WO2016095522A1 - 基于超级小区的数据传输方法和系统 - Google Patents

基于超级小区的数据传输方法和系统 Download PDF

Info

Publication number
WO2016095522A1
WO2016095522A1 PCT/CN2015/084715 CN2015084715W WO2016095522A1 WO 2016095522 A1 WO2016095522 A1 WO 2016095522A1 CN 2015084715 W CN2015084715 W CN 2015084715W WO 2016095522 A1 WO2016095522 A1 WO 2016095522A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data
information
network device
core network
Prior art date
Application number
PCT/CN2015/084715
Other languages
English (en)
French (fr)
Inventor
曾汉军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016095522A1 publication Critical patent/WO2016095522A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and system based on a super cell.
  • the super cell technology is widely used in high-speed rail and air navigation channels.
  • the super cell is composed of multiple CPs (Cell Portion, part of cells). These CPs logically belong to the same cell and share common cell resources, such as cell ID (Identity, identification number), primary and secondary synchronization signals, frequency modulation sequence, and CRS (Common Reference Signal)/DMRS (Demodulation). Reference Signal)/SRS (Sounding Reference Signal) sequence, etc.
  • cell ID Identity, identification number
  • CRS Common Reference Signal
  • DMRS Demodulation
  • Reference Signal Reference Signal
  • SRS Sounding Reference Signal
  • the technology can be combined into multiple logically large areas by multiple independent cells, reducing terminal interference and frequent handover.
  • the super cell is very helpful for improving the KPI (Key Performance Indicator).
  • the super cell generally adopts a network architecture of a BBU (Building Base Band Unit) + RRU (Radio Remote Unit) network.
  • BBU Building Base Band Unit
  • RRU Radio Remote Unit
  • the data of the original multiple cells are combined.
  • Processing jointly processing the downlink data of the RRU or the distributed antenna of the original multiple cells, and the uplink data from the multiple RRUs or the distributed antenna group, so as to achieve the purpose of improving system performance.
  • the BBU and the RRU are connected by the optical fiber link, for the LTE (Long Term Evolution) network designed for continuous coverage, for example, the micro-cell super-dense coverage (the station spacing is 50 ⁇ ) 100m), urban building shadow blinding, vertical floor coverage and large area continuous coverage, etc., the cost is too high, in addition, in the actual networking, the current program can not flexibly take into account continuous coverage and hotspot coverage, which is not conducive to the network Optimization, affecting KPIs.
  • LTE Long Term Evolution
  • the embodiment of the invention provides a data transmission method and system based on a super cell, so as to at least solve the problem that the network architecture in the prior art is high in cost and inflexible in architecture.
  • a data transmission system based on a super cell including: a core network device, a first base station connected to the core network device, and the first base station passing the Ethernet chain At least one second base station connected to the path and a terminal respectively connected to the first base station and the at least one second base station, wherein
  • the core network device is configured to perform data interaction with the first base station
  • the first base station is configured to perform data interaction with the at least one second base station and the core network device by using the Ethernet link, and perform data interaction with the terminal through an air interface;
  • the at least one second base station is configured to perform data interaction with the first base station by using the Ethernet link, and perform data interaction with the terminal through the air interface;
  • the terminal is configured to perform data interaction with the first base station and the at least one second base station over the air interface.
  • the terminal is configured to send uplink data to the first base station and the at least one second base station by using an air interface
  • the first base station is configured to demodulate the uplink data, and obtain a first physical uplink shared channel (PUSCH) demodulated data and a first Hybrid Automatic Repeat Request (HARQ) identifier message;
  • PUSCH physical uplink shared channel
  • HARQ Hybrid Automatic Repeat Request
  • the at least one second base station is configured to demodulate the uplink data, obtain second PUSCH demodulation data and second HARQ identification information, and send the second HARQ identification information to the first base station, and cache the Decoding data of the second PUSCH;
  • the first base station is further configured to: when the first HARQ identification information is marked as failed, and the received second HARQ identification information is marked as successful, acquiring the second PUSCH buffered by the at least one second base station Demodulating data and transmitting the second PUSCH demodulated data to the core network device.
  • the first base station is further configured to send the first PUSCH demodulated data to the core network device when the first HARQ identification information is marked as successful.
  • the first base station is configured to acquire, when the first HARQ identification information is marked as failed, and the received second HARQ identification information sent by all the second base stations is marked as failed.
  • the first base station is further configured to acquire soft bit information of the next second base station after the local soft bit information is combined with the soft bit information of the at least one second base station, And after the local soft bit information is successfully combined with the soft bit information of the next second base station, the merged data is sent to the core network device.
  • the first base station is further configured to: after demodulating the uplink data, obtain a first physical uplink control channel (Physical Uplink Control Channel, abbreviated as PUCCH) demodulation information;
  • PUCCH Physical Uplink Control Channel
  • the at least one second base station is further configured to: after demodulating the uplink data, obtain second PUCCH demodulation information, and send the second PUCCH demodulation information to the first a base station;
  • the first base station is further configured to merge the first PUCCH demodulation information and the second after receiving the first PUCCH demodulation information sent by the at least one second base station by using the Ethernet link
  • the PUCCH demodulates the information to obtain scheduling information, and after receiving the uplink data again, performs uplink scheduling according to the scheduling information.
  • the core network device is configured to send downlink data to the first base station
  • the first base station is configured to receive the downlink data sent by the core network device, perform downlink scheduling according to the scheduling information, and send the downlink data to the at least one by using the Ethernet link.
  • a second base station and sending the downlink data to the terminal by using the air interface;
  • the at least one second base station is configured to receive the downlink data sent by the first base station by using the Ethernet link, and send the downlink data to the terminal by using the air interface;
  • the terminal is configured to receive, by using the air interface, the downlink data sent by the first base station and the at least one second base station.
  • a method for data transmission based on a super cell including:
  • the first base station receives the uplink data sent by the terminal, and demodulates the uplink data to obtain the first physical uplink shared channel PUSCH demodulation data and the first hybrid automatic repeat request HARQ identification message;
  • the merged data is sent to the core network device.
  • the soft bit information of the next second base station is acquired, and the local soft bit information and the local After the soft bit information of the second base station is successfully merged, the merged data is sent to the core network device.
  • a method for data transmission based on a super cell including:
  • the second base station receives the uplink data sent by the terminal, and demodulates the uplink data to obtain the second physical uplink shared channel PUSCH demodulated data and the second hybrid automatic repeat request HARQ identification message;
  • the first base station determines that the first HARQ identification information obtained according to the demodulation of the uplink data is marked as failed and the second HARQ identification information is marked as successful, the first cached by the Ethernet link The two PUSCH demodulation data is transmitted to the first base station.
