WO2012099022A1 - 過渡回復電圧測定装置、過渡回復電圧測定方法及び過渡回復電圧測定プログラム - Google Patents
過渡回復電圧測定装置、過渡回復電圧測定方法及び過渡回復電圧測定プログラム Download PDFInfo
- Publication number
- WO2012099022A1 WO2012099022A1 PCT/JP2012/050629 JP2012050629W WO2012099022A1 WO 2012099022 A1 WO2012099022 A1 WO 2012099022A1 JP 2012050629 W JP2012050629 W JP 2012050629W WO 2012099022 A1 WO2012099022 A1 WO 2012099022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveform
- recovery voltage
- transient recovery
- tangent
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/04—Measuring peak values or amplitude or envelope of ac or of pulses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0084—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
- G01R31/3271—Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
- G01R31/3272—Apparatus, systems or circuits therefor
- G01R31/3274—Details related to measuring, e.g. sensing, displaying or computing; Measuring of variables related to the contact pieces, e.g. wear, position or resistance
Definitions
- Embodiments of the present invention provide, for example, a transient recovery voltage measuring device and a transient recovery voltage measuring method for drawing a tangent line to a transient recovery voltage waveform in order to obtain a normal value of the transient recovery voltage after the circuit breaker interrupts the current. And a transient recovery voltage measurement program.
- the transient recovery voltage is a single-frequency or multi-frequency waveform. From this waveform, a contract value (parameter) for expressing a transient recovery voltage such as a peak value or an increase rate is read.
- the transient recovery voltage is expressed by the two-parameter method.
- the transient recovery voltage can be expressed by two parameters: a peak value and an initial peak time (or rate of increase). These two parameters are obtained by a technique as shown in FIG. First, a tangent line ⁇ is drawn from the origin to the transient recovery voltage waveform V. The contact in this case is S1. Further, at the peak of the transient recovery voltage waveform V (in this case, the wave height (wave height value Uc)), a tangent line ⁇ is drawn parallel to the time axis. The contact in this case is S2. Then, an intersection C between the tangent line ⁇ and the tangent line ⁇ is obtained. Then, the time corresponding to the intersection C is the initial wave height time t3.
- transient recovery voltage is expressed by the 4-parameter method.
- the transient recovery voltage can be expressed by four parameters: initial peak value, initial peak time (or initial rise rate), peak value, and peak time. These four parameters are obtained by a method as shown in FIG. First, in addition to the tangent lines ⁇ and ⁇ of the above two-parameter method, a common tangent line ⁇ is drawn between the raised portion A1 existing between the origin and the wave height portion and the raised portion A2 corresponding to the wave height portion. Then, intersection points C1 and C2 between the common tangent line ⁇ and the tangent lines ⁇ and ⁇ are obtained.
- An intersection C1 between the tangent line ⁇ and the common tangent line ⁇ indicates the initial peak value U1 and the initial peak time t1.
- An intersection C2 between the tangent line ⁇ and the common tangent line ⁇ indicates the peak value Uc and the peak time t2.
- S3 is a contact point between the raised portion A1 and the common tangent line ⁇ .
- P1 is the peak of the raised portion A1.
- S4 is a contact point between the raised portion A2 and the common tangent line ⁇ .
- P2 is the peak of the raised portion A2, and is common to the contact point S2 with the tangent line ⁇ .
- the slope of the tangent line in a certain curve is the differential value of the curve. Therefore, when drawing a common tangent line between two points on the curve, it is necessary to obtain two points with the same differential value of the curve.
- straight lines passing through two points having the same differential value include two straight lines that are not common, but are parallel to each other. For this reason, a straight line drawn between two points having the same differential value is not necessarily a common tangent. Therefore, it is generally difficult to draw a common tangent line between two points on the curve. In particular, when computation is performed by a computer, there is a high possibility that the amount of computation will be enormous.
- the problem to be solved by the present invention is to obtain a ridge that exists from the origin to the wave height in order to obtain the transient recovery voltage regulation value from the multi-frequency transient recovery voltage waveform,
- the transient recovery voltage measurement device of the embodiment is characterized by having the following configuration.
- Waveform storage unit that stores transient recovery voltage waveforms consisting of multiple frequencies
- Waveform conversion unit that converts transient recovery voltage waveforms based on a proportional value obtained by multiplying the time from the origin by a proportional constant
- Conversion Wave height determination unit that determines the two points with the same maximum value in the measured waveform
- Contact detection unit that detects two points of the transient recovery voltage waveform corresponding to the two points determined by the wave height determination unit.
- First Tangent Line Generation Unit The present invention can also be understood as a method and a program for realizing the functions of the above-described units by a computer or an electronic circuit.
- generation process of embodiment 1 is a block diagram showing an example of a transient recovery voltage measuring device according to an embodiment
- the flowchart which shows an example of the process in embodiment Explanatory drawing showing the method of obtaining the contract value by the two parameter method
- Explanatory drawing which shows the method of calculating the contract value with 4 parameter method
- FIG. 1 is a diagram illustrating the principle of obtaining a tangent according to an embodiment.
