WO2012098930A1 - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
WO2012098930A1
WO2012098930A1 PCT/JP2012/050056 JP2012050056W WO2012098930A1 WO 2012098930 A1 WO2012098930 A1 WO 2012098930A1 JP 2012050056 W JP2012050056 W JP 2012050056W WO 2012098930 A1 WO2012098930 A1 WO 2012098930A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
workpiece
processing apparatus
light source
Prior art date
Application number
PCT/JP2012/050056
Other languages
English (en)
French (fr)
Inventor
宇野 義幸
康寛 岡本
北田 良二
純 岡本
貴昭 日比
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Publication of WO2012098930A1 publication Critical patent/WO2012098930A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring

Definitions

  • the present invention relates to a laser processing apparatus for processing a workpiece by irradiating the workpiece with laser light.
  • processing with a laser beam has been widely performed.
  • the processing by laser light is mainly thermal processing performed by irradiating the workpiece with laser light and heating and melting the workpiece.
  • high-accuracy processing non-thermal processing in which a thermal effect is suppressed by using a pulsed laser having a short pulse width is also possible.
  • a memory card is manufactured.
  • a memory card is manufactured by sealing a chip-like element made of a memory chip (hereinafter referred to as “chip” as appropriate) with a resin to form a resin sealing body and cutting the resin sealing body.
  • the memory card is required to have high appearance quality because the user directly handles it with a finger.
  • an LED package is manufactured. The LED package is manufactured by sealing an LED chip with a translucent resin to form a resin sealing body and cutting the resin sealing body.
  • Patent Document 1 discloses a technique for selecting a plurality of laser beams in accordance with the characteristics of a workpiece, and irradiating the workpiece with the selected laser beams superimposed by a condensing lens. Proposed.
  • the present invention has been made to solve such a problem, and its purpose is to process a workpiece by superimposing a plurality of laser beams including a laser beam having a characteristic of being absorbed by a condenser lens. It is providing the laser processing apparatus which can do.
  • the laser processing apparatus (1A, 1B, 1C, 1D) performs processing on the workpiece (5) using at least two laser beams.
  • a device a first light source (2) for generating a first laser beam (9) and a second light source (3, 28, 31) for generating a second laser beam (10, 29, 32).
  • a condensing lens (19) is not arranged in the first optical path (11).
  • the first concave reflecting mirror (12) is provided with an opening (13) through which the second laser beam (10, 29, 32) passes.
  • the workpiece (5) passed through the first laser beam (9) reflected by the first concave reflecting mirror (12) and the opening (13) of the first concave reflecting mirror (12).
  • the second laser beam (10, 29, 32) is superimposed and irradiated.
  • the second concave reflecting mirror (30) is arranged in the second optical path (15) in the above-described laser processing apparatus.
  • the planar reflecting mirror (33) is disposed in the second optical path (15) in the above-described laser processing apparatus.
  • the condensing lens (19) is disposed in the second optical path (15) in the above-described laser processing apparatus.
  • the first laser beam (9) is absorbed by the condenser lens (19) in the above-described laser processing apparatus. .
  • the first light source (2) is a CO 2 laser oscillator in the laser processing apparatus described above.
  • the second light source (3, 28, 31) is a fiber laser oscillator in the laser processing apparatus described above.
  • the first light source (2) generates laser light (9) having a ring mode in the above-described laser processing apparatus.
  • the first laser light (9) and the second laser light (10, 29, 32) The workpiece is irradiated such that at least one of cutting, drilling, and surface treatment is performed.
  • the first optical path (11) for guiding the first laser beam (9) from the first light source (2) to the workpiece (5) is not provided with a condenser lens (19), and A first concave reflector (12) having an opening (13) is provided.
  • the second laser light (10, 29, 32) passes through the opening (13) provided in the first concave reflecting mirror (12) and reaches the workpiece (5).
  • the first laser beam (9) reflected by the first concave reflecting mirror (12) converges to reach the workpiece (5).
  • the first laser beam (9) having the property of being absorbed by the condenser lens (19) does not pass through the condenser lens (19), and the second laser beam (10, 29, 32).
  • the workpiece (5) is irradiated with the superimposed first laser beam (9) and second laser beam (10, 29, 32). Therefore, the workpiece (5) can be processed by superimposing a plurality of laser beams including the first laser beam (9) having the property of being absorbed by the condenser lens (19).
  • the laser processing apparatus includes a first light source (2) that generates a first laser beam (9) having a property of being absorbed by a condenser lens (19), and a second laser beam (10). ) To generate a second light source (3).
  • the first laser beam (9) has a ring mode.
  • the condenser lens (19) is not disposed, and A first concave reflecting mirror (12) having an opening (13) is arranged.
  • a condensing lens (19) is arranged in the second optical path (15) for guiding the second laser light (10) from the second light source (3) to the workpiece (5).
  • the second laser beam (10) collected by the condenser lens (19) passes through the opening (13) provided in the first concave reflecting mirror (12) and reaches the workpiece (5). To do.
  • the first laser beam (9) reflected by the first concave reflecting mirror (12) converges to reach the workpiece (5).
  • the first laser beam (9) having the property of being absorbed by the condenser lens (19) is superimposed on the second laser beam (10) without passing through the condenser lens (19).
  • the workpiece (5) is irradiated with the superimposed first laser beam (9) and second laser beam (10).
  • FIG. 1 is a schematic diagram of a laser processing apparatus according to the present embodiment.
  • any figure in the present application document is omitted or exaggerated as appropriate.
  • the same components are denoted by the same reference numerals, and description thereof will not be repeated as appropriate.
  • a laser processing apparatus 1A shown in FIG. 1 is a laser processing apparatus according to the present embodiment.
  • the laser processing apparatus 1 ⁇ / b> A includes a first light source 2, a second light source 3, and an observation unit 4.
  • the laser processing apparatus 1 ⁇ / b> A includes a stage 6 for fixing the workpiece 5.
  • the stage 6 is movable in the X direction, the Y direction, and the Z direction shown in FIG. Thereby, the to-be-processed object 5 can be moved with respect to a laser beam. About the stage 6, you may enable it to rotate to (theta) direction shown by FIG. 1 as needed.
