WO2012097656A1 - 上行无线协作多点传输通信网络及其传输方法 - Google Patents

上行无线协作多点传输通信网络及其传输方法 Download PDF

Info

Publication number
WO2012097656A1
WO2012097656A1 PCT/CN2011/083928 CN2011083928W WO2012097656A1 WO 2012097656 A1 WO2012097656 A1 WO 2012097656A1 CN 2011083928 W CN2011083928 W CN 2011083928W WO 2012097656 A1 WO2012097656 A1 WO 2012097656A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooperative
base station
radio frequency
receiving
receiving point
Prior art date
Application number
PCT/CN2011/083928
Other languages
English (en)
French (fr)
Inventor
靳日飞
贺胜
赵瑜
樊荣
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012097656A1 publication Critical patent/WO2012097656A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems

Definitions

  • the present invention relates to CoMP (Cooperative Multi-Point Transmission) in the field of communication network technology, and in particular to an uplink wireless cooperative multi-point transmission communication network and a transmission method thereof.
  • CoMP Cooperative Multi-Point Transmission
  • CoMP is a technical means to increase the throughput of cell edge users and thereby increase the throughput of the entire network.
  • the traditional multi-point cooperative receiving technology is a cooperative reception between a primary cell (also referred to as a "serving cell") and a coordinated cell, and the coordinated cell performs preprocessing (or no preprocessing) on the received signal, and uses data and channel information.
  • the primary cell is sent to the primary cell through the X2 interface, and the primary cell performs joint detection and merging.
  • the above CoMP uplink data transmission scheme requires a large amount of data interaction between the primary cell and the coordinated cell, which causes great pressure on the transmission of the X2 port, and the joint detection and combining technology across the cells also increases the complexity of the network processing.
  • the technical problem to be solved by the present invention is to provide an uplink wireless cooperative multi-point transmission communication network and a transmission method thereof, so as to prevent a large amount of data interaction between the primary cell and the coordinated cell and affect the X2 interface transmission, and achieve uplink cooperative reception and transmission.
  • the purpose of multi-point joint detection is to improve the throughput of the entire network.
  • a communication network for uplink wireless coordinated multi-point transmission includes: a plurality of base stations and a plurality of cooperative receiving points, wherein:
  • Each of the cooperative receiving points is configured to: operate in a common manner between adjacent base stations, amplify the received radio frequency signals, send them to a base station in need, or transmit a baseband signal obtained by the radio frequency signals to a base station in need thereof.
  • Each of the cooperative receiving points includes an antenna and a radio frequency receiving unit, where: The antenna is configured to: receive the radio frequency signal;
  • the radio frequency receiving unit is configured to: amplify, demodulate, and A/D convert the radio frequency signal to obtain the baseband signal, and send the baseband signal to a base station in need.
  • the base station includes a baseband processing module, where:
  • the baseband processing module is configured to: perform demodulation processing on the baseband signal transmitted by the cooperative receiving point and the baseband signal directly received by the base station, to obtain spatial diversity gain and power gain.
  • the cooperative receiving point includes an antenna and a radio frequency receiving unit, where:
  • the antenna is configured to: receive the radio frequency signal
  • the radio frequency receiving unit is configured to: amplify the radio frequency signal and forward the radio frequency signal to a base station in need.
  • the base station includes a radio frequency signal processing unit and a baseband processing module, where: the radio frequency signal processing unit is configured to: amplify, demodulate, and A/D convert the radio frequency signal received from the cooperative receiving point to obtain the baseband signal. ;
  • the baseband processing module is configured to: perform demodulation processing on the baseband signal transmitted by the cooperative receiving point and the baseband signal directly received by the base station, to obtain spatial diversity gain and power gain.
  • a communication network for uplink wireless coordinated multi-point transmission includes a plurality of base stations and a plurality of cooperative receiving points, wherein:
  • Each base station is configured with one or more cooperative receiving points that are private.
  • Each cooperative receiving point is configured to: only communicate with the base station to which it belongs, amplify the received radio frequency signal and send it to the base station to which it belongs or will be The baseband signal obtained by the radio frequency signal is sent to the base station to which it belongs.
  • the cooperative receiving point includes an antenna and a radio frequency receiving unit, where:
  • the antenna is configured to: receive the radio frequency signal
  • the radio frequency receiving unit is configured to: amplify, demodulate, and A/D convert the radio frequency signal to obtain the baseband signal, and send the baseband signal to a base station to which it belongs.
  • the base station includes a baseband processing module, where:
  • the baseband processing module is configured to: perform demodulation processing on the baseband signal transmitted by the cooperative receiving point and the baseband signal directly received by the base station, to obtain spatial diversity gain and power gain.
  • the cooperative receiving point includes an antenna and a radio frequency receiving unit, where: the antenna is configured to: receive the radio frequency signal;
  • the radio frequency receiving unit is configured to: amplify the radio frequency signal and forward it to a base station to which it belongs.
  • the base station includes a radio frequency signal processing unit and a baseband processing module, where: the radio frequency signal processing unit is configured to: amplify, demodulate, and A/D convert the radio frequency signal received from the cooperative receiving point to obtain the Baseband signal;
  • the baseband processing module is configured to: perform demodulation processing on the baseband signal transmitted by the cooperative receiving point and the baseband signal directly received by the base station, to obtain spatial diversity gain and power gain.
  • An uplink wireless coordinated multipoint transmission method is applied to a communication network including multiple base stations and multiple coordinated receiving points, and the method includes:
  • the master base station establishes a cooperative relationship with the cooperative receiving point belonging to the own cell, and determines a cooperative receiving point that participates in cooperative receiving from all the cooperative receiving points that have established a cooperative relationship with itself when the cooperative receiving is required;
  • the cooperative receiving point participating in the cooperative receiving receives the data receiving trigger signal of the primary base station, receives the user terminal data in the corresponding air interface period, and sends the received user terminal data or signal to the primary base station;
  • the primary base station performs joint detection and demodulation of uplink data according to data or signals sent by the cooperative receiving point participating in the cooperative reception together with the data received by the primary base station.
