 該混合物(a)がジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレートの3者の混合物、又は、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの4者の混合物であり、ポリイソシアネート化合物(b)がヘキサメチレンジイソシアネート単独、又はヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネート3量体の両者である上記(1)~(4)、(6)、(10)及び(12)~(14)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)。
(17) 上記(1)~(4)、(6)、(10)、(12)~(16)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)及び光重合開始剤(C)を含有する樹脂組成物。
(18) 上記(1)~(4)、(6)、(10)、(12)~(16)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)及び光重合開始剤(C)を含有する樹脂組成物の硬化膜。
(19) 粘度(60℃)が5~40Pa・sである上記(1)~(4)、(6)、(10)及び(12)~(16)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)。
(15) The urethane (meth) acrylate compound (A) according to the above (13) or (14), wherein the diisocyanate compound is hexamethylene diisocyanate.
(16) The mixture (a) is a ternary mixture of dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, or dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol penta (4) A mixture of acrylate and dipentaerythritol hexaacrylate, wherein the polyisocyanate compound (b) is hexamethylene diisocyanate alone or both hexamethylene diisocyanate and hexamethylene diisocyanate trimer. , (6), (10) and the urethane (meth) acrylate compound (A) according to any one of (12) to (14).
(17) The urethane (meth) acrylate compound (A) according to any one of (1) to (4), (6), (10), (12) to (16) and a photopolymerization initiator ( A resin composition containing C).
(18) The urethane (meth) acrylate compound (A) according to any one of (1) to (4), (6), (10), (12) to (16) and a photopolymerization initiator ( A cured film of a resin composition containing C).
(19) The urethane according to any one of (1) to (4), (6), (10) and (12) to (16), wherein the viscosity (60 ° C.) is 5 to 40 Pa · s. (Meth) acrylate compound (A).
 本発明のウレタン(メタ)アクリレート化合物(A)を用いることにより、高い、透明性、硬度及び耐擦傷性を持ち、カールやクラックの発生し難い硬化皮膜、又は、高い透明性、適度な硬度および柔軟性と強靱性を有する硬化皮膜を与える樹脂組成物および該樹脂組成物の硬化物、該樹脂組成物からなるハードコート剤及びそれを用いたハードコートが提供される。 By using the urethane (meth) acrylate compound (A) of the present invention, a cured film having high transparency, hardness and scratch resistance, hardly causing curling and cracking, or high transparency, suitable hardness and Provided are a resin composition that provides a cured film having flexibility and toughness, a cured product of the resin composition, a hard coat agent comprising the resin composition, and a hard coat using the same.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明において、原料として用いるジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも2種を含むジペンタエリスリトールポリ(メタ)アクリレート混合物(a){好ましくはジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレートからなる群から選ばれる少なくとも2種を含むジペンタエリスリトールポリアクリレート混合物(a’)}の水酸基価は、80~120mgKOH/gの範囲である。水酸基価がこの範囲の時、ウレタン化の反応時にゲル化を起こすことも無く、目的とするウレタン(メタ)アクリレート化合物(A){好ましくはウレタンアクリレート化合物(A’)}を効率よく得ることができる。また、得られたウレタン(メタ)アクリレート化合物(A)を含む樹脂組成物からは、硬度が高く、優れた耐カール性、及び高い柔軟性を有するハードコートを得ることができる。
 なお、本明細書においては、上記ウレタン(メタ)アクリレート化合物(A)を、構造又は組成により区別する必要がある場合には、グリセリン由来の骨格を含まない化合物をウレタン(メタ)アクリレート化合物(A1)、グリセリン由来の骨格を含むウレタン(メタ)アクリレート化合物(A2)、グリセリン由来の骨格及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレート由来の骨格を含む化合物の場合をウレタン(メタ)アクリレート化合物(A3)という。
In the present invention, at least 2 selected from the group consisting of dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate used as a raw material. Dipentaerythritol poly (meth) acrylate mixture containing seeds (a) {preferably at least two selected from the group consisting of dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate The hydroxyl value of the dipentaerythritol polyacrylate mixture (a ′)} containing is in the range of 80 to 120 mg KOH / g. When the hydroxyl value is within this range, gelation does not occur during the urethanization reaction, and the desired urethane (meth) acrylate compound (A) {preferably urethane acrylate compound (A ')} can be efficiently obtained. it can. Moreover, from the resin composition containing the obtained urethane (meth) acrylate compound (A), a hard coat having high hardness, excellent curl resistance and high flexibility can be obtained.
In addition, in this specification, when it is necessary to distinguish the said urethane (meth) acrylate compound (A) by a structure or a composition, the compound which does not contain skeleton derived from glycerol is a urethane (meth) acrylate compound (A1). ), A urethane (meth) acrylate compound (A2) containing a glycerin-derived skeleton, a compound containing a glycerin-derived skeleton and a (meth) acrylate-derived skeleton of a C2-C5 aliphatic poly (2-4) ol. It is called (meth) acrylate compound (A3).
 上記原料として用いるジペンタエリスリトールポリ(メタ)アクリレート混合物(a)(以下単にポリ(メタ)アクリレート混合物(a)又は該混合物(a)ともいう)は、ジペンタエリスリトールと(メタ)アクリル酸を脱水縮合触媒、例えば酸触媒、の存在下に脱水縮合反応させ、ジペンタエリスリトールを(メタ)アクリレート化することにより得ることができる。
 該混合物(a)は、好ましくは、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも3種、より好ましくはジペンタエリスリトールテトラ、ペンタおよびヘキサ(メタ)アクリレートの3種を含む。通常、該混合物(a)はジペンタエリスリトールトリ、テトラ、ペンタ及びヘキサ(メタ)アクリレートの4種を含む混合物、又は、ジペンタエリスリトールテトラ、ペンタ及びヘキサ(メタ)アクリレートの3種を含む混合物である。該混合物(a)は、更に、上記縮合反応中に副生するトリペンタエリスリトール等のトリ以上のペンタエリスリトールの多量体のアクリレートを含んでもよい。また、上記のジペンタエリスリトールの(メタ)アクリレート化物の中では、メタクリレート化物より、アクリレート化物(ジペンタエリスリトールトリ、テトラ、ペンタ及びヘキサアクリレート)の方がコストなどの点から好ましい。
The dipentaerythritol poly (meth) acrylate mixture (a) (hereinafter also simply referred to as poly (meth) acrylate mixture (a) or the mixture (a)) used as the raw material dehydrates dipentaerythritol and (meth) acrylic acid. It can be obtained by subjecting dipentaerythritol to (meth) acrylate by dehydration condensation reaction in the presence of a condensation catalyst such as an acid catalyst.
The mixture (a) is preferably selected from the group consisting of dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate. At least three, more preferably three of dipentaerythritol tetra, penta and hexa (meth) acrylate. Usually, the mixture (a) is a mixture containing four kinds of dipentaerythritol tri, tetra, penta and hexa (meth) acrylate, or a mixture containing three kinds of dipentaerythritol tetra, penta and hexa (meth) acrylate. is there. The mixture (a) may further contain a trimeric or higher pentaerythritol acrylate such as tripentaerythritol by-produced during the condensation reaction. Of the (meth) acrylated products of dipentaerythritol, acrylated products (dipentaerythritol tri, tetra, penta, and hexaacrylate) are more preferable than methacrylated products from the viewpoint of cost.
 本発明において、該混合物(a)の総量に対する各成分の含有割合は、高速液体クロマトグラフィー(HPLC)の面積割合(%)で、下記の通りである。
 ジペンタエリスリトールペンタ(メタ)アクリレート(好ましくはジペンタエリスリトールペンタアクリレート)が、30~70%、好ましくは30~60%、より好ましくは35~55%、更に好ましくは35~50%であり、該ジペンタエリスリトールペンタ(メタ)アクリレート(好ましくはジペンタエリスリトールペンタアクリレート)に、更にジペンタエリスリトールテトラ及びヘキサ(メタ)アクリレート(好ましくはジペンタエリスリトールテトラ及びヘキサアクリレート)を加えた3者の合計が85~100%、好ましくは90~100%である。前記脱水縮合反応に際して、前記多量体の副生があることを考慮すると、上記3者の合計は85~98%、好ましくは90~97%である。残部として、ジペンタエリスリトールトリ(メタ)アクリレート(好ましくはジペンタエリスリトールトリアクリレート)または/および前記ペンタエリスリトールの3量体以上の多量体のアクリレートを含む。また、この場合における、ジペンタエリスリトールテトラおよびヘキサ(メタ)アクリレートのそれぞれの含量は、それぞれ、1~40%程度(好ましくは10~30%程度)、および15~40%程度(好ましくは20~40%程度)の範囲が好ましく、ジペンタエリスリトールトリ(メタ)アクリレートの含量は、0~10%程度、好ましくは5%以下(ゼロを含む)である。その他に、上記多量体のアクリレートを含んでも良い。
 上記混合物(a)の製造方法について、以下に詳しく説明する。
 本発明で原料として使用する上記混合物(a)が得られる限り、これに限られるものではない。
In this invention, the content rate of each component with respect to the total amount of this mixture (a) is an area ratio (%) of a high performance liquid chromatography (HPLC), and is as follows.
Dipentaerythritol penta (meth) acrylate (preferably dipentaerythritol pentaacrylate) is 30 to 70%, preferably 30 to 60%, more preferably 35 to 55%, still more preferably 35 to 50%, A total of 85 of dipentaerythritol penta (meth) acrylate (preferably dipentaerythritol pentaacrylate) plus dipentaerythritol tetra and hexa (meth) acrylate (preferably dipentaerythritol tetra and hexaacrylate) is 85. To 100%, preferably 90 to 100%. Wherein upon dehydration condensation reaction, considering that there are by-product of said multimeric, the three parties of the total 85 to 98% Ru preferably 90 to 97% der. The remainder contains dipentaerythritol tri (meth) acrylate (preferably dipentaerythritol triacrylate) and / or a multimeric acrylate of the pentaerythritol trimer or more. In this case, the contents of dipentaerythritol tetra and hexa (meth) acrylate are about 1 to 40% (preferably about 10 to 30%) and about 15 to 40% (preferably 20 to 20%), respectively. The content of dipentaerythritol tri (meth) acrylate is about 0 to 10%, preferably 5% or less (including zero). In addition, the multimeric acrylate may be included.
The manufacturing method of the said mixture (a) is demonstrated in detail below.
As long as the said mixture (a) used as a raw material by this invention is obtained, it is not restricted to this.
 上記の脱水縮合反応の際に使用される酸触媒としては、硫酸、塩酸、硝酸などの鉱酸、メタンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸等の有機酸、フッ化ホウ素ジエチルエーテラート等のルイス酸、酸型イオン交換樹脂等が挙げられる。これらの酸触媒は、単独で用いても2種以上を混合して用いてもよい。これらの中で好ましい酸触媒としては硫酸を挙げることができる。
 酸触媒の使用量は、ジペンタエリスリトール1モルに対して0.01~50モル%、好ましくは0.1~20モル%である。
Examples of the acid catalyst used in the above dehydration condensation reaction include mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid and trifluoromethanesulfonic acid, and fluorine. Examples thereof include Lewis acids such as boron ether diethyl etherate and acid ion exchange resins. These acid catalysts may be used alone or in admixture of two or more. Among these, sulfuric acid can be mentioned as a preferable acid catalyst.
The amount of the acid catalyst used is 0.01 to 50 mol%, preferably 0.1 to 20 mol%, relative to 1 mol of dipentaerythritol.
 ジペンタエリスリトールと(メタ)アクリル酸の脱水縮合反応において、(メタ)アクリル酸はジペンタエリスリトール1モルに対して0.1~20モル用いられ、好ましくは1~10モルである。 In the dehydration condensation reaction of dipentaerythritol and (meth) acrylic acid, (meth) acrylic acid is used in an amount of 0.1 to 20 mol, preferably 1 to 10 mol, per 1 mol of dipentaerythritol.
 脱水縮合反応における反応時間は1~24時間、反応温度は60~150℃の範囲でよいが、反応時間の短縮と重合防止の点から、75~120℃、より好ましくは100~120℃で行なうのが好ましい。 The reaction time in the dehydration condensation reaction may be in the range of 1 to 24 hours, and the reaction temperature may be in the range of 60 to 150 ° C., but is 75 to 120 ° C., more preferably 100 to 120 ° C. from the viewpoint of shortening the reaction time and preventing polymerization. Is preferred.
 脱水縮合反応における反応溶媒としては、反応において生成した水を留去することのできる共沸溶媒が好ましい。ここでいう共沸溶媒としては60~130℃の沸点を有し、水と共沸し、かつ、水と容易に分離できるものが好ましい。
 具体的にはベンゼン、トルエン、n-ヘキサン、n-ヘプタン、シクロヘキサン等の非反応性有機溶剤の1種又は2種以上を混合して使用するのが望ましい。通常トルエンがより好ましい。その使用量は任意であるが、好ましくは反応混合物に対し10~70質量%である。
As a reaction solvent in the dehydration condensation reaction, an azeotropic solvent capable of distilling off water generated in the reaction is preferable. As the azeotropic solvent here, a solvent having a boiling point of 60 to 130 ° C., azeotropic with water, and easily separable from water is preferable.
Specifically, it is desirable to use a mixture of one or more non-reactive organic solvents such as benzene, toluene, n-hexane, n-heptane, and cyclohexane. Usually toluene is more preferred. The amount used is arbitrary, but is preferably 10 to 70% by mass with respect to the reaction mixture.
 原料として用いる市販品の(メタ)アクリル酸には、既に4-メトキシフェノール等の重合禁止剤が添加されているのが普通であるが、反応時に改めて重合禁止剤を添加してもよい。そのような重合禁止剤の例としては、ハイドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、3-ヒドロキシチオフェノール、p-ベンゾキノン、2,5-ジヒドロキシ-p-ベンゾキノン、フェノチアジン等が挙げられる。また、塩化第二銅等も使用することが出来る。その使用量は反応混合物に対し0.01~1質量%である。 Usually, a commercially available (meth) acrylic acid used as a raw material is already added with a polymerization inhibitor such as 4-methoxyphenol, but a polymerization inhibitor may be added again during the reaction. Examples of such polymerization inhibitors include hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 3-hydroxythiophenol, p-benzoquinone, 2,5-dihydroxy-p-benzoquinone, Examples include phenothiazine. Moreover, cupric chloride etc. can also be used. The amount used is 0.01 to 1% by mass with respect to the reaction mixture.
 本発明のウレタン(メタ)アクリレート化合物(A)は、
(I)下記(i)、(ii)又は(iii)、
(i)ジペンタエリスリトールトリ(メタ)アクリレート及びジペンタエリスリトールテトラ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも2種を含み、水酸基価が80~120mgKOH/gであるジペンタエリスリトールポリ(メタ)アクリレート混合物(a)(以下該混合物(a)という)、又は、
(ii)該混合物(a)及びグリセリンの両者、又は、
(iii)該混合物(a)、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの3者、
のいずれか(以下(I)成分ともいう)と、
(II)ジイソシアネート化合物を含むポリイソシアネート化合物(b)、
とを反応させることにより得ることができる。
The urethane (meth) acrylate compound (A) of the present invention is
(I) The following (i), (ii) or (iii),
(I) including at least two selected from the group consisting of dipentaerythritol tri (meth) acrylate and dipentaerythritol tetra (meth) acrylate and dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate; Dipentaerythritol poly (meth) acrylate mixture (a) (hereinafter referred to as the mixture (a)) having a hydroxyl value of 80 to 120 mgKOH / g, or
(Ii) both the mixture (a) and glycerin, or
(Iii) the mixture (a), glycerol and (meth) acrylates of C2-C5 aliphatic poly (2-4) ol,
(Hereinafter also referred to as component (I)),
(II) a polyisocyanate compound (b) containing a diisocyanate compound,
It can obtain by making it react.
 本発明のウレタン(メタ)アクリレート化合物(A)の製造に用いられるポリイソシアネート化合物(b)は、1分子中にイソシアネート基を2個以上含む化合物であれば何れも使用しうるが、本発明においてはジイソシアネート化合物を含むことが必須である。該ポリイソシアネート化合物(b)としては、ジイソシアネート化合物単独、又は、ジイソシアネート化合物と他のポリイソシアネートとの併用が好ましい。該併用の場合には、特に、ジイソシアネート化合物とトリイソシアネート化合物との併用が好ましい
 本発明で使用することのできるポリイソシアネート化合物(b)としては、例えば、脂肪族系ポリイソシアネ-ト化合物、芳香族系ポリイソシアネ-ト化合物、脂環式ポリイソシアネート、これらの3量体または多量体化合物、ビューレット型ポリイソシアネート、アロファネート型ポリイソシアネートなどが挙げられる。3量体または多量体化合物とは3個のイソシアネート基がイソシアヌレート環構造を1つまたは2つ以上形成した化合物を意味する。
 本発明で使用するポリイソシアネート化合物(b)は上記のようにジイソシアネート化合物単独でもよく、また、ジイソシアネート化合物と他のポリイソシアネート化合物との併用でもよい。また、ジイソシアネート化合物及びその他のポリイソシアネート化合物の併用、好ましくはジイソシアネート化合物とトリイソシアネート化合物の併用の場合、その何れもが、それぞれ一種類でも、また、複数種類でもよい。通常は、それぞれ一種類が好ましい。
Any polyisocyanate compound (b) used for the production of the urethane (meth) acrylate compound (A) of the present invention can be used as long as it is a compound containing two or more isocyanate groups in one molecule. It is essential to contain a diisocyanate compound. The polyisocyanate compound (b) is preferably a diisocyanate compound alone or a combination of a diisocyanate compound and another polyisocyanate. In the case of the combined use, the combined use of a diisocyanate compound and a triisocyanate compound is particularly preferable. Examples of the polyisocyanate compound (b) that can be used in the present invention include aliphatic polyisocyanate compounds and aromatic type compounds. Examples thereof include polyisocyanate compounds, alicyclic polyisocyanates, trimer or multimer compounds thereof, burette type polyisocyanates, and allophanate type polyisocyanates. A trimer or multimeric compound means a compound in which three isocyanate groups form one or more isocyanurate ring structures.
The polyisocyanate compound (b) used in the present invention may be a diisocyanate compound alone as described above, or may be a combination of a diisocyanate compound and another polyisocyanate compound. In the case of a combined use of a diisocyanate compound and another polyisocyanate compound, preferably a combined use of a diisocyanate compound and a triisocyanate compound, any of them may be one kind or plural kinds. Usually, one type is preferable for each.
 脂肪族系ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート(1,6-ヘキサメチレンジイソシアネート)、イソホロンジイソシアネート、水添トリレンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,3-ジイソシアネートシクロヘキサン、1,4-ジイソシアネートシクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-テトラメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ジメチルシクロヘキサンジイソシアネート、2,2,4-トリメチルシクロヘキサンジイソシアネート、2,4,4-トリメチルシクロヘキサンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)、リジンジイソシアネート、ノルボルナンジイソシアネート、ビシクロヘプタントリイソシアネート、ヘキサメチレンジイソシアネートの3量体等のC4~C12脂肪族ジ又はトリイソシネート化合物等が挙げられる。 Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate (1,6-hexamethylene diisocyanate), isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and 1,3-diisocyanate cyclohexane. 1,4-diisocyanate cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, 1,4-tetramethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4 -Trimethylhexamethylene diisocyanate, dimethylcyclohexane diisocyanate, 2,2,4-trimethylcyclohexane diisocyanate 2,4,4-trimethylcyclohexane diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate), lysine diisocyanate, norbornane diisocyanate, bicycloheptane triisocyanate, hexamethylene diisocyanate trimer, etc. C4-C12 aliphatic di- or triisocyanate compounds Etc.
 芳香族系ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、1,4-フェニレンジイソシアネート、1,6-フェニレンジイソシアネート、3-テトラメチルキシレンジイソシアネート、4-テトラメチルキシレンジイソシアネート等のフェニレン環を1~2個、又は、ナフタレン環を1つ有するC6~C13芳香族ジイソシアネートが挙げられる。 Examples of aromatic polyisocyanate compounds include tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, 1,4-phenylene diisocyanate, 1,6-phenylene diisocyanate, and 3-tetramethyl. Examples thereof include C2 to C13 aromatic diisocyanates having 1 to 2 phenylene rings or 1 naphthalene ring, such as xylene diisocyanate and 4-tetramethylxylene diisocyanate.
 上記ポリイソシアネート(b)の中で、本発明においては、ジイソシアネート化合物単独、又は、ジイソシアネート化合物とトリイソシアネート化合物の併用が好ましい。
 ジイソシアネート化合物と他のポリイソシアネート化合物、好ましくはトリイソシアネート化合物の割合は、ジイソシアネート化合物1モルに対して、他のポリイソシアネート化合物(好ましくはトリイソシアネート化合物)が0~10モル、好ましくは0~7モル、より好ましくは0~5モル、更に好ましくは、0~3モル程度である。
又、ジイソシアネート化合物の中では、脂肪族ジイソシアネートが好ましく、特に、C4~C12脂肪族ジイソシアネートがより好ましい。ヘキサメチレンジイソシアネートは最も好ましく、トリイソシアネート化合物の中ではヘキサメチレンジイソシアネート3量体が好ましい。
Among the polyisocyanates (b), in the present invention, a diisocyanate compound alone or a combination of a diisocyanate compound and a triisocyanate compound is preferable.
The ratio of the diisocyanate compound and the other polyisocyanate compound, preferably the triisocyanate compound is such that the other polyisocyanate compound (preferably the triisocyanate compound) is 0 to 10 mol, preferably 0 to 7 mol, per 1 mol of the diisocyanate compound. More preferably, it is 0 to 5 mol, and still more preferably about 0 to 3 mol.
Of the diisocyanate compounds, aliphatic diisocyanates are preferred, and C4 to C12 aliphatic diisocyanates are more preferred. Hexamethylene diisocyanate is most preferred, and among the triisocyanate compounds, hexamethylene diisocyanate trimer is preferred.
 ポリイソシアネート化合物(b)の該混合物(a)に対する使用割合は、該混合物(a)(前記ジペンタエリスリトールポリ(メタ)アクリレート混合物(a))中の活性水素基1当量に対し、イソシアネート基当量として通常0.1~50当量の範囲であり、好ましくは、0.1~10当量の範囲である。グリセリンを反応させる場合、該ポリ(メタ)アクリレート混合物(a)中の活性水素基1当量に対し、グリセリンは活性水素基当量として通常0.01~10当量の範囲であり、好ましくは、0.1~1当量の範囲である。
 なお、該混合物(a)中の活性水素基としてはヒドロキシ基における水素原子を意味し、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレート中の活性水素基も、それぞれの化合物におけるヒドロキシ基における水素原子を意味する。また、本明細書において、水酸基当量という用語も使用されるが、活性水素基当量と同じ意味で使用される。
 また、該混合物(a)1モルに対するポリイソシアネート化合物(b)の使用割合は、該混合物(a)の水酸基当量及びポリイソシアネート化合物(b)中のイソシアネート基当量、及び、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの併用の有無、等により変わるので一概には言えないが、該混合物(a)1モルに対して、ポリイソシアネート化合物(b)を0.3~1モル程度、好ましくは0.3~0.9モル程度、より好ましくは0.33~0.8モルの範囲内で使用するのが好ましい。
The use ratio of the polyisocyanate compound (b) to the mixture (a) is equivalent to an isocyanate group equivalent to 1 equivalent of active hydrogen groups in the mixture (a) (the dipentaerythritol poly (meth) acrylate mixture (a)). Is usually in the range of 0.1 to 50 equivalents, preferably in the range of 0.1 to 10 equivalents. In the case of reacting glycerin, glycerin is usually in the range of 0.01 to 10 equivalents as active hydrogen group equivalent to 1 equivalent of active hydrogen group in the poly (meth) acrylate mixture (a). It is in the range of 1 to 1 equivalent.
The active hydrogen group in the mixture (a) means a hydrogen atom in the hydroxy group, and the active hydrogen groups in the (meth) acrylates of glycerin and C2 to C5 aliphatic poly (2 to 4) ol are respectively The hydrogen atom in the hydroxy group in the compound of this is meant. In the present specification, the term “hydroxyl equivalent” is also used, but it is used in the same meaning as the active hydrogen group equivalent.
The ratio of the polyisocyanate compound (b) to 1 mol of the mixture (a) is such that the hydroxyl group equivalent of the mixture (a), the isocyanate group equivalent in the polyisocyanate compound (b), glycerin and C2 to C5 fat The polyisocyanate compound (b) can be added in an amount of 0.3 mol per 1 mol of the mixture (a). It is preferable to use within the range of about ˜1 mol, preferably about 0.3 to 0.9 mol, more preferably 0.33 to 0.8 mol.
 例えば、上記(I)成分が(i)の該混合物(a)単独の場合、該混合物(a)1モルに対して、ポリイソシアネート化合物(b)を0.3モル~0.7モル程度、好ましくは0.33モル~0.6モル程度使用する。
 また、上記(I)成分が(ii)又は(iii)の場合(該混合物(a)とグリセリンの併用の場合)、併用するグリセリンのモル数に応じて、更に、前記ポリイソシアネート化合物(b)の使用量を増加するのが好ましい。増加する該ポリイソシアネート化合物(b)の量は、グリセリンの使用モル数の半分から1倍程度の範囲が好ましい。例えば、グリセリンを、該混合物(a)1モルに対して、0~0.3モル程度、好ましくは0~0.2モル程度の割合で併用する場合、増加するポリイソシアネート化合物(b)(好ましくはジイソシアネート化合物単独、又は、ジイソシアネート化合物及びトリイソシアネート化合物の併用)の量は、該混合物(a)1モルに対して、0~0.3モル程度、より好ましくは0~0.2モル程度の割合である。また、C2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートが水酸基を有するときは、その水酸基の当量数に対応するNCOの当量数となるようにポリイソシアネート化合物(b)を増加するのが好ましい。通常、該混合物(a)中の各成分が有する活性水素基の総当量数と、反応させるポリイソシアネート化合物(b)のNCOの当量数が同じか、若しくはNCOの当量数が0.1%以内で過剰となる量で反応するのが好ましい。
 なお、本明細書における、該混合物(a)の1モルは、該混合物(a)の総量(各成分のモル数の和)に対する該混合物(a)中の各成分の含量割合(モル数)に、それぞれの分子量を掛けて算出される値の和を、該混合物(a)の分子量と定義した時の値である。
For example, in the case where the component (I) is the mixture (a) alone of (i), the polyisocyanate compound (b) is about 0.3 mol to 0.7 mol with respect to 1 mol of the mixture (a), Preferably about 0.33 mol to 0.6 mol is used.
In addition, when the component (I) is (ii) or (iii) (when the mixture (a) and glycerin are used in combination), the polyisocyanate compound (b) is further added according to the number of moles of glycerin used together. It is preferable to increase the amount used. The amount of the polyisocyanate compound (b) to be increased is preferably in the range of about half to 1 times the number of moles of glycerin used. For example, when glycerin is used in combination at a ratio of about 0 to 0.3 mol, preferably about 0 to 0.2 mol, relative to 1 mol of the mixture (a), the polyisocyanate compound (b) (preferably The amount of diisocyanate compound alone or a combination of diisocyanate compound and triisocyanate compound) is about 0 to 0.3 mol, more preferably about 0 to 0.2 mol, per 1 mol of the mixture (a). It is a ratio. In addition, when the (meth) acrylate of C2-C5 aliphatic poly (2-4) ol has a hydroxyl group, the polyisocyanate compound (b) is increased so that the equivalent number of NCO corresponding to the equivalent number of the hydroxyl group is obtained. It is preferable to do this. Usually, the total equivalent number of active hydrogen groups of each component in the mixture (a) is the same as the NCO equivalent number of the polyisocyanate compound (b) to be reacted, or the NCO equivalent number is within 0.1%. It is preferable to react in an excessive amount.