- V 1 is a waveform of a multiple frequency.
- V 1 can be considered as a waveform of transient recovery voltage (TRV) after breaking the breaker current.
- TRV transient recovery voltage
- the horizontal axis (X axis) is time ( ⁇ s) and the vertical axis (Y axis) is voltage (kV).
- V 2 is a waveform obtained by converting waveform V 1 by the following equation (1).
- This equation (1) is an equation in which the angle ⁇ is set, and the tangent thereof multiplied by time (proportional value) is subtracted from V 1 .
- Tan ⁇ can be said to be a proportionality constant.
- L1 is a tangent (first tangent to be described later) whose main object is to be generated by the present embodiment.
- the tangent line L1 includes a raised portion A1 between the crest portions from the origin in the waveform V 1, drawn between the raised portion A2 corresponding to the crest portion.
- L2 is a waveform V 2 obtained by converting the waveform V 1, when the maximum value (peak value) reaches the two points exist the same, is a tangent to the two points.
- the two points that become the contact points are a point and b point.
- the two points on the converted waveform V 2 becomes a 'point and point b'.
- the points a ′ and b ′ have the same values ta and tb on the horizontal axis as the original points a and b. That is, the values on the vertical axis of the points a ′ and b ′ are values obtained by subtracting Va from the point a, and values obtained by subtracting Vb from the point b. For this reason, if the angle ⁇ in the figure is appropriately set, the tangent line L2 drawn between the points a ′ and b ′ becomes parallel to the horizontal axis.
- the angle ⁇ is adjusted so that the values of the points a ′ and b ′ are the same, and ta and tb are obtained. Then, ta and tb are values on the horizontal axes of the points a and b where the tangent line L1 in the original waveform V1 is in contact. Thereby, since the values of the points a and b of the original waveform V1 are known, the tangent line L1 can be easily drawn.
- the tangent line ⁇ (second tangent line described later) from the origin to the waveform V 1 and the tangent line ⁇ (third tangent line described later) parallel to the horizontal axis in the peak value are easy. Can be drawn to. Accordingly, all the tangents of the four parameter method can be drawn, and the initial values of the TRV initial wave height value, initial wave height time, wave height value, and wave height time can be calculated from their intersections.
- the transient recovery voltage measuring apparatus 1 of the present embodiment can be realized by controlling a computer with a predetermined program or by a dedicated electronic circuit.
- the program in this case implements the processing of each unit as described below by physically utilizing computer hardware.
- a method for executing the processing of each unit, a program, and a recording medium on which the program is recorded are also one aspect of the embodiment.
- how to set the range processed by hardware and the range processed by software including a program is not limited to a specific mode.
- the transient recovery voltage measuring device 1 includes a measurement processing unit 10, a storage unit 20, an input unit 30, an output unit 40, and the like.
- the measurement processing unit 10 includes a waveform generation unit 11, a waveform conversion unit 12, a wave height determination unit 13, a contact point detection unit 14, a tangent line generation unit 15, an intersection point detection unit 16, and a parameter calculation unit 17 that function according to the program described above. Etc.
- the waveform generation unit 11 is a processing unit that generates a transient recovery voltage waveform based on the detected value of the transient recovery voltage.
- the waveform converter 12 is a processing unit that converts the transient recovery voltage waveform.
- the waveform conversion unit 12 includes a generation unit 121, an adjustment unit 122, and the like.
- the generating unit 121 is a processing unit that generates a waveform obtained by converting the transient recovery voltage waveform by an operation based on a predetermined formula. In the present embodiment, for example, the calculation based on the above formula (1) is performed.
- the adjustment unit 122 is a processing unit that changes a parameter of a predetermined formula so that the waveform generated by the generation unit 121 changes. In the present embodiment, for example, a process of changing ⁇ in Expression (1) is performed.
- the wave height determination unit 13 is a processing unit that determines whether there are two points having the same maximum value (peak value) in the waveform converted by the waveform conversion unit 12.
- the contact detection unit 14 is a processing unit that detects two points on the transient recovery voltage waveform corresponding to the two points determined by the wave height determination unit 13.
- the contact detection unit 14 functions as a time determination unit 14a and a contact determination unit 14b.
- the time determination unit 14 a is a processing unit that determines the time at two points determined by the wave height determination unit 13.
- the contact determination unit 14b is a processing unit that determines two points of the transient recovery voltage waveform corresponding to the time determined by the time determination unit 14a.
- the tangent generation unit 15 is a processing unit that generates tangents necessary for the 4-parameter method.
- the tangent generation unit 15 generates a first tangent, a second tangent, and a third tangent. Therefore, the tangent generation unit 15 functions as a first tangent generation unit, a second tangent generation unit, and a third tangent generation unit.
- the first tangent is a tangent passing through two points obtained by the contact detection unit 14 (the tangent L1 described above).
- the second tangent line is a tangent line from the origin to the transient recovery voltage waveform (the tangent line ⁇ described above).
