WO2012099150A1 - Conductive film and display apparatus provided with same - Google Patents

Conductive film and display apparatus provided with same Download PDF

Info

Publication number
WO2012099150A1
WO2012099150A1 PCT/JP2012/050929 JP2012050929W WO2012099150A1 WO 2012099150 A1 WO2012099150 A1 WO 2012099150A1 JP 2012050929 W JP2012050929 W JP 2012050929W WO 2012099150 A1 WO2012099150 A1 WO 2012099150A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive film
pattern
lattice
examples
Prior art date
Application number
PCT/JP2012/050929
Other languages
French (fr)
Japanese (ja)
Inventor
栗城匡志
岩見一央
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011105374A external-priority patent/JP2012163933A/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020137018810A priority Critical patent/KR20140009287A/en
Priority to KR1020167005217A priority patent/KR20160031029A/en
Priority to CN201280005744.1A priority patent/CN103329642B/en
Publication of WO2012099150A1 publication Critical patent/WO2012099150A1/en
Priority to US13/939,607 priority patent/US9924618B2/en
Priority to US15/840,817 priority patent/US10779447B2/en
Priority to US16/733,302 priority patent/US10888038B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a conductive film and a display device provided with the same.
  • a conductive film installed on a display panel of a display device for example, a conductive film for shielding electromagnetic waves (see, for example, JP 2008-282924 A and JP 2009-094467 A) or a conductive film for a touch panel (See, for example, JP-A-2010-108877) and the like.
  • a grid pattern is formed on a transparent substrate, and in Japanese Patent Application Laid-Open No. 2008-282924, a moire suppressing portion is formed adjacent to the intersection of the grid pattern.
  • the occurrence of moire is suppressed by sticking an electromagnetic wave shielding film having a lattice pattern and a moire suppressing film on which a moire suppressing portion is disposed.
  • the present invention has a simple configuration different from the techniques described in the above-mentioned publications, and it is less likely to generate moiré even when attached to a display panel of a general-purpose display device, and can be produced with high yield. Film and a display device equipped with the same.
  • the conductive film according to the first aspect of the present invention includes a substrate and a conductive portion disposed on one main surface side of the substrate, and the conductive portions extend in a first direction, respectively. And two or more conductive patterns of fine metal wires arranged in a second direction orthogonal to the first direction, wherein the conductive patterns are configured by combining two or more gratings, and each of the gratings Each of the grids has a diamond shape, and an angle formed by at least one side of each of the grids and the first direction is 30 ° to 60 °. [2] In the first aspect of the present invention, it is preferable that an angle between at least one side in each of the gratings and the first direction be 30 ° to 44 °.
  • an angle between at least one side in each of the grids and the first direction is 32 ° to 39 °.
  • an angle between at least one side in each of the grids and the first direction be 46 ° to 60 °.
  • an angle between at least one side in each of the grids and the first direction is 51 ° to 58 °.
  • the conductive pattern is formed by connecting two or more sensing units in series in the first direction, and each of the sensing units is formed by combining two or more of the gratings. It may be configured.
  • the conductive film according to the second aspect of the present invention comprises a substrate, a first conductive portion disposed on one main surface side of the substrate, and a second conductive surface disposed on the other main surface side of the substrate.
  • a conductive portion, and the first conductive portions each have two or more first conductive patterns extending in a first direction and arranged in a second direction orthogonal to the first direction
  • Each of the second conductive portions has two or more second conductive patterns extending in a second direction and arranged in the first direction
  • the first conductive pattern and the second conductive pattern are Two or more gratings are respectively combined, and each of the gratings has a diamond shape, and an angle between at least one side of each grating and the first direction is 30 ° to 60 °.
  • the first conductive pattern is configured by connecting two or more first sensing portions in series in the first direction
  • the second conductive pattern includes two or more first conductive portions.
  • Two sensing units may be connected in series in the second direction, and each of the sensing units may be configured by combining two or more of the grids.
  • the conductive film according to the third aspect of the present invention includes a substrate and a conductive portion disposed on one main surface side of the substrate, and the conductive portion is formed of a mesh pattern, The openings of the mesh pattern have a diamond shape, and the apexes of the diamond shape are characterized by being 60 ° to 120 °.
  • the conductive film according to the fourth aspect of the present invention includes a substrate and a conductive portion disposed on the side of one of the main surfaces of the substrate, and the conductive portions extend in the first direction. And two or more conductive patterns of fine metal wires arranged in a second direction orthogonal to the first direction, wherein the conductive patterns are configured by connecting two or more sensing units in the first direction.
  • a length along the second direction of each sensing unit is Lv and a length along the first direction is Lh, 0.57 ⁇ Lv / Lh ⁇ 1.74 It is characterized by satisfying.
  • the conductive film according to the fifth aspect of the present invention comprises a substrate, a first conductive portion disposed on one principal surface side of the substrate, and a second conductive surface disposed on the other principal surface side of the substrate.
  • a conductive portion, and the first conductive portions each have two or more first conductive patterns extending in a first direction and arranged in a second direction orthogonal to the first direction,
  • Each of the second conductive portions has two or more second conductive patterns extending in a second direction and arranged in the first direction, and the first conductive patterns include two or more first conductive patterns.
  • a sensing unit is connected in the first direction, and the second conductive pattern is configured by connecting two or more second sensing units in the second direction.
  • a length along the second direction is Lva
  • a length along the first direction is Lha
  • in the second direction of each of the second sensing units Assuming that the length along the line is Lvb and the length along the first direction is Lhb, 0.57 ⁇ Lva / Lha ⁇ 1.74 0.57 ⁇ Lvb / Lhb ⁇ 1.74 It is characterized by satisfying.
  • the sensing unit is composed of a plurality of gratings, and a length of each of the gratings along the second direction is Lvs, a length along the first direction Let Lhs be 0.57 ⁇ Lvs / Lhs ⁇ 1.74 It is preferable to satisfy [15]
  • the conductive film according to the sixth aspect of the present invention includes a substrate and a conductive portion formed on one of the main surfaces of the substrate, and the conductive portion is formed of a mesh pattern, The opening of the mesh pattern has a diamond shape, and the length of one diagonal line of the diamond shape is Lvp and the length of the other diagonal line is Lhp, 0.57 ⁇ Lvp / Lhp ⁇ 1.74 It is characterized by satisfying.
  • a display device is a display device provided with a conductive film provided on a display panel, wherein the conductive film has a conductive portion having a mesh pattern of fine wires made of metal.
  • the thin lines may have an inclination of 30 ° to 44 ° with respect to the arrangement direction of the pixels of the display device.
  • the thin line has an inclination of 32 ° to 39 ° with respect to the arrangement direction of the pixels of the display device.
  • a conductive film is required.
  • a conductive film having a mesh pattern may cause moiré.
  • moire is less likely to occur even when installed on a display panel. Moreover, it can be produced with high yield.
  • the display device according to the present invention when used as an electromagnetic wave shield or a touch panel, resistance can be reduced, and moiré hardly occurs even when used for a general-purpose touch panel.
  • FIG. 8A is a cross-sectional view showing an example of the first laminated conductive film with a part thereof omitted
  • FIG. 8B is a cross-sectional view showing another example of the first laminated conductive film with a part omitted.
  • FIG. 18A is a cross-sectional view showing an example of the second laminated conductive film with a part thereof omitted, and FIG.
  • 18B is a cross-sectional view showing another example of the second laminated conductive film with a part omitted. It is a top view which shows the example of a pattern of the 1st electroconductive part formed in the 1st electroconductive film which concerns on 2nd Embodiment. It is a top view which shows the example of a pattern of the 2nd electroconductive part formed in the 2nd electroconductive film which concerns on 2nd Embodiment. It is a top view which partially omits and shows the example made into the 2nd lamination conductive film combining the 1st conductive film concerning a 2nd embodiment, and the 2nd conductive film.
  • the conductive film 10 includes a transparent substrate 12 (see FIG. 2) and a conductive portion 14 formed on one of the main surfaces of the transparent substrate 12. Have.
  • the conductive portion 14 has a mesh pattern 20 made of metal thin wires (hereinafter referred to as metal thin wires 16) and openings 18.
  • the metal thin line 16 is made of, for example, gold (Au), silver (Ag) or copper (Cu).
  • conductive portion 14 extends in a first inclination direction (x direction in FIG. 1) and a plurality of first metal fine wires 16a arranged at a pitch Ps in a second inclination direction (y direction in FIG. 1).
  • a mesh pattern 20 is formed in which a plurality of second fine metal wires 16b extending in the second inclination direction and arranged at the pitch Ps in the first inclination direction intersect with each other.
  • the first inclination direction is inclined at an angle of + 30 ° to + 60 ° with respect to the reference direction (for example, the horizontal direction)
  • the second inclination direction is an angle of -30 ° to -60 ° with respect to the reference direction. It is inclined at. Therefore, the combination shape of one mesh shape 22 of the mesh pattern 20, that is, one opening 18 and four thin metal wires 16 surrounding the one opening 18 has an apex of 60 ° to 120 °. It becomes a rhombus.
  • this electroconductive film 10 is utilized as an electromagnetic wave shielding film of the display apparatus 30 shown, for example in FIG. 3, and an electroconductive film for touch panels.
  • the display device 30 include a liquid crystal display, a plasma display, an organic EL, and an inorganic EL.
  • the pitch Ps (also referred to as a fine line pitch Ps) can be selected from 100 ⁇ m to 400 ⁇ m.
  • the line width of the thin metal wire 16 can be selected from 30 ⁇ m or less.
  • the line width of the thin metal wire 16 is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 9 ⁇ m, and still more preferably 2 ⁇ m to 7 ⁇ m.
  • the line width of the thin metal wire 16 is preferably 0.1 ⁇ m to 15 ⁇ m, more preferably 1 ⁇ m to 9 ⁇ m, and still more preferably 2 ⁇ m to 7 ⁇ m.
  • an angle dividing each of two narrow apex angles can be selected from 30 ° or more and 44 ° or less. That is, the angle ⁇ (inclination angle ⁇ ) between the first metal thin line 16a and the imaginary line 24 connecting the plurality of intersections of the mesh pattern 20 in the horizontal direction through the opening 18 is 30 ° or more and 44 ° or less.
  • the display device 30 is configured by arranging a plurality of pixels 32 in a matrix, as partially shown in FIG. 3.
  • One pixel 32 is configured by arranging three sub-pixels (red sub-pixel 32r, green sub-pixel 32g and blue sub-pixel 32b) in the horizontal direction.
  • One sub-pixel has a rectangular shape vertically elongated in the vertical direction.
  • the arrangement pitch of the pixels 32 in the horizontal direction (horizontal pixel pitch Ph) and the arrangement pitch of the pixels 32 in the vertical direction (vertical pixel pitch Pv) are substantially the same. That is, the shape (see the shaded area 34) formed by one pixel 32 and a black matrix surrounding the one pixel 32 is a square. Further, the aspect ratio of one pixel 32 is not 1, and the length in the horizontal direction (horizontal direction)> the length in the vertical direction (vertical direction).
  • the size of the diamond shape of the mesh shape 22 will be described. Assuming that the length of the diagonal (one diagonal) of the rhombus in the vertical direction is Lvp and the length of the diagonal (the other diagonal) of the rhombus in the horizontal direction is Lhp, the size of the rhombus, ie, the aspect ratio of the rhombus ( Lvp / Lhp) 0.57 ⁇ Lvp / Lhp ⁇ 1.74 Set to satisfy. If the horizontal direction is the same as the arrangement direction of the pixels 32 of the display device 30 (see FIG.
  • the aspect ratio (Lvp / Lhp) of the above-mentioned diamond is 0.57 ⁇ Lvp / Lhp ⁇ It is set to 1.00 or 1.00 ⁇ Lvp / Lhp ⁇ 1.74, and more preferably set to 0.62 ⁇ Lvp / Lhp ⁇ 0.81 or 1.23 ⁇ Lvp / Lhp ⁇ 1.61.
  • the metal thin lines 16 are arranged in the horizontal alignment direction of the pixels 32 in the display device 30 (m (Arrangement of orientation) has a constant inclination angle ⁇ .
  • the angle ⁇ between the imaginary line 24 connecting the plurality of intersections of the mesh pattern 20 in the horizontal direction through the opening 18 and the first metal thin line 16a is preferably 30 ° or more and 60 ° or less. Is preferably 30 ° to 44 °, and as shown in FIG. 4, the metal thin line 16 is preferably 30 ° to 60 ° with respect to the horizontal alignment direction (array in the m direction) of the pixels 32 in the display device 30.
  • the fine line pitch Ps in the conductive film 10 and the diagonal length La1 of one pixel 32 in the display device 30 are substantially the same or close to each other.
  • the arrangement direction of the thin metal wires 16 in the conductive film 10 and the direction of the diagonal of one pixel 32 in the display device 30 are substantially the same or close to each other. It becomes. As a result, the deviation between the arrangement period of the pixels 32 and the arrangement period of the thin metal wires 16 becomes small, and the occurrence of moire is suppressed.
  • the conductive film 10 is used as an electromagnetic shielding film, for example, the conductive film 10 is disposed on the display panel in the display device 30.
  • the arrangement period of the pixels and the metal thin line 16 Deviation from the arrangement period of the is reduced, and the occurrence of moire is suppressed.
  • the pitch Ps of the thin metal wires 16 constituting the mesh pattern 20 is 100 ⁇ m to 400 ⁇ m and the line width of the thin metal wires 16 is 30 ⁇ m or less, high electromagnetic wave shielding properties and high translucency can be simultaneously provided. be able to.
  • the touch panel 50 has a sensor main body 52 and a control circuit (composed of an IC circuit or the like) not shown.
  • the sensor main body 52 has a laminated conductive film 54 formed by laminating a first conductive film 10A and a second conductive film 10B described later, and a sensor And the protective layer 56 (the description of the protective layer 56 is omitted in FIG. 8A).
  • the laminated conductive film 54 and the protective layer 56 are disposed on the display panel 58 in the display device 30 such as a liquid crystal display, for example.
  • the sensor main body 52 has a sensor portion 60 disposed in an area corresponding to the display screen 58 a of the display panel 58 when viewed from the top, and a terminal wiring portion 62 disposed in an area corresponding to the outer peripheral portion of the display panel 58. And a so-called frame.
  • the first conductive film 10A applied to the touch panel 50 has a first conductive portion 14A formed on one main surface of a first transparent substrate 12A (see FIG. 8A) as shown in FIGS. 7 and 9.
  • the first conductive portions 14A respectively extend in the horizontal direction (m direction) and are arranged in the vertical direction (n direction) orthogonal to the third direction, and are formed by the metal thin wires 16 formed of a large number of grids. It has two or more first conductive patterns 64A (mesh pattern), and a first auxiliary pattern 66A of thin metal wires 16 arranged around each first conductive pattern 64A.
  • Each first conductive pattern 64A is configured by combining two or more small lattices 70, respectively. In the examples of FIGS.
  • each first conductive pattern 64A is configured by connecting two or more first large grids 68A (first sensing units) in series in the horizontal direction, and each first large grid 68A , And two or more small lattices 70 are configured in combination. Further, around the side of the first large lattice 68A, the above-mentioned first auxiliary pattern 66A not connected to the first large lattice 68A is formed.
  • the m direction indicates, for example, the horizontal direction (or vertical direction) of a projected capacitive touch panel 50 (see FIG. 6) described later, or the horizontal direction (or vertical direction) of the display panel 58 on which the touch panel 50 is installed.
  • the first conductive pattern 64A is not limited to the example using the first large lattice 68A.
  • a conductive pattern in which a mesh pattern in which a large number of small grids 70 are arranged is divided into strips by the insulating portion and a plurality of mesh patterns are arranged in parallel.
  • two or more strip-like first conductive patterns 64A may be provided, each extending in the m direction from the terminal and arranged in the n direction.
  • the small lattice 70 is here the smallest diamond and has the same or similar shape as the one mesh shape 22 (see FIGS. 1 and 4) described above.
  • the angle ⁇ between at least one side (the first side 70a to the fourth side 70d) and the first direction (m direction) is set to 30 ° to 60 °. .
  • the m direction is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 5) in which the touch panel 50 is installed
  • the above-mentioned angle ⁇ is set to 30 ° to 44 ° or 46 ° to 60 °.
  • the angle is set to 32 ° to 39 ° or 51 ° to 58 °.
  • the size of the first large lattice 68A will be described with reference to FIG. First, among the four sides (the first side 69a to the fourth side 69d) of the first large lattice 68A, the first side 69a and the second side 69b adjacent in the horizontal direction (m direction) The intersection point is the first vertex 71a, and the third side 69c (the side facing the first side 69a) adjacent in the horizontal direction and the fourth side 69d (the side facing the second side 69b) Let the intersection be a second vertex 71b.
  • the extension line and the fourth side of the first side 69a adjacent in the vertical direction is taken as a third vertex 71c
  • the intersection between the second side 69b and the extension of the third side 69c which are adjacent in the vertical direction is taken as a fourth apex 71d.
  • a distance Lva along the vertical direction between the first vertex 71a and the second vertex 71b is a length along the second direction of the first large lattice 68A, and a horizontal direction between the third vertex 71c and the fourth vertex 71d Of the first large lattice 68A along the first direction.
  • the size of the first large lattice 68A that is, the aspect ratio (Lva / Lha) of the first large lattice 68A is 0.57 ⁇ Lva / Lha ⁇ 1.74 Set to satisfy. If the horizontal direction (m direction) is the same as the arrangement direction of the pixels of the display device 30 (see FIG.
  • the aspect ratio (Lva / Lha) of the first large grid 68A is 0. .57 ⁇ Lva / Lha ⁇ 1.00 or 1.00 ⁇ Lva / Lha ⁇ 1.74, more preferably 0.62 ⁇ Lva / Lha ⁇ 0.81 or 1.23 ⁇ Lva / Lha ⁇ 1. It is set to .61.
  • the length of the diagonal 70 v (one diagonal) in the vertical direction is Lvs
  • the diagonal 70 h (the other diagonal) in the horizontal direction of the small lattice 70 The size of the small lattice 70, that is, the aspect ratio (Lvs / Lhs) of the small lattice 70, 0.57 ⁇ Lvs / Lhs ⁇ 1.74 Set to satisfy.
  • the horizontal direction is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lvs / Lhs) of the small lattice 70 described above is 0.57.
  • the line width of the small lattice 70 that is, the line width of the thin metal wire 16 can be selected from 30 ⁇ m or less as described above.
  • the length of one side of the small lattice 70 can be selected from 100 ⁇ m to 400 ⁇ m.
  • the direction along the first side 69a (and the third side 69c) of the first large lattice 68A is the first inclined direction (x direction), and the second side 69b (and the fourth side 69d) The direction along is the second tilt direction (y direction).
  • the first connection portion 72A is formed by the The first connection portion 72A is configured by arranging a middle lattice 74 of a size in which n (n is a real number greater than 1) small lattices 70 are arranged in a second inclination direction (y direction).
  • a first notch 76A in which one side of the small lattice 70 is missing is formed in a portion adjacent to the middle lattice 74.
  • the middle grid 74 has a size in which three small grids 70 are arranged in the second inclination direction in the example of FIG.
  • a first insulating portion 78A electrically insulated is disposed between the adjacent first conductive patterns 64A.
  • the first auxiliary pattern 66A includes a plurality of first auxiliary lines 80A arranged along the side along the first inclination direction (the second inclination direction corresponds to the axial direction And a plurality of first auxiliary lines 80A (the first inclination direction is taken as the axial direction) arranged along the side along the second inclination direction among the sides of the first large lattice 68A;
  • the insulating portion 78A has a pattern in which two first L-shaped patterns 82A in which two first auxiliary lines 80A are combined in an L shape are disposed to face each other.
  • the length of one side of the first large lattice 68A is preferably 3 to 10 mm, and more preferably 4 to 6 mm.
  • the length of one side is less than the above lower limit value, when the first conductive film 10A is used for a touch panel, for example, the capacitance of the first large lattice 68A at the time of detection is reduced, which may result in detection failure. Sex is high.
  • the length of one side of the small lattice 70 constituting the first large lattice 68A is preferably 100 to 400 ⁇ m, more preferably 150 to 300 ⁇ m, as described above. 210 to 250 ⁇ m or less.
  • the open end of the first large lattice 68A present at one end side of each first conductive pattern 64A is a first connection It has a shape without the portion 72A.
  • the end of the first large grid 68A present on the other end side of each first conductive pattern 64A is electrically connected to the first terminal wiring pattern 86a by the metal thin wire 16 through the first connection portion 84a. There is. That is, as shown in FIGS.
  • the first conductive film 10A applied to the touch panel 50 has the above-described many first conductive patterns 64A arranged in the portion corresponding to the sensor unit 60, and the terminal wiring portion At 62, a plurality of first terminal wiring patterns 86a derived from the respective first connection portions 84a are arranged.
  • the outer shape of the first conductive film 10A has a rectangular shape when viewed from the top, and the outer shape of the sensor unit 60 also has a rectangular shape.
  • a plurality of first terminals 88a are provided in the longitudinal direction of the one long side of the terminal wiring portion 62 at the peripheral portion on the long side of the first conductive film 10A in the longitudinal direction of the one side. It is arrayed.
  • first connection portions 84 a are linearly arranged along one long side (long side closest to one long side of the first conductive film 10 A: n direction) of the sensor unit 60.
  • the first terminal wiring patterns 86a derived from the respective first connection portions 84a are drawn toward the substantially central portion of one long side of the first conductive film 10A, and are electrically connected to the corresponding first terminals 88a. It is connected to the.
  • the second conductive film 10B has a second conductive portion 14B formed on one main surface of the second transparent substrate 12B (see FIG. 8A).
  • the second conductive portions 14B respectively extend in the vertical direction (n direction), and are arranged in the horizontal direction (m direction), and two or more second conductive by the metal thin wires 16 formed by a large number of grids It has a pattern 64B (mesh pattern) and a second auxiliary pattern 66B of metal thin wires 16 arranged around each second conductive pattern 64B.
  • Each second conductive pattern 64B is configured by combining two or more small lattices 70, respectively.
  • FIGS. 7 the example of FIGS.
  • the second conductive pattern 64B is configured by connecting two or more second large grids 68B (second sensing units) in series in the vertical direction (n direction), and each second Grating 68B is configured by combining two or more small gratings 70, respectively.
  • the above-mentioned second auxiliary pattern 66B which is not connected to the second large lattice 68B is formed around the side of the second large lattice 68B.
  • the second conductive pattern 64B is not limited to the example using the second large grating 68B.
  • a conductive pattern in which a mesh pattern in which a large number of small grids 70 are arranged is divided into strips by the insulating portion and a plurality of mesh patterns are arranged in parallel.
  • two or more strip-like second conductive patterns 64B may be provided, each extending in the n direction from the terminal and arranged in the m direction.
  • the size of the second large lattice 68B will be described with reference to FIG. First, among the four sides (the fifth side 69e to the eighth side 69h) of the second large lattice 68B, the intersection point of the fifth side 69e and the extension of the sixth side 69f adjacent in the horizontal direction. And an extension line of a seventh side portion 69g (side portion facing the fifth side portion 69e) and a eighth side portion 69h (side portion facing the sixth side portion 69f), which are horizontally adjacent to each other. And the sixth point 71f.
  • intersection point of the fifth side 69e and the eighth side 69h adjacent in the vertical direction is An intersection point of the seventh apex 71g and the sixth side 69f and the seventh side 69g which are similarly adjacent in the vertical direction is taken as an eighth apex 71h.
  • the distance Lvb between the fifth vertex 71e and the sixth vertex 71f along the vertical direction (n direction) is the length of the second large lattice 68B along the second direction, and the seventh vertex 71g and the eighth vertex 71h
  • the distance Lhb along the horizontal direction (m direction) between them is the length along the first direction of the second large lattice 68B.
  • the size of the second large lattice 68B that is, the aspect ratio (Lvb / Lhb) of the second large lattice 68B is 0.57 ⁇ Lvb / Lhb ⁇ 1.74 Set to satisfy.
  • the aspect ratio (Lvb / Lhb) of the second large grid 68B is 0. .57 ⁇ Lvb / Lhb ⁇ 1.00 or 1.00 ⁇ Lbb / Lhb ⁇ 1.74, more preferably 0.62 ⁇ Lvb / Lhb ⁇ 0.81 or 1.23 ⁇ Lvb / Lhb ⁇ 1. It is set to .61.
  • the first inclined direction (x direction) is a direction along the fifth side 69e (and the seventh side 69g) of the second large lattice 68B, and the second inclined direction (y direction) is the second large lattice 68B.
  • the second connection portion 72B is formed by the The second connection portion 72B is configured by arranging a middle lattice 74 having a size in which n (n is a real number greater than 1) small lattices 70 are arranged in the first inclination direction (x direction).
  • the second auxiliary pattern 66B includes a plurality of second auxiliary lines 80B (the second inclined direction is taken as the axial direction) arranged along the side along the first inclined direction.
  • a plurality of second auxiliary lines 80B (the first inclination direction is taken as an axial direction) arranged along the second inclination direction among the sides of the second large lattice 68B;
  • two second L-shaped patterns 82B in which two second auxiliary lines 80B are combined in an L-shape are arranged to face each other.
  • the second conductive film 10B configured as described above is, as shown in FIGS. 6 and 7, the second conductive film 64B that exists on one end side of every other (for example, odd-numbered) second conductive pattern 64B.
  • the second connection portion 72B is not present at the open end of the large lattice 68B and the open end of the second large lattice 68B present on the other end side of the even second conductive pattern 64B.
  • the end of the second large lattice 68B present on the other end side of each of the odd-numbered second conductive patterns 64B, and the second existing on one end of each of the even-numbered second conductive patterns 64B.
  • the ends of the large lattices 68B are electrically connected to the second terminal wiring patterns 86b of the metal thin wires 16 via the second connection portions 84b. That is, as shown in FIG. 7, in the second conductive film 10B applied to the touch panel 50, a large number of second conductive patterns 64B are arranged in a portion corresponding to the sensor unit 60. A plurality of second terminal wiring patterns 86b derived from the 2 connection portion 84b are arranged.
  • a plurality of second terminals 88b are provided at the center in the length direction. They are arranged in the longitudinal direction of the long side.
  • a plurality of second connection portions 84b (for example, odd-numbered second connection portions) along one short side (short side closest to one short side of the second conductive film 10B: m direction) of the sensor unit 60 84b) are arranged in a straight line, and a plurality of second connection portions 84b (for example, the m direction along the other short side of the sensor unit 60 (short side closest to the other short side of the second conductive film 10B: m))
  • Even-numbered second connection portions 84 b) are linearly arranged.
  • odd-numbered second conductive patterns 64B are respectively connected to corresponding odd-numbered second connection portions 84b
  • even-numbered second conductive patterns 64B are respectively corresponding even-numbered It is connected to the 2nd 2nd connection part 84b.
  • the second terminal wiring pattern 86b derived from the odd-numbered second connection portion 84b and the second terminal wiring pattern 86b derived from the even-numbered second connection portion 84b have one long side of the second conductive film 10B.
  • And are electrically connected to the corresponding second terminals 88b.
  • the derivation form of the first terminal wiring pattern 86a may be similar to that of the second terminal wiring pattern 86b described above
  • the derivation form of the second terminal wiring pattern 86b may be similar to that of the first terminal wiring pattern 86a described above.
  • the length of one side of the second large lattice 68B is preferably 3 to 10 mm, and more preferably 4 to 6 mm, as in the first large lattice 68A described above. If the length of one side is less than the above lower limit value, the electrostatic capacity of the second large lattice 68B at the time of detection is reduced, which increases the possibility of detection failure. On the other hand, if the above upper limit value is exceeded, there is a possibility that the position detection accuracy may be reduced. From the same viewpoint, the length of one side of the small lattice 70 constituting the second large lattice 68B is preferably 100 to 400 ⁇ m or less, more preferably 150 to 300 ⁇ m, and most preferably 210 to 250 ⁇ m or less.
  • the line widths of the first auxiliary pattern 66A (first auxiliary line 80A) and the second auxiliary pattern 66B (second auxiliary line 80B) are each 30 ⁇ m or less. In this case, the line width of the first conductive pattern 64A or the line width of the second conductive pattern 64B may be the same or different. However, it is preferable to make the line widths of the first conductive pattern 64A, the second conductive pattern 64B, the first auxiliary pattern 66A, and the second auxiliary pattern 66B the same.
  • the first conductive pattern 64A and the second conductive pattern 64B are Specifically, the first connection portion 72A of the first conductive pattern 64A and the second connection portion 72B of the second conductive pattern 64B are arranged to intersect with each other, and the first transparent base 12A (see FIG. 8A).
  • the first insulating portion 78A of the first conductive portion 14A and the second insulating portion 78B of the second conductive portion 14B are opposed to each other with the first transparent base 12A interposed therebetween.
  • the second conductive film 10B is formed so as to fill the gaps of the first large lattices 68A formed on the first conductive film 10A.
  • the large lattices 68B are arranged.
  • a combination pattern 90 is formed between the first large lattice 68A and the second large lattice 68B by the first auxiliary pattern 66A and the second auxiliary pattern 66B facing each other. In the combination pattern 90, as shown in FIG.
  • the combination pattern 90 has a form in which two or more small lattices 70 (mesh shape) are combined. As a result, when the laminated conductive film 54 is viewed from the top, as shown in FIG. 15, a large number of small lattices 70 (mesh shape) are spread.
  • the laminated conductive film 54 when placed on the display panel 58 of the display device 30, for example, as shown in FIG. 5, it extends in the first inclination direction (x direction) and in the second inclination direction (y direction).
  • a mesh pattern in which a plurality of thin metal wires 16 aligned at a pitch Ps (thin wire pitch) and a plurality of thin metal wires 16 extending in a second inclination direction and aligned at a thin wire pitch Ps in the first inclination direction cross each other 20, and the thin metal wires 16 have a constant inclination angle ⁇ with respect to the horizontal arrangement direction (the arrangement in the m direction) of the pixels 32 in the display device 30.
  • the thin metal wires 16 constituting the large number of small grids 70 have an inclination of 30 ° to 60 °, preferably 30 ° to 44 ° with respect to the horizontal arrangement direction (the arrangement in the m direction) of the pixels 32 in the display device 30 Will have Further, the thin line pitch Ps in the laminated conductive film 54 and the diagonal length La1 of one pixel 32 in the display device 30 (or the diagonal length La2 of two pixels 32 adjacent in the vertical direction) are substantially the same or The values are close to each other, and the arrangement direction of the thin metal wires 16 in the laminated conductive film 54 and the direction of the diagonal of one pixel 32 (or the diagonal of two vertically adjacent pixels 32) in the display device 30 are also substantially the same or close. It will be done.
  • the protective layer 56 is formed on the first conductive film 10A, and the first conductive pattern 64A of the first conductive film 10A
  • the one-terminal wiring pattern 86a and the second-terminal wiring pattern 86b derived from the large number of second conductive patterns 64B of the second conductive film 10B are connected to, for example, a control circuit that controls scanning.
  • a touch position detection method a self-capacitance method or a mutual capacitance method can be preferably employed.
  • the mutual capacitance method for example, voltage signals for touch position detection are sequentially supplied to the first conductive pattern 64A, and sensing (detection of transmission signal) is sequentially performed on the second conductive pattern 64B.
  • the finger's floating capacitance is added in parallel to the parasitic capacitance between the first conductive pattern 64A and the second conductive pattern 64B facing the touch position by bringing the fingertip into contact with or in proximity to the upper surface of the protective layer 56.
  • the waveform of the transmission signal from the second conductive pattern 64B is different from the waveform of the transmission signal from the other second conductive pattern 64B.
  • the touch position is calculated based on the order of the first conductive patterns 64A supplying the voltage signals and the transmission signal from the supplied second conductive patterns 64B.
  • the laminated conductive film 104 Similar to the laminated conductive film 54 according to the first embodiment, the laminated conductive film 104 according to the second embodiment has a first conductive film 110A and a second conductive film 110B as shown in FIG. Are stacked, and for example, the sensor main body 52 of the display device 30 having the touch panel 50 shown in FIG.
  • the conductive film 110 (the first conductive film 110A, the second conductive film 110B) is used as, for example, an electromagnetic shielding film of the display device 30 shown in FIG. 3 or a conductive film for a touch panel.
  • the first conductive film 110A has a first conductive portion 114A formed on one principal surface of a first transparent substrate 112A (see FIG. 18A), as shown in FIGS.
  • Each of the first conductive portions 114A extends in the horizontal direction (m direction) and is arranged in the vertical direction (n direction) orthogonal to the horizontal direction, and is formed by a plurality of metal thin lines 16 formed of a large number of grids.
  • the above-described first conductive pattern 116A (mesh pattern) and a first auxiliary pattern 120A made of fine metal wires 16 arranged around each first conductive pattern 116A are provided.
  • the horizontal direction (m direction) indicates, for example, the horizontal direction (or vertical direction) of the projected capacitive touch panel 50 or the horizontal direction (or vertical direction) of the display panel 58 on which the touch panel 50 is installed.
  • the small lattice 70 is here the smallest diamond and has the same or similar shape as the one mesh shape 22 (see FIGS. 1 and 4) of the first embodiment described above.
  • the aspect ratio (Lvs / Lhs) of the small lattice 70 in the present embodiment is as shown in FIG. 0.57 ⁇ Lvs / Lhs ⁇ 1.74 If the horizontal direction is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lvs of the small lattice 70 described above is set. / Lhs) is set to 0.57 ⁇ Lvs / Lhs ⁇ 1.00 or 1.00 ⁇ Lvs / Lhs ⁇ 1.74, more preferably 0.62 ⁇ Lvs / Lhs ⁇ 0.81 or 1.23.
  • the line width of the small lattice 70 that is, the line width of the thin metal wire 16 can be selected from 30 ⁇ m or less as described above, and the length of one side of the small lattice 70 can be selected from 100 ⁇ m to 400 ⁇ m .
  • Each of the first conductive patterns 116A is configured by connecting two or more first large grids 118A (first sensing units) in series in the horizontal direction (m direction), and each of the first large grids 118A includes two or more.
  • the small lattice 70 is configured in combination.
  • the above-described first auxiliary pattern 120A which is not connected to the first large lattice 118A is formed.
  • the first large lattice 118A has a substantially rhombus shape, and a first step-like pattern 124A having one or more steps 122 is formed on each of the oblique sides thereof.
  • the height of the step 122 is equal to an integral multiple of the height of the minor lattice 70.
  • two steps 122 extend from the vertical apex to the horizontal apex in the third and seventh small lattices 70.
  • a step 122 is formed at a position, and the height of the step 122 is equal to the height of one small lattice 70.
  • the first step-like pattern 124A has a configuration in which the rows of the small gratings 70 are reduced via the step 122 from the vertical apex to the horizontal apex in the first large lattice 118A. ing.
  • the first large lattice 118A has a substantially rhombus shape, but more specifically, has a soroban bead shape in which the small vertical lattice 70 in the horizontal direction is missing. That is, at the two vertical corners in the horizontal direction, a first upper bottom portion 126A in which r small grids 70 (r is an integer greater than 1) are arranged in the vertical direction is formed, and two vertical angles in the vertical direction In one part, one small lattice 70 is located, which itself is at an apex angle. In FIG. 19, four sublattices 70 are arranged in the vertical direction at two vertical apexes in the horizontal direction of the first large lattice 118A to constitute a first upper bottom portion 126A.
  • the aspect ratio (Lva / Lha) of the first large lattice 118A is the diamond of the largest size included in the first large lattice 118A for convenience, that is, the two first upper bottoms in the horizontal direction. Expressed using the aspect ratio of the diamond formed between 126A, 0.57 ⁇ Lva / Lha ⁇ 1.74 Set to satisfy. If the horizontal direction (m direction) is the same as the arrangement direction of the pixels of the display device 30 (see FIG.
  • the aspect ratio (Lva / Lha) of the above-mentioned first large lattice 118A is 0 .57 ⁇ Lva / Lha ⁇ 1.00 or 1.00 ⁇ Lva / Lha ⁇ 1.74, more preferably 0.62 ⁇ Lva / Lha ⁇ 0.81 or 1.23 ⁇ Lva / Lha ⁇ 1. It is set to .61.
  • a first notch in which one side of the small lattice 70 is missing A removing unit 128A is provided.
  • a first connection portion 132A is formed by the thin metal wires 16 connecting the first large lattices 118A.
  • the first connection portion 132A includes a first middle grid 134A having a size in which n (n is an integer greater than 1) small lattices 70 are arranged in a second inclination direction (y direction), and the small lattices 70
  • the first middle lattice 136A has a size in which p (70 is an integer greater than 1) and q (q is an integer greater than 1) sublattices 70 are arrayed at p ⁇ q in the inclination direction. It is configured. In the example of FIG.
  • the first middle grid 134A has a size in which n is 7 and seven small grids 70 are arranged in the second tilt direction, and the first middle grid 136A is The inclination direction p is 3 and the first inclination direction q is 5 and has a size in which a total of 15 small lattices 70 are arranged.
  • the first missing portion 128A where one side of the small lattice 70 is missing is located. Furthermore, between the first conductive patterns 116A adjacent in the horizontal direction, first non-connecting portions 138A are provided, which disconnect the first large grids 118A from each other. In the first conductive portion 114A, the above-described first auxiliary pattern 120A not connected to the first large lattice 118A is formed around the side of the first large lattice 118A.
  • the first auxiliary pattern 120A includes a plurality of first auxiliary lines 130A arranged along the first step-like pattern 124A of the oblique side along the first inclination direction among the oblique sides of the first large lattice 118A (the first auxiliary pattern 120A).
  • a first inclination direction is an axial direction
  • a first L-shaped pattern 131A in which two first auxiliary lines 130A are combined in an L shape.
  • each first auxiliary line 130A has a half length of one side along the inner circumference of the small lattice 70. Further, each first auxiliary line 130A is formed at a position separated from the first large lattice 118A by a predetermined distance. The predetermined distance is half of one side along the inner periphery of the small lattice 70.
  • the first L-shaped pattern 131A includes a first auxiliary line 130A whose axial direction is the first inclination direction and a first auxiliary line 130A whose axial direction is the second inclination direction in the vicinity of the step 122 of the first step-like pattern 124A. Are configured in combination.
  • the first L-shaped pattern 131A As the first L-shaped pattern 131A, the first L-shaped pattern 131A opposed to the corner of the step 122 and the first L-shaped pattern 131A disposed in the first non-connecting portion 138A between the first large lattices 118A is there. As shown in FIG. 19, the first L-shaped pattern 131A disposed in the first non-connecting portion 138A includes two first auxiliary lines disposed in the vicinity of the vertical apex of one first large lattice 118A. The two first L-shaped patterns 131A extend in the horizontal direction by combining 130A and the two first auxiliary lines 130A arranged in the vicinity of the top corners of the other adjacent first large lattices 118A. It is formed to face each other.
  • the length of one side of the small lattice 70 constituting the first large lattice 118A is preferably 50 ⁇ m or more, more preferably 100 to 400 ⁇ m, and still more preferably 150 to 300 ⁇ m. And most preferably 210 to 250 ⁇ m or less.
  • the small lattice 70 is in the above-mentioned range, it is possible to further maintain good transparency, and when mounted on the front of the display device, it is possible to visually recognize the display without discomfort.
  • the open end of the first large lattice 118A present at one end side of each first conductive pattern 116A is a first connection
  • the portion 132A does not exist.
  • the end of the first large lattice 118A present on the other end side of each first conductive pattern 116A is connected to the first terminal wiring pattern 86a formed of the thin metal wire 16 through the first connection portion 84a.
  • the second conductive film 110B has a second conductive portion 114B formed on one main surface of a second transparent substrate 112B (see FIG. 18A).
  • the second conductive portions 114B respectively extend in the vertical direction (n direction), and are arranged in the horizontal direction (m direction), and two or more second conductive by the metal thin wires 16 formed by a large number of grids It has a pattern 116B (mesh pattern) and a second auxiliary pattern 120B of fine metal wires 16 arranged around each second conductive pattern 116B.
  • Each second conductive pattern 116B is configured by serially connecting two or more second large grids (second sensing units) 118B in the vertical direction (n direction), and each second large grid 118B includes two or more.
  • the small lattice 70 is configured in combination.
  • the above-mentioned second auxiliary pattern 120B which is not connected to the second large lattice 118B is formed around the side of the second large lattice 118B.
  • the second large lattice 118B has a substantially rhombus shape, and a second step-like pattern 124B having one or more level differences 122 is formed on each oblique side thereof.
  • the height of the step 122 is equal to an integral multiple of the height of the minor lattice 70.
  • two steps 122 are formed at intervals of four small lattices 70 on the oblique side of the second large lattice 118 B, and the height of the steps 122 is one small lattice 70.
  • the second step-like pattern 124B has a configuration in which the number of rows of small gratings 70 increases through the steps 122 from the horizontal apex to the vertical apex in the second large lattice 118B. ing.
  • the second large lattice 118B has a substantially diamond shape, but more specifically, has a soroban bead shape in which the small lattice 70 in the vertical direction is omitted.
  • a second upper bottom portion 126B in which r small grids 70 (r is an integer greater than 1) are arranged in the horizontal direction is formed, and two vertical angles in the horizontal direction In one part, one small lattice 70 is located, which itself is at an apex angle.
  • r small grids 70 r is an integer greater than 1
  • four sublattices 70 are arranged in the horizontal direction at two vertical apexes of the second large lattice 118B in the vertical direction, respectively, to form a second upper bottom 126B.
  • the aspect ratio (Lva / Lha) of the second large lattice 118B is the diamond of the largest size included in the second large lattice 118B for the sake of convenience, that is, between two apexes in the horizontal direction. Expressed using the aspect ratio of the diamond formed in 0.57 ⁇ Lva / Lha ⁇ 1.74 Set to satisfy. If the horizontal direction (m direction) is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lva / Lha) of the second large lattice 118B described above is 0.
  • a second notch 128B in which one side of the small lattice 70 is missing is It is provided.
  • a second connection portion 132B is formed by the thin metal wire 16 connecting the second large lattices 118B.
  • the second connection portion 132B has a second middle grid 134B of a size in which n (n is an integer greater than 1) small lattices 70 are arranged in the first inclination direction, and the small lattices 70 are p in the first inclination direction.
  • the second middle grid 136B has a size in which q (p is an integer greater than 1) sublattices 70 are arranged in p ⁇ q in the second inclination direction (p is an integer greater than 1) .
  • the second middle grid 134B has a size in which n is 7 and seven small grids 70 are arranged in the first tilt direction
  • the second middle grid 136B is The inclination direction p is 3 and the second inclination direction q is 5 and has a size in which a total of 15 small lattices 70 are arranged.
  • the second missing portion 128B in which one side of the small lattice 70 described above is missing is located at a portion where the second middle grating 136B and the second large grating 118B are adjacent to each other.
  • the second non-connecting portions 138B that disconnect the second large grids 118B from each other are disposed between the second conductive patterns 116B adjacent in the horizontal direction.
  • the second auxiliary patterns 120B may include a plurality of second auxiliary lines 130B (second A plurality of second auxiliary lines 130B arranged along the first step-like pattern 124B of the oblique side along the first inclination direction among the oblique sides of the second large lattice 118B and the first inclination direction as the axial direction
  • the second L-shaped pattern 131B in which two second auxiliary lines 130B are combined in an L-shape.
  • each of the second auxiliary lines 130B has a half length of one side along the inner periphery of the small lattice 70, similarly to the first auxiliary lines 130A described above. Further, each second auxiliary line 130B is formed at a position separated from the second large lattice 118B by a predetermined distance. The predetermined distance is also half of one side along the inner periphery of the small lattice 70, as in the first auxiliary line 130A described above.
  • the second L-shaped pattern 131B includes a second auxiliary line 130B whose axial direction is the second inclination direction in the vicinity of the step 122 of the first step-like pattern 124B, and a second auxiliary line 130B whose axial direction is the second inclination direction.
  • the second L-shaped pattern 131 B facing the corner of the step 122 and the second L-shaped pattern 131 B disposed in the second non-connecting portion 138 B between the second large grids 118 B is there. As shown in FIG.
  • the second L-shaped pattern 131B disposed in the second non-connecting portion 138B includes two second auxiliary lines disposed in the vicinity of the horizontal apex of one second large lattice 118B.
  • the two second L-shaped patterns 131B extend in the vertical direction by combining the 130B and the two second auxiliary lines 130B disposed near the top corners of the other adjacent second large lattices 118B. It is formed to face each other.
  • the length of one side of the small lattice 70 constituting the second large lattice 118B is preferably 50 ⁇ m or more, more preferably 100 to 400 ⁇ m, and still more preferably 150 to 300 ⁇ m. And most preferably 210 to 250 ⁇ m or less.
  • the second conductive film 110B configured as described above is, as shown in FIG. 17, a second large lattice 118B that exists on one end side of an alternate (for example, odd-numbered) second conductive pattern 116B.
  • the second connection portion 132B is not present at the open end of the second large grid 118B existing at the other end of the even second conductive pattern 116B and the open end of the even second conductive pattern 116B.
  • the end of the second large lattice 118B present at the other end of each of the odd-numbered second conductive patterns 116B, and the second end present at one of the ends of the even-numbered second conductive patterns 116B.
  • the end portions of the large lattice 118B are connected to the second terminal wiring patterns 86b formed of the thin metal wires 16 through the second connection portions 84b, respectively. Then, the touch panel 50 is applied as in the first embodiment.
  • the line width of the first conductive pattern 116A (the first large lattice 118A, the first connection portion 132A) and the line width of the second conductive pattern 116B (the second large lattice 118B, the second connection portion 132B) have lower limits, respectively. Is preferably 1 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 5 ⁇ m or more, and the upper limit is preferably 15 ⁇ m or less, 10 ⁇ m or less, 9 ⁇ m or less, or 8 ⁇ m or less.
  • the line width is less than the above lower limit value, the conductivity becomes insufficient, and therefore the detection sensitivity becomes insufficient when used in a touch panel.
  • the thickness of at least the first transparent substrate 112A is preferably 75 ⁇ m to 350 ⁇ m, more preferably 80 ⁇ m to 250 ⁇ m, and particularly preferably 100 ⁇ m to 200 ⁇ m.
  • the lower limit of the line width of the first auxiliary pattern 120A (first auxiliary line 130A) and the second auxiliary pattern 120B (second auxiliary line 130B) is preferably 1 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 5 ⁇ m or more, and the upper limit is preferably 15 micrometers or less, 10 micrometers or less, 9 micrometers or less, 8 micrometers or less are preferable.
  • the line width of the first conductive pattern 116A or the line width of the second conductive pattern 116B may be the same or different. However, it is preferable that the line widths of the first conductive pattern 116A, the second conductive pattern 116B, the first auxiliary pattern 120A, and the second auxiliary pattern 120B be the same.
  • the first conductive pattern 116A and the second conductive pattern 116B are the same.
  • the first connection portion 132A of the first conductive pattern 116A and the second connection portion 132B of the second conductive pattern 116B are arranged to cross each other, and the first transparent substrate 112A (see FIG. 18A).
  • the first non-connecting portion 138A of the first conductive portion 114A and the second non-connecting portion 138B of the second conductive portion 114B face each other with the first transparent substrate 112A interposed therebetween. .
  • the second conductive film 110B is formed so as to fill the gap of the first large lattice 118A formed on the first conductive film 110A.
  • the large lattices 118B are arranged.
  • the first connection portion 132A and the second connection portion 132B face each other, that is, the first middle grid 134A and the second middle grid 134B face each other, and the first middle grid 136A and the second middle grid 136B Are formed to form a substantially rectangular combination pattern 140.
  • the first middle grid 134A and the second middle grid 134B are arranged diagonally.
  • the combination pattern 140 formed by the first connection portion 132A and the second connection portion 132B shown in FIGS. 19 and 20 seven small lattices 70 are arranged diagonally and four small lattices 70 are arranged on four sides in a diagonal direction. A total of 25 small lattices 70 are provided. Note that one side of the small lattice 70 of the first middle lattice 134A located at the apex angle of the combination pattern 140 compensates for the missing side of the first missing portion 128A in the second large lattice 118B, and the second middle lattice 134B One side of the small lattice 70 compensates for one side of the first large lattice 118A in which the first lacked portion 128A is missing.
  • a combined pattern 142 is formed between the first large lattice 118A and the second large lattice 118B by the first auxiliary pattern 120A and the second auxiliary pattern 120B facing each other.
  • the first axis of the first auxiliary line 130A coincides with the second axis of the second auxiliary line 130B
  • the first pattern The auxiliary line 130A and the second auxiliary line 130B do not overlap, and one end of the first auxiliary line 130A coincides with one end of the second auxiliary line 130B, whereby one of the small lattices 70 (mesh shape) is formed. It will constitute an edge.
  • the combination pattern 140 and 142 have a form in which two or more small lattices 70 (mesh shape) are combined.
  • a large number of small lattices 70 (mesh shape) are spread.
  • the position where one side of the small lattice 70 is configured by the first auxiliary line 130A and the second auxiliary line 130B in this manner is the reference position in the second embodiment.
  • the boundary between the first large lattice 118A and the second large lattice 118B becomes even less noticeable. , Improve the visibility.
  • the protective layer 56 is formed on the first conductive film 110A, and the first terminals derived from the many first conductive patterns 116A of the first conductive film 110A.
  • the wiring pattern 86a and the second terminal wiring pattern 86b derived from the many second conductive patterns 116B of the second conductive film 110B are connected to, for example, a control circuit that controls scanning.
  • the first transparent The first conductive portion 14A is formed on one main surface of the base 12A, and the second conductive portion 14B is formed on one main surface of the second transparent base 12B.
  • the first conductive portion 14A is formed on one main surface of the first transparent base 12A, and the second conductive portion 14B is formed on the other main surface of the first transparent base 12A. It is also good.
  • the second transparent base 12B does not exist, the first transparent base 12A is stacked on the second conductive portion 14B, and the first conductive portion 14A is stacked on the first transparent base 12A.
  • another layer may be present between the first conductive film 10A and the second conductive film 10B, and if the first conductive pattern 64A and the second conductive pattern 64B are in an insulating state, they are present. It may be disposed opposite to each other.
  • first alignment mark 94 a and a second alignment mark 94 b for positioning.
  • first alignment mark 94a and the second alignment mark 94b become a new composite alignment mark, and this composite alignment mark
  • the alignment mark also functions as a positioning alignment mark used when placing the laminated conductive film 54 on the display panel 58.
  • the conductive films 10 and 110 are mainly used for the electromagnetic wave shielding film and the laminated conductive film for the touch panel, but in addition, the optical installed in the display panel 58 of the display device 30 It can also be used as a film.
  • the conductive film may have a mesh pattern formed corresponding to the entire surface of the display panel 58, or the conductive films 10 and 110 may have mesh patterns 20 formed corresponding to the entire surface of the display screen 58a. Alternatively, the conductive films 10 and 110 may have mesh patterns corresponding to partial areas (corners, central parts, etc.) in the display screen 58a.
  • a photosensitive material having an emulsion layer containing a photosensitive halogenated silver salt is exposed to the transparent substrate 12 and developed, whereby the exposed area and the unexposed area are respectively developed.
  • the metallic silver portion and the light transmitting portion may be formed to form the mesh pattern 20.
  • the conductive metal may be supported on the metal silver portion by further performing physical development and / or plating treatment on the metal silver portion.
  • a photosensitive material to be plated is formed on the first transparent substrate 12A and the second transparent substrate 12B using a pre-plating treatment material, and then exposed and developed, and then subjected to a plating treatment to form an exposed portion and an exposed portion.
  • the first conductive pattern 64A and the second conductive pattern 64B may be formed by forming the metal portion and the light transmitting portion in the unexposed portion.
  • the metal portion may be made to carry a conductive metal by performing physical development and / or plating treatment on the metal portion. The following two forms are mentioned as a further preferable form of the method of using a pre-plating treatment material.
  • a transparent substrate is coated with a layer to be plated containing a functional group that interacts with the plating catalyst or its precursor, and after exposure and development, plating is performed to form a metal part on the material to be plated Aspect.
  • B On a transparent substrate, an underlayer containing a polymer and a metal oxide, and a layer to be plated containing a functional group that interacts with the plating catalyst or its precursor are laminated in this order, and then exposed and developed. The aspect which makes a metal-plating process and forms a metal part on to-be-plated material.
  • the photoresist film on the copper foil formed on the transparent substrate 12 is exposed and developed to form a resist pattern, and the copper foil exposed from the resist pattern is etched to form the mesh pattern 20.
  • the mesh pattern 20 may be formed by printing a paste containing metal fine particles on the transparent substrate 12 and performing metal plating on the paste.
  • the mesh pattern 20 may be printed on the transparent substrate 12 using a screen printing plate or a gravure printing plate.
  • the mesh pattern 20 may be formed by inkjet on the transparent substrate 12.
  • the method of manufacturing the conductive film 10 according to the present embodiment includes the following three forms depending on the form of the photosensitive material and the development processing.
  • a photosensitive silver halide black-and-white photosensitive material free of physical development nuclei and an image-receiving sheet having a non-photosensitive layer containing physical development nuclei are overlaid and diffusion-transfer developed to form a metallic silver portion as a non-photosensitive image receiving sheet Embodiment formed on.
  • the embodiment (1) is an integral black-and-white development type, in which a light transmitting conductive film such as a light transmitting conductive film is formed on a photosensitive material.
  • the resulting developed silver is chemically developed silver or thermally developed silver and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
  • the silver halide grains near the physical development nucleus are dissolved and deposited on the development nucleus to form a translucent conductive film such as a light transmitting conductive film on the photosensitive material. Sexual membrane is formed.
  • This is also an integral black and white development type.
  • the development activity is high activity because it is deposited on physical development nuclei, but developed silver has a small spherical shape on the specific surface.
  • the silver halide grains are dissolved and diffused in the unexposed area, and are diffused and deposited on the development nuclei on the image receiving sheet to transmit the light transmitting conductive film or the like on the image receiving sheet.
  • a conductive film is formed. It is a so-called separate type, in which the image receiving sheet is peeled from the photosensitive material and used.
  • either negative development processing or reverse development processing can be selected (in the case of the diffusion transfer method, negative development processing becomes possible by using an autopositive photosensitive material as the photosensitive material) .
  • Chemical development, heat development, dissolution physical development and diffusion transfer development as used herein have the meanings as generally used in the art, and general textbooks of photochemistry such as “Photochemistry” by Shinichi Kikuchi (Kyoritsu Publishing) , 1955), C.I. E. K. The book is described in Mees, "The Theory of Photographic Processes, 4th ed.” (Mcmillan, published in 1977).
  • the present invention is an invention relating to liquid processing, it is possible to refer to a technique of applying a heat development system as another development system. For example, applying the techniques described in Japanese Patent Application Laid-Open Nos. 2004-184693, 2004-334077, 2005-010752, and Japanese Patent Application Nos. 2004-244080 and 2004-085655. it can.
  • transparent substrate 12 examples include plastic films, plastic plates, glass plates and the like.
  • polyesters such as a polyethylene terephthalate (PET) and a polyethylene naphthalate (PEN); Triacetyl cellulose (TAC) etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC Triacetyl cellulose
  • the transparent substrate 12 is preferably a plastic film or a plastic plate having a melting point of about 290 ° C. or less, and particularly preferably PET from the viewpoint of light transmittance and processability.
  • the silver salt emulsion layer to be the fine metal wires 16 of the conductive film 10 contains additives such as a solvent and a dye in addition to the silver salt and the binder.
  • the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as a light sensor.
  • Silver coating amount of silver salt emulsion layer is preferably 1 ⁇ 30g / m 2 in terms of silver, more preferably 1 ⁇ 25g / m 2, more preferably 5 ⁇ 20g / m 2 . When the amount of coated silver is in the above range, a desired surface resistance can be obtained when the conductive film 10 is used.
  • binder used in the present embodiment examples include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, polyacryl Examples include acids, polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic and cationic properties depending on the ionicity of the functional group.
  • the content of the binder contained in the silver salt emulsion layer of the present embodiment is not particularly limited, and can be appropriately determined within the range in which the dispersibility and the adhesiveness can be exhibited.
  • the content of the binder in the silver salt emulsion layer is preferably 1/4 or more, more preferably 1/2 or more in terms of silver / binder volume ratio.
  • the silver / binder volume ratio is preferably 100/1 or less, more preferably 50/1 or less.
  • the silver / binder volume ratio is more preferably 1/1 to 4/1. Most preferably, it is 1/1 to 3/1.
  • the silver / binder volume ratio converts the amount of silver halide / binder (weight ratio) of the raw material into the amount of silver / binder (weight ratio), and further, the amount of silver / binder (weight ratio) is silver It can obtain
  • the solvent used to form the silver salt emulsion layer is not particularly limited.
  • water, organic solvents eg, alcohols such as methanol, ketones such as acetone, amides such as formamide, etc., dimethyl sulfoxide
  • sulfoxides esters such as ethyl acetate, ethers and the like
  • ionic liquids and mixed solvents thereof.
  • a protective layer (not shown) may be provided on the silver salt emulsion layer.
  • a subbing layer can be provided below the silver salt emulsion layer.
  • the conductive portion 14 is formed by exposure, development and the like except for the printing method. That is, the photosensitive material having the silver salt-containing layer provided on the transparent substrate 12 or the photosensitive material coated with the photopolymer for photolithography is exposed. Exposure can be performed using an electromagnetic wave. Examples of the electromagnetic waves include light such as visible light and ultraviolet light, and radiation such as X-rays. Furthermore, a light source having a wavelength distribution may be used for exposure, or a light source of a specific wavelength may be used.
  • development processing is further performed after exposing the emulsion layer.
  • the development processing can use the technique of the normal development processing used for a silver salt photographic film, printing paper, a film for printing plate making, an emulsion mask for photomasks, etc.
  • the development processing in the present invention can include a fixing processing performed for the purpose of removing and stabilizing the silver salt of the unexposed part.
  • the technology of the fixing process used for silver salt photographic film, printing paper, film for printing plate making, emulsion mask for photomask, etc. can be used. It is preferable that the photosensitive material subjected to the development and fixing process is subjected to a water washing process and a stabilization process.
  • the mass of the metallic silver portion contained in the exposed portion after development is preferably 50% by mass or more, and preferably 80% by mass or more, with respect to the mass of silver contained in the exposed portion before exposure. It is further preferred that If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, high conductivity can be obtained, which is preferable.
  • the conductive film 10 is obtained through the above steps.
  • the surface resistance of the obtained conductive film 10 is 0.1 to 300 ohms / sq. It is preferable to be in the range of The surface resistance varies depending on the application of the conductive film, but in the case of electromagnetic shielding application, 10 ohm / sq. Or less, preferably 0.1 to 3 ohms / square. It is more preferable that In the case of touch panel applications, 1 to 70 ohms / sq. Preferably 5 to 50 ohms / sq. More preferably, 5 to 30 ohms / square. It is further preferred that In addition, the conductive film 10 after the development may be further subjected to a calendering process, and can be adjusted to a desired surface resistance by the calendering process.
  • [Physical development and plating treatment] in order to improve the conductivity of the metal silver portion formed by the exposure and development processing, physical development and / or plating for carrying conductive metal particles on the metal silver portion is performed. May be In the present invention, the conductive metal particles may be supported on the metal silver portion only by either physical development or plating treatment, and the conductive metal particles may be supported on the metal silver portion by combining physical development and plating treatment. It is also good. In addition, the thing which gave physical development and / or the plating process to the metal silver part is called a "conductive metal part.” “Physical development” in the present embodiment means that metal ions such as silver ions are reduced by a reducing agent to precipitate metal particles on the core of a metal or metal compound.
  • This physical phenomenon is used for instant B & W film, instant slide film, printing plate production and the like, and the technology can be used in the present invention.
  • physical development may be performed simultaneously with development processing after exposure or separately after development processing.
  • electroless plating chemical reduction plating or displacement plating
  • electrolytic plating electrolytic plating
  • electroless plating in the present embodiment known electroless plating techniques can be used.
  • electroless plating techniques used for printed wiring boards etc. can be used, and electroless plating is electroless copper Plating is preferred.
  • the metal silver portion after development processing and the conductive metal portion formed by physical development and / or plating processing are preferably subjected to oxidation processing.
  • the oxidation treatment for example, when metal is slightly deposited on the light transmitting portion, the metal can be removed to make the light transmitting portion substantially transparent to 100%.
  • the line width of the conductive metal portion of this embodiment (line width of the fine metal wire 16) can be selected to be 30 ⁇ m or less, and the lower limit is 0.1 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 5 ⁇ m or more
  • the upper limit is preferably 30 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, 9 ⁇ m or less, or 8 ⁇ m or less.
  • the length of one side of the small lattice 70 is preferably 100 ⁇ m to 400 ⁇ m, more preferably 150 ⁇ m to 300 ⁇ m, and most preferably 210 ⁇ m to 250 ⁇ m.
  • the conductive metal portion may have a portion whose line width is larger than 200 ⁇ m for the purpose of ground connection and the like.
  • the aperture ratio of the conductive metal portion in the present embodiment is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more.
  • the aperture ratio is the ratio of the light-transmissive portion excluding the metal thin wires 16 to the whole, and, for example, the aperture ratio of a diamond shape having a line width of 6 ⁇ m and a side length of 240 ⁇ m is 95%.
  • the “light transmitting portion” in the present embodiment means a portion of the conductive film 10 having translucency other than the conductive metal portion.
  • the transmittance of the light transmitting portion is, as described above, preferably 90% or more of the transmittance indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the transparent substrate 12. It is 95% or more, more preferably 97% or more, still more preferably 98% or more, and most preferably 99% or more.
  • As the exposure method a method using a glass mask or a pattern exposure method using laser drawing is preferable.
  • the thickness of the transparent substrate 12 in the conductive film 10 according to the present embodiment is preferably 5 to 350 ⁇ m, and more preferably 30 to 150 ⁇ m. If it is in the range of 5 to 350 ⁇ m, the desired visible light transmittance can be obtained and the handling is easy.
  • the thickness of the metal silver portion provided on the transparent substrate 12 can be appropriately determined in accordance with the coating thickness of the silver salt-containing layer coating material applied on the transparent substrate 12.
  • the thickness of the metallic silver portion can be selected from 0.001 mm to 0.2 mm, but is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 0.01 to 9 ⁇ m. And most preferably 0.05 to 5 ⁇ m.
  • a metal silver part is pattern shape.
  • the metallic silver portion may have a single layer structure or a multilayer structure of two or more layers.
  • different color sensitivity can be imparted so as to be able to be sensitive to different wavelengths. Thereby, when the exposure wavelength is changed and exposure is performed, different patterns can be formed in each layer.
  • the thickness of the conductive metal portion is preferably as thin as the application of the touch panel 50 because the viewing angle of the display panel 58 is broadened. Thinning of the conductive metal portion is also required in view of improvement in visibility. From such a point of view, the thickness of the layer made of a conductive metal supported by the conductive metal portion is preferably less than 9 ⁇ m, more preferably 0.1 ⁇ m or more and less than 5 ⁇ m, and more preferably 0.1 ⁇ m or more More preferably, it is less than 3 ⁇ m.
  • a metal silver portion of a desired thickness is formed by controlling the coating thickness of the silver salt-containing layer described above, and the thickness of the layer made of conductive metal particles is further formed by physical development and / or plating.
  • a conductive film having a thickness of less than 5 .mu.m, preferably less than 3 .mu.m can be easily formed.
  • the steps such as plating do not necessarily have to be performed.
  • a desired surface resistance can be obtained by adjusting the coated amount of silver and the volume ratio of silver / binder in the silver salt emulsion layer. In addition, you may perform a calendar process etc. as needed.
  • the silver salt emulsion layer is developed and then dipped in a hardener to perform the hardening treatment.
  • a hardener examples include those described in JP-A-2-141279 such as dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane and boric acid. it can.
  • the conductive film 10 according to the present embodiment may be provided with a functional layer such as an antireflection layer or a hard coat layer.
  • the developed silver metal portion may be calendered to be smoothed. This significantly increases the conductivity of the metallic silver portion.
  • Calendaring can be performed by calendar rolls. Calendar rolls usually consist of a pair of rolls. As rolls used for calendering, plastic rolls such as epoxy, polyimide, polyamide, polyimide amide or the like, or metal rolls are used. In particular, in the case of having emulsion layers on both sides, it is preferable to treat with metal rolls. When an emulsion layer is provided on one side, a combination of a metal roll and a plastic roll can also be used to prevent wrinkles.
  • the upper limit of the line pressure is 1960 N / cm (200 kgf / cm, 699.4 kgf / cm 2 converted to surface pressure) or more, more preferably 2940 N / cm (300 kgf / cm, converted to surface pressure 935.8 kgf / cm 2 It is above.
  • the upper limit of the line pressure is 6880 N / cm (700 kgf / cm) or less.
  • the application temperature of the smoothing treatment represented by a calender roll is preferably 10 ° C. (without temperature control) to 100 ° C., and the more preferable temperature varies depending on the density and shape of metal mesh pattern and metal wiring pattern, and binder type Approximately in the range of 10 ° C. (without temperature control) to 50 ° C.
  • the coating amount of silver is 10 g / m 2 together with a gelatin hardener.
  • the transparent substrates here both were coated on polyethylene terephthalate (PET)).
  • PET polyethylene terephthalate
  • the Ag / gelatin volume ratio was 2/1.
  • Coating was carried out on a PET support of 30 cm in width with a width of 25 cm for 20 m, and both ends were cut off by 3 cm so as to leave 24 cm in the center of coating, to obtain a roll-shaped silver halide photosensitive material.
  • the exposure pattern was performed on an A4 size (210 mm ⁇ 297 mm) transparent substrate by the mesh pattern 20 shown in FIG.
  • the exposure was performed using parallel light with a high pressure mercury lamp as a light source through a photomask of the above pattern.
  • Example 1 The inclination of the thin metal wire 16 (the angle ⁇ between the imaginary line 24 connecting the multiple intersections of the mesh pattern 20 in the horizontal direction through the opening 18 and the first thin metal wire 16a) is 30 °, and the thin wire pitch Ps is 200 ⁇ m,
  • the conductive film according to Example 1 was manufactured by setting the line width of the thin metal wires 16 to 6 ⁇ m.
  • Examples 2 to 6 In Examples 2, 3, 4, 5 and 6, conductive films were produced in the same manner as in Example 1 except that the fine line pitch Ps was 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 300 ⁇ m and 400 ⁇ m, respectively.
  • Example 7 The conductive film according to Example 7 was manufactured by setting the inclination of the thin metal wire 16 to 36 °, the thin wire pitch Ps to 200 ⁇ m, and the line width of the thin metal wire 16 to 6 ⁇ m.
  • Examples 8 to 12 In Examples 8, 9, 10, 11 and 12, conductive films were produced in the same manner as in Example 7 except that the fine line pitch Ps was 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 300 ⁇ m and 400 ⁇ m, respectively.
  • Example 13 The conductive film according to Example 13 was manufactured by setting the inclination of the thin metal wire 16 to 37 °, the thin line pitch Ps to 200 ⁇ m, and the line width of the thin metal wire 16 to 6 ⁇ m.
  • Example 14 to 18 The conductive films of Examples 14, 15, 16, 17, and 18 were produced in the same manner as in Example 13 except that the fine line pitch Ps was 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 300 ⁇ m, and 400 ⁇ m, respectively.
  • Example 19 The conductive film according to Example 19 was produced by setting the inclination of the thin metal wire 16 to 39 °, the thin line pitch Ps to 200 ⁇ m, and the line width of the thin metal wire 16 to 6 ⁇ m.
  • Example 20 In Examples 20, 21, 22, 23, and 24, a conductive film was produced in the same manner as in Example 19 except that the fine line pitch Ps was 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 300 ⁇ m, and 400 ⁇ m, respectively.
  • the conductive film according to Example 25 was manufactured by setting the inclination of the thin metal wire 16 to 40 °, the thin wire pitch Ps to 200 ⁇ m, and the line width of the thin metal wire 16 to 6 ⁇ m.
  • Example 26 to 30 The conductive films of Examples 26, 27, 28, 29, and 30 were produced in the same manner as Example 25 except that the fine line pitch Ps was 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 300 ⁇ m, and 400 ⁇ m, respectively.
  • Example 31 The conductive film according to Example 31 was manufactured by setting the inclination of the metal fine wire 16 to 44 °, the fine wire pitch Ps to 200 ⁇ m, and the line width of the metal fine wire 16 to 6 ⁇ m.
  • Example 32 In Examples 32, 33, 34, 35 and 36, conductive films were produced in the same manner as in Example 31 except that the fine line pitch Ps was 220 ⁇ m, 240 ⁇ m, 260 ⁇ m, 300 ⁇ m and 400 ⁇ m, respectively.
  • Comparative example 1 The conductive film according to Comparative Example 1 was manufactured by setting the inclination of the thin metal wire 16 to 29 °, the thin wire pitch Ps to 200 ⁇ m, and the line width of the thin metal wire 16 to 6 ⁇ m.
  • Comparative Examples 2 and 3 In Comparative Examples 2 and 3, a conductive film was produced in the same manner as Comparative Example 1 except that the fine line pitch Ps was set to 300 ⁇ m and 400 ⁇ m, respectively.
  • Comparative example 4 The conductive film according to Comparative Example 4 was manufactured by setting the inclination of the thin metal wire 16 to 45 °, the thin wire pitch Ps to 200 ⁇ m, and the line width of the thin metal wire 16 to 6 ⁇ m.
  • Comparative Examples 5 and 6 In Comparative Examples 5 and 6, a conductive film was produced in the same manner as Comparative Example 4 except that the fine line pitch Ps was 300 ⁇ m and 400 ⁇ m, respectively.
  • a projected capacitive touch panel 50 was manufactured. When touched with a finger and operated, it was found that the response speed was fast and the detection sensitivity was excellent. Moreover, when two or more points were touched and operated, it has confirmed that a favorable result was obtained similarly and it can respond also to multi touch.
  • the aperture ratio was calculated for the laminated conductive films 54 according to Comparative Examples 11 to 16 and Examples 41 to 100, and moire was further evaluated.
  • the breakdown, calculation results and evaluation results of Comparative Examples 11 to 16 and Examples 41 to 100 are shown in Tables 5 and 6.
  • the exposure pattern is the pattern shown in FIGS. 7 and 9 for the first conductive film 10A, and the pattern shown in FIGS. 7 and 13 for the second conductive film 10B.
  • the A4 size (210 mm ⁇ 297 mm) 1 was performed on the transparent substrate 12A and the second transparent substrate 12B.
  • the exposure was performed using parallel light with a high pressure mercury lamp as a light source through a photomask of the above pattern.
  • the exposed photosensitive material was processed using the same processing agent as that of the first embodiment described above, using an automatic developing machine FG-710PTS manufactured by Fujifilm Corp. Processing conditions: development 35 ° C. 30 seconds, fixing 34 ° C. 23 seconds, washing with water It performed by 20-second processing of (5 L / min).
  • Example 41 The first side 70a (see FIG. 10) of the small lattice 70 and the first direction (x direction) of the first conductive portion 14A of the first conductive film 10A and the second conductive portion 14B of the second conductive film 10B prepared.
  • the laminated conductive film according to Example 1 was manufactured by setting the angle ⁇ to 30 °, the length of one side of the small lattice 70 to 200 ⁇ m, and the line width of the small lattice 70 to 6 ⁇ m.
  • Example 42 In Examples 42, 43 and 44, laminated conductive films were produced in the same manner as in Example 41 except that the length of one side of the small lattice 70 was set to 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 45 The laminated conductive film according to Example 45, wherein the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 32 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m was produced.
  • Example 46 In Examples 46, 47 and 48, laminated conductive films were produced in the same manner as in Example 45 except that the length of one side of the small lattice 70 was set to 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 49 The laminated conductive film according to Example 49 in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 36 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m. was produced.
  • Example 50 to 52 a laminated conductive film was produced in the same manner as in Example 49 except that the lengths of one side of the small lattice 70 were 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 53 The laminated conductive film according to Example 53, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 37 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 54, 55, and 56 a laminated conductive film was produced in the same manner as in Example 53 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 57 The laminated conductive film according to Example 57, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 39 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 58 to 60 a laminated conductive film was produced in the same manner as in Example 57 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 61 The laminated conductive film according to Example 61, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 40 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 62 to 64 laminated conductive films were produced in the same manner as in Example 61 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 65 The laminated conductive film according to Example 65, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 44 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 66 to 68 a laminated conductive film was produced in the same manner as in Example 65 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 69 The laminated conductive film according to Example 69, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 45 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Examples 70 to 72 In Examples 70, 71, and 72, a laminated conductive film was produced in the same manner as in Example 69 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 73 The laminated conductive film according to Example 73, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 46 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 74 to 76 In Examples 74, 75, and 76, a laminated conductive film was produced in the same manner as in Example 73 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 77 The laminated conductive film according to Example 77, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 50 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 78 to 80 a laminated conductive film was produced in the same manner as in Example 77 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 81 The laminated conductive film according to Example 81, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 51 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 82 to 84 laminated conductive films were produced in the same manner as in Example 81 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 85 The laminated conductive film according to Example 85, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 53 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 86 to 88 a laminated conductive film was produced in the same manner as in Example 85 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 89 The laminated conductive film according to Example 89, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 54 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 90 to 92 a laminated conductive film was produced in the same manner as in Example 89 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 93 The laminated conductive film according to Example 93, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 58 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 94 to 96 In Examples 94, 95, and 96, a laminated conductive film was produced in the same manner as in Example 93 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 97 The laminated conductive film according to Example 97, in which the angle ⁇ between the first side 70a of the small lattice 70 and the first direction is 60 °, the length of one side of the small lattice 70 is 200 ⁇ m, and the line width of the small lattice 70 is 6 ⁇ m.
  • Example 98 to 100 In Examples 98, 99, and 100, a laminated conductive film was produced in the same manner as in Example 97 except that the length of one side of the small lattice 70 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • the laminated conductive film according to Comparative Example 11 is formed by setting the angle ⁇ between the first side 70a of the small lattice 70 and the first direction to 29 °, the length of one side of the small lattice 70 as 200 ⁇ m, and the line width of the small lattice 70 as 6 ⁇ m. Was produced.
  • Comparative Examples 12 and 13 In Comparative Examples 12 and 13, a laminated conductive film was produced in the same manner as Comparative Example 11 except that the length of one side of the small lattice 70 was set to 300 ⁇ m and 400 ⁇ m, respectively.
  • the aperture ratio was calculated for the laminated conductive films according to Comparative Examples 21 to 26 and Examples 101 to 160, and moire was further evaluated.
  • the breakdown, calculation results and evaluation results of Comparative Examples 21 to 26 and Examples 101 to 160 are shown in Tables 7 and 8.
  • the exposure pattern is the pattern shown in FIGS. 7 and 9 for the first conductive film 10A, and the pattern shown in FIGS. 7 and 13 for the second conductive film 10B.
  • the A4 size (210 mm ⁇ 297 mm) 1 was performed on the transparent substrate 12A and the second transparent substrate 12B.
  • the exposure was performed using parallel light with a high pressure mercury lamp as a light source through a photomask of the above pattern.
  • the exposed photosensitive material was processed using the same processing agent as that of the first embodiment described above, using an automatic developing machine FG-710PTS manufactured by Fujifilm Corp. Processing conditions: development 35 ° C. 30 seconds, fixing 34 ° C. 23 seconds, washing with water It performed by 20-second processing of (5 L / min).
  • Example 101 The aspect ratio (Lva / Lha) of the first large grid 68A in the first conductive portion 14A of the first conductive film 10A and the aspect ratio of the second large grid 68B in the second conductive portion 14B of the second conductive film 10B A laminated conductive film according to Example 101 was produced, in which (Lvb / Lhb) was 0.5773, the fine line pitch Ps of the thin metal wire 16 was 200 ⁇ m, and the line width of the thin metal line 16 was 6 ⁇ m.
  • Example 102 to 104 In Examples 102, 103, and 104, a laminated conductive film was produced in the same manner as in Example 101 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 105 A laminated conductive film according to Example 105 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.6248, the fine wire pitch Ps of the metal fine wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Example 106 to 108 a laminated conductive film was produced in the same manner as in Example 105 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 109 A laminated conductive film according to Example 109 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.7266, the fine wire pitch Ps of the metal fine wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 110 to 112 In Examples 110, 111, and 112, a laminated conductive film was produced in the same manner as in Example 109 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 113 A laminated conductive film according to Example 113 was produced, wherein the aspect ratio of the first large lattice 68A and the second large lattice 68B was 0.7535, the fine wire pitch Ps of the fine metal wire 16 was 200 ⁇ m, and the line width of the fine metal wire 16 was 6 ⁇ m. .
  • Examples 114 to 116 In Examples 114, 115, and 116, a laminated conductive film was produced in the same manner as in Example 113 except that the fine line pitch Ps of the fine metal wires 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 117 A layered conductive film according to Example 117 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.8098, the fine wire pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m did.
  • Examples 118 to 120 In Examples 118, 119, and 120, a laminated conductive film was produced in the same manner as in Example 117 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 121 A laminated conductive film according to Example 121 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.8391, the fine line pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal line 16 to 6 ⁇ m did.
  • Examples 122 to 124 In Examples 122, 123 and 124, a laminated conductive film was produced in the same manner as in Example 121 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m and 400 ⁇ m, respectively.
  • Example 125 A laminated conductive film according to Example 125 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.9657, the fine wire pitch Ps of the metal fine wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did. (Examples 126 to 128) In Examples 126, 127, and 128, a laminated conductive film was produced in the same manner as in Example 125 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 129 The layered conductive film according to Example 129 is manufactured by setting the aspect ratio of the first large lattices 68A and the second large lattices 68B to 1.0000, the fine wire pitch Ps of the fine metal wires 16 to 200 ⁇ m, and the line width of the fine metal wires 16 to 6 ⁇ m. did.
  • Examples 130 to 132 In Examples 130, 131, and 132, a laminated conductive film was produced in the same manner as in Example 129 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 133 The layered conductive film according to Example 133 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.0356, the fine wire pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 134 to 136 In Examples 134, 135, and 136, a laminated conductive film was produced in the same manner as in Example 133 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 137 The layered conductive film according to Example 137 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.1917, the fine wire pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 138 to 140 In Examples 138, 139, and 140, a laminated conductive film was produced in the same manner as in Example 137 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 141 A laminated conductive film according to Example 141 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.2349, the fine wire pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 142 to 144 In Examples 142, 143, and 144, a laminated conductive film was produced in the same manner as in Example 141 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 145 The layered conductive film according to Example 145 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.3271, the fine wire pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 146 to 1408 In Examples 146, 147, and 148, a laminated conductive film was produced in the same manner as in Example 145 except that the fine line pitch Ps of the thin metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 149 A layered conductive film according to Example 149 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.3763, the fine wire pitch Ps of the metal fine wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 150 to 152 In Examples 150, 151, and 152, a laminated conductive film was produced in the same manner as in Example 149 except that the fine line pitch Ps of the fine metal wires 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 153 A laminated conductive film according to Example 153 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.6004, the fine wire pitch Ps of the metal fine wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 154 to 156 In Examples 154, 155, and 156, a laminated conductive film was produced in the same manner as in Example 149 except that the fine line pitch Ps of the fine metal wires 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Example 157 A laminated conductive film according to Example 157 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.7321, the fine wire pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m. did.
  • Examples 158 to 160 In Examples 158, 159, and 160, a laminated conductive film was produced in the same manner as in Example 157 except that the fine line pitch Ps of the fine metal wire 16 was 220 ⁇ m, 240 ⁇ m, and 400 ⁇ m, respectively.
  • Comparative example 21 The laminated conductive film according to Comparative Example 21 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.5543, the fine wire pitch Ps of the metal fine wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m did.
  • Comparative Examples 22 and 23 In Comparative Examples 22 and 23, a laminated conductive film was produced in the same manner as Comparative Example 21 except that the fine line pitch Ps of the thin metal wire 16 was set to 300 ⁇ m and 400 ⁇ m, respectively.
  • Comparative example 24 The laminated conductive film according to Comparative Example 24 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.8040, the fine wire pitch Ps of the fine metal wire 16 to 200 ⁇ m, and the line width of the fine metal wire 16 to 6 ⁇ m did.
  • Comparative Examples 25 and 26 a laminated conductive film was produced in the same manner as in Comparative Example 24 except that the fine line pitch Ps of the thin metal wire 16 was 300 ⁇ m and 400 ⁇ m, respectively.
  • the aspect ratio of the first large lattice 68A and the second large lattice 68B is more than 0.62, and less than 0.81, or more than 1.23, and less than 1.61, Moire generation is observed for Examples 106, 107, 110, 111, 114, 115, 118, 119, 142, 146, 147, 150, 151, 154, 155 in which the fine line pitch Ps of the thin lines 16 is 220 ⁇ m and 240 ⁇ m. There was no. Further, using the laminated conductive films 54 according to the above-described Examples 101 to 160, a projected capacitive touch panel 50 was manufactured. When touched with a finger and operated, it was found that the response speed was fast and the detection sensitivity was excellent. Moreover, when two or more points were touched and operated, it has confirmed that a favorable result was obtained similarly and it can respond also to multi touch.
  • the aperture ratio was calculated for the conductive films according to Comparative Examples 31 to 36 and Examples 161 to 220, and moire was further evaluated.
  • the breakdown, calculation results and evaluation results of Comparative Examples 31 to 36 and Examples 161 to 220 are shown in Tables 9 and 10. Examples 161 to 220, Comparative Examples 31 to 36
  • the conductive film is the same as in the third embodiment except that the first conductive film 110A has the pattern shown in FIG. 19 and the second conductive film 110B has the pattern shown in FIG. Were evaluated.
  • the aspect ratio of the first large lattice 118A in the first conductive portion 114A of the first conductive film 110A is the aspect ratio of the diamond formed between the two first upper bottom portions 126A in the horizontal direction, and the second conductivity
  • the aspect ratio of the second large lattice 118B in the second conductive portion 114B of the film 110B was the aspect ratio of the diamond formed between the two apexes in the horizontal direction.
  • Example 161 The aspect ratio (Lva / Lha) of the first large lattice 118A in the first conductive portion 114A of the first conductive film 110A and the aspect ratio (Lvb) of the second large lattice 118B in the second conductive portion 114B of the second conductive film 110B. / Lhb) was 0.5773, the fine wire pitch Ps of the fine metal wire 16 was 200 ⁇ m, and the line width of the fine metal wire 16 was 6 ⁇ m, to obtain a laminated conductive film according to Example 161.
  • Example 162 to 220 Preparation of laminated conductive films according to Examples 162 to 220 was carried out according to Examples 102 to 160 of the third example described above.
  • the laminated conductive films according to Comparative Examples 31 to 36 were manufactured in accordance with Comparative Examples 21 to 26 of the third example described above, respectively.
  • the aspect ratio of the first large lattice 118A and the second large lattice 118B is more than 0.62, and less than 0.81, or more than 1.23, and less than 1.61, Moire generation is observed for Examples 166, 167, 170, 171, 174, 175, 178, 179, 202, 206, 207, 210, 211, 214, 215 where the thin line pitch Ps of the thin lines 16 is 220 ⁇ m and 240 ⁇ m. There was no.
  • a projected capacitive touch panel 50 was produced. When touched with a finger and operated, it was found that the response speed was fast and the detection sensitivity was excellent. Moreover, when two or more points were touched and operated, it has confirmed that a favorable result was obtained similarly and it can respond also to multi touch.
  • the conductive film and the display device provided with the same according to the present invention are not limited to the above-described embodiment, and it goes without saying that various configurations can be adopted without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention discloses a conductive film and a display apparatus provided with the conductive film. A conductive film (10) is disposed on a display panel (58) of a display apparatus (30), and has a base body (12), and a conductive section (14) formed on one of the main surfaces of the base body (12). The conductive section (14) has a mesh pattern (20) composed of fine metal lines (16), and the fine metal lines (16) have a tilt of 30-44° with respect to the alignment direction of pixels (32) of the display apparatus (30).