In this specification, 1 mole of the mixture (a) is the content ratio (number of moles) of each component in the mixture (a) to the total amount of the mixture (a) (sum of the number of moles of each component). It is a value when the sum of values calculated by multiplying the respective molecular weights is defined as the molecular weight of the mixture (a).
 また、(I)の(iii)で使用するC2-C5脂肪族ポリ(2~4)オールの(メタ)アクリレートとしては、エチレングリコール、プロピレングリコール、ペンタエリスリトール等のC2-C5脂肪族ポリ(2~4)オールと(メタ)アクリル酸との反応で得られる(メタ)アクリレートを挙げることができる。該(メタ)アクリレートとしては、該(メタ)アクリレートの総量に対して、水酸基を持つ該(メタ)アクリレートを、30~100質量%、好ましくは50~100質量%含む方が好ましい(残部は水酸基を有しないC2-C5脂肪族ポリ(2~4)オールのアクリレート)。好ましいものとしてはヒドロキシエチル(メタ)アクリレート、ペンタエリスリトールのポリ(2~4)(メタ)アクリレート(好ましくは、ペンタエリスリトールジ又はトリ(メタ)アクリレートとペンタエリスリトールテトラ(メタ)アクリレートの混合物)、より好ましくは、ヒドロキシエチルアクリレート、又は、ペンタエリスリトールトリ及びテトラアクリレート混合物(例えば、混合比(質量)トリ:テトラ=1:0.01~1、好ましくは1:0.1~0.6)を挙げることができる。 The (meth) acrylate of the C2-C5 aliphatic poly (2-4) ol used in (iii) of (I) includes C2-C5 aliphatic poly (2) such as ethylene glycol, propylene glycol and pentaerythritol. 4) (Meth) acrylate obtained by reaction of ol with (meth) acrylic acid can be mentioned. The (meth) acrylate preferably contains 30 to 100% by mass, preferably 50 to 100% by mass of the (meth) acrylate having a hydroxyl group with respect to the total amount of the (meth) acrylate (the remainder being a hydroxyl group) Acrylate of C2-C5 aliphatic poly (2-4) ol). Preferred are hydroxyethyl (meth) acrylate, poly (2-4) (meth) acrylate of pentaerythritol (preferably, a mixture of pentaerythritol di- or tri (meth) acrylate and pentaerythritol tetra (meth) acrylate), Preferably, hydroxyethyl acrylate or a mixture of pentaerythritol tri and tetraacrylate (for example, mixing ratio (mass) tri: tetra = 1: 0.01 to 1, preferably 1: 0.1 to 0.6). be able to.
 該混合物(a)を含む(I)成分と(II)のポリイソシアネート(b)との反応は、通常のウレタン化反応と同様に行うことができる。該反応は必要に応じて、不活性有機溶媒、例えば、ブタノンなどのケトン溶媒及び触媒の存在下に、行ってもよい。
 反応温度は、通常30~150℃、好ましくは、50~100℃の範囲である。反応の終点は残存イソシアネート基(NCO)含量を過剰のn-ブチルアミンで反応させ、1N塩酸にて逆滴定する方法により算出し、残存イソシアネート基(NCO)含量が、原料として用いたポリイソシアネート(b)のイソシアネート基(NCO)含量に対して、0.5%以下、好ましくは0.1%以下となった時を終了とする。
The reaction of the component (I) containing the mixture (a) and the polyisocyanate (b) of (II) can be carried out in the same manner as in a normal urethanization reaction. The reaction may be performed in the presence of an inert organic solvent, for example, a ketone solvent such as butanone and a catalyst, if necessary.
The reaction temperature is usually in the range of 30 to 150 ° C., preferably 50 to 100 ° C. The end point of the reaction was calculated by a method in which the residual isocyanate group (NCO) content was reacted with excess n-butylamine and back titrated with 1N hydrochloric acid, and the residual isocyanate group (NCO) content was determined based on the polyisocyanate (b ) Is 0.5% or less, preferably 0.1% or less, based on the isocyanate group (NCO) content.
 これら反応時間の短縮を目的として触媒を添加してもよい。この触媒としては、塩基性触媒及び酸性触媒のいずれかが用いられる。
 塩基性触媒としては、例えばピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン、アンモニアなどのアミン類、トリブチルフォスフィン、トリフェニルフォスフィン等のフォスフィン類を挙げることができる。
 また、酸性触媒としては、例えばナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、トリブトキシアルミニウム、チタニウムテトラブトキシド、ジルコニウムテトラブトキシド等の金属アルコキシド類、塩化アルミニウム等のルイス酸類、2-エチルヘキサン酸スズ、オクチルスズトリラウリレート、ジブチルスズジラウリレート、オクチルスズジアセテート等のスズ化合物である。スズ化合物の酸性触媒が好ましく、ジブチルスズジラウリレートがより好ましい。
 これら触媒の添加量は、ポリイソシアネート化合物(b)を100質量部に対して、通常0.1質量部以上1質量部以下である。
A catalyst may be added for the purpose of shortening the reaction time. As this catalyst, either a basic catalyst or an acidic catalyst is used.
Examples of the basic catalyst include amines such as pyridine, pyrrole, triethylamine, diethylamine, dibutylamine and ammonia, and phosphine such as tributylphosphine and triphenylphosphine.
Examples of the acidic catalyst include copper naphthenate, cobalt naphthenate, zinc naphthenate, tributoxyaluminum, titanium tetrabutoxide, zirconium tetrabutoxide, and other metal alkoxides, aluminum chloride and other Lewis acids, and 2-ethylhexanoic acid tin. , Tin compounds such as octyltin trilaurate, dibutyltin dilaurate, and octyltin diacetate. An acidic catalyst of a tin compound is preferable, and dibutyltin dilaurate is more preferable.
The addition amount of these catalysts is 0.1 mass part or more normally 1 mass part or less with respect to 100 mass parts of polyisocyanate compounds (b).
 さらに、反応に際しては反応中の重合を防止するために重合禁止剤(例えば、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、3-ヒドロキシチオフェノール、p-ベンゾキノン、2,5-ジヒドロキシ-p-ベンゾキノン、フェノチアジン等)を使用することが好ましく、該重合禁止剤の使用量は反応混合物に対して0.01質量%以上1質量%以下であり、好ましくは0.05質量%以上0.5質量%以下である。 Further, during the reaction, a polymerization inhibitor (for example, 4-methoxyphenol, 2,4-dimethyl-6-tert-butylphenol, 3-hydroxythiophenol, p-benzoquinone, 2,5 to prevent polymerization during the reaction) -Dihydroxy-p-benzoquinone, phenothiazine, etc.) is preferably used, and the amount of the polymerization inhibitor used is 0.01% by mass or more and 1% by mass or less, preferably 0.05% by mass with respect to the reaction mixture. It is 0.5 mass% or less.
 上記のようにして得られるウレタン(メタ)アクリレート化合物(A)は、単一なウレタン化合物ではなく高分子化合物などと同様に、重合度等が異なるウレタン化合物の混合物として得られる。特に、グリセリンや、更にC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの共存下に、前記ポリ(メタ)アクリレート混合物(a)をポリイソシアネート化合物(b)と反応させた場合の生成物は複雑な縮重合体の混合物(ウレタン(メタ)アクリレート化合物)となる。
 得られるウレタン(メタ)アクリレート化合物(A)の粘度(60℃)は、5~40Pa・s程度、好ましくは10~38Pa・s程度、更に好ましくは12~38Pa・s程度、最も好ましくは14~35Pa・s程度である。また、最も好ましい中においても、粘度が15Pa・s以上の時カール性がより少なく、17Pa・s以上の時更にカール性が少なく、18Pa・s以上の時最もカール性が少ない。
 また、重量平均分子量(Mw)は3,000~50,000程度、好ましくは4,000~35,000程度、より好ましくは4,500~35,000程度、更に好ましくは5,000~35,000程度である。よりカールの少ない硬化膜を得るには、重量平均分子量は7,000~50,000程度、このましくは7,000~35,000程度である。
 また、数平均分子量は1,400~2,500程度、好ましくは1,500~2,300程度、より好ましくは、1,600~2,300程度、更に好ましくは1,700~2,300程度であり、最も好ましくは、1,700~2,100程度である。
 ウレタン(メタ)アクリレート化合物(A)のより好ましい態様の一つは、重量平均分子量は4,500~35,000程度、数平均分子量は1,500~2,300程度、粘度(60℃)が5~40Pa・s程度のものである。また、更に好ましい態様の一つは、重量平均分子量は7,000~35,000程度、数平均分子量は1,700~2,300程度、粘度(60℃)が12~35Pa・s程度のものである。
The urethane (meth) acrylate compound (A) obtained as described above is obtained not as a single urethane compound but as a mixture of urethane compounds having different degrees of polymerization and the like, like a polymer compound. In particular, when the poly (meth) acrylate mixture (a) is reacted with the polyisocyanate compound (b) in the presence of glycerin and (meth) acrylate of C2 to C5 aliphatic poly (2 to 4) ol. This product becomes a complex polycondensate mixture (urethane (meth) acrylate compound).
The resulting urethane (meth) acrylate compound (A) has a viscosity (60 ° C.) of about 5 to 40 Pa · s, preferably about 10 to 38 Pa · s, more preferably about 12 to 38 Pa · s, and most preferably 14 to It is about 35 Pa · s. Further, among the most preferable, the curling property is less when the viscosity is 15 Pa · s or more, the curling property is further less when the viscosity is 17 Pa · s or more, and the curling property is the least when 18 Pa · s or more.
The weight average molecular weight (Mw) is about 3,000 to 50,000, preferably about 4,000 to 35,000, more preferably about 4,500 to 35,000, and still more preferably 5,000 to 35,000. About 000. In order to obtain a cured film with less curl, the weight average molecular weight is about 7,000 to 50,000, preferably about 7,000 to 35,000.
The number average molecular weight is about 1,400 to 2,500, preferably about 1,500 to 2,300, more preferably about 1,600 to 2,300, and still more preferably about 1,700 to 2,300. Most preferably, it is about 1,700 to 2,100.
One of the more preferred embodiments of the urethane (meth) acrylate compound (A) is that the weight average molecular weight is about 4,500 to 35,000, the number average molecular weight is about 1,500 to 2,300, and the viscosity (60 ° C.) is. 5 to 40 Pa · s. Further, in a more preferred embodiment, the weight average molecular weight is about 7,000 to 35,000, the number average molecular weight is about 1,700 to 2,300, and the viscosity (60 ° C.) is about 12 to 35 Pa · s. It is.
 また、本発明のウレタン(メタ)アクリレート化合物は、HPLCおよびGPC(ゲルパーミエーションクロマトグラフィー)の面積比から算出された割合で、通常、ウレタン化された(メタ)アクリレート(ウレタン(メタ)アクリレート)を60~90%程度、好ましくは、60~85%程度含有し、残部10~40%程度、好ましくは15~40%程度は、ウレタン化されていない(メタ)アクリレート(原料由来の未反応ジペンタエリスリトールヘキサ(メタ)アクリレート及びウレタン化されないペンタエリスリトール多量体(トリ以上の多量体)など)を含有する。
 グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートを共存させること無く、前記ポリ(メタ)アクリレート混合物(a)を2官能ポリイソシアネート化合物(b)(ジイソシアネート化合物)と反応させた場合は、下記式(1)で表されるウレタン(メタ)アクリレート化合物(A1)となる。
The urethane (meth) acrylate compound of the present invention is usually a urethane-modified (meth) acrylate (urethane (meth) acrylate) at a ratio calculated from the area ratio of HPLC and GPC (gel permeation chromatography). Is about 60 to 90%, preferably about 60 to 85%, and the remainder is about 10 to 40%, preferably about 15 to 40%, of non-urethane (meth) acrylate (unreacted diester derived from raw materials). It contains pentaerythritol hexa (meth) acrylate and non-urethaneized pentaerythritol multimers (multimers of tri or higher).
Reaction of the poly (meth) acrylate mixture (a) with the bifunctional polyisocyanate compound (b) (diisocyanate compound) without the presence of glycerin and (meth) acrylate of C2-C5 aliphatic poly (2-4) ol When it is made, it becomes a urethane (meth) acrylate compound (A1) represented by the following formula (1).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
式中、Xはイソシアネート残基、nは0~100の整数、A、B及びYは下記一般式(2)で表される有機基を示す。 In the formula, X represents an isocyanate residue, n represents an integer of 0 to 100, and A, B, and Y represent an organic group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
(1)Yの場合、Xはイソシアネート残基、a及びb及びcは正の整数であり、a+b+c=4、1≦a≦4、0≦b≦3、0≦c≦3、であり、Yは2価の基であり、
(2)Aの場合、又は、Bが末端に存在する場合、cは0であり、Xはイソシアネート残基、a及びbは、1≦a≦5、0≦b≦4の整数であり、かつ、a+b=5であり、
(3)Bが末端以外に存在する場合、cは0であり、Xはイソシアネート残基、a及びbは、1≦a≦4、0≦b≦3の整数であり、かつ、a+b=4である。但し、Bが末端以外に存在する場合、理論上、Bが、Yとは独立に、Yと同じ基を表す場合が考えられるが、本願明細書においては、単純化のため、上記の通り表す。
 従って、Yの場合と、Bが末端以外に存在する場合は、それぞれ独立に、一般式(2)は2価の基であり、Aの場合及びBが末端に存在する場合は、それぞれ独立に、一般式(2)は一価の基である。
 上記の(2)の場合(Aの場合、又は、Bが末端に存在する場合)は、式(2)は、下記式(2a)で表すことができる。
(1) In the case of Y, X is an isocyanate residue, a and b and c are positive integers, a + b + c = 4, 1 ≦ a ≦ 4, 0 ≦ b ≦ 3, 0 ≦ c ≦ 3, Y is a divalent group,
(2) In the case of A or when B is present at the end, c is 0, X is an isocyanate residue, a and b are integers of 1 ≦ a ≦ 5, 0 ≦ b ≦ 4, And a + b = 5,
(3) When B is present other than at the end, c is 0, X is an isocyanate residue, a and b are integers of 1 ≦ a ≦ 4, 0 ≦ b ≦ 3, and a + b = 4 It is. However, when B is present at a position other than the terminal, it is theoretically possible that B represents the same group as Y independently of Y, but in the present specification, for the sake of simplification, it is represented as described above. .
Therefore, in the case of Y and in the case where B is present at a position other than the terminal, the general formula (2) is a divalent group, and in the case of A and when B is present at the terminal, each independently The general formula (2) is a monovalent group.
In the case of the above (2) (in the case of A or B is present at the terminal), the formula (2) can be represented by the following formula (2a).
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 式中、a’及びb’は正の整数であり、a’+b’=5、1≦a’≦5及び0≦b’≦4である。 In the formula, a ′ and b ′ are positive integers, and a ′ + b ′ = 5, 1 ≦ a ′ ≦ 5, and 0 ≦ b ′ ≦ 4.
 本発明の樹脂組成物は、本発明のウレタン(メタ)アクリレート化合物(A)、及び光重合開始剤(C)を含有し、適宜、必要に応じて(メタ)アクリレート(B)、硬化促進剤(D)、希釈剤(E)、及びその他の成分を含有してもよい。
 その他の成分としては、例えば、レベリング剤、消泡剤、紫外線吸収剤、光安定化剤、酸化防止剤、重合禁止剤、架橋剤などを挙げることができる。
 本発明の樹脂組成物は感光性樹脂組成物であり、紫外線などのエネルギー線を照射することによりに硬化することができる。
 また、本発明の樹脂組成物は容易にハードコートなどの膜状にすることができるように、希釈剤(E)としての有機溶剤を含むのが好ましい。
The resin composition of the present invention contains the urethane (meth) acrylate compound (A) of the present invention and a photopolymerization initiator (C), and if necessary, (meth) acrylate (B), a curing accelerator. (D), diluent (E), and other components may be contained.
Examples of other components include a leveling agent, an antifoaming agent, an ultraviolet absorber, a light stabilizer, an antioxidant, a polymerization inhibitor, and a crosslinking agent.
The resin composition of the present invention is a photosensitive resin composition and can be cured by irradiating energy rays such as ultraviolet rays.
Moreover, it is preferable that the resin composition of this invention contains the organic solvent as a diluent (E) so that it can be easily made into film | membrane forms, such as a hard coat.
 本発明の樹脂組成物において、本発明のウレタン(メタ)アクリレート化合物(A)の含量は、本発明の樹脂組成物の固形分を100質量%とした場合、通常5~97質量%であり、好ましくは20~80質量%であり、また、場合により、40~95質量%程度が好ましく、50~95質量%程度がより好ましく、70~95質量%程度がより好ましい。
 また、本発明の樹脂組成物全量に対する該ウレタン(メタ)アクリレート化合物(A)の含量は、通常5~97質量%であり、好ましくは20~95質量%程度であり、より好ましくは40~95質量%程度であり、更に好ましくは45~95%程度である。
In the resin composition of the present invention, the content of the urethane (meth) acrylate compound (A) of the present invention is usually 5 to 97% by mass when the solid content of the resin composition of the present invention is 100% by mass, The amount is preferably 20 to 80% by mass, and in some cases, preferably about 40 to 95% by mass, more preferably about 50 to 95% by mass, and more preferably about 70 to 95% by mass.
The content of the urethane (meth) acrylate compound (A) with respect to the total amount of the resin composition of the present invention is usually 5 to 97% by mass, preferably about 20 to 95% by mass, and more preferably 40 to 95%. It is about mass%, more preferably about 45 to 95%.
 本発明において用いられ得る(メタ)アクリレート(B)としては、前記ウレタン(メタ)アクリレート化合物(A)以外の(メタ)アクリレート化合物を挙げることができる。例えば、モノ(メタ)アクリレート(アクリロイル基が1つであるアクリレート)又はポリアクリレート(2官能(メタ)アクリレート若しくは3官能以上の(メタ)アクリレート:アクリロイル基が2つ又は3以上であるアクリレート)等である。該ポリアクリレートには、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー(但し、前記ウレタン(メタ)アクリレート化合物(A)を除く)、ポリエステル(メタ)アクリレートオリゴマー又はエポキシ(メタ)アクリレートオリゴマー等も含む。これらは、単独又は2種以上を混合して使用しても良い。
 本発明においては(メタ)アクリロイル基を2~6個有するポリ(メタ)アクリレート化合物が好ましい。好ましいポリ(メタ)アクリレート化合物としては、C1~C12脂肪族グリコールジ(メタ)アクリレート又はジペンタエリスリトールポリ(3~6)(メタ)アクリレートを挙げることができ、より好ましくはC1~C12脂肪族グリコールジアクリレート又はジペンタエリスリトールポリ(3~6)アクリレートを挙げることができる。
 C1~C12脂肪族グリコールジアクリレートとしては、C1~C6脂肪族グリコールジアクリレートが好ましい。
 柔軟性を有するフィルムを得たいときは、C1~C12脂肪族グリコールジアクリレートが好ましく、硬度の高い硬化物を得たい場合には、ジペンタエリスリトールポリ(3~6)アクリレートが好ましい。
 なお、本発明において「(メタ)アクリレート」等の表現は、メタがあっても良いことを示し、例えば「(メタ)アクリレート」の場合には、アクリレート又はメタクリレートの意味で使用される。また、「ポリ(3~6)」又は「ポリ(2~4)」等の表現は「ポリ」が「3~6」又は「2~4」等であることを意味する。
Examples of the (meth) acrylate (B) that can be used in the present invention include (meth) acrylate compounds other than the urethane (meth) acrylate compound (A). For example, mono (meth) acrylate (acrylate having one acryloyl group) or polyacrylate (bifunctional (meth) acrylate or trifunctional or higher (meth) acrylate: acrylate having two or more acryloyl groups) It is. Examples of the polyacrylate include polyester (meth) acrylate, urethane (meth) acrylate oligomer (excluding the urethane (meth) acrylate compound (A)), polyester (meth) acrylate oligomer, and epoxy (meth) acrylate oligomer. Including. You may use these individually or in mixture of 2 or more types.
In the present invention, a poly (meth) acrylate compound having 2 to 6 (meth) acryloyl groups is preferred. Preferred poly (meth) acrylate compounds include C1-C12 aliphatic glycol di (meth) acrylate or dipentaerythritol poly (3-6) (meth) acrylate, more preferably C1-C12 aliphatic glycol. Mention may be made of diacrylate or dipentaerythritol poly (3-6) acrylate.
The C1-C12 aliphatic glycol diacrylate is preferably C1-C6 aliphatic glycol diacrylate.
When it is desired to obtain a flexible film, C1-C12 aliphatic glycol diacrylate is preferred, and when a hardened product is desired, dipentaerythritol poly (3-6) acrylate is preferred.
In the present invention, expressions such as “(meth) acrylate” indicate that there may be meta. For example, “(meth) acrylate” is used in the meaning of acrylate or methacrylate. In addition, expressions such as “poly (3 to 6)” or “poly (2 to 4)” mean that “poly” is “3 to 6” or “2 to 4” and the like.
 モノ(メタ)アクリレートとしては、例えば、アクリロイルモルホリン;2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;シクロヘキサン-1,4-ジメタノールモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の脂肪族(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニル(ポリ)エトキシ(メタ)アクリレート、4-クミルフェノキシエチル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレート、フェニルチオエチル(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、フェニルフェノールエポキシ(メタ)アクリレート等の芳香族(メタ)アクリレートを挙げることができる。 Examples of mono (meth) acrylates include acryloylmorpholine; hydroxyl group-containing (meth) acrylates such as 2-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; cyclohexane-1,4-dimethanol mono (meta) ) Aliphatic (meth) such as acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate Acrylate, phenoxyethyl (meth) acrylate, phenyl (poly) ethoxy (meth) acrylate, 4-cumylphenoxyethyl (meth) acrylate, tribromophenyloxyethyl (meth) acrylate Aromatic (meth) acrylates such as rate, phenylthioethyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, phenylphenol (poly) ethoxy (meth) acrylate, and phenylphenol epoxy (meth) acrylate Can be mentioned.
 2官能(メタ)アクリレートとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレートヒドロキシビバリン酸ネオペンチルグリコールのε-カプロラクトン付加物のジ(メタ)アクリレート(例えば、日本化薬(株)製、KAYARAD HX-220、HX-620等)、ビスフェノールAジエポキシアクリレート等のエポキシアクリレート類等を挙げることができる。 Bifunctional (meth) acrylates include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol (Meth) acrylate, bisphenol A (poly) ethoxy di (meth) acrylate, bisphenol A (poly) propoxy di (meth) acrylate, bisphenol F (poly) ethoxy di (meth) acrylate, ethylene glycol di (meth) acrylate, (poly) ethylene Di (meth) acrylate of ε-caprolactone adduct of glycol di (meth) acrylate hydroxybivalate neopentyl glycol (for example, KAYARAD HX-220, HX-620, etc., manufactured by Nippon Kayaku Co., Ltd.), bisphenol And the like epoxy acrylates such as Le A diepoxy acrylate.
 3官能以上の多官能(メタ)アクリレートとしては、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパン(ポリ)エトキシトリ(メタ)アクリレート、トリメチロールプロパン(ポリ)プロポキシトリ(メタ)アクリレート、トリメチロールプロパン(ポリ)エトキシ(ポリ)プロポキシトリ(メタ)アクリレートなどのメチロール類のポリ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトール(ポリ)エトキシテトラ(メタ)アクリレート、ペンタエリスリトール(ポリ)プロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のエリスリトール類のポリ(メタ)アクリレート;トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート、カプロラクトン変性トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート等のポリ(メタ)アクリレートイソシアヌレート;を挙げることができる。 As trifunctional or more polyfunctional (meth) acrylates, ditrimethylolpropane tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethyloloctane tri (meth) acrylate, trimethylolpropane (poly) ethoxytri (meth) Poly (meth) acrylates of methylols such as acrylate, trimethylolpropane (poly) propoxytri (meth) acrylate, trimethylolpropane (poly) ethoxy (poly) propoxytri (meth) acrylate; pentaerythritol tri (meth) acrylate, Pentaerythritol (poly) ethoxytetra (meth) acrylate, pentaerythritol (poly) propoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate Poly (meth) acrylates of erythritols such as relate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate; tris [(meth) acryloyloxyethyl] isocyanurate And poly (meth) acrylate isocyanurates such as caprolactone-modified tris [(meth) acryloyloxyethyl] isocyanurate;
 (ポリ)エステル(メタ)アクリレートとしては、例えば、(ポリ)エステルジオールのジ(メタ)アクリレート等を挙げることができる。
(ポリ)エステルジオールはジオール化合物と二塩基酸又はその無水物との反応で得ることができる。
 上記ジオール化合物としてはエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ネオペンチルグリコール、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、等のグリコール類、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール等の直鎖又は分岐アルキルジオール類;シクロヘキサン-1,4-ジメタノール等の脂環式アルキルジオール類;ビスフェノールA(ポリ)エトキシジオール、又はビスフェノールA(ポリ)プロポキシジオール等を挙げることができる。
 上記二塩基酸又はその無水物としては例えば、コハク酸、アジピン酸、アゼライン酸、ダイマー酸、イソフタル酸、テレフタル酸、フタル酸若しくはこれらの無水物を挙げることができる。
Examples of (poly) ester (meth) acrylate include di (meth) acrylate of (poly) ester diol.
(Poly) ester diol can be obtained by reaction of a diol compound with a dibasic acid or an anhydride thereof.
Examples of the diol compound include glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, neopentyl glycol, (poly) ethylene glycol, (poly) propylene glycol, 1,4- Butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 3-methyl-1,5-pentanediol, 2,4- Linear or branched alkyl diols such as diethyl-1,5-pentanediol and 2-butyl-2-ethyl-1,3-propanediol; alicyclic alkyl diols such as cyclohexane-1,4-dimethanol; Bisphenol A (poly) ethoxy All, or it can be exemplified bisphenol A (poly) propoxy diol.
Examples of the dibasic acid or anhydride thereof include succinic acid, adipic acid, azelaic acid, dimer acid, isophthalic acid, terephthalic acid, phthalic acid, and anhydrides thereof.
 前記のウレタン(メタ)アクリレートオリゴマーとしては、ジオール化合物(上記ポリエステルジオールも含む)と有機ポリイソシアネートとの反応生成物に、水酸基含有(メタ)アクリレートを付加して得られるウレタン(メタ)アクリレートオリゴマー等が挙げられる(但し、前記ウレタン(メタ)アクリレート化合物(A)を除く)。
 該ジオール化合物としては例えば、(ポリ)エチレングリコール(例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、又はより高重合度のポリエチレングリコール)、(ポリ)プロピレングリコール(例えばプロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、又はより高重合度のプロピレングリコール)、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール等のC1-C12の脂肪族グリコール又はポリ(C2-C4アルキレン)グリコール;ビスフェノールA(ポリ)エトキシジオール又はビスフェノールA(ポリ)プロポキシジオール等のビスフェノールA(ポリ)C2-C3アルコキシジオール;又は、これらジオール化合物と二塩基酸若しくはその無水物との反応物であるポリエステルジオール;等を挙げることができる。また、上記の二塩基酸若しくはその無水物としては、例えば、コハク酸、アジピン酸、アゼライン酸、ダイマー酸、イソフタル酸、テレフタル酸、フタル酸若しくはこれらの無水物等が挙げられる。