  • the step of establishing a cooperative relationship between the primary base station and the coordinated receiving point of the local cell includes: sending, by the primary base station, a cell establishment request to each coordinated receiving point belonging to the local cell when the primary base station establishes the cell;
  • the cooperative receiving point that receives the cell establishment request detects whether it is normal, and returns a configuration confirmation message to the primary base station after the configuration message is correctly configured.
  • the master base station sets the cooperative receiving point of the acknowledgment message indicating that the configuration is successful, and the master base station establishes a cooperative relationship with the cooperative receiving point that belongs to the local cell.
  • the cell establishment request includes: a cell center frequency point, a system bandwidth, and/or an uplink and downlink subframe ratio information of the TDD-LTE system.
  • the step of determining, by the primary base station, the cooperative receiving point that participates in cooperative receiving includes:
  • the primary base station After receiving the event that is required to be received by the user terminal, the primary base station sends an inquiry command to all the cooperative receiving points that have established a cooperative relationship with the user terminal;
  • the primary base station determines a cooperative reception point participating in uplink reception of the user terminal by the power of the user terminal receiving signal or the received user terminal signal quality obtained according to data or signals fed back from the respective cooperative receiving points.
  • the cooperative receiving point is a private receiving point of the primary base station, or a cooperative receiving point shared by the primary base station and other cells.
  • the cooperative receiving point receives data or a signal by using an array antenna; correspondingly, the primary base station processes the signal or data by using an array signal processing manner at the baseband.
  • the above technical solution proposes a networking mode and a cooperation method for cooperatively receiving points in a cellular network, and further provides two cooperative receiving point structures.
  • the foregoing technical solution can perform uplink cooperative reception on the UE at the cell edge (obtaining the diversity gain and power gain of the uplink receiving), and can improve the uplink receiving gain of the UE located at the cell edge without changing the existing site layout coverage, and obtain more Large uplink throughput, and does not bring overhead to the X2 port, does not occupy the wireless resources of the neighboring area, thereby improving the throughput of the entire network.
  • 1 is a schematic diagram of a first uplink multipoint receiving scheme
  • FIG. 2 is a schematic diagram of a second uplink multipoint receiving scheme
  • Figure 3 is a first schematic diagram of a collaborative receiving point cooperating with a primary eNodeB
  • 4 is a second schematic diagram of a cooperative receiving point cooperating with a primary eNodeB
  • 5 is a schematic diagram of a cell establishment process with a cooperative receiving point
  • FIG. 6 is a schematic diagram of a UE reporting measurement process
  • FIG. 7 is a schematic diagram of an uplink multipoint coordinated receiving process
  • Figure 8 is a flow chart of the eNodeB configuration triggering the sending and receiving data of each collaboration point.
  • the embodiment of the present invention proposes a new uplink wireless coordinated multipoint transmission communication network architecture and a corresponding transmission method.
  • the communication network includes: a plurality of base stations and a plurality of cooperative receiving points, wherein each cooperative receiving point is shared between adjacent base stations.
  • the mode works to send the received radio frequency or baseband signal to the base station in need.
  • the cooperative receiving point is shared by neighboring eNodeBs, cell CELL 0 and
  • the cooperative receiving point between CELL 1 is shared by two cells, and the six cooperative receiving points around cell CELL 0 are cooperative receiving points shared by neighboring cells. In the public mode, the cooperative receiving point is not attributed to one eNodeB, but is shared by multiple eNodeBs. The cooperative receiving point sends the received RF or baseband signal to the desired eNodeB.
  • the communication network includes: a plurality of base stations, each of which is configured with one or more cooperative receiving points thereof, wherein each collaboration The receiving point only communicates with the base station to which it belongs.
  • the base stations of the cells CELL O and CELL 1 each have their own cooperative receiving point
  • the receiving point is a private cooperative receiving point of the base station
  • the cell CELL 0 has 6 cooperative receiving points
  • the cell CELL 1 has the cell CELL 1 3 collaborative receiving points.
  • the cooperative receiving point only communicates with the eNodeB to which it belongs, which can reduce the interference of the neighboring UE to the UE signal in the local area.
  • the cooperative receiving point only has the function of receiving the wireless signal and does not have the transmitting function, so that the original network layout is not affected.
  • Collaborative receiving points mainly include The next two parts:
  • the first part is the array antenna that receives the wireless signal (which can also be in the form of other antennas); the second part is the RF receiving unit.
  • the cooperative receiving point receives the radio frequency data from the antenna, and the radio frequency receiving unit of the cooperative receiving point performs the amplification, demodulation, A/D conversion, etc. of the radio frequency signal. After processing, it becomes a baseband signal, and then transmits the baseband signal to the primary eNodeB.
  • the primary eNodeB demodulates the baseband signal transmitted by the coordinated receiving point and the baseband signal received by the primary eNodeB to obtain spatial diversity gain and power gain.
  • the transmission between the cooperative receiving point and the primary eNodeB is transmitted by using the optical fiber.
  • the cooperative receiving point receives the radio frequency data from the antenna, and the radio frequency receiving unit of the cooperative receiving point only amplifies and forwards the radio frequency signal, and sends the radio frequency line to the main eNodeB.
  • the main eNodeB is configured with a radio frequency signal processing unit that amplifies, demodulates, and A/D converts the received radio frequency signal into a baseband signal.
  • the solution delivers the RF processing of the coordinated receiving point to the RF processing unit of the primary eNodeB, which reduces the cost of the network.
  • the receiving antenna of the cooperative receiving point described above uses an array antenna, and the method of using the array signal processing at the baseband can reduce the interference of the signal in the non-target UE direction.
  • the present invention can achieve the effect of uplink CoMP without using the X2 port resource (for example, the X2 port transmission delay cannot meet the uplink joint reception of the traditional CoMP), and can obtain better performance than the traditional uplink CoMP method. Power gain.