  • An embodiment of the present invention provides a data transmission system based on a super cell, where the system includes: a core network device, a first base station connected to the core network device, and the first base station through the Ethernet link Connected at least one second base station and a terminal respectively connected to the first base station and the at least one second base station, wherein the core network device is configured to perform data interaction with the first base station; a base station configured to perform data interaction with the at least one second base station and the core network device over the Ethernet link, and perform data interaction with the terminal through an air interface; the at least one second base station, Arranging to perform data interaction with the first base station through the Ethernet link, and performing data interaction with the terminal through the air interface; the terminal is configured to pass the air interface with the first base station Performing data interaction with the at least one second base station, such that since the first base station and the second base station are connected through an Ethernet link, there is no need to deploy High fiber link, and the base station does not support the optical interface, super cell can also be deployed to resolve the high infrastructure costs and
  • FIG. 1 is a schematic structural diagram of a data transmission system based on a super cell according to an embodiment of the present invention
  • FIG. 2 is a timing diagram of data transmission according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of a data transmission method based on a super cell according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart diagram of another method for data transmission based on a super cell according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another method for data transmission based on a super cell according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a data transmission system based on a super cell according to an embodiment of the present invention. As shown in FIG. 1, the system includes:
  • a core network device 101 a core network device 101, a first base station 102 connected to the core network device 101, and at least one second base station 104 connected to the first base station 102 via the Ethernet link 103, and the first base station 102 and the at least a terminal 105 connected to the second base station 104, wherein
  • the core network device 101 is configured to perform data interaction with the first base station 102;
  • the first base station 102 is configured to perform data interaction with the at least one second base station 104 and the core network device 101 through the Ethernet link 103, and perform data interaction with the terminal 105 through an air interface;
  • the at least one second base station 104 is configured to perform data interaction with the first base station 102 through the Ethernet link 103, and perform data interaction with the terminal 105 through the air interface;
  • the terminal 105 is configured to perform data interaction with the first base station 102 and the at least one second base station 104 over the air interface.
  • the first base station and the second base station are connected through an Ethernet link, there is no need to deploy a high-cost fiber link, and a base station can be deployed for a base station that does not support the fiber interface, thereby solving the high cost of the network architecture.
  • the problem of inflexible architecture can balance hotspots and continuous coverage to improve the user experience.
  • the system can be degraded into independent deployment of multiple base stations when no super cell is configured.
  • the terminal 105 is configured to send uplink data to the first base station 102 and the at least one second base station 104 over an air interface;
  • the first base station 102 is configured to demodulate the uplink data to obtain a first PUSCH (Physical Uplink Shared Channel) demodulated data and a first HARQ (Hybrid Automatic Repeat Request) identifier message. ;
  • PUSCH Physical Uplink Shared Channel
  • HARQ Hybrid Automatic Repeat Request
  • the at least one second base station 104 is configured to demodulate the uplink data, obtain second PUSCH demodulated data and second HARQ identification information, and send the second HARQ identification information to the first base station 102, and cache the second PUSCH demodulation data;
  • the first base station 101 is further configured to acquire the second PUSCH demodulated data buffered by the at least one second base station 104 when the first HARQ identification information is marked as failed and the received second HARQ identification information is marked as successful. And transmitting the second PUSCH demodulation data to the core network device.
  • the first base station and the second base station respectively demodulate the uplink data at the physical layer, and the first base station combines the first PUSCH demodulated data and the second PUSCH demodulated data in a MAC (Media Access Control) layer.
  • the first base station obtains the correct second PUSCH solution after determining that the locally demodulated first PUSCH demodulated data is erroneous and the second PUSCH demodulated data demodulated by the at least one second base station is correct.
  • the second PUSCH demodulated data buffered by the second base station corresponding to the data is used to avoid waste of all the second PUSCH demodulated data sent to the first base station, thereby saving bandwidth of the Ethernet and reducing delay.
  • the first base station 102 is further configured to: when the first HARQ identification information is marked as successful, send the first PUSCH demodulated data to the core network device, so that when the first base station is in If the locally demodulated first PUSCH data is correct, the first PUSCH demodulated data is directly sent to the core network device, and the second PUSCH demodulated data demodulated by the second base station is not required to be acquired, thereby saving Ethernet bandwidth and reduced latency.
  • the first base station 102 is configured to obtain the at least when the first HARQ identification information is marked as failed and the received second HARQ identification information sent by all the second base stations is marked as failed.
  • the soft bit information of a second base station, and after the local soft bit information is successfully combined with the soft bit information of the at least one second base station, the combined data is sent to the core network device.
  • the first base station 102 is further configured to: after combining the local soft bit information with the soft bit information of the at least one second base station, acquire soft bit information of the next second base station, and After the local soft bit information is successfully combined with the soft bit information of the next second base station, the combined data is sent to the core network device.
  • the first base station acquires the soft bit information of the second base station at the physical layer, and combines the soft bit information of the local physical layer with the soft bit information acquired by the second base station, and sends the combined data to the core network device.
  • the physical layer can perform the merging of the soft bit information.
  • the first base station 102 is further configured to: after demodulating the uplink data, obtain a first PUCCH (Physical Uplink Control Channel) demodulation information;
  • a first PUCCH Physical Uplink Control Channel
  • the at least one second base station 104 is further configured to: after demodulating the uplink data, obtain second PUCCH demodulation information, and send the second PUCCH demodulation information to the first base station 102 through the Ethernet link 103. ;
  • the first base station 102 is further configured to combine the first PUCCH demodulation information and the second PUCCH demodulation after receiving the first PUCCH demodulation information sent by the at least one second base station by using the Ethernet link 103.
  • the information obtains scheduling information, and after receiving the uplink data again, performs uplink scheduling according to the scheduling information.
  • the core network device 101 is configured to send downlink data to the first base station 102.
  • the first base station 102 is configured to receive the downlink data sent by the core network device 101, perform downlink scheduling according to the scheduling information, and send the downlink data to the at least one second base station 104 through the Ethernet link 103. And transmitting the downlink data to the terminal 105 through the air interface;
  • the at least one second base station 104 is configured to receive the downlink data sent by the first base station 102 through the Ethernet link 103, and send the downlink data to the terminal 105 through the air interface;
  • the terminal 105 is configured to receive, by using the air interface, the downlink data sent by the first base station 102 and the at least one second base station 104.
  • the first base station After receiving the downlink data, the first base station performs uplink scheduling at the MAC layer, and sends the downlink data to the physical layer of the second base station by using an Ethernet link, where the first base station and the second base station are simultaneously at the physical layer. Send to the terminal.