Description

導電性フイルム及びそれを備えた表示装置Conductive film and display device provided with the same
 本発明は、導電性フイルム及びそれを備えた表示装置に関する。 The present invention relates to a conductive film and a display device provided with the same.
 表示装置の表示パネル上に設置される導電性フイルムとしては、例えば電磁波シールド用の導電性フイルム(例えば特開2008-282924号公報及び特開2009-094467号公報参照)やタッチパネル用の導電性フイルム(例えば特開2010-108877号公報参照)等が挙げられる。
 これらの導電性フイルムは、透明基体上に格子パターンを形成するようにしており、特開2008-282924号公報では格子パターンの交差部に隣接してモアレ抑止部を形成し、特開2009-094467号公報では格子パターンを有する電磁波シールドフイルムと、モアレ抑止部を配置したモアレ抑止フイルムとを貼付することにより、モアレの発生を抑制するようにしている。
As a conductive film installed on a display panel of a display device, for example, a conductive film for shielding electromagnetic waves (see, for example, JP 2008-282924 A and JP 2009-094467 A) or a conductive film for a touch panel (See, for example, JP-A-2010-108877) and the like.
In these conductive films, a grid pattern is formed on a transparent substrate, and in Japanese Patent Application Laid-Open No. 2008-282924, a moire suppressing portion is formed adjacent to the intersection of the grid pattern. In the publication, the occurrence of moire is suppressed by sticking an electromagnetic wave shielding film having a lattice pattern and a moire suppressing film on which a moire suppressing portion is disposed.
 本発明は、上述した各公報に記載された技術とは異なった簡単な構成で、汎用の表示装置の表示パネルに取り付けてもモアレが発生しにくく、しかも、高歩留まりで生産することができる導電性フイルム及びそれを備えた表示装置を提供することを目的とする。 The present invention has a simple configuration different from the techniques described in the above-mentioned publications, and it is less likely to generate moiré even when attached to a display panel of a general-purpose display device, and can be produced with high yield. Film and a display device equipped with the same.
[1] 第1の本発明に係る導電性フイルムは、基体と、前記基体の一方の主面側に配された導電部とを有し、前記導電部は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された金属細線による2以上の導電パターンを有し、前記導電パターンは、2以上の格子が組み合わされて構成され、各前記格子は、それぞれひし形状を有し、各前記格子における少なくとも1つの辺と前記第1方向とのなす角が30°~60°であることを特徴とする。
[2] 第1の本発明において、各前記格子における少なくとも1つの辺と前記第1方向とのなす角が30°~44°であることが好ましい。
[3] 第1の本発明において、各前記格子における少なくとも1つの辺と前記第1方向とのなす角が32°~39°であることが好ましい。
[4] 第1の本発明において、各前記格子における少なくとも1つの辺と前記第1方向とのなす角が46°~60°であることが好ましい。
[5] 第1の本発明において、各前記格子における少なくとも1つの辺と前記第1方向とのなす角が51°~58°であることが好ましい。
[6] 第1の本発明において、前記導電パターンは、2以上の感知部が前記第1方向に直列に接続されて構成され、各前記感知部は、それぞれ2以上の前記格子が組み合わされて構成されていてもよい。
[7] 第2の本発明に係る導電性フイルムは、基体と、前記基体の一方の主面側に配された第1導電部と、前記基体の他方の主面側に配された第2導電部とを有し、前記第1導電部は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された2以上の第1導電パターンを有し、前記第2導電部は、それぞれ第2方向に延在し、且つ、前記第1方向に配列された2以上の第2導電パターンを有し、前記第1導電パターン及び前記第2導電パターンは、それぞれ2以上の格子が組み合わされて構成され、各前記格子は、それぞれひし形状を有し、各前記格子における少なくとも1つの辺と前記第1方向とのなす角が30°~60°であることを特徴とする。
[8] 第2の本発明において、前記第1導電パターンは、2以上の第1の感知部が前記第1方向に直列に接続されて構成され、前記第2導電パターンは、2以上の第2の感知部が前記第2方向に直列に接続されて構成され、各前記感知部は、それぞれ2以上の前記格子が組み合わされて構成されていてもよい。
[9] 第3の本発明に係る導電性フイルムは、基体と、前記基体の一方の主面側に配された導電部とを有し、前記導電部は、メッシュパターンから構成されており、当該メッシュパターンの開口部はひし形状を有し、そのひし形状の頂角部は60°~120°であることを特徴とする。
[10] 第4の本発明に係る導電性フイルムは、基体と、前記基体の一方の主面側に配された導電部とを有し、前記導電部は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された金属細線による2以上の導電パターンを有し、前記導電パターンは、2以上の感知部が前記第1方向に接続されて構成され、各前記感知部の前記第2方向に沿った長さをLv、前記第1方向に沿った長さをLhとしたとき、
   0.57<Lv/Lh<1.74
を満足することを特徴とする。
[11] 第4の本発明において、0.57<Lv/Lh<1.00を満足することが好ましい。
[12] 第5の本発明に係る導電性フイルムは、基体と、前記基体の一方の主面側に配された第1導電部と、前記基体の他方の主面側に配された第2導電部とを有し、前記第1導電部は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された2以上の第1導電パターンを有し、前記第2導電部は、それぞれ第2方向に延在し、且つ、前記第1方向に配列された2以上の第2導電パターンを有し、前記第1導電パターンは、2以上の第1の感知部が前記第1方向に接続されて構成され、前記第2導電パターンは、2以上の第2の感知部が前記第2方向に接続されて構成され、各前記第1の感知部の前記第2方向に沿った長さをLva、前記第1方向に沿った長さをLhaとし、各前記第2の感知部の前記第2方向に沿った長さをLvb、前記第1方向に沿った長さをLhbとしたとき、
   0.57<Lva/Lha<1.74
   0.57<Lvb/Lhb<1.74
を満足することを特徴とする。
[13] 第5の本発明において、
   0.57<Lva/Lha<1.00
   0.57<Lvb/Lhb<1.00
を満足することが好ましい。
[14] 第4又は第5の本発明において、前記感知部は複数の格子にて構成され、各前記格子の前記第2方向に沿った長さをLvs、前記第1方向に沿った長さをLhsとしたとき、
   0.57<Lvs/Lhs<1.74
を満足することが好ましい。
[15] 第6の本発明に係る導電性フイルムは、基体と、前記基体の一方の主面に形成された導電部とを有し、前記導電部は、メッシュパターンから構成されており、当該メッシュパターンの開口部はひし形状を有し、前記ひし形状の一方の対角線の長さをLvp、他方の対角線の長さをLhpとしたとき、
   0.57<Lvp/Lhp<1.74
を満足することを特徴とする。
[16] 第7の本発明に係る表示装置は、表示パネル上に設置された導電性フイルムを備える表示装置であって、前記導電性フイルムは、金属製の細線によるメッシュパターンを有する導電部を備え、前記細線は、前記表示装置の画素の配列方向に対して30°~44°の傾きを持つことを特徴とする。
[17] 第7の本発明において、前記細線は、前記表示装置の画素の配列方向に対して32°~39°の傾きを持つことが好ましい。
[1] The conductive film according to the first aspect of the present invention includes a substrate and a conductive portion disposed on one main surface side of the substrate, and the conductive portions extend in a first direction, respectively. And two or more conductive patterns of fine metal wires arranged in a second direction orthogonal to the first direction, wherein the conductive patterns are configured by combining two or more gratings, and each of the gratings Each of the grids has a diamond shape, and an angle formed by at least one side of each of the grids and the first direction is 30 ° to 60 °.
[2] In the first aspect of the present invention, it is preferable that an angle between at least one side in each of the gratings and the first direction be 30 ° to 44 °.
[3] In the first aspect of the present invention, it is preferable that an angle between at least one side in each of the grids and the first direction is 32 ° to 39 °.
[4] In the first aspect of the present invention, it is preferable that an angle between at least one side in each of the grids and the first direction be 46 ° to 60 °.
[5] In the first aspect of the present invention, preferably, an angle between at least one side in each of the grids and the first direction is 51 ° to 58 °.
[6] In the first aspect of the present invention, the conductive pattern is formed by connecting two or more sensing units in series in the first direction, and each of the sensing units is formed by combining two or more of the gratings. It may be configured.
[7] The conductive film according to the second aspect of the present invention comprises a substrate, a first conductive portion disposed on one main surface side of the substrate, and a second conductive surface disposed on the other main surface side of the substrate. A conductive portion, and the first conductive portions each have two or more first conductive patterns extending in a first direction and arranged in a second direction orthogonal to the first direction, Each of the second conductive portions has two or more second conductive patterns extending in a second direction and arranged in the first direction, and the first conductive pattern and the second conductive pattern are Two or more gratings are respectively combined, and each of the gratings has a diamond shape, and an angle between at least one side of each grating and the first direction is 30 ° to 60 °. It is characterized by
[8] In the second invention, the first conductive pattern is configured by connecting two or more first sensing portions in series in the first direction, and the second conductive pattern includes two or more first conductive portions. Two sensing units may be connected in series in the second direction, and each of the sensing units may be configured by combining two or more of the grids.
[9] The conductive film according to the third aspect of the present invention includes a substrate and a conductive portion disposed on one main surface side of the substrate, and the conductive portion is formed of a mesh pattern, The openings of the mesh pattern have a diamond shape, and the apexes of the diamond shape are characterized by being 60 ° to 120 °.
[10] The conductive film according to the fourth aspect of the present invention includes a substrate and a conductive portion disposed on the side of one of the main surfaces of the substrate, and the conductive portions extend in the first direction. And two or more conductive patterns of fine metal wires arranged in a second direction orthogonal to the first direction, wherein the conductive patterns are configured by connecting two or more sensing units in the first direction. When a length along the second direction of each sensing unit is Lv and a length along the first direction is Lh,
0.57 <Lv / Lh <1.74
It is characterized by satisfying.
[11] In the fourth invention, it is preferable to satisfy 0.57 <Lv / Lh <1.00.
[12] The conductive film according to the fifth aspect of the present invention comprises a substrate, a first conductive portion disposed on one principal surface side of the substrate, and a second conductive surface disposed on the other principal surface side of the substrate. A conductive portion, and the first conductive portions each have two or more first conductive patterns extending in a first direction and arranged in a second direction orthogonal to the first direction, Each of the second conductive portions has two or more second conductive patterns extending in a second direction and arranged in the first direction, and the first conductive patterns include two or more first conductive patterns. A sensing unit is connected in the first direction, and the second conductive pattern is configured by connecting two or more second sensing units in the second direction. A length along the second direction is Lva, and a length along the first direction is Lha, and in the second direction of each of the second sensing units Assuming that the length along the line is Lvb and the length along the first direction is Lhb,
0.57 <Lva / Lha <1.74
0.57 <Lvb / Lhb <1.74
It is characterized by satisfying.
[13] In the fifth invention,
0.57 <Lva / Lha <1.00
0.57 <Lvb / Lhb <1.00
It is preferable to satisfy
[14] In the fourth or fifth aspect of the present invention, the sensing unit is composed of a plurality of gratings, and a length of each of the gratings along the second direction is Lvs, a length along the first direction Let Lhs be
0.57 <Lvs / Lhs <1.74
It is preferable to satisfy
[15] The conductive film according to the sixth aspect of the present invention includes a substrate and a conductive portion formed on one of the main surfaces of the substrate, and the conductive portion is formed of a mesh pattern, The opening of the mesh pattern has a diamond shape, and the length of one diagonal line of the diamond shape is Lvp and the length of the other diagonal line is Lhp,
0.57 <Lvp / Lhp <1.74
It is characterized by satisfying.
[16] A display device according to the seventh aspect of the present invention is a display device provided with a conductive film provided on a display panel, wherein the conductive film has a conductive portion having a mesh pattern of fine wires made of metal. The thin lines may have an inclination of 30 ° to 44 ° with respect to the arrangement direction of the pixels of the display device.
[17] In the seventh invention, preferably, the thin line has an inclination of 32 ° to 39 ° with respect to the arrangement direction of the pixels of the display device.
 一般に、表示装置に電磁波シールド機能やタッチパネル機能等を付与する場合には、導電性フイルムが必要であり、例えばメッシュパターンを有する導電性フイルムではモアレが生じることがある。しかし、本発明に係る導電性フイルムによれば、表示パネルに設置しても、モアレが発生し難くなる。しかも、高歩留まりで生産することができる。
 また、本発明に係る表示装置によれば、電磁波シールドやタッチパネルとして使用した場合に、低抵抗化を図ることができると共に、汎用のタッチパネルに使用してもモアレが発生し難い。
Generally, in the case of providing an electromagnetic wave shielding function or a touch panel function to a display device, a conductive film is required. For example, a conductive film having a mesh pattern may cause moiré. However, according to the conductive film of the present invention, moire is less likely to occur even when installed on a display panel. Moreover, it can be produced with high yield.
Further, according to the display device according to the present invention, when used as an electromagnetic wave shield or a touch panel, resistance can be reduced, and moiré hardly occurs even when used for a general-purpose touch panel.
第1の実施の形態に係る導電性フイルムの一例を示す平面図である。It is a top view which shows an example of the electroconductive film which concerns on 1st Embodiment. 導電性フイルムの一例を一部省略して示す断面図である。It is sectional drawing which partially omits and shows an example of a conductive film. 導電性フイルムが設置される表示装置の画素配列の一例を一部省略して示す平面図である。It is a top view which partially omits and shows an example of the pixel array of the display apparatus in which a conductive film is installed. メッシュ形状(ひし形)の大きさ(縦横比)を説明するための図である。It is a figure for demonstrating the magnitude | size (aspect ratio) of a mesh shape (diamond). 表示装置上に導電性フイルムを設置した例を一部省略して示す平面図である。It is a top view which partially omits and shows the example which installed the conductive film on the display apparatus. 第1の実施の形態に係る導電性フイルムによる積層導電性フイルム(第1積層導電性フイルム)を有するタッチパネルの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the touch panel which has a lamination | stacking electroconductive film (1st lamination | stacking electroconductive film) by the electroconductive film which concerns on 1st Embodiment. 第1積層導電性フイルムを一部省略して示す分解斜視図である。It is a disassembled perspective view which partially omits and shows a 1st laminated conductive film. 図8Aは第1積層導電性フイルムの一例を一部省略して示す断面図であり、図8Bは第1積層導電性フイルムの他の例を一部省略して示す断面図である。FIG. 8A is a cross-sectional view showing an example of the first laminated conductive film with a part thereof omitted, and FIG. 8B is a cross-sectional view showing another example of the first laminated conductive film with a part omitted. 第1の実施の形態に係る第1導電性フイルムに形成される第1導電部のパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 1st electroconductive part formed in the 1st electroconductive film which concerns on 1st Embodiment. 小格子(メッシュパターンの開口部)を示す平面図である。It is a top view which shows a small lattice (opening of a mesh pattern). 第1大格子の大きさ(縦横比)を説明するための図である。It is a figure for demonstrating the magnitude | size (aspect ratio) of a 1st large lattice. 小格子の大きさ(縦横比)を説明するための図である。It is a figure for demonstrating the size (aspect ratio) of a small lattice. 第1の実施の形態に係る第2導電性フイルムに形成される第2導電部のパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 2nd conductive part formed in the 2nd conductive film concerning a 1st embodiment. 第2大格子の大きさ(縦横比)を説明するための図である。It is a figure for demonstrating the magnitude | size (aspect ratio) of a 2nd large lattice. 第1の実施の形態に係る第1導電性フイルムと第2導電性フイルムを組み合わせて第1積層導電性フイルムとした例を一部省略して示す平面図である。It is a top view which partially omits and shows the example made into the 1st lamination conductive film combining the 1st conductive film concerning the 1st embodiment, and the 2nd conductive film. 第1補助線と第2補助線によって1つのラインが形成された状態を示す説明図である。It is an explanatory view showing the state where one line was formed of the 1st auxiliary line and the 2nd auxiliary line. 第2の実施の形態に係る積層導電性フイルム(第2積層導電性フイルム)を一部省略して示す分解斜視図である。It is a disassembled perspective view which partially omits and shows the lamination | stacking electroconductive film (2nd lamination | stacking electroconductive film) which concerns on 2nd Embodiment. 図18Aは第2積層導電性フイルムの一例を一部省略して示す断面図であり、図18Bは第2積層導電性フイルムの他の例を一部省略して示す断面図である。FIG. 18A is a cross-sectional view showing an example of the second laminated conductive film with a part thereof omitted, and FIG. 18B is a cross-sectional view showing another example of the second laminated conductive film with a part omitted. 第2の実施の形態に係る第1導電性フイルムに形成される第1導電部のパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 1st electroconductive part formed in the 1st electroconductive film which concerns on 2nd Embodiment. 第2の実施の形態に係る第2導電性フイルムに形成される第2導電部のパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 2nd electroconductive part formed in the 2nd electroconductive film which concerns on 2nd Embodiment. 第2の実施の形態に係る第1導電性フイルムと第2導電性フイルムを組み合わせて第2積層導電性フイルムとした例を一部省略して示す平面図である。It is a top view which partially omits and shows the example made into the 2nd lamination conductive film combining the 1st conductive film concerning a 2nd embodiment, and the 2nd conductive film.
 以下、本発明に係る導電性フイルム及び導電性フイルムを用いた表示装置の実施の形態例を図1~図21を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 Hereinafter, embodiments of the conductive film and the display device using the conductive film according to the present invention will be described with reference to FIGS. 1 to 21. In the present specification, “to” indicating a numerical range is used as a meaning including the numerical values described before and after it as the lower limit value and the upper limit value.
 先ず、第1の実施の形態について、図1~図16を参照しながら説明する。
 第1の実施の形態に係る導電性フイルム10は、図1及び図2に示すように、透明基体12(図2参照)と、透明基体12の一方の主面に形成された導電部14とを有する。導電部14は、金属製の細線(以下、金属細線16と記す)と開口部18によるメッシュパターン20を有する。金属細線16は例えば金(Au)、銀(Ag)又は銅(Cu)で構成されている。
 具体的には、導電部14は、第1傾斜方向(図1においてx方向)に延び、且つ、第2傾斜方向(図1においてy方向)にピッチPsで並ぶ複数の第1金属細線16aと、第2傾斜方向に延び、且つ、第1傾斜方向にピッチPsで並ぶ複数の第2金属細線16bとがそれぞれ交差して形成されたメッシュパターン20を有する。この場合、第1傾斜方向は基準方向(例えば水平方向)に対して+30°以上+60°以下の角度で傾斜し、第2傾斜方向は基準方向に対して-30°以上-60°以下の角度で傾斜している。従って、メッシュパターン20の1つのメッシュ形状22、すなわち、1つの開口部18と、該1つの開口部18を囲む4つの金属細線16の組み合わせ形状は、頂角部が60°以上120°以下のひし形となる。
First, the first embodiment will be described with reference to FIGS. 1 to 16.
The conductive film 10 according to the first embodiment, as shown in FIGS. 1 and 2, includes a transparent substrate 12 (see FIG. 2) and a conductive portion 14 formed on one of the main surfaces of the transparent substrate 12. Have. The conductive portion 14 has a mesh pattern 20 made of metal thin wires (hereinafter referred to as metal thin wires 16) and openings 18. The metal thin line 16 is made of, for example, gold (Au), silver (Ag) or copper (Cu).
Specifically, conductive portion 14 extends in a first inclination direction (x direction in FIG. 1) and a plurality of first metal fine wires 16a arranged at a pitch Ps in a second inclination direction (y direction in FIG. 1). A mesh pattern 20 is formed in which a plurality of second fine metal wires 16b extending in the second inclination direction and arranged at the pitch Ps in the first inclination direction intersect with each other. In this case, the first inclination direction is inclined at an angle of + 30 ° to + 60 ° with respect to the reference direction (for example, the horizontal direction), and the second inclination direction is an angle of -30 ° to -60 ° with respect to the reference direction. It is inclined at. Therefore, the combination shape of one mesh shape 22 of the mesh pattern 20, that is, one opening 18 and four thin metal wires 16 surrounding the one opening 18 has an apex of 60 ° to 120 °. It becomes a rhombus.
 そして、この導電性フイルム10は、例えば図3に示す表示装置30の電磁波シールドフイルムや、タッチパネル用の導電性フイルムとして利用される。表示装置30としては液晶ディスプレイ、プラズマディスプレイ、有機EL、無機EL等が挙げられる。
 ここで、ピッチPs(細線ピッチPsとも記す)は、100μm以上400μm以下から選択可能である。また、金属細線16の線幅は、30μm以下から選択可能である。導電性フイルム10を電磁波シールドフイルムとして使用する場合には、金属細線16の線幅は1μm以上20μm以下が好ましく、1μm以上9μm以下がより好ましく、2μm以上7μm以下がさらに好ましい。導電性フイルム10をタッチパネル用の導電性フイルムとして使用する場合には、金属細線16の線幅は0.1μm以上15μm以下が好ましく、1μm以上9μm以下がより好ましく、2μm以上7μm以下がさらに好ましい。
 また、メッシュ形状22であるひし形の4つの頂角のうち、狭い2つの頂角をそれぞれ二分する角度は30°以上44°以下から選択可能である。つまり、メッシュパターン20の複数の交点をそれぞれ開口部18を介して水平方向に結ぶ仮想線24と第1金属細線16aとのなす角θ(傾斜角度θ)が30°以上44°以下となっている。
And this electroconductive film 10 is utilized as an electromagnetic wave shielding film of the display apparatus 30 shown, for example in FIG. 3, and an electroconductive film for touch panels. Examples of the display device 30 include a liquid crystal display, a plasma display, an organic EL, and an inorganic EL.
Here, the pitch Ps (also referred to as a fine line pitch Ps) can be selected from 100 μm to 400 μm. Further, the line width of the thin metal wire 16 can be selected from 30 μm or less. When the conductive film 10 is used as an electromagnetic shielding film, the line width of the thin metal wire 16 is preferably 1 μm to 20 μm, more preferably 1 μm to 9 μm, and still more preferably 2 μm to 7 μm. When the conductive film 10 is used as a conductive film for a touch panel, the line width of the thin metal wire 16 is preferably 0.1 μm to 15 μm, more preferably 1 μm to 9 μm, and still more preferably 2 μm to 7 μm.
Further, among the four apex angles of the rhombus which is the mesh shape 22, an angle dividing each of two narrow apex angles can be selected from 30 ° or more and 44 ° or less. That is, the angle θ (inclination angle θ) between the first metal thin line 16a and the imaginary line 24 connecting the plurality of intersections of the mesh pattern 20 in the horizontal direction through the opening 18 is 30 ° or more and 44 ° or less. There is.
 表示装置30は、図3に一部を省略して示すように、複数の画素32がマトリクス状に配列されて構成されている。1つの画素32は3つの副画素(赤色副画素32r、緑色副画素32g及び青色副画素32b)が水平方向に配列されて構成されている。1つの副画素は垂直方向に縦長とされた長方形状とされている。画素32の水平方向の配列ピッチ(水平画素ピッチPh)と画素32の垂直方向の配列ピッチ(垂直画素ピッチPv)はほぼ同じとされている。つまり、1つの画素32と該1つの画素32を囲むブラックマトリクスにて構成される形状(網掛けにて示す領域34を参照)は正方形となっている。また、1つの画素32のアスペクト比は1ではなく、水平方向(横)の長さ>垂直方向(縦)の長さとなっている。 The display device 30 is configured by arranging a plurality of pixels 32 in a matrix, as partially shown in FIG. 3. One pixel 32 is configured by arranging three sub-pixels (red sub-pixel 32r, green sub-pixel 32g and blue sub-pixel 32b) in the horizontal direction. One sub-pixel has a rectangular shape vertically elongated in the vertical direction. The arrangement pitch of the pixels 32 in the horizontal direction (horizontal pixel pitch Ph) and the arrangement pitch of the pixels 32 in the vertical direction (vertical pixel pitch Pv) are substantially the same. That is, the shape (see the shaded area 34) formed by one pixel 32 and a black matrix surrounding the one pixel 32 is a square. Further, the aspect ratio of one pixel 32 is not 1, and the length in the horizontal direction (horizontal direction)> the length in the vertical direction (vertical direction).
 ここで、図4に示すように、メッシュ形状22のひし形の大きさについて説明する。ひし形の垂直方向に関する対角線(一方の対角線)の長さをLvpとし、ひし形の水平方向に関する対角線(他方の対角線)の長さをLhpとしたとき、ひし形の大きさ、すなわち、ひし形の縦横比(Lvp/Lhp)は、
   0.57<Lvp/Lhp<1.74
を満足するように設定される。
 水平方向がタッチパネル50が設置される表示装置30(図3参照)の画素32の配列方向と同じであれば、上述のひし形の縦横比(Lvp/Lhp)は、0.57<Lvp/Lhp<1.00あるいは1.00<Lvp/Lhp<1.74に設定され、より好ましくは0.62<Lvp/Lhp<0.81あるいは1.23<Lvp/Lhp<1.61に設定される。
Here, as shown in FIG. 4, the size of the diamond shape of the mesh shape 22 will be described. Assuming that the length of the diagonal (one diagonal) of the rhombus in the vertical direction is Lvp and the length of the diagonal (the other diagonal) of the rhombus in the horizontal direction is Lhp, the size of the rhombus, ie, the aspect ratio of the rhombus ( Lvp / Lhp)
0.57 <Lvp / Lhp <1.74
Set to satisfy.
If the horizontal direction is the same as the arrangement direction of the pixels 32 of the display device 30 (see FIG. 3) in which the touch panel 50 is installed, the aspect ratio (Lvp / Lhp) of the above-mentioned diamond is 0.57 <Lvp / Lhp < It is set to 1.00 or 1.00 <Lvp / Lhp <1.74, and more preferably set to 0.62 <Lvp / Lhp <0.81 or 1.23 <Lvp / Lhp <1.61.
 そして、このような画素配列を有する表示装置30の表示パネル上に導電性フイルム10を設置すると、図5に示すように、金属細線16は、表示装置30における画素32の水平の配列方向(m方向の配列)に対して一定の傾斜角度θを持つことになる。図1に示したように、メッシュパターン20の複数の交点をそれぞれ開口部18を介して水平方向に結ぶ仮想線24と第1金属細線16aとのなす角θを30°以上60°以下、好ましくは30°以上44°以下としているため、図4に示すように、金属細線16は、表示装置30における画素32の水平の配列方向(m方向の配列)に対して30°~60°、好ましくは30°~44°の傾きを持つことになる。また、導電性フイルム10における細線ピッチPsと、表示装置30における1つの画素32の対角線の長さLa1(あるいは縦方向に隣接する2つの画素32の対角線の長さLa2)とがほぼ同じあるいは近接した値となり、導電性フイルム10における金属細線16の配列方向と、表示装置30における1つの画素32の対角線(あるいは縦方向に隣接する2つの画素32の対角線)の方向もほぼ同じあるいは近接することとなる。その結果、画素32の配列周期と金属細線16の配列周期とのずれが小さくなり、モアレの発生が抑制されることになる。
 従って、導電性フイルム10を例えば電磁波シールドフイルムとして使用する場合、導電性フイルム10は表示装置30における表示パネル上に配置されることになるが、上述したように、画素の配列周期と金属細線16の配列周期とのずれが小さくなり、モアレの発生が抑制される。しかも、メッシュパターン20を構成する金属細線16のピッチPsを、100μm以上400μm以下とし、金属細線16の線幅を、30μm以下としたので、高い電磁波シールド性と高い透光性とを同時に持たせることができる。
Then, when the conductive film 10 is placed on the display panel of the display device 30 having such a pixel array, as shown in FIG. 5, the metal thin lines 16 are arranged in the horizontal alignment direction of the pixels 32 in the display device 30 (m (Arrangement of orientation) has a constant inclination angle θ. As shown in FIG. 1, the angle θ between the imaginary line 24 connecting the plurality of intersections of the mesh pattern 20 in the horizontal direction through the opening 18 and the first metal thin line 16a is preferably 30 ° or more and 60 ° or less. Is preferably 30 ° to 44 °, and as shown in FIG. 4, the metal thin line 16 is preferably 30 ° to 60 ° with respect to the horizontal alignment direction (array in the m direction) of the pixels 32 in the display device 30. Will have an inclination of 30 ° to 44 °. In addition, the fine line pitch Ps in the conductive film 10 and the diagonal length La1 of one pixel 32 in the display device 30 (or the diagonal length La2 of two pixels 32 adjacent in the vertical direction) are substantially the same or close to each other. The arrangement direction of the thin metal wires 16 in the conductive film 10 and the direction of the diagonal of one pixel 32 in the display device 30 (or the diagonal of two pixels 32 adjacent in the vertical direction) are substantially the same or close to each other. It becomes. As a result, the deviation between the arrangement period of the pixels 32 and the arrangement period of the thin metal wires 16 becomes small, and the occurrence of moire is suppressed.
Therefore, when the conductive film 10 is used as an electromagnetic shielding film, for example, the conductive film 10 is disposed on the display panel in the display device 30. However, as described above, the arrangement period of the pixels and the metal thin line 16 Deviation from the arrangement period of the is reduced, and the occurrence of moire is suppressed. Moreover, since the pitch Ps of the thin metal wires 16 constituting the mesh pattern 20 is 100 μm to 400 μm and the line width of the thin metal wires 16 is 30 μm or less, high electromagnetic wave shielding properties and high translucency can be simultaneously provided. be able to.
 次に、タッチパネルを有する表示装置、例えば投影型静電容量方式のタッチパネルを有する表示装置について図6~図16を参照しながら説明する。
 先ず、タッチパネル50は、センサ本体52と図示しない制御回路(IC回路等で構成)とを有する。センサ本体52は、図6、図7及び図8Aに示すように、後述する第1導電性フイルム10Aと第2導電性フイルム10Bとを積層して構成された積層導電性フイルム54と、その上に積層された保護層56(図8Aでは保護層56の記述を省略している)とを有する。積層導電性フイルム54及び保護層56は、例えば液晶ディスプレイ等の表示装置30における表示パネル58上に配置されるようになっている。センサ本体52は、上面から見たときに、表示パネル58の表示画面58aに対応した領域に配されたセンサ部60と、表示パネル58の外周部分に対応する領域に配された端子配線部62(いわゆる額縁)とを有する。
Next, a display device having a touch panel, for example, a display device having a projected capacitive touch panel will be described with reference to FIGS.
First, the touch panel 50 has a sensor main body 52 and a control circuit (composed of an IC circuit or the like) not shown. As shown in FIG. 6, FIG. 7 and FIG. 8A, the sensor main body 52 has a laminated conductive film 54 formed by laminating a first conductive film 10A and a second conductive film 10B described later, and a sensor And the protective layer 56 (the description of the protective layer 56 is omitted in FIG. 8A). The laminated conductive film 54 and the protective layer 56 are disposed on the display panel 58 in the display device 30 such as a liquid crystal display, for example. The sensor main body 52 has a sensor portion 60 disposed in an area corresponding to the display screen 58 a of the display panel 58 when viewed from the top, and a terminal wiring portion 62 disposed in an area corresponding to the outer peripheral portion of the display panel 58. And a so-called frame.
 タッチパネル50に適用した第1導電性フイルム10Aは、図7及び図9に示すように、第1透明基体12A(図8A参照)の一主面上に形成された第1導電部14Aを有する。この第1導電部14Aは、それぞれ水平方向(m方向)に延在し、且つ、第3方向と直交する垂直方向(n方向)に配列され、多数の格子にて構成された金属細線16による2以上の第1導電パターン64A(メッシュパターン)と、各第1導電パターン64Aの周辺に配列された金属細線16による第1補助パターン66Aとを有する。
 各第1導電パターン64Aは、それぞれ2以上の小格子70が組み合わされて構成されている。図7及び図9の例では、各第1導電パターン64Aは、2以上の第1大格子68A(第1感知部)が水平方向に直列に接続されて構成され、各第1大格子68Aは、それぞれ2以上の小格子70が組み合わされて構成されている。また、第1大格子68Aの辺の周囲に、第1大格子68Aと非接続とされた上述の第1補助パターン66Aが形成されている。m方向は、例えば後述する投影型静電容量方式のタッチパネル50(図6参照)の水平方向(又は垂直方向)あるいはタッチパネル50を設置した表示パネル58の水平方向(又は垂直方向)を示す。
The first conductive film 10A applied to the touch panel 50 has a first conductive portion 14A formed on one main surface of a first transparent substrate 12A (see FIG. 8A) as shown in FIGS. 7 and 9. The first conductive portions 14A respectively extend in the horizontal direction (m direction) and are arranged in the vertical direction (n direction) orthogonal to the third direction, and are formed by the metal thin wires 16 formed of a large number of grids. It has two or more first conductive patterns 64A (mesh pattern), and a first auxiliary pattern 66A of thin metal wires 16 arranged around each first conductive pattern 64A.
Each first conductive pattern 64A is configured by combining two or more small lattices 70, respectively. In the examples of FIGS. 7 and 9, each first conductive pattern 64A is configured by connecting two or more first large grids 68A (first sensing units) in series in the horizontal direction, and each first large grid 68A , And two or more small lattices 70 are configured in combination. Further, around the side of the first large lattice 68A, the above-mentioned first auxiliary pattern 66A not connected to the first large lattice 68A is formed. The m direction indicates, for example, the horizontal direction (or vertical direction) of a projected capacitive touch panel 50 (see FIG. 6) described later, or the horizontal direction (or vertical direction) of the display panel 58 on which the touch panel 50 is installed.
 第1導電パターン64Aとしては、第1大格子68Aを用いた例に限られない。例えば多数の小格子70が配列されたメッシュパターンが絶縁部で帯状に区画され、それが平行に複数配置された導電パターンを使用することができる。例えば、それぞれ端子からm方向に延在し、且つ、n方向に配列された2以上の帯状の第1導電パターン64Aを有するようにしてもよい。 The first conductive pattern 64A is not limited to the example using the first large lattice 68A. For example, it is possible to use a conductive pattern in which a mesh pattern in which a large number of small grids 70 are arranged is divided into strips by the insulating portion and a plurality of mesh patterns are arranged in parallel. For example, two or more strip-like first conductive patterns 64A may be provided, each extending in the m direction from the terminal and arranged in the n direction.
 小格子70は、ここでは一番小さいひし形とされ、上述した1つのメッシュ形状22(図1及び図4参照)と同じ形状あるいは相似形状とされている。小格子70は、図10に示すように、少なくとも1つの辺(第1辺70a~第4辺70d)と第1方向(m方向)とのなす角θは30°~60°に設定される。m方向がタッチパネル50が設置される表示装置30(図5参照)の画素の配列方向と同じであれば、上述のなす角θは30°~44°あるいは46°~60°に設定され、より好ましくは32°~39°あるいは51°~58°に設定される。 The small lattice 70 is here the smallest diamond and has the same or similar shape as the one mesh shape 22 (see FIGS. 1 and 4) described above. In the small lattice 70, as shown in FIG. 10, the angle θ between at least one side (the first side 70a to the fourth side 70d) and the first direction (m direction) is set to 30 ° to 60 °. . If the m direction is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 5) in which the touch panel 50 is installed, the above-mentioned angle θ is set to 30 ° to 44 ° or 46 ° to 60 °. Preferably, the angle is set to 32 ° to 39 ° or 51 ° to 58 °.
 ここで、第1大格子68Aの大きさについて図11を参照しながら説明する。先ず、第1大格子68Aの4つの辺部(第1辺部69a~第4辺部69d)のうち、水平方向(m方向)に隣接する第1辺部69aと第2辺部69bとの交点を第1頂点71a、同じく水平方向に隣接する第3辺部69c(第1辺部69aと対向する辺部)と第4辺部69d(第2辺部69bと対向する辺部)との交点を第2頂点71bとする。
 同様に、第1大格子68Aの4つの辺部(第1辺部69a~第4辺部69d)のうち、垂直方向(n方向)に隣接する第1辺部69aの延長線と第4辺部69dとの交点を第3頂点71c、同じく垂直方向に隣接する第2辺部69bと第3辺部69cの延長線との交点を第4頂点71dとする。
Here, the size of the first large lattice 68A will be described with reference to FIG. First, among the four sides (the first side 69a to the fourth side 69d) of the first large lattice 68A, the first side 69a and the second side 69b adjacent in the horizontal direction (m direction) The intersection point is the first vertex 71a, and the third side 69c (the side facing the first side 69a) adjacent in the horizontal direction and the fourth side 69d (the side facing the second side 69b) Let the intersection be a second vertex 71b.
Similarly, of the four sides (the first side 69a to the fourth side 69d) of the first large lattice 68A, the extension line and the fourth side of the first side 69a adjacent in the vertical direction (n direction) The intersection with the portion 69d is taken as a third vertex 71c, and the intersection between the second side 69b and the extension of the third side 69c which are adjacent in the vertical direction is taken as a fourth apex 71d.
 そして、第1頂点71aと第2頂点71b間の垂直方向に沿った距離Lvaを、第1大格子68Aの第2方向に沿った長さとし、第3頂点71cと第4頂点71d間の水平方向に沿った距離Lhaを、第1大格子68Aの第1方向に沿った長さとする。
 この場合に、第1大格子68Aの大きさ、すなわち、第1大格子68Aの縦横比(Lva/Lha)は、
   0.57<Lva/Lha<1.74
を満足するように設定される。
 水平方向(m方向)がタッチパネル50が設置される表示装置30(図6参照)の画素の配列方向と同じであれば、上述の第1大格子68Aの縦横比(Lva/Lha)は、0.57<Lva/Lha<1.00あるいは1.00<Lva/Lha<1.74に設定され、より好ましくは0.62<Lva/Lha<0.81あるいは1.23<Lva/Lha<1.61に設定される。
Then, a distance Lva along the vertical direction between the first vertex 71a and the second vertex 71b is a length along the second direction of the first large lattice 68A, and a horizontal direction between the third vertex 71c and the fourth vertex 71d Of the first large lattice 68A along the first direction.
In this case, the size of the first large lattice 68A, that is, the aspect ratio (Lva / Lha) of the first large lattice 68A is
0.57 <Lva / Lha <1.74
Set to satisfy.
If the horizontal direction (m direction) is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lva / Lha) of the first large grid 68A is 0. .57 <Lva / Lha <1.00 or 1.00 <Lva / Lha <1.74, more preferably 0.62 <Lva / Lha <0.81 or 1.23 <Lva / Lha <1. It is set to .61.
 これは、小格子70においても同様であり、図12に示すように、垂直方向に関する対角線70v(一方の対角線)の長さをLvsとし、小格子70の水平方向に関する対角線70h(他方の対角線)の長さをLhsとしたとき、小格子70の大きさ、すなわち、小格子70の縦横比(Lvs/Lhs)は、
   0.57<Lvs/Lhs<1.74
を満足するように設定される。
 この場合も、水平方向がタッチパネル50が設置される表示装置30(図6参照)の画素の配列方向と同じであれば、上述の小格子70の縦横比(Lvs/Lhs)は、0.57<Lvs/Lhs<1.00あるいは1.00<Lvs/Lhs<1.74に設定され、より好ましくは0.62<Lvs/Lhs<0.81あるいは1.23<Lvs/Lhs<1.61に設定される。
 また、小格子70の線幅、すなわち、金属細線16の線幅は、上述したように、30μm以下から選択可能である。小格子70の一辺の長さは100μm以上400μm以下から選択可能である。なお、第1大格子68Aの第1辺部69a(及び第3辺部69c)に沿った方向が第1傾斜方向(x方向)であり、第2辺部69b(及び第4辺部69d)に沿った方向が第2傾斜方向(y方向)である。
The same applies to the small lattice 70. As shown in FIG. 12, the length of the diagonal 70 v (one diagonal) in the vertical direction is Lvs, and the diagonal 70 h (the other diagonal) in the horizontal direction of the small lattice 70. The size of the small lattice 70, that is, the aspect ratio (Lvs / Lhs) of the small lattice 70,
0.57 <Lvs / Lhs <1.74
Set to satisfy.
Also in this case, if the horizontal direction is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lvs / Lhs) of the small lattice 70 described above is 0.57. It is set to <Lvs / Lhs <1.00 or 1.00 <Lvs / Lhs <1.74, more preferably 0.62 <Lvs / Lhs <0.81 or 1.23 <Lvs / Lhs <1.61. Set to
Further, the line width of the small lattice 70, that is, the line width of the thin metal wire 16 can be selected from 30 μm or less as described above. The length of one side of the small lattice 70 can be selected from 100 μm to 400 μm. The direction along the first side 69a (and the third side 69c) of the first large lattice 68A is the first inclined direction (x direction), and the second side 69b (and the fourth side 69d) The direction along is the second tilt direction (y direction).
 第1導電パターン64Aとして第1大格子68Aを用いた場合、例えば図9に示すように、隣接する第1大格子68A間には、これら第1大格子68Aを電気的に接続する金属細線16による第1接続部72Aが形成されている。第1接続部72Aは、n個(nは1より大きい実数)の小格子70が第2傾斜方向(y方向)に配列された大きさの中格子74が配置されて構成されている。第1大格子68Aの第1傾斜方向に沿った辺のうち、中格子74と隣接する部分には、小格子70の1つの辺が欠除した第1欠除部76Aが形成されている。中格子74は、図9の例では、3個分の小格子70が第2傾斜方向に配列された大きさを有する。
 また、隣接する第1導電パターン64A間は電気的に絶縁された第1絶縁部78Aが配されている。
 ここで、第1補助パターン66Aは、第1大格子68Aの辺のうち、第1傾斜方向に沿った辺に沿って配列された複数の第1補助線80A(第2傾斜方向を軸線方向とする)と、第1大格子68Aの辺のうち、第2傾斜方向に沿った辺に沿って配列された複数の第1補助線80A(第1傾斜方向を軸線方向とする)と、第1絶縁部78Aにおいて、それぞれ2つの第1補助線80AがL字状に組み合わされた2つの第1L字状パターン82Aが互いに対向して配置されたパターンとを有する。
When the first large lattices 68A are used as the first conductive patterns 64A, for example, as shown in FIG. 9, between the adjacent first large lattices 68A, the metal thin wires 16 electrically connecting the first large lattices 68A. The first connection portion 72A is formed by the The first connection portion 72A is configured by arranging a middle lattice 74 of a size in which n (n is a real number greater than 1) small lattices 70 are arranged in a second inclination direction (y direction). Of the sides along the first inclination direction of the first large lattice 68A, a first notch 76A in which one side of the small lattice 70 is missing is formed in a portion adjacent to the middle lattice 74. The middle grid 74 has a size in which three small grids 70 are arranged in the second inclination direction in the example of FIG.
Further, a first insulating portion 78A electrically insulated is disposed between the adjacent first conductive patterns 64A.