  • the cooperative receiving point of each cell can be added based on the R8 LTE protocol networking to improve the uplink throughput of a single cell and the entire network.
  • a method for uplink wireless coordinated multi-point transmission includes:
  • the primary base station establishes a cooperative relationship with the cooperative receiving point belonging to the local cell, and determines a cooperative receiving point that participates in cooperative receiving from the cooperative receiving points belonging to the local cell when the cooperative receiving is required;
  • the cooperative receiving point participating in the cooperative reception is in the corresponding empty after the data receiving trigger signal of the primary base station Receiving user terminal data and transmitting the received user terminal data or signal to the primary base station; the primary base station performs joint detection solution according to the data or signal sent by the cooperative receiving point participating in the cooperative reception together with the data received by the primary base station Adjust the uplink data.
  • the data or signal sent by the cooperative receiving point is the received radio frequency or baseband signal or data.
  • the receiving antenna of the cooperative receiving point uses an array antenna.
  • the cooperative receiving points belonging to the own cell include receiving points private to the base station and/or cooperative receiving points shared with other cells.
  • FIG. 5 a flow chart of the eNode B configuring the cooperative receiving point is given.
  • the cooperative receiving point needs to be configured by the eNode B when the cell is established or the cooperative receiving point is changed.
  • the specific configuration process includes:
  • Step 501 In the network environment shown in FIG. 1 and FIG. 2, when the primary eNodeB establishes a cell, the primary eNodeB sends a cell to each coordinated receiving point (including a private receiving point of the eNodeB and a cooperative receiving point shared by other cells) belonging to the local cell. Establish a request (the number of cooperative receiving points in the cell can be manually configured or adaptively detected);
  • the request information in the establishment request includes information about the cell center frequency, the system bandwidth, and other system information (such as the uplink and downlink subframe ratio of the TDD-LTE system).
  • Step 502 After receiving the cell setup request signal sent by the eNodeB, the cooperative receiving point detects whether each module is normal, and after the configuration message is correctly configured, returns an ACK acknowledgement message to the eNodeB, and ensures that the cooperative receiving point and the eNodeB are time synchronized. ; If it detects that each module works abnormally or fails to configure, it returns a NACK message to the eNodeB.
  • Step 503 After receiving the ACK message fed back by the coordinated receiving point, the eNodeB confirms that the cooperative receiving point configuration is successful, and sets the cooperative receiving point of the feedback ACK to an available state; if the eNodeB receives the NACK fed back by the coordinated receiving point, the eNodeB will feed back the NACK.
  • the collaborative receiving point is set to be unavailable.
  • Step 504 The eNodeB with the coordinated receiving point works normally after the cell is successfully established.
  • the process for performing coordinated transmission by a UE camping in a cell includes: First, it is determined whether the UE camping in the local cell needs to perform uplink cooperative reception.
  • the eNodeB can be configured to measure the signal strength of the UE (such as RSRP, RSRQ, etc.) or the measured path loss of the UE, that is, the path loss (PL, Pathloss value to determine;
  • the UE reports a measurement event notification eNodeB.
  • the uplink multipoint cooperative receiving method includes the following steps:
  • Step 701-703 After receiving the event that the UE reports that needs to be received by the UE, the eNodeB sends a query command to each coordinated receiving point, and each coordinated receiving point receives the query command and feeds the received data to the eNodeB.
  • Step 704 The eNodeB determines, according to the power of the UE received signal measured by each coordinated receiving point or the measured signal quality sent by the UE (for example, using a signal to noise ratio), which receiving cooperation points should participate in the uplink receiving cooperation of the UE. And the coordinated receiving point is configured to participate in the cooperative receiving of the UE when the signal received by the cooperative receiving point is greater than a certain threshold.
  • Step 705-706 The eNodeB sends a data receiving trigger signal to the cooperative receiving point that participates in the cooperative receiving of the target UE when the target UE scheduling is completed, and the operating cooperative receiving point receives the data at the corresponding air interface time.
  • the time at which the eNodeB sends the data transmission command may be selected in the air interface subframe in which the uplink scheduling authorization information is sent. After receiving the command to send data, the cooperative receiving station will send the received data to the eNodeB at the corresponding time.
  • the time at which the cooperative receiving point receives the data is derived according to the HARQ (Hybrid Automatic Repeat Request) timing (the LTE uplink HARQ is the synchronous HARQ, and there is a fixed time from the issuance of the uplink scheduling grant to the uplink PUSCH transmission. Interval).
  • HARQ Hybrid Automatic Repeat Request
  • Step 707 The eNodeB jointly detects and demodulates the uplink data by using the data or signal sent by each coordinated receiving point together with the data received by the station.
  • the process of the eNodeB configuring each cooperative receiving point to send and receive data is as shown in FIG. 8, and includes the following steps:
  • Step 801 First, it is determined whether the UE queue that needs to be cooperatively received has been received, if not, Then perform step 802;
  • Step 802-803 traversing the UE queue that needs to be cooperatively received, traversing to see whether the cooperative receiving point of the UE has been set to send and receive data, and if not yet sending and receiving data, performing step 804:
  • Step 804 The cooperative receiving point flag is set to be configured to transmit the received data in the corresponding subframe.
  • Step 805 Determine whether all the cooperative receiving points of the UE have been traversed, and if yes, check whether the UE queue that needs to be cooperatively received has been received, and if not, traverse to check whether the cooperative receiving point of the UE has been set to send and receive data. .
  • the foregoing technical solution can perform uplink cooperative reception on the UE at the cell edge (obtaining the diversity gain and power gain of the uplink receiving), and can improve the uplink receiving gain of the UE located at the cell edge without changing the existing site layout coverage, and obtain more
  • the large uplink throughput does not bring overhead to the X2 port, and does not occupy the radio resources of the neighboring area, thereby improving the throughput of the entire network. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行无线协作多点传输的通信网络及方法,该通信网络包括:多个基站及多个协作接收点,其中:每一协作接收点均设置成:在相邻的基站间以公用方式工作,将接收到的射频信号放大后发送至有需求的基站或将由所述射频信号得到的基带信号发送至有需求的基站。上述技术方案可对处于小区边缘的UE进行上行协作接收,可在不改变现有站点布局覆盖的基础下提高位于小区边缘的UE上行接收增益,获得更大的上行吞吐量,并且不会给X2口带来开销,不会占用邻区的无线资源,从而可以提高整个网络的吞吐量。