Examples of the urethane (meth) acrylate oligomer include a urethane (meth) acrylate oligomer obtained by adding a hydroxyl group-containing (meth) acrylate to a reaction product of a diol compound (including the polyester diol) and an organic polyisocyanate. (However, the urethane (meth) acrylate compound (A) is excluded).
Examples of the diol compound include (poly) ethylene glycol (for example, ethylene glycol, diethylene glycol, triethylene glycol, or polyethylene glycol having a higher degree of polymerization) and (poly) propylene glycol (for example, propylene glycol, dipropylene glycol, tripropylene glycol). Or propylene glycol having a higher degree of polymerization), 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 2-methyl-1,8 -Octanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, cyclohexane-1,4-di C1- such as methanol 12 aliphatic glycols or poly (C2-C4 alkylene) glycols; bisphenol A (poly) C2-C3 alkoxy diols such as bisphenol A (poly) ethoxydiol or bisphenol A (poly) propoxydiol; And polyester diol which is a reaction product with a basic acid or an anhydride thereof. Examples of the dibasic acid or anhydride thereof include succinic acid, adipic acid, azelaic acid, dimer acid, isophthalic acid, terephthalic acid, phthalic acid, and anhydrides thereof.
 上記ウレタン(メタ)アクリレートオリゴマーの合成に使用される有機ポリイソシアネートとしては例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の鎖状飽和炭化水素イソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、水添ジフェニルメタンジイソシアネート、水添キシレンジイソシアネート、水添トルエンジイソシアネート等の環状飽和炭化水素イソシアネート;2,4-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、4-フェニレンジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネート、6-イソプロピル-1,3-フェニルジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ポリイソシアネート;等を挙げることができる。 Examples of the organic polyisocyanate used for the synthesis of the urethane (meth) acrylate oligomer include tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate. Linear saturated hydrocarbon isocyanates such as: isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane diisocyanate, methylenebis (4-cyclohexylisocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate; 4-tolylene diisocyanate, 1,3-xylylene diisocyanate, 4-pheni And the like can be given; down diisocyanate, 3,3'-dimethyl-4,4'-diisocyanate, 6-isopropyl-1,3-phenyl diisocyanate, aromatic polyisocyanates such as 1,5-naphthalene diisocyanate.
 上記(ポリ)エステル(メタ)アクリレートオリゴマーとしては、例えば、上記の(ポリ)エステルジオールと(メタ)アクリル酸の反応により得られる(ポリ)エステル(メタ)アクリレートオリゴマー等が挙げられる。
 また、エポキシ(メタ)アクリレートオリゴマーとしては、エポキシ樹脂と(メタ)アクリル酸との反応により得られるエポキシ(メタ)アクリレートオリゴマーが挙げられる。ここで使用されるエポキシ樹脂はビスフェノールAエポキシ樹脂などのエポキシ基を複数持つエポキシ樹脂が好ましい。
As said (poly) ester (meth) acrylate oligomer, the (poly) ester (meth) acrylate oligomer etc. which are obtained by reaction of said (poly) ester diol and (meth) acrylic acid etc. are mentioned, for example.
Moreover, as an epoxy (meth) acrylate oligomer, the epoxy (meth) acrylate oligomer obtained by reaction with an epoxy resin and (meth) acrylic acid is mentioned. The epoxy resin used here is preferably an epoxy resin having a plurality of epoxy groups such as bisphenol A epoxy resin.
 本発明の樹脂組成物において、上記(メタ)アクリレート(B)の含量は、本発明の樹脂組成物の固形分を100質量%とした場合、それに対する割合は、通常0質量%以上94質量%以下であり、好ましくは0~60質量%であり、使用する場合ゼロより大きければ良いが、好ましくは5~60質量%好ましくは10~60質量%である。また、場合により20~80質量%も好ましい。
 また、本発明の樹脂組成物全量に対する(メタ)アクリレート(B)の含量は、通常0~50質量%であり、好ましくは0~40質量%程度であり、より好ましくは0~30質量%程度であり、使用する場合ゼロより大きければ良いが、好ましくは3~50質量%、より好ましくは5~40質量%であり、更に好ましくは5~30質量%である。
In the resin composition of the present invention, the content of the (meth) acrylate (B) is usually 0% by mass to 94% by mass when the solid content of the resin composition of the present invention is 100% by mass. Or less, preferably 0 to 60% by mass, and may be larger than zero when used, but preferably 5 to 60% by mass, preferably 10 to 60% by mass. In some cases, 20 to 80% by mass is also preferable.
In addition, the content of (meth) acrylate (B) with respect to the total amount of the resin composition of the present invention is usually 0 to 50% by mass, preferably about 0 to 40% by mass, more preferably about 0 to 30% by mass. When used, it may be larger than zero, but is preferably 3 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 30% by mass.
 本発明の樹脂組成物において使用する、光重合開始剤(C)としては、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オンなどのアセトフェノン類;2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドなどのホスフィンオキサイド類等が挙げられる。また、具体的には、市場より、チバ・スペシャリティケミカルズ社製イルガキュアRTM184(1-ヒドロキシシクロヘキシルフェニルケトン)、イルガキュア907(2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパン-1-オン)、BASF社製ルシリンTPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)等を容易に入手出来る。また、これらは、単独又は2種以上を混合して使用しても良い。これらの中で、アセトフェノン類に属する光重合開始剤が好ましく、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュアRTM)がより好ましい。 Examples of the photopolymerization initiator (C) used in the resin composition of the present invention include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy -2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio ) Phenyl] -2-morpholinopropan-1-one and other acetophenones; 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone and other anthraquinones Thioxanthones such as 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 ′ Benzophenones such as bismethylaminobenzophenone; phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. Specifically, from the market, Irgacure RTM 184 (1-hydroxycyclohexyl phenyl ketone) and Irgacure 907 (2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopro manufactured by Ciba Specialty Chemicals, Inc. Pan-1-one), Lucylin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) manufactured by BASF, etc. are easily available. Moreover, you may use these individually or in mixture of 2 or more types. Among these, a photopolymerization initiator belonging to acetophenones is preferable, and 1-hydroxycyclohexyl phenyl ketone (Irgacure RTM ) is more preferable.
 本発明の樹脂組成物において、上記光重合開始剤(C)の含量は、本発明の樹脂組成物の固形分を100質量%とした時、0.1質量%以上10質量%以下であり、好ましくは1質量%以上7質量%以下である。
 また、本発明の樹脂組成物の固形分100質量%に対する該光重合開始剤(C)の含量が、0.2~12質量%程度であってもよい。この場合、好ましくは0.5~10質量%程度であり、より好ましくは1~10質量%程度、更に好ましくは2~8質量%程度である。
In the resin composition of the present invention, the content of the photopolymerization initiator (C) is 0.1% by mass or more and 10% by mass or less when the solid content of the resin composition of the present invention is 100% by mass, Preferably they are 1 mass% or more and 7 mass% or less.
Further, the content of the photopolymerization initiator (C) relative to 100% by mass of the solid content of the resin composition of the present invention may be about 0.2 to 12% by mass. In this case, it is preferably about 0.5 to 10% by mass, more preferably about 1 to 10% by mass, and further preferably about 2 to 8% by mass.
 また、上記の光重合開始剤(C)は硬化促進剤(D)と併用することもできる。併用しうる硬化促進剤(D)としては、例えばトリエタノールアミン、ジエタノールアミン、N-メチルジエタノールアミン、2-メチルアミノエチルベンゾエート、ジメチルアミノアセトフェノン、4-ジメチルアミノ安息香酸イソアミルエステル、EPAなどのアミン類、2-メルカプトベンゾチアゾールなどの水素供与体が挙げられる。これらの硬化促進剤の使用量は、本発明の樹脂組成物の固形分を100質量%とした場合、0質量%以上5質量%以下である。これらは、単独又は2種以上を混合して使用しても良い。 Also, the photopolymerization initiator (C) can be used in combination with a curing accelerator (D). Examples of the curing accelerator (D) that can be used in combination include triethanolamine, diethanolamine, N-methyldiethanolamine, 2-methylaminoethylbenzoate, dimethylaminoacetophenone, 4-dimethylaminobenzoic acid isoamyl ester, amines such as EPA, And hydrogen donors such as 2-mercaptobenzothiazole. The amount of these curing accelerators used is 0% by mass or more and 5% by mass or less when the solid content of the resin composition of the present invention is 100% by mass. You may use these individually or in mixture of 2 or more types.
 本発明の樹脂組成物においては必要により希釈剤(E)を使用することができる。希釈剤(E)としては、常温(20℃)液体の溶剤、通常有機溶媒が使用される。例えばγ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-ヘプタラクトン、α-アセチル-γ-ブチロラクトン、ε-カプロラクトン等のラクトン類;ジオキサン、1,2-ジメトキシメタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル等のエーテル類;エチレンカーボネート、プロピレンカーボネート等のカーボネート類;メチルエチルケトン(2-ブタノン)、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン類;フェノール、クレゾール、キシレノール等のフェノール類;酢酸エチル、酢酸ブチル、乳酸エチル、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類;トルエン、キシレン、ジエチルベンゼン、シクロヘキサン等の炭化水素類;トリクロロエタン、テトラクロロエタン、モノクロロベンゼン等のハロゲン化炭化水素類等、石油エーテル、石油ナフサ等の石油系溶剤、2H,3H-テトラフルオロプロパノール等のフッ素系アルコール類、パーフルオロブチルメチルエーテル、パーフルオロブチルエチルエーテル等のハイドロフルオロエーテル類;メチルアルコール、エチルアルコール、イソプロピルアルコール、n-プロピルアルコール等のアルコール類;ケトンとアルコールの両方の性能を兼ね備えたダイアセトンアルコールなどが挙げられる。これらは、単独又は2種以上を混合して使用しても良い。
 これらの中で、酢酸エチルなどのエステル溶媒(好ましくはC2~3アルコールの酢酸エステル)、ケトン類(ケトン溶媒)が好ましく、C3~C6脂肪族ケトンがより好ましい。
In the resin composition of the present invention, a diluent (E) can be used as necessary. As the diluent (E), a normal temperature (20 ° C.) liquid solvent, usually an organic solvent, is used. For example, lactones such as γ-butyrolactone, γ-valerolactone, γ-caprolactone, γ-heptalactone, α-acetyl-γ-butyrolactone, ε-caprolactone; dioxane, 1,2-dimethoxymethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , Ethers such as diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether; carbonates such as ethylene carbonate and propylene carbonate Class: methyl ethyl ketone (2-butanone), methyl Ketones such as sobutyl ketone, cyclohexanone, acetophenone; phenols such as phenol, cresol, xylenol; ethyl acetate, butyl acetate, ethyl lactate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate Esters such as toluene; hydrocarbons such as xylene, diethylbenzene and cyclohexane; halogenated hydrocarbons such as trichloroethane, tetrachloroethane and monochlorobenzene; petroleum solvents such as petroleum ether and petroleum naphtha, 2H, 3H-tetra Fluoroalcohols such as fluoropropanol, hydrofluores such as perfluorobutyl methyl ether and perfluorobutyl ethyl ether Low ethers; alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol; diacetone alcohol having both the performance of ketone and alcohol. You may use these individually or in mixture of 2 or more types.
Among these, ester solvents such as ethyl acetate (preferably acetate esters of C2-3 alcohol) and ketones (ketone solvents) are preferable, and C3-C6 aliphatic ketones are more preferable.
 本発明の樹脂組成物において、上記希釈剤(E)の含量は、本発明の樹脂組成物全量に対し0~90質量%程度の範囲であり、好ましくは0~80質量%程度、より好ましくは0~60質量%程度である。
 また、本発明の樹脂組成物の固形分を100質量%とした場合における、上記希釈剤(E)の含量は、0~300質量%程度、好ましくは0~200質量%、より好ましくは0~150質量%程度である。
 本明細書において、組成物の成分の含量で、例えば上記のように「0~90質量%」と0を含んで表現される含量は、その成分を含まないか、又は0より大きく90質量%以下の範囲で含むことを意味する。
In the resin composition of the present invention, the content of the diluent (E) is in the range of about 0 to 90% by mass, preferably about 0 to 80% by mass, more preferably the total amount of the resin composition of the present invention. It is about 0 to 60% by mass.
When the solid content of the resin composition of the present invention is 100% by mass, the content of the diluent (E) is about 0 to 300% by mass, preferably 0 to 200% by mass, more preferably 0 to About 150% by mass.
In the present specification, the content of the component of the composition, for example, the content expressed by including “0 to 90% by mass” and 0 as described above does not include the component or is greater than 0 and is 90% by mass. It is meant to be included in the following range.
 更に、本発明の樹脂組成物は、必要に応じて、上記以外のその他の添加剤として、レベリング剤、消泡剤、紫外線吸収剤、光安定化剤、酸化防止剤、重合禁止剤、架橋剤などを含有することができる。それらを含むことにより、それぞれ目的とする機能性を付与することができる。
 レベリング剤としてはフッ素系化合物、シリコーン系化合物、アクリル系化合物等が、紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物等、光安定化剤としてはヒンダードアミン系化合物、ベンゾエート系化合物等、酸化防止剤としてはフェノール系化合物等、重合禁止剤としては、メトキノン、メチルハイドロキノン、ハイドロキノン等が、架橋剤としては、前記ポリイソシアネート類、メラミン化合物等が挙げられる。
Furthermore, the resin composition of the present invention may be prepared by adding a leveling agent, an antifoaming agent, an ultraviolet absorber, a light stabilizer, an antioxidant, a polymerization inhibitor, a crosslinking agent, as necessary, in addition to the above-mentioned additives. Etc. can be contained. By including them, each intended functionality can be imparted.
Fluorine compounds, silicone compounds, acrylic compounds, etc. as leveling agents, benzotriazole compounds, benzophenone compounds, triazine compounds, etc. as UV absorbers, hindered amine compounds, benzoate compounds as light stabilizers Compounds, antioxidants such as phenolic compounds, polymerization inhibitors include methoquinone, methylhydroquinone, hydroquinone and the like, and crosslinking agents include the polyisocyanates and melamine compounds.
 本発明の好ましい樹脂組成物の1つは、本発明のウレタン(メタ)アクリレート化合物(A)、及び光重合開始剤(C)を含有し、更に、(メタ)アクリレート(B)又は希釈剤(E)の少なくとも何れか一方を含む樹脂組成物である。
 より具体的に本発明の好ましい樹脂組成物を挙げれば下記の通りである。組成割合は、樹脂組成物の固形分を100質量%とし、それに対する割合である。
(i)ウレタン(メタ)アクリレート化合物(A)を5~97質量%、
   光重合開始剤(C)を0.5~12質量%、
   (メタ)アクリレート(B)を0~50質量%、及び
   希釈剤(E)が有機溶剤であり、該有機溶剤を0~300質量%で含有する樹脂組成物。
(ii)ウレタン(メタ)アクリレート化合物(A)を40~95質量%含有する上記(i)に記載の樹脂組成物。
(iii)(メタ)アクリレート(B)を5~40質量%、又は、希釈剤(E)である有機溶剤を50~150質量%、の少なくとも何れか一方を含有する上記(i)又は(ii)に記載の樹脂組成物。
(iv)ウレタン(メタ)アクリレート化合物(A)が前記(1)~(4)、(5)、(10)、(12)~(16)および(19)の何れか一項に記載のウレタン(メタ)アクリレート化合物(A)、又は、前記(5)、(7)又は(11)の何れか一項に記載の製造法で製造されたウレタン(メタ)アクリレート化合物(A)である上記(i)~(iii)の何れか一項に記載の樹脂組成物。
(v)光重合開始剤(C)がアセトフェノン類に属する光重合開始剤である上記(i)~(iv)の何れか一項に記載の樹脂組成物。
(vi)(メタ)アクリレート(B)が、C1~C12脂肪族グリコールジ(メタ)アクリレート又はジペンタエリスリトールポリ(3~6)(メタ)アクリレートである上記(i)~(v)の何れか一項に記載の樹脂組成物。
(vii)希釈剤(E)がケトン溶媒である上記(i)~(vi)の何れか一項に記載の樹脂組成物。
One of the preferable resin compositions of the present invention contains the urethane (meth) acrylate compound (A) of the present invention and a photopolymerization initiator (C), and further comprises (meth) acrylate (B) or a diluent ( It is a resin composition containing at least any one of E).
More specifically, preferred resin compositions of the present invention are as follows. The composition ratio is a ratio relative to the solid content of the resin composition of 100% by mass.
(I) 5 to 97% by mass of the urethane (meth) acrylate compound (A),
0.5 to 12% by mass of the photopolymerization initiator (C),
A resin composition containing 0 to 50% by mass of (meth) acrylate (B), the diluent (E) being an organic solvent, and 0 to 300% by mass of the organic solvent.
(Ii) The resin composition as described in (i) above, containing 40 to 95% by mass of the urethane (meth) acrylate compound (A).
(Iii) The above (i) or (ii) containing 5 to 40% by mass of (meth) acrylate (B) or 50 to 150% by mass of an organic solvent which is a diluent (E) ).
(Iv) The urethane according to any one of (1) to (4), (5), (10), (12) to (16) and (19), wherein the urethane (meth) acrylate compound (A) is The (meth) acrylate compound (A) or the urethane (meth) acrylate compound (A) produced by the production method according to any one of (5), (7) or (11) above ( The resin composition according to any one of i) to (iii).
(V) The resin composition according to any one of the above (i) to (iv), wherein the photopolymerization initiator (C) is a photopolymerization initiator belonging to acetophenones.
(Vi) Any of the above (i) to (v), wherein the (meth) acrylate (B) is a C1-C12 aliphatic glycol di (meth) acrylate or dipentaerythritol poly (3-6) (meth) acrylate The resin composition according to one item.
(Vii) The resin composition according to any one of (i) to (vi) above, wherein the diluent (E) is a ketone solvent.
 本発明の樹脂組成物は、特にハードコート用の樹脂組成物(ハードコート剤)として有用であり、また、後記する電気製品用部品、電子部品などの成型用材料等として使用可能である。
 本発明の樹脂組成物は、前記(A)成分及び(C)成分、並びに必要に応じて(B)成分、(D)成分、(E)成分及びその他の成分を任意の順序で混合することにより得ることができる。
 本発明のハードコートは、本発明の樹脂組成物を基材上に塗布し、必要に応じて乾燥し、形成された薄膜に紫外線を照射して硬化膜を形成させることにより得ることができる。
 より具体的には、上記の樹脂組成物を、バーコーターなどを用いて、乾燥後の膜厚が、場合により0.1μm以上で、300μm以下、通常0.1μm以上50μm以下、より好ましくは1μm以上20μm以下になるように塗布し、必要に応じ乾燥後、紫外線を照射して硬化膜を形成させることにより得ることができる。
 硬化後の膜厚は用途により異なり、硬化後の膜厚が、0.1μm以上300μm程度、好ましくは1μm以上250μm以下程度である。基材フィルムへコーティング膜を形成するような場合は、硬化後の膜厚が通常0.1μm以上50μm以下、好ましくは1μm以上、20μm以下、より好ましくは10μm以下、更に好ましくは7μm以下が好ましい。
The resin composition of the present invention is particularly useful as a resin composition (hard coat agent) for hard coating, and can be used as a molding material for electrical product parts and electronic parts described later.
In the resin composition of the present invention, the component (A) and the component (C), and the component (B), the component (D), the component (E) and other components are mixed in any order as necessary. Can be obtained.
The hard coat of this invention can be obtained by apply | coating the resin composition of this invention on a base material, drying as needed, and irradiating the formed thin film with an ultraviolet-ray, and forming a cured film.
More specifically, the film thickness after drying the above resin composition using a bar coater or the like may be 0.1 μm or more and 300 μm or less, usually 0.1 μm or more and 50 μm or less, more preferably 1 μm. It can be obtained by coating to a thickness of 20 μm or less, drying as necessary, and irradiating with ultraviolet rays to form a cured film.
The film thickness after curing varies depending on the application, and the film thickness after curing is about 0.1 to 300 μm, preferably about 1 to 250 μm. In the case of forming a coating film on the base film, the film thickness after curing is usually 0.1 μm or more and 50 μm or less, preferably 1 μm or more and 20 μm or less, more preferably 10 μm or less, and further preferably 7 μm or less.
 基材フィルムとしては、例えば、ポリエステル、ポリプロピレン、ポリエチレン、ポリアクリレート、ポリカーボネート、トリアセチルセルロース、ポリエーテルスルホン、シクロオレフィン系ポリマーなどが挙げられる。使用するフィルムは、柄や易接着層を設けたもの、コロナ処理等の表面処理をしたもの、離型処理をしたものであっても良い。 Examples of the base film include polyester, polypropylene, polyethylene, polyacrylate, polycarbonate, triacetyl cellulose, polyether sulfone, and cycloolefin polymer. The film to be used may be one provided with a handle or an easy adhesion layer, one subjected to surface treatment such as corona treatment, or one subjected to release treatment.
 上記の樹脂組成物の塗布方法としては、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、マイクログラビア塗工、マイクロリバースグラビアコーター塗工、ダイコーター塗工、ディップ塗工、スピンコート塗工、スプレー塗工などが挙げられる。 Examples of the coating method of the resin composition include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, micro reverse gravure coater, and die coater. Examples include coating, dip coating, spin coating, and spray coating.
 硬化のために紫外線を照射するが、電子線などを使用することもできる。紫外線により硬化させる場合、光源としては、キセノンランプ、高圧水銀灯、メタルハライドランプなどを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整される。高圧水銀灯を使用する場合、80~120W/cm2のエネルギーを有するランプ1灯に対して搬送速度5~60m/分で硬化させるのが好ましい。一方、電子線により硬化させる場合は、100~500eVのエネルギーを有する電子線加速装置を使用するのが好ましく、その際光重合開始剤(C)は使用しなくてもよい。 Although ultraviolet rays are irradiated for curing, an electron beam or the like can also be used. In the case of curing with ultraviolet rays, an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, a metal halide lamp or the like is used as a light source, and the light amount, the arrangement of the light source, etc. are adjusted as necessary. When using a high-pressure mercury lamp, it is preferable to cure at a conveyance speed of 5 to 60 m / min for one lamp having an energy of 80 to 120 W / cm 2 . On the other hand, when curing with an electron beam, it is preferable to use an electron beam accelerator having an energy of 100 to 500 eV, and the photopolymerization initiator (C) may not be used.
 本発明の樹脂組成物の硬化皮膜は、基材への密着性、硬度を持ち、適度な柔軟性を有する事から、表示デバイス用材料にも好適に使用できる。例えばLCD、EL、リアプロジェクションディスプレイ、電子ペーパー等に使用されるカラーフィルタ用材料、PDP、電子ペーパー等に使用される微細な表示素子を区切る隔壁材LCD、FED(SED)等に使用されるスペーサ(ギャップを保つ柱のような役割をするもの)、あるいはデジタルカメラ等の固体撮像素子などが挙げられる。本発明の感光性樹脂組成物の硬化物は特に液晶表示装置等のカラーフィルタ、あるいはデジタルカメラ等の固体撮像素子に好適な樹脂であり、このうち特にカラーフィルタとして好適である。このカラーフィルタは前記のようにして調製された本発明の感光性樹脂組成物の硬化物からなるパターン化された複数色の着色画素、もしくはブラックマトリックス、フォトスペーサを有する。 The cured film of the resin composition of the present invention has adhesiveness to a substrate, hardness, and appropriate flexibility, so that it can be suitably used as a display device material. For example, spacers used for LCD, EL, rear projection display, color filter materials used for electronic paper, partition material LCD, FED (SED), etc. for separating fine display elements used for PDP, electronic paper, etc. (Thing which plays a role like a pillar for maintaining a gap) or a solid-state imaging device such as a digital camera. The cured product of the photosensitive resin composition of the present invention is a resin particularly suitable for a color filter such as a liquid crystal display device or a solid-state imaging device such as a digital camera, and among these, it is particularly suitable as a color filter. This color filter has a plurality of patterned colored pixels made of a cured product of the photosensitive resin composition of the present invention prepared as described above, or a black matrix and a photo spacer.
 本発明において表示デバイスとは、液晶表示装置を例にとると例えば、バックライト、偏光フィルム、表示電極、液晶、配向膜、共通電極、本発明の感光性樹脂組成物を使用したカラーフィルタ、偏光フィルム等がこの順に積層した構造で作製される。又、固体撮像素子を例にとると、例えば、転送電極、フォトダイオードを設けたシリコンウエハーの上に、本発明の感光性樹脂組成物を使用したカラーフィルタ層を設け、ついでマイクロレンズを積層することにより作製される。 In the present invention, when the display device is a liquid crystal display device, for example, a backlight, a polarizing film, a display electrode, a liquid crystal, an alignment film, a common electrode, a color filter using the photosensitive resin composition of the present invention, a polarized light A film or the like is produced in a laminated structure in this order. Taking a solid-state imaging device as an example, for example, a color filter layer using the photosensitive resin composition of the present invention is provided on a silicon wafer provided with transfer electrodes and photodiodes, and then a microlens is laminated. It is produced by this.
 本発明の感光性樹脂組成物の他の用途として、例えば、印刷インキ、塗料、接着剤、液状レジストインキ等にも用いることができる。 As other uses of the photosensitive resin composition of the present invention, it can be used, for example, in printing inks, paints, adhesives, liquid resist inks, and the like.
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例によって限定されるものではない。また、実施例中、特に断りがない限り、部は質量部を示す。また、実施例において、使用される略称は下記の通りである。
DPETtriA:ジペンタエリスリトールトリアクリレート
DPETtetraA:ジペンタエリスリトールテトラアクリレート
DPETpentaA:ジペンタエリスリトールペンタアクリレート
DPEThexaA:ジペンタエリスリトールヘキサアクリレート及び
TPETA:トリペンタエリスリト-ル以上の多量体のアクリレート
HPLC:高速液体クロマトグラフィー
GPC:ゲルパーミエーションクロマトグラフィー
 また、HPLC及びGPC測定条件は下記の通りである。
HPLC測定条件
装置:SHIMADZU LC-10AD、SCL-10A、SPD-10A、    CTO-10A、DGU-14A
検出器:UV 254nm
カラム:GLサイエンス イナートシル ODS-2(4.6×150 mm )
カラム温度:40℃
溶離液:アセトニトリル/0.1wt% H3PO4=60/40
流量:0.6ml/min.
サンプル注入量:2μl
サンプル濃度:1wt%