Here, among the sides of the first large lattice 68A, the first auxiliary pattern 66A includes a plurality of first auxiliary lines 80A arranged along the side along the first inclination direction (the second inclination direction corresponds to the axial direction And a plurality of first auxiliary lines 80A (the first inclination direction is taken as the axial direction) arranged along the side along the second inclination direction among the sides of the first large lattice 68A; The insulating portion 78A has a pattern in which two first L-shaped patterns 82A in which two first auxiliary lines 80A are combined in an L shape are disposed to face each other.
 第1大格子68Aの一辺の長さは、3~10mmであることが好ましく、4~6mmであることがより好ましい。一辺の長さが、上記下限値未満であると、第1導電性フイルム10Aを例えばタッチパネルに利用した場合に、検出時の第1大格子68Aの静電容量が減るため、検出不良になる可能性が高くなる。他方、上記上限値を超えると、位置検出精度が低下する虞がある。同様の観点から、第1大格子68Aを構成する小格子70の一辺の長さは、上述したように、100~400μmであることが好ましく、150~300μmであることがさらに好ましく、最も好ましくは210~250μm以下である。小格子70が上記範囲である場合には、さらに透明性も良好に保つことが可能であり、表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。 The length of one side of the first large lattice 68A is preferably 3 to 10 mm, and more preferably 4 to 6 mm. When the length of one side is less than the above lower limit value, when the first conductive film 10A is used for a touch panel, for example, the capacitance of the first large lattice 68A at the time of detection is reduced, which may result in detection failure. Sex is high. On the other hand, if the above upper limit value is exceeded, there is a possibility that the position detection accuracy may be reduced. From the same viewpoint, the length of one side of the small lattice 70 constituting the first large lattice 68A is preferably 100 to 400 μm, more preferably 150 to 300 μm, as described above. 210 to 250 μm or less. When the small lattice 70 is in the above-mentioned range, it is possible to further maintain good transparency, and when mounted on the front of the display device, it is possible to visually recognize the display without discomfort.
 上述のように構成された第1導電性フイルム10Aは、図7に示すように、各第1導電パターン64Aの一方の端部側に存在する第1大格子68Aの開放端は、第1接続部72Aが存在しない形状となっている。各第1導電パターン64Aの他方の端部側に存在する第1大格子68Aの端部は、第1結線部84aを介して金属細線16による第1端子配線パターン86aに電気的に接続されている。
 すなわち、タッチパネル50に適用した第1導電性フイルム10Aは、図6及び図7に示すように、センサ部60に対応した部分に、上述した多数の第1導電パターン64Aが配列され、端子配線部62には各第1結線部84aから導出された複数の第1端子配線パターン86aが配列されている。
 図6の例では、第1導電性フイルム10Aの外形は、上面から見て長方形状を有し、センサ部60の外形も長方形状を有する。端子配線部62のうち、第1導電性フイルム10Aの一方の長辺側の周縁部には、その長さ方向中央部分に、複数の第1端子88aが前記一方の長辺の長さ方向に配列形成されている。また、センサ部60の一方の長辺(第1導電性フイルム10Aの一方の長辺に最も近い長辺:n方向)に沿って複数の第1結線部84aが直線状に配列されている。各第1結線部84aから導出された第1端子配線パターン86aは、第1導電性フイルム10Aの一方の長辺におけるほぼ中央部に向かって引き回され、それぞれ対応する第1端子88aに電気的に接続されている。
In the first conductive film 10A configured as described above, as shown in FIG. 7, the open end of the first large lattice 68A present at one end side of each first conductive pattern 64A is a first connection It has a shape without the portion 72A. The end of the first large grid 68A present on the other end side of each first conductive pattern 64A is electrically connected to the first terminal wiring pattern 86a by the metal thin wire 16 through the first connection portion 84a. There is.
That is, as shown in FIGS. 6 and 7, the first conductive film 10A applied to the touch panel 50 has the above-described many first conductive patterns 64A arranged in the portion corresponding to the sensor unit 60, and the terminal wiring portion At 62, a plurality of first terminal wiring patterns 86a derived from the respective first connection portions 84a are arranged.
In the example of FIG. 6, the outer shape of the first conductive film 10A has a rectangular shape when viewed from the top, and the outer shape of the sensor unit 60 also has a rectangular shape. A plurality of first terminals 88a are provided in the longitudinal direction of the one long side of the terminal wiring portion 62 at the peripheral portion on the long side of the first conductive film 10A in the longitudinal direction of the one side. It is arrayed. In addition, a plurality of first connection portions 84 a are linearly arranged along one long side (long side closest to one long side of the first conductive film 10 A: n direction) of the sensor unit 60. The first terminal wiring patterns 86a derived from the respective first connection portions 84a are drawn toward the substantially central portion of one long side of the first conductive film 10A, and are electrically connected to the corresponding first terminals 88a. It is connected to the.
 一方、第2導電性フイルム10Bは、図7、図8A及び図13に示すように、第2透明基体12B(図8A参照)の一主面上に形成された第2導電部14Bを有する。この第2導電部14Bは、それぞれ垂直方向(n方向)に延在し、且つ、水平方向(m方向)に配列され、多数の格子にて構成された金属細線16による2以上の第2導電パターン64B(メッシュパターン)と、各第2導電パターン64Bの周辺に配列された金属細線16による第2補助パターン66Bとを有する。
 各第2導電パターン64Bは、それぞれ2以上の小格子70が組み合わされて構成されている。図7及び図13の例では、第2導電パターン64Bは、2以上の第2大格子68B(第2感知部)が垂直方向(n方向)に直列に接続されて構成され、各第2大格子68Bは、それぞれ2以上の小格子70が組み合わされて構成されている。また、第2大格子68Bの辺の周囲に、第2大格子68Bと非接続とされた上述の第2補助パターン66Bが形成されている。
On the other hand, as shown in FIGS. 7, 8A and 13, the second conductive film 10B has a second conductive portion 14B formed on one main surface of the second transparent substrate 12B (see FIG. 8A). The second conductive portions 14B respectively extend in the vertical direction (n direction), and are arranged in the horizontal direction (m direction), and two or more second conductive by the metal thin wires 16 formed by a large number of grids It has a pattern 64B (mesh pattern) and a second auxiliary pattern 66B of metal thin wires 16 arranged around each second conductive pattern 64B.
Each second conductive pattern 64B is configured by combining two or more small lattices 70, respectively. In the example of FIGS. 7 and 13, the second conductive pattern 64B is configured by connecting two or more second large grids 68B (second sensing units) in series in the vertical direction (n direction), and each second Grating 68B is configured by combining two or more small gratings 70, respectively. In addition, the above-mentioned second auxiliary pattern 66B which is not connected to the second large lattice 68B is formed around the side of the second large lattice 68B.
 この第2導電パターン64Bについても、第2大格子68Bを用いた例に限られない。例えば多数の小格子70が配列されたメッシュパターンが絶縁部で帯状に区画され、それが平行に複数配置された導電パターンを使用することができる。例えば、それぞれ端子からn方向に延在し、且つ、m方向に配列された2以上の帯状の第2導電パターン64Bを有するようにしてもよい。 The second conductive pattern 64B is not limited to the example using the second large grating 68B. For example, it is possible to use a conductive pattern in which a mesh pattern in which a large number of small grids 70 are arranged is divided into strips by the insulating portion and a plurality of mesh patterns are arranged in parallel. For example, two or more strip-like second conductive patterns 64B may be provided, each extending in the n direction from the terminal and arranged in the m direction.
 ここで、第2大格子68Bの大きさについて図14を参照しながら説明する。先ず、第2大格子68Bの4つの辺部(第5辺部69e~第8辺部69h)のうち、水平方向に隣接する第5辺部69eと第6辺部69fの延長線との交点を第5頂点71e、同じく水平方向に隣接する第7辺部69g(第5辺部69eと対向する辺部)と第8辺部69h(第6辺部69fと対向する辺部)の延長線との交点を第6頂点71fとする。
 同様に、第2大格子68Bの4つの辺部(第5辺部69e~第8辺部69h)のうち、垂直方向に隣接する第5辺部69eと第8辺部69hとの交点を第7頂点71g、同じく垂直方向に隣接する第6辺部69fと第7辺部69gとの交点を第8頂点71hとする。
Here, the size of the second large lattice 68B will be described with reference to FIG. First, among the four sides (the fifth side 69e to the eighth side 69h) of the second large lattice 68B, the intersection point of the fifth side 69e and the extension of the sixth side 69f adjacent in the horizontal direction. And an extension line of a seventh side portion 69g (side portion facing the fifth side portion 69e) and a eighth side portion 69h (side portion facing the sixth side portion 69f), which are horizontally adjacent to each other. And the sixth point 71f.
Similarly, of the four sides (the fifth side 69e to the eighth side 69h) of the second large lattice 68B, the intersection point of the fifth side 69e and the eighth side 69h adjacent in the vertical direction is An intersection point of the seventh apex 71g and the sixth side 69f and the seventh side 69g which are similarly adjacent in the vertical direction is taken as an eighth apex 71h.
 そして、第5頂点71eと第6頂点71f間の垂直方向(n方向)に沿った距離Lvbを、第2大格子68Bの第2方向に沿った長さとし、第7頂点71gと第8頂点71h間の水平方向(m方向)に沿った距離Lhbを、第2大格子68Bの第1方向に沿った長さとする。
 この場合に、第2大格子68Bの大きさ、すなわち、第2大格子68Bの縦横比(Lvb/Lhb)は、
   0.57<Lvb/Lhb<1.74
を満足するように設定される。
The distance Lvb between the fifth vertex 71e and the sixth vertex 71f along the vertical direction (n direction) is the length of the second large lattice 68B along the second direction, and the seventh vertex 71g and the eighth vertex 71h The distance Lhb along the horizontal direction (m direction) between them is the length along the first direction of the second large lattice 68B.
In this case, the size of the second large lattice 68B, that is, the aspect ratio (Lvb / Lhb) of the second large lattice 68B is
0.57 <Lvb / Lhb <1.74
Set to satisfy.
 水平方向(m方向)がタッチパネル50が設置される表示装置30(図6参照)の画素の配列方向と同じであれば、上述の第2大格子68Bの縦横比(Lvb/Lhb)は、0.57<Lvb/Lhb<1.00あるいは1.00<Lvb/Lhb<1.74に設定され、より好ましくは0.62<Lvb/Lhb<0.81あるいは1.23<Lvb/Lhb<1.61に設定される。
 なお、第1傾斜方向(x方向)は第2大格子68Bの第5辺部69e(及び第7辺部69g)に沿った方向となり、第2傾斜方向(y方向)は第2大格子68Bの第6辺部69f(及び第8辺部69h)に沿った方向となる。
If the horizontal direction (m direction) is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lvb / Lhb) of the second large grid 68B is 0. .57 <Lvb / Lhb <1.00 or 1.00 <Lbb / Lhb <1.74, more preferably 0.62 <Lvb / Lhb <0.81 or 1.23 <Lvb / Lhb <1. It is set to .61.
The first inclined direction (x direction) is a direction along the fifth side 69e (and the seventh side 69g) of the second large lattice 68B, and the second inclined direction (y direction) is the second large lattice 68B. Of the sixth side portion 69f (and the eighth side portion 69h).
 第2導電パターン64Bとして第2大格子68Bを用いた場合、例えば図13に示すように、隣接する第2大格子68B間には、これら第2大格子68Bを電気的に接続する金属細線16による第2接続部72Bが形成されている。第2接続部72Bは、n個(nは1より大きい実数)の小格子70が第1傾斜方向(x方向)に配列された大きさの中格子74が配置されて構成されている。第2大格子68Bの第2傾斜方向に沿った辺のうち、中格子74と隣接する部分には、小格子70の1つの辺が欠除した第2欠除部76Bが形成されている。
 また、隣接する第2導電パターン64B間は電気的に絶縁された第2絶縁部78Bが配されている。
 第2補助パターン66Bは、第2大格子68Bの辺のうち、第1傾斜方向に沿った辺に沿って配列された複数の第2補助線80B(第2傾斜方向を軸線方向とする)と、第2大格子68Bの辺のうち、第2傾斜方向に沿った辺に沿って配列された複数の第2補助線80B(第1傾斜方向を軸線方向とする)と、第2絶縁部78Bにおいて、それぞれ2つの第2補助線80BがL字状に組み合わされた2つの第2L字状パターン82Bが互いに対向して配置されたパターンとを有する。
When the second large lattices 68B are used as the second conductive patterns 64B, for example, as shown in FIG. 13, between the adjacent second large lattices 68B, metal thin wires 16 electrically connecting the second large lattices 68B. The second connection portion 72B is formed by the The second connection portion 72B is configured by arranging a middle lattice 74 having a size in which n (n is a real number greater than 1) small lattices 70 are arranged in the first inclination direction (x direction). Of the sides along the second inclination direction of the second large lattice 68B, a second notch 76B in which one side of the small lattice 70 is missing is formed in a portion adjacent to the middle lattice 74.
In addition, a second insulating portion 78B electrically insulated is provided between the adjacent second conductive patterns 64B.
Among the sides of the second large lattice 68B, the second auxiliary pattern 66B includes a plurality of second auxiliary lines 80B (the second inclined direction is taken as the axial direction) arranged along the side along the first inclined direction. A plurality of second auxiliary lines 80B (the first inclination direction is taken as an axial direction) arranged along the second inclination direction among the sides of the second large lattice 68B; In each of the patterns, two second L-shaped patterns 82B in which two second auxiliary lines 80B are combined in an L-shape are arranged to face each other.
 上述のように構成された第2導電性フイルム10Bは、図6及び図7に示すように、1つ置き(例えば奇数番目)の第2導電パターン64Bの一方の端部側に存在する第2大格子68Bの開放端、並びに偶数番目の第2導電パターン64Bの他方の端部側に存在する第2大格子68Bの開放端には、それぞれ第2接続部72Bが存在しない形状となっている。一方、奇数番目の各第2導電パターン64Bの他方の端部側に存在する第2大格子68Bの端部、並びに偶数番目の各第2導電パターン64Bの一方の端部側に存在する第2大格子68Bの端部は、それぞれ第2結線部84bを介して金属細線16による第2端子配線パターン86bに電気的に接続されている。
 すなわち、タッチパネル50に適用した第2導電性フイルム10Bは、図7に示すように、センサ部60に対応した部分に、多数の第2導電パターン64Bが配列され、端子配線部62には各第2結線部84bから導出された複数の第2端子配線パターン86bが配列されている。
The second conductive film 10B configured as described above is, as shown in FIGS. 6 and 7, the second conductive film 64B that exists on one end side of every other (for example, odd-numbered) second conductive pattern 64B. The second connection portion 72B is not present at the open end of the large lattice 68B and the open end of the second large lattice 68B present on the other end side of the even second conductive pattern 64B. . On the other hand, the end of the second large lattice 68B present on the other end side of each of the odd-numbered second conductive patterns 64B, and the second existing on one end of each of the even-numbered second conductive patterns 64B. The ends of the large lattices 68B are electrically connected to the second terminal wiring patterns 86b of the metal thin wires 16 via the second connection portions 84b.
That is, as shown in FIG. 7, in the second conductive film 10B applied to the touch panel 50, a large number of second conductive patterns 64B are arranged in a portion corresponding to the sensor unit 60. A plurality of second terminal wiring patterns 86b derived from the 2 connection portion 84b are arranged.
 図6に示すように、端子配線部62のうち、第2導電性フイルム10Bの一方の長辺側の周縁部には、その長さ方向中央部分に、複数の第2端子88bが前記一方の長辺の長さ方向に配列形成されている。また、センサ部60の一方の短辺(第2導電性フイルム10Bの一方の短辺に最も近い短辺:m方向)に沿って複数の第2結線部84b(例えば奇数番目の第2結線部84b)が直線状に配列され、センサ部60の他方の短辺(第2導電性フイルム10Bの他方の短辺に最も近い短辺:m方向)に沿って複数の第2結線部84b(例えば偶数番目の第2結線部84b)が直線状に配列されている。
 複数の第2導電パターン64Bのうち、例えば奇数番目の第2導電パターン64Bが、それぞれ対応する奇数番目の第2結線部84bに接続され、偶数番目の第2導電パターン64Bが、それぞれ対応する偶数番目の第2結線部84bに接続されている。奇数番目の第2結線部84bから導出された第2端子配線パターン86b並びに偶数番目の第2結線部84bから導出された第2端子配線パターン86bは、第2導電性フイルム10Bの一方の長辺におけるほぼ中央部に向かって引き回され、それぞれ対応する第2端子88bに電気的に接続されている。
 なお、第1端子配線パターン86aの導出形態を上述した第2端子配線パターン86bと同様にし、第2端子配線パターン86bの導出形態を上述した第1端子配線パターン86aと同様にしてもよい。
As shown in FIG. 6, in the peripheral portion of the long side of the second conductive film 10B in the terminal wiring portion 62, a plurality of second terminals 88b are provided at the center in the length direction. They are arranged in the longitudinal direction of the long side. In addition, a plurality of second connection portions 84b (for example, odd-numbered second connection portions) along one short side (short side closest to one short side of the second conductive film 10B: m direction) of the sensor unit 60 84b) are arranged in a straight line, and a plurality of second connection portions 84b (for example, the m direction along the other short side of the sensor unit 60 (short side closest to the other short side of the second conductive film 10B: m)) Even-numbered second connection portions 84 b) are linearly arranged.
Among the plurality of second conductive patterns 64B, for example, odd-numbered second conductive patterns 64B are respectively connected to corresponding odd-numbered second connection portions 84b, and even-numbered second conductive patterns 64B are respectively corresponding even-numbered It is connected to the 2nd 2nd connection part 84b. The second terminal wiring pattern 86b derived from the odd-numbered second connection portion 84b and the second terminal wiring pattern 86b derived from the even-numbered second connection portion 84b have one long side of the second conductive film 10B. , And are electrically connected to the corresponding second terminals 88b.
The derivation form of the first terminal wiring pattern 86a may be similar to that of the second terminal wiring pattern 86b described above, and the derivation form of the second terminal wiring pattern 86b may be similar to that of the first terminal wiring pattern 86a described above.
 第2大格子68Bの一辺の長さは、上述した第1大格子68Aと同様に、3~10mmであることが好ましく、4~6mmであることがより好ましい。一辺の長さが、上記下限値未満であると、検出時の第2大格子68Bの静電容量が減るため、検出不良になる可能性が高くなる。他方、上記上限値を超えると、位置検出精度が低下する虞がある。同様の観点から、第2大格子68Bを構成する小格子70の一辺の長さは100~400μm以下が好ましく、さらに好ましくは150~300μmであり、最も好ましくは210~250μm以下である。小格子70が上記範囲である場合には、さらに透明性も良好に保つことが可能であり、表示装置30の表示パネル58上にとりつけた際に、違和感なく表示を視認することができる。
 第1補助パターン66A(第1補助線80A)及び第2補助パターン66B(第2補助線80B)の線幅はそれぞれ30μm以下である。この場合、第1導電パターン64Aの線幅や第2導電パターン64Bの線幅と同じでもよく、異なっていてもよい。ただ、第1導電パターン64A、第2導電パターン64B、第1補助パターン66A及び第2補助パターン66Bの各線幅を同じにすることが好ましい。
The length of one side of the second large lattice 68B is preferably 3 to 10 mm, and more preferably 4 to 6 mm, as in the first large lattice 68A described above. If the length of one side is less than the above lower limit value, the electrostatic capacity of the second large lattice 68B at the time of detection is reduced, which increases the possibility of detection failure. On the other hand, if the above upper limit value is exceeded, there is a possibility that the position detection accuracy may be reduced. From the same viewpoint, the length of one side of the small lattice 70 constituting the second large lattice 68B is preferably 100 to 400 μm or less, more preferably 150 to 300 μm, and most preferably 210 to 250 μm or less. When the small lattice 70 is in the above range, it is possible to maintain good transparency, and when mounted on the display panel 58 of the display device 30, the display can be visually recognized without discomfort.
The line widths of the first auxiliary pattern 66A (first auxiliary line 80A) and the second auxiliary pattern 66B (second auxiliary line 80B) are each 30 μm or less. In this case, the line width of the first conductive pattern 64A or the line width of the second conductive pattern 64B may be the same or different. However, it is preferable to make the line widths of the first conductive pattern 64A, the second conductive pattern 64B, the first auxiliary pattern 66A, and the second auxiliary pattern 66B the same.
 そして、例えば第2導電性フイルム10B上に第1導電性フイルム10Aを積層して積層導電性フイルム54としたとき、図15に示すように、第1導電パターン64Aと第2導電パターン64Bとが交差して配置された形態とされ、具体的には、第1導電パターン64Aの第1接続部72Aと第2導電パターン64Bの第2接続部72Bとが第1透明基体12A(図8A参照)を間に挟んで対向し、第1導電部14Aの第1絶縁部78Aと第2導電部14Bの第2絶縁部78Bとが第1透明基体12Aを間に挟んで対向した形態となる。
 積層導電性フイルム54を上面から見たとき、図15に示すように、第1導電性フイルム10Aに形成された第1大格子68Aの隙間を埋めるように、第2導電性フイルム10Bの第2大格子68Bが配列された形態となる。このとき、第1大格子68Aと第2大格子68Bとの間に、第1補助パターン66Aと第2補助パターン66Bとが対向することによる組合せパターン90が形成される。組合せパターン90は、図16に示すように、第1補助線80Aの第1軸線92Aと第2補助線80Bの第2軸線92Bとが一致し、且つ、第1補助線80Aと第2補助線80Bとが重ならず、且つ、第1補助線80Aの一端と第2補助線80Bの一端とが一致し、これにより、小格子70(メッシュ形状)の1つの辺を構成することとなる。つまり、組合せパターン90は、2以上の小格子70(メッシュ形状)が組み合わされた形態となる。その結果、積層導電性フイルム54を上面から見たとき、図15に示すように、多数の小格子70(メッシュ形状)が敷き詰められた形態となる。
Then, for example, when the first conductive film 10A is laminated on the second conductive film 10B to form a laminated conductive film 54, as shown in FIG. 15, the first conductive pattern 64A and the second conductive pattern 64B are Specifically, the first connection portion 72A of the first conductive pattern 64A and the second connection portion 72B of the second conductive pattern 64B are arranged to intersect with each other, and the first transparent base 12A (see FIG. 8A). The first insulating portion 78A of the first conductive portion 14A and the second insulating portion 78B of the second conductive portion 14B are opposed to each other with the first transparent base 12A interposed therebetween.
When the laminated conductive film 54 is viewed from the top, as shown in FIG. 15, the second conductive film 10B is formed so as to fill the gaps of the first large lattices 68A formed on the first conductive film 10A. The large lattices 68B are arranged. At this time, a combination pattern 90 is formed between the first large lattice 68A and the second large lattice 68B by the first auxiliary pattern 66A and the second auxiliary pattern 66B facing each other. In the combination pattern 90, as shown in FIG. 16, the first axis 92A of the first auxiliary line 80A and the second axis 92B of the second auxiliary line 80B coincide with each other, and the first auxiliary line 80A and the second auxiliary line 80B does not overlap, and one end of the first auxiliary wire 80A coincides with one end of the second auxiliary wire 80B, thereby forming one side of the small lattice 70 (mesh shape). That is, the combination pattern 90 has a form in which two or more small lattices 70 (mesh shape) are combined. As a result, when the laminated conductive film 54 is viewed from the top, as shown in FIG. 15, a large number of small lattices 70 (mesh shape) are spread.
 従って、表示装置30の表示パネル58上に積層導電性フイルム54を設置すると、例えば図5に示すように、第1傾斜方向(x方向)に延び、且つ、第2傾斜方向(y方向)にピッチPs(細線ピッチ)で並ぶ複数の金属細線16と、第2傾斜方向に延び、且つ、第1傾斜方向に細線ピッチPsで並ぶ複数の金属細線16とがそれぞれ交差して形成されたメッシュパターン20となり、金属細線16が、表示装置30における画素32の水平の配列方向(m方向の配列)に対して一定の傾斜角度θを持つことになる。多数の小格子70を構成する金属細線16は、表示装置30における画素32の水平の配列方向(m方向の配列)に対して30°~60°の傾き、好ましくは30°~44°の傾きを持つことになる。また、積層導電性フイルム54における細線ピッチPsと、表示装置30における1つの画素32の対角線の長さLa1(あるいは縦方向に隣接する2つの画素32の対角線の長さLa2)とがほぼ同じあるいは近接した値となり、積層導電性フイルム54における金属細線16の配列方向と、表示装置30における1つの画素32の対角線(あるいは縦方向に隣接する2つの画素32の対角線)の方向もほぼ同じあるいは近接することとなる。その結果、画素32の配列周期と金属細線16の配列周期とのずれが小さくなり、モアレの発生が抑制されることになる。また、積層導電性フイルム54間において第1大格子68Aの縦横比及び第2大格子68Bの縦横比にばらつきがあってもモアレが発生しにくいという効果を得ることができ、積層導電性フイルム54の歩留まりの向上を図ることができる。 Therefore, when the laminated conductive film 54 is placed on the display panel 58 of the display device 30, for example, as shown in FIG. 5, it extends in the first inclination direction (x direction) and in the second inclination direction (y direction). A mesh pattern in which a plurality of thin metal wires 16 aligned at a pitch Ps (thin wire pitch) and a plurality of thin metal wires 16 extending in a second inclination direction and aligned at a thin wire pitch Ps in the first inclination direction cross each other 20, and the thin metal wires 16 have a constant inclination angle θ with respect to the horizontal arrangement direction (the arrangement in the m direction) of the pixels 32 in the display device 30. The thin metal wires 16 constituting the large number of small grids 70 have an inclination of 30 ° to 60 °, preferably 30 ° to 44 ° with respect to the horizontal arrangement direction (the arrangement in the m direction) of the pixels 32 in the display device 30 Will have Further, the thin line pitch Ps in the laminated conductive film 54 and the diagonal length La1 of one pixel 32 in the display device 30 (or the diagonal length La2 of two pixels 32 adjacent in the vertical direction) are substantially the same or The values are close to each other, and the arrangement direction of the thin metal wires 16 in the laminated conductive film 54 and the direction of the diagonal of one pixel 32 (or the diagonal of two vertically adjacent pixels 32) in the display device 30 are also substantially the same or close. It will be done. As a result, the deviation between the arrangement period of the pixels 32 and the arrangement period of the thin metal wires 16 becomes small, and the occurrence of moire is suppressed. In addition, even if there is variation in the aspect ratio of the first large lattice 68A and the aspect ratio of the second large lattice 68B between the laminated conductive films 54, it is possible to obtain an effect that moire is less likely to occur. It is possible to improve the yield of
 そして、この積層導電性フイルム54をタッチパネルとして使用する場合は、第1導電性フイルム10A上に保護層56を形成し、第1導電性フイルム10Aの多数の第1導電パターン64Aから導出された第1端子配線パターン86aと、第2導電性フイルム10Bの多数の第2導電パターン64Bから導出された第2端子配線パターン86bとを、例えばスキャンをコントロールする制御回路に接続する。
 タッチ位置の検出方式としては、自己容量方式や相互容量方式を好ましく採用することができる。すなわち、自己容量方式であれば、第1導電パターン64Aに対して順番にタッチ位置検出のための電圧信号を供給し、第2導電パターン64Bに対して順番にタッチ位置検出のための電圧信号を供給する。指先が保護層56の上面に接触又は近接させることで、タッチ位置に対向する第1導電パターン64A及び第2導電パターン64BとGND(グランド)間の容量が増加することから、当該第1導電パターン64A及び第2導電パターン64Bからの伝達信号の波形が他の導電パターンからの伝達信号の波形と異なった波形となる。従って、制御回路では、第1導電パターン64A及び第2導電パターン64Bから供給された伝達信号に基づいてタッチ位置を演算する。一方、相互容量方式の場合は、例えば第1導電パターン64Aに対して順番にタッチ位置検出のための電圧信号を供給し、第2導電パターン64Bに対して順番にセンシング(伝達信号の検出)を行う。指先が保護層56の上面に接触又は近接させることで、タッチ位置に対向する第1導電パターン64Aと第2導電パターン64B間の寄生容量に対して並列に指の浮遊容量が加わることから、当該第2導電パターン64Bからの伝達信号の波形が他の第2導電パターン64Bからの伝達信号の波形と異なった波形となる。従って、制御回路では、電圧信号を供給している第1導電パターン64Aの順番と、供給された第2導電パターン64Bからの伝達信号に基づいてタッチ位置を演算する。このような自己容量方式又は相互容量方式のタッチ位置の検出方法を採用することで、保護層56の上面に同時に2つの指先を接触又は近接させても、各タッチ位置を検出することが可能となる。なお、投影型静電容量方式の検出回路に関する先行技術文献として、米国特許第4,582,955号明細書、米国特許第4,686,332号明細書、米国特許第4,733,222号明細書、米国特許第5,374,787号明細書、米国特許第5,543,588号明細書、米国特許第7,030,860号明細書、米国出願公開特許2004/0155871号明細書等がある。
Then, when the laminated conductive film 54 is used as a touch panel, the protective layer 56 is formed on the first conductive film 10A, and the first conductive pattern 64A of the first conductive film 10A The one-terminal wiring pattern 86a and the second-terminal wiring pattern 86b derived from the large number of second conductive patterns 64B of the second conductive film 10B are connected to, for example, a control circuit that controls scanning.
As a touch position detection method, a self-capacitance method or a mutual capacitance method can be preferably employed. That is, in the case of the self-capacitance method, voltage signals for touch position detection are sequentially supplied to the first conductive pattern 64A, and voltage signals for touch position detection are sequentially transmitted to the second conductive pattern 64B. Supply. When the fingertip contacts or approaches the upper surface of the protective layer 56, the capacitance between the first conductive pattern 64A and the second conductive pattern 64B facing the touch position and the GND (ground) is increased. The waveforms of transmission signals from the 64A and the second conductive pattern 64B are different from the waveforms of transmission signals from other conductive patterns. Therefore, in the control circuit, the touch position is calculated based on the transmission signals supplied from the first conductive pattern 64A and the second conductive pattern 64B. On the other hand, in the case of the mutual capacitance method, for example, voltage signals for touch position detection are sequentially supplied to the first conductive pattern 64A, and sensing (detection of transmission signal) is sequentially performed on the second conductive pattern 64B. Do. The finger's floating capacitance is added in parallel to the parasitic capacitance between the first conductive pattern 64A and the second conductive pattern 64B facing the touch position by bringing the fingertip into contact with or in proximity to the upper surface of the protective layer 56. The waveform of the transmission signal from the second conductive pattern 64B is different from the waveform of the transmission signal from the other second conductive pattern 64B. Therefore, in the control circuit, the touch position is calculated based on the order of the first conductive patterns 64A supplying the voltage signals and the transmission signal from the supplied second conductive patterns 64B. By adopting such a self-capacitive or mutual-capacitive touch position detection method, even if two fingers are brought into contact with or close to the upper surface of the protective layer 56 simultaneously, each touch position can be detected. Become. As prior art documents relating to projected capacitance type detection circuits, U.S. Pat. No. 4,582,955, U.S. Pat. No. 4,686,332, U.S. Pat. No. 4,733,222 Specification, U.S. Patent No. 5,374,787, U.S. Patent No. 5,543,588, U.S. Patent No. 7,030,860, U.S. Patent Application Publication No. 2004/0155871 etc. There is.
 次に第2の実施の形態について、図17~図21を参照しながら説明する。第2の実施の形態に係る積層導電性フイルム104は、第1の実施の形態に係る積層導電性フイルム54と同様、図17に示すように第1導電性フイルム110Aと第2導電性フイルム110Bとが積層されて構成され、例えば、図6に示すタッチパネル50を有する表示装置30のセンサ本体52を構成し得る。また、導電性フイルム110(第1導電性フイルム110A、第2導電性フイルム110B)は、例えば図3に示す表示装置30の電磁波シールドフイルムや、タッチパネル用の導電性フイルムとして利用される。 Next, a second embodiment will be described with reference to FIGS. 17 to 21. Similar to the laminated conductive film 54 according to the first embodiment, the laminated conductive film 104 according to the second embodiment has a first conductive film 110A and a second conductive film 110B as shown in FIG. Are stacked, and for example, the sensor main body 52 of the display device 30 having the touch panel 50 shown in FIG. The conductive film 110 (the first conductive film 110A, the second conductive film 110B) is used as, for example, an electromagnetic shielding film of the display device 30 shown in FIG. 3 or a conductive film for a touch panel.
 第1導電性フイルム110Aは、図17、図18A及び図19に示すように、第1透明基体112A(図18A参照)の一主面上に形成された第1導電部114Aを有する。この第1導電部114Aは、それぞれ水平方向(m方向)に延在し、且つ、水平方向と直交する垂直方向(n方向)に配列され、多数の格子にて構成された金属細線16による2以上の第1導電パターン116A(メッシュパターン)と、各第1導電パターン116Aの周辺に配列された金属細線16による第1補助パターン120Aとを有する。なお、水平方向(m方向)は、例えば投影型静電容量方式のタッチパネル50の水平方向(又は垂直方向)あるいはタッチパネル50を設置した表示パネル58の水平方向(又は垂直方向)を示す。小格子70は、ここでは一番小さいひし形とされ、上述した第1の実施の形態の1つのメッシュ形状22(図1及び図4参照)と同じ形状あるいは相似形状とされている。 The first conductive film 110A has a first conductive portion 114A formed on one principal surface of a first transparent substrate 112A (see FIG. 18A), as shown in FIGS. Each of the first conductive portions 114A extends in the horizontal direction (m direction) and is arranged in the vertical direction (n direction) orthogonal to the horizontal direction, and is formed by a plurality of metal thin lines 16 formed of a large number of grids. The above-described first conductive pattern 116A (mesh pattern) and a first auxiliary pattern 120A made of fine metal wires 16 arranged around each first conductive pattern 116A are provided. The horizontal direction (m direction) indicates, for example, the horizontal direction (or vertical direction) of the projected capacitive touch panel 50 or the horizontal direction (or vertical direction) of the display panel 58 on which the touch panel 50 is installed. The small lattice 70 is here the smallest diamond and has the same or similar shape as the one mesh shape 22 (see FIGS. 1 and 4) of the first embodiment described above.
 従って、本実施の形態における小格子70も第1の実施の形態と同様、図12に示すように、小格子70の縦横比(Lvs/Lhs)は、
   0.57<Lvs/Lhs<1.74
を満足するように設定され、この場合も、水平方向がタッチパネル50が設置される表示装置30(図6参照)の画素の配列方向と同じであれば、上述の小格子70の縦横比(Lvs/Lhs)は、0.57<Lvs/Lhs<1.00あるいは1.00<Lvs/Lhs<1.74に設定され、より好ましくは0.62<Lvs/Lhs<0.81あるいは1.23<Lvs/Lhs<1.61に設定される。また、小格子70の線幅、すなわち、金属細線16の線幅は、上述したように、30μm以下から選択可能であり、小格子70の一辺の長さは100μm以上400μm以下から選択可能である。
Therefore, as in the first embodiment, as in the first embodiment, the aspect ratio (Lvs / Lhs) of the small lattice 70 in the present embodiment is as shown in FIG.
0.57 <Lvs / Lhs <1.74
If the horizontal direction is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lvs of the small lattice 70 described above is set. / Lhs) is set to 0.57 <Lvs / Lhs <1.00 or 1.00 <Lvs / Lhs <1.74, more preferably 0.62 <Lvs / Lhs <0.81 or 1.23. <Lvs / Lhs <1.61 is set. Further, the line width of the small lattice 70, that is, the line width of the thin metal wire 16 can be selected from 30 μm or less as described above, and the length of one side of the small lattice 70 can be selected from 100 μm to 400 μm .
 各第1導電パターン116Aは、2以上の第1大格子118A(第1感知部)が水平方向(m方向)に直列に接続されて構成され、各第1大格子118Aは、それぞれ2以上の小格子70が組み合わされて構成されている。また、第1大格子118Aの辺の周囲に、第1大格子118Aと非接続とされた上述の第1補助パターン120Aが形成されている。
 第1大格子118Aは、略ひし形状を有し、その各斜辺には、1以上の段差122を有する第1階段状パターン124Aが形成されている。段差122の高さは、小格子70の高さの整数倍に等しい。図19の例では、第1大格子118Aの斜辺には、2つの段差122が垂直方向の頂角部から水平方向の頂角部に向かって、3個目と7個目の小格子70の位置に段差122が形成されており、その段差122の高さは、1個の小格子70の高さに等しくなっている。また、第1階段状パターン124Aは、第1大格子118Aにおける垂直方向の頂角部から水平方向の頂角部に向かって、段差122を介して小格子70の列が減少する構成を有している。
Each of the first conductive patterns 116A is configured by connecting two or more first large grids 118A (first sensing units) in series in the horizontal direction (m direction), and each of the first large grids 118A includes two or more. The small lattice 70 is configured in combination. Further, around the side of the first large lattice 118A, the above-described first auxiliary pattern 120A which is not connected to the first large lattice 118A is formed.
The first large lattice 118A has a substantially rhombus shape, and a first step-like pattern 124A having one or more steps 122 is formed on each of the oblique sides thereof. The height of the step 122 is equal to an integral multiple of the height of the minor lattice 70. In the example of FIG. 19, on the oblique side of the first large lattice 118A, two steps 122 extend from the vertical apex to the horizontal apex in the third and seventh small lattices 70. A step 122 is formed at a position, and the height of the step 122 is equal to the height of one small lattice 70. Further, the first step-like pattern 124A has a configuration in which the rows of the small gratings 70 are reduced via the step 122 from the vertical apex to the horizontal apex in the first large lattice 118A. ing.
 第1大格子118Aは、上記したように略ひし形状であるが、より詳細には、水平方向の頂角の小格子70が欠除したソロバン珠形状を有している。すなわち、水平方向の2つの頂角部には、それぞれ垂直方向にr個(rは1より大きい整数)の小格子70が並んだ第1上底部126Aが形成され、垂直方向の2つの頂角部には、1つの小格子70が位置して、それ自体が頂角をなしている。図19では、第1大格子118Aの水平方向の2つの頂角部に、それぞれ垂直方向に4個の小格子70が並び、第1上底部126Aを構成している。 As described above, the first large lattice 118A has a substantially rhombus shape, but more specifically, has a soroban bead shape in which the small vertical lattice 70 in the horizontal direction is missing. That is, at the two vertical corners in the horizontal direction, a first upper bottom portion 126A in which r small grids 70 (r is an integer greater than 1) are arranged in the vertical direction is formed, and two vertical angles in the vertical direction In one part, one small lattice 70 is located, which itself is at an apex angle. In FIG. 19, four sublattices 70 are arranged in the vertical direction at two vertical apexes in the horizontal direction of the first large lattice 118A to constitute a first upper bottom portion 126A.
 なお、この場合に、第1大格子118Aの縦横比(Lva/Lha)を、便宜的に第1大格子118Aに内包される最大の大きさのひし形、すなわち水平方向の2つの第1上底部126A間に形成されるひし形の縦横比を用いて表すと、
   0.57<Lva/Lha<1.74
を満足するように設定される。
 水平方向(m方向)がタッチパネル50が設置される表示装置30(図6参照)の画素の配列方向と同じであれば、上述の第1大格子118Aの縦横比(Lva/Lha)は、0.57<Lva/Lha<1.00あるいは1.00<Lva/Lha<1.74に設定され、より好ましくは0.62<Lva/Lha<0.81あるいは1.23<Lva/Lha<1.61に設定される。
In this case, the aspect ratio (Lva / Lha) of the first large lattice 118A is the diamond of the largest size included in the first large lattice 118A for convenience, that is, the two first upper bottoms in the horizontal direction. Expressed using the aspect ratio of the diamond formed between 126A,
0.57 <Lva / Lha <1.74
Set to satisfy.
If the horizontal direction (m direction) is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lva / Lha) of the above-mentioned first large lattice 118A is 0 .57 <Lva / Lha <1.00 or 1.00 <Lva / Lha <1.74, more preferably 0.62 <Lva / Lha <0.81 or 1.23 <Lva / Lha <1. It is set to .61.
 さらに、第1大格子118Aの水平方向の2つの第1上底部126Aと、第1傾斜方向(x方向)の斜辺とが隣接する部分には、小格子70の一辺が欠除した第1欠除部128Aが設けられている。
 図19に示すように、水平方向に隣接する第1大格子118A間には、これら第1大格子118Aを接続する金属細線16による第1接続部132Aが形成されている。第1接続部132Aは、n個(nは1より大きい整数)の小格子70が第2傾斜方向(y方向)に配列された大きさの第1中格子134Aと、小格子70が第2傾斜方向にp個(pは1より大きい整数)、第1傾斜方向にq個(qは1より大きい整数)の小格子70がp×qで配列された大きさの第1中格子136Aによって構成されている。図19の例では、第1中格子134Aは、nが7であり、7個分の小格子70が第2傾斜方向に配列された大きさを有し、第1中格子136Aは、第2傾斜方向のpが3、第1傾斜方向のqが5であり、合計15個分の小格子70が配列された大きさを有する。
Furthermore, in a portion where the two first upper bottoms 126A in the horizontal direction of the first large lattice 118A and the oblique side in the first inclination direction (x direction) are adjacent to each other, a first notch in which one side of the small lattice 70 is missing A removing unit 128A is provided.
As shown in FIG. 19, between the first large lattices 118A adjacent in the horizontal direction, a first connection portion 132A is formed by the thin metal wires 16 connecting the first large lattices 118A. The first connection portion 132A includes a first middle grid 134A having a size in which n (n is an integer greater than 1) small lattices 70 are arranged in a second inclination direction (y direction), and the small lattices 70 The first middle lattice 136A has a size in which p (70 is an integer greater than 1) and q (q is an integer greater than 1) sublattices 70 are arrayed at p × q in the inclination direction. It is configured. In the example of FIG. 19, the first middle grid 134A has a size in which n is 7 and seven small grids 70 are arranged in the second tilt direction, and the first middle grid 136A is The inclination direction p is 3 and the first inclination direction q is 5 and has a size in which a total of 15 small lattices 70 are arranged.
 また、第1中格子136Aと第1大格子118Aとが隣接する部分には、上記した小格子70の1つの辺が欠除した第1欠除部128Aが位置している。
 さらに、水平方向に隣接する第1導電パターン116A間は、それぞれの第1大格子118Aを互いに非接続とする第1非接続部138Aが配されている。