- the third tangent is a tangent (the tangent ⁇ described above) parallel to the time axis with the maximum value (peak value) of the transient recovery voltage waveform as a contact. Note that the generation of the second tangent and the third tangent is a well-known technique, and thus description thereof is omitted.
- the intersection detection unit 16 is a processing unit that detects an intersection of the first tangent, the second tangent, and the third tangent.
- the intersection detection unit 16 detects a first intersection and a second intersection. For this reason, the intersection detection part 16 has a function as a 1st intersection detection part and a 2nd intersection detection part.
- the first intersection point is an intersection point between the first tangent line and the second tangent line.
- the second intersection point is an intersection point between the first tangent line and the third tangent line.
- the parameter calculation unit 17 is a processing unit that calculates four parameters (contract values) of the four parameter method. Therefore, the parameter calculation unit 17 functions as an initial peak value calculation unit, an initial peak time (or initial rise rate) calculation unit, a peak value calculation unit, and a peak time calculation unit.
- the initial peak value and the initial peak time can be obtained from the first intersection.
- the peak value and peak time can be obtained from the second intersection. Since these methods are well-known techniques, description thereof is omitted.
- the storage unit 20 is a configuration unit that stores various types of information such as data necessary for processing of the measurement processing unit 10, detection values, calculation results, and generated data.
- the transient recovery voltage waveform you may memorize
- the region where such a transient recovery voltage waveform is stored has a function as a waveform storage unit.
- the storage unit 20 is also configured with a setting storage unit that stores various settings necessary for the processing of the measurement processing unit 10.
- This setting includes, for example, various processing standards such as an arithmetic expression, an initial value of a parameter used in the arithmetic expression, and a change amount thereof.
- the information stored in the storage unit 20 can be information input from the outside via the input unit 30, for example.
- Such a storage unit 20 can typically be constituted by various built-in or externally connected memories, a hard disk, an optical disk, etc., but any storage medium that can be used at present or in the future can be used.
- a register or the like used for calculation can also be regarded as the storage unit 20.
- An aspect may be adopted in which the measurement processing unit 10 can use a storage medium in which information is already stored by attaching the storage medium to the reading device.
- the input unit 30 is a component that inputs information necessary for the transient recovery voltage measuring device 1 and selection of processing and instructions.
- this input unit 30 for example, a keyboard, a mouse, a touch panel (including one configured in a display device) and the like can be considered. However, all input devices available now or in the future are included.
- the input unit 30 also includes a normal monitoring wiring, an interface for receiving input from the communication network, and the like.
- the output unit 40 outputs various data, a transient recovery voltage waveform, a converted waveform, a tangent, an intersection, a calculated parameter value, and the like so that a user including an administrator, an operator, and the like can recognize the data. It is. Examples of the output unit 40 include a display device and a printer. However, any output device available now or in the future is included.
- the waveform generation unit 11 generates a transient recovery voltage waveform based on the transient recovery voltage detection value stored in advance in the storage unit 20 or input from the outside (step 01).
- a transient recovery voltage waveform generated in advance and stored in the storage unit 20 may be used.
- the adjustment unit 122 of the waveform conversion unit 12 assigns an initial value to ⁇ in the expression (1) of the generation unit 121 (step 02).
- the generation unit 121 converts the transient recovery voltage waveform according to the equation (1) (step 03).
- the wave height determination unit 13 determines the maximum value (peak value) in the converted waveform, and compares and determines whether there is a point indicating a value that matches the maximum value (step 04). When the wave height determination unit 13 determines that there is no matching value (NO in Step 05), the adjustment unit 122 adjusts Tan ⁇ in Expression (1) by changing the value of ⁇ according to a predetermined standard ( Step 06). Then, the processes in steps 03 to 06 are repeated.
- step 05 when the wave height determination unit 13 determines that there is a maximum value of the same value (YES in step 05), the contact detection unit 14 has two points in the transient recovery voltage waveform corresponding to the two maximum values. (Contact) is detected (step 07).
- the determination of these two points can be performed, for example, by the time determination unit 14a and the contact determination unit 14b set in the contact detection unit 14 as described above. That is, the time determination unit 14a obtains the time of the two maximum values. Then, the contact determination unit 14b determines two points of the transient recovery voltage waveform at that time.
- the tangent generator 15 generates a straight line passing through the two contacts detected by the contact detector 14 as a first tangent (see L1 in FIG. 1 and ⁇ in FIG. 5) (step 08). Further, the tangent generation unit 15 generates a tangent from the origin to the transient recovery voltage waveform as a second tangent (see ⁇ in FIG. 5) (step 09). Then, the intersection detection unit 16 detects the intersection of the first tangent and the second tangent as the first intersection (see C1 in FIG. 5) (step 10). The parameter calculation unit 17 calculates an initial peak value and an initial peak time (or initial increase rate) based on the first intersection (step 11).