Description

上行无线协作多点传输通信网络及其传输方法
技术领域
本发明涉及通信网络技术领域中的多点协作传输技术 ( CoMP , Cooperative Multi-Point transmission ) , 尤其涉及上行无线协作多点传输通信 网络及其传输方法。
背景技术
CoMP是提高小区边缘用户吞吐量从而提升整个网络吞吐量的一种技术 手段。 传统的多点协作接收技术是主小区 (也称 "服务小区" )和协作小区 之间进行协作接收, 协作小区将接收到的信号进行预处理(或不做预处理), 将数据和信道信息通过 X2口发送给主小区, 主小区进行联合检测和合并。
上述 CoMP上行数据传输方案在主小区和协作小区需要进行大量的数据 交互, 给 X2 口的传输造成了很大的压力, 并且跨小区的联合检测和合并技 术也增加了网络处理的复杂度。
发明内容
本发明所要解决的技术问题在于, 提供一种上行无线协作多点传输通信 网络及其传输方法, 以避免主小区和协作小区需要进行大量的数据交互而影 响 X2接口传输, 达到上行协作接收传输以及多点联合检测接收的目的, 提 高整个网络的吞吐量。
一种上行无线协作多点传输的通信网络, 包括: 多个基站及多个协作接 收点, 其中:
每一协作接收点均设置成: 在相邻的基站间以公用方式工作, 将接收到 的射频信号放大后发送至有需求的基站或将由所述射频信号得到的基带信号 发送至有需求的基站。
其中, 每一所述协作接收点均包括天线和射频接收单元, 其中: 所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成: 对所述射频信号进行放大、 解调、 A/D转换 处理得到所述基带信号, 将所述基带信号发送至有需求的基站。
其中, 所述基站包括基带处理模块, 其中:
所述基带处理模块设置成: 将协作接收点传送的基带信号联合基站直接 接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。
其中, 所述协作接收点包括天线及射频接收单元, 其中:
所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成:将所述射频信号放大后转发至有需求的基站。 其中, 所述基站包括射频信号处理单元和基带处理模块, 其中: 所述射频信号处理单元设置成: 将从协作接收点接收的射频信号进行放 大、 解调和 A/D转换得到所述基带信号;
所述基带处理模块设置成: 将协作接收点传送的基带信号联合基站直接 接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。
一种上行无线协作多点传输的通信网络, 包括多个基站及多个协作接收 点, 其中:
每一基站配置有其私有的一个或多个协作接收点, 每一协作接收点均设 置成: 只与自己所属的基站进行通信, 将接收到的射频信号放大后发送至自 己所属的基站或将由所述射频信号得到的基带信号发送至自己所属的基站。
其中, 所述协作接收点包括天线及射频接收单元, 其中:
所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成: 对所述射频信号进行放大、 解调、 A/D转换 处理得到所述基带信号, 将所述基带信号发送给自己所属的基站。
其中, 所述基站包括基带处理模块, 其中:
所述基带处理模块设置成: 将所述协作接收点传送的基带信号联合基站 直接接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。 其中, 所述协作接收点包括天线及射频接收单元, 其中: 所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成: 将所述射频信号放大后转发给自己所属的基 站。
其中, 所述基站包括射频信号处理单元和基带处理模块, 其中: 所述射频信号处理单元设置成: 将从所述协作接收点接收的射频信号进 行放大、 解调和 A/D转换得到所述基带信号;
所述基带处理模块设置成: 将所述协作接收点传送的基带信号联合基站 直接接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。
一种上行无线协作多点传输的方法, 应用于包括多个基站及多个协作接 收点的通信网络中, 该方法包括:
主基站与属于本小区的协作接收点建立协作关系, 在需要协作接收时从 已经与自身建立协作关系的所有协作接收点中确定参与协作接收的协作接收 点;
参与协作接收的协作接收点在收到所述主基站的数据接收触发信号后, 在对应空口时段接收用户终端数据, 并将所接收到的用户终端数据或信号发 送至所述主基站;
所述主基站根据参与协作接收的协作接收点发送过来的数据或信号连同 本主基站接收到的数据进行联合检测解调上行数据。
其中, 主基站与属于本小区的协作接收点建立协作关系的步骤包括: 所述主基站建立小区时向属于本小区的各个协作接收点发送小区建立请 求;
接收到所述小区建立请求的协作接收点检测自身是否正常, 是则将配置 消息正确配置成功后给所述主基站返回一个配置成功的确认消息;