 第1導電部114Aには、第1大格子118Aの辺の周囲に、第1大格子118Aと非接続とされた上述の第1補助パターン120Aが形成されている。ここで、第1補助パターン120Aは、第1大格子118Aの斜辺のうち、第1傾斜方向に沿った斜辺の第1階段状パターン124Aに沿って配列された複数の第1補助線130A(第2傾斜方向を軸線方向とする)と、第1大格子118Aの斜辺のうち、第2傾斜方向に沿った斜辺の第1階段状パターン124Aに沿って配列された複数の第1補助線130A、(第1傾斜方向を軸線方向とする)と、2つの第1補助線130AがL字状に組み合わされた第1L字状パターン131Aとを有する。
Further, at the portion where the first middle lattice 136A and the first large lattice 118A are adjacent to each other, the first missing portion 128A where one side of the small lattice 70 is missing is located.
Furthermore, between the first conductive patterns 116A adjacent in the horizontal direction, first non-connecting portions 138A are provided, which disconnect the first large grids 118A from each other.
In the first conductive portion 114A, the above-described first auxiliary pattern 120A not connected to the first large lattice 118A is formed around the side of the first large lattice 118A. Here, the first auxiliary pattern 120A includes a plurality of first auxiliary lines 130A arranged along the first step-like pattern 124A of the oblique side along the first inclination direction among the oblique sides of the first large lattice 118A (the first auxiliary pattern 120A). A plurality of first auxiliary lines 130A arranged along the first step-like pattern 124A on the oblique side along the second inclined direction among the oblique sides of the first large lattice 118A, and the oblique direction as the axial direction). (A first inclination direction is an axial direction), and a first L-shaped pattern 131A in which two first auxiliary lines 130A are combined in an L shape.
 各第1補助線130Aの軸線方向の長さは、小格子70の内周に沿った1つの辺の1/2の長さを有する。また、各第1補助線130Aは、第1大格子118Aから所定距離だけ離間した位置に形成されている。前記所定距離は、小格子70の内周に沿った1つの辺の1/2である。
 第1L字状パターン131Aは、第1階段状パターン124Aの段差122近傍において第1傾斜方向を軸線方向とする第1補助線130Aと、第2傾斜方向を軸線方向とする第1補助線130Aとが組み合わされて構成されている。第1L字状パターン131Aとしては、段差122の隅部に対向する第1L字状パターン131Aと、第1大格子118A間の第1非接続部138Aに配置される第1L字状パターン131Aとがある。図19に示すように、第1非接続部138Aに配置される第1L字状パターン131Aは、一つの第1大格子118Aの垂直方向の頂角部近傍に配置された2つの第1補助線130Aと、他の隣接する第1大格子118Aの頂角部近傍に配置された2つの第1補助線130Aとが、組み合わされることによって、2つの第1L字状パターン131Aが、水平方向に沿って互いに対向するように形成される。
 第1大格子118Aを構成する小格子70の一辺の長さは、上述したように、50μm以上であることが好ましく、100~400μmであることがより好ましく、150~300μmであることがさらに好ましく、最も好ましくは210~250μm以下である。小格子70が上記範囲である場合には、さらに透明性も良好に保つことが可能であり、表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。
The axial length of each first auxiliary line 130A has a half length of one side along the inner circumference of the small lattice 70. Further, each first auxiliary line 130A is formed at a position separated from the first large lattice 118A by a predetermined distance. The predetermined distance is half of one side along the inner periphery of the small lattice 70.
The first L-shaped pattern 131A includes a first auxiliary line 130A whose axial direction is the first inclination direction and a first auxiliary line 130A whose axial direction is the second inclination direction in the vicinity of the step 122 of the first step-like pattern 124A. Are configured in combination. As the first L-shaped pattern 131A, the first L-shaped pattern 131A opposed to the corner of the step 122 and the first L-shaped pattern 131A disposed in the first non-connecting portion 138A between the first large lattices 118A is there. As shown in FIG. 19, the first L-shaped pattern 131A disposed in the first non-connecting portion 138A includes two first auxiliary lines disposed in the vicinity of the vertical apex of one first large lattice 118A. The two first L-shaped patterns 131A extend in the horizontal direction by combining 130A and the two first auxiliary lines 130A arranged in the vicinity of the top corners of the other adjacent first large lattices 118A. It is formed to face each other.
As described above, the length of one side of the small lattice 70 constituting the first large lattice 118A is preferably 50 μm or more, more preferably 100 to 400 μm, and still more preferably 150 to 300 μm. And most preferably 210 to 250 μm or less. When the small lattice 70 is in the above-mentioned range, it is possible to further maintain good transparency, and when mounted on the front of the display device, it is possible to visually recognize the display without discomfort.
 上述のように構成された第1導電性フイルム110Aは、図17に示すように、各第1導電パターン116Aの一方の端部側に存在する第1大格子118Aの開放端は、第1接続部132Aが存在しない形状となっている。各第1導電パターン116Aの他方の端部側に存在する第1大格子118Aの端部は、第1結線部84aを介して金属細線16による第1端子配線パターン86aに接続されている。 In the first conductive film 110A configured as described above, as shown in FIG. 17, the open end of the first large lattice 118A present at one end side of each first conductive pattern 116A is a first connection The portion 132A does not exist. The end of the first large lattice 118A present on the other end side of each first conductive pattern 116A is connected to the first terminal wiring pattern 86a formed of the thin metal wire 16 through the first connection portion 84a.
 一方、第2導電性フイルム110Bは、図17、図18A及び図20に示すように、第2透明基体112B(図18A参照)の一主面上に形成された第2導電部114Bを有する。この第2導電部114Bは、それぞれ垂直方向(n方向)に延在し、且つ、水平方向(m方向)に配列され、多数の格子にて構成された金属細線16による2以上の第2導電パターン116B(メッシュパターン)と、各第2導電パターン116Bの周辺に配列された金属細線16による第2補助パターン120Bとを有する。
 各第2導電パターン116Bは、2以上の第2大格子(第2感知部)118Bが垂直方向(n方向)に直列に接続されて構成され、各第2大格子118Bは、それぞれ2以上の小格子70が組み合わされて構成されている。また、第2大格子118Bの辺の周囲に、第2大格子118Bと非接続とされた上述の第2補助パターン120Bが形成されている。
On the other hand, as shown in FIGS. 17, 18A and 20, the second conductive film 110B has a second conductive portion 114B formed on one main surface of a second transparent substrate 112B (see FIG. 18A). The second conductive portions 114B respectively extend in the vertical direction (n direction), and are arranged in the horizontal direction (m direction), and two or more second conductive by the metal thin wires 16 formed by a large number of grids It has a pattern 116B (mesh pattern) and a second auxiliary pattern 120B of fine metal wires 16 arranged around each second conductive pattern 116B.
Each second conductive pattern 116B is configured by serially connecting two or more second large grids (second sensing units) 118B in the vertical direction (n direction), and each second large grid 118B includes two or more. The small lattice 70 is configured in combination. In addition, the above-mentioned second auxiliary pattern 120B which is not connected to the second large lattice 118B is formed around the side of the second large lattice 118B.
 第2大格子118Bは、略ひし形状を有し、その各斜辺には、1以上の段差122を有する第2階段状パターン124Bが形成されている。段差122の高さは、小格子70の高さの整数倍に等しい。図20の例では、第2大格子118Bの斜辺には、2つの段差122が小格子70の4個分の間隔で形成されており、その段差122の高さは、1個の小格子70の高さに等しくなっている。また、第2階段状パターン124Bは、第2大格子118Bにおける水平方向の頂角部から垂直方向の頂角部に向かって、段差122を介して小格子70の列が増加する構成を有している。
 第2大格子118Bは、上記したように略ひし形状であるが、より詳細には、垂直方向の頂角の小格子70が欠除したソロバン珠形状を有している。すなわち、垂直方向の2つの頂角部には、それぞれ水平方向にr個(rは1より大きい整数)の小格子70が並んだ第2上底部126Bが形成され、水平方向の2つの頂角部には、1つの小格子70が位置して、それ自体が頂角をなしている。図20では、第2大格子118Bの垂直方向の2つの頂角部に、それぞれ水平方向に4個の小格子70が並び、第2上底部126Bを構成している。
The second large lattice 118B has a substantially rhombus shape, and a second step-like pattern 124B having one or more level differences 122 is formed on each oblique side thereof. The height of the step 122 is equal to an integral multiple of the height of the minor lattice 70. In the example of FIG. 20, two steps 122 are formed at intervals of four small lattices 70 on the oblique side of the second large lattice 118 B, and the height of the steps 122 is one small lattice 70. Is equal to the height of the Further, the second step-like pattern 124B has a configuration in which the number of rows of small gratings 70 increases through the steps 122 from the horizontal apex to the vertical apex in the second large lattice 118B. ing.
As described above, the second large lattice 118B has a substantially diamond shape, but more specifically, has a soroban bead shape in which the small lattice 70 in the vertical direction is omitted. That is, at the two vertical corners in the vertical direction, a second upper bottom portion 126B in which r small grids 70 (r is an integer greater than 1) are arranged in the horizontal direction is formed, and two vertical angles in the horizontal direction In one part, one small lattice 70 is located, which itself is at an apex angle. In FIG. 20, four sublattices 70 are arranged in the horizontal direction at two vertical apexes of the second large lattice 118B in the vertical direction, respectively, to form a second upper bottom 126B.
 なお、この場合に、第2大格子118Bの縦横比(Lva/Lha)を、便宜的に第2大格子118Bに内包される最大の大きさのひし形、すなわち水平方向の2つの頂角部間に形成されるひし形の縦横比を用いて表すと、
   0.57<Lva/Lha<1.74
を満足するように設定される。
 水平方向(m方向)がタッチパネル50が設置される表示装置30(図6参照)の画素の配列方向と同じであれば、上述の第2大格子118Bの縦横比(Lva/Lha)は、0.57<Lva/Lha<1.00あるいは1.00<Lva/Lha<1.74に設定され、より好ましくは0.62<Lva/Lha<0.81あるいは1.23<Lva/Lha<1.61に設定される。
 さらに、第2大格子118Bの垂直方向の2つの第2上底部126Bと、第2傾斜方向の斜辺とが隣接する部分には、小格子70の一辺が欠除した第2欠除部128Bが設けられている。
In this case, the aspect ratio (Lva / Lha) of the second large lattice 118B is the diamond of the largest size included in the second large lattice 118B for the sake of convenience, that is, between two apexes in the horizontal direction. Expressed using the aspect ratio of the diamond formed in
0.57 <Lva / Lha <1.74
Set to satisfy.
If the horizontal direction (m direction) is the same as the arrangement direction of the pixels of the display device 30 (see FIG. 6) in which the touch panel 50 is installed, the aspect ratio (Lva / Lha) of the second large lattice 118B described above is 0. .57 <Lva / Lha <1.00 or 1.00 <Lva / Lha <1.74, more preferably 0.62 <Lva / Lha <0.81 or 1.23 <Lva / Lha <1. It is set to .61.
Furthermore, in a portion where the two second upper bottoms 126B in the vertical direction of the second large lattice 118B and the oblique side in the second inclined direction are adjacent, a second notch 128B in which one side of the small lattice 70 is missing is It is provided.
 図20に示すように、垂直方向に隣接する第2大格子118B間には、これら第2大格子118Bを接続する金属細線16による第2接続部132Bが形成されている。第2接続部132Bは、n個(nは1より大きい整数)の小格子70が第1傾斜方向に配列された大きさの第2中格子134Bと、小格子70が第1傾斜方向にp個(pは1より大きい整数)、第2傾斜方向にq個(qは1より大きい整数)の小格子70がp×qで配列された大きさの第2中格子136Bによって構成されている。図20の例では、第2中格子134Bは、nが7であり、7個分の小格子70が第1傾斜方向に配列された大きさを有し、第2中格子136Bは、第1傾斜方向のpが3、第2傾斜方向のqが5であり、合計15個分の小格子70が配列された大きさを有する。
 また、第2中格子136Bと第2大格子118Bとが隣接する部分には、上記した小格子70の1つの辺が欠除した第2欠除部128Bが位置している。
 さらに、水平方向に隣接する第2導電パターン116B間は、それぞれの第2大格子118Bを互いに非接続とする第2非接続部138Bが配されている。
As shown in FIG. 20, between the second large lattices 118B vertically adjacent to each other, a second connection portion 132B is formed by the thin metal wire 16 connecting the second large lattices 118B. The second connection portion 132B has a second middle grid 134B of a size in which n (n is an integer greater than 1) small lattices 70 are arranged in the first inclination direction, and the small lattices 70 are p in the first inclination direction. The second middle grid 136B has a size in which q (p is an integer greater than 1) sublattices 70 are arranged in p × q in the second inclination direction (p is an integer greater than 1) . In the example of FIG. 20, the second middle grid 134B has a size in which n is 7 and seven small grids 70 are arranged in the first tilt direction, and the second middle grid 136B is The inclination direction p is 3 and the second inclination direction q is 5 and has a size in which a total of 15 small lattices 70 are arranged.
In addition, the second missing portion 128B in which one side of the small lattice 70 described above is missing is located at a portion where the second middle grating 136B and the second large grating 118B are adjacent to each other.
Furthermore, between the second conductive patterns 116B adjacent in the horizontal direction, the second non-connecting portions 138B that disconnect the second large grids 118B from each other are disposed.
 第2導電部114Bには、第2大格子118Bの辺の周囲に、第2大格子118Bと非接続とされた上述の第2補助パターン120Bが形成されている。ここで、第2補助パターン120Bは、第2大格子118Bの斜辺のうち、第2傾斜方向に沿った斜辺の第1階段状パターン124Bに沿って配列された複数の第2補助線130B(第1傾斜方向を軸線方向とする)と、第2大格子118Bの斜辺のうち、第1傾斜方向に沿った斜辺の第1階段状パターン124Bに沿って配列された複数の第2補助線130B(第2傾斜方向を軸線方向とする)と、2つの第2補助線130BがL字状に組み合わされた第2L字状パターン131Bとを有する。
 各第2補助線130Bの軸線方向の長さは、上述した第1補助線130Aと同様に、小格子70の内周に沿った1つの辺の1/2の長さを有する。また、各第2補助線130Bは、第2大格子118Bから所定距離だけ離間した位置に形成されている。この所定距離についても、上述した第1補助線130Aと同様に、小格子70の内周に沿った1つの辺の1/2である。
In the second conductive portion 114B, the above-mentioned second auxiliary pattern 120B not connected to the second large lattice 118B is formed around the side of the second large lattice 118B. Here, the second auxiliary patterns 120B may include a plurality of second auxiliary lines 130B (second A plurality of second auxiliary lines 130B arranged along the first step-like pattern 124B of the oblique side along the first inclination direction among the oblique sides of the second large lattice 118B and the first inclination direction as the axial direction And the second L-shaped pattern 131B in which two second auxiliary lines 130B are combined in an L-shape.
The axial length of each of the second auxiliary lines 130B has a half length of one side along the inner periphery of the small lattice 70, similarly to the first auxiliary lines 130A described above. Further, each second auxiliary line 130B is formed at a position separated from the second large lattice 118B by a predetermined distance. The predetermined distance is also half of one side along the inner periphery of the small lattice 70, as in the first auxiliary line 130A described above.
 第2L字状パターン131Bは、第1階段状パターン124Bの段差122近傍において第2傾斜方向を軸線方向とする第2補助線130Bと、第2傾斜方向を軸線方向とする第2補助線130Bとが組み合わされて構成されている。第2L字状パターン131Bとしては、段差122の隅部に対向する第2L字状パターン131Bと、第2大格子118B間の第2非接続部138Bに配置される第2L字状パターン131Bとがある。図20に示すように、第2非接続部138Bに配置される第2L字状パターン131Bは、一つの第2大格子118Bの水平方向の頂角部近傍に配置された2つの第2補助線130Bと、他の隣接する第2大格子118Bの頂角部近傍に配置された2つの第2補助線130Bとが、組み合わされることによって、2つの第2L字状パターン131Bが、垂直方向に沿って互いに対向するように形成される。
 第2大格子118Bを構成する小格子70の一辺の長さは、上述したように、50μm以上であることが好ましく、100~400μmであることがより好ましく、150~300μmであることがさらに好ましく、最も好ましくは210~250μm以下である。小格子70が上記範囲である場合には、さらに透明性も良好に保つことが可能であり、表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。
The second L-shaped pattern 131B includes a second auxiliary line 130B whose axial direction is the second inclination direction in the vicinity of the step 122 of the first step-like pattern 124B, and a second auxiliary line 130B whose axial direction is the second inclination direction. Are configured in combination. As the second L-shaped pattern 131 B, the second L-shaped pattern 131 B facing the corner of the step 122 and the second L-shaped pattern 131 B disposed in the second non-connecting portion 138 B between the second large grids 118 B is there. As shown in FIG. 20, the second L-shaped pattern 131B disposed in the second non-connecting portion 138B includes two second auxiliary lines disposed in the vicinity of the horizontal apex of one second large lattice 118B. The two second L-shaped patterns 131B extend in the vertical direction by combining the 130B and the two second auxiliary lines 130B disposed near the top corners of the other adjacent second large lattices 118B. It is formed to face each other.
As described above, the length of one side of the small lattice 70 constituting the second large lattice 118B is preferably 50 μm or more, more preferably 100 to 400 μm, and still more preferably 150 to 300 μm. And most preferably 210 to 250 μm or less. When the small lattice 70 is in the above-mentioned range, it is possible to further maintain good transparency, and when mounted on the front of the display device, it is possible to visually recognize the display without discomfort.
 上述のように構成された第2導電性フイルム110Bは、図17に示すように、1つ置き(例えば奇数番目)の第2導電パターン116Bの一方の端部側に存在する第2大格子118Bの開放端、並びに偶数番目の第2導電パターン116Bの他方の端部側に存在する第2大格子118Bの開放端には、それぞれ第2接続部132Bが存在しない形状となっている。一方、奇数番目の各第2導電パターン116Bの他方の端部側に存在する第2大格子118Bの端部、並びに偶数番目の各第2導電パターン116Bの一方の端部側に存在する第2大格子118Bの端部は、それぞれ第2結線部84bを介して金属細線16による第2端子配線パターン86bに接続されている。そして、第1の実施の形態と同様にタッチパネル50に適用される。 The second conductive film 110B configured as described above is, as shown in FIG. 17, a second large lattice 118B that exists on one end side of an alternate (for example, odd-numbered) second conductive pattern 116B. The second connection portion 132B is not present at the open end of the second large grid 118B existing at the other end of the even second conductive pattern 116B and the open end of the even second conductive pattern 116B. On the other hand, the end of the second large lattice 118B present at the other end of each of the odd-numbered second conductive patterns 116B, and the second end present at one of the ends of the even-numbered second conductive patterns 116B. The end portions of the large lattice 118B are connected to the second terminal wiring patterns 86b formed of the thin metal wires 16 through the second connection portions 84b, respectively. Then, the touch panel 50 is applied as in the first embodiment.
 また、第1導電パターン116A(第1大格子118A、第1接続部132A)の線幅、並びに第2導電パターン116B(第2大格子118B、第2接続部132B)の線幅は、それぞれ下限は1μm以上、3μm以上、4μm以上、もしくは5μm以上が好ましく、上限は15μm以下、10μm以下、9μm以下、8μm以下が好ましい。線幅が上記下限値未満の場合には、導電性が不十分となるためタッチパネルに使用した場合に、検出感度が不十分となる。他方、上記上限値を越えると金属細線16に起因するモアレが顕著になったり、タッチパネルに使用した際に視認性が悪くなったりする。なお、上記範囲にあることで、金属細線16による導電パターンのモアレが改善され、視認性が特によくなる。また、少なくとも第1透明基体112Aの厚みは75μm以上350μm以下が好ましく、さらに好ましくは80μm以上250μmであり、特に好ましくは100μm以上200μm以下となっている。 In addition, the line width of the first conductive pattern 116A (the first large lattice 118A, the first connection portion 132A) and the line width of the second conductive pattern 116B (the second large lattice 118B, the second connection portion 132B) have lower limits, respectively. Is preferably 1 μm or more, 3 μm or more, 4 μm or more, or 5 μm or more, and the upper limit is preferably 15 μm or less, 10 μm or less, 9 μm or less, or 8 μm or less. When the line width is less than the above lower limit value, the conductivity becomes insufficient, and therefore the detection sensitivity becomes insufficient when used in a touch panel. On the other hand, if the above upper limit value is exceeded, moiré caused by the thin metal wires 16 becomes remarkable, or the visibility becomes poor when used in a touch panel. In addition, by being in the above-mentioned range, the moire of the conductive pattern by the metal thin wires 16 is improved, and the visibility is particularly improved. The thickness of at least the first transparent substrate 112A is preferably 75 μm to 350 μm, more preferably 80 μm to 250 μm, and particularly preferably 100 μm to 200 μm.
 第1補助パターン120A(第1補助線130A)及び第2補助パターン120B(第2補助線130B)の線幅は、それぞれ下限は1μm以上、3μm以上、4μm以上、もしくは5μm以上が好ましく、上限は15μm以下、10μm以下、9μm以下、8μm以下が好ましい。この場合、第1導電パターン116Aの線幅や第2導電パターン116Bの線幅と同じでもよく、異なっていてもよい。ただ、第1導電パターン116A、第2導電パターン116B、第1補助パターン120A及び第2補助パターン120Bの各線幅を同じにすることが好ましい。 The lower limit of the line width of the first auxiliary pattern 120A (first auxiliary line 130A) and the second auxiliary pattern 120B (second auxiliary line 130B) is preferably 1 μm or more, 3 μm or more, 4 μm or more, or 5 μm or more, and the upper limit is preferably 15 micrometers or less, 10 micrometers or less, 9 micrometers or less, 8 micrometers or less are preferable. In this case, the line width of the first conductive pattern 116A or the line width of the second conductive pattern 116B may be the same or different. However, it is preferable that the line widths of the first conductive pattern 116A, the second conductive pattern 116B, the first auxiliary pattern 120A, and the second auxiliary pattern 120B be the same.
 そして、例えば第2導電性フイルム110B上に第1導電性フイルム110Aを積層して積層導電性フイルム104としたとき、図21に示すように、第1導電パターン116Aと第2導電パターン116Bとが交差して配置された形態とされ、具体的には、第1導電パターン116Aの第1接続部132Aと第2導電パターン116Bの第2接続部132Bとが第1透明基体112A(図18A参照)を間に挟んで対向し、第1導電部114Aの第1非接続部138Aと第2導電部114Bの第2非接続部138Bとが第1透明基体112Aを間に挟んで対向した形態となる。 Then, for example, when the first conductive film 110A is laminated on the second conductive film 110B to form the laminated conductive film 104, as shown in FIG. 21, the first conductive pattern 116A and the second conductive pattern 116B are the same. Specifically, the first connection portion 132A of the first conductive pattern 116A and the second connection portion 132B of the second conductive pattern 116B are arranged to cross each other, and the first transparent substrate 112A (see FIG. 18A). And the first non-connecting portion 138A of the first conductive portion 114A and the second non-connecting portion 138B of the second conductive portion 114B face each other with the first transparent substrate 112A interposed therebetween. .
 積層導電性フイルム104を上面から見たとき、図21に示すように、第1導電性フイルム110Aに形成された第1大格子118Aの隙間を埋めるように、第2導電性フイルム110Bの第2大格子118Bが配列された形態となる。
 このとき、第1接続部132Aと第2接続部132Bとが対向すること、すなわち、第1中格子134Aと第2中格子134Bとが対向し、第1中格子136Aと第2中格子136Bとが対向することにより、略長方形状の組合せパターン140が形成される。この組合せパターン140において、第1中格子134Aと第2中格子134Bとは対角線上に配置される。図19と図20で示す第1接続部132Aと第2接続部132Bとによって形成される組合せパターン140は、対角線上に小格子70が7個、4辺に小格子70が4個ずつ並んだ合計25個の小格子70から構成される。なお、組合せパターン140の頂角に位置する第1中格子134Aの小格子70の一辺は、第2大格子118Bおける第1欠除部128Aの欠除した一辺を補い、第2中格子134Bの小格子70の一辺は、第1大格子118Aおける第1欠除部128Aの欠除した一辺を補う。
When the laminated conductive film 104 is viewed from the top, as shown in FIG. 21, the second conductive film 110B is formed so as to fill the gap of the first large lattice 118A formed on the first conductive film 110A. The large lattices 118B are arranged.
At this time, the first connection portion 132A and the second connection portion 132B face each other, that is, the first middle grid 134A and the second middle grid 134B face each other, and the first middle grid 136A and the second middle grid 136B Are formed to form a substantially rectangular combination pattern 140. In the combination pattern 140, the first middle grid 134A and the second middle grid 134B are arranged diagonally. In the combination pattern 140 formed by the first connection portion 132A and the second connection portion 132B shown in FIGS. 19 and 20, seven small lattices 70 are arranged diagonally and four small lattices 70 are arranged on four sides in a diagonal direction. A total of 25 small lattices 70 are provided. Note that one side of the small lattice 70 of the first middle lattice 134A located at the apex angle of the combination pattern 140 compensates for the missing side of the first missing portion 128A in the second large lattice 118B, and the second middle lattice 134B One side of the small lattice 70 compensates for one side of the first large lattice 118A in which the first lacked portion 128A is missing.
 さらに、第1大格子118Aと第2大格子118Bとの間に、第1補助パターン120Aと第2補助パターン120Bとが対向することによる組合せパターン142が形成される。組合せパターン142は、第1の実施の形態における図6に示した例と同様に、第1補助線130Aの第1軸線と第2補助線130Bの第2軸線とが一致し、且つ、第1補助線130Aと第2補助線130Bとが重ならず、且つ、第1補助線130Aの一端と第2補助線130Bの一端とが一致し、これにより、小格子70(メッシュ形状)の1つの辺を構成することとなる。 Furthermore, a combined pattern 142 is formed between the first large lattice 118A and the second large lattice 118B by the first auxiliary pattern 120A and the second auxiliary pattern 120B facing each other. In the combination pattern 142, as in the example shown in FIG. 6 in the first embodiment, the first axis of the first auxiliary line 130A coincides with the second axis of the second auxiliary line 130B, and the first pattern The auxiliary line 130A and the second auxiliary line 130B do not overlap, and one end of the first auxiliary line 130A coincides with one end of the second auxiliary line 130B, whereby one of the small lattices 70 (mesh shape) is formed. It will constitute an edge.
 つまり、組合せパターン140と、142とは、2以上の小格子70(メッシュ形状)が組み合わされた形態となる。その結果、積層導電性フイルム104を上面から見たとき、図21に示すように、多数の小格子70(メッシュ形状)が敷き詰められた形態となる。なお、このように第1補助線130Aと第2補助線130Bとによって小格子70の1つ辺を構成する位置が、第2の実施の形態における基準位置となる。
 本実施の形態では、段差122を有する第1と第2の階段状パターン124A、124Bとが配列されることにより、より一層、第1大格子118Aと第2大格子118Bとの境界が目立たなくなり、視認性が向上する。
 この積層導電性フイルム104をタッチパネルとして使用する場合は、第1導電性フイルム110A上に保護層56を形成し、第1導電性フイルム110Aの多数の第1導電パターン116Aから導出された第1端子配線パターン86aと、第2導電性フイルム110Bの多数の第2導電パターン116Bから導出された第2端子配線パターン86bとを、例えばスキャンをコントロールする制御回路に接続する。
That is, the combination pattern 140 and 142 have a form in which two or more small lattices 70 (mesh shape) are combined. As a result, when the laminated conductive film 104 is viewed from the top, as shown in FIG. 21, a large number of small lattices 70 (mesh shape) are spread. The position where one side of the small lattice 70 is configured by the first auxiliary line 130A and the second auxiliary line 130B in this manner is the reference position in the second embodiment.
In the present embodiment, by arranging the first and second step- like patterns 124A and 124B having the step 122, the boundary between the first large lattice 118A and the second large lattice 118B becomes even less noticeable. , Improve the visibility.
When this laminated conductive film 104 is used as a touch panel, the protective layer 56 is formed on the first conductive film 110A, and the first terminals derived from the many first conductive patterns 116A of the first conductive film 110A. The wiring pattern 86a and the second terminal wiring pattern 86b derived from the many second conductive patterns 116B of the second conductive film 110B are connected to, for example, a control circuit that controls scanning.
 上述の第1と第2の実施の形態に係る積層導電性フイルム54、104では、図7、図8A、図17、図18Aに示すように、例えば第1の実施の形態では、第1透明基体12Aの一主面に第1導電部14Aを形成し、第2透明基体12Bの一主面に第2導電部14Bを形成するようにしたが、その他、図8B、図18Bに示すように、例えば第1の実施の形態において、第1透明基体12Aの一主面に第1導電部14Aを形成し、第1透明基体12Aの他主面に第2導電部14Bを形成するようにしてもよい。この場合、第2透明基体12Bが存在せず、第2導電部14B上に、第1透明基体12Aが積層され、第1透明基体12A上に第1導電部14Aが積層された形態となる。また、第1導電性フイルム10Aと第2導電性フイルム10Bとはその間に他の層が存在してもよく、第1導電パターン64Aと第2導電パターン64Bとが絶縁状態であれば、それらが対向して配置されてもよい。 In the laminated conductive films 54 and 104 according to the first and second embodiments described above, as shown in FIG. 7, FIG. 8A, FIG. 17 and FIG. 18A, for example, in the first embodiment, the first transparent The first conductive portion 14A is formed on one main surface of the base 12A, and the second conductive portion 14B is formed on one main surface of the second transparent base 12B. In addition, as shown in FIGS. 8B and 18B For example, in the first embodiment, the first conductive portion 14A is formed on one main surface of the first transparent base 12A, and the second conductive portion 14B is formed on the other main surface of the first transparent base 12A. It is also good. In this case, the second transparent base 12B does not exist, the first transparent base 12A is stacked on the second conductive portion 14B, and the first conductive portion 14A is stacked on the first transparent base 12A. In addition, another layer may be present between the first conductive film 10A and the second conductive film 10B, and if the first conductive pattern 64A and the second conductive pattern 64B are in an insulating state, they are present. It may be disposed opposite to each other.
 また、図6に示すように、第1導電性フイルム10Aと第2導電性フイルム10Bの例えば各コーナー部に、第1導電性フイルム10Aと第2導電性フイルム10Bの貼り合わせの際に使用する位置決め用の第1アライメントマーク94a及び第2アライメントマーク94bを形成することが好ましい。この第1アライメントマーク94a及び第2アライメントマーク94bは、第1導電性フイルム10Aと第2導電性フイルム10Bを貼り合わせて積層導電性フイルム54とした場合に、新たな複合アライメントマークとなり、この複合アライメントマークは、該積層導電性フイルム54を表示パネル58に設置する際に使用する位置決め用のアライメントマークとしても機能することになる。
 上述の例では、第1導電性フイルム10A、110A及び第2導電性フイルム10B、110Bを投影型静電容量方式のタッチパネル50に適用した例を示したが、その他、表面型静電容量方式のタッチパネルや、抵抗膜式のタッチパネルにも適用することができる。
 また、上述の例では、導電性フイルム10、110を主に電磁波シールドフイルムとタッチパネル用の積層導電性フイルムに使用した例を示したが、その他、表示装置30の表示パネル58に設置される光学フイルムとしても利用することができる。この場合、表示パネル58全面に対応してメッシュパターンが形成された導電性フイルムとしてもよいし、あるいは表示画面58a全面に対応してメッシュパターン20が形成された導電性フイルム10、110としてもよいし、表示画面58a内の一部の領域(コーナー部、中央部等)に対応してメッシュパターンが形成された導電性フイルム10、110としてもよい。
In addition, as shown in FIG. 6, it is used at the time of bonding of the first conductive film 10A and the second conductive film 10B to, for example, each corner of the first conductive film 10A and the second conductive film 10B. It is preferable to form a first alignment mark 94 a and a second alignment mark 94 b for positioning. When the first conductive film 10A and the second conductive film 10B are bonded together to form a laminated conductive film 54, the first alignment mark 94a and the second alignment mark 94b become a new composite alignment mark, and this composite alignment mark The alignment mark also functions as a positioning alignment mark used when placing the laminated conductive film 54 on the display panel 58.
In the above-mentioned example, although the example which applied the 1st conductive film 10A, 110A and the 2nd conductive film 10B, 110B to the touch panel 50 of a projection type electrostatic capacity method was shown, in addition, it is a surface type electrostatic capacity type The present invention can also be applied to a touch panel or a resistive touch panel.
In the above example, the conductive films 10 and 110 are mainly used for the electromagnetic wave shielding film and the laminated conductive film for the touch panel, but in addition, the optical installed in the display panel 58 of the display device 30 It can also be used as a film. In this case, the conductive film may have a mesh pattern formed corresponding to the entire surface of the display panel 58, or the conductive films 10 and 110 may have mesh patterns 20 formed corresponding to the entire surface of the display screen 58a. Alternatively, the conductive films 10 and 110 may have mesh patterns corresponding to partial areas (corners, central parts, etc.) in the display screen 58a.
 次に、導電性フイルム10、110の製造方法について、第1の実施の形態を例に挙げて説明する。なお、第2の実施の形態においても、同様の方法を適用できることは勿論である。 Next, a method of manufacturing the conductive films 10 and 110 will be described by taking the first embodiment as an example. Of course, the same method can be applied to the second embodiment.
 導電性フイルム10を製造する方法としては、例えば透明基体12に感光性ハロゲン化銀塩を含有する乳剤層を有する感光材料を露光し、現像処理を施すことによって、露光部及び未露光部にそれぞれ金属銀部及び光透過性部を形成してメッシュパターン20を形成するようにしてもよい。なお、さらに金属銀部に物理現像及び/又はめっき処理を施すことによって金属銀部に導電性金属を担持させるようにしてもよい。 As a method of producing the conductive film 10, for example, a photosensitive material having an emulsion layer containing a photosensitive halogenated silver salt is exposed to the transparent substrate 12 and developed, whereby the exposed area and the unexposed area are respectively developed. The metallic silver portion and the light transmitting portion may be formed to form the mesh pattern 20. The conductive metal may be supported on the metal silver portion by further performing physical development and / or plating treatment on the metal silver portion.
 あるいは、第1透明基体12A上及び第2透明基体12B上にめっき前処理材を用いて感光性被めっき層を形成し、その後、露光、現像処理した後にめっき処理を施すことにより、露光部及び未露光部にそれぞれ金属部及び光透過性部を形成して第1導電パターン64A及び第2導電パターン64Bを形成するようにしてもよい。なお、さらに金属部に物理現像及び/又はめっき処理を施すことによって金属部に導電性金属を担持させるようにしてもよい。
 めっき前処理材を用いる方法のさらに好ましい形態としては、次の2通りの形態が挙げられる。なお、下記のより具体的な内容は、特開2003-213437号公報、特開2006-64923号公報、特開2006-58797号公報、特開2006-135271号公報等に開示されている。
(a) 透明基体上に、めっき触媒又はその前駆体と相互作用する官能基を含む被めっき層を塗布し、その後、露光・現像した後にめっき処理して金属部を被めっき材料上に形成させる態様。
(b) 透明基体上に、ポリマー及び金属酸化物を含む下地層と、めっき触媒又はその前駆体と相互作用する官能基を含む被めっき層とをこの順に積層し、その後、露光・現像した後にめっき処理して金属部を被めっき材料上に形成させる態様。
Alternatively, a photosensitive material to be plated is formed on the first transparent substrate 12A and the second transparent substrate 12B using a pre-plating treatment material, and then exposed and developed, and then subjected to a plating treatment to form an exposed portion and an exposed portion. The first conductive pattern 64A and the second conductive pattern 64B may be formed by forming the metal portion and the light transmitting portion in the unexposed portion. Furthermore, the metal portion may be made to carry a conductive metal by performing physical development and / or plating treatment on the metal portion.
The following two forms are mentioned as a further preferable form of the method of using a pre-plating treatment material. The following more specific contents are disclosed in, for example, JP-A-2003-213437, JP-A-2006-64923, JP-A-2006-58797, and JP-A-2006-135271.
(A) A transparent substrate is coated with a layer to be plated containing a functional group that interacts with the plating catalyst or its precursor, and after exposure and development, plating is performed to form a metal part on the material to be plated Aspect.
(B) On a transparent substrate, an underlayer containing a polymer and a metal oxide, and a layer to be plated containing a functional group that interacts with the plating catalyst or its precursor are laminated in this order, and then exposed and developed. The aspect which makes a metal-plating process and forms a metal part on to-be-plated material.
 その他の方法としては、透明基体12上に形成された銅箔上のフォトレジスト膜を露光、現像処理してレジストパターンを形成し、レジストパターンから露出する銅箔をエッチングすることによって、メッシュパターン20を形成するようにしてもよい。
 あるいは、透明基体12上に金属微粒子を含むペーストを印刷し、ペーストに金属めっきを行うことによって、メッシュパターン20を形成するようにしてもよい。
 あるいは、透明基体12上に、メッシュパターン20をスクリーン印刷版又はグラビア印刷版によって印刷形成するようにしてもよい。
 あるいは、透明基体12上に、メッシュパターン20をインクジェットにより形成するようにしてもよい。
As another method, the photoresist film on the copper foil formed on the transparent substrate 12 is exposed and developed to form a resist pattern, and the copper foil exposed from the resist pattern is etched to form the mesh pattern 20. May be formed.
Alternatively, the mesh pattern 20 may be formed by printing a paste containing metal fine particles on the transparent substrate 12 and performing metal plating on the paste.
Alternatively, the mesh pattern 20 may be printed on the transparent substrate 12 using a screen printing plate or a gravure printing plate.
Alternatively, the mesh pattern 20 may be formed by inkjet on the transparent substrate 12.
 次に、本実施の形態に係る導電性フイルム10において、特に好ましい態様であるハロゲン化銀写真感光材料を用いる方法を中心にして述べる。
 本実施の形態に係る導電性フイルム10の製造方法は、感光材料と現像処理の形態によって、次の3通りの形態が含まれる。
(1) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料を化学現像又は熱現像して金属銀部を該感光材料上に形成させる態様。
(2) 物理現像核をハロゲン化銀乳剤層中に含む感光性ハロゲン化銀黒白感光材料を溶解物理現像して金属銀部を該感光材料上に形成させる態様。
(3) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料と、物理現像核を含む非感光性層を有する受像シートを重ね合わせて拡散転写現像して金属銀部を非感光性受像シート上に形成させる態様。
Next, in the conductive film 10 according to the present embodiment, a method using a silver halide photosensitive material, which is a particularly preferable embodiment, will be mainly described.
The method of manufacturing the conductive film 10 according to the present embodiment includes the following three forms depending on the form of the photosensitive material and the development processing.
(1) A mode in which a photosensitive silver halide black-and-white photosensitive material free of physical development nuclei is chemically developed or thermally developed to form a metallic silver portion on the photosensitive material.
(2) A mode in which a photosensitive silver halide black-and-white photosensitive material containing physical development nuclei in a silver halide emulsion layer is subjected to solution physical development to form a metallic silver portion on the photosensitive material.
(3) A photosensitive silver halide black-and-white photosensitive material free of physical development nuclei and an image-receiving sheet having a non-photosensitive layer containing physical development nuclei are overlaid and diffusion-transfer developed to form a metallic silver portion as a non-photosensitive image receiving sheet Embodiment formed on.
 上記(1)の態様は、一体型黒白現像タイプであり、感光材料上に光透過性導電性膜等の透光性導電性膜が形成される。得られる現像銀は化学現像銀又は熱現像銀であり、高比表面のフィラメントである点で後続するめっき又は物理現像過程で活性が高い。
 上記(2)の態様は、露光部では、物理現像核近縁のハロゲン化銀粒子が溶解されて現像核上に沈積することによって感光材料上に光透過性導電性膜等の透光性導電性膜が形成される。これも一体型黒白現像タイプである。現像作用が、物理現像核上への析出であるので高活性であるが、現像銀は比表面の小さい球形である。
 上記(3)の態様は、未露光部においてハロゲン化銀粒子が溶解されて拡散して受像シート上の現像核上に沈積することによって受像シート上に光透過性導電性膜等の透光性導電性膜が形成される。いわゆるセパレートタイプであって、受像シートを感光材料から剥離して用いる態様である。
The embodiment (1) is an integral black-and-white development type, in which a light transmitting conductive film such as a light transmitting conductive film is formed on a photosensitive material. The resulting developed silver is chemically developed silver or thermally developed silver and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
In the embodiment (2), in the exposed area, the silver halide grains near the physical development nucleus are dissolved and deposited on the development nucleus to form a translucent conductive film such as a light transmitting conductive film on the photosensitive material. Sexual membrane is formed. This is also an integral black and white development type. The development activity is high activity because it is deposited on physical development nuclei, but developed silver has a small spherical shape on the specific surface.
In the embodiment of the above (3), the silver halide grains are dissolved and diffused in the unexposed area, and are diffused and deposited on the development nuclei on the image receiving sheet to transmit the light transmitting conductive film or the like on the image receiving sheet. A conductive film is formed. It is a so-called separate type, in which the image receiving sheet is peeled from the photosensitive material and used.