GPC測定条件
装置:TOSOH HLC-8220 GPC
検出器:RI
カラム:TOSOH TSK-GEL SUPER HZM-N
カラム温度:40℃
溶離液:THF
流量:0.35ml/min.
サンプル注入量:5μl
サンプル濃度:1wt%
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited by these Examples. Moreover, unless otherwise indicated in an Example, a part shows a mass part. In the examples, the abbreviations used are as follows.
DPETtriA: Dipentaerythritol triacrylate
DPETtetraA: Dipentaerythritol tetraacrylate
DPETpentaA: Dipentaerythritol pentaacrylate
DPEThexaA: Dipentaerythritol hexaacrylate and
TPETA: acrylate HPLC of higher polymer than tripentaerythritol HPLC: high performance liquid chromatography GPC: gel permeation chromatography The HPLC and GPC measurement conditions are as follows.
HPLC measurement equipment: SHIMADZU LC-10AD, SCL-10A, SPD-10A, CTO-10A, DGU-14A
Detector: UV 254nm
Column: GL Science Inert Sil ODS-2 (4.6 x 150 mm)
Column temperature: 40 ° C
Eluent: Acetonitrile / 0.1wt% H 3 PO 4 = 60/40
Flow rate: 0.6ml / min.
Sample injection volume: 2 μl
Sample concentration: 1 wt%