  • the laser beam and the workpiece 5 should just be able to move relatively.
  • the workpiece 5 may be a composite member made of different materials.
  • the composite member for example, a resin in which a plurality of LED chips (not shown) are mounted on a ceramic substrate 7 which is a ceramic circuit board, and these LED chips are collectively sealed with a silicone resin 8.
  • a sealing body is mentioned.
  • the surface of the ceramic substrate 7 (the lower surface in the figure) is fixed to the stage 6 with the silicone resin 8 facing upward.
  • the first light source 2 is, for example, a CO 2 laser oscillator, and generates CO 2 laser light 9 as first laser light having a property of being absorbed by a condenser lens (described later).
  • the CO 2 laser beam 9 is preferably a laser beam having a ring mode.
  • the second light source 3 is, for example, a fiber laser oscillator, and generates a fiber laser beam 10 as the second laser beam.
  • the fiber laser beam 10 has a property that it is not absorbed by the condenser lens.
  • the CO 2 laser light 9 has a wavelength of about 9 to 11 ⁇ m.
  • the spot diameter and energy of the CO 2 laser beam 9 vary greatly depending on the processing conditions, the oscillation mode, the characteristics of the workpiece 5 and the like.
  • the spot diameter is about 20 ⁇ m to 1 mm, and the energy is about several hundred W.
  • the spot diameter is about 10 to 100 ⁇ m, and the energy is 50 ⁇ J to 1 J / Pulse.
  • a continuous wave by continuous oscillation can also be used.
  • the CO 2 laser beam 9 is a laser beam suitable for cutting the silicone resin 8 among the materials constituting the workpiece 5.
  • the fiber laser beam 10 is a laser beam suitable for cutting the ceramic substrate 7 among the materials constituting the workpiece 5.
  • the first optical path 11 that guides the CO 2 laser light 9 from the first light source 2 to the workpiece 5 is not provided with a condenser lens, and is provided with a first concave reflecting mirror 12. .
  • the first concave reflecting mirror 12 is provided with an opening 13 through which the fiber laser light 10 passes.
  • the first concave reflecting mirror 12 can be finely rotated (turned) in both directions indicated by arrows in FIG. 1 by a driving device 14 such as a motor. As a result, the workpiece 5 can be irradiated with the CO 2 laser beam 9 and the workpiece 5 can be scanned with the CO 2 laser beam 9.
  • the second optical path 15 for guiding the fiber laser beam 10 from the second light source 3 to the workpiece 5 is closer to the second light source 3 than the first concave reflecting mirror 12 (the first concave reflecting surface in FIG. 1). (Above the mirror 12).
  • An optical fiber 16 that is a light guide cable, a collimator 17, a dichroic mirror 18, and a condenser lens 19 are disposed in the second optical path 15.
  • the fiber laser beam 10 generated in the second light source 3 is guided by the optical fiber 16, adjusted in optical axis by the collimator 17, and radiated in parallel.
  • the fiber laser light 10 is converged (condensed) by being refracted by the condenser lens 19.
  • the fiber laser beam 10 passes through the opening 13 and focuses on the surface 20 of the workpiece 5 (including the inside of the workpiece 5 as necessary. The same applies hereinafter), and then the workpiece 5 is focused. Is irradiated.
  • the position of the focal point in the Z direction is appropriately controlled by optical means or driving of the stage 6.
  • the observation means 4 includes a CCD (Charge Coupled Device) camera 21, an imaging lens 22, a band pass filter 23, an illuminator 24, a dichroic mirror 25, and the dichroic mirror 18 described above.
  • the illumination light generated in the illuminator 24 is sequentially reflected by the dichroic mirror 25 and the dichroic mirror 18 to illuminate the surface 20 of the workpiece 5.
  • the reflected light generated by illuminating the surface 20 with the illumination light is reflected by the dichroic mirror 18 and has a function of transmitting only the dichroic mirror 25 and light having a wavelength in a specific range suitable for illumination. 23 in order.
  • This reflected light reaches the CCD camera 21 through the imaging lens 22. Thereby, laser processing can be performed while observing the surface 20 of the workpiece 5 through the CCD camera 21.
  • a nozzle 26 is provided near the surface 20 of the workpiece 5.
  • the nozzle 26 is provided with an injection port 27 for injecting an assist gas (not shown) toward the surface 20 of the workpiece 5.
  • an assist gas (not shown)
  • Both the CO 2 laser beam 9 and the fiber laser beam 10 pass through the injection port 27 and are irradiated toward the surface 20 of the workpiece 5.
  • the workpiece 5 is moved with respect to the CO 2 laser beam 9 and the fiber laser beam 10 using the stage 6.
  • the CO 2 laser light 9 having a ring mode is reflected and collected by the first concave reflecting mirror 12.
  • the CO 2 laser light 9 is irradiated on the workpiece 5 while focusing on the surface 20 of the workpiece 5 without passing through the condenser lens 19.
  • the region irradiated with the workpiece 5 by the CO 2 laser beam 9 having the ring mode has an annular shape in plan view.
  • the “ring” means a shape of the torus in plan view.
  • the fiber laser light 10 whose optical axis is adjusted by the collimator 17 and emitted in parallel, is converged (condensed) by being refracted by the condenser lens 19.
  • the fiber laser beam 10 passes through the opening 13 of the first concave reflecting mirror 12, focuses on the surface 20 of the workpiece 5, and is irradiated onto the workpiece 5.
  • the fiber laser beam 10 is applied to a region inside the region irradiated with the CO 2 laser beam 9.
  • the superimposed CO 2 laser beam 9 and fiber laser beam 10 can be irradiated toward the surface 20 of the workpiece 5.
  • the silicone resin 8 among the materials constituting the workpiece 5 is changed. Removed. Since the workpiece 5 is moved with respect to the CO 2 laser beam 9 and the fiber laser beam 10, it is a linear region along the moving direction and has a width substantially equal to the outer diameter of the ring. The silicone resin 8 is removed in the region.
  • the workpiece 5 is continuously moved to irradiate the region from which the silicone resin 8 has been removed with the fiber laser beam 10.
  • the ceramic substrate 7 is removed from the material constituting the workpiece 5 in the circular region irradiated with the fiber laser beam 10 suitable for cutting the ceramic substrate 7. Therefore, the workpiece 5 is completely cut.