 いずれの態様もネガ型現像処理及び反転現像処理のいずれの現像を選択することもできる(拡散転写方式の場合は、感光材料としてオートポジ型感光材料を用いることによってネガ型現像処理が可能となる)。
 ここでいう化学現像、熱現像、溶解物理現像、拡散転写現像は、当業界で通常用いられている用語どおりの意味であり、写真化学の一般教科書、例えば菊地真一著「写真化学」(共立出版社、1955年刊行)、C.E.K.Mees編「The Theory of Photographic Processes, 4th ed.」(Mcmillan社、1977年刊行)に解説されている。本件は液処理に係る発明であるが、その他の現像方式として熱現像方式を適用する技術も参考にすることができる。例えば、特開2004-184693号、同2004-334077号、同2005-010752号の各公報、特願2004-244080号、同2004-085655号の各明細書に記載された技術を適用することができる。
In any of the embodiments, either negative development processing or reverse development processing can be selected (in the case of the diffusion transfer method, negative development processing becomes possible by using an autopositive photosensitive material as the photosensitive material) .
Chemical development, heat development, dissolution physical development and diffusion transfer development as used herein have the meanings as generally used in the art, and general textbooks of photochemistry such as “Photochemistry” by Shinichi Kikuchi (Kyoritsu Publishing) , 1955), C.I. E. K. The book is described in Mees, "The Theory of Photographic Processes, 4th ed." (Mcmillan, published in 1977). Although the present invention is an invention relating to liquid processing, it is possible to refer to a technique of applying a heat development system as another development system. For example, applying the techniques described in Japanese Patent Application Laid-Open Nos. 2004-184693, 2004-334077, 2005-010752, and Japanese Patent Application Nos. 2004-244080 and 2004-085655. it can.
 ここで、本実施の形態に係る導電性フイルム10の各層の構成について、以下に詳細に説明する。
[透明基体12]
 透明基体12としては、プラスチックフイルム、プラスチック板、ガラス板等を挙げることができる。
 上記プラスチックフイルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;トリアセチルセルロース(TAC)等を用いることができる。
 透明基体12としては、融点が約290℃以下であるプラスチックフイルム、又はプラスチック板が好ましく、特に、光透過性や加工性等の観点から、PETが好ましい。
Here, the configuration of each layer of the conductive film 10 according to the present embodiment will be described in detail below.
[Transparent substrate 12]
Examples of the transparent substrate 12 include plastic films, plastic plates, glass plates and the like.
As a raw material of the said plastic film and a plastic board, polyesters, such as a polyethylene terephthalate (PET) and a polyethylene naphthalate (PEN); Triacetyl cellulose (TAC) etc. can be used, for example.
The transparent substrate 12 is preferably a plastic film or a plastic plate having a melting point of about 290 ° C. or less, and particularly preferably PET from the viewpoint of light transmittance and processability.
[銀塩乳剤層]
 導電性フイルム10の金属細線16となる銀塩乳剤層は、銀塩とバインダーの他、溶媒や染料等の添加剤を含有する。
 本実施の形態に用いられる銀塩としては、ハロゲン化銀等の無機銀塩及び酢酸銀等の有機銀塩が挙げられる。本実施の形態においては、光センサとしての特性に優れるハロゲン化銀を用いることが好ましい。
 銀塩乳剤層の塗布銀量(銀塩の塗布量)は、銀に換算して1~30g/mが好ましく、1~25g/mがより好ましく、5~20g/mがさらに好ましい。この塗布銀量を上記範囲とすることで、導電性フイルム10とした場合に所望の表面抵抗を得ることができる。
[Silver salt emulsion layer]
The silver salt emulsion layer to be the fine metal wires 16 of the conductive film 10 contains additives such as a solvent and a dye in addition to the silver salt and the binder.
Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as a light sensor.
Silver coating amount of silver salt emulsion layer (coating amount of silver salt) is preferably 1 ~ 30g / m 2 in terms of silver, more preferably 1 ~ 25g / m 2, more preferably 5 ~ 20g / m 2 . When the amount of coated silver is in the above range, a desired surface resistance can be obtained when the conductive film 10 is used.
 本実施の形態に用いられるバインダーとしては、例えば、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース等が挙げられる。これらは、官能基のイオン性によって中性、陰イオン性、陽イオン性の性質を有する。
 本実施の形態の銀塩乳剤層中に含有されるバインダーの含有量は、特に限定されず、分散性と密着性を発揮し得る範囲で適宜決定することができる。銀塩乳剤層中のバインダーの含有量は、銀/バインダー体積比で1/4以上が好ましく、1/2以上がより好ましい。銀/バインダー体積比は、100/1以下が好ましく、50/1以下がより好ましい。また、銀/バインダー体積比は1/1~4/1であることがさらに好ましい。1/1~3/1であることが最も好ましい。銀塩乳剤層中の銀/バインダー体積比をこの範囲にすることで、塗布銀量を調整した場合でも抵抗値のばらつきを抑制し、均一な表面抵抗を有する導電性フイルム10を得ることができる。なお、銀/バインダー体積比は、原料のハロゲン化銀量/バインダー量(重量比)を銀量/バインダー量(重量比)に変換し、さらに、銀量/バインダー量(重量比)を銀量/バインダー量(体積比)に変換することで求めることができる。
Examples of the binder used in the present embodiment include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, polyacryl Examples include acids, polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic and cationic properties depending on the ionicity of the functional group.
The content of the binder contained in the silver salt emulsion layer of the present embodiment is not particularly limited, and can be appropriately determined within the range in which the dispersibility and the adhesiveness can be exhibited. The content of the binder in the silver salt emulsion layer is preferably 1/4 or more, more preferably 1/2 or more in terms of silver / binder volume ratio. The silver / binder volume ratio is preferably 100/1 or less, more preferably 50/1 or less. The silver / binder volume ratio is more preferably 1/1 to 4/1. Most preferably, it is 1/1 to 3/1. By setting the silver / binder volume ratio in the silver salt emulsion layer to this range, it is possible to suppress the variation of the resistance value even when the coated silver amount is adjusted, and to obtain the conductive film 10 having a uniform surface resistance. . The silver / binder volume ratio converts the amount of silver halide / binder (weight ratio) of the raw material into the amount of silver / binder (weight ratio), and further, the amount of silver / binder (weight ratio) is silver It can obtain | require by converting into / binder amount (volume ratio).
<溶媒>
 銀塩乳剤層の形成に用いられる溶媒は、特に限定されるものではないが、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、及びこれらの混合溶媒を挙げることができる。
<その他の添加剤>
 本実施の形態に用いられる各種添加剤に関しては、特に制限は無く、公知のものを好ましく用いることができる。
[その他の層構成]
 銀塩乳剤層の上に図示しない保護層を設けてもよい。また、銀塩乳剤層よりも下に、例えば下塗り層を設けることもできる。
<Solvent>
The solvent used to form the silver salt emulsion layer is not particularly limited. For example, water, organic solvents (eg, alcohols such as methanol, ketones such as acetone, amides such as formamide, etc., dimethyl sulfoxide) And sulfoxides, esters such as ethyl acetate, ethers and the like), ionic liquids, and mixed solvents thereof.
<Other additives>
There is no restriction | limiting in particular regarding the various additive used for this Embodiment, A well-known thing can be used preferably.
[Other layer configuration]
A protective layer (not shown) may be provided on the silver salt emulsion layer. Also, for example, a subbing layer can be provided below the silver salt emulsion layer.
 次に、導電性フイルム10の作製方法の各工程について説明する。
[露光]
 本実施の形態では、導電部14を印刷方式によって施す場合を含むが、印刷方式以外は、導電部14を露光と現像等によって形成する。すなわち、透明基体12上に設けられた銀塩含有層を有する感光材料又はフォトリソグラフィ用フォトポリマーを塗工した感光材料への露光を行う。露光は、電磁波を用いて行うことができる。電磁波としては、例えば、可視光線、紫外線等の光、X線等の放射線等が挙げられる。さらに露光には波長分布を有する光源を利用してもよく、特定の波長の光源を用いてもよい。
Next, each process of the manufacturing method of the conductive film 10 is demonstrated.
[exposure]
Although the case where the conductive portion 14 is applied by printing method is included in the present embodiment, the conductive portion 14 is formed by exposure, development and the like except for the printing method. That is, the photosensitive material having the silver salt-containing layer provided on the transparent substrate 12 or the photosensitive material coated with the photopolymer for photolithography is exposed. Exposure can be performed using an electromagnetic wave. Examples of the electromagnetic waves include light such as visible light and ultraviolet light, and radiation such as X-rays. Furthermore, a light source having a wavelength distribution may be used for exposure, or a light source of a specific wavelength may be used.
[現像処理]
 本実施の形態では、乳剤層を露光した後、さらに現像処理が行われる。現像処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
 本発明における現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。本発明における定着処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
 現像、定着処理を施した感光材料は、水洗処理や安定化処理を施されるのが好ましい。
 現像処理後の露光部に含まれる金属銀部の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることがさらに好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。
[Development processing]
In the present embodiment, development processing is further performed after exposing the emulsion layer. The development processing can use the technique of the normal development processing used for a silver salt photographic film, printing paper, a film for printing plate making, an emulsion mask for photomasks, etc.
The development processing in the present invention can include a fixing processing performed for the purpose of removing and stabilizing the silver salt of the unexposed part. In the fixing process in the present invention, the technology of the fixing process used for silver salt photographic film, printing paper, film for printing plate making, emulsion mask for photomask, etc. can be used.
It is preferable that the photosensitive material subjected to the development and fixing process is subjected to a water washing process and a stabilization process.
The mass of the metallic silver portion contained in the exposed portion after development is preferably 50% by mass or more, and preferably 80% by mass or more, with respect to the mass of silver contained in the exposed portion before exposure. It is further preferred that If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, high conductivity can be obtained, which is preferable.
 以上の工程を経て導電性フイルム10は得られる。得られた導電性フイルム10の表面抵抗は0.1~300オーム/sq.の範囲にあることが好ましい。なお、表面抵抗は、導電性フイルムの用途によって異なるが、電磁波シールド用途の場合には、10オーム/sq.以下であることが好ましく、0.1~3オーム/sq.であることがより好ましい。また、タッチパネル用途の場合には、1~70オーム/sq.であることが好ましく、5~50オーム/sq.であることがより好ましく、5~30オーム/sq.であることがさらに好ましい。また、現像処理後の導電性フイルム10に対しては、さらにカレンダー処理を行ってもよく、カレンダー処理により所望の表面抵抗に調整することができる。 The conductive film 10 is obtained through the above steps. The surface resistance of the obtained conductive film 10 is 0.1 to 300 ohms / sq. It is preferable to be in the range of The surface resistance varies depending on the application of the conductive film, but in the case of electromagnetic shielding application, 10 ohm / sq. Or less, preferably 0.1 to 3 ohms / square. It is more preferable that In the case of touch panel applications, 1 to 70 ohms / sq. Preferably 5 to 50 ohms / sq. More preferably, 5 to 30 ohms / square. It is further preferred that In addition, the conductive film 10 after the development may be further subjected to a calendering process, and can be adjusted to a desired surface resistance by the calendering process.
[物理現像及びめっき処理]
 本実施の形態では、前記露光及び現像処理により形成された金属銀部の導電性を向上させる目的で、前記金属銀部に導電性金属粒子を担持させるための物理現像及び/又はめっき処理を行ってもよい。本発明では物理現像又はめっき処理のいずれか一方のみで導電性金属粒子を金属銀部に担持させてもよく、物理現像とめっき処理とを組み合わせて導電性金属粒子を金属銀部に担持させてもよい。なお、金属銀部に物理現像及び/又はめっき処理を施したものを含めて「導電性金属部」と称する。
 本実施の形態における「物理現像」とは、金属や金属化合物の核上に、銀イオン等の金属イオンを還元剤で還元して金属粒子を析出させることをいう。この物理現象は、インスタントB&Wフイルム、インスタントスライドフイルムや、印刷版製造等に利用されており、本発明ではその技術を用いることができる。また、物理現像は、露光後の現像処理と同時に行っても、現像処理後に別途行ってもよい。
 本実施の形態において、めっき処理は、無電解めっき(化学還元めっきや置換めっき)、電解めっき、又は無電解めっきと電解めっきの両方を用いることができる。本実施の形態における無電解めっきは、公知の無電解めっき技術を用いることができ、例えば、プリント配線板等で用いられている無電解めっき技術を用いることができ、無電解めっきは無電解銅めっきであることが好ましい。
[Physical development and plating treatment]
In the present embodiment, in order to improve the conductivity of the metal silver portion formed by the exposure and development processing, physical development and / or plating for carrying conductive metal particles on the metal silver portion is performed. May be In the present invention, the conductive metal particles may be supported on the metal silver portion only by either physical development or plating treatment, and the conductive metal particles may be supported on the metal silver portion by combining physical development and plating treatment. It is also good. In addition, the thing which gave physical development and / or the plating process to the metal silver part is called a "conductive metal part."
“Physical development” in the present embodiment means that metal ions such as silver ions are reduced by a reducing agent to precipitate metal particles on the core of a metal or metal compound. This physical phenomenon is used for instant B & W film, instant slide film, printing plate production and the like, and the technology can be used in the present invention. Also, physical development may be performed simultaneously with development processing after exposure or separately after development processing.
In this embodiment, electroless plating (chemical reduction plating or displacement plating), electrolytic plating, or both electroless plating and electrolytic plating can be used as the plating treatment. For electroless plating in the present embodiment, known electroless plating techniques can be used. For example, electroless plating techniques used for printed wiring boards etc. can be used, and electroless plating is electroless copper Plating is preferred.
[酸化処理]
 本実施の形態では、現像処理後の金属銀部、並びに、物理現像及び/又はめっき処理によって形成された導電性金属部には、酸化処理を施すことが好ましい。酸化処理を行うことにより、例えば、光透過性部に金属が僅かに沈着していた場合に、該金属を除去し、光透過性部の透過性をほぼ100%にすることができる。
[導電性金属部]
 本実施の形態の導電性金属部の線幅(金属細線16の線幅)は、30μm以下が選択可能であり、下限は0.1μm以上、1μm以上、3μm以上、4μm以上、もしくは5μm以上が好ましく、上限は30μm以下、15μm以下、10μm以下、9μm以下、8μm以下が好ましい。線幅が上記下限値未満の場合には、導電性が不十分となるためタッチパネル50に使用した場合に、検出感度が不十分となる。他方、上記上限値を越えると導電性金属部に起因するモアレが顕著になったり、タッチパネル50に使用した際に視認性が悪くなったりする。なお、上記範囲にあることで、導電性金属部のモアレが改善され、視認性が特によくなる。小格子70の一辺の長さは100μm以上400μm以下であることが好ましく、さらに好ましくは150μm以上300μm以下、最も好ましくは210μm以上250μm以下である。また、導電性金属部は、アース接続等の目的においては、線幅は200μmより広い部分を有していてもよい。
 本実施の形態における導電性金属部は、可視光透過率の点から開口率は85%以上であることが好ましく、90%以上であることがさらに好ましく、95%以上であることが最も好ましい。開口率とは、金属細線16を除いた透光性部分が全体に占める割合であり、例えば、線幅6μm、一辺の長さが240μmのひし形状の開口率は、95%である。
[Oxidation treatment]
In the present embodiment, the metal silver portion after development processing and the conductive metal portion formed by physical development and / or plating processing are preferably subjected to oxidation processing. By performing the oxidation treatment, for example, when metal is slightly deposited on the light transmitting portion, the metal can be removed to make the light transmitting portion substantially transparent to 100%.
[Conductive metal part]
The line width of the conductive metal portion of this embodiment (line width of the fine metal wire 16) can be selected to be 30 μm or less, and the lower limit is 0.1 μm or more, 1 μm or more, 3 μm or more, 4 μm or more, or 5 μm or more The upper limit is preferably 30 μm or less, 15 μm or less, 10 μm or less, 9 μm or less, or 8 μm or less. When the line width is less than the above lower limit value, the conductivity becomes insufficient, and therefore, when used in the touch panel 50, the detection sensitivity becomes insufficient. On the other hand, if the above upper limit value is exceeded, moiré due to the conductive metal part becomes remarkable, or when used in the touch panel 50, the visibility becomes worse. In addition, by being in the said range, the moire of a conductive metal part is improved and visibility becomes especially good. The length of one side of the small lattice 70 is preferably 100 μm to 400 μm, more preferably 150 μm to 300 μm, and most preferably 210 μm to 250 μm. In addition, the conductive metal portion may have a portion whose line width is larger than 200 μm for the purpose of ground connection and the like.
From the viewpoint of visible light transmittance, the aperture ratio of the conductive metal portion in the present embodiment is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more. The aperture ratio is the ratio of the light-transmissive portion excluding the metal thin wires 16 to the whole, and, for example, the aperture ratio of a diamond shape having a line width of 6 μm and a side length of 240 μm is 95%.
[光透過性部]
 本実施の形態における「光透過性部」とは、導電性フイルム10のうち導電性金属部以外の透光性を有する部分を意味する。光透過性部における透過率は、前述のとおり、透明基体12の光吸収及び反射の寄与を除いた380~780nmの波長領域における透過率の最小値で示される透過率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、さらにより好ましくは98%以上であり、最も好ましくは99%以上である。
 露光方法に関しては、ガラスマスクを介した方法やレーザー描画によるパターン露光方式が好ましい。
[Light transmitting section]
The “light transmitting portion” in the present embodiment means a portion of the conductive film 10 having translucency other than the conductive metal portion. The transmittance of the light transmitting portion is, as described above, preferably 90% or more of the transmittance indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the transparent substrate 12. It is 95% or more, more preferably 97% or more, still more preferably 98% or more, and most preferably 99% or more.
As the exposure method, a method using a glass mask or a pattern exposure method using laser drawing is preferable.
[導電性フイルム10]
 本実施の形態に係る導電性フイルム10における透明基体12の厚さは、5~350μmであることが好ましく、30~150μmであることがさらに好ましい。5~350μmの範囲であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 透明基体12上に設けられる金属銀部の厚さは、透明基体12上に塗布される銀塩含有層用塗料の塗布厚みに応じて適宜決定することができる。金属銀部の厚さは、0.001mm~0.2mmから選択可能であるが、30μm以下であることが好ましく、20μm以下であることがより好ましく、0.01~9μmであることがさらに好ましく、0.05~5μmであることが最も好ましい。また、金属銀部はパターン状であることが好ましい。金属銀部は1層でもよく、2層以上の重層構成であってもよい。金属銀部がパターン状であり、且つ、2層以上の重層構成である場合、異なる波長に感光できるように、異なる感色性を付与することができる。これにより、露光波長を変えて露光すると、各層において異なるパターンを形成することができる。
[Conductive film 10]
The thickness of the transparent substrate 12 in the conductive film 10 according to the present embodiment is preferably 5 to 350 μm, and more preferably 30 to 150 μm. If it is in the range of 5 to 350 μm, the desired visible light transmittance can be obtained and the handling is easy.
The thickness of the metal silver portion provided on the transparent substrate 12 can be appropriately determined in accordance with the coating thickness of the silver salt-containing layer coating material applied on the transparent substrate 12. The thickness of the metallic silver portion can be selected from 0.001 mm to 0.2 mm, but is preferably 30 μm or less, more preferably 20 μm or less, still more preferably 0.01 to 9 μm. And most preferably 0.05 to 5 μm. Moreover, it is preferable that a metal silver part is pattern shape. The metallic silver portion may have a single layer structure or a multilayer structure of two or more layers. In the case where the metal silver portion is pattern-like and has a multilayer structure of two or more layers, different color sensitivity can be imparted so as to be able to be sensitive to different wavelengths. Thereby, when the exposure wavelength is changed and exposure is performed, different patterns can be formed in each layer.
 導電性金属部の厚さは、タッチパネル50の用途としては、薄いほど表示パネル58の視野角が広がるため好ましく、視認性の向上の点でも薄膜化が要求される。このような観点から、導電性金属部に担持された導電性金属からなる層の厚さは、9μm未満であることが好ましく、0.1μm以上5μm未満であることがより好ましく、0.1μm以上3μm未満であることがさらに好ましい。
 本実施の形態では、上述した銀塩含有層の塗布厚みをコントロールすることにより所望の厚さの金属銀部を形成し、さらに物理現像及び/又はめっき処理により導電性金属粒子からなる層の厚みを自在にコントロールできるため、5μm未満、好ましくは3μm未満の厚みを有する導電性フイルムであっても容易に形成することができる。
 なお、本実施の形態に係る導電性フイルム10の製造方法では、めっき等の工程は必ずしも行う必要はない。本実施の形態に係る導電性フイルム10の製造方法では銀塩乳剤層の塗布銀量、銀/バインダー体積比を調整することで所望の表面抵抗を得ることができるからである。なお、必要に応じてカレンダー処理等を行ってもよい。
The thickness of the conductive metal portion is preferably as thin as the application of the touch panel 50 because the viewing angle of the display panel 58 is broadened. Thinning of the conductive metal portion is also required in view of improvement in visibility. From such a point of view, the thickness of the layer made of a conductive metal supported by the conductive metal portion is preferably less than 9 μm, more preferably 0.1 μm or more and less than 5 μm, and more preferably 0.1 μm or more More preferably, it is less than 3 μm.
In the present embodiment, a metal silver portion of a desired thickness is formed by controlling the coating thickness of the silver salt-containing layer described above, and the thickness of the layer made of conductive metal particles is further formed by physical development and / or plating. Can be controlled freely, so that even a conductive film having a thickness of less than 5 .mu.m, preferably less than 3 .mu.m can be easily formed.
In the method of manufacturing the conductive film 10 according to the present embodiment, the steps such as plating do not necessarily have to be performed. In the method of manufacturing the conductive film 10 according to the present embodiment, a desired surface resistance can be obtained by adjusting the coated amount of silver and the volume ratio of silver / binder in the silver salt emulsion layer. In addition, you may perform a calendar process etc. as needed.
(現像処理後の硬膜処理)
 銀塩乳剤層に対して現像処理を行った後に、硬膜剤に浸漬して硬膜処理を行うことが好ましい。硬膜剤としては、例えば、グルタルアルデヒド、アジポアルデヒド、2,3-ジヒドロキシ-1,4-ジオキサン等のジアルデヒド類及びほう酸等の特開平2-141279号公報に記載のものを挙げることができる。
 本実施の形態に係る導電性フイルム10には、反射防止層やハードコート層などの機能層を付与してもよい。
(During treatment after development)
It is preferable that the silver salt emulsion layer is developed and then dipped in a hardener to perform the hardening treatment. Examples of the hardener include those described in JP-A-2-141279 such as dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane and boric acid. it can.
The conductive film 10 according to the present embodiment may be provided with a functional layer such as an antireflection layer or a hard coat layer.
[カレンダー処理]
 現像処理済みの金属銀部にカレンダー処理を施して平滑化するようにしてもよい。これによって金属銀部の導電性が顕著に増大する。カレンダー処理は、カレンダーロールにより行うことができる。カレンダーロールは通常一対のロールからなる。
 カレンダー処理に用いられるロールとしては、エポキシ、ポリイミド、ポリアミド、ポリイミドアミド等のプラスチックロール又は金属ロールが用いられる。特に、両面に乳剤層を有する場合は、金属ロール同士で処理することが好ましい。片面に乳剤層を有する場合は、シワ防止の点から金属ロールとプラスチックロールの組み合わせとすることもできる。線圧力の上限値は1960N/cm(200kgf/cm、面圧に換算すると699.4kgf/cm)以上、さらに好ましくは2940N/cm(300kgf/cm、面圧に換算すると935.8kgf/cm)以上である。線圧力の上限値は、6880N/cm(700kgf/cm)以下である。
 カレンダーロールで代表される平滑化処理の適用温度は10℃(温調なし)~100℃が好ましく、より好ましい温度は、金属メッシュパターンや金属配線パターンの画線密度や形状、バインダー種によって異なるが、おおよそ10℃(温調なし)~50℃の範囲にある。
[Calendar processing]
The developed silver metal portion may be calendered to be smoothed. This significantly increases the conductivity of the metallic silver portion. Calendaring can be performed by calendar rolls. Calendar rolls usually consist of a pair of rolls.
As rolls used for calendering, plastic rolls such as epoxy, polyimide, polyamide, polyimide amide or the like, or metal rolls are used. In particular, in the case of having emulsion layers on both sides, it is preferable to treat with metal rolls. When an emulsion layer is provided on one side, a combination of a metal roll and a plastic roll can also be used to prevent wrinkles. The upper limit of the line pressure is 1960 N / cm (200 kgf / cm, 699.4 kgf / cm 2 converted to surface pressure) or more, more preferably 2940 N / cm (300 kgf / cm, converted to surface pressure 935.8 kgf / cm 2 It is above. The upper limit of the line pressure is 6880 N / cm (700 kgf / cm) or less.
The application temperature of the smoothing treatment represented by a calender roll is preferably 10 ° C. (without temperature control) to 100 ° C., and the more preferable temperature varies depending on the density and shape of metal mesh pattern and metal wiring pattern, and binder type Approximately in the range of 10 ° C. (without temperature control) to 50 ° C.
 なお、本発明は、下記表1及び表2に記載の公開公報及び国際公開パンフレットの技術と適宜組合わせて使用することができる。「特開」、「号公報」、「号パンフレット」等の表記は省略する。 In addition, this invention can be used combining with the technique of the publication gazette and international publication pamphlet described in following Table 1 and Table 2 suitably. The descriptions of "Japanese Patent Application Publication", "Japanese Patent Application Publication", "No.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下に、本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be more specifically described by way of examples of the present invention. The materials, amounts used, proportions, treatment contents, treatment procedures and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the specific examples shown below.
[第1実施例]
 この第1実施例では、比較例1~6、実施例1~36に係る導電性フイルムについて、開口率を算出し、さらに、モアレを評価した。比較例1~6、実施例1~36の内訳並びに算出結果及び評価結果を表3及び表4に示す。
[First embodiment]
In this first example, for the conductive films according to Comparative Examples 1 to 6 and Examples 1 to 36, the aperture ratio was calculated, and moire was further evaluated. The breakdown, calculation results and evaluation results of Comparative Examples 1 to 6 and Examples 1 to 36 are shown in Tables 3 and 4.
<実施例1~36、比較例1~6>
(ハロゲン化銀感光材料)
 水媒体中のAg150gに対してゼラチン10.0gを含む、球相当径平均0.1μmの沃臭塩化銀粒子(I=0.2モル%、Br=40モル%)を含有する乳剤を調製した。
 また、この乳剤中にはKRhBr及びKIrClを濃度が10-7(モル/モル銀)になるように添加し、臭化銀粒子にRhイオンとIrイオンをドープした。この乳剤にNaPdClを添加し、さらに塩化金酸とチオ硫酸ナトリウムを用いて金硫黄増感を行った後、ゼラチン硬膜剤と共に、銀の塗布量が10g/mとなるように透明基体(ここでは、共にポリエチレンテレフタレート(PET))上に塗布した。この際、Ag/ゼラチン体積比は2/1とした。
 幅30cmのPET支持体に25cmの幅で20m分塗布を行ない、塗布の中央部24cmを残すように両端を3cmずつ切り落としてロール状のハロゲン化銀感光材料を得た。
<Examples 1 to 36, Comparative Examples 1 to 6>
(Silver halide photosensitive material)
An emulsion was prepared containing silver iodobromochloride particles (I = 0.2 mol%, Br = 40 mol%) having a sphere equivalent diameter of 0.1 μm and containing 10.0 g of gelatin relative to 150 g of Ag in an aqueous medium. .
In addition, K 3 Rh 2 Br 9 and K 2 IrCl 6 were added to this emulsion to a concentration of 10 -7 (mole / mole silver), and silver bromide particles were doped with Rh ions and Ir ions. . After adding Na 2 PdCl 4 to this emulsion and performing gold-sulfur sensitization with chloroauric acid and sodium thiosulfate, the coating amount of silver is 10 g / m 2 together with a gelatin hardener. The transparent substrates (here both were coated on polyethylene terephthalate (PET)). At this time, the Ag / gelatin volume ratio was 2/1.
Coating was carried out on a PET support of 30 cm in width with a width of 25 cm for 20 m, and both ends were cut off by 3 cm so as to leave 24 cm in the center of coating, to obtain a roll-shaped silver halide photosensitive material.
(露光)
 露光のパターンは、図1に示すメッシュパターン20で、A4サイズ(210mm×297mm)の透明基体に行った。露光は上記パターンのフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。
(現像処理)
・現像液1L処方
   ハイドロキノン            20 g
   亜硫酸ナトリウム           50 g
   炭酸カリウム             40 g
   エチレンジアミン・四酢酸        2 g
   臭化カリウム              3 g
   ポリエチレングリコール2000     1 g
   水酸化カリウム             4 g
   pH              10.3に調整
・定着液1L処方
   チオ硫酸アンモニウム液(75%)  300 ml
   亜硫酸アンモニウム・1水塩      25 g
   1,3-ジアミノプロパン・四酢酸    8 g
   酢酸                  5 g
   アンモニア水(27%)         1 g
   pH               6.2に調整
 上記処理剤を用いて露光済み感材を、富士フイルム社製自動現像機 FG-710PTSを用いて処理条件:現像35℃ 30秒、定着34℃ 23秒、水洗 流水(5L/分)の20秒処理で行った。
(exposure)
The exposure pattern was performed on an A4 size (210 mm × 297 mm) transparent substrate by the mesh pattern 20 shown in FIG. The exposure was performed using parallel light with a high pressure mercury lamp as a light source through a photomask of the above pattern.
(Development processing)
-Developer 1 L formulation Hydroquinone 20 g
Sodium sulfite 50 g
40 g of potassium carbonate
Ethylenediamine · tetraacetic acid 2 g
Potassium bromide 3 g
Polyethylene glycol 2000 1 g
4 g of potassium hydroxide
Adjust pH to 10.3 ・ Fixer 1 L formulation Ammonium thiosulphate solution (75%) 300 ml
Ammonium bisulfite monohydrate 25 g
1,3-diaminopropane ・ tetraacetic acid 8 g
Acetic acid 5 g
Ammonia water (27%) 1 g
Adjustment to pH 6.2 Using the above processing agent, the exposed photosensitive material is processed using an automatic developing machine FG-710PTS manufactured by Fujifilm Co., Ltd. Processing conditions: development 35 ° C. 30 seconds, fixing 34 ° C. 23 seconds, flush running water (5 L) 20 minutes of processing per minute).
(実施例1)
 金属細線16の傾き(メッシュパターン20の複数の交点をそれぞれ開口部18を介して水平方向に結ぶ仮想線24と第1金属細線16aとのなす角θ)を30°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例1に係る導電性フイルムを作製した。
(実施例2~6)
 実施例2、3、4、5、6は、細線ピッチPsをそれぞれ220μm、240μm、260μm、300μm、400μmとした点以外は実施例1と同様にして導電性フイルムを作製した。
(実施例7)
 金属細線16の傾きを36°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例7に係る導電性フイルムを作製した。
(実施例8~12)
 実施例8、9、10、11、12は、細線ピッチPsをそれぞれ220μm、240μm、260μm、300μm、400μmとした点以外は実施例7と同様にして導電性フイルムを作製した。
(実施例13)
 金属細線16の傾きを37°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例13に係る導電性フイルムを作製した。
(実施例14~18)
 実施例14、15、16、17、18は、細線ピッチPsをそれぞれ220μm、240μm、260μm、300μm、400μmとした点以外は実施例13と同様にして導電性フイルムを作製した。
(実施例19)
 金属細線16の傾きを39°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例19に係る導電性フイルムを作製した。
(実施例20~24)
 実施例20、21、22、23、24は、細線ピッチPsをそれぞれ220μm、240μm、260μm、300μm、400μmとした点以外は実施例19と同様にして導電性フイルムを作製した。
(実施例25)
 金属細線16の傾きを40°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例25に係る導電性フイルムを作製した。
(実施例26~30)
 実施例26、27、28、29、30は、細線ピッチPsをそれぞれ220μm、240μm、260μm、300μm、400μmとした点以外は実施例25と同様にして導電性フイルムを作製した。
(実施例31)
 金属細線16の傾きを44°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例31に係る導電性フイルムを作製した。
(実施例32~36)
 実施例32、33、34、35、36は、細線ピッチPsをそれぞれ220μm、240μm、260μm、300μm、400μmとした点以外は実施例31と同様にして導電性フイルムを作製した。
Example 1
The inclination of the thin metal wire 16 (the angle θ between the imaginary line 24 connecting the multiple intersections of the mesh pattern 20 in the horizontal direction through the opening 18 and the first thin metal wire 16a) is 30 °, and the thin wire pitch Ps is 200 μm, The conductive film according to Example 1 was manufactured by setting the line width of the thin metal wires 16 to 6 μm.
(Examples 2 to 6)
In Examples 2, 3, 4, 5 and 6, conductive films were produced in the same manner as in Example 1 except that the fine line pitch Ps was 220 μm, 240 μm, 260 μm, 300 μm and 400 μm, respectively.
(Example 7)
The conductive film according to Example 7 was manufactured by setting the inclination of the thin metal wire 16 to 36 °, the thin wire pitch Ps to 200 μm, and the line width of the thin metal wire 16 to 6 μm.
(Examples 8 to 12)
In Examples 8, 9, 10, 11 and 12, conductive films were produced in the same manner as in Example 7 except that the fine line pitch Ps was 220 μm, 240 μm, 260 μm, 300 μm and 400 μm, respectively.
(Example 13)
The conductive film according to Example 13 was manufactured by setting the inclination of the thin metal wire 16 to 37 °, the thin line pitch Ps to 200 μm, and the line width of the thin metal wire 16 to 6 μm.
(Examples 14 to 18)
The conductive films of Examples 14, 15, 16, 17, and 18 were produced in the same manner as in Example 13 except that the fine line pitch Ps was 220 μm, 240 μm, 260 μm, 300 μm, and 400 μm, respectively.
(Example 19)
The conductive film according to Example 19 was produced by setting the inclination of the thin metal wire 16 to 39 °, the thin line pitch Ps to 200 μm, and the line width of the thin metal wire 16 to 6 μm.
(Examples 20 to 24)
In Examples 20, 21, 22, 23, and 24, a conductive film was produced in the same manner as in Example 19 except that the fine line pitch Ps was 220 μm, 240 μm, 260 μm, 300 μm, and 400 μm, respectively.
(Example 25)
The conductive film according to Example 25 was manufactured by setting the inclination of the thin metal wire 16 to 40 °, the thin wire pitch Ps to 200 μm, and the line width of the thin metal wire 16 to 6 μm.
(Examples 26 to 30)
The conductive films of Examples 26, 27, 28, 29, and 30 were produced in the same manner as Example 25 except that the fine line pitch Ps was 220 μm, 240 μm, 260 μm, 300 μm, and 400 μm, respectively.
(Example 31)
The conductive film according to Example 31 was manufactured by setting the inclination of the metal fine wire 16 to 44 °, the fine wire pitch Ps to 200 μm, and the line width of the metal fine wire 16 to 6 μm.
(Examples 32 to 36)
In Examples 32, 33, 34, 35 and 36, conductive films were produced in the same manner as in Example 31 except that the fine line pitch Ps was 220 μm, 240 μm, 260 μm, 300 μm and 400 μm, respectively.
(比較例1)
 金属細線16の傾きを29°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして比較例1に係る導電性フイルムを作製した。
(比較例2、3)
 比較例2、3は、細線ピッチPsをそれぞれ300μm、400μmとした点以外は比較例1と同様にして導電性フイルムを作製した。
(比較例4)
 金属細線16の傾きを45°、細線ピッチPsを200μm、金属細線16の線幅を6μmとして比較例4に係る導電性フイルムを作製した。
(比較例5、6)
 比較例5、6は、細線ピッチPsをそれぞれ300μm、400μmとした点以外は比較例4と同様にして導電性フイルムを作製した。
(Comparative example 1)
The conductive film according to Comparative Example 1 was manufactured by setting the inclination of the thin metal wire 16 to 29 °, the thin wire pitch Ps to 200 μm, and the line width of the thin metal wire 16 to 6 μm.
(Comparative Examples 2 and 3)
In Comparative Examples 2 and 3, a conductive film was produced in the same manner as Comparative Example 1 except that the fine line pitch Ps was set to 300 μm and 400 μm, respectively.
(Comparative example 4)
The conductive film according to Comparative Example 4 was manufactured by setting the inclination of the thin metal wire 16 to 45 °, the thin wire pitch Ps to 200 μm, and the line width of the thin metal wire 16 to 6 μm.
(Comparative Examples 5 and 6)
In Comparative Examples 5 and 6, a conductive film was produced in the same manner as Comparative Example 4 except that the fine line pitch Ps was 300 μm and 400 μm, respectively.
〔評価〕
(開口率の算出)
 透明性の良否を確認するために、比較例1~6、実施例1~36について、それぞれ導電性フイルムの透過率を分光光度計を用いて測定し、さらに比例計算によって開口率を算出した。
(モアレの評価)
 比較例1~6、実施例1~36について、導電性フイルムを表示装置30の表示パネル58上に貼り付けた後、表示装置30を回転盤に設置し、表示装置30を駆動して白色を表示させる。その状態で、回転盤をバイアス角-20°~+20°の間で回転し、モアレの目視観察・評価を行った。表示装置30の水平画素ピッチPh及び垂直画素ピッチPvはいずれも約192μmであった。なお、評価用のディスプレイとしてHP社製のPavilion Notebook PC dm1a(11.6inch光沢液晶WXGA/1366×768)を使用した。
 モアレの評価は、表示装置30の表示画面から観察距離0.5mで行い、モアレが顕在化しなかった場合を○、モアレが問題のないレベルでほんの少し見られた場合を△、モアレが顕在化した場合を×とした。そして、総合評点として、○となる角度範囲が10°以上の場合をA、○となる角度範囲が10°未満の場合はB、○となる角度範囲がなく×となる角度範囲が30°未満の場合はC、○となる角度範囲がなく×となる角度範囲が30°以上ある場合をDとした。
[Evaluation]
(Calculation of aperture ratio)
In order to confirm the transparency, the transmittances of the conductive films of Comparative Examples 1 to 6 and Examples 1 to 36 were measured using a spectrophotometer, and the aperture ratio was calculated by proportional calculation.
(Evaluation of moire)
In Comparative Examples 1 to 6 and Examples 1 to 36, after the conductive film is attached on the display panel 58 of the display device 30, the display device 30 is placed on a rotary disk, and the display device 30 is driven to obtain white color. Display. In that state, the rotating disk was rotated between bias angles of -20 ° to + 20 °, and the moire was visually observed and evaluated. The horizontal pixel pitch Ph and the vertical pixel pitch Pv of the display device 30 were both about 192 μm. As a display for evaluation, Pavilion Notebook PC dm1a (11.6 inch glossy liquid crystal WXGA / 1366 × 768) manufactured by HP was used.
Evaluation of moiré is performed at an observation distance of 0.5 m from the display screen of the display device 30, ○ when moiré is not apparent appears, 場合 when moiré is slightly seen at a level without problems, 、, moiré appears The case where it did was made x. And, as an overall score, when the angle range of ° is 10 ° or more is A, when the angle range of ○ is less than 10 °, there is no angle range of B, ○ and the angle range of x is less than 30 ° In the case of C, the case of C, the case of D with no angular range of × and the case of an angular range of × 30 ° or more was D.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4から、比較例1~6はいずれも評価がDであり、モアレが顕在化していることがわかった。一方、実施例1~36は、実施例1、4~7、25、28~31、34~36において、モアレがやや顕在化しているが問題のないレベルであった。これ以外の実施例のうち、実施例2、3、10~13、16~19、22~24、26、27、32、33についてはほとんどモアレの発生がなく良好であった。特に、金属細線16の傾きが36°~39°であって、細線ピッチPsが220μm、240μmである実施例8、9、14、15、20、21についてはモアレの発生はなかった。
 また、上述した実施例1~36に係る導電性フイルムを用いてそれぞれ投影型静電容量方式のタッチパネル50を作製した。指で触れて操作したところ、応答速度が速く、検出感度に優れることがわかった。また2点以上をタッチして操作したところ、同様に良好な結果が得られ、マルチタッチにも対応できることが確認できた。
It is understood from Tables 3 and 4 that all of Comparative Examples 1 to 6 have an evaluation of D, and that moiré is apparent. On the other hand, in Examples 1 to 36, in Examples 1 to 4 to 25, 25 to 28 to 31 and 34 to 36, moiré appeared to be slightly apparent but was at a level at which there is no problem. Among the other examples, Examples 2, 3, 10 to 13, 16 to 19, 22 to 24, 26, 27, 32, and 33 were favorable with almost no occurrence of moiré. In particular, no moiré occurred in Examples 8, 9, 14, 15, 20 and 21 in which the inclination of the thin metal wire 16 was 36 ° to 39 ° and the thin line pitch Ps was 220 μm and 240 μm.
Also, using the conductive films according to Examples 1 to 36 described above, a projected capacitive touch panel 50 was manufactured. When touched with a finger and operated, it was found that the response speed was fast and the detection sensitivity was excellent. Moreover, when two or more points were touched and operated, it has confirmed that a favorable result was obtained similarly and it can respond also to multi touch.
[第2実施例]
 この第2実施例では、比較例11~16、実施例41~100に係る積層導電性フイルム54について、開口率を算出し、さらに、モアレを評価した。比較例11~16、実施例41~100の内訳並びに算出結果及び評価結果を表5及び表6に示す。