所述主基站将返回配置成功的确认消息的协作接收点置为可用, 则所述 主基站与属于本小区的协作接收点建立协作关系完毕。 其中, 所述小区建立请求包括: 小区中心频点、 系统带宽和 /或 TDD-LTE 系统的上下行子帧配比信息。
其中, 主基站确定参与协作接收的协作接收点的步骤包括:
所述主基站收到用户终端上报的需要协作接收的事件后, 向已经与自身 建立协作关系的所有协作接收点发送查询命令;
收到所述查询命令的协作接收点将接收到的数据或信号反馈给所述主基 站;
所述主基站由根据各个协作接收点反馈的数据或信号得到的该用户终端 接收信号的功率或接收到的用户终端信号质量确定参与所述用户终端的上行 接收的协作接收点。
其中, 所述协作接收点是所述主基站私有的接收点、 或者是所述主基站 与其他小区公用的协作接收点。
其中, 所述协作接收点釆用阵列天线接收数据或信号; 相应的, 所述主 基站在基带使用阵列信号处理方式对信号或数据进行处理。
上述技术方案提出了在蜂窝网组网中协作接收点的布网方式及其协作方 法, 进一步给出了两种协作接收点结构。 上述技术方案可对处于小区边缘的 UE进行上行协作接收(获得上行接收的分集增益和功率增益), 可在不改变 现有站点布局覆盖的基础下提高位于小区边缘的 UE上行接收增益, 获得更 大的上行吞吐量, 并且不会给 X2 口带来开销, 不会占用邻区的无线资源, 从而可以提高整个网络的吞吐量。
附图概述
图 1是第一种上行多点接收方案的示意图;
图 2是第二种上行多点接收方案的示意图;
图 3是协作接收点与主 eNodeB协作的第一种示意图;
图 4是协作接收点与主 eNodeB协作的第二种示意图; 图 5是带协作接收点的小区建立流程示意图;
图 6是 UE上报测量流程示意图;
图 7是上行多点协作接收流程示意图;
图 8是 eNodeB配置触发各个协作点发送接收数据流程图。
本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 作进一步地详细说明。
为减小主小区和协作小区之间数据交互给 X2口的传输造成的压力, 本 发明的实施例提出了一种新的上行无线协作多点传输通信网络架构及相应的 传输方法。
如图 1所示, 第一种上行无线协作多点传输通信网络架构中, 该通信网 络包括: 多个基站及多个协作接收点, 其中, 每一协作接收点在相邻的基站 间以公用方式工作, 将接收处理的射频或基带信号发送至有需求的基站。
例如, 图 1中协作接收点釆用相邻 eNodeB公用的方式, 小区 CELL 0和
CELL 1之间的协作接收点为两个小区所公用, 小区 CELL 0周围的 6个协作 接收点均是与相邻小区所公用的协作接收点。 在公用方式下, 协作接收点不 归属于某一个 eNodeB, 而是多个 eNodeB公用。 协作接收点把接收处理的射 频或基带信号发往需要的 eNodeB。
如图 2所示, 第二种上行无线协作多点传输通信网络架构中, 该通信网 络包括: 多个基站, 每一基站配置有其私有的一个或多个协作接收点, 其中, 每一协作接收点只与自己所属的基站进行通信。
例如, 图 2中, 小区 CELL O和 CELL 1的基站都各自拥有自己的协作接 收点,其接收点是基站私有的协作接收点,小区 CELL 0拥有 6个协作接收点, 而小区 CELL 1则拥有 3个协作接收点。 协作接收点仅与自己所属的 eNodeB 进行通信, 这样可以降低邻区 UE对本区 UE信号的干扰。
在上述两种组网架构中, 协作接收点只具有接收无线信号功能, 不具有 发射功能, 这样就不会对原有的网络布局产生影响。 协作接收点主要包括以 下两部分:
第一部分, 是接收无线信号的阵列天线(也可以是其他天线形式) ; 第二部分, 是射频接收单元。 基于上述两部分结构的协作接收点, 具体实现时可以有两种实现方案。 如图 3所示, 在协作接收点的第一种实现方案中, 协作接收点从天线上 接收到射频数据, 协作接收点的射频接收单元将射频信号经过放大, 解调, A/D 转换等处理后变成基带信号, 然后将基带信号传送给主 eNodeB。 主 eNodeB将协作接收点传送的基带信号联合主 eNodeB接收到的基带信号进行 解调处理, 获得空间分集增益和功率增益。 其中, 协作接收点和主 eNodeB 之间传输釆用光纤传输。
如图 4所示, 在协作接收点的第二种实现方案中, 协作接收点从天线上 接收到射频数据, 协作接收点的射频接收单元只将射频信号放大转发, 通过 射频线路发送给主 eNodeB。 主 eNodeB配置有射频信号处理单元, 射频信号 处理单元将所接收的射频信号放大, 解调和 A/D转换为基带信号。 该方案将 协作接收点的射频处理交给主 eNodeB 的射频处理单元处理, 降低了布网成 本。
上述的协作接收点的接收天线选用阵列天线, 可以在基带使用阵列信号 处理的方法降低非目标 UE方向的信号的干扰。
应用本发明, 在不使用 X2口资源的情况下(如在 X2口传输时延不能满 足传统 CoMP 的上行联合接收)达到上行 CoMP 的效果, 相比传统的上行 CoMP方法而言,可以获得更好的功率增益。具体组网时,可以在基于 R8 LTE 协议组网的基础上增加各个小区的协作接收点来达到提升单个小区和整个网 络上行吞吐量的效果。
在包括多个基站及多个协作接收点的上述的组网方式的通信网络中, 本 发明实施例的一种上行无线协作多点传输的方法, 包括:
主基站与属于本小区的协作接收点建立协作关系, 在需要协作接收时从 属于本小区的协作接收点中确定参与协作接收的协作接收点;
参与协作接收的协作接收点在主基站的数据接收触发信号后, 在对应空 口时段接收用户终端数据,并将所接收的用户终端数据或信号发送至主基站; 主基站根据参与协作接收的协作接收点发送过来的数据或信号连同本主 基站接收到的数据进行联合检测解调上行数据。
协作接收点发送过来的数据或信号是所接收处理的射频或基带信号或数 据。 协作接收点的接收天线选用阵列天线。
所述属于本小区的协作接收点包括本基站私有的接收点和 /或与其他小 区公用的协作接收点。
下面结合图 5至图 8对上述协作传输的具体实施步骤进行详细说明。 如图 5所示, 给出了 eNode B对协作接收点进行配置的流程图。
通常, 带协作接收点的小区建立过程中, 在小区建立时或协作接收点变 更时需要通过 eNode B对协作接收点进行配置。 具体配置流程包括:
步骤 501 , 在图 1和图 2所示布网环境下, 主 eNodeB建立小区时向属于 本小区的各个协作接收点 (包括本 eNodeB私有的接收点和与其他小区公用 的协作接收点)发送小区建立请求(本小区的协作接收点个数可以釆用手动 配置或自适应探测 ) ;
其中, 建立请求中的请求信息包括小区中心频点、 系统带宽和其他系统 信息 (如 TDD-LTE系统的上下行子帧配比等)信息。
步骤 502, 协作接收点接收到 eNodeB发过来的小区建立请求信号后, 自 己检测各个模块是否正常, 将配置消息正确配置成功后, 给 eNodeB返回一 个 ACK确认消息, 并保证协作接收点与 eNodeB时间同步; 若检测到各个模 块工作异常或配置失败, 则给 eNodeB返回一个 NACK消息。
步骤 503 , eNodeB接收到协作接收点反馈的 ACK消息后, 确认协作接 收点配置成功, 并将反馈 ACK的协作接收点置为可用状态; 若 eNodeB接收 到协作接收点反馈的 NACK, 则将反馈 NACK的该协作接收点置为不可用。
步骤 504, 带协作接收点的 eNodeB在小区正常建立成功后, 正常工作。
如图 6所示, 在小区内驻留的 UE进行协作传输的流程包括: 首先, 判断驻留在本小区的 UE是否需要上行协作接收, 判断时可通过 eNodeB配置 UE测量小区的信号强度(如 RSRP、 RSRQ等 )或通过测量到 的 UE的路径损耗即路损 ( PL, Pathloss )值来确定;
然后, 当 UE测量的小区信号强度低于一定门限(或 eNodeB测量到 UE 的 PL达到一定的门限) , UE会上报测量事件通知 eNodeB。
如图 7所示, 上行多点协作接收方法包括以下步骤:
步骤 701-703: eNodeB收到 UE上报的需要协作接收的事件后, 会给各 个协作接收点发送查询命令, 各个协作接收点收到查询命令后将接收到的数 据反馈给 eNodeB;
步骤 704: eNodeB根据各个协作接收点测量到的该 UE接收信号的功率 或测量到的 UE发送的信号质量(譬如使用信噪比来衡量)来判断应由哪些 接收协作点参与该 UE上行接收协作, 当协作接收点接收到的信号大于某一 门限的时候才会配置该协作接收点参与到该 UE的协作接收中。
步骤 705-706: eNodeB在目标 UE调度完成时向参与到目标 UE协作接 收的协作接收点发送数据接收触发信号, 操作协作接收点在对应的空口时间 接收数据。
eNodeB发送数据传输命令的时间可以选在上行调度授权信息发送的空 口子帧。 协作接收站点接收到发送数据的命令后就会在对应的时刻将接收数 据发送给 eNodeB。 协作接收点接收数据的时刻按照上行混合自动重传请求 ( HARQ , Hybrid Automatic Repeat Request )时序来推导出来(有 LTE上行 HARQ是同步 HARQ, 从下发上行调度授权到上行 PUSCH发送存在一个固 定的时间间隔) 。
步骤 707: eNodeB将各个协作接收点发送过来的数据或信号连同本站接 收到的数据进行联合检测解调上行数据。
eNodeB配置各个协作接收点发送接收数据的流程如图 8所示,包括以下 步骤:
步骤 801 : 首先判断需要协作接收的 UE队列是否已经接收完, 若不是, 则执行步骤 802;
步骤 802-803: 遍历需要协作接收的 UE队列, 遍历查看该 UE的协作接 收点是否已置为发送接收数据, 如果尚未置为发送接收数据, 则执行步骤 804:;
步骤 804: 将该协作接收点标志位置位, 配置其在对应的子帧发送所接 收的数据;
步骤 805: 判断该 UE所有的协作接收点是否已经遍历完, 若是则返回检 查需要协作接收的 UE队列是否已经接收完,若否, 则遍历查看该 UE的协作 接收点是否已置为发送接收数据。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性
上述技术方案可对处于小区边缘的 UE进行上行协作接收(获得上行接 收的分集增益和功率增益) , 可在不改变现有站点布局覆盖的基础下提高位 于小区边缘的 UE上行接收增益, 获得更大的上行吞吐量, 并且不会给 X2口 带来开销, 不会占用邻区的无线资源, 从而可以提高整个网络的吞吐量。 因 此本发明具有很强的工业实用性。