- the tangent line generation unit 15 generates a tangent line parallel to the time axis in the peak value as a third tangent line (see ⁇ in FIG. 5) (step 12). Then, the intersection detection unit 16 detects an intersection between the first tangent and the third tangent as a second intersection (see C2 in FIG. 5) (step 13). The parameter calculation unit 17 calculates the peak value (already determined) and the peak time based on the second intersection (step 14). The calculated parameters are stored in the storage unit 20 together with the transient recovery voltage waveform. These parameters can be used, for example, by being output to the output unit 40 in response to an operation by the input unit 30.
- the parameter to be adjusted is one of ⁇ and a simple mathematical formula is used, the calculation processing load of the computer is light and it can be calculated at high speed.
- the angle is an adjustment element, for example, as shown in FIG. 1, the change amount can be easily grasped visually and intuitively by indicating the angle between the tangent line L1 and the tangent line L2.
- Equation (1) when ⁇ is finally determined, Tan ⁇ can be said to be a constant. Therefore, Formula (1) can be transformed into the following Formula (2).
- ⁇ is a constant (proportional constant). That is, for example, also by subtracting a constant multiple of the time (proportional value) from the transient recovery voltage, and obtaining a waveform V 2 in FIG. 1, it is possible to generate a tangential L1.
- the adjustment unit 122 of the waveform conversion unit 12 substitutes an initial value for ⁇ (corresponding to step 02 in FIG. 3), and based on this, the generation unit 121 performs transient according to the equation (2).
- a waveform obtained by converting the recovery voltage waveform is generated (corresponding to step 03).
- the wave height determination unit 13 compares and determines whether or not there is a point indicating a value that matches the maximum value (peak value) in the converted waveform (corresponding to step 04).
- the adjustment unit 122 adjusts by changing the value of ⁇ according to a predetermined standard (corresponding to step 06).
- the above processing procedure is not limited to the example shown in the flowchart of FIG.
- the second tangent and the third tangent are generated.
- the second tangent and the third tangent to the transient recovery voltage waveform may be obtained at any stage. If at least a transient recovery voltage waveform exists, either one or both of the second tangent and the third tangent can be generated in advance before generating the first tangent.
- the process of step 09 may be performed, and then the process after step 02 may be performed.
- the process of step 12 may be performed, and then the process after step 02 may be performed.
- the process of step 09 and step 12 may be performed, and the process after step 02 may be performed after that.
- the detection of the intersection may be performed collectively after all tangents are generated, not every time two tangents are generated.
- protruding portion is intended to widely include portions where the waveform shows rising and falling, and can also be referred to as “convex portion”, “protruding portion” and the like.
- the waveform is recessed, and the portions that can be called “dents”, “concaves”, “dents”, etc. are substantially the same as the above “bumps”. is there.
- the “lift” and the “dent” are the same.
- how to set the initial value and the amount of change (increment, decrement, increment, difference, etc.) for the value ( ⁇ , ⁇ , proportional constant, etc.) to be adjusted by the adjustment unit is arbitrary.
- the amount of change may be increased to increase the processing speed, or the amount of change may be reduced to increase accuracy.
- the amount of change is set to be large, and the amount of change is reduced as the processing proceeds (after a predetermined time, after a predetermined number of changes, after a predetermined amount of change, etc.).
- the processing speed and accuracy may be optimized.
- the subtraction is addition when the polarity of the waveform is reversed, even if the constant value to be changed is not increased but decreased, the process is substantially the same. is there.
- the time determination part 14a in the contact detection part 14 calculates
- time and time mean the horizontal axis (X axis) of two-dimensional coordinates.
- the determination process by the time determination part 14a is the same as the determination process which determines the value of the horizontal axis corresponding to two points. That is, the detection of the contact by the contact detection unit 14 only needs to be able to detect two points directly above the two points (same values on the horizontal axis). Therefore, the contact detection unit 14 may perform processing for obtaining two points of the transient recovery voltage waveform in which the two values of the maximum value and the values on the horizontal axis coincide.
- the first tangent may be obtained from a tangent (L2 in FIG. 1) passing through two points having the same maximum value.
- a fourth tangent generation unit that generates the tangent L2 is set in the tangent generation unit 15 described above.
- the fourth tangent generation unit generates a fourth tangent (L2 described above) passing through the two points after the wave height determination unit 13 determines two points having the same maximum value.
- the first tangent generation unit rotates the tangent L2 by ⁇ to obtain the first tangent.
- Tan ⁇ the above calculation based on Tan ⁇ is convenient.
- measurement in the measurement apparatus and measurement processing in the above embodiment has a broad meaning including obtaining information for expressing a waveform. For example, collection, detection, generation, calculation, determination, identification, and the like of various types of information are included. Therefore, “measurement” includes generation of a tangent, calculation of a contract value, and the like.
- the transient recovery voltage measuring device and the measurement processing in the above embodiment pay attention to the configuration and processing for generating the first tangent line, the tangent generation device, the tangent generation method, and the tangential generation program for the transient recovery voltage waveform It can also be expressed as
- the configuration of the above-described embodiment corresponding to this is, for example, a waveform generation unit 11 (or a pre-generated waveform storage unit), a waveform conversion unit 12, a wave height determination unit 13, a contact detection unit 14, a tangent generation unit 15, and the like. Is mentioned.