GPC measurement condition equipment: TOSOH HLC-8220 GPC
Detector: RI
Column: TOSOH TSK-GEL SUPER HZM-N
Column temperature: 40 ° C
Eluent: THF
Flow rate: 0.35ml / min.
Sample injection volume: 5 μl
Sample concentration: 1 wt%
原料合成例1
 還流冷却器、撹拌機、温度計、温度調節装置、及び水分離機を備えた反応器に、ジペンタエリスリトール254.3g(1.0mol)、アクリル酸449.7g(6.2mol)、硫酸9.81g、塩化第二銅1.03g、トルエン424.7gを仕込み、反応器を加熱し生成水を溶媒と共沸留去しながら12時間反応させた。反応後、トルエン849.4gを加えて希釈し、25%NaOH水溶液で中和した後、15質量%食塩水600gで3回洗浄した。溶媒を減圧留去してDPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:80mgKOH/g、水酸基当量(活性水素基当量):701.4g/Eq)538.9gを得た。
 高速液体クロマトグラフィー(HPLC)の面積割合(%)でのDPETtetraA、DPETpentaA、DPEThexaA及びTPETAの各成分割合は、10:43:37:10であった。また、該混合物の粘度は 6,300 mPa・s( 25℃)であった。
Raw material synthesis example 1
In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 449.7 g (6.2 mol) of acrylic acid, 9 of sulfuric acid .81 g, cupric chloride 1.03 g and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling off the produced water with the solvent. After the reaction, 849.4 g of toluene was added for dilution, neutralized with 25% aqueous NaOH solution, and then washed 3 times with 600 g of 15% by mass brine. The solvent was distilled off under reduced pressure to obtain 538.9 g of a mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA (hydroxyl value: 80 mg KOH / g, hydroxyl equivalent (active hydrogen group equivalent): 701.4 g / Eq).
The ratio of each component of DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the area ratio (%) of high performance liquid chromatography (HPLC) was 10: 43: 37: 10. The viscosity of the mixture was 6,300 mPa · s (25 ° C.).
原料合成例2
 還流冷却器、撹拌機、温度計、温度調節装置、及び水分離機を備えた反応器に、ジペンタエリスリトール254.3g(1.0mol)、アクリル酸432.4g(6.0mol)、硫酸9.81g、塩化第二銅0.99g、トルエン424.7gを仕込み、反応器を加熱し生成水を溶媒と共沸留去しながら12時間反応させた。反応後、トルエン849.4gを加えて希釈し、25%NaOH水溶液で中和した後、15質量%食塩水600gで3回洗浄した。溶媒を減圧留去して、DPETtetraA、DPETpentaA 、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)525.3gを得た。
 HPLCの面積割合(%)での、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの各成分割合は、12:45:36:7であった。また、該混合物の粘度は 6,300 mPa・s( 25℃)であった。
Raw material synthesis example 2
In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 432.4 g (6.0 mol) of acrylic acid, 9 of sulfuric acid .81 g, cupric chloride 0.99 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling the produced water with the solvent. After the reaction, 849.4 g of toluene was added for dilution, neutralized with 25% aqueous NaOH solution, and then washed 3 times with 600 g of 15% by mass brine. The solvent was distilled off under reduced pressure to obtain 525.3 g of a mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA (hydroxyl value: 92 mg KOH / g, hydroxyl equivalent: 609.9 g / Eq).
The ratio of each component of DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the HPLC area ratio (%) was 12: 45: 36: 7. The viscosity of the mixture was 6,300 mPa · s (25 ° C.).
原料合成例3
 還流冷却器、撹拌機、温度計、温度調節装置、及び水分離機を備えた反応器に、ジペンタエリスリトール254.3g(1.0mol)、アクリル酸402.1g(5.6mol)、硫酸9.81g、塩化第二銅0.92g、トルエン424.7gを仕込み、反応器を加熱し生成水を溶媒と共沸留去しながら12時間反応させた。反応後、トルエン849.4gを加えて希釈し、25%NaOH水溶液で中和した後、15質量%食塩水600gで3回洗浄した。溶媒を減圧留去してDPETtriA、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:120mgKOH/g、水酸基当量:467.6g/Eq)494.9gを得た。
 HPLCの面積割合(%)での、DPETtriA、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの各成分割合は、3:26:41:24:6であった。また、該混合物の粘度は 6,000 mPa・s( 25℃)であった。
Raw material synthesis example 3
In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 402.1 g (5.6 mol) of acrylic acid, and sulfuric acid 9 .81 g, cupric chloride 0.92 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling off the produced water with the solvent. After the reaction, 849.4 g of toluene was added for dilution, neutralized with 25% aqueous NaOH solution, and then washed 3 times with 600 g of 15% by mass brine. The solvent was distilled off under reduced pressure to obtain 494.9 g of a mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA (hydroxyl value: 120 mgKOH / g, hydroxyl equivalent: 467.6 g / Eq).
The ratio of each component of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the area ratio (%) of HPLC was 3: 26: 41: 24: 6. The viscosity of the mixture was 6,000 mPa · s (25 ° C.).
比較用原料合成例1
 還流冷却器、撹拌機、温度計、温度調節装置、及び水分離機を備えた反応器に、ジペンタエリスリトール254.3g(1.0mol)、アクリル酸497.2g(6.9mol)、硫酸9.81g、塩化第二銅1.14g、トルエン424.7gを仕込み、反応器を加熱し生成水を溶媒と共沸留去しながら12時間反応させた。反応後、トルエン849.4gを加えて希釈し、25%NaOH水溶液で中和した後、15質量%食塩水600gで3回洗浄した。溶媒を減圧留去して、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:45mgKOH/g、水酸基当量:1246.9g/Eq)590.1gを得た。
 HPLCの面積割合(%)での、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの各成分割合は、2:30:56:12であった。また、該混合物の粘度は 6,500 mPa・s( 25℃)であった。
Comparative raw material synthesis example 1
In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 497.2 g (6.9 mol) of acrylic acid, 9 of sulfuric acid 9 .81 g, cupric chloride 1.14 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling off the produced water with the solvent. After the reaction, 849.4 g of toluene was added for dilution, neutralized with 25% aqueous NaOH solution, and then washed 3 times with 600 g of 15% by mass brine. The solvent was distilled off under reduced pressure to obtain 590.1 g of a mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA (hydroxyl value: 45 mg KOH / g, hydroxyl equivalent: 1246.9 g / Eq).
The ratio of each component of DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the HPLC area ratio (%) was 2: 30: 56: 12. The viscosity of the mixture was 6,500 mPa · s (25 ° C.).
比較用原料合成例2
 還流冷却器、撹拌機、温度計、温度調節装置、及び水分離機を備えた反応器に、ジペンタエリスリトール254.3g(1.0mol)、アクリル酸380.5g(5.3mol)、硫酸9.81g、塩化第二銅0.88g、トルエン424.7gを仕込み、反応器を加熱し生成水を溶媒と共沸留去しながら12時間反応させた。反応後、トルエン849.4gを加えて希釈し、25%NaOH水溶液で中和した後、15質量%食塩水600gで3回洗浄した。溶媒を減圧留去してDPETtriA、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:140mgKOH/g、水酸基当量:400.8g/Eq)480.1gを得た。
 HPLCの面積割合(%)での、DPETtriA、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの各成分割合は、4:30:42:19:5であった。また、該混合物の粘度は 5,800 mPa・s( 25℃)であった。
Comparative raw material synthesis example 2
In a reactor equipped with a reflux condenser, a stirrer, a thermometer, a temperature controller, and a water separator, 254.3 g (1.0 mol) of dipentaerythritol, 380.5 g (5.3 mol) of acrylic acid, 9 of sulfuric acid .81 g, cupric chloride 0.88 g, and toluene 424.7 g were charged, and the reactor was heated and reacted for 12 hours while azeotropically distilling the produced water with the solvent. After the reaction, 849.4 g of toluene was added for dilution, neutralized with 25% aqueous NaOH solution, and then washed 3 times with 600 g of 15% by mass brine. The solvent was distilled off under reduced pressure to obtain 480.1 g of a mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA (hydroxyl value: 140 mgKOH / g, hydroxyl equivalent: 400.8 g / Eq).
The ratio of each component of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA in the HPLC area ratio (%) was 4: 30: 42: 19: 5. The viscosity of the mixture was 5,800 mPa · s (25 ° C.).
実施例A(合成例1)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例1で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:80mgKOH/g、水酸基当量:701.4g/Eq)446.47g(0.64モル)、重合禁止剤として4-メトキシフェノール0.25g、ウレタン化反応触媒としてジブチルスズジラウレート0.25gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート53.53g(0.32モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とし、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=4,500、Mn=1,500)、粘度 6Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートについて、HPLC及びGPCにて成分を確認したところ、ウレタンアクリレートの含量が64%(総量に対する割合)であり、ウレタン化されていないアクリレート(未反応のDPEThexaAおよび副生するペンタエリスリトール多量体のアクリレートなど)の含量が36%であった。
Example A (Synthesis Example 1)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 1 (hydroxyl value: 80 mgKOH / g, hydroxyl group equivalent: 701) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. .4 g / Eq) 446.47 g (0.64 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform. Was 50 ° C. Subsequently, 53.53 g (0.32 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and after the addition, the mixture was reacted at 80 ° C. for 6 hours, so that the NCO content was 0.1% or less. As a result, the urethane acrylate of the present invention was obtained.
This was an average molecular weight (Mw = 4,500, Mn = 1,500) and a viscosity of 6 Pa · s (60 ° C.).
Moreover, when the component was confirmed about the obtained urethane acrylate by HPLC and GPC, the content of urethane acrylate is 64% (ratio with respect to the total amount), and the acrylate which is not urethanized (unreacted DPEThexaA and by-product) The content of the acrylate of the pentaerythritol multimer, etc.) was 36%.
実施例B(合成例2)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)439.41g(0.72モル)、重合禁止剤として4-メトキシフェノール0.25g、ウレタン化反応触媒としてジブチルスズジラウレート0.25gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート60.59g(0.36モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とし、ウレタンアクリレートを得た。
 これは、平均分子量 (Mw=5,500、Mn=1,800)、粘度 11Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が74%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が26%であった。
Example B (Synthesis Example 2)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. 9.9 g / Eq) 439.41 g (0.72 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor, and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst, and stirred until uniform. Was 50 ° C. Subsequently, 60.59 g (0.36 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and the mixture was reacted at 80 ° C. for 6 hours, so that the NCO content was 0.1% or less. As a result, urethane acrylate was obtained.
This was an average molecular weight (Mw = 5,500, Mn = 1,800) and a viscosity of 11 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
実施例C(合成例3)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例3で得られたDPETtriA、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:120mgKOH/g、水酸基当量:467.6g/Eq)423.78g(0.91モル)、重合禁止剤として4-メトキシフェノール0.25g、ウレタン化反応触媒としてジブチルスズジラウレート0.25gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート76.22g(0.45モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とし、ウレタンアクリレートを得た。
これは、平均分子量 (Mw=7,800、Mn=1,700)、粘度 16Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が73%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が27%であった。
Example C (Synthesis Example 3)
A mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 3 (hydroxyl value: 120 mgKOH / g, hydroxyl group equivalent: in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. 467.6 g / Eq) 423.78 g (0.91 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform. The temperature was 50 ° C. Subsequently, 76.22 g (0.45 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and after the addition, the mixture was reacted at 80 ° C. for 6 hours. The NCO content was 0.1% or less. As a result, urethane acrylate was obtained.
This was an average molecular weight (Mw = 7,800, Mn = 1,700) and a viscosity of 16 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 73% (ratio to the total amount) and an urethanized acrylate content of 27%.
実施例D(合成例4)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)340.10g(0.56モル)、グリセリン4.08g(0.04モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート55.83g(0.33モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=10,300、Mn=1,800)、粘度 18Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が74%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が26%であった。
Example D (Synthesis Example 4)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. .9 g / Eq) 340.10 g (0.56 mol), glycerin 4.08 g (0.04 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, and urethanization reaction catalyst Dibutyltin dilaurate 0.20 g was added and stirred until uniform, and the internal temperature was adjusted to 50 ° C. Subsequently, 55.83 g (0.33 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and after the addition, the mixture was reacted at 80 ° C. for 6 hours. The NCO content was 0.1% or less. This was the end point of the reaction. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 10,300, Mn = 1,800) and a viscosity of 18 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
実施例E(合成例5)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)308.78g(0.51モル)、ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物(重量部混合比:70/30、水酸基当量:421.9g/Eq)29.06g(0.07モル)、グリセリン4.23g(0.05モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート57.93g(0.34モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=11,300、Mn=1,700)、粘度 17Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が74%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が26%であった。
Example E (Synthesis Example 5)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. 2.9 g / Eq) 308.78 g (0.51 mol), mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (parts by weight mixing ratio: 70/30, hydroxyl group equivalent: 421.9 g / Eq) 29.06 g (0 0.07 mol), 4.23 g (0.05 mol) of glycerol, 100.00 g of 2-butanone, 0.20 g of 4-methoxyphenol as a polymerization inhibitor, and 0.20 g of dibutyltin dilaurate as a urethanization reaction catalyst The mixture was stirred until the internal temperature reached 50 ° C. Subsequently, 57.93 g (0.34 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and after the addition, the mixture was reacted at 80 ° C. for 6 hours. The NCO content was 0.1% or less. This was the end point of the reaction. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 11,300, Mn = 1,700) and a viscosity of 17 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
実施例F(合成例6)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)325.95g(0.53モル)、2-ヒドロキシエチルアクリレート8.44g(0.07モル)、グリセリン4.46g(0.05モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート61.15g(0.36モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=9,500、Mn=1,800)、粘度 17Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が74%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が26%であった。
Example F (Synthesis Example 6)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. .9 g / Eq) 325.95 g (0.53 mol), 2-hydroxyethyl acrylate 8.44 g (0.07 mol), glycerin 4.46 g (0.05 mol), 2-butanone 100.00 g, polymerization prohibited 0.20 g of 4-methoxyphenol as an agent and 0.20 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform, and the internal temperature was adjusted to 50 ° C. Subsequently, 61.15 g (0.36 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and after the addition, the mixture was reacted at 80 ° C. for 6 hours, so that the NCO content was 0.1% or less. This was the end point of the reaction. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 9,500, Mn = 1,800) and a viscosity of 17 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
実施例G(合成例7)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)320.42g(0.53モル)、2-ヒドロキシエチルアクリレート8.94g(0.08モル)、グリセリン5.91g(0.06モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート64.73g(0.38モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=19,700、Mn=1,800)、粘度 27Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が75%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が25%であった。
Example G (Synthesis Example 7)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. .9 g / Eq) 320.42 g (0.53 mol), 2-hydroxyethyl acrylate 8.94 g (0.08 mol), glycerin 5.91 g (0.06 mol), 2-butanone 100.00 g, polymerization prohibited 0.20 g of 4-methoxyphenol as an agent and 0.20 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform, and the internal temperature was adjusted to 50 ° C. Subsequently, 64.73 g (0.38 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and the mixture was reacted at 80 ° C. for 6 hours. The NCO content was 0.1% or less. This was the end point of the reaction. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 19,700, Mn = 1,800) and a viscosity of 27 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 75% (ratio to the total amount) and an urethanized acrylate content of 25%.
実施例H(合成例8)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)330.55g(0.54モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート17.36g(0.10モル)、TLA-100(ヘキサメチレンジイソシアネート3量体)52.09g(0.10モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=16,300、Mn=2,000)、粘度 24Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が74%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が26%であった。
Example H (Synthesis Example 8)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. .9 g / Eq) 330.55 g (0.54 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, and dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst were uniformly added. The mixture was stirred until the internal temperature reached 50 ° C. Subsequently, 17.36 g (0.10 mol) of hexamethylene diisocyanate and 52.09 g (0.10 mol) of TLA-100 (hexamethylene diisocyanate trimer) were added dropwise so that the internal temperature did not exceed 80 ° C. Thereafter, the reaction was allowed to proceed at 80 ° C. for 6 hours, and the end point of the reaction was determined when the NCO content was 0.1% or less. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 16,300, Mn = 2,000) and a viscosity of 24 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
実施例I(合成例9)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)337.88g(0.55モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート26.62g(0.16モル)、TLA-100(ヘキサメチレンジイソシアネート3量体)35.50g(0.07モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=8,500、Mn=1,800)、粘度 12Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が74%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が26%であった。
Example I (Synthesis Example 9)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. .9 g / Eq) 337.88 g (0.55 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst, and uniformly added The mixture was stirred until the internal temperature reached 50 ° C. Subsequently, 26.62 g (0.16 mol) of hexamethylene diisocyanate and 35.50 g (0.07 mol) of TLA-100 (hexamethylene diisocyanate trimer) were added dropwise so that the internal temperature did not exceed 80 ° C. Thereafter, the reaction was allowed to proceed at 80 ° C. for 6 hours, and the end point of the reaction was determined when the NCO content was 0.1% or less. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 8,500, Mn = 1,800) and a viscosity of 12 Pa · s (60 ° C.).
Further, the obtained urethane acrylate had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
実施例J(合成例10)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例1で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:80mgKOH/g、水酸基当量:701.4g/Eq)331.80g(0.54モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート7.58g(0.05モル)、TLA-100(ヘキサメチレンジイソシアネート3量体)60.62g(0.12モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=11,700、Mn=1,800)、粘度 23Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が 66%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が34%であった。
Example J (Synthesis Example 10)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 1 (hydroxyl value: 80 mgKOH / g, hydroxyl group equivalent: 701) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. .4 g / Eq) 331.80 g (0.54 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst, and uniformly added The mixture was stirred until the internal temperature reached 50 ° C. Subsequently, 7.58 g (0.05 mol) of hexamethylene diisocyanate and 60.62 g (0.12 mol) of TLA-100 (hexamethylene diisocyanate trimer) were added dropwise so that the internal temperature did not exceed 80 ° C. Thereafter, the reaction was allowed to proceed at 80 ° C. for 6 hours, and the end point of the reaction was determined when the NCO content was 0.1% or less. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 11,700, Mn = 1,800) and a viscosity of 23 Pa · s (60 ° C.).
The urethane acrylate thus obtained had a urethane acrylate content of 66% (ratio to the total amount) and a non-urethane acrylate content of 34%.
実施例K(合成例11)
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例3で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:120mgKOH/g、水酸基当量:467.6g/Eq)305.74g(0.50モル)、2-ブタノン 100.00g、重合禁止剤として4-メトキシフェノール0.20g、ウレタン化反応触媒としてジブチルスズジラウレート0.20gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート10.47g(0.06モル)、TLA-100(ヘキサメチレンジイソシアネート3量体)83.79g(0.17モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とした。60℃に加熱して、溶媒(2-ブタノン)を減圧下留去して、本発明のウレタンアクリレートを得た。
これは、平均分子量 (Mw=27,700、Mn=2,000)、粘度 32Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が 74%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が26%であった。
Example K (Synthesis Example 11)
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 3 (hydroxyl value: 120 mgKOH / g, hydroxyl group equivalent: 467) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. .6 g / Eq) 305.74 g (0.50 mol), 2-butanone 100.00 g, 4-methoxyphenol 0.20 g as a polymerization inhibitor, dibutyltin dilaurate 0.20 g as a urethanization reaction catalyst, and uniformly added The mixture was stirred until the internal temperature reached 50 ° C. Subsequently, 10.47 g (0.06 mol) of hexamethylene diisocyanate and 83.79 g (0.17 mol) of TLA-100 (hexamethylene diisocyanate trimer) were added dropwise so that the internal temperature did not exceed 80 ° C. Thereafter, the reaction was allowed to proceed at 80 ° C. for 6 hours, and the end point of the reaction was determined when the NCO content was 0.1% or less. By heating to 60 ° C., the solvent (2-butanone) was distilled off under reduced pressure to obtain the urethane acrylate of the present invention.
This was an average molecular weight (Mw = 27,700, Mn = 2,000) and a viscosity of 32 Pa · s (60 ° C.).
In addition, the urethane acrylate thus obtained had a urethane acrylate content of 74% (ratio to the total amount) and an urethanized acrylate content of 26%.
比較合成例1
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、比較用原料合成例1で得られた、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:45mgKOH/g、水酸基当量:1246.9g/Eq)473.39g(0.38モル)、重合禁止剤として4-メトキシフェノール0.25g、ウレタン化反応触媒としてジブチルスズジラウレート0.25gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート26.61g(0.16モル)を内部温度が80℃を越えないように滴下し、添加後80℃で6時間反応させ、前述のNCO含量が0.1%以下となったところを反応の終点とし、ウレタンアクリレートを得た。
これは、平均分子量 (Mw=2,200、Mn=1,200)、粘度 2Pa・s( 60℃)であった。
 また、得られたウレタンアクリレートは、ウレタンアクリレートの含量が 48%(総量に対する割合)であり、ウレタン化されていないアクリレートの含量が52%であった。
Comparative Synthesis Example 1
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Comparative Raw Material Synthesis Example 1 (hydroxyl value: 45 mgKOH / g, hydroxyl equivalent) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. : 1246.9 g / Eq) 473.39 g (0.38 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor, 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst, and stirred until uniform. The internal temperature was 50 ° C. Subsequently, 26.61 g (0.16 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and after the addition, the mixture was reacted at 80 ° C. for 6 hours, so that the NCO content was 0.1% or less. As a result, urethane acrylate was obtained.
This was an average molecular weight (Mw = 2,200, Mn = 1,200) and a viscosity of 2 Pa · s (60 ° C.).
The urethane acrylate thus obtained had a urethane acrylate content of 48% (ratio to the total amount) and a non-urethane acrylate content of 52%.
比較合成例2
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、比較用原料合成例2で得られたDPETtriA、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:140mgKOH/g、水酸基当量:400.8g/Eq)413.28g(1.03モル)、重合禁止剤として4-メトキシフェノール0.25g、ウレタン化反応触媒としてジブチルスズジラウレート0.25gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてヘキサメチレンジイソシアネート86.72g(0.52モル)を内部温度が80℃を越えないように滴下し、添加後80℃で2時間反応させたところ、ゲル化を起こし、目的のウレタンアクリレートが得られなかった。
Comparative Synthesis Example 2
Mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Comparative Raw Material Synthesis Example 2 (hydroxyl value: 140 mgKOH / g, hydroxyl group) in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller (Equivalent: 400.8 g / Eq) 413.28 g (1.03 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform. The internal temperature was 50 ° C. Subsequently, 86.72 g (0.52 mol) of hexamethylene diisocyanate was added dropwise so that the internal temperature did not exceed 80 ° C., and the mixture was reacted at 80 ° C. for 2 hours to cause gelation. It was not obtained.
比較合成例3
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例2で得られたDPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:92mgKOH/g、水酸基当量:609.9g/Eq)316.79g(0.52モル)、重合禁止剤として4-メトキシフェノール0.25g、ウレタン化反応触媒としてジブチルスズジラウレート0.25gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてTLA-100(ヘキサメチレンジイソシアネート3量体)83.21g(0.16モル)を内部温度が80℃を越えないように滴下し、添加後80℃で4時間反応させたところ、ゲル化を起こし、目的のウレタンアクリレートが得られなかった。
Comparative Synthesis Example 3
A mixture of DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 2 (hydroxyl value: 92 mgKOH / g, hydroxyl group equivalent: 609.) in a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. 9 g / Eq) 316.79 g (0.52 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst were added and stirred until uniform. The temperature was 50 ° C. Subsequently, 83.21 g (0.16 mol) of TLA-100 (hexamethylene diisocyanate trimer) was added dropwise so that the internal temperature did not exceed 80 ° C., and the mixture was reacted at 80 ° C. for 4 hours. The target urethane acrylate was not obtained.
比較合成例4
 還流冷却器、撹拌機、温度計、温度調節装置を備えた反応器に、原料合成例3で得られたDPETtriA、DPETtetraA、DPETpentaA、DPEThexaA及びTPETAの混合物(水酸基価:120mgKOH/g、水酸基当量:467.6g/Eq)297.93g(0.49モル)、重合禁止剤として4-メトキシフェノール0.25g、ウレタン化反応触媒としてジブチルスズジラウレート0.25gを添加して均一になるまで撹拌し、内部温度を50℃とした。続いてTLA-100(ヘキサメチレンジイソシアネート3量体)102.07g(0.20モル)を内部温度が80℃を越えないように滴下し、添加後80℃で2時間反応させたところ、ゲル化を起こし、目的のウレタンアクリレートが得られなかった。
Comparative Synthesis Example 4
A mixture of DPETtriA, DPETtetraA, DPETpentaA, DPEThexaA and TPETA obtained in Raw Material Synthesis Example 3 (hydroxyl value: 120 mgKOH / g, hydroxyl group equivalent: in a reactor equipped with a reflux condenser, stirrer, thermometer, and temperature controller. 467.6 g / Eq) 297.93 g (0.49 mol), 0.25 g of 4-methoxyphenol as a polymerization inhibitor, and 0.25 g of dibutyltin dilaurate as a urethanization reaction catalyst, and stirred until uniform. The temperature was 50 ° C. Subsequently, 102.07 g (0.20 mol) of TLA-100 (hexamethylene diisocyanate trimer) was added dropwise so that the internal temperature did not exceed 80 ° C., and the mixture was reacted at 80 ° C. for 2 hours. The target urethane acrylate was not obtained.
実施例1~4及び比較例1~2
 表1に示す組成でそれぞれの成分を配合し、均一になるまで混合し、本発明の樹脂組成物及び比較例の樹脂組成物を調製した。得られたそれぞれの樹脂組成物を、易接着処理済みPETフィルム(膜厚125μm)上にバーコーターにて塗布し、約80~100℃で乾燥した。得られたそれぞれの塗膜に、紫外線照射器(JAPAN STORAGE BATTERY CO,LTD.:CS30L-1-1)により紫外線を照射し、塗膜を硬化させた。膜厚約5μmのハードコート持つPETフィルム(ハードコートフィルム)を得た。
 なお、硬化条件は下記の通りである。
硬化条件;高圧水銀灯:120W/cm、ランプの高さ:10cm、コンベアスピード:10m/分(照射エネルギー:約300mW/cm2、約200mJ/cm2)。
なお、表1における数値の単位は「質量部」を表す。
Examples 1 to 4 and Comparative Examples 1 to 2
Each component was mix | blended with the composition shown in Table 1, and it mixed until it became uniform, and prepared the resin composition of this invention, and the resin composition of a comparative example. Each of the obtained resin compositions was applied onto a PET film (thickness 125 μm) subjected to easy adhesion treatment by a bar coater and dried at about 80 to 100 ° C. Each of the obtained coating films was irradiated with ultraviolet rays using an ultraviolet irradiator (JAPAN STORE BATTERY CO, LTD .: CS30L-1-1) to cure the coating films. A PET film (hard coat film) having a hard coat thickness of about 5 μm was obtained.
The curing conditions are as follows.
Curing conditions: High pressure mercury lamp: 120 W / cm, lamp height: 10 cm, conveyor speed: 10 m / min (irradiation energy: about 300 mW / cm 2 , about 200 mJ / cm 2 ).
The unit of numerical values in Table 1 represents “parts by mass”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(注)
*1、DPHA:ジペンタエリスリトールペンタアクリレート/ヘキサアクリレート混合物
*2、MEK:メチルエチルケトン
*3、Irg.184:チバ・スペシャルティ・ケミカルズ(株)製、1-ヒドロキシシクロヘキシルフェニルケトン
(note)
* 1, DPHA: Dipentaerythritol pentaacrylate / hexaacrylate mixture * 2, MEK: Methyl ethyl ketone * 3, Irg. 184: 1-hydroxycyclohexyl phenyl ketone, manufactured by Ciba Specialty Chemicals Co., Ltd.
 実施例1~4、及び比較例1~2で得られたハードコートフィルムにつき、下記項目を評価しその結果を表2に示した。 The following items were evaluated for the hard coat films obtained in Examples 1 to 4 and Comparative Examples 1 and 2, and the results are shown in Table 2.
(鉛筆硬度)
 JIS K 5600-5-4に従い、鉛筆引っかき試験機を用いて、得られたハードコートフィルムの鉛筆硬度を測定した。詳しくは、測定する硬化皮膜を有するポリエステルフィルム上に、鉛筆を45度の角度で、上から750gの荷重を掛け5mm程度引っかき、5回中、4回以上傷の付かなかった鉛筆の硬さで表した。
(Pencil hardness)
According to JIS K 5600-5-4, the pencil hardness of the obtained hard coat film was measured using a pencil scratch tester. Specifically, on the polyester film having the cured film to be measured, the pencil is applied with a load of 750 g from the top at a 45 degree angle, and is scratched for about 5 mm. expressed.
(密着性)
 耐光性試験後の得られたハードコートフィルム表面にカッターでクロス(一辺30mm)にキズを付け、その上からセロハンテープを貼り付け、90度の角度で剥離させた。
 ○:剥がれなし
 ×:剥がれ発生
(Adhesion)
The surface of the hard coat film obtained after the light resistance test was scratched with a cutter (with a side of 30 mm), and a cellophane tape was affixed thereon and peeled at an angle of 90 degrees.
○: No peeling ×: Peeling occurred
(耐擦傷性)
 スチールウール#0000に200g/cm2の荷重をかけて、得られたハードコートフィルムの表面上を10往復させ、傷の状況を目視で確認した。
 ○:傷なし
 ×:傷発生
(Abrasion resistance)
A load of 200 g / cm 2 was applied to Steel Wool # 0000, the surface of the obtained hard coat film was reciprocated 10 times, and the state of the scratch was visually confirmed.
○: No scratch ×: Scratch occurred
(カール)
 得られたハードコートフィルムを5cm×5cmにカットし、80℃の乾燥炉に1時間放置した後、室温まで戻した。水平な台上で浮き上がった4辺それぞれの高さを測定し、4辺の和を測定値(単位:mm)とした。この時、基材自身のカールは0mmであった。
(curl)
The obtained hard coat film was cut into 5 cm × 5 cm, left in a drying oven at 80 ° C. for 1 hour, and then returned to room temperature. The height of each of the four sides that floated on a horizontal table was measured, and the sum of the four sides was taken as the measured value (unit: mm). At this time, the curl of the base material itself was 0 mm.
(外観)
 表面のクラック、白化、曇り等の状態を目視にて判断した。
 評価 ○:良好
    ×:著しいクラック発生
(appearance)
Surface cracks, whitening, cloudiness, etc. were judged visually.
Evaluation ○: Good ×: Significant crack occurrence
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、本発明の樹脂組成物を硬化して得られた硬化皮膜を有するフィルムでは、硬度、密着性、及び耐擦傷性が良好でクラックの発生が無く、比較例と比べてカールが小さい。 As is clear from the results in Table 2, the film having a cured film obtained by curing the resin composition of the present invention has good hardness, adhesion, and scratch resistance, and does not generate cracks. Compared with the curl is small.
実施例5~7及び比較例3
 表3に示す組成でそれぞれの成分を配合し、均一になるまで混合し、本発明の樹脂組成物及び比較例の樹脂組成物を調製した。得られたそれぞれの樹脂組成物をステンレス板上に、バーコーターにて塗布した。得られたそれぞれの塗膜に、窒素雰囲気下、紫外線照射器(日本電池株式会社製)により紫外線を照射し、塗膜を硬化させた。
 得られたそれぞれの硬化膜の厚さは約200μmであった。この硬化膜をステンレス板から剥がして、試験用の硬化フィルムを得た。
なお、硬化条件は下記の通りである。
硬化条件;高圧水銀灯:80W/cm、ランプの高さ:10cm、コンベアスピード:5m/分(照射エネルギー:約900mW/cm2、約600mJ/cm2 )。
また、表3における数値の単位は「質量部」を表す。
Examples 5 to 7 and Comparative Example 3
Each component was mix | blended with the composition shown in Table 3, it mixed until it became uniform, and the resin composition of this invention and the resin composition of the comparative example were prepared. Each obtained resin composition was apply | coated with the bar coater on the stainless steel plate. Each obtained coating film was irradiated with ultraviolet rays by an ultraviolet irradiator (manufactured by Nippon Battery Co., Ltd.) under a nitrogen atmosphere to cure the coating film.
The thickness of each cured film obtained was about 200 μm. This cured film was peeled off from the stainless steel plate to obtain a cured film for testing.
The curing conditions are as follows.
Curing conditions: High pressure mercury lamp: 80 W / cm, lamp height: 10 cm, conveyor speed: 5 m / min (irradiation energy: about 900 mW / cm 2 , about 600 mJ / cm 2 ).
Moreover, the unit of numerical values in Table 3 represents “parts by mass”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(注)
*4、HDDA:1,6-ヘキサンジオールジアクリレート
(note)
* 4, HDDA: 1,6-hexanediol diacrylate
(引張り試験)
 JIS K 7162に従い、実施例5~7、比較例3で得られたフィルムからダンベル形の試験片を作成し、引張り試験機を用いて下記データを測定した。評価結果を表4に示した。
1:ヤング率(弾性率)
2:破断点応力
3:破断点伸度
(Tensile test)
In accordance with JIS K 7162, dumbbell-shaped test pieces were prepared from the films obtained in Examples 5 to 7 and Comparative Example 3, and the following data was measured using a tensile tester. The evaluation results are shown in Table 4.
1: Young's modulus (elastic modulus)
2: Stress at break 3: Elongation at break
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から明らかなように、本発明の樹脂組成物を硬化して得られた硬化皮膜は、破断点応力、破断点伸度が大きく、比較例に比べて柔軟で強靭であることがわかる。 As is apparent from the results in Table 4, the cured film obtained by curing the resin composition of the present invention has a high stress at break and elongation at break, and is flexible and tough compared to the comparative examples. Recognize.
実施例8~15
 下記表5に示す組成でそれぞれの成分を配合し、均一になるまで混合し、本発明の樹脂組成物を調製した。なお、表中の「MEK」及び「Irg.184」は表1と同じ意味を表す。
 得られたそれぞれの樹脂組成物を用いて、前記実施例1~4と同様にして、膜厚約5μmのハードコートを持つPETフィルム(ハードコートフィルム)を得た。
 得られたハードコートフィルムにつき、実施例1~4と同様に評価し、その結果を下記表6に示した。
Examples 8 to 15
Each component was mix | blended with the composition shown in following Table 5, and it mixed until it became uniform, and prepared the resin composition of this invention. In the table, “MEK” and “Irg.184” have the same meaning as in Table 1.
Using each of the obtained resin compositions, a PET film (hard coat film) having a hard coat with a film thickness of about 5 μm was obtained in the same manner as in Examples 1 to 4.
The obtained hard coat film was evaluated in the same manner as in Examples 1 to 4, and the results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の結果から明らかなように、本発明の樹脂組成物を硬化して得られた硬化皮膜を有するフィルムでは、硬度、密着性、及び耐擦傷性が良好でクラックの発生も無い。 As is apparent from the results in Table 6, the film having a cured film obtained by curing the resin composition of the present invention has good hardness, adhesion, and scratch resistance, and does not generate cracks.
 本発明の樹脂組成物を硬化して得られた硬化皮膜は、硬度、密着性、耐擦傷性が良好で、クラックの発生が無いといったハードコードとしての要求特性を維持したまま、カールが小さく、柔軟で強靭な特性を併せ持つという特徴がある。 The cured film obtained by curing the resin composition of the present invention has good hardness, adhesion, scratch resistance, and maintains the required characteristics as a hard cord such as no occurrence of cracks, while curling is small, It is characterized by having both flexible and tough properties.
 本発明の樹脂組成物を硬化して得られたハードコートフィルムは、硬度、密着性、耐擦傷性が良好であり、カールやクラックが発生しない。従って本発明の樹脂組成物はプラスチックフィルムや小型の筐体のハードコート、カラーフィルター、ブラックマトリクス、スペーサーの材料として好適である。 The hard coat film obtained by curing the resin composition of the present invention has good hardness, adhesion, and scratch resistance, and does not cause curling or cracking. Therefore, the resin composition of the present invention is suitable as a material for plastic films, hard coatings for small cases, color filters, black matrices, and spacers.