Second Embodiment
In this second example, the aperture ratio was calculated for the laminated conductive films 54 according to Comparative Examples 11 to 16 and Examples 41 to 100, and moire was further evaluated. The breakdown, calculation results and evaluation results of Comparative Examples 11 to 16 and Examples 41 to 100 are shown in Tables 5 and 6.
<実施例41~100、比較例11~16>
(ハロゲン化銀感光材料)
 上述した第1実施例と同様にしてロール状のハロゲン化銀感光材料を得た。
Examples 41 to 100, Comparative Examples 11 to 16
(Silver halide photosensitive material)
A roll-shaped silver halide photosensitive material was obtained in the same manner as in the first embodiment described above.
(露光)
 露光のパターンは、第1導電性フイルム10Aについては図7及び図9に示すパターンで、第2導電性フイルム10Bについては図7及び図13に示すパターンで、A4サイズ(210mm×297mm)の第1透明基体12A及び第2透明基体12Bに行った。露光は上記パターンのフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。
(exposure)
The exposure pattern is the pattern shown in FIGS. 7 and 9 for the first conductive film 10A, and the pattern shown in FIGS. 7 and 13 for the second conductive film 10B. The A4 size (210 mm × 297 mm) 1 was performed on the transparent substrate 12A and the second transparent substrate 12B. The exposure was performed using parallel light with a high pressure mercury lamp as a light source through a photomask of the above pattern.
(現像処理)
 上述した第1実施例と同様の処理剤を用いて露光済み感材を、富士フイルム社製自動現像機 FG-710PTSを用いて処理条件:現像35℃ 30秒、定着34℃ 23秒、水洗 流水(5L/分)の20秒処理で行った。
(Development processing)
The exposed photosensitive material was processed using the same processing agent as that of the first embodiment described above, using an automatic developing machine FG-710PTS manufactured by Fujifilm Corp. Processing conditions: development 35 ° C. 30 seconds, fixing 34 ° C. 23 seconds, washing with water It performed by 20-second processing of (5 L / min).
(実施例41)
 作製した第1導電性フイルム10Aの第1導電部14A及び第2導電性フイルム10Bの第2導電部14Bにおける小格子70の第1辺70a(図10参照)と第1方向(x方向)とのなす角θを30°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例1に係る積層導電性フイルムを作製した。
(実施例42~44)
 実施例42、43、44は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例41と同様にして積層導電性フイルムを作製した。
(実施例45)
 小格子70の第1辺70aと第1方向とのなす角θを32°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例45に係る積層導電性フイルムを作製した。
(実施例46~48)
 実施例46、47、48は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例45と同様にして積層導電性フイルムを作製した。
(Example 41)
The first side 70a (see FIG. 10) of the small lattice 70 and the first direction (x direction) of the first conductive portion 14A of the first conductive film 10A and the second conductive portion 14B of the second conductive film 10B prepared. The laminated conductive film according to Example 1 was manufactured by setting the angle θ to 30 °, the length of one side of the small lattice 70 to 200 μm, and the line width of the small lattice 70 to 6 μm.
(Examples 42 to 44)
In Examples 42, 43 and 44, laminated conductive films were produced in the same manner as in Example 41 except that the length of one side of the small lattice 70 was set to 220 μm, 240 μm and 400 μm, respectively.
(Example 45)
The laminated conductive film according to Example 45, wherein the angle θ between the first side 70a of the small lattice 70 and the first direction is 32 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm Was produced.
(Examples 46 to 48)
In Examples 46, 47 and 48, laminated conductive films were produced in the same manner as in Example 45 except that the length of one side of the small lattice 70 was set to 220 μm, 240 μm and 400 μm, respectively.
(実施例49)
 小格子70の第1辺70aと第1方向とのなす角θを36°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例49に係る積層導電性フイルムを作製した。
(実施例50~52)
 実施例50、51、52は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例49と同様にして積層導電性フイルムを作製した。
(実施例53)
 小格子70の第1辺70aと第1方向とのなす角θを37°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例53に係る積層導電性フイルムを作製した。
(実施例54~56)
 実施例54、55、56は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例53と同様にして積層導電性フイルムを作製した。
(Example 49)
The laminated conductive film according to Example 49 in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 36 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 50 to 52)
In Examples 50, 51, and 52, a laminated conductive film was produced in the same manner as in Example 49 except that the lengths of one side of the small lattice 70 were 220 μm, 240 μm, and 400 μm, respectively.
(Example 53)
The laminated conductive film according to Example 53, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 37 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 54 to 56)
In Examples 54, 55, and 56, a laminated conductive film was produced in the same manner as in Example 53 except that the length of one side of the small lattice 70 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例57)
 小格子70の第1辺70aと第1方向とのなす角θを39°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例57に係る積層導電性フイルムを作製した。
(実施例58~60)
 実施例58、59、60は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例57と同様にして積層導電性フイルムを作製した。
(実施例61)
 小格子70の第1辺70aと第1方向とのなす角θを40°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例61に係る積層導電性フイルムを作製した。
(実施例62~64)
 実施例62、63、64は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例61と同様にして積層導電性フイルムを作製した。
(Example 57)
The laminated conductive film according to Example 57, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 39 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 58 to 60)
In Examples 58, 59 and 60, a laminated conductive film was produced in the same manner as in Example 57 except that the length of one side of the small lattice 70 was 220 μm, 240 μm and 400 μm, respectively.
(Example 61)
The laminated conductive film according to Example 61, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 40 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 62 to 64)
In Examples 62, 63 and 64, laminated conductive films were produced in the same manner as in Example 61 except that the length of one side of the small lattice 70 was 220 μm, 240 μm and 400 μm, respectively.
(実施例65)
 小格子70の第1辺70aと第1方向とのなす角θを44°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例65に係る積層導電性フイルムを作製した。
(実施例66~68)
 実施例66、67、68は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例65と同様にして積層導電性フイルムを作製した。
(実施例69)
 小格子70の第1辺70aと第1方向とのなす角θを45°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例69に係る積層導電性フイルムを作製した。
(実施例70~72)
 実施例70、71、72は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例69と同様にして積層導電性フイルムを作製した。
(Example 65)
The laminated conductive film according to Example 65, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 44 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 66 to 68)
In Examples 66, 67 and 68, a laminated conductive film was produced in the same manner as in Example 65 except that the length of one side of the small lattice 70 was 220 μm, 240 μm and 400 μm, respectively.
(Example 69)
The laminated conductive film according to Example 69, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 45 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 70 to 72)
In Examples 70, 71, and 72, a laminated conductive film was produced in the same manner as in Example 69 except that the length of one side of the small lattice 70 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例73)
 小格子70の第1辺70aと第1方向とのなす角θを46°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例73に係る積層導電性フイルムを作製した。
(実施例74~76)
 実施例74、75、76は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例73と同様にして積層導電性フイルムを作製した。
(実施例77)
 小格子70の第1辺70aと第1方向とのなす角θを50°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例77に係る積層導電性フイルムを作製した。
(実施例78~80)
 実施例78、79、80は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例77と同様にして積層導電性フイルムを作製した。
(Example 73)
The laminated conductive film according to Example 73, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 46 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 74 to 76)
In Examples 74, 75, and 76, a laminated conductive film was produced in the same manner as in Example 73 except that the length of one side of the small lattice 70 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 77)
The laminated conductive film according to Example 77, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 50 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 78 to 80)
In Examples 78, 79, and 80, a laminated conductive film was produced in the same manner as in Example 77 except that the length of one side of the small lattice 70 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例81)
 小格子70の第1辺70aと第1方向とのなす角θを51°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例81に係る積層導電性フイルムを作製した。
(実施例82~84)
 実施例82、83、84は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例81と同様にして積層導電性フイルムを作製した。
(実施例85)
 小格子70の第1辺70aと第1方向とのなす角θを53°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例85に係る積層導電性フイルムを作製した。
(実施例86~88)
 実施例86、87、88は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例85と同様にして積層導電性フイルムを作製した。
(Example 81)
The laminated conductive film according to Example 81, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 51 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 82 to 84)
In Examples 82, 83 and 84, laminated conductive films were produced in the same manner as in Example 81 except that the length of one side of the small lattice 70 was 220 μm, 240 μm and 400 μm, respectively.
(Example 85)
The laminated conductive film according to Example 85, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 53 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 86 to 88)
In Examples 86, 87 and 88, a laminated conductive film was produced in the same manner as in Example 85 except that the length of one side of the small lattice 70 was 220 μm, 240 μm and 400 μm, respectively.
(実施例89)
 小格子70の第1辺70aと第1方向とのなす角θを54°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例89に係る積層導電性フイルムを作製した。
(実施例90~92)
 実施例90、91、92は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例89と同様にして積層導電性フイルムを作製した。
(実施例93)
 小格子70の第1辺70aと第1方向とのなす角θを58°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例93に係る積層導電性フイルムを作製した。
(実施例94~96)
 実施例94、95、96は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例93と同様にして積層導電性フイルムを作製した。
(Example 89)
The laminated conductive film according to Example 89, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 54 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 90 to 92)
In Examples 90, 91, and 92, a laminated conductive film was produced in the same manner as in Example 89 except that the length of one side of the small lattice 70 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 93)
The laminated conductive film according to Example 93, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 58 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 94 to 96)
In Examples 94, 95, and 96, a laminated conductive film was produced in the same manner as in Example 93 except that the length of one side of the small lattice 70 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例97)
 小格子70の第1辺70aと第1方向とのなす角θを60°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして実施例97に係る積層導電性フイルムを作製した。
(実施例98~100)
 実施例98、99、100は、小格子70の一辺の長さをそれぞれ220μm、240μm、400μmとした点以外は実施例97と同様にして積層導電性フイルムを作製した。
(Example 97)
The laminated conductive film according to Example 97, in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 60 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Examples 98 to 100)
In Examples 98, 99, and 100, a laminated conductive film was produced in the same manner as in Example 97 except that the length of one side of the small lattice 70 was 220 μm, 240 μm, and 400 μm, respectively.
(比較例11)
 小格子70の第1辺70aと第1方向とのなす角θを29°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして比較例11に係る積層導電性フイルムを作製した。
(比較例12、13)
 比較例12、13は、小格子70の一辺の長さをそれぞれ300μm、400μmとした点以外は比較例11と同様にして積層導電性フイルムを作製した。
(比較例14)
 小格子70の第1辺70aと第1方向とのなす角θを61°、小格子70の一辺の長さを200μm、小格子70の線幅を6μmとして比較例14に係る積層導電性フイルムを作製した。
(比較例15、16)
 比較例15、16は、小格子70の一辺の長さをそれぞれ300μm、400μmとした点以外は比較例14と同様にして積層導電性フイルムを作製した。
(Comparative example 11)
The laminated conductive film according to Comparative Example 11 is formed by setting the angle θ between the first side 70a of the small lattice 70 and the first direction to 29 °, the length of one side of the small lattice 70 as 200 μm, and the line width of the small lattice 70 as 6 μm. Was produced.
(Comparative Examples 12 and 13)
In Comparative Examples 12 and 13, a laminated conductive film was produced in the same manner as Comparative Example 11 except that the length of one side of the small lattice 70 was set to 300 μm and 400 μm, respectively.
(Comparative example 14)
Of the first side 70a of the small lattice 70 and the first direction is 61 °, the length of one side of the small lattice 70 is 200 μm, and the line width of the small lattice 70 is 6 μm. Was produced.
(Comparative Examples 15 and 16)
In Comparative Examples 15 and 16, a laminated conductive film was produced in the same manner as Comparative Example 14 except that the length of one side of the small lattice 70 was 300 μm and 400 μm, respectively.
〔評価〕
 開口率の算出及びモアレの評価を、上述した第1実施例と同様にして行った。その結果を下記表5及び表6に示す。
[Evaluation]
The calculation of the aperture ratio and the evaluation of moire were performed in the same manner as in the first example described above. The results are shown in Tables 5 and 6 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び表6から、比較例11~16はいずれも評価がDであり、モアレが顕在化していることがわかった。一方、実施例41~100は、実施例41、44、61、64、65、68~73、76、77、80、97、100において、モアレがやや顕在化しているが問題のないレベルであった。これ以外の実施例のうち、実施例42、43、45、48、49、52、53、56、57、60、62、63、66、67、74、75、78、79、81、84、85、88、89、92、93、96、98、99についてはほとんどモアレの発生がなく良好であった。特に、小格子70の第1辺70aと第1方向とのなす角θが32°~39°であって、小格子70の一辺の長さが220μm、240μmである実施例46、47、50、51、54、55、58、59、82、83、86、87、90、91、94、95についてはモアレの発生はなかった。
 また、上述した実施例41~100に係る積層導電性フイルム10を用いてそれぞれ投影型静電容量方式のタッチパネル50を作製した。指で触れて操作したところ、応答速度が速く、検出感度に優れることがわかった。また2点以上をタッチして操作したところ、同様に良好な結果が得られ、マルチタッチにも対応できることが確認できた。
From Tables 5 and 6, it was found that all of Comparative Examples 11 to 16 had an evaluation of D, and that moiré was apparent. On the other hand, in Examples 41 to 100, moiré is slightly apparent in Examples 41, 44, 61, 64, 65, 68 to 73, 76, 77, 80, 97, and 100, but this is a level at which there is no problem. The Among the other embodiments, Examples 42, 43, 45, 48, 49, 52, 53, 56, 57, 60, 62, 63, 66, 67, 74, 75, 78, 79, 81, 84, For 85, 88, 89, 92, 93, 96, 98 and 99, no moiré occurred and the result was good. In particular, Examples 46, 47, and 50 in which the angle θ between the first side 70a of the small lattice 70 and the first direction is 32 ° to 39 °, and the length of one side of the small lattice 70 is 220 μm and 240 μm. 51, 54, 55, 58, 59, 82, 83, 86, 87, 90, 91, 94, 95, no moiré occurred.
Further, using the laminated conductive films 10 according to Examples 41 to 100 described above, a projected capacitive touch panel 50 was produced. When touched with a finger and operated, it was found that the response speed was fast and the detection sensitivity was excellent. Moreover, when two or more points were touched and operated, it has confirmed that a favorable result was obtained similarly and it can respond also to multi touch.
[第3実施例]
 この第3実施例では、比較例21~26、実施例101~160に係る積層導電性フイルムについて、開口率を算出し、さらに、モアレを評価した。比較例21~26、実施例101~160の内訳並びに算出結果及び評価結果を表7及び表8に示す。
Third Embodiment
In this third example, the aperture ratio was calculated for the laminated conductive films according to Comparative Examples 21 to 26 and Examples 101 to 160, and moire was further evaluated. The breakdown, calculation results and evaluation results of Comparative Examples 21 to 26 and Examples 101 to 160 are shown in Tables 7 and 8.
<実施例101~160、比較例21~26>
(ハロゲン化銀感光材料)
 上述した第1実施例と同様にしてロール状のハロゲン化銀感光材料を得た。
Examples 101 to 160, Comparative Examples 21 to 26
(Silver halide photosensitive material)
A roll-shaped silver halide photosensitive material was obtained in the same manner as in the first embodiment described above.
(露光)
 露光のパターンは、第1導電性フイルム10Aについては図7及び図9に示すパターンで、第2導電性フイルム10Bについては図7及び図13に示すパターンで、A4サイズ(210mm×297mm)の第1透明基体12A及び第2透明基体12Bに行った。露光は上記パターンのフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。
(exposure)
The exposure pattern is the pattern shown in FIGS. 7 and 9 for the first conductive film 10A, and the pattern shown in FIGS. 7 and 13 for the second conductive film 10B. The A4 size (210 mm × 297 mm) 1 was performed on the transparent substrate 12A and the second transparent substrate 12B. The exposure was performed using parallel light with a high pressure mercury lamp as a light source through a photomask of the above pattern.
(現像処理)
 上述した第1実施例と同様の処理剤を用いて露光済み感材を、富士フイルム社製自動現像機 FG-710PTSを用いて処理条件:現像35℃ 30秒、定着34℃ 23秒、水洗 流水(5L/分)の20秒処理で行った。
(Development processing)
The exposed photosensitive material was processed using the same processing agent as that of the first embodiment described above, using an automatic developing machine FG-710PTS manufactured by Fujifilm Corp. Processing conditions: development 35 ° C. 30 seconds, fixing 34 ° C. 23 seconds, washing with water It performed by 20-second processing of (5 L / min).
(実施例101)
 作製した第1導電性フイルム10Aの第1導電部14Aにおける第1大格子68Aの縦横比(Lva/Lha)並びに第2導電性フイルム10Bの第2導電部14Bにおける第2大格子68Bの縦横比(Lvb/Lhb)をそれぞれ0.5773、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例101に係る積層導電性フイルムを作製した。
(実施例102~104)
 実施例102、103、104は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例101と同様にして積層導電性フイルムを作製した。
(実施例105)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ0.6248、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例105に係る積層導電性フイルムを作製した。
(実施例106~108)
 実施例106、107、108は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例105と同様にして積層導電性フイルムを作製した。
(Example 101)
The aspect ratio (Lva / Lha) of the first large grid 68A in the first conductive portion 14A of the first conductive film 10A and the aspect ratio of the second large grid 68B in the second conductive portion 14B of the second conductive film 10B A laminated conductive film according to Example 101 was produced, in which (Lvb / Lhb) was 0.5773, the fine line pitch Ps of the thin metal wire 16 was 200 μm, and the line width of the thin metal line 16 was 6 μm.
(Examples 102 to 104)
In Examples 102, 103, and 104, a laminated conductive film was produced in the same manner as in Example 101 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 105)
A laminated conductive film according to Example 105 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.6248, the fine wire pitch Ps of the metal fine wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 106 to 108)
In Examples 106, 107, and 108, a laminated conductive film was produced in the same manner as in Example 105 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例109)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ0.7266、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例109に係る積層導電性フイルムを作製した。
(実施例110~112)
 実施例110、111、112は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例109と同様にして積層導電性フイルムを作製した。
(実施例113)
 第1大格子68A及び第2大格子68Bの縦横比それぞれ0.7535、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例113に係る積層導電性フイルムを作製した。
(実施例114~116)
 実施例114、115、116は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例113と同様にして積層導電性フイルムを作製した。
(Example 109)
A laminated conductive film according to Example 109 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.7266, the fine wire pitch Ps of the metal fine wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 110 to 112)
In Examples 110, 111, and 112, a laminated conductive film was produced in the same manner as in Example 109 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 113)
A laminated conductive film according to Example 113 was produced, wherein the aspect ratio of the first large lattice 68A and the second large lattice 68B was 0.7535, the fine wire pitch Ps of the fine metal wire 16 was 200 μm, and the line width of the fine metal wire 16 was 6 μm. .
(Examples 114 to 116)
In Examples 114, 115, and 116, a laminated conductive film was produced in the same manner as in Example 113 except that the fine line pitch Ps of the fine metal wires 16 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例117)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ0.8098、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例117に係る積層導電性フイルムを作製した。
(実施例118~120)
 実施例118、119、120は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例117と同様にして積層導電性フイルムを作製した。
(実施例121)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ0.8391、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例121に係る積層導電性フイルムを作製した。
(実施例122~124)
 実施例122、123、124は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例121と同様にして積層導電性フイルムを作製した。
(Example 117)
A layered conductive film according to Example 117 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.8098, the fine wire pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm did.
(Examples 118 to 120)
In Examples 118, 119, and 120, a laminated conductive film was produced in the same manner as in Example 117 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 121)
A laminated conductive film according to Example 121 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.8391, the fine line pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal line 16 to 6 μm did.
(Examples 122 to 124)
In Examples 122, 123 and 124, a laminated conductive film was produced in the same manner as in Example 121 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm and 400 μm, respectively.
(実施例125)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ0.9657、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例125に係る積層導電性フイルムを作製した。
(実施例126~128)
 実施例126、127、128は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例125と同様にして積層導電性フイルムを作製した。
(実施例129)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.0000、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例129に係る積層導電性フイルムを作製した。
(実施例130~132)
 実施例130、131、132は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例129と同様にして積層導電性フイルムを作製した。
(Example 125)
A laminated conductive film according to Example 125 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.9657, the fine wire pitch Ps of the metal fine wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 126 to 128)
In Examples 126, 127, and 128, a laminated conductive film was produced in the same manner as in Example 125 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 129)
The layered conductive film according to Example 129 is manufactured by setting the aspect ratio of the first large lattices 68A and the second large lattices 68B to 1.0000, the fine wire pitch Ps of the fine metal wires 16 to 200 μm, and the line width of the fine metal wires 16 to 6 μm. did.
(Examples 130 to 132)
In Examples 130, 131, and 132, a laminated conductive film was produced in the same manner as in Example 129 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例133)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.0356、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例133に係る積層導電性フイルムを作製した。
(実施例134~136)
 実施例134、135、136は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例133と同様にして積層導電性フイルムを作製した。
(実施例137)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.1917、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例137に係る積層導電性フイルムを作製した。
(実施例138~140)
 実施例138、139、140は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例137と同様にして積層導電性フイルムを作製した。
(Example 133)
The layered conductive film according to Example 133 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.0356, the fine wire pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 134 to 136)
In Examples 134, 135, and 136, a laminated conductive film was produced in the same manner as in Example 133 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 137)
The layered conductive film according to Example 137 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.1917, the fine wire pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 138 to 140)
In Examples 138, 139, and 140, a laminated conductive film was produced in the same manner as in Example 137 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例141)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.2349、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例141に係る積層導電性フイルムを作製した。
(実施例142~144)
 実施例142、143、144は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例141と同様にして積層導電性フイルムを作製した。
(実施例145)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.3271、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例145に係る積層導電性フイルムを作製した。
(実施例146~148)
 実施例146、147、148は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例145と同様にして積層導電性フイルムを作製した。
(Example 141)
A laminated conductive film according to Example 141 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.2349, the fine wire pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 142 to 144)
In Examples 142, 143, and 144, a laminated conductive film was produced in the same manner as in Example 141 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 145)
The layered conductive film according to Example 145 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.3271, the fine wire pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 146 to 148)
In Examples 146, 147, and 148, a laminated conductive film was produced in the same manner as in Example 145 except that the fine line pitch Ps of the thin metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例149)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.3763、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例149に係る積層導電性フイルムを作製した。
(実施例150~152)
 実施例150、151、152は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例149と同様にして積層導電性フイルムを作製した。
(実施例153)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.6004、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例153に係る積層導電性フイルムを作製した。
(実施例154~156)
 実施例154、155、156は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例149と同様にして積層導電性フイルムを作製した。
(Example 149)
A layered conductive film according to Example 149 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.3763, the fine wire pitch Ps of the metal fine wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 150 to 152)
In Examples 150, 151, and 152, a laminated conductive film was produced in the same manner as in Example 149 except that the fine line pitch Ps of the fine metal wires 16 was 220 μm, 240 μm, and 400 μm, respectively.
(Example 153)
A laminated conductive film according to Example 153 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.6004, the fine wire pitch Ps of the metal fine wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 154 to 156)
In Examples 154, 155, and 156, a laminated conductive film was produced in the same manner as in Example 149 except that the fine line pitch Ps of the fine metal wires 16 was 220 μm, 240 μm, and 400 μm, respectively.
(実施例157)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.7321、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例157に係る積層導電性フイルムを作製した。
(実施例158~160)
 実施例158、159、160は、金属細線16の細線ピッチPsをそれぞれ220μm、240μm、400μmとした点以外は実施例157と同様にして積層導電性フイルムを作製した。
(Example 157)
A laminated conductive film according to Example 157 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.7321, the fine wire pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm. did.
(Examples 158 to 160)
In Examples 158, 159, and 160, a laminated conductive film was produced in the same manner as in Example 157 except that the fine line pitch Ps of the fine metal wire 16 was 220 μm, 240 μm, and 400 μm, respectively.
(比較例21)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ0.5543、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして比較例21に係る積層導電性フイルムを作製した。
(比較例22、23)
 比較例22、23は、金属細線16の細線ピッチPsをそれぞれ300μm、400μmとした点以外は比較例21と同様にして積層導電性フイルムを作製した。
(比較例24)
 第1大格子68A及び第2大格子68Bの縦横比をそれぞれ1.8040、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして比較例24に係る積層導電性フイルムを作製した。
(比較例25、26)
 比較例25、26は、金属細線16の細線ピッチPsをそれぞれ300μm、400μmとした点以外は比較例24と同様にして積層導電性フイルムを作製した。
(Comparative example 21)
The laminated conductive film according to Comparative Example 21 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 0.5543, the fine wire pitch Ps of the metal fine wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm did.
(Comparative Examples 22 and 23)
In Comparative Examples 22 and 23, a laminated conductive film was produced in the same manner as Comparative Example 21 except that the fine line pitch Ps of the thin metal wire 16 was set to 300 μm and 400 μm, respectively.
(Comparative example 24)
The laminated conductive film according to Comparative Example 24 is manufactured by setting the aspect ratio of the first large lattice 68A and the second large lattice 68B to 1.8040, the fine wire pitch Ps of the fine metal wire 16 to 200 μm, and the line width of the fine metal wire 16 to 6 μm did.
(Comparative Examples 25 and 26)
In Comparative Examples 25 and 26, a laminated conductive film was produced in the same manner as in Comparative Example 24 except that the fine line pitch Ps of the thin metal wire 16 was 300 μm and 400 μm, respectively.
〔評価〕
 開口率の算出及びモアレの評価を、上述した第1実施例と同様にして行った。その結果を下記表7及び表8に示す。
[Evaluation]
The calculation of the aperture ratio and the evaluation of moire were performed in the same manner as in the first example described above. The results are shown in Tables 7 and 8 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7及び表8から、比較例21~26はいずれも評価がDであり、モアレが顕在化していることがわかった。一方、実施例101~160は、実施例101、104、121、124、125、128~133、136、137、140、157、160において、モアレがやや顕在化しているが問題のないレベルであった。これ以外の実施例のうち、実施例102、103、105、108、109、112、113、116、117、120、122、123、126、127、134、135、138、139、141、144、145、148、149、152、153、156、158、159についてはほとんどモアレの発生がなく良好であった。特に、第1大格子68A及び第2大格子68Bの縦横比が0.62よりも大きく、且つ、0.81未満、あるいは、1.23より大きく、且つ、1.61未満であって、金属細線16の細線ピッチPsが220μm、240μmである実施例106、107、110、111、114、115、118、119、142、143、146、147、150、151、154、155についてはモアレの発生はなかった。
 また、上述した実施例101~160に係る積層導電性フイルム54を用いてそれぞれ投影型静電容量方式のタッチパネル50を作製した。指で触れて操作したところ、応答速度が速く、検出感度に優れることがわかった。また2点以上をタッチして操作したところ、同様に良好な結果が得られ、マルチタッチにも対応できることが確認できた。
From Tables 7 and 8, it was found that all of Comparative Examples 21 to 26 had an evaluation of D, and that moiré was apparent. On the other hand, in Examples 101 to 160, moiré appears slightly in Examples 101, 104, 121, 124, 125, 128 to 133, 136, 137, 140, 157, and 160, but at a level at which there is no problem. The Among the other embodiments, the embodiments 102, 103, 105, 108, 109, 112, 113, 116, 117, 120, 122, 123, 126, 127, 134, 135, 138, 139, 141, 144, As for 145, 148, 149, 152, 153, 156, 158, and 159, no moire was generated and the result was good. In particular, the aspect ratio of the first large lattice 68A and the second large lattice 68B is more than 0.62, and less than 0.81, or more than 1.23, and less than 1.61, Moire generation is observed for Examples 106, 107, 110, 111, 114, 115, 118, 119, 142, 146, 147, 150, 151, 154, 155 in which the fine line pitch Ps of the thin lines 16 is 220 μm and 240 μm. There was no.
Further, using the laminated conductive films 54 according to the above-described Examples 101 to 160, a projected capacitive touch panel 50 was manufactured. When touched with a finger and operated, it was found that the response speed was fast and the detection sensitivity was excellent. Moreover, when two or more points were touched and operated, it has confirmed that a favorable result was obtained similarly and it can respond also to multi touch.
[第4実施例]
 この第4実施例では、比較例31~36、実施例161~220に係る導電性フイルムについて、開口率を算出し、さらに、モアレを評価した。比較例31~36、実施例161~220の内訳並びに算出結果及び評価結果を表9及び表10に示す。
<実施例161~220、比較例31~36>
 第1導電性フイルム110Aについては図19に示すパターンで、第2導電性フイルム110Bについては図21に示すパターンで露光を行った点以外は、上記した第3実施例と同様にして導電性フイルムを作製し、評価した。なお、第1導電性フイルム110Aの第1導電部114Aにおける第1大格子118Aの縦横比は、水平方向の2つの第1上底部126A間に形成されるひし形の縦横比とし、第2導電性フイルム110Bの第2導電部114Bにおける第2大格子118Bの縦横比は、水平方向の2つの頂角部間に形成されるひし形の縦横比とした。
Fourth Embodiment
In this fourth example, the aperture ratio was calculated for the conductive films according to Comparative Examples 31 to 36 and Examples 161 to 220, and moire was further evaluated. The breakdown, calculation results and evaluation results of Comparative Examples 31 to 36 and Examples 161 to 220 are shown in Tables 9 and 10.
Examples 161 to 220, Comparative Examples 31 to 36
The conductive film is the same as in the third embodiment except that the first conductive film 110A has the pattern shown in FIG. 19 and the second conductive film 110B has the pattern shown in FIG. Were evaluated. The aspect ratio of the first large lattice 118A in the first conductive portion 114A of the first conductive film 110A is the aspect ratio of the diamond formed between the two first upper bottom portions 126A in the horizontal direction, and the second conductivity The aspect ratio of the second large lattice 118B in the second conductive portion 114B of the film 110B was the aspect ratio of the diamond formed between the two apexes in the horizontal direction.
(実施例161)
 第1導電性フイルム110Aの第1導電部114Aにおける第1大格子118Aの縦横比(Lva/Lha)並びに第2導電性フイルム110Bの第2導電部114Bにおける第2大格子118Bの縦横比(Lvb/Lhb)をそれぞれ0.5773、金属細線16の細線ピッチPsを200μm、金属細線16の線幅を6μmとして実施例161に係る積層導電性フイルムを作製した。
(実施例162~220、比較例31~36)
 実施例162~220に係る積層導電性フイルムの作製は、それぞれ上述した第3実施例の実施例102~160に準拠して行った。また、比較例31~36に係る積層導電性フイルムの作製は、それぞれ上述した第3実施例の比較例21~26に準拠して行った。
(Example 161)
The aspect ratio (Lva / Lha) of the first large lattice 118A in the first conductive portion 114A of the first conductive film 110A and the aspect ratio (Lvb) of the second large lattice 118B in the second conductive portion 114B of the second conductive film 110B. / Lhb) was 0.5773, the fine wire pitch Ps of the fine metal wire 16 was 200 μm, and the line width of the fine metal wire 16 was 6 μm, to obtain a laminated conductive film according to Example 161.
(Examples 162 to 220, Comparative Examples 31 to 36)
Preparation of laminated conductive films according to Examples 162 to 220 was carried out according to Examples 102 to 160 of the third example described above. In addition, the laminated conductive films according to Comparative Examples 31 to 36 were manufactured in accordance with Comparative Examples 21 to 26 of the third example described above, respectively.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表9及び表10から、比較例31~36はいずれも評価がDであり、モアレが顕在化していることがわかった。一方、実施例161~220は、実施例161、181、184、185、188、189、192、193、200、217、220において、モアレがやや顕在化しているが問題のないレベルであった。これ以外の実施例のうち、実施例162~165、168、169、172、173、176、177、180、182、183、186、187、190、191、194~199、201、204、205、208、209、212、213、216、218、219についてはほとんどモアレの発生がなく良好であった。特に、第1大格子118A及び第2大格子118Bの縦横比が0.62よりも大きく、且つ、0.81未満、あるいは、1.23より大きく、且つ、1.61未満であって、金属細線16の細線ピッチPsが220μm、240μmである実施例166、167、170、171、174、175、178、179、202、203、206、207、210、211、214、215についてはモアレの発生はなかった。 From Tables 9 and 10, it was found that all of Comparative Examples 31 to 36 had an evaluation of D, and that moiré was apparent. On the other hand, in Examples 161 to 220, moiré was slightly revealed in Examples 161, 181, 184, 185, 188, 189, 192, 193, 200, 217, and 220, but at a level at which there is no problem. Examples 162 to 168, 168, 169, 172, 173, 176, 177, 180, 182, 183, 186, 187, 190, 191, 194 to 199, 201, 204, 205, among the other embodiments. About 208, 209, 212, 213, 216, 218, and 219, the occurrence of moire hardly occurred and was good. In particular, the aspect ratio of the first large lattice 118A and the second large lattice 118B is more than 0.62, and less than 0.81, or more than 1.23, and less than 1.61, Moire generation is observed for Examples 166, 167, 170, 171, 174, 175, 178, 179, 202, 206, 207, 210, 211, 214, 215 where the thin line pitch Ps of the thin lines 16 is 220 μm and 240 μm. There was no.
 また、上述した実施例161~220に係る積層導電性フイルム104を用いてそれぞれ投影型静電容量方式のタッチパネル50を作製した。指で触れて操作したところ、応答速度が速く、検出感度に優れることがわかった。また2点以上をタッチして操作したところ、同様に良好な結果が得られ、マルチタッチにも対応できることが確認できた。
 本発明に係る導電性フイルム及びそれを備えた表示装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
Also, using the laminated conductive films 104 according to Examples 161 to 220 described above, a projected capacitive touch panel 50 was produced. When touched with a finger and operated, it was found that the response speed was fast and the detection sensitivity was excellent. Moreover, when two or more points were touched and operated, it has confirmed that a favorable result was obtained similarly and it can respond also to multi touch.
The conductive film and the display device provided with the same according to the present invention are not limited to the above-described embodiment, and it goes without saying that various configurations can be adopted without departing from the scope of the present invention.