Claims

权 利 要 求 书
1、 一种上行无线协作多点传输的通信网络, 包括: 多个基站及多个协作 接收点, 其中:
每一协作接收点均设置成: 在相邻的基站间以公用方式工作, 将接收到 的射频信号放大后发送至有需求的基站或将由所述射频信号得到的基带信号 发送至有需求的基站。
2、 如权利要求 1所述的通信网络, 其中, 每一所述协作接收点均包括天 线和射频接收单元, 其中:
所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成: 对所述射频信号进行放大、 解调、 A/D转换 处理得到所述基带信号, 将所述基带信号发送至有需求的基站。
3、 如权利要求 2所述的通信网络, 其中, 所述基站包括基带处理模块, 其中:
所述基带处理模块设置成: 将协作接收点传送的基带信号联合基站直接 接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。
4、 如权利要求 1所述的通信网络, 其中, 所述协作接收点包括天线及射 频接收单元, 其中:
所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成:将所述射频信号放大后转发至有需求的基站。
5、 如权利要求 4所述的通信网络, 其中, 所述基站包括射频信号处理单 元和基带处理模块, 其中:
所述射频信号处理单元设置成: 将从协作接收点接收的射频信号进行放 大、 解调和 A/D转换得到所述基带信号;
所述基带处理模块设置成: 将协作接收点传送的基带信号联合基站直接 接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。
6、一种上行无线协作多点传输的通信网络, 包括多个基站及多个协作接 收点, 其中: 每一基站配置有其私有的一个或多个协作接收点, 每一协作接收点均设 置成: 只与自己所属的基站进行通信, 将接收到的射频信号放大后发送至自 己所属的基站或将由所述射频信号得到的基带信号发送至自己所属的基站。
7、 如权利要求 6所述的通信网络, 其中, 所述协作接收点包括天线及射 频接收单元, 其中:
所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成: 对所述射频信号进行放大、 解调、 A/D转换 处理得到所述基带信号, 将所述基带信号发送给自己所属的基站。
8、 如权利要求 7所述的通信网络, 其中, 所述基站包括基带处理模块, 其中:
所述基带处理模块设置成: 将所述协作接收点传送的基带信号联合基站 直接接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。
9、 如权利要求 6所述的通信网络, 其中, 所述协作接收点包括天线及射 频接收单元, 其中:
所述天线设置成: 接收所述射频信号;
所述射频接收单元设置成: 将所述射频信号放大后转发给自己所属的基 站。
10、 如权利要求 9所述的通信网络, 其中, 所述基站包括射频信号处理 单元和基带处理模块, 其中:
所述射频信号处理单元设置成: 将从所述协作接收点接收的射频信号进 行放大、 解调和 A/D转换得到所述基带信号;
所述基带处理模块设置成: 将所述协作接收点传送的基带信号联合基站 直接接收到的基带信号进行解调处理, 获得空间分集增益和功率增益。
11、 一种上行无线协作多点传输的方法, 应用于包括多个基站及多个协 作接收点的通信网络中, 该方法包括:
主基站与属于本小区的协作接收点建立协作关系, 在需要协作接收时从 已经与自身建立协作关系的所有协作接收点中确定参与协作接收的协作接收 点;
参与协作接收的协作接收点在收到所述主基站的数据接收触发信号后, 在对应空口时段接收用户终端数据, 并将所接收到的用户终端数据或信号发 送至所述主基站;
所述主基站根据参与协作接收的协作接收点发送过来的数据或信号连同 本主基站接收到的数据进行联合检测解调上行数据。
12、 如权利要求 11所述的方法, 其中, 主基站与属于本小区的协作接收 点建立协作关系的步骤包括:
所述主基站建立小区时向属于本小区的各个协作接收点发送小区建立请 求;
接收到所述小区建立请求的协作接收点检测自身是否正常, 是则将配置 消息正确配置成功后给所述主基站返回一个配置成功的确认消息;
所述主基站将返回配置成功的确认消息的协作接收点置为可用, 则所述 主基站与属于本小区的协作接收点建立协作关系完毕。
13、 如权利要求 12所述的方法, 其中, 所述小区建立请求包括: 小区中 心频点、 系统带宽和 /或 TDD-LTE系统的上下行子帧配比信息。
14、 如权利要求 11-13 中任一项所述的方法, 其中, 主基站确定参与协 作接收的协作接收点的步骤包括:
所述主基站收到用户终端上报的需要协作接收的事件后, 向已经与自身 建立协作关系的所有协作接收点发送查询命令;
收到所述查询命令的协作接收点将接收到的数据或信号反馈给所述主基 站;
所述主基站由根据各个协作接收点反馈的数据或信号得到的该用户终端 接收信号的功率或接收到的用户终端信号质量确定参与所述用户终端的上行 接收的协作接收点。
15、 如权利要求 11-14 中任一项所述的方法, 其中, 所述协作接收点是 所述主基站私有的接收点、或者是所述主基站与其他小区公用的协作接收点。
16、 如权利要求 11-14 中任一项所述的方法, 其中, 所述协作接收点釆 用阵列天线接收数据或信号; 相应的, 所述主基站在基带使用阵列信号处理 方式对信号或数据进行处理。
PCT/CN2011/083928 2011-01-17 2011-12-14 上行无线协作多点传输通信网络及其传输方法 WO2012097656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110009225.X 2011-01-17
CN201110009225XA CN102595429A (zh) 2011-01-17 2011-01-17 上行无线协作多点传输通信网络及其传输方法

Publications (1)

Publication Number Publication Date
WO2012097656A1 true WO2012097656A1 (zh) 2012-07-26