  • FIG. 2 is a timing diagram of data transmission according to an embodiment of the present invention.
  • the first base station and the second base station simultaneously receive, And performing PUCCH demodulation processing and PUSCH demodulation processing, and the second base station transmits the PUCCH demodulation processing and the PUSCH demodulation processed data to the MAC layer of the first base station for processing through the channel 1;
  • the first base station After receiving the downlink data sent by the core network device, the channel 2 is transmitted to the physical layer of the second base station, and the first base station and the second base station simultaneously send the downlink data on the physical layer, where channel 1 and channel 2 are both Ethernet link channel.
  • FIG. 3 is a schematic flowchart of a data transmission method based on a super cell according to an embodiment of the present invention.
  • the execution entity of the embodiment is a first base station, and the process steps include:
  • the first base station receives uplink data sent by the terminal.
  • S303 Receive, by using an Ethernet link, second HARQ identification information sent by at least one second base station.
  • the primary base station when determining that the first HARQ identification information is marked as successful, the primary base station sends the local first PUSCH demodulated data to the core network device.
  • the second HARQ identification information and the second PUSCH demodulated data are obtained by demodulating the received uplink data by the at least one second base station.
  • the first base station and the second base station respectively demodulate the uplink data at the physical layer, and the first base station combines the first PUSCH demodulated data and the second PUSCH demodulated data at the MAC layer, so that the first base station is Determining that the locally demodulated first PUSCH demodulated data is erroneous and the second PUSCH demodulated data demodulated by the at least one second base station is correct, acquiring the second corresponding to the correct second PUSCH demodulated data Base station The stored second PUSCH demodulates the data, avoiding the waste of all the second PUSCH demodulated data to the first base station, thereby saving bandwidth of the Ethernet and reducing the delay.
  • the soft bit information of the at least one second base station is obtained. And after the local soft bit information is successfully combined with the soft bit information of the at least one second base station, the merged data is sent to the core network device.
  • the soft bit information of the next second base station is acquired, and the local soft bit information is After the soft bit information of a second base station is successfully merged, the combined data is sent to the core network device.
  • the first base station acquires the soft bit information of the second base station at the physical layer, and combines the soft bit information of the local physical layer with the soft bit information acquired by the second base station, and sends the combined data to the core network device.
  • the physical layer can perform the merging of the soft bit information.
  • the first base station after demodulating the uplink data, obtains first PUCCH demodulation information, and receives, by using an Ethernet link, a second PUCCH obtained by demodulating the uplink data by at least one second base station. Demodulating information, combining the first PUCCH demodulation information and the second PUCCH demodulation information to obtain scheduling information, and after receiving the uplink data again, performing uplink scheduling according to the scheduling information; the second base station receives the uplink information again. After the uplink data, uplink scheduling is performed according to the scheduling information.
  • FIG. 4 is a schematic flowchart of a data transmission method based on a super cell according to an embodiment of the present invention.
  • the execution entity of the embodiment is a second base station, and the process steps include:
  • the second base station receives uplink data sent by the terminal.
  • S402. Demodulate the uplink data to obtain second PUSCH demodulated data and a second HARQ identification message.
  • the second PUSCH demodulation data is buffered, and the second HARQ identification message is sent to the first base station by using an Ethernet link.
  • the second PUSCH that is buffered is solved by using the Ethernet link.
  • the tuning data is sent to the first base station.
  • the first base station and the second base station respectively demodulate the uplink data at the physical layer, and the first base station combines the first PUSCH demodulated data and the second PUSCH demodulated data at the MAC layer, so that the first base station is Determining that the locally demodulated first PUSCH demodulated data is erroneous and the second PUSCH demodulated data demodulated by the at least one second base station is correct, acquiring the second corresponding to the correct second PUSCH demodulated data The second PUSCH demodulated data buffered by the base station avoids waste of all the second PUSCH demodulated data to the first base station, thereby saving bandwidth of the Ethernet and reducing delay.
  • the MAC layer of the primary base station sends the second PUSCH demodulated data to the protocol stack above the RLC (Radio Link Control) layer for processing. After the processing, the data is sent to the S1 interface and sent to the core through the S1 interface.
  • RLC Radio Link Control
  • FIG. 5 is a schematic flowchart of a data transmission method based on a super cell according to an embodiment of the present invention.
  • a first base station is recorded as a primary base station, and a second base station is used.
  • the present invention is not limited to the secondary base station.
  • the primary base station is connected to the at least one secondary base station by using an Ethernet link.
  • the process steps include:
  • the terminal sends uplink data to the primary base station and the secondary base station.
  • the primary base station demodulates the uplink data according to the uplink scheduling to obtain first PUCCH demodulation information, first PUSCH demodulation data, and first HARQ identification information.
  • the primary base station demodulates the uplink data according to the uplink scheduling result at the physical layer.
  • the secondary base station demodulates the uplink data to obtain second PUCCH demodulation information and second PUSCH demodulation data and second HARQ identification information.
  • the first PUCCH demodulation information and the second PUCCH demodulation information include a confidence level.
  • the secondary base station demodulates the uplink data according to the uplink scheduling result at the physical layer.
  • the secondary base station buffers the second PUSCH demodulated data, and sends the second PUCCH demodulation information and the second HARQ identification information to the primary base station by using an Ethernet link.
  • the primary base station combines the first PUCCH demodulation information and the second PUCCH demodulation information to obtain scheduling information.
  • the primary base station After receiving the uplink data again, the primary base station merges all PUCCH data, and the subsequent primary base station performs uplink scheduling according to the scheduling information.
  • the primary base station performs uplink scheduling at the MAC layer according to the scheduling information, and sends the uplink scheduling result to the physical layer of the local physical layer and the secondary base station, so that when the uplink data transmission is performed subsequently, the primary base station and the primary base station The secondary base station demodulates the uplink data according to the uplink scheduling result at the physical layer.
  • the primary base station acquires the second PUSCH demodulated data of the secondary base station.
  • the primary base station sends the second PUSCH demodulated data to the core network device.
  • the MAC layer of the primary base station sends the second PUSCH demodulated data to the protocol stack above the RLC (Radio Link Control) layer for processing. After the processing, the data is sent to the S1 interface and sent through the S1 interface. To the core network device.
  • RLC Radio Link Control
  • the primary base station when determining that the first HARQ identification information is marked as successful, the primary base station sends the local first PUSCH demodulated data to the core network device.
  • the primary base station acquires soft bit information of the at least one secondary station, and the local soft bits After the information is successfully combined with the soft bit information of the at least one secondary base station, the merged data is sent to the core network device.
  • the merged data is sent to the core network device.