Claims (19)

  1. (I)下記(i)、(ii)又は(iii)、
    (i)ジペンタエリスリトールトリ(メタ)アクリレート及びジペンタエリスリトールテトラ(メタ)アクリレート及びジペンタエリスリトールペンタ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも2種を含み、水酸基価が80~120mgKOH/gであるジペンタエリスリトールポリ(メタ)アクリレート混合物(a)(以下該混合物(a)という)、又は、
    (ii)該混合物(a)及びグリセリンの両者、又は、
    (iii)該混合物(a)、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの3者、
    のいずれかと、
    (II)ジイソシアネート化合物を含むポリイソシアネート化合物(b)、
    とを反応させて得られるウレタン(メタ)アクリレート化合物(A)。
    (I) The following (i), (ii) or (iii),
    (I) including at least two selected from the group consisting of dipentaerythritol tri (meth) acrylate and dipentaerythritol tetra (meth) acrylate and dipentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate; Dipentaerythritol poly (meth) acrylate mixture (a) (hereinafter referred to as the mixture (a)) having a hydroxyl value of 80 to 120 mgKOH / g, or
    (Ii) both the mixture (a) and glycerin, or
    (Iii) the mixture (a), glycerol and (meth) acrylates of C2-C5 aliphatic poly (2-4) ol,
    Either
    (II) a polyisocyanate compound (b) containing a diisocyanate compound,
    Urethane (meth) acrylate compound (A) obtained by reacting with.
  2. (I)が(i)の該混合物(a)である請求項1に記載のウレタン(メタ)アクリレート化合物(A)。 The urethane (meth) acrylate compound (A) according to claim 1, wherein (I) is the mixture (a) of (i).
  3. (II)のポリイソシアネート化合物(b)が、ジイソシアネート化合物単独又はジイソシアネート化合物とトリイソシアネート化合物の併用であり、ジイソシアネート化合物とトリイソシアネート化合物の割合がジイソシアネート化合物1モルに対して、トリイソシアネート化合物が0~10モルの割合である請求項1に記載のウレタン(メタ)アクリレート化合物(A)。 The polyisocyanate compound (b) of (II) is a diisocyanate compound alone or a combination of a diisocyanate compound and a triisocyanate compound, and the ratio of the diisocyanate compound to the triisocyanate compound is 0 to 3 per mol of the diisocyanate compound. The urethane (meth) acrylate compound (A) according to claim 1, which has a ratio of 10 mol.
  4. 下記一般式(1)で表される請求項1に記載のウレタン(メタ)アクリレート化合物(A)、
    Figure JPOXMLDOC01-appb-I000006