  • the CO 2 laser light 9 having the property of being absorbed by the condenser lens is superimposed on the fiber laser light 10 without passing (transmitting) the condenser lens 19. Then, the surface 20 of the workpiece 5 is irradiated with the superimposed CO 2 laser light 9 and the fiber laser light 10. Thereby, two laser beams including the CO 2 laser beam 9 having the property of being absorbed by the condenser lens can be superimposed and irradiated toward the surface 20 of the workpiece 5. Accordingly, two laser beams including a laser beam having the property of being absorbed by the condenser lens are selected according to the characteristics of the workpiece, and the laser beams are superimposed and irradiated toward the workpiece. Thus, the workpiece 5 can be completely cut.
  • FIG. 2 is a schematic diagram of the laser processing apparatus according to the present embodiment. In each figure shown below, the observation means 4 shown in FIG. 1 is omitted.
  • a laser processing apparatus 1B shown in FIG. 2 is a laser processing apparatus according to the present embodiment.
  • the laser processing apparatus 1 ⁇ / b> B includes a first light source 2 and a second light source 28.
  • the second light source 28 generates a second laser beam 29 having the property of being absorbed by the condenser lens.
  • the second laser light 29 is reflected and collected by the second concave reflecting mirror 30. Then, the CO 2 laser light 9 that is the first laser light and the second laser light 29 are superimposed and irradiated toward the surface 20 of the workpiece 5.
  • the CO 2 laser light 9 and the second laser light 29, which are two types of laser light each having the property of being absorbed by the condenser lens, are superimposed. Therefore, two types of laser beams each having the property of being absorbed by the condenser lens are appropriately selected according to the characteristics of the workpiece, and these laser beams are superimposed and irradiated onto the workpiece. Can do. Moreover, since the optical fiber 16 and the collimator 17 shown in FIG. 1 are not used, the height of the laser processing apparatus 1B can be reduced.
  • the types of laser light can be further increased.
  • the number of concave reflecting mirrors may be increased according to the laser beam, such as the first concave reflecting mirror 12, the second concave reflecting mirror 30, the third concave reflecting mirror, and so on.
  • the laser beam such as the first concave reflecting mirror 12, the second concave reflecting mirror 30, the third concave reflecting mirror, and so on.
  • three or more types of laser beams each having the property of being absorbed by the condenser lens are selected according to the characteristics of the workpiece, and these laser beams are superimposed and irradiated toward the workpiece. Can do.
  • FIG. 3 is a schematic diagram of the laser processing apparatus according to the present embodiment.
  • a laser processing apparatus 1C shown in FIG. 3 is a laser processing apparatus according to the present embodiment.
  • the laser processing apparatus 1 ⁇ / b> C includes a first light source 2 and a second light source 31.
  • the second light source 31 generates a second laser beam 32 having a property that it is not absorbed by the condenser lens.
  • the second laser light 32 is reflected by the plane reflecting mirror 33, and the reflected second laser light 32 is collected by the condenser lens 19. Then, the CO 2 laser light 9 as the first laser light and the second laser light 32 are superimposed and irradiated toward the surface 20 of the workpiece 5.
  • the same effects as those described in the first embodiment can be obtained. Further, since the optical fiber 16 and the collimator 17 shown in FIG. 1 are not used, the height of the laser processing apparatus 1C can be reduced.
  • FIG. 4 is a schematic diagram of the laser processing apparatus according to the present embodiment.
  • a laser processing apparatus 1D shown in FIG. 4 is a laser processing apparatus according to the present embodiment.
  • the laser processing apparatus 1D includes a first light source 2, a second light source 28, and a third light source 34.
  • the third light source 34 generates a third laser beam 35 having a property that it is not absorbed by the condenser lens.
  • the third laser light 35 is reflected by the plane reflecting mirror 36, and the reflected third laser light 35 is collected by the condenser lens 19.
  • the CO 2 laser beam 9, the second laser beam 29, and the third laser beam 35 which are the first laser beams, are superimposed and irradiated toward the surface 20 of the workpiece 5.
  • the CO 2 laser light 9 and the second laser light 29, which are two types of laser light each having the property of being absorbed by the condenser lens, and the property of being not absorbed by the condenser lens.
  • the third laser beam 35 is superimposed.
  • three types of laser beams having different characteristics in terms of whether or not they are absorbed by the condenser lens are selected according to the characteristics of the workpiece, and these laser beams are superimposed. Can be irradiated toward the workpiece. Therefore, when a plurality of types of laser beams are selected according to the characteristics of the workpiece, the number of options can be increased.
  • the CO 2 laser beam 9 is taken as an example as the first laser beam having the property of being absorbed by the condenser lens.
  • the CO 2 laser light 9 other types of laser light having the property of being absorbed by the condenser lens can be used.
  • the first laser light other types of laser light having a property that they are not absorbed by the condenser lens can be used.
  • the fundamental wave of the fiber laser beam 10 and its harmonics can be used as the second laser beam.
  • the fiber laser beam 10 a laser beam from a pulsed laser (including an ultrashort pulse laser) may be used.
  • a fundamental wave of a YAG (Yttrium Aluminum Garnet) laser and its harmonics can be used.
  • the present invention is not limited to this, and the present invention can also be applied to the case where the workpiece 5 is processed (half cut) to form a groove halfway in the thickness direction (about half of the thickness). Further, the present invention can also be applied to a process for forming a shallow groove in the workpiece 5, a process for forming a through hole, a process for forming a blind hole, a process for forming a long hole, and the like. Further, the processing includes processing for performing a surface treatment on the surface 20 of the workpiece 5.
  • the present invention is effectively used for processing a workpiece by laser light.
  • 1A, 1B, 1C, 1D Laser processing apparatus 2nd light source, 3, 28, 31 2nd light source, 4 observation means, 5 workpiece, 6 stage, 7 ceramic substrate, 8 silicone resin, 9 CO 2 Laser light, 10 Fiber laser light, 11 First optical path, 12 First concave reflecting mirror, 13 Aperture, 14 Drive device, 15 Second optical path, 16 Optical fiber, 17 Collimator, 18, 25 Dichroic mirror, 19 Condensing Lens, 20 surface, 21 CCD camera, 22 imaging lens, 23 bandpass filter, 24 illuminator, 26 nozzle, 27 injection port, 29, 32 second laser light, 30 second concave reflector, 33, 36 Planar reflecting mirror, 34 3rd light source, 35 3rd laser beam.