Claims (17)

  1.  基体(12A)と、
     前記基体(12A)の一方の主面側に配された導電部(14A)とを有し、
     前記導電部(14A)は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された金属細線(16)による2以上の導電パターン(64A)を有し、
     前記導電パターン(64A)は、2以上の格子(70)が組み合わされて構成され、
     各前記格子(70)は、それぞれひし形状を有し、
     各前記格子(70)における少なくとも1つの辺と前記第1方向とのなす角が30°~60°であることを特徴とする導電性フイルム。
    A substrate (12A),
    And a conductive portion (14A) disposed on one main surface side of the base (12A),
    Each of the conductive portions (14A) has two or more conductive patterns (64A) of metal fine wires (16) extending in a first direction and arranged in a second direction orthogonal to the first direction. ,
    The conductive pattern (64A) is configured by combining two or more grids (70),
    Each of the grids (70) has a diamond shape,
    A conductive film characterized in that an angle formed by at least one side in each of the grids (70) and the first direction is 30 ° to 60 °.
  2.  請求項1記載の導電性フイルムにおいて、
     各前記格子(70)における少なくとも1つの辺と前記第1方向とのなす角が30°~44°であることを特徴とする導電性フイルム。
    In the conductive film according to claim 1,
    A conductive film characterized in that an angle formed by at least one side in each of the grids (70) and the first direction is 30 ° to 44 °.
  3.  請求項1記載の導電性フイルムにおいて、
     各前記格子(70)における少なくとも1つの辺と前記第1方向とのなす角が32°~39°であることを特徴とする導電性フイルム。
    In the conductive film according to claim 1,
    The conductive film, wherein an angle formed by at least one side in each of the lattices (70) and the first direction is 32 ° to 39 °.
  4.  請求項1記載の導電性フイルムにおいて、
     各前記格子(70)における少なくとも1つの辺と前記第1方向とのなす角が46°~60°であることを特徴とする導電性フイルム。
    In the conductive film according to claim 1,
    A conductive film characterized in that an angle formed by at least one side in each of the grids (70) and the first direction is 46 ° to 60 °.
  5.  請求項1記載の導電性フイルムにおいて、
     各前記格子(70)における少なくとも1つの辺と前記第1方向とのなす角が51°~58°であることを特徴とする導電性フイルム。
    In the conductive film according to claim 1,
    A conductive film characterized in that an angle formed by at least one side in each of the grids (70) and the first direction is 51 ° to 58 °.
  6.  請求項1記載の導電性フイルムにおいて、
     前記導電パターン(64A)は、2以上の感知部(68A)が前記第1方向に直列に接続されて構成され、
     各前記感知部(68A)は、それぞれ2以上の前記格子(70)が組み合わされて構成されていることを特徴とする導電性フイルム。
    In the conductive film according to claim 1,
    The conductive pattern (64A) is configured by connecting two or more sensing units (68A) in series in the first direction,
    A conductive film characterized in that each of the sensing portions (68A) is configured by combining two or more of the grids (70).
  7.  基体(12A)と、
     前記基体(12A)の一方の主面側に配された第1導電部(14A)と、
     前記基体(12A)の他方の主面側に配された第2導電部(14B)とを有し、
     前記第1導電部(14A)は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された2以上の第1導電パターン(64A)を有し、
     前記第2導電部(14B)は、それぞれ第2方向に延在し、且つ、前記第1方向に配列された2以上の第2導電パターン(64B)を有し、
     前記第1導電パターン(64A)及び前記第2導電パターン(64B)は、それぞれ2以上の格子(70)が組み合わされて構成され、
     各前記格子(70)は、それぞれひし形状を有し、
     各前記格子(70)における少なくとも1つの辺と前記第1方向とのなす角が30°~60°であることを特徴とする導電性フイルム。
    A substrate (12A),
    A first conductive portion (14A) disposed on one main surface side of the base (12A);
    And a second conductive portion (14B) disposed on the other main surface side of the base (12A),
    Each of the first conductive portions (14A) has two or more first conductive patterns (64A) extending in a first direction and arranged in a second direction orthogonal to the first direction,
    Each of the second conductive parts (14B) has two or more second conductive patterns (64B) extending in a second direction and arranged in the first direction,
    The first conductive pattern (64A) and the second conductive pattern (64B) are each configured by combining two or more gratings (70),
    Each of the grids (70) has a diamond shape,
    A conductive film characterized in that an angle formed by at least one side in each of the grids (70) and the first direction is 30 ° to 60 °.
  8.  請求項7記載の導電性フイルムにおいて、
     前記第1導電パターン(64A)は、2以上の第1感知部(68A)が前記第1方向に直列に接続されて構成され、
     前記第2導電パターン(64B)は、2以上の第2感知部(68B)が前記第2方向に直列に接続されて構成され、
     各前記第1感知部(68A)及び各前記第2感知部(68B)は、それぞれ2以上の前記格子(70)が組み合わされて構成されていることを特徴とする導電性フイルム。
    In the conductive film according to claim 7,
    The first conductive pattern 64A includes two or more first sensing units 68A connected in series in the first direction,
    The second conductive pattern 64B is configured by connecting two or more second sensing units 68B in series in the second direction,
    A conductive film characterized in that each of the first sensing unit (68A) and each of the second sensing units (68B) is formed by combining two or more of the grids (70).
  9.  基体(12)と、
     前記基体(12)の一方の主面側に配された導電部(14)とを有し、
     前記導電部(14)は、メッシュパターン(20)から構成されており、当該メッシュパターン(20)の開口部(18)はひし形状を有し、そのひし形状の頂角部は60°~120°であることを特徴とする導電性フイルム。
    A substrate (12),
    And a conductive portion (14) disposed on one main surface side of the substrate (12),
    The conductive portion (14) is composed of a mesh pattern (20), and the opening (18) of the mesh pattern (20) has a diamond shape, and the apex of the diamond shape is 60 ° to 120 °. A conductive film characterized in that it is.
  10.  基体(12A)と、
     前記基体(12A)の一方の主面側に配された導電部(14)とを有し、
     前記導電部(14)は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された金属細線(16)による2以上の導電パターン(64A)を有し、
     前記導電パターン(64A)は、2以上の感知部(68A)が前記第1方向に接続されて構成され、
     各前記感知部(68A)の前記第2方向に沿った長さをLv、前記第1方向に沿った長さをLhとしたとき、
       0.57<Lv/Lh<1.74
    を満足することを特徴とする導電性フイルム。
    A substrate (12A),
    And a conductive portion (14) disposed on one main surface side of the base (12A),
    Each of the conductive portions (14) has at least two conductive patterns (64A) of metal thin wires (16) extending in a first direction and arranged in a second direction orthogonal to the first direction. ,
    The conductive pattern (64A) is configured by connecting two or more sensing units (68A) in the first direction,
    Assuming that the length of each of the sensing portions (68A) in the second direction is Lv and the length in the first direction is Lh,
    0.57 <Lv / Lh <1.74
    A conductive film characterized by satisfying the above.
  11.  請求項10記載の導電性フイルムにおいて、
       0.57<Lv/Lh<1.00
    を満足することを特徴とする導電性フイルム。
    In the conductive film according to claim 10,
    0.57 <Lv / Lh <1.00
    A conductive film characterized by satisfying the above.
  12.  基体(12A)と、
     前記基体(12A)の一方の主面側に配された第1導電部(14A)と、
     前記基体(12A)の他方の主面側に配された第2導電部(14B)とを有し、
     前記第1導電部(14A)は、それぞれ第1方向に延在し、且つ、前記第1方向と直交する第2方向に配列された2以上の第1導電パターン(64A)を有し、
     前記第2導電部(14B)は、それぞれ第2方向に延在し、且つ、前記第1方向に配列された2以上の第2導電パターン(64B)を有し、
     前記第1導電パターン(64A)は、2以上の第1の感知部(68A)が前記第1方向に接続されて構成され、
     前記第2導電パターン(64B)は、2以上の第2の感知部(68B)が前記第2方向に接続されて構成され、
     各前記第1の感知部(68A)の前記第2方向に沿った長さをLva、前記第1方向に沿った長さをLhaとし、
     各前記第2の感知部(68B)の前記第2方向に沿った長さをLvb、前記第1方向に沿った長さをLhbとしたとき、
       0.57<Lva/Lha<1.74
       0.57<Lvb/Lhb<1.74
    を満足することを特徴とする導電性フイルム。
    A substrate (12A),
    A first conductive portion (14A) disposed on one main surface side of the base (12A);
    And a second conductive portion (14B) disposed on the other main surface side of the base (12A),
    Each of the first conductive portions (14A) has two or more first conductive patterns (64A) extending in a first direction and arranged in a second direction orthogonal to the first direction,
    Each of the second conductive parts (14B) has two or more second conductive patterns (64B) extending in a second direction and arranged in the first direction,
    The first conductive pattern (64A) is configured by connecting two or more first sensing units (68A) in the first direction,
    The second conductive pattern (64B) is configured by connecting two or more second sensing units (68B) in the second direction,
    Let Lva be a length along the second direction of each of the first sensing portions (68A), and Lha be a length along the first direction,
    When a length along the second direction of each of the second sensing portions (68B) is Lvb and a length along the first direction is Lhb,
    0.57 <Lva / Lha <1.74
    0.57 <Lvb / Lhb <1.74
    A conductive film characterized by satisfying the above.
  13.  請求項12記載の導電性フイルムにおいて、
       0.57<Lva/Lha<1.00
       0.57<Lvb/Lhb<1.00
    を満足することを特徴とする導電性フイルム。
    In the conductive film according to claim 12,
    0.57 <Lva / Lha <1.00
    0.57 <Lvb / Lhb <1.00
    A conductive film characterized by satisfying the above.
  14.  請求項10又は12記載の導電性フイルムにおいて、
     前記感知部(68A,68B)は複数の格子(70)にて構成され、
     各前記格子(70)の前記第2方向に沿った長さをLvs、前記第1方向に沿った長さをLhsとしたとき、
       0.57<Lvs/Lhs<1.74
    を満足することを特徴とする導電性フイルム。
    In the conductive film according to claim 10 or 12,
    The sensing unit (68A, 68B) comprises a plurality of grids (70),
    Assuming that the length of each of the grids (70) in the second direction is Lvs, and the length in the first direction is Lhs,
    0.57 <Lvs / Lhs <1.74
    A conductive film characterized by satisfying the above.
  15.  基体(12)と、
     前記基体(12)の一方の主面に形成された導電部(14)とを有し、
     前記導電部(14)は、メッシュパターン(20)から構成されており、当該メッシュパターン(20)の開口部(18)はひし形状を有し、
     前記ひし形状の一方の対角線の長さをLvp、他方の対角線の長さをLhpとしたとき、
       0.57<Lvp/Lhp<1.74
    を満足することを特徴とする導電性フイルム。
    A substrate (12),
    And a conductive portion (14) formed on one main surface of the substrate (12),
    The conductive portion (14) is composed of a mesh pattern (20), and the opening (18) of the mesh pattern (20) has a diamond shape.
    Assuming that the length of one diagonal of the rhombus is Lvp and the length of the other diagonal is Lhp,
    0.57 <Lvp / Lhp <1.74
    A conductive film characterized by satisfying the above.
  16.  表示パネル(58)上に設置された導電性フイルム(10)を備える表示装置(30)であって、
     前記導電性フイルム(10)は、金属製の細線(16)によるメッシュパターン(20)を有する導電部(14)を備え、
     前記細線(16)は、前記表示装置(30)の画素(32)の配列方向に対して30°~44°の傾きを持つことを特徴とする表示装置。
    A display device (30) comprising a conductive film (10) disposed on a display panel (58),
    The conductive film (10) comprises a conductive portion (14) having a mesh pattern (20) of fine metal wires (16),
    The display device characterized in that the thin line (16) has an inclination of 30 ° to 44 ° with respect to the arrangement direction of the pixels (32) of the display device (30).
  17.  請求項16記載の表示装置において、
     前記細線(16)は、前記表示装置(30)の前記画素(32)の配列方向に対して32°~39°の傾きを持つことを特徴とする表示装置。
    In the display device according to claim 16,
    A display device characterized in that the thin line (16) has an inclination of 32 ° to 39 ° with respect to the arrangement direction of the pixels (32) of the display device (30).
PCT/JP2012/050929 2011-01-18 2012-01-18 Conductive film and display apparatus provided with same WO2012099150A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137018810A KR20140009287A (en) 2011-01-18 2012-01-18 Conductive film and display apparatus provided with same
KR1020167005217A KR20160031029A (en) 2011-01-18 2012-01-18 Conductive film and display apparatus provided with same
CN201280005744.1A CN103329642B (en) 2011-01-18 2012-01-18 Conducting film and the display device for being provided with the conducting film
US13/939,607 US9924618B2 (en) 2011-01-18 2013-07-11 Conductive film and display apparatus provided with same
US15/840,817 US10779447B2 (en) 2011-01-18 2017-12-13 Conductive film and display apparatus provided with same
US16/733,302 US10888038B2 (en) 2011-01-18 2020-01-03 Conductive film and display apparatus provided with same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011007675 2011-01-18
JP2011007685 2011-01-18
JP2011007678 2011-01-18
JP2011-007678 2011-01-18
JP2011-007685 2011-01-18
JP2011-007675 2011-01-18
JP2011105374A JP2012163933A (en) 2011-01-18 2011-05-10 Conductive film and display device having the same
JP2011-105374 2011-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/939,607 Continuation US9924618B2 (en) 2011-01-18 2013-07-11 Conductive film and display apparatus provided with same