    (式中、Xはイソシアネート残基、nは0~100の整数、
    Yは下記一般式(2)で表される有機基であり、式中のa、b及びcは、それぞれ、1≦a≦4、0≦b≦3及び0≦c≦3の整数で、かつ、a+b+c=4、
    Figure JPOXMLDOC01-appb-I000007

    及び、
    Aは上記一般式(2)で表される有機基であり、式中のXはイソシアネート残基、cは0であり、a及びbは、1≦a≦5、0≦b≦4の整数であり、かつ、a+b=5、
    Bは上記一般式(2)で表される有機基であり、式中、Xはイソシアネート残基であり、cは0であり、aおよびbは、
    (i)Bが末端に存在するとき、1≦a≦5、0≦b≦4の整数であり、かつ、a+b=5であり、
    (ii)Bが末端以外に存在するとき、式中のaおよびbは、1≦a≦4、0≦b≦3の整数であり、かつ、a+b=4である)。
    The urethane (meth) acrylate compound (A) according to claim 1 represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-I000006

    (Wherein X is an isocyanate residue, n is an integer of 0 to 100,
    Y is an organic group represented by the following general formula (2), wherein a, b and c are integers of 1 ≦ a ≦ 4, 0 ≦ b ≦ 3 and 0 ≦ c ≦ 3, respectively. And a + b + c = 4,
    Figure JPOXMLDOC01-appb-I000007