Abstract

 レーザ加工装置に、集光レンズ(19)に吸収される性質を有する第1のレーザ光(9)を発生させる第1の光源(2)と、第2のレーザ光(10)を発生させる第2の光源(3)とを備える。第1のレーザ光(9)を被加工物(5)に導く第1の光路(11)には、集光レンズ(19)が設けられず、第1の凹面反射鏡(12)が設けられている。第2のレーザ光(10)を被加工物(5)に導く第2の光路(15)には、集光レンズ(19)が設けられている。集光レンズ(19)によって集光された第2のレーザ光(10)は、第1の凹面反射鏡(12)の開口(13)を通過して被加工物(5)に到達する。第1のレーザ光(9)は、集光レンズ(19)を通過することなく、第1の凹面反射鏡(12)によって反射され収束して被加工物(5)に到達する。

Description

レーザ加工装置
 本発明は、被加工物にレーザ光を照射することによって、その被加工物を加工するレーザ加工装置に関するものである。
 従来、レーザ光による加工が広く行われている。レーザ光による加工では、被加工物にレーザ光を照射し、その被加工物を加熱溶融させることによって行われる熱加工が主体である。また、近年では、パルス発振レーザにおいて、そのパルス幅が短いものを用いることにより熱影響を抑制した高精度の加工(非熱加工)も可能である。
 ところで、近年、異種材料から構成される複合部材を加工する場合や、光学系部材を加工する場合等において、外観品位に代表される加工品位として高いレベルが要求される場合が増えてきた。第1の例として、メモリカードを製造する場合が挙げられる。メモリカードは、メモリチップからなるチップ状素子(以下、適宜「チップ」と記す。)を樹脂より封止して樹脂封止体を形成し、その樹脂封止体を切断することによって製造される。メモリカードについては、ユーザーが直接指で持って取り扱うことから、高い外観品位が要求されている。第2の例として、LEDパッケージを製造する場合が挙げられる。LEDパッケージは、LEDチップを透光性樹脂によって封止して樹脂封止体を形成し、その樹脂封止体を切断することによって製造される。第3の例として、レンズ等の光学系部材を製造する場合が挙げられる。レンズ等の光学系部材は、透光性樹脂を使用して樹脂成形体を形成し、その樹脂成形体を切断することによって製造される。これらの場合において、たとえば、特許文献1では、被加工物の特性に応じて複数のレーザ光を選択し、その選択されたレーザ光を集光レンズにより重畳させて被加工物に照射させる技術が提案されている。
特開2009-226475号公報(第6-9頁、第1図)
 上述した技術には、石英ガラス等からなる集光レンズによって複数のレーザ光を集光させる必要がある。しかし、たとえば、CO2レーザによるCO2レーザ光等のように、ある種のレーザ光は、石英ガラス等に吸収される特性を有する。したがって、従来の技術によれば、集光レンズに吸収される特性を有するレーザ光を使用することができなかった。本発明が解決しようとする課題は、集光レンズに吸収される特性を有するレーザ光を含む複数のレーザ光を重畳させて被加工物を加工することができない点である。
 本発明は、このような課題を解決するためになされたものであり、その目的は、集光レンズに吸収される特性を有するレーザ光を含む複数のレーザ光を重畳させて被加工物を加工することができるレーザ加工装置を提供することである。
 以下、「課題を解決するための手段」、「発明の効果」、および、「発明を実施するための形態」との説明におけるかっこ内の符号は、説明における用語と図面に示された構成要素とを対比しやすくする目的で記載されたものである。また、これらの符号等は、図面に示された構成要素に限定して、説明における用語の意義を解釈することを意味するものではない。
 上述の課題を解決するために、本発明に係るレーザ加工装置(1A、1B、1C、1D)は、少なくとも2つのレーザ光を使用して被加工物(5)に対して加工を行うレーザ加工装置であって、第1のレーザ光(9)を発生させる第1の光源(2)と、第2のレーザ光(10、29、32)を発生させる第2の光源(3、28、31)と、第1のレーザ光(9)を第1の光源(2)から被加工物(5)に導く第1の光路(11)と、第2のレーザ光(10、29、32)を第2の光源(3、28、31)から被加工物(5)に導く第2の光路(15)と、第1の光路(11)に設けられた第1の凹面反射鏡(12)とを備えている。第1の光路(11)には集光レンズ(19)が配置されていない。第1の凹面反射鏡(12)には第2のレーザ光(10、29、32)が通過する開口(13)が設けられている。被加工物(5)に対して、第1の凹面反射鏡(12)によって反射された第1のレーザ光(9)と、第1の凹面反射鏡(12)の開口(13)を通過した第2のレーザ光(10、29、32)とが重畳して照射される。
 また、本発明に係るレーザ加工装置(1B)では、上述のレーザ加工装置において、第2の光路(15)には第2の凹面反射鏡(30)が配置されている。
 また、本発明に係るレーザ加工装置(1C)では、上述のレーザ加工装置において、第2の光路(15)には平面反射鏡(33)が配置されている。
 また、本発明に係るレーザ加工装置(1A、1C)では、上述のレーザ加工装置において、第2の光路(15)には集光レンズ(19)が配置されている。
 また、本発明に係るレーザ加工装置(1A、1B、1C、1D)では、上述のレーザ加工装置において、第1のレーザ光(9)は集光レンズ(19)に吸収されるという性質を有する。
 また、本発明に係るレーザ加工装置(1A、1B、1C、1D)では、上述のレーザ加工装置において、第1の光源(2)はCO2レーザ発振器である。
 また、本発明に係るレーザ加工装置(1A、1B、1C、1D)では、上述のレーザ加工装置において、第2の光源(3、28、31)はファイバーレーザ発振器である。
 また、本発明に係るレーザ加工装置(1A、1B、1C、1D)では、上述のレーザ加工装置において、第1の光源(2)はリングモードを有するレーザ光(9)を発生させる。
 また、本発明に係るレーザ加工装置(1A、1B、1C、1D)では、上述のレーザ加工装置において、第1のレーザ光(9)と第2のレーザ光(10、29、32)とは、被加工物に対して、切断、穴開け、および、表面処理の少なくとも一つの処理が施されるように照射される。
 本発明に係るレーザ加工装置によれば、集光レンズ(19)に吸収されるという性質を有する第1のレーザ光(9)を発生させる第1の光源(2)と、第2のレーザ光(10、29、32)を発生させる第2の光源(3、28、31)とを、少なくとも備える。第1のレーザ光(9)を第1の光源(2)から被加工物(5)に導く第1の光路(11)には、集光レンズ(19)が設けられておらず、かつ、開口(13)を有する第1の凹面反射鏡(12)が設けられている。第2のレーザ光(10、29、32)は、第1の凹面反射鏡(12)に設けられた開口(13)を通過して被加工物(5)に到達する。第1の凹面反射鏡(12)によって反射された第1のレーザ光(9)は、収束して被加工物(5)に到達する。これにより、集光レンズ(19)に吸収されるという性質を有する第1のレーザ光(9)が集光レンズ(19)を通過することなく、第2のレーザ光(10、29、32)と重畳されて、被加工物(5)には、その重畳された第1のレーザ光(9)と第2のレーザ光(10、29、32)とが照射される。したがって、集光レンズ(19)に吸収されるという性質を有する第1のレーザ光(9)を含む複数のレーザ光を重畳させて被加工物(5)を加工することができる。
本発明の実施例1に係るレーザ加工装置の概略図である。 本発明の実施例2に係るレーザ加工装置の概略図である。 本発明の実施例3に係るレーザ加工装置の概略図である。 本発明の実施例4に係るレーザ加工装置の概略図である。