- the transient recovery voltage measuring device and the measurement process in the above embodiment pay attention to the configuration and processing for calculating the convention value of the four parameter method, the transient recovery voltage convention value (parameter) calculation device, the calculation method, It can also be expressed as a calculation program.
- a configuration of the above-described embodiment corresponding to this for example, a configuration in which the intersection detection unit 16 and the parameter calculation unit 17 are added to the configuration of the tangent generation device described above.
- the target waveform in the above embodiment is not limited to the waveform of the transient recovery voltage, and can be generally applied to the waveform. That is, it can be grasped as a waveform tangent generation device, tangent generation method, and tangent generation program.
- the configuration of the above-described embodiment corresponding to this is, for example, that the waveform generated by the waveform generation unit 11 (or the waveform generated in advance and stored in the waveform storage unit) in the above-described tangent generation device is replaced with a general waveform. (Including multiple frequencies) can be considered.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
(1) 多重周波からなる過渡回復電圧波形を記憶する波形記憶部
(2) 原点からの時間に比例定数を乗じた比例値に基づいて、過渡回復電圧波形を変換する波形変換部
(3) 変換された波形において、最大値が同じとなる2点を判定する波高判定部
(4) 波高判定部により最大値が同じとなる2点が判定されるまで、波形変換部における比例定数を調整する調整部
(5) 波高判定部により判定された2点に対応する過渡回復電圧波形の2点を検出する接点検出部
(6) 接点検出部により検出された2点を通る第1の接線を生成する第1の接線生成部
なお、本発明は、上記の各部の機能をコンピュータ又は電子回路により実現するための方法及びプログラムとして捉えることもできる。
図1は、実施形態により接線を求める原理を説明する図である。図中、V1は、多重周波からなる波形である。たとえば、V1は、遮断器電流を遮断した後の過渡回復電圧(TRV)の波形として考えることができる。電圧波形の場合、たとえば、横軸(X軸)は時間(μs)、縦軸(Y軸)は電圧(kV)となる。V2は、波形V1を、以下の式(1)で変換した波形である。
V2=V1-t・Tanθ …式(1)
次に、上記の原理により接線を生成し、各規約値を求めるための一実施形態の構成を説明する。図2に示すように、本実施形態の過渡回復電圧測定装置1は、コンピュータを所定のプログラムで制御することによって、若しくは専用の電子回路によって実現できる。この場合のプログラムは、コンピュータのハードウェアを物理的に活用することで、以下に述べるような各部の処理を実現するものである。なお、各部の処理を実行する方法、プログラム及びプログラムを記録した記録媒体も、実施形態の一態様である。また、ハードウェアで処理する範囲、プログラムを含むソフトウェアで処理する範囲をどのように設定するかは、特定の態様には限定されない。
次に、本実施形態の処理を、図3のフローチャートに沿って説明する。まず、波形生成部11が、あらかじめ記憶部20に記憶され若しくは外部から入力された過渡回復電圧検出値に基づいて、過渡回復電圧波形を生成する(ステップ01)。なお、あらかじめ生成され記憶部20に記憶された過渡回復電圧波形を用いてもよい。波形変換部12の調整部122は、生成部121の式(1)のθに初期値を代入する(ステップ02)。生成部121は、式(1)により、過渡回復電圧波形を変換する(ステップ03)。
以上のような本実施形態によれば、多重周波となる過渡回復電圧において、波高部と原点との間に存在する隆起部と、波高部に対応する隆起部との間に引く共通接線を、簡易な処理により高速に生成することができる。このため、4パラメータ法における規約値を、高速に求めることができる。
本発明は、上記のような実施形態には限定されるものではない。
たとえば、式(1)においては、最終的にθが決定された場合、Tanθは定数であるといえる。したがって、式(1)は、以下の式(2)に変形することができる。
V2=V1-t・α …式(2)
10…測定処理部
11…波形生成部
12…波形変換部
13…波高判定部
14…接点検出部
14a…時刻判定部
14b…接点判定部
15…接線生成部
16…交点検出部
17…パラメータ算出部
20…記憶部
30…入力部
40…出力部
121…生成部
122…調整部
Claims (20)
- 多重周波からなる過渡回復電圧波形を記憶する波形記憶部と、
原点からの時間に比例定数を乗じた比例値に基づいて、前記過渡回復電圧波形を変換する波形変換部と、