  • steps S501 to S507 are processes for the terminal to send uplink data to the core network device
  • steps S507 to S511 are processes for the terminal to send downlink data to the core network device.
  • the primary base station receives downlink data of the core network device through the S1 interface.
  • the primary base station performs downlink scheduling according to the scheduling information, and sends the downlink data to the secondary base station by using an Ethernet link.
  • the primary base station performs downlink scheduling at the MAC layer, and sends the downlink scheduling result to the physical layer of the physical layer and the secondary base station.
  • the primary base station and the secondary base station send downlink data according to the downlink scheduling result, and the primary base station performs uplink at the MAC layer.
  • the scheduling is performed, and the uplink scheduling result is sent to the physical layer of the local physical layer and the secondary base station.
  • the primary base station and the secondary base station demodulate the uplink data according to the uplink scheduling result at the physical layer.
  • the primary base station sends the downlink data to the terminal.
  • the secondary base station sends the downlink data to the terminal.
  • the primary base station and the secondary base station simultaneously send downlink data to the terminal.
  • the primary base station and the secondary base station are connected through an Ethernet link, so that a high-cost optical fiber link does not need to be deployed, and a super cell can be deployed for a base station that does not support the optical fiber interface, thereby solving the high cost of the network architecture.
  • the problem of inflexible architecture can balance hotspots and continuous coverage to improve user experience.
  • it avoids waste of all second PUSCH demodulated data sent to the primary base station for uplink data transmission, thereby saving Ethernet bandwidth and Reduce the delay.
  • the network side entity is interconnected through an Ethernet switch, and the terminal is a standard LTE device;
  • the primary base station that performs processing of the entire protocol layer of LTE.
  • the other are secondary base stations, which are only processed by the physical layer and the radio protocol layer;
  • the control plane the primary base station performs the master control, broadcasts to each secondary base station through the Ethernet, and the secondary base station responds to the execution and feedback;
  • the core network device On the data side, the core network device is only linked to the primary base station S1.
  • the MAC-physical layer information is transmitted between the primary base station and each secondary base station via Ethernet.
  • the downlink uses Ethernet broadcast, and the uplink adopts selective unicast;
  • the downlink is sent by all base stations together.
  • the uplink is received and demodulated by all base stations, and is preferably performed by the primary base station;
  • the system is not configured as a super cell network, it can be degraded to multiple base stations for independent deployment.
  • the technical solution provided by the embodiment of the present invention can be applied to the data transmission process of the super cell. Since the first base station and the second base station are connected through the Ethernet link, there is no need to deploy a high-cost fiber link, and the optical fiber is not supported.