 本発明に係るレーザ加工装置は、集光レンズ(19)に吸収されるという性質を有する第1のレーザ光(9)を発生させる第1の光源(2)と、第2のレーザ光(10)を発生させる第2の光源(3)とを備える。第1のレーザ光(9)はリングモードを有する。第1のレーザ光(9)を第1の光源(2)から被加工物(5)に導く第1の光路(11)には、集光レンズ(19)が配置されておらず、かつ、開口(13)を有する第1の凹面反射鏡(12)が配置されている。第2のレーザ光(10)を第2の光源(3)から被加工物(5)に導く第2の光路(15)には、集光レンズ(19)が配置されている。集光レンズ(19)によって集光された第2のレーザ光(10)は、第1の凹面反射鏡(12)に設けられた開口(13)を通過して被加工物(5)に到達する。第1の凹面反射鏡(12)によって反射された第1のレーザ光(9)は、収束して被加工物(5)に到達する。これにより、集光レンズ(19)に吸収されるという性質を有する第1のレーザ光(9)は、集光レンズ(19)を通過することなく、第2のレーザ光(10)と重畳されて、被加工物(5)には、重畳された第1のレーザ光(9)と第2のレーザ光(10)とが照射される。
 本発明の実施例1に係るレーザ加工装置を、図1を参照して説明する。図1は、本実施例に係るレーザ加工装置の概略図である。なお、本出願書類におけるいずれの図についても、わかりやすくするために、適宜省略し、または、誇張して模式的に描かれている。また、同一の構成要素には同一の符号を付して、説明を適宜繰り返さないこととする。
 図1に示されたレーザ加工装置1Aは、本実施例に係るレーザ加工装置である。レーザ加工装置1Aは、第1の光源2と第2の光源3と観察手段4とを備える。また、レーザ加工装置1Aは、被加工物5を固定するステージ6を備える。ステージ6は、図1に示されるX方向、Y方向およびZ方向に移動可能とされる。これにより、レーザ光に対して被加工物5を移動させることができる。ステージ6については、必要に応じて、図1に示されるθ方向に回転することができるようにしてもよい。なお、レーザ光と被加工物5とが相対的に移動することができるようになっていればよい。
 被加工物5としては、異種材料から構成される複合部材が挙げられる。複合部材としては、たとえば、セラミックス製の回路基板であるセラミックス基板7の上に複数のLEDチップ(図示なし)が実装され、それらのLEDチップがシリコーン樹脂8によって一括して樹脂封止された樹脂封止体が挙げられる。本実施例では、シリコーン樹脂8を上にして、セラミックス基板7の面(図では下面)がステージ6に固定される。
 第1の光源2は、たとえば、CO2レーザ発振器であって、集光レンズ(後述)に吸収されるという性質を有する第1のレーザ光としてCO2レーザ光9を発生させる。CO2レーザ光9は、リングモードを有するレーザ光であることが好ましい。第2の光源3は、たとえば、ファイバーレーザ発振器であって、第2のレーザ光としてファイバーレーザ光10を発生させる。ファイバーレーザ光10は、集光レンズに吸収されないという性質を有する。
 CO2レーザ光9は、9~11μm程度の波長を有する。CO2レーザ光9のスポット径とエネルギーとについては,加工条件、発振のモード、被加工物5の特性等によって大きく変わる。CO2レーザ光9では、たとえば、スポット径は20μm~1mm程度であり、エネルギーは数百W程度が考えられる。ファイバーレーザ光10では、パルス発振であるQ-SW発振を使用する場合には、スポット径は10~100μm程度であり、エネルギーは50μJ~1J/Pulseが考えられる。また、ファイバーレーザ光10では、連続発振による連続波を使用することもできる。
 CO2レーザ光9は、被加工物5を構成する材料のうち、シリコーン樹脂8の切断に適したレーザ光である。ファイバーレーザ光10は、被加工物5を構成する材料のうち、セラミックス基板7の切断に適したレーザ光である。
 CO2レーザ光9を第1の光源2から被加工物5に導く第1の光路11には、集光レンズが設けられておらず、かつ、第1の凹面反射鏡12が設けられている。第1の凹面反射鏡12には、ファイバーレーザ光10が通過するための開口13が設けられている。第1の凹面反射鏡12は、モータ等からなる駆動装置14によって図1中の矢印が示す両方向に微小に回転(回動)可能とされる。これらのことによって、被加工物5に対してCO2レーザ光9を照射すること、および、被加工物5に対してCO2レーザ光9を走査させることができる。
 ファイバーレーザ光10を第2の光源3から被加工物5に導く第2の光路15が、第1の凹面反射鏡12よりも第2の光源3に近い側(図1では第1の凹面反射鏡12の上方)に設けられている。第2の光路15には、導光ケーブルである光ファイバー16と、コリメータ17と、ダイクロイックミラー18と、集光レンズ19とが配置されている。これにより、第2の光源3において発生したファイバーレーザ光10は、光ファイバー16によって導かれ、コリメータ17によって光軸調整されるとともに平行に放射される。ファイバーレーザ光10は、集光レンズ19によって屈折することによって収束(集光)される。このことによって、ファイバーレーザ光10は、開口13を通過して被加工物5の表面20(必要に応じて被加工物5の内部を含む。以下同じ。)に焦点を結んで被加工物5に照射される。焦点のZ方向の位置は、光学的な手段、または、ステージ6の駆動によって適宜制御される。
 観察手段4には、CCD(Charge Coupled Device)カメラ21と、結像レンズ22と、バンドパスフィルター23と、照明器24と、ダイクロイックミラー25と、上述したダイクロイックミラー18とが含まれる。照明器24において発生した照明光は、ダイクロイックミラー25とダイクロイックミラー18とによって順次反射されて、被加工物5の表面20を照らす。照明光によって表面20が照らされることによって発生した反射光は、ダイクロイックミラー18によって反射され、ダイクロイックミラー25と、照明に適した特定の範囲の波長の光のみを透過させるという機能を有するバンドパスフィルター23とを順次通過する。この反射光は、結像レンズ22によってCCDカメラ21に到達する。これにより、CCDカメラ21を通じて被加工物5の表面20を観察しながらレーザ加工を行うことができる。
 被加工物5の表面20付近には、ノズル26が設けられている。ノズル26には、アシストガス(図示なし)を被加工物5の表面20に向かって噴射するための噴射口27が設けられている。CO2レーザ光9とファイバーレーザ光10とは、いずれも噴射口27を通過して被加工物5の表面20に向かって照射される。
 レーザ加工装置1Aの動作を、図1を参照して説明する。以下の動作において、ステージ6を使用して、CO2レーザ光9とファイバーレーザ光10とに対して被加工物5を移動させる。第1に、リングモードを有するCO2レーザ光9は、第1の凹面反射鏡12によって反射されて集光される。これにより、CO2レーザ光9は、集光レンズ19を通過することなく、被加工物5の表面20に焦点を結んで被加工物5に照射される。リングモードを有するCO2レーザ光9によって被加工物5が照射される領域は、平面視して円環状の形状を有する。ここで、「円環」とは、トーラスを平面視した形状を意味する。
 第2に、コリメータ17によって光軸調整されるとともに平行に放射されたファイバーレーザ光10は、集光レンズ19によって屈折することによって収束(集光)される。これにより、ファイバーレーザ光10は、第1の凹面反射鏡12の開口13を通過して被加工物5の表面20に焦点を結んで、被加工物5に照射される。このとき、ファイバーレーザ光10は、CO2レーザ光9が照射される領域の内側の領域に照射されることになる。これらのことによって、重畳されたCO2レーザ光9とファイバーレーザ光10とを被加工物5の表面20に向かって照射することができる。
 以上説明したレーザ加工装置1Aの動作によって、まず、シリコーン樹脂8の切断に適したCO2レーザ光9が照射された円環状の領域において、被加工物5を構成する材料のうちシリコーン樹脂8が除去される。CO2レーザ光9とファイバーレーザ光10とに対して被加工物5は移動しているので、その移動方向に沿った線状の領域であって、円環の外径にほぼ等しい幅を有する領域においてシリコーン樹脂8が除去される。