Family

ID=46483536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083928 WO2012097656A1 (zh) 2011-01-17 2011-12-14 上行无线协作多点传输通信网络及其传输方法

Country Status (2)

Country Link
CN (1) CN102595429A (zh)
WO (1) WO2012097656A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062074A1 (zh) * 2014-10-24 2016-04-28 华为技术有限公司 一种小区上行协作的方法和基站

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250396B (zh) 2012-12-20 2016-01-20 华为技术有限公司 交互云化的无线接入网边缘区域用户的数据的方法及装置
EP3167555B1 (en) * 2014-07-09 2018-09-05 Telefonaktiebolaget LM Ericsson (publ) A network node and a method therein for performing comp reception of a transmission from a wireless device
CN106454886A (zh) * 2015-08-12 2017-02-22 中国移动通信集团上海有限公司 一种信号传输方法、装置及系统
CN107222245B (zh) * 2017-05-27 2020-07-10 武汉理工大学 一种用于毫米波MIMO无线通信中CoMP传输节点选择及分集接收路径选择的方法
CN110612683B (zh) * 2017-05-31 2021-02-12 华为技术有限公司 一种上行数据的协作接收方法及网络设备
CN109286452B (zh) * 2017-07-19 2021-08-06 普天信息技术有限公司 减少射频信号泄露的驻波比检测配置方法及装置
CN108446437B (zh) * 2018-02-08 2021-04-30 电子科技大学 一种阵列天线宽波束功率增益优化方法
US11889322B2 (en) 2019-03-12 2024-01-30 Google Llc User-equipment coordination set beam sweeping
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
WO2022056691A1 (zh) * 2020-09-15 2022-03-24 Oppo广东移动通信有限公司 联合传输方法、终端设备、目标网络设备和协作网络设备
CN117676717A (zh) * 2022-08-12 2024-03-08 华为技术有限公司 一种协作传输接收点指示方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640901A (zh) * 2009-04-29 2010-02-03 北京邮电大学 基于上行协作多点的数据合并接收方法
WO2010025286A2 (en) * 2008-08-28 2010-03-04 Qualcomm Incorporated DISTRIBUTED DOWNLINK COORDINATED MULTI-POINT (CoMP) FRAMEWORK
CN101815331A (zh) * 2009-02-25 2010-08-25 中兴通讯股份有限公司 参与协同传输的协同小区选择方法、服务基站及通信系统
CN101931993A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 小区选择方法、辅助小区选择方法、设备及通信系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
CN101877890B (zh) * 2009-04-28 2012-12-05 电信科学技术研究院 确定参与CoMP传输小区和传输数据方法、系统及装置
CN101938300B (zh) * 2009-06-30 2015-07-22 中兴通讯股份有限公司 基于多点协作的数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025286A2 (en) * 2008-08-28 2010-03-04 Qualcomm Incorporated DISTRIBUTED DOWNLINK COORDINATED MULTI-POINT (CoMP) FRAMEWORK
CN101815331A (zh) * 2009-02-25 2010-08-25 中兴通讯股份有限公司 参与协同传输的协同小区选择方法、服务基站及通信系统
CN101640901A (zh) * 2009-04-29 2010-02-03 北京邮电大学 基于上行协作多点的数据合并接收方法
CN101931993A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 小区选择方法、辅助小区选择方法、设备及通信系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062074A1 (zh) * 2014-10-24 2016-04-28 华为技术有限公司 一种小区上行协作的方法和基站
US10148323B2 (en) 2014-10-24 2018-12-04 Huawei Technologies Co., Ltd. Uplink inter-cell coordination method and base station

Also Published As

Publication number Publication date
CN102595429A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2012097656A1 (zh) 上行无线协作多点传输通信网络及其传输方法
US20200178235A1 (en) Apparatus and method for performing random access in beam-formed system
CN110943848B (zh) 一种用于无线网络和多个ue之间的虚拟通信的方法及设备
JP5461688B2 (ja) 電力制御および干渉調整のための方法および装置
KR101719938B1 (ko) 모바일 장치 지원 협력 멀티포인트 전송 및 수신
US9860905B2 (en) Method and system for providing service in a wireless communication system
KR20170019997A (ko) 무선 백홀을 통해서 무선 접속망과의 연결을 제공하는 방법 및 장치
EP3654694B1 (en) Data transmission method and apparatus
US8995930B2 (en) Method for creating a channel between femto base stations based on user equipment
US10397980B2 (en) Method and device for electing a coordination node in a coordinated multipoint set
WO2010121480A1 (zh) 一种多点协作传输协作组信息的发送方法及基站
EP3782389A1 (en) Scheduled and triggered mmw discovery assistance by lower band signaling
US20210242929A1 (en) System and Method for Inter-Basic Service Set Communications
WO2017016520A1 (en) System and method for robust relay communication
WO2011150783A1 (zh) 无线网络中的数据传输方法和装置
WO2011020407A1 (zh) 辅载波小区同步方法及终端
JPWO2018173646A1 (ja) 通信システム
CN101868035B (zh) 一种多点协作传输系统及方法
CN102137517B (zh) 一种实现多点协作发送/接收数据的方法及系统
JP5340023B2 (ja) 多重無線アクセス制御方法及び多重無線アクセス制御システム
US9236917B2 (en) Coordinated communication in communication system
WO2015061924A1 (zh) 小区间干扰抑制的方法及装置
WO2016095522A1 (zh) 基于超级小区的数据传输方法和系统
US20240340066A1 (en) Beam management of sl fr2
WO2012075759A1 (zh) 一种实现下行信道估计的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856084

Country of ref document: EP

Kind code of ref document: A1