  • the base station of the interface can also deploy a super cell, which solves the problem of high cost of the network architecture and inflexibility of the architecture, and can balance hotspots and continuous coverage to improve the user experience.

Abstract

本发明公开了一种基于超级小区的数据传输方法和系统,该系统包括:核心网设备,与该核心网设备连接的第一基站,与该第一基站通过该以太网链路连接的至少一个第二基站以及分别与该第一基站和该至少一个第二基站连接的终端,其中,第一基站和第二基站通过以太网链路进行数据交互,通过本发明,以至少解决现有技术中网络架构成本高且架构不灵活的问题。

Description

基于超级小区的数据传输方法和系统 技术领域
本发明涉及通信领域,具体而言,涉及一种基于超级小区的数据传输方法和系统。
背景技术
目前,超级小区技术在高铁、空中航道中有广泛的应用,超级小区是由多个CP(Cell Portion,部分小区)组成。这些CP在逻辑上还是属于同一个小区,共享共同的小区资源,例如小区ID(Identity,标识号),主辅同步信号,调频序列,和CRS(Common Reference Signal,公共参考信号)/DMRS(Demodulation Reference Signal)/SRS(Sounding Reference Signal,信道探测参考信号)序列等。同一超级小区中不同的CP之间不存在移动性的问题,这就将移动性问题演变成一个小区不同的CP之间的检测和调度问题。
该技术能够由多个独立的小区,合并成逻辑上的大小区,减少终端干扰及频繁切换。特别是针对大量基站组成的超密集网络(Ultra Density Network)来说,超级小区对提升网络KPI(Key Performance Indicator,关键业绩指标)有很大的帮助。
现在超级小区一般采用BBU(Building Base band Unit,基带处理单元)+RRU(Radio Remote Unit,射频拉远单元)组网的网络架构,在这种模式下,原有的多个小区的数据进行联合处理,共同处理发送原来的多个小区的RRU或者分布式天线的下行数据,和来自多个RRU或分布式天线组过来的上行数据,以达到提高系统性能的目的。
但是,采用上述网络架构,由于BBU和RRU之间通过光纤链路连接,对于针对连续覆盖设计的LTE(Long Term Evolution,长期演进)网络来说,例如微蜂窝超密集覆盖(站间距为50~100m)、城市楼宇阴影补盲、楼层垂直覆盖和大面积连续覆盖等,成本过于高昂,另外,在实际的组网中,当前的方案也不能够灵活兼顾连续覆盖和热点覆盖,不利于网络自优化,影响KPI。
发明内容
本发明实施例提供了一种基于超级小区的数据传输方法和系统,以至少解决现有技术中网络架构成本高且架构不灵活的问题。
根据本发明的一个实施例,提供了一种基于超级小区的数据传输系统,包括:核心网设备,与所述核心网设备连接的第一基站,与所述第一基站通过所述以太网链路连接的至少一个第二基站以及分别与所述第一基站和所述至少一个第二基站连接的终端,其中,
所述核心网设备,设置为与所述第一基站进行数据交互;
所述第一基站,设置为通过所述以太网链路与所述至少一个第二基站和所述核心网设备进行数据交互,并与所述终端通过空中接口进行数据交互;
所述至少一个第二基站,设置为通过所述以太网链路与所述第一基站进行数据交互,并与所述终端通过所述空中接口进行数据交互;
所述终端,设置为通过所述空中接口与所述第一基站和所述至少一个第二基站进行数据交互。
在本发明实施例中,所述终端,设置为通过空中接口向所述第一基站和所述至少一个第二基站发送上行数据;
所述第一基站,设置为解调所述上行数据,得到第一物理上行共享信道PUSCH解调数据以及第一混合自动重传请求(Hybrid Automatic Repeat Request,简称为HARQ)标识消息;
所述至少一个第二基站,设置为解调所述上行数据,得到第二PUSCH解调数据以及第二HARQ标识信息,并向所述第一基站发送所述第二HARQ标识信息,并缓存所述第二PUSCH解调数据;
所述第一基站还设置为,在所述第一HARQ标识信息标示为失败且接收的所述第二HARQ标识信息标示为成功时,获取所述至少一个第二基站缓存的所述第二PUSCH解调数据,并将所述第二PUSCH解调数据发送至所述核心网设备。
在本发明实施例中,所述第一基站还设置为,在所述第一HARQ标识信息标示为成功时,将所述第一PUSCH解调数据发送至所述核心网设备。
在本发明实施例中,所述第一基站设置为,在所述第一HARQ标识信息标示为失败且接收到的所有第二基站发送的所述第二HARQ标识信息都标示为失败时,获取所述至少一个第二基站的软比特信息,并在本地的软比特信息与所述至少一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
在本发明实施例中,所述第一基站还设置为,在将本地的软比特信息与所述至少一个第二基站的软比特信息合并失败后,获取下一个第二基站的软比特信息,并在本地的软比特信息与所述下一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
在本发明实施例中,所述第一基站还设置为,在解调所述上行数据后,得到第一物理上行链路控制信道(Physical Uplink Control Channel,简称为PUCCH)解调信息;
所述至少一个第二基站还设置为,在解调所述上行数据后,得到第二PUCCH解调信息,并将所述第二PUCCH解调信息通过所述以太网链路发送至所述第一基站;
所述第一基站还设置为,在通过所述以太网链路接收到所述至少一个第二基站发送的第一PUCCH解调信息后,合并所述第一PUCCH解调信息和所述第二PUCCH解调信息得到调度信息,并在再次接收到所述上行数据后,根据所述调度信息进行上行调度。
在本发明实施例中,所述核心网设备,设置为向所述第一基站发送下行数据;
所述第一基站,设置为接收所述核心网设备发送的所述下行数据,并根据所述调度信息进行下行调度,并将所述下行数据通过所述以太网链路发送至所述至少一个第二基站,并将所述下行数据通过所述空中接口发送至所述终端;
所述至少一个第二基站,设置为通过所述以太网链路接收所述第一基站发送的所述下行数据,并将所述下行数据通过所述空中接口发送至所述终端;
所述终端,设置为通过所述空中接口接收所述第一基站和所述至少一个第二基站发送的所述下行数据。
根据本发明的另一个实施例,提供了一种基于超级小区的数据传输方法,包括:
第一基站接收终端发送的上行数据,并解调所述上行数据得到第一物理上行共享信道PUSCH解调数据以及第一混合自动重传请求HARQ标识消息;
通过以太网链路接收至少一个第二基站发送的第二HARQ标识信息;
在所述第一HARQ标识信息标示为失败且所述第二HARQ标识信息标示为成功时,通过所述以太网链路获取所述至少一个第二基站缓存的所述第二PUSCH解调数据,并将所述第二PUSCH解调数据发送至所述核心网设备,其中,所述第二HARQ 标识信息和所述第二PUSCH解调数据是所述至少一个第二基站解调接收的所述上行数据得到的。
在本发明实施例中,在所述第一HARQ标识信息标示为失败且接收到的所有第二基站发送的所述第二HARQ标识信息都标示为失败时,获取所述至少一个第二基站的软比特信息,并在本地的软比特信息与所述至少一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