 次に、被加工物5を引き続いて移動させることによって、シリコーン樹脂8が除去された領域にファイバーレーザ光10を照射する。これにより、セラミックス基板7の切断に適したファイバーレーザ光10が照射された円状の領域において、被加工物5を構成する材料のうちセラミックス基板7が除去される。したがって、被加工物5が完全に切断される。
 以上説明したように、本実施例によれば、集光レンズに吸収されるという性質を有するCO2レーザ光9は、集光レンズ19を通過(透過)することなく、ファイバーレーザ光10と重畳され、被加工物5の表面20には、重畳されたCO2レーザ光9とファイバーレーザ光10とが照射される。これにより、集光レンズに吸収されるという性質を有するCO2レーザ光9を含む2つのレーザ光を重畳して被加工物5の表面20に向かって照射することができる。したがって、集光レンズに吸収されるという性質を有するレーザ光を含む2つのレーザ光を被加工物の特性に応じて選択し、それらのレーザ光を重畳させて被加工物に向かって照射することによって、被加工物5を完全に切断することができる。
 本発明の実施例2に係るレーザ加工装置を、図2を参照して説明する。図2は、本実施例に係るレーザ加工装置の概略図である。なお、以下に示す各図においては、図1において示した観察手段4が省略されている。
 図2に示されたレーザ加工装置1Bは、本実施例に係るレーザ加工装置である。レーザ加工装置1Bは、第1の光源2と第2の光源28とを備える。第2の光源28は、集光レンズに吸収されるという性質を有する第2のレーザ光29を発生させる。第2のレーザ光29は、第2の凹面反射鏡30によって反射されて集光される。そして、第1のレーザ光であるCO2レーザ光9と第2のレーザ光29とが重畳されて、被加工物5の表面20に向かって照射される。
 本実施例によれば、それぞれ集光レンズに吸収されるという性質を有する2種類のレーザ光であるCO2レーザ光9と第2のレーザ光29とを重畳させる。したがって、それぞれ集光レンズに吸収されるという性質を有する2種類のレーザ光を被加工物の特性に応じて適宜選択して、それらのレーザ光を重畳させて被加工物に向かって照射することができる。また、図1に示された光ファイバー16とコリメータ17とを使用しないので、レーザ加工装置1Bの高さを低くすることができる。
 なお、第1の光源2と第2の光源28とに加えて、レーザ光の種類をさらに増やすこともできる。この場合には、レーザ光に応じて、第1の凹面反射鏡12、第2の凹面反射鏡30、第3の凹面反射鏡、・・・というように、凹面反射鏡の数を増やせばよい。これにより、それぞれ集光レンズに吸収されるという性質を有する3種類以上のレーザ光を被加工物の特性に応じて選択し、それらのレーザ光を重畳させて被加工物に向かって照射することができる。
 本発明の実施例3に係るレーザ加工装置を、図3を参照して説明する。図3は、本実施例に係るレーザ加工装置の概略図である。
 図3に示されたレーザ加工装置1Cは、本実施例に係るレーザ加工装置である。レーザ加工装置1Cは、第1の光源2と第2の光源31とを備える。第2の光源31は、集光レンズに吸収されないという性質を有する第2のレーザ光32を発生させる。第2のレーザ光32は平面反射鏡33によって反射され、反射された第2のレーザ光32は、集光レンズ19によって集光される。そして、第1のレーザ光としてのCO2レーザ光9と第2のレーザ光32とが重畳されて、被加工物5の表面20に向かって照射される。
 本実施例によれば、実施例1において説明した効果と同様の効果が得られる。また、図1に示された光ファイバー16とコリメータ17とを使用しないので、レーザ加工装置1Cの高さを低くすることができる。
 本発明の実施例4に係るレーザ加工装置を、図4を参照して説明する。図4は、本実施例に係るレーザ加工装置の概略図である。
 図4に示されたレーザ加工装置1Dは、本実施例に係るレーザ加工装置である。レーザ加工装置1Dは、第1の光源2と第2の光源28と第3の光源34とを備える。第3の光源34は、集光レンズに吸収されないという性質を有する第3のレーザ光35を発生させる。第3のレーザ光35は平面反射鏡36によって反射され、反射された第3のレーザ光35は、集光レンズ19によって集光される。そして、第1のレーザ光であるCO2レーザ光9と第2のレーザ光29と第3のレーザ光35とが重畳されて、被加工物5の表面20に向かって照射される。
 本実施例によれば、それぞれ集光レンズに吸収されるという性質を有する2種類のレーザ光であるCO2レーザ光9と第2のレーザ光29と、集光レンズに吸収されないという性質を有する第3のレーザ光35とを重畳させる。これにより、それぞれ集光レンズに吸収されるという性質を有するか否かという点で異なる特性を有する3種類のレーザ光を被加工物の特性に応じて選択して、それらのレーザ光を重畳させて被加工物に向かって照射することができる。したがって、被加工物の特性に応じて複数の種類のレーザ光を選択する場合に、選択肢を増やすことができる。
 なお、ここまで説明した各実施例においては、集光レンズに吸収されるという性質を有する第1のレーザ光としてCO2レーザ光9を例に挙げた。これに限らず、CO2レーザ光9に代えて、集光レンズに吸収されるという性質を有する他の種類のレーザ光を使用することもできる。また、第1のレーザ光としては、集光レンズに吸収されないという性質を有する他の種類のレーザ光を使用することもできる。また、第2のレーザ光として、ファイバーレーザ光10の基本波およびその高調波を使用することができる。また、ファイバーレーザ光10として、パルス発振レーザ(超短パルスレーザを含む)によるレーザ光を使用してもよい。また、ファイバーレーザ光10に代えて、集光レンズに吸収されないという性質を有する他の種類のレーザ光、たとえば、YAG(Yttrium Aluminum Garnet)レーザの基本波およびその高調波等を使用することもできる。
 また、2つおよび3つのレーザ光を重畳させて被加工物5の表面20に向かって照射する実施例について説明した。これに限らず、4つ以上のレーザ光を重畳させて被加工物5の表面20に向かって照射することもできる。
 また、被加工物5である樹脂封止体を完全に切断する加工(フルカット)を行う場合について説明した。これに限らず、被加工物5において厚さ方向の途中(厚さの半分程度)まで溝を形成する加工(ハーフカット)を行う場合においても本発明を適用することができる。また、被加工物5に浅い溝を形成する加工、貫通穴を形成する加工、止り穴を形成する加工、長穴を形成する加工等にも、本発明を適用することができる。また、加工としては、被加工物5の表面20に対して表面処理を行う加工も含まれる。
 また、被加工物5の種類と加工の種類とによっては、レーザ光と被加工物5とを相対的に移動させないという構成を採用することもできる。
 今回開示された実施例は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
産業上の利用分野
 本発明は、レーザ光による被加工物の加工に有効に利用される。
 1A、1B、1C、1D レーザ加工装置、2 第1の光源、3、28、31 第2の光源、4 観察手段、5 被加工物、6 ステージ、7 セラミックス基板、8 シリコーン樹脂、9 CO2レーザ光、10 ファイバーレーザ光、11 第1の光路、12 第1の凹面反射鏡、13 開口、14 駆動装置、15 第2の光路、16 光ファイバー、17 コリメータ、18、25 ダイクロイックミラー、19 集光レンズ、20 表面、21 CCDカメラ、22 結像レンズ、23 バンドパスフィルター、24 照明器、26 ノズル、27 噴射口、29、32 第2のレーザ光、30 第2の凹面反射鏡、33、36 平面反射鏡、34 第3の光源、35 第3のレーザ光。