Publications (1)

Publication Number Publication Date
WO2012099150A1 true WO2012099150A1 (en) 2012-07-26

Family

ID=46515773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050929 WO2012099150A1 (en) 2011-01-18 2012-01-18 Conductive film and display apparatus provided with same

Country Status (1)

Country Link
WO (1) WO2012099150A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021225A1 (en) * 2012-08-02 2014-02-06 シャープ株式会社 Touch panel substrate and display device
WO2014021168A1 (en) * 2012-07-31 2014-02-06 シャープ株式会社 Touch panel substrate and display device
EP2708992A1 (en) * 2011-05-13 2014-03-19 FUJIFILM Corporation Conductive sheet and touch panel
WO2014119230A1 (en) * 2013-01-29 2014-08-07 シャープ株式会社 Input apparatus, manufacturing method therefor, and electronic information device
WO2014129298A1 (en) * 2013-02-22 2014-08-28 三菱製紙株式会社 Light-transmissive electrode
CN104076997A (en) * 2013-03-27 2014-10-01 株式会社日本显示器 Display device with touch detection function and electronic apparatus
CN104076975A (en) * 2013-03-27 2014-10-01 株式会社日本显示器 Display device with touch detecting function and electronic apparatus
CN104662500A (en) * 2012-09-27 2015-05-27 富士胶片株式会社 Electroconductive film, and touch panel and display device provided with same
CN104808854A (en) * 2015-04-30 2015-07-29 业成光电(深圳)有限公司 Touch panel
WO2015159460A1 (en) * 2014-04-15 2015-10-22 凸版印刷株式会社 Touch sensor electrode, touch panel, and display device
CN110416394A (en) * 2015-05-01 2019-11-05 东芝北斗电子株式会社 Light emitting module
CN112968046A (en) * 2021-02-09 2021-06-15 湖北长江新型显示产业创新中心有限公司 Display panel and display device
CN113534999A (en) * 2021-07-13 2021-10-22 浙江鑫柔科技有限公司 Touch sensor and display device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066614A (en) * 1998-08-18 2000-03-03 Tomoegawa Paper Co Ltd Filter for display and its usage
JP2004192093A (en) * 2002-12-09 2004-07-08 Micro Gijutsu Kenkyusho:Kk Transparent touch panel and method for manufacturing the same
JP2009259003A (en) * 2008-04-17 2009-11-05 Gunze Ltd Touch panel and its production method
JP2010039537A (en) * 2008-07-31 2010-02-18 Gunze Ltd Touch panel
JP2010108878A (en) * 2008-10-31 2010-05-13 Fujifilm Corp Conductive film for touch panel, conductive film forming photosensitive material, conductive material, and conductive film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066614A (en) * 1998-08-18 2000-03-03 Tomoegawa Paper Co Ltd Filter for display and its usage
JP2004192093A (en) * 2002-12-09 2004-07-08 Micro Gijutsu Kenkyusho:Kk Transparent touch panel and method for manufacturing the same
JP2009259003A (en) * 2008-04-17 2009-11-05 Gunze Ltd Touch panel and its production method
JP2010039537A (en) * 2008-07-31 2010-02-18 Gunze Ltd Touch panel
JP2010108878A (en) * 2008-10-31 2010-05-13 Fujifilm Corp Conductive film for touch panel, conductive film forming photosensitive material, conductive material, and conductive film

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708992A1 (en) * 2011-05-13 2014-03-19 FUJIFILM Corporation Conductive sheet and touch panel
US9386691B2 (en) 2011-05-13 2016-07-05 Fujifilm Corporation Conductive sheet and touch panel
EP2708992A4 (en) * 2011-05-13 2014-12-10 Fujifilm Corp Conductive sheet and touch panel
WO2014021168A1 (en) * 2012-07-31 2014-02-06 シャープ株式会社 Touch panel substrate and display device
CN104520789B (en) * 2012-07-31 2017-04-26 夏普株式会社 Touch panel substrate and display device
CN104520789A (en) * 2012-07-31 2015-04-15 夏普株式会社 Touch panel substrate and display device
WO2014021225A1 (en) * 2012-08-02 2014-02-06 シャープ株式会社 Touch panel substrate and display device
CN104508610A (en) * 2012-08-02 2015-04-08 夏普株式会社 Touch panel substrate and display device
CN104662500A (en) * 2012-09-27 2015-05-27 富士胶片株式会社 Electroconductive film, and touch panel and display device provided with same
CN104662500B (en) * 2012-09-27 2017-04-26 富士胶片株式会社 Electroconductive film, and touch panel and display device provided with same
JPWO2014119230A1 (en) * 2013-01-29 2017-01-26 シャープ株式会社 Input device, method for manufacturing the same, and electronic information device
CN104969160A (en) * 2013-01-29 2015-10-07 夏普株式会社 Input apparatus, manufacturing method therefor, and electronic information device
CN104969160B (en) * 2013-01-29 2017-08-08 夏普株式会社 Input unit and its manufacture method and electronic message unit
JP5923629B2 (en) * 2013-01-29 2016-05-24 シャープ株式会社 INPUT DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC INFORMATION DEVICE
WO2014119230A1 (en) * 2013-01-29 2014-08-07 シャープ株式会社 Input apparatus, manufacturing method therefor, and electronic information device
US9606689B2 (en) 2013-02-22 2017-03-28 Mitsubishi Paper Mills Limited Optically transparent electrode
CN104956295A (en) * 2013-02-22 2015-09-30 三菱制纸株式会社 Light-transmissive electrode
WO2014129298A1 (en) * 2013-02-22 2014-08-28 三菱製紙株式会社 Light-transmissive electrode
US9471165B2 (en) 2013-03-27 2016-10-18 Japan Display Inc. Display device with touch detecting function and electronic apparatus
US10061422B2 (en) 2013-03-27 2018-08-28 Japan Display Inc. Display device with touch detecting function and electronic apparatus
CN104076997A (en) * 2013-03-27 2014-10-01 株式会社日本显示器 Display device with touch detection function and electronic apparatus
US10884534B2 (en) 2013-03-27 2021-01-05 Japan Display Inc. Detection device
CN107066159B (en) * 2013-03-27 2020-04-14 株式会社日本显示器 Display device with touch detection function, electronic equipment and detection device
CN104076975A (en) * 2013-03-27 2014-10-01 株式会社日本显示器 Display device with touch detecting function and electronic apparatus
US10599246B2 (en) 2013-03-27 2020-03-24 Japan Display Inc. Display device with touch detecting function and electronic apparatus
CN107066159A (en) * 2013-03-27 2017-08-18 株式会社日本显示器 Display device, electronic equipment and detection means with touch detection function
US9946385B2 (en) 2013-03-27 2018-04-17 Japan Display Inc. Display device with touch detecting function and electronic apparatus
US9575609B2 (en) 2013-03-27 2017-02-21 Japan Display Inc. Display device with touch detection function and electronic apparatus
US10078390B2 (en) 2013-03-27 2018-09-18 Japan Display Inc. Touch detection device
US10254869B2 (en) 2013-03-27 2019-04-09 Japan Display Inc. Display device with touch detecting function and electronic apparatus
WO2015159460A1 (en) * 2014-04-15 2015-10-22 凸版印刷株式会社 Touch sensor electrode, touch panel, and display device
JPWO2015159460A1 (en) * 2014-04-15 2017-04-13 凸版印刷株式会社 Touch sensor electrode, touch panel, and display device
CN104808854A (en) * 2015-04-30 2015-07-29 业成光电(深圳)有限公司 Touch panel
CN110416394A (en) * 2015-05-01 2019-11-05 东芝北斗电子株式会社 Light emitting module
CN110416394B (en) * 2015-05-01 2022-09-23 日亚化学工业株式会社 Light emitting module
CN112968046A (en) * 2021-02-09 2021-06-15 湖北长江新型显示产业创新中心有限公司 Display panel and display device
CN113534999A (en) * 2021-07-13 2021-10-22 浙江鑫柔科技有限公司 Touch sensor and display device including the same

Similar Documents

Publication Publication Date Title
JP7164642B2 (en) Display device with conductive film
US10888038B2 (en) Conductive film and display apparatus provided with same
WO2012099150A1 (en) Conductive film and display apparatus provided with same
KR101641761B1 (en) Conductive sheet and touch panel
JP6026003B2 (en) Conductive film, touch panel and display device
JP2012163951A (en) Display device having conductive film and the conductive film
TWI567617B (en) Conductive sheet and touch panel
JP5345980B2 (en) Transparent conductive substrate, conductive sheet for touch panel, and touch panel
US8766105B2 (en) Conductive sheet, method for using conductive sheet, and capacitive touch panel
JP5507343B2 (en) Touch panel and conductive sheet
WO2013089085A1 (en) Conductive sheet and touch panel
JP5890063B2 (en) Conductive film
JP5638459B2 (en) Touch panel and conductive sheet
JP2011113149A (en) Conductive sheet, use method for the same and capacitance type touch panel
JP2012163933A (en) Conductive film and display device having the same
JP5613448B2 (en) Touch panel and conductive sheet
JP5711606B2 (en) Conductive sheet and touch panel
JP5476237B2 (en) Touch panel and conductive sheet
JP2012221891A (en) Transparent conductive sheet, sensitive material for production of transparent conductive sheet, production method of transparent conductive sheet, and capacity type touch panel using these transparent conductive sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137018810

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736583

Country of ref document: EP

Kind code of ref document: A1