在本发明实施例中,在将本地的软比特信息与所述至少一个第二基站的软比特信息合并失败后,获取下一个第二基站的软比特信息,并在本地的软比特信息与所述下一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
根据本发明的另一个实施例,提供了一种基于超级小区的数据传输方法,包括:
第二基站接收终端发送的上行数据,并解调所述上行数据得到第二物理上行共享信道PUSCH解调数据以及第二混合自动重传请求HARQ标识消息;
缓存所述第二PUSCH解调数据,并将所述第二HARQ标识消息通过以太网链路发送至第一基站;
在所述第一基站确定根据解调所述上行数据得到的第一HARQ标识信息标示为失败且所述第二HARQ标识信息标示为成功时,通过所述以太网链路将缓存的所述第二PUSCH解调数据发送至第一基站。
通过本发明实施例,提供一种基于超级小区的数据传输系统,该系统包括:核心网设备,与所述核心网设备连接的第一基站,与所述第一基站通过所述以太网链路连接的至少一个第二基站以及分别与所述第一基站和所述至少一个第二基站连接的终端,其中,所述核心网设备,设置为与所述第一基站进行数据交互;所述第一基站,设置为通过所述以太网链路与所述至少一个第二基站和所述核心网设备进行数据交互,并与所述终端通过空中接口进行数据交互;所述至少一个第二基站,设置为通过所述以太网链路与所述第一基站进行数据交互,并与所述终端通过所述空中接口进行数据交互;所述终端,设置为通过所述空中接口与所述第一基站和所述至少一个第二基站进行数据交互,这样,由于第一基站和第二基站通过以太网链路连接,从而不需要部署成本高的光纤链路,并且对于不支持光纤接口的基站,也能部署超级小区,解决了网络架构成本高且架构不灵活的问题,能够兼顾热点以及连续覆盖,提升用户体验。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种基于超级小区的数据传输系统的结构示意图;
图2是根据本发明实施例的一种数据传输的时序示意图;
图3是根据本发明实施例的一种基于超级小区的数据传输方法的流程示意图;
图4是根据本发明实施例的另一种基于超级小区的数据传输方法的流程示意图;
图5是根据本发明实施例的另一种基于超级小区的数据传输方法的流程示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种基于超级小区的数据传输系统,图1是根据本发明实施例的基于超级小区的数据传输系统的结构示意图,如图1所示,该系统包括:
核心网设备101,与该核心网设备101连接的第一基站102,与该第一基站102通过该以太网链路103连接的至少一个第二基站104以及分别与该第一基站102和该至少一个第二基站104连接的终端105,其中,
该核心网设备101,设置为与该第一基站102进行数据交互;
该第一基站102,设置为通过该以太网链路103与该至少一个第二基站104和该核心网设备101进行数据交互,并与该终端105通过空中接口进行数据交互;
该至少一个第二基站104,设置为通过该以太网链路103与该第一基站102进行数据交互,并与该终端105通过该空中接口进行数据交互;
该终端105,设置为通过该空中接口与该第一基站102和该至少一个第二基站104进行数据交互。
这样,由于第一基站和第二基站通过以太网链路连接,从而不需要部署成本高的光纤链路,并且对于不支持光纤接口的基站,也能部署超级小区,解决了网络架构成本高且架构不灵活的问题,能够兼顾热点以及连续覆盖,提升用户体验,另外,本系统在不配置超级小区时,则可退化为多个基站的独立部署。
以下分别通过下行数据传输和上行数据传输对该系统进行说明,对于上行数据传输,在本发明实施例中,
该终端105,设置为通过空中接口向该第一基站102和该至少一个第二基站104发送上行数据;
该第一基站102,设置为解调该上行数据,得到第一PUSCH(Physical Uplink Shared Channel,物理上行共享信道)解调数据以及第一HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)标识消息;
该至少一个第二基站104,设置为解调该上行数据,得到第二PUSCH解调数据以及第二HARQ标识信息,并向该第一基站102发送该第二HARQ标识信息,并缓存该第二PUSCH解调数据;
该第一基站101还设置为,在该第一HARQ标识信息标示为失败且接收的该第二HARQ标识信息标示为成功时,获取该至少一个第二基站104缓存的该第二PUSCH解调数据,并将该第二PUSCH解调数据发送至该核心网设备。
其中,第一基站和第二基站分别在物理层对上行数据进行解调,第一基站在MAC(Media Access Control,媒体介入控制)层合并第一PUSCH解调数据和第二PUSCH解调数据,这样,第一基站在确定本地解调出的第一PUSCH解调数据是错误的且至少一个第二基站解调出的第二PUSCH解调数据是正确的,则获取该正确的第二PUSCH解调数据对应的第二基站缓存的第二PUSCH解调数据,避免了将全部第二PUSCH解调数据都发送至第一基站造成资源浪费,从而节省了以太网的带宽并减少时延。
在本发明实施例中,该第一基站102还设置为,在该第一HARQ标识信息标示为成功时,将该第一PUSCH解调数据发送至该核心网设备,这样,当第一基站在本地解调出的第一PUSCH数据是正确的,则直接将该第一PUSCH解调数据发送至该核心网设备,不需要再获取第二基站解调出的第二PUSCH解调数据,从而节省了以太网的带宽并减少时延。
在本发明实施例中,该第一基站102设置为,在该第一HARQ标识信息标示为失败且接收到的所有第二基站发送的该第二HARQ标识信息都标示为失败时,获取该至少一个第二基站的软比特信息,并在本地的软比特信息与该至少一个第二基站的软比特信息合并成功后,将合并后的数据发送至该核心网设备。
在本发明实施例中,该第一基站102还设置为,在将本地的软比特信息与该至少一个第二基站的软比特信息合并失败后,获取下一个第二基站的软比特信息,并在本地的软比特信息与该下一个第二基站的软比特信息合并成功后,将合并后的数据发送至该核心网设备。
其中,第一基站在物理层获取第二基站的软比特信息,并将本地物理层的软比特信息与从第二基站获取的软比特信息合并,并将合并得到的数据发送至核心网设备,这样,当无法在MAC层进行PUSCH解调数据的合并时,可以再物理层进行软比特信息的合并。
在本发明实施例中,该第一基站102还设置为,在解调该上行数据后,得到第一PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)解调信息;
该至少一个第二基站104还设置为,在解调该上行数据后,得到第二PUCCH解调信息,并将该第二PUCCH解调信息通过该以太网链路103发送至该第一基站102;
该第一基站102还设置为,在通过该以太网链路103收到该至少一个第二基站发送的第一PUCCH解调信息后,合并该第一PUCCH解调信息和该第二PUCCH解调信息得到调度信息,并在再次接收到该上行数据后,根据该调度信息进行上行调度。
对于下行数据传输,在本发明实施例中,
该核心网设备101,设置为向该第一基站102送下行数据;
该第一基站102,设置为接收该核心网设备101发送的该下行数据,并根据该调度信息进行下行调度,并将该下行数据通过该以太网链路103发送至该至少一个第二基站104,并将该下行数据通过该空中接口发送至该终端105;
该至少一个第二基站104,设置为通过该以太网链路103接收该第一基站102发送的该下行数据,并将该下行数据通过该空中接口发送至该终端105;
该终端105,设置为通过该空中接口接收该第一基站102和该至少一个第二基站104发送的该下行数据。
其中,第一基站在接收到下行数据后,在MAC层进行上行调度,并通过以太网链路将该下行数据发送至第二基站的物理层,该第一基站和第二基站同时在物理层发送至终端。