Claims (9)

  1.  少なくとも2つのレーザ光を使用して被加工物(5)に対して加工を行うレーザ加工装置であって、
     第1のレーザ光(9)を発生させる第1の光源(2)と、
     第2のレーザ光(10,29,32)を発生させる第2の光源(3,28,31)と、
     前記第1のレーザ光(9)を前記第1の光源(2)から前記被加工物(5)に導く第1の光路(11)と、
     前記第2のレーザ光(10,29,32)を前記第2の光源(3,28,31)から前記被加工物(5)に導く第2の光路(15)と、
     前記第1の光路(11)に配置された第1の凹面反射鏡(12)と
    を備え、
     前記第1の光路(11)には集光レンズ(19)が配置されておらず、
     前記第1の凹面反射鏡(12)には前記第2のレーザ光(10,29,32)が通過する開口(13)が設けられ、
     前記被加工物(5)に対して、前記第1の凹面反射鏡(12)によって反射された前記第1のレーザ光(9)と、前記第1の凹面反射鏡(12)の前記開口(13)を通過した前記第2のレーザ光(10,29,32)とが重畳して照射される、レーザ加工装置。
  2.  前記第2の光路(15)には第2の凹面反射鏡(30)が配置された、請求項1記載のレーザ加工装置。
  3.  前記第2の光路(15)には平面反射鏡(33)が配置された、請求項1記載のレーザ加工装置。
  4.  前記第2の光路(15)には集光レンズ(19)が配置された、請求項1記載のレーザ加工装置。
  5.  前記第1のレーザ光(9)は前記集光レンズ(19)に吸収される性質を有する、請求項4記載のレーザ加工装置。
  6.  前記第1の光源(2)はCO2レーザ発振器である、請求項5記載のレーザ加工装置。
  7.  前記第2の光源(3,28,31)はファイバーレーザ発振器である、請求項1記載のレーザ加工装置。
  8.  前記第1の光源(2)はリングモードを有するレーザ光を発生させる、請求項1記載のレーザ加工装置。
  9.  前記第1のレーザ光(9)と前記第2のレーザ光(10,29,32)とは、前記被加工物(5)に対して、切断、穴開け、および表面処理の少なくとも一つの処理が施されるように、照射される、請求項1記載のレーザ加工装置。
PCT/JP2012/050056 2011-01-18 2012-01-05 レーザ加工装置 WO2012098930A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011008056A JP2012148299A (ja) 2011-01-18 2011-01-18 レーザ加工装置
JP2011-008056 2011-01-18