変換された波形において、最大値が同じとなる2点を判定する波高判定部と、
前記波高判定部により最大値が同じとなる2点が判定されるまで、前記波形変換部における前記比例定数を調整する調整部と、
前記波高判定部により判定された2点に対応する過渡回復電圧波形の2点を検出する接点検出部と、
前記接点検出部により検出された2点を通る第1の接線を生成する第1の接線生成部と、
を有することを特徴とする過渡回復電圧測定装置。 - 前記波形変換部による波形の変換は、前記比例値を前記過渡回復電圧波形から減算することにより行うことを特徴とする請求項1記載の過渡回復電圧測定装置。
- 前記比例定数は正接であり、
前記調整部による調整は、前記正接のθを変化させることにより行うことを特徴とする請求項2記載の過渡回復電圧測定装置。 - 前記波形変換部による波形の変換は、
過渡回復電圧波形をV1、変換後の波形をV2、時間をt、比例定数をαとした場合に、
V2=V1-t・α
の式により行うことを特徴とする請求項1記載の過渡回復電圧測定装置。 - 前記波形変換部による波形の変換は、
過渡回復電圧波形をV1、変換後の波形をV2、時間をt、比例定数をTanθとした場合に、
V2=V1-t・Tanθ
の式により行うことを特徴とする請求項1記載の過渡回復電圧測定装置。 - 前記接点検出部は、
前記波高判定部により判定された2点における2つの時刻を判定する時刻判定部と、
前記過渡回復電圧波形において、前記時刻判定部により判定された時刻に対応する2点を判定する接点判定部と、
を有することを特徴とする請求項1記載の過渡回復電圧測定装置。 - 原点から前記過渡回復電圧波形に引いた接線を生成する第2の接線生成部と、
前記第2の接線生成部により生成された接線と、前記第1の接線生成部により生成された接線との交点を算出する第1の交点算出部と、
前記第1の交点算出部により算出された交点に基づいて、過渡回復電圧の規約値を算出する規約値算出部を有することを特徴とする請求項1記載の過渡回復電圧測定装置。 - 前記過渡回復電圧波形における波高値において、時間軸と平行な接線を生成する第3の接線生成部と、
前記第3の接線生成部により生成された接線と、前記第1の接線生成部により生成された接線との交点を算出する第2の交点算出部と、
前記第2の交点算出部により算出された交点に基づいて、過渡回復電圧の規約値を算出する規約値算出部を有することを特徴とする請求項1記載の過渡回復電圧測定装置。 - 多重周波からなる過渡回復電圧波形を記憶する波形記憶部と、
原点からの時間に比例定数を乗じた比例値に基づいて、前記過渡回復電圧波形を変換する波形変換部と、
変換された波形において、最大値が同じとなる2点を判定する波高判定部と、
前記波高判定部により最大値が同じとなる2点が判定されるまで、前記波形変換部における前記比例定数を調整する調整部と、
前記波高判定部により判定された2点に基づいて、前記過渡回復電圧波形の原点から波高値までに存在する隆起部と、波高値に対応する隆起部との間に第1の接線を生成する第1の接線生成部と、
を有することを特徴とする過渡回復電圧測定装置。 - 前記波形変換部による波形の変換は、前記比例値を前記過渡回復電圧波形から減算することにより行うことを特徴とする請求項9記載の過渡回復電圧測定装置。
- 前記比例定数は正接であり、
前記調整部による調整は、前記正接のθを変化させることにより行うことを特徴とする請求項9記載の過渡回復電圧測定装置。 - 前記波形変換部による波形の変換は、
過渡回復電圧波形をV1、変換後の波形をV2、時間をt、比例定数をαとした場合に、
V2=V1-t・α
の式により行うことを特徴とする請求項9記載の過渡回復電圧測定装置。 - 前記波形変換部による波形の変換は、
過渡回復電圧波形をV1、変換後の波形をV2、時間をt、比例定数をTanθとした場合に、
V2=V1-t・Tanθ
の式により行うことを特徴とする請求項9記載の過渡回復電圧測定装置。 - 前記第1の接線生成部は、前記波高判定部により判定された2点を通る接線に基づいて、第1の接線を生成することを特徴とする請求項9記載の過渡回復電圧測定装置。
- 原点から前記過渡回復電圧波形に引いた接線を生成する第2の接線生成部と、
前記第2の接線生成部により生成された接線と、前記第1の接線生成部により生成された接線との交点を算出する第1の交点算出部と、
前記第1の交点算出部により算出された交点に基づいて、過渡回復電圧の規約値を算出する規約値算出部を有することを特徴とする請求項9記載の過渡回復電圧測定装置。 - 前記過渡回復電圧波形における波高値において、時間軸と平行な接線を生成する第3の接線生成部と、
前記第3の接線生成部により生成された接線と、前記第1の接線生成部により生成された接線との交点を算出する第2の交点算出部と、
前記第2の交点算出部により算出された交点に基づいて、過渡回復電圧の規約値を算出する規約値算出部を有することを特徴とする請求項9記載の過渡回復電圧測定装置。 - コンピュータまたは電子回路が、
多重周波からなる過渡回復電圧波形を記憶する波形記憶処理と、
原点からの時間に比例定数を乗じた比例値に基づいて、前記過渡回復電圧波形を変換する波形変換処理と、
変換された波形において、最大値が同じとなる2点を判定する波高判定処理と、
前記波高判定処理により最大値が同じとなる2点が判定されるまで、前記波形変換処理における前記比例定数を調整する調整処理と、
前記波高判定処理により判定された2つの最大値に対応する過渡回復電圧波形の2点を求める接点検出処理と、
前記過渡回復電圧波形の2点を通る第1の接線を生成する第1の接線生成処理と、
を実行することを特徴とする過渡回復電圧測定方法。 - コンピュータまたは電子回路が、
多重周波からなる過渡回復電圧波形を記憶する波形記憶処理と、
原点からの時間に比例定数を乗じた比例値に基づいて、前記過渡回復電圧波形を変換する波形変換処理と、
変換された波形において、最大値が同じとなる2点を判定する波高判定処理と、
前記波高判定処理により最大値が同じとなる2点が判定されるまで、前記波形変換処理における前記比例定数を調整する調整処理と、
前記波高判定処理により判定された2点に基づいて、前記過渡回復電圧波形の原点から波高値までに存在する隆起部と、波高値に対応する隆起部との間に第1の接線を生成する第1の接線生成処理と、
を実行することを特徴とする過渡回復電圧測定方法。 - コンピュータにより実行可能なプログラムであって、
前記コンピュータに、
多重周波からなる過渡回復電圧波形を記憶する波形記憶処理と、
原点からの時間に比例定数を乗じた比例値に基づいて、前記過渡回復電圧波形を変換する波形変換処理と、