参照图2进行说明,如图2所示,图2为本发明实施例的数据传输的时序示意图,对于上行数据的传输,终端在发送上行数据后,第一基站和第二基站同时进行接收,并进行PUCCH解调处理以及PUSCH解调处理,第二基站通过通道1将PUCCH解调处理以及PUSCH解调处理后的数据传输至第一基站的MAC层进行处理;对于下行数据传输,第一基站在接收到核心网设备发送的下行数据后,通过通道2传输至第二基站的物理层,第一基站和第二基站同时在物理层上发送该下行数据,其中,通道1和通道2均为以太网链路通道。
图3是根据本发明实施例的基于超级小区的数据传输方法的流程示意图,如图3所示,该实施例的执行主体为第一基站,该流程步骤包括:
S301,第一基站接收终端发送的上行数据;
S302,解调该上行数据得到第一物理上行共享信道PUSCH解调数据以及第一混合自动重传请求HARQ标识消息;
S303,通过以太网链路接收至少一个第二基站发送的第二HARQ标识信息;
S304,在该第一HARQ标识信息标示为失败且该第二HARQ标识信息标示为成功时,通过该以太网链路获取该至少一个第二基站缓存的该第二PUSCH解调数据;
需要说明的是,在确定第一HARQ标识信息标示为成功时,主基站将本地的第一PUSCH解调数据发送至核心网设备。
S305,将该第二PUSCH解调数据发送至该核心网设备;
其中,该第二HARQ标识信息和该第二PUSCH解调数据是该至少一个第二基站解调接收的该上行数据得到的。
需要说明的是,第一基站和第二基站分别在物理层对上行数据进行解调,第一基站在MAC层合并第一PUSCH解调数据和第二PUSCH解调数据,这样,第一基站在确定本地解调出的第一PUSCH解调数据是错误的且至少一个第二基站解调出的第二PUSCH解调数据是正确的,则获取该正确的第二PUSCH解调数据对应的第二基站缓 存的第二PUSCH解调数据,避免了将全部第二PUSCH解调数据都发送至第一基站造成资源浪费,从而节省了以太网的带宽并减少时延。
在本发明实施例中,在该第一HARQ标识信息标示为失败且接收到的所有第二基站发送的该第二HARQ标识信息都标示为失败时,获取该至少一个第二基站的软比特信息,并在本地的软比特信息与该至少一个第二基站的软比特信息合并成功后,将合并后的数据发送至该核心网设备。
在本发明实施例中,在将本地的软比特信息与该至少一个第二基站的软比特信息合并失败后,获取下一个第二基站的软比特信息,并在本地的软比特信息与该下一个第二基站的软比特信息合并成功后,将合并后的数据发送至该核心网设备。
其中,第一基站在物理层获取第二基站的软比特信息,并将本地物理层的软比特信息与从第二基站获取的软比特信息合并,并将合并得到的数据发送至核心网设备,这样,当无法在MAC层进行PUSCH解调数据的合并时,可以再物理层进行软比特信息的合并。
在本发明实施例中,该第一基站在解调该上行数据后,得到第一PUCCH解调信息,并通过以太网链路接收至少一个第二基站解调该上行数据后得到的第二PUCCH解调信息,并合并该第一PUCCH解调信息和该第二PUCCH解调信息得到调度信息,并在再次接收到该上行数据后,根据该调度信息进行上行调度;第二基站在再次接收到该上行数据后,根据该调度信息进行上行调度。
图4是根据本发明实施例的基于超级小区的数据传输方法的流程示意图,如图4所示,该实施例的执行主体为第二基站,该流程步骤包括:
S401,第二基站接收终端发送的上行数据;
S402,解调该上行数据得到第二PUSCH解调数据以及第二HARQ标识消息;
S403,缓存该第二PUSCH解调数据,并将该第二HARQ标识消息通过以太网链路发送至第一基站;
S404,在该第一基站确定根据解调该上行数据得到的第一HARQ标识信息标示为失败且该第二HARQ标识信息标示为成功时,通过该以太网链路将缓存的该第二PUSCH解调数据发送至第一基站。
需要说明的是,第一基站和第二基站分别在物理层对上行数据进行解调,第一基站在MAC层合并第一PUSCH解调数据和第二PUSCH解调数据,这样,第一基站在确定本地解调出的第一PUSCH解调数据是错误的且至少一个第二基站解调出的第二PUSCH解调数据是正确的,则获取该正确的第二PUSCH解调数据对应的第二基站缓存的第二PUSCH解调数据,避免了将全部第二PUSCH解调数据都发送至第一基站造成资源浪费,从而节省了以太网的带宽并减少时延。
主基站的MAC层将第二PUSCH解调数据发送给RLC(Radio Link Control,无线链路控制)层以上的协议栈进行处理,处理完后将数据发送至S1口,并通过S1口发送至核心网设备。
图5是根据本发明实施例的基于超级小区的数据传输方法的流程示意图,如图5所示,为了方便描述,在本发明实施例中,将第一基站记为主基站,将第二基站记为辅基站,本发明对此不作限定,该主基站通过以太网链路连接至少一个辅基站,该流程步骤包括:
S501,终端向主基站和辅基站发送上行数据。
S502,主基站根据上行调度解调该上行数据得到第一PUCCH解调信息和第一PUSCH解调数据以及第一HARQ标识信息。
其中,主基站在物理层根据上行调度结果解调该上行数据。
S503,辅基站解调该上行数据得到第二PUCCH解调信息和第二PUSCH解调数据以及第二HARQ标识信息。
其中,该第一PUCCH解调信息和第二PUCCH解调信息包括置信度。
另外,辅基站在物理层根据上行调度结果解调该上行数据。
S504,辅基站缓存该第二PUSCH解调数据,并通过以太网链路将该第二PUCCH解调信息和第二HARQ标识信息发送至主基站。
S505,主基站合并该第一PUCCH解调信息和该第二PUCCH解调信息得到调度信息。
其中,在再次接收到该上行数据后,主基站对所有的PUCCH数据进行合并,后续主基站将根据该调度信息进行上行调度。
需要说明的是,该主基站根据该调度信息在MAC层进行上行调度,并将上行调度结果发送至本地的物理层和辅基站的物理层,这样,当后续进行上行数据传输时,主基站和辅基站在物理层根据该上行调度结果解调上行数据。
S506,在确定第一HARQ标识信息标示为失败且第二HARQ标识信息标示为成功时,主基站获取该辅基站的第二PUSCH解调数据。
S507,主基站将该第二PUSCH解调数据发送至核心网设备。
其中,主基站的MAC层将第二PUSCH解调数据发送给RLC(Radio Link Control,无线链路控制)层以上的协议栈进行处理,处理完后将数据发送至S1口,并通过S1口发送至核心网设备。
需要说明的是,在确定第一HARQ标识信息标示为成功时,主基站将本地的第一PUSCH解调数据发送至核心网设备。
在该第一HARQ标识信息标示为失败且接收到的所有辅基站发送的该第二HARQ标识信息都标示为失败时,主基站获取该至少一个辅站的软比特信息,并在本地的软比特信息与该至少一个辅基站的软比特信息合并成功后,将合并后的数据发送至该核心网设备。
在将本地的软比特信息与该至少一个第二基站的软比特信息合并失败后,获取下一个辅基站的软比特信息,并在本地的软比特信息与该下一个辅基站的软比特信息合并成功后,将合并后的数据发送至该核心网设备。
需要说明的是,步骤S501至步骤S507为终端向核心网设备发送上行数据的流程,步骤S507至步骤S511为终端向核心网设备发送下行数据的流程。
S508,主基站通过S1口接收核心网设备的下行数据。
S509,主基站根据调度信息进行下行调度,并将该下行数据通过以太网链路发送至辅基站。
其中,主基站在MAC层进行下行调度,并将下行调度结果发送至物理层和辅基站的物理层,主基站和辅基站根据该下行调度结果发送下行数据,另外,主基站在MAC层进行上行调度,并将上行调度结果发送至本地的物理层和辅基站的物理层,这样,当进行上行数据传输时,主基站和辅基站在物理层根据该上行调度结果解调上行数据。
S510,主基站将该下行数据发送至终端。
S511,辅基站将该下行数据发送至终端。
需要说明的是,主基站和辅基站同时将下行数据发送至终端。
采用上述实施例,主基站和辅基站通过以太网链路连接,从而不需要部署成本高的光纤链路,并且对于不支持光纤接口的基站,也能部署超级小区,解决了网络架构成本高且架构不灵活的问题,能够兼顾热点以及连续覆盖,提升用户体验,另外,对于上行数据传输避免了将全部第二PUSCH解调数据都发送至主基站造成资源浪费,从而节省了以太网的带宽并减少时延。