    as well as,
    A is an organic group represented by the general formula (2), wherein X is an isocyanate residue, c is 0, and a and b are integers of 1 ≦ a ≦ 5 and 0 ≦ b ≦ 4 And a + b = 5,
    B is an organic group represented by the general formula (2), wherein X is an isocyanate residue, c is 0, and a and b are
    (I) when B is present at the end, 1 ≦ a ≦ 5, 0 ≦ b ≦ 4, and a + b = 5,
    (Ii) When B is present at a position other than the end, a and b in the formula are integers of 1 ≦ a ≦ 4, 0 ≦ b ≦ 3, and a + b = 4).
  5.  (I)の(i)該混合物(a)と(II)のポリイソシアネート化合物(b)とを、該混合物(a)中の活性水素基1当量に対し、ポリイソシアネート化合物(b)中のイソシアネート基当量0.1~50当量の割合で反応させる、請求項1に記載のウレタン(メタ)アクリレート化合物(A)の、製造法。 (I) (i) The mixture (a) and the polyisocyanate compound (b) of (II) are mixed with the isocyanate in the polyisocyanate compound (b) with respect to 1 equivalent of active hydrogen groups in the mixture (a). The process for producing the urethane (meth) acrylate compound (A) according to claim 1, wherein the reaction is carried out at a ratio of a group equivalent of 0.1 to 50 equivalents.
  6.  (I)が(ii)の、該混合物(a)及びグリセリンである請求項1に記載のウレタン(メタ)アクリレート化合物(A)。 The urethane (meth) acrylate compound (A) according to claim 1, wherein (I) is the mixture (a) and glycerin (ii).
  7.  請求項1の該混合物(a)及びグリセリン、と、請求項1の(II)のポリイソシアネート化合物(b)とを、該混合物(a)中の活性水素基1当量に対して、グリセリン中の活性水素基当量0.01~10当量、(II)のポリイソシアネート化合物(b)中のイソシアネート基当量0.1~50当量の割合で、反応させるウレタン(メタ)アクリレート化合物(A)の製造法。 The mixture (a) and glycerin of claim 1 and the polyisocyanate compound (b) of (II) of claim 1 in 1 equivalent of active hydrogen groups in the mixture (a) Method for producing urethane (meth) acrylate compound (A) to be reacted at an active hydrogen group equivalent of 0.01 to 10 equivalents and a ratio of isocyanate group equivalents of 0.1 to 50 equivalents in polyisocyanate compound (b) of (II) .
  8.  請求項1に記載のウレタン(メタ)アクリレート化合物(A)、(メタ)アクリレート(B)及び光重合開始剤(C)を含有する樹脂組成物。 A resin composition comprising the urethane (meth) acrylate compound (A), (meth) acrylate (B) and photopolymerization initiator (C) according to claim 1.
  9.  ハードコート用である請求項8に記載の樹脂組成物。 The resin composition according to claim 8, which is used for a hard coat.
  10.  (I)が(iii)の、該混合物(a)、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの3者である請求項1に記載のウレタン(メタ)アクリレート化合物(A)。 2. The urethane (meth) acrylate according to claim 1, wherein (I) is one of (iii) of the mixture (a), glycerin and (meth) acrylate of C2-C5 aliphatic poly (2-4) ol. Compound (A).
  11.  請求項1の(I)の(iii)の、該混合物(a)、グリセリン及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの3者と、請求項1の(II)のポリイソシアネート化合物(b)とを、該混合物(a)中の活性水素基1当量に対して、グリセリンの活性水素基当量0.01~10当量及びC2~C5脂肪族ポリ(2~4)オールの(メタ)アクリレートの活性水素基当量0.01~10当量、ポリイソシアネート化合物(b)のイソシアネート基当量0.1~50当量の割合で、反応させる、請求項1に記載のウレタン(メタ)アクリレート化合物(A)の、製造法。 The mixture (a) of claim 1 (I) (iii), the glycerin and the (meth) acrylate of a C2-C5 aliphatic poly (2-4) ol, and (II) of claim 1 The polyisocyanate compound (b) of the glycerin active hydrogen group equivalent 0.01 to 10 equivalent and the C2 to C5 aliphatic poly (2 to 4) with respect to 1 equivalent of active hydrogen group in the mixture (a) The urethane (meta) of claim 1, wherein the reaction is carried out at a ratio of 0.01 to 10 equivalents of active hydrogen group equivalent of all (meth) acrylate and 0.1 to 50 equivalent of isocyanate group equivalent of polyisocyanate compound (b). ) A process for producing the acrylate compound (A).
  12.  (I)における該混合物(a)が、該混合物(a)の総量に対して、高速液体クロマトグラフィー(HPLC)の面積割合(%)において、ジペンタエリスリトールペンタ(メタ)アクリレートを35~60%含み、それにジペンタエリスリトールテトラ(メタ)アクリレートおよびジペンタエリスリトールヘキサ(メタ)アクリレートを加えた3者の合計が90~100%であり、残部0~10%がジペンタエリスリトールトリ(メタ)アクリレートおよびトリペンタエリスリトール以上の多量体の(メタ)アクリレートである、請求項1に記載のウレタン(メタ)アクリレート化合物(A)。 The mixture (a) in (I) contains 35 to 60% of dipentaerythritol penta (meth) acrylate in the area ratio (%) of high performance liquid chromatography (HPLC) with respect to the total amount of the mixture (a). And the total of the three components including dipentaerythritol tetra (meth) acrylate and dipentaerythritol hexa (meth) acrylate is 90-100%, and the balance 0-10% is dipentaerythritol tri (meth) acrylate and The urethane (meth) acrylate compound (A) according to claim 1, wherein the urethane (meth) acrylate compound is a multimeric (meth) acrylate of tripentaerythritol or higher.
  13.  ポリイソシアネート化合物(b)がジイソシアネート化合物単独である請求項1又は12に記載のウレタン(メタ)アクリレート化合物(A)。 The urethane (meth) acrylate compound (A) according to claim 1 or 12, wherein the polyisocyanate compound (b) is a diisocyanate compound alone.
  14.  ポリイソシアネート化合物(b)がジイソシアネート化合物とトリイソシアネート化合物の併用である請求項1又は12に記載のウレタン(メタ)アクリレート化合物(A)。 The urethane (meth) acrylate compound (A) according to claim 1 or 12, wherein the polyisocyanate compound (b) is a combination of a diisocyanate compound and a triisocyanate compound.
  15.  ジイソシアネート化合物がヘキサメチレンジイソシアネートである請求項13に記載のウレタン(メタ)アクリレート化合物(A)。 The urethane (meth) acrylate compound (A) according to claim 13, wherein the diisocyanate compound is hexamethylene diisocyanate.
  16.  該混合物(a)がジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレートの3者の混合物、又は、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの4者の混合物であり、ポリイソシアネート化合物(b)がヘキサメチレンジイソシアネート単独、又はヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネート3量体の両者である請求項1に記載のウレタン(メタ)アクリレート化合物(A)。 The mixture (a) is a ternary mixture of dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, or dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate and dipentaacrylate. The urethane (meth) acrylate according to claim 1, which is a four-component mixture of pentaerythritol hexaacrylate, and the polyisocyanate compound (b) is hexamethylene diisocyanate alone or both hexamethylene diisocyanate and hexamethylene diisocyanate trimer. Compound (A).
  17.  請求項1に記載のウレタン(メタ)アクリレート化合物(A)及び光重合開始剤(C)を含有する樹脂組成物。 A resin composition containing the urethane (meth) acrylate compound (A) according to claim 1 and a photopolymerization initiator (C).
  18.  請求項1に記載のウレタン(メタ)アクリレート化合物(A)及び光重合開始剤(C)を含有する樹脂組成物の硬化膜。 A cured film of a resin composition containing the urethane (meth) acrylate compound (A) according to claim 1 and a photopolymerization initiator (C).
  19.  粘度(60℃)が5~40Pa・sである請求項1に記載のウレタン(メタ)アクリレート化合物(A)。 The urethane (meth) acrylate compound (A) according to claim 1, having a viscosity (60 ° C) of 5 to 40 Pa · s.
PCT/JP2010/003830 2009-06-17 2010-06-09 Urethane (meth)acrylate compound and resin composition containing same WO2010146801A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080026345.4A CN102803332B (en) 2009-06-17 2010-06-09 Urethane (meth) acrylate compound and resin composition containing same
KR1020117028584A KR101664003B1 (en) 2009-06-17 2010-06-09 Urethane (meth)acrylate compound and resin composition containing same
JP2011519522A JP5757664B2 (en) 2009-06-17 2010-06-09 Urethane (meth) acrylate compound and resin composition containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009143890 2009-06-17
JP2009-143890 2009-06-17

Publications (1)

Publication Number Publication Date
WO2010146801A1 true WO2010146801A1 (en) 2010-12-23

Family

ID=43356135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003830 WO2010146801A1 (en) 2009-06-17 2010-06-09 Urethane (meth)acrylate compound and resin composition containing same

Country Status (5)

Country Link
JP (1) JP5757664B2 (en)
KR (1) KR101664003B1 (en)
CN (1) CN102803332B (en)
TW (1) TWI482791B (en)
WO (1) WO2010146801A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121312A1 (en) * 2011-03-08 2012-09-13 日本合成化学工業株式会社 Active-energy-curable resin composition and coating agent
CN103314051A (en) * 2011-01-28 2013-09-18 赢创罗姆有限公司 Impact-modified reaction resin
JP2013241503A (en) * 2012-05-18 2013-12-05 Mitsubishi Rayon Co Ltd Polyfunctional urethane (meth)acrylate, active energy ray curing type resin composition and article having fine uneven structure on surface
KR20140112433A (en) 2013-03-13 2014-09-23 아라까와 가가꾸 고교 가부시끼가이샤 Photocurable resin composition and optical film using the same
JP2016104859A (en) * 2014-11-25 2016-06-09 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
WO2016194765A1 (en) * 2015-06-04 2016-12-08 Dic株式会社 Urethane (meth)acrylate resin and laminated film
JP2017002105A (en) * 2015-06-04 2017-01-05 Dic株式会社 Urethane (meth)acrylate resin and laminated film
JP2017082204A (en) * 2015-10-22 2017-05-18 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
JP2017115028A (en) * 2015-12-24 2017-06-29 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent containing the same
JP2017179368A (en) * 2016-03-29 2017-10-05 荒川化学工業株式会社 Active energy ray curable composition and coating film
JP2017203068A (en) * 2016-05-10 2017-11-16 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
JP2017226718A (en) * 2016-06-20 2017-12-28 Dic株式会社 Urethane (meth) acrylate resin and laminate film
JP2017226719A (en) * 2016-06-20 2017-12-28 Dic株式会社 Urethane (meth) acrylate resin and laminate film
JP2017226720A (en) * 2016-06-20 2017-12-28 Dic株式会社 Urethane (meth) acrylate resin and laminate film
WO2018181680A1 (en) 2017-03-29 2018-10-04 東洋インキScホールディングス株式会社 Color composition for solid-state imaging element
WO2018181972A1 (en) * 2017-03-31 2018-10-04 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
KR20190019944A (en) 2016-06-20 2019-02-27 디아이씨 가부시끼가이샤 Urethane (meth) acrylate resin and laminated film
WO2019124048A1 (en) * 2017-12-19 2019-06-27 Dic株式会社 Urethane (meth)acrylate resin, curable resin composition, cured product, and laminated film
JP2019108479A (en) * 2017-12-19 2019-07-04 Dic株式会社 Active energy ray-curable resin composition, cured product, laminated film, decorative film, and article
KR20240007080A (en) 2022-07-07 2024-01-16 디아이씨 가부시끼가이샤 Urethane (meth)acrylate resin, active energy ray curable composition, cured product and laminated film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379491B1 (en) 2012-05-31 2014-04-01 주식회사 엘지화학 Hard coating film and method of preparing of hard coating film
KR101501686B1 (en) 2012-05-31 2015-03-11 주식회사 엘지화학 Hard coating film
KR101389967B1 (en) 2012-05-31 2014-04-30 주식회사 엘지화학 Method of preparing of hard coating film
KR101470465B1 (en) 2012-08-23 2014-12-08 주식회사 엘지화학 Hard coating film
KR102284382B1 (en) * 2014-01-22 2021-08-03 디아이씨 가부시끼가이샤 Curable composition, cured product thereof, molded article, and display member
EP3098876A4 (en) * 2014-10-31 2017-03-01 Toppan Printing Co., Ltd. Outer package material for power storage device
JP2017057349A (en) * 2015-09-18 2017-03-23 日本化薬株式会社 Polyurethane compound and resin composition containing the same
TWI572662B (en) * 2015-12-30 2017-03-01 奇美實業股份有限公司 Thermoplastic resin composition and molding product made therefrom
TW201823343A (en) * 2016-12-23 2018-07-01 奇美實業股份有限公司 Thermoplastic resin composition and molding product made therefrom
JP6870648B2 (en) * 2017-04-13 2021-05-12 荒川化学工業株式会社 Urethane (meth) acrylate, active energy ray-curable resin composition, cured product and film
TWI736777B (en) * 2017-06-13 2021-08-21 日商荒川化學工業股份有限公司 Urethane (meth)acrylate, active energy ray curable resin composition, cured product and film
CN107880245B (en) * 2017-11-13 2020-12-08 安庆飞凯新材料有限公司 Preparation method of aromatic polyurethane hexaacrylate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984926A (en) * 1982-11-05 1984-05-16 Mitsui Petrochem Ind Ltd Curable resin composition for coating
JPS5986666A (en) * 1982-11-09 1984-05-18 Mitsui Petrochem Ind Ltd Curable resin composition for coating
WO2009147092A1 (en) * 2008-06-06 2009-12-10 Cytec Surface Specialties, S.A. Aqueous radiation curable polyurethane compositions
WO2010090116A1 (en) * 2009-02-04 2010-08-12 日本化薬株式会社 Actinic-energy-ray-curable resin composition for hard coat and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948934A (en) 1995-08-08 1997-02-18 Nippon Kayaku Co Ltd Ultraviolet-curable resin composition and hard coating agent
JPH09145903A (en) 1995-11-27 1997-06-06 Dainippon Printing Co Ltd Antireflection film
JP3515447B2 (en) 1998-10-14 2004-04-05 株式会社巴川製紙所 Antireflection material and polarizing film using the same
US6713170B1 (en) * 1998-12-09 2004-03-30 Nippon Kayaku Kabushiki Kaisha Hard coating material and film comprising the same
JP2001113648A (en) 1999-10-19 2001-04-24 Nippon Kayaku Co Ltd Film having cured film of radiation curable resin composition
US6972143B2 (en) * 2003-10-27 2005-12-06 Kyle Baldwin Protective U.V. curable cover layer for optical media
JP5516685B2 (en) * 2012-10-03 2014-06-11 東洋インキScホールディングス株式会社 Conductive composition, conductive film using the same, and laminate having the conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984926A (en) * 1982-11-05 1984-05-16 Mitsui Petrochem Ind Ltd Curable resin composition for coating
JPS5986666A (en) * 1982-11-09 1984-05-18 Mitsui Petrochem Ind Ltd Curable resin composition for coating
WO2009147092A1 (en) * 2008-06-06 2009-12-10 Cytec Surface Specialties, S.A. Aqueous radiation curable polyurethane compositions
WO2010090116A1 (en) * 2009-02-04 2010-08-12 日本化薬株式会社 Actinic-energy-ray-curable resin composition for hard coat and use thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103314051A (en) * 2011-01-28 2013-09-18 赢创罗姆有限公司 Impact-modified reaction resin
WO2012121312A1 (en) * 2011-03-08 2012-09-13 日本合成化学工業株式会社 Active-energy-curable resin composition and coating agent
JP2012197436A (en) * 2011-03-08 2012-10-18 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray curing resin composition and coating agent
CN103380157A (en) * 2011-03-08 2013-10-30 日本合成化学工业株式会社 Active-energy-curable resin composition and coating agent
JP2013241503A (en) * 2012-05-18 2013-12-05 Mitsubishi Rayon Co Ltd Polyfunctional urethane (meth)acrylate, active energy ray curing type resin composition and article having fine uneven structure on surface
KR20140112433A (en) 2013-03-13 2014-09-23 아라까와 가가꾸 고교 가부시끼가이샤 Photocurable resin composition and optical film using the same
JP2016104859A (en) * 2014-11-25 2016-06-09 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
WO2016194765A1 (en) * 2015-06-04 2016-12-08 Dic株式会社 Urethane (meth)acrylate resin and laminated film
JP2017002105A (en) * 2015-06-04 2017-01-05 Dic株式会社 Urethane (meth)acrylate resin and laminated film
JP2017082204A (en) * 2015-10-22 2017-05-18 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
JP2017115028A (en) * 2015-12-24 2017-06-29 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent containing the same
KR20170113306A (en) * 2016-03-29 2017-10-12 아라까와 가가꾸 고교 가부시끼가이샤 Composition curable with active energy ray and coating film
KR102285267B1 (en) 2016-03-29 2021-08-02 아라까와 가가꾸 고교 가부시끼가이샤 Composition curable with active energy ray and coating film
JP2017179368A (en) * 2016-03-29 2017-10-05 荒川化学工業株式会社 Active energy ray curable composition and coating film
JP2017203068A (en) * 2016-05-10 2017-11-16 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
JP2017226718A (en) * 2016-06-20 2017-12-28 Dic株式会社 Urethane (meth) acrylate resin and laminate film
JP2017226719A (en) * 2016-06-20 2017-12-28 Dic株式会社 Urethane (meth) acrylate resin and laminate film
JP2017226720A (en) * 2016-06-20 2017-12-28 Dic株式会社 Urethane (meth) acrylate resin and laminate film
KR20190019944A (en) 2016-06-20 2019-02-27 디아이씨 가부시끼가이샤 Urethane (meth) acrylate resin and laminated film
WO2018181680A1 (en) 2017-03-29 2018-10-04 東洋インキScホールディングス株式会社 Color composition for solid-state imaging element
US11614574B2 (en) 2017-03-29 2023-03-28 Toppan Printing Co., Ltd. Coloring composition for solid-state imaging element
WO2018181972A1 (en) * 2017-03-31 2018-10-04 日本合成化学工業株式会社 Active energy ray-curable resin composition and coating agent
JP2019108479A (en) * 2017-12-19 2019-07-04 Dic株式会社 Active energy ray-curable resin composition, cured product, laminated film, decorative film, and article
JP7009973B2 (en) 2017-12-19 2022-01-26 Dic株式会社 Active energy ray curable resin composition, cured product, laminated film, decorative film and articles
WO2019124048A1 (en) * 2017-12-19 2019-06-27 Dic株式会社 Urethane (meth)acrylate resin, curable resin composition, cured product, and laminated film
KR20240007080A (en) 2022-07-07 2024-01-16 디아이씨 가부시끼가이샤 Urethane (meth)acrylate resin, active energy ray curable composition, cured product and laminated film

Also Published As

Publication number Publication date
TWI482791B (en) 2015-05-01
TW201105694A (en) 2011-02-16
CN102803332B (en) 2015-05-06
JP5757664B2 (en) 2015-07-29
KR101664003B1 (en) 2016-10-10
CN102803332A (en) 2012-11-28
JPWO2010146801A1 (en) 2012-11-29
KR20120052192A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5757664B2 (en) Urethane (meth) acrylate compound and resin composition containing the same
JP5679465B2 (en) UV curable hard coat resin composition
JP5557274B2 (en) Ultraviolet curable hard coat resin composition, hard coat film and hard coat molded article using the same
JP5692804B2 (en) Energy ray curable resin composition for optical lens sheet and cured product thereof
US20080255264A1 (en) Low Viscosity Multi-Functional Urethane Acrylate Oligomer-Containing High Solid Uv Curable Coating Compostion
JPWO2010090116A1 (en) Active energy ray-curable resin composition for hard coat and its use
JP5885021B2 (en) Hard coat film
JP2009001596A (en) Polyurethane compound, photosensitive resin composition containing the same and its cured product and film having the same
JP5057367B2 (en) Active energy ray-curable resin composition and cured product thereof
WO2016121706A1 (en) Photosensitive resin composition and cured product thereof
JP5812328B2 (en) Active energy ray-curable resin composition and film using the same
JP5083830B2 (en) Energy ray curable resin composition for optical lens sheet and optical lens sheet
JP2010241917A (en) Resin composition
JP2019085558A (en) Active energy ray curable resin composition and coating agent
JP2011033875A (en) Energy ray curing type resin composition for optical lens, and optical lens
WO2012029361A1 (en) Curable composition
JP2017171891A (en) Polyurethane (meth)acrylate, composition, cured article
JP2009001598A (en) Active energy ray curable type antistatic hard coat resin composition
JP6475571B2 (en) (Meth) acrylate compound and photosensitive resin composition
WO2019117030A1 (en) Active energy ray-curable resin composition and coating agent
JP5429832B2 (en) Urethane (meth) acrylate compound
JP2019104907A (en) Active energy ray-curable resin composition and coating agent
JP2019104908A (en) Active energy ray-curable resin composition and coating agent
JP2018080273A (en) Active energy ray-curable resin composition and method for producing the same
JP2016190952A (en) Active energy ray-curable resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026345.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789185

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519522

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117028584

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789185

Country of ref document: EP

Kind code of ref document: A1