変換された波形において、最大値が同じとなる2点を検出する波高判定処理と、
前記波高判定処理により最大値が同じとなる2点が判定されるまで、前記波形変換処理における前記比例定数を調整する調整処理と、
前記波高判定処理により検出された2つの最大値に対応する過渡回復電圧波形の2点を求める接点検出処理と、
前記過渡回復電圧波形の2点を通る第1の接線を生成する第1の接線生成処理と、
を実行させることを特徴とする過渡回復電圧測定プログラム。 - コンピュータにより実行可能なプログラムであって、
前記コンピュータに、
多重周波からなる過渡回復電圧波形を記憶する波形記憶処理と、
原点からの時間に比例定数を乗じた比例値に基づいて、前記過渡回復電圧波形を変換する波形変換処理と、
変換された波形において、最大値が同じとなる2点を判定する波高判定処理と、
前記波高判定処理により最大値が同じとなる2点が判定されるまで、前記波形変換処理における前記比例定数を調整する調整処理と、
前記波高判定処理により判定された2点に基づいて、前記過渡回復電圧波形の原点から波高値までに存在する隆起部と、波高値に対応する隆起部との間に第1の接線を生成する第1の接線生成処理と、
を実行させることを特徴とする過渡回復電圧測定プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280004877.7A CN103299199B (zh) | 2011-01-17 | 2012-01-13 | 瞬态恢复电压测量装置、瞬态恢复电压测量方法以及瞬态恢复电压测量程序 |
KR1020137021579A KR101472243B1 (ko) | 2011-01-17 | 2012-01-13 | 과도 회복 전압 측정 장치, 과도 회복 전압 측정 방법 및 기록 매체 |
EP12736745.6A EP2667206A4 (en) | 2011-01-17 | 2012-01-13 | Transient recovery voltage measuring device, transient recovery voltage measuring method, and transient recovery voltage measuring program |
US13/980,146 US20140035559A1 (en) | 2011-01-17 | 2012-01-13 | Transient recovery voltage measuring device, transient recovery voltage measuring method, and transient recovery voltage measuring program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011007033A JP5710286B2 (ja) | 2011-01-17 | 2011-01-17 | 過渡回復電圧測定装置、過渡回復電圧測定方法及び過渡回復電圧測定プログラム |
JP2011-007033 | 2011-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012099022A1 true WO2012099022A1 (ja) | 2012-07-26 |
Family
ID=46515650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/050629 WO2012099022A1 (ja) | 2011-01-17 | 2012-01-13 | 過渡回復電圧測定装置、過渡回復電圧測定方法及び過渡回復電圧測定プログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140035559A1 (ja) |
EP (1) | EP2667206A4 (ja) |
JP (1) | JP5710286B2 (ja) |
KR (1) | KR101472243B1 (ja) |
CN (1) | CN103299199B (ja) |
WO (1) | WO2012099022A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067964A (zh) * | 2020-08-20 | 2020-12-11 | 中国科学院微电子研究所 | 半导体器件的阈值电压提取方法及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104502838B (zh) * | 2014-12-16 | 2017-07-11 | 中国西电电气股份有限公司 | 一种计算瞬态恢复电压波形参数的方法 |
KR102489259B1 (ko) | 2022-08-02 | 2023-01-18 | 주식회사 선우하이테크 | 낚싯줄 자동 결속시스템 |
CN116593762B (zh) * | 2023-07-17 | 2023-09-08 | 烟台东方威思顿电气有限公司 | 就地型馈线自动化瞬压检测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61129589A (ja) * | 1984-11-28 | 1986-06-17 | Hitachi Ltd | 4パラメ−タ過渡回復電圧発生回路 |
JPH05223905A (ja) * | 1992-02-18 | 1993-09-03 | Hitachi Ltd | 遮断器の合成試験装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61129598A (ja) * | 1984-11-28 | 1986-06-17 | 株式会社東芝 | 原子炉一次系への放射能蓄積抑制方法 |
EP0418678A3 (en) * | 1989-09-20 | 1991-12-27 | Hitachi, Ltd. | Synthetic equivalent test circuit of circuit breaker |
TWI368125B (en) * | 2008-06-25 | 2012-07-11 | Univ Nat Taiwan | Load current charging/discharging control device for d/c conventer |