Publications (1)

Publication Number Publication Date
WO2012098930A1 true WO2012098930A1 (ja) 2012-07-26

Family

ID=46515561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050056 WO2012098930A1 (ja) 2011-01-18 2012-01-05 レーザ加工装置

Country Status (3)

Country Link
JP (1) JP2012148299A (ja)
TW (1) TW201247351A (ja)
WO (1) WO2012098930A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523207A (zh) * 2022-03-02 2022-05-24 河北科技大学 激光焊接装置、激光焊接设备及激光焊接方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161188B2 (ja) * 2013-02-05 2017-07-12 株式会社ブイ・テクノロジー レーザ加工装置、レーザ加工方法
JP5908009B2 (ja) 2013-08-20 2016-04-26 三菱重工業株式会社 レーザ加工方法及びレーザ加工装置
JP6194859B2 (ja) * 2014-07-10 2017-09-13 株式会社デンソー 半導体装置およびその製造方法
TWI594833B (zh) * 2015-09-08 2017-08-11 財團法人工業技術研究院 強化玻璃的雷射鑽孔裝置與強化玻璃的雷射鑽孔方法
WO2022209929A1 (ja) * 2021-04-02 2022-10-06 パナソニックIpマネジメント株式会社 レーザ加工ヘッド及びレーザ加工システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245992A (ja) * 1988-03-25 1989-10-02 Ind Res Inst Japan 多波長レーザー加工装置
JP2001001170A (ja) * 1999-06-21 2001-01-09 Agency Of Ind Science & Technol レーザハイブリッド加熱方法
JP2002144058A (ja) * 2000-11-14 2002-05-21 Ricoh Microelectronics Co Ltd レーザ加工方法及びレーザ加工装置
JP2009136913A (ja) * 2007-12-10 2009-06-25 Konica Minolta Holdings Inc 透明材料加工法及び透明材料加工装置
JP2010260108A (ja) * 2010-07-15 2010-11-18 Laser System:Kk レーザ加工装置
JP2010287800A (ja) * 2009-06-12 2010-12-24 Tokki Corp 有機デバイスの製造装置並びに有機デバイスの製造方法
JP2011009263A (ja) * 2009-06-23 2011-01-13 Sumitomo Electric Ind Ltd プリント配線板用基板の穴加工方法、その穴加工方法を用いたプリント配線板用基板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132288A (ja) * 1984-12-03 1986-06-19 Mitsubishi Electric Corp レ−ザ溶接装置
JP2831215B2 (ja) * 1992-11-13 1998-12-02 三菱重工業株式会社 レーザによる切断、穴あけ加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245992A (ja) * 1988-03-25 1989-10-02 Ind Res Inst Japan 多波長レーザー加工装置
JP2001001170A (ja) * 1999-06-21 2001-01-09 Agency Of Ind Science & Technol レーザハイブリッド加熱方法
JP2002144058A (ja) * 2000-11-14 2002-05-21 Ricoh Microelectronics Co Ltd レーザ加工方法及びレーザ加工装置
JP2009136913A (ja) * 2007-12-10 2009-06-25 Konica Minolta Holdings Inc 透明材料加工法及び透明材料加工装置
JP2010287800A (ja) * 2009-06-12 2010-12-24 Tokki Corp 有機デバイスの製造装置並びに有機デバイスの製造方法
JP2011009263A (ja) * 2009-06-23 2011-01-13 Sumitomo Electric Ind Ltd プリント配線板用基板の穴加工方法、その穴加工方法を用いたプリント配線板用基板
JP2010260108A (ja) * 2010-07-15 2010-11-18 Laser System:Kk レーザ加工装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523207A (zh) * 2022-03-02 2022-05-24 河北科技大学 激光焊接装置、激光焊接设备及激光焊接方法
CN114523207B (zh) * 2022-03-02 2024-03-29 河北科技大学 激光焊接方法

Also Published As

Publication number Publication date
TW201247351A (en) 2012-12-01
JP2012148299A (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2012098930A1 (ja) レーザ加工装置
JP6551275B2 (ja) レーザ加工装置、三次元造形装置、及びレーザ加工方法
JP6249225B2 (ja) レーザ加工装置及びレーザ加工方法
JP5580826B2 (ja) レーザ加工装置及びレーザ加工方法
US8049133B2 (en) Laser beam machining apparatus
JP5558325B2 (ja) レーザ加工装置
JP5832412B2 (ja) 光学系及びレーザ加工装置
WO2005084874A1 (ja) レーザ加工装置
JP5536319B2 (ja) レーザスクライブ方法および装置
KR101587941B1 (ko) 레이저 빔조사 장치
JP2008036641A (ja) レーザ加工装置およびレーザ加工方法
WO2012063348A1 (ja) レーザ加工方法及び装置
JP2007167936A (ja) 金メッキ剥離方法及び金メッキ剥離装置
JP2009178720A (ja) レーザ加工装置
KR101195602B1 (ko) 다층 구조의 가공 대상물을 절단할 수 있는 레이저 절단장치
WO2015029467A1 (ja) レーザ加工装置
JP6385622B1 (ja) レーザ加工方法およびレーザ加工装置
JP2018002501A (ja) 管状脆性部材の分断方法並びに分断装置
JP5579532B2 (ja) 樹脂成形品の製造方法
WO2018211691A1 (ja) レーザ加工装置
KR100862522B1 (ko) 레이저가공 장치 및 기판 절단 방법
JP2019084542A (ja) ビーム重畳光学系、及びレーザ加工装置
CN211570465U (zh) 一种玻璃微管激光切割装置
JP2012148300A (ja) レーザ加工装置
WO2020050148A1 (ja) レーザ光走査装置及びレーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737112

Country of ref document: EP

Kind code of ref document: A1