JP2010261862A (ja) * | 2009-05-08 | 2010-11-18 | Sony Corp | Acライン信号検出装置およびその方法、並びに電源装置 |
-
2011
- 2011-01-17 JP JP2011007033A patent/JP5710286B2/ja not_active Expired - Fee Related
-
2012
- 2012-01-13 US US13/980,146 patent/US20140035559A1/en not_active Abandoned
- 2012-01-13 CN CN201280004877.7A patent/CN103299199B/zh not_active Expired - Fee Related
- 2012-01-13 KR KR1020137021579A patent/KR101472243B1/ko not_active IP Right Cessation
- 2012-01-13 WO PCT/JP2012/050629 patent/WO2012099022A1/ja active Application Filing
- 2012-01-13 EP EP12736745.6A patent/EP2667206A4/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61129589A (ja) * | 1984-11-28 | 1986-06-17 | Hitachi Ltd | 4パラメ−タ過渡回復電圧発生回路 |
JPH05223905A (ja) * | 1992-02-18 | 1993-09-03 | Hitachi Ltd | 遮断器の合成試験装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067964A (zh) * | 2020-08-20 | 2020-12-11 | 中国科学院微电子研究所 | 半导体器件的阈值电压提取方法及装置 |
CN112067964B (zh) * | 2020-08-20 | 2023-04-25 | 中国科学院微电子研究所 | 半导体器件的阈值电压提取方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2012149916A (ja) | 2012-08-09 |
US20140035559A1 (en) | 2014-02-06 |
EP2667206A4 (en) | 2017-11-22 |
CN103299199A (zh) | 2013-09-11 |
EP2667206A1 (en) | 2013-11-27 |
KR101472243B1 (ko) | 2014-12-11 |
KR20130108666A (ko) | 2013-10-04 |
CN103299199B (zh) | 2015-05-13 |
JP5710286B2 (ja) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012099022A1 (ja) | 過渡回復電圧測定装置、過渡回復電圧測定方法及び過渡回復電圧測定プログラム | |
KR101327886B1 (ko) | 터치 패널 시스템과 지연 보상 방법 | |
JP5214074B1 (ja) | 電気量測定装置および電気量測定方法 | |
JP5328858B2 (ja) | 稼働状況判別装置、稼働状況判別プログラム、稼働状況判別方法、波形パターン学習装置、波形パターン学習プログラム、及び波形パターン学習方法 | |
CN104330623B (zh) | 电力系统中正弦波信号的参数测量方法及系统 | |
JP6476204B2 (ja) | 部分放電判別装置及び部分放電判別方法 | |
AU2012200975B2 (en) | Method and system of a sensor interface having dynamic automatic gain control | |
WO2015083397A1 (ja) | 演算装置 | |
JP2012173293A (ja) | 速度に依存する動的自動利得制御機能を有するセンサインタフェースの方法及びシステム | |
CN109085414B (zh) | 电压检测方法及装置 | |
JP2013253824A (ja) | 過渡回復電圧測定装置、過渡回復電圧測定方法及び過渡回復電圧測定プログラム | |
JP5854677B2 (ja) | モータ速度検出装置およびモータ制御装置 | |
JP2015512544A (ja) | 加重マスクを用いた単数および複数の指の抽出および位置計算 | |
JP6341812B2 (ja) | 測定装置および信号種類判別方法 | |
JP5597488B2 (ja) | 分散形電源の運転状態検出方法、運転状態検出装置及び運転状態検出プログラム | |
KR101444582B1 (ko) | 주파수 검출 장치 및 방법 | |
CN109798970B (zh) | 异常检测装置、异常检测方法、异常检测系统及存储介质 | |
JP5774370B2 (ja) | 波形測定装置 | |
JP6091105B2 (ja) | 物理量測定装置および物理量測定方法 | |
JP2005269757A (ja) | インバータ装置 | |
US11762035B2 (en) | Abnormality detection method and abnormality detection apparatus | |
CN108762567A (zh) | 一种位置解析度测量方法及装置 | |
TW201324384A (zh) | 指紋識別裝置及其指紋識別方法 | |
JP5424908B2 (ja) | 事故検出装置及び事故検出方法 | |
JP2011163838A (ja) | 測定装置および測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12736745 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012736745 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137021579 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13980146 Country of ref document: US |