需要说明的是,对于本方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
综上所述,本发明实施例描述的超级小区系统采用了以下技术方案实现:
由核心网设备、基站和千兆及以上速率以太网交换机和终端构成。网络侧实体通过以太网交换机互联,终端为标准LTE设备;
其中有一个主基站,进行LTE整个协议层的处理。其它的均为辅基站,仅进行物理层及射频协议层处理;
控制面,主基站进行主控,通过以太网广播至各个辅基站,辅基站响应执行及反馈;
数据面,核心网设备仅和主基站S1建链。主基站和各个辅基站之间通过以太网发送MAC-物理层信息。下行采用以太网广播,上行采用选择单播;
空口方面,下行由所有基站一起发送。上行由所有基站进行接收解调,由主基站执行优选;
本系统若不配置为超级小区组网,可以退化为多个基站独立部署。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供的技术方案可以应用于超级小区的数据传输过程中,由于第一基站和第二基站通过以太网链路连接,从而不需要部署成本高的光纤链路,并且对于不支持光纤接口的基站,也能部署超级小区,解决了网络架构成本高且架构不灵活的问题,能够兼顾热点以及连续覆盖,提升用户体验。

Claims (11)

  1. 一种基于超级小区的数据传输系统,包括:核心网设备,与所述核心网设备连接的第一基站,与所述第一基站通过以太网链路连接的至少一个第二基站以及分别与所述第一基站和所述至少一个第二基站连接的终端,其中,
    所述核心网设备,设置为与所述第一基站进行数据交互;
    所述第一基站,设置为通过所述以太网链路与所述至少一个第二基站和所述核心网设备进行数据交互,并与所述终端通过空中接口进行数据交互;
    所述至少一个第二基站,设置为通过所述以太网链路与所述第一基站进行数据交互,并与所述终端通过所述空中接口进行数据交互;
    所述终端,设置为通过所述空中接口与所述第一基站和所述至少一个第二基站进行数据交互。
  2. 根据权利要求1所述的系统,其中,所述终端,设置为通过空中接口向所述第一基站和所述至少一个第二基站发送上行数据;
    所述第一基站,设置为解调所述上行数据,得到第一物理上行共享信道PUSCH解调数据以及第一混合自动重传请求HARQ标识消息;
    所述至少一个第二基站,设置为解调所述上行数据,得到第二PUSCH解调数据以及第二HARQ标识信息,并向所述第一基站发送所述第二HARQ标识信息,并缓存所述第二PUSCH解调数据;
    所述第一基站还设置为,在所述第一HARQ标识信息标示为失败且接收的所述第二HARQ标识信息标示为成功时,获取所述至少一个第二基站缓存的所述第二PUSCH解调数据,并将所述第二PUSCH解调数据发送至所述核心网设备。
  3. 根据权利要求2所述的系统,其中,所述第一基站还设置为,在所述第一HARQ标识信息标示为成功时,将所述第一PUSCH解调数据发送至所述核心网设备。
  4. 根据权利要求3所述的系统,其中,所述第一基站设置为,在所述第一HARQ标识信息标示为失败且接收到的所有第二基站发送的所述第二HARQ标识信息都标示为失败时,获取所述至少一个第二基站的软比特信息,并在本地的软 比特信息与所述至少一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
  5. 根据权利要求4所述的系统,其中,所述第一基站还设置为,在将本地的软比特信息与所述至少一个第二基站的软比特信息合并失败后,获取下一个第二基站的软比特信息,并在本地的软比特信息与所述下一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
  6. 根据权利要求2至5任一项所述的系统,其中,所述第一基站还设置为,在解调所述上行数据后,得到第一物理上行链路控制信道PUCCH解调信息;
    所述至少一个第二基站还设置为,在解调所述上行数据后,得到第二PUCCH解调信息,并将所述第二PUCCH解调信息通过所述以太网链路发送至所述第一基站;
    所述第一基站还设置为,在通过所述以太网链路接收到所述至少一个第二基站发送的第一PUCCH解调信息后,合并所述第一PUCCH解调信息和所述第二PUCCH解调信息得到调度信息,并在再次接收到所述上行数据后,根据所述调度信息进行上行调度。
  7. 根据权利要求6所述的系统,其中,所述核心网设备,设置为向所述第一基站发送下行数据;
    所述第一基站,设置为接收所述核心网设备发送的所述下行数据,并根据所述调度信息进行下行调度,并将所述下行数据通过所述以太网链路发送至所述至少一个第二基站,并将所述下行数据通过所述空中接口发送至所述终端;
    所述至少一个第二基站,设置为通过所述以太网链路接收所述第一基站发送的所述下行数据,并将所述下行数据通过所述空中接口发送至所述终端;
    所述终端,设置为通过所述空中接口接收所述第一基站和所述至少一个第二基站发送的所述下行数据。
  8. 一种基于超级小区的数据传输方法,包括:
    第一基站接收终端发送的上行数据,并解调所述上行数据得到第一物理上行共享信道PUSCH解调数据以及第一混合自动重传请求HARQ标识消息;
    通过以太网链路接收至少一个第二基站发送的第二HARQ标识信息;
    在所述第一HARQ标识信息标示为失败且所述第二HARQ标识信息标示为成功时,通过所述以太网链路获取所述至少一个第二基站缓存的所述第二PUSCH解调数据,并将所述第二PUSCH解调数据发送至所述核心网设备,其中,所述第二HARQ标识信息和所述第二PUSCH解调数据是所述至少一个第二基站解调接收的所述上行数据得到的。
  9. 根据权利要求8所述的方法,其中,在所述第一HARQ标识信息标示为失败且接收到的所有第二基站发送的所述第二HARQ标识信息都标示为失败时,获取所述至少一个第二基站的软比特信息,并在本地的软比特信息与所述至少一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
  10. 根据权利要求9所述的方法,其中,在将本地的软比特信息与所述至少一个第二基站的软比特信息合并失败后,获取下一个第二基站的软比特信息,并在本地的软比特信息与所述下一个第二基站的软比特信息合并成功后,将合并后的数据发送至所述核心网设备。
  11. 一种基于超级小区的数据传输方法,包括:
    第二基站接收终端发送的上行数据,并解调所述上行数据得到第二物理上行共享信道PUSCH解调数据以及第二混合自动重传请求HARQ标识消息;
    缓存所述第二PUSCH解调数据,并将所述第二HARQ标识消息通过以太网链路发送至第一基站;
    在所述第一基站确定根据解调所述上行数据得到的第一HARQ标识信息标示为失败且所述第二HARQ标识信息标示为成功时,通过所述以太网链路将缓存的所述第二PUSCH解调数据发送至第一基站。
PCT/CN2015/084715 2014-12-15 2015-07-21 基于超级小区的数据传输方法和系统 WO2016095522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410778539.XA CN105763302B (zh) 2014-12-15 2014-12-15 基于超级小区的数据传输方法和系统
CN201410778539.X 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016095522A1 true WO2016095522A1 (zh) 2016-06-23

Family

ID=56125821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084715 WO2016095522A1 (zh) 2014-12-15 2015-07-21 基于超级小区的数据传输方法和系统

Country Status (2)

Country Link
CN (1) CN105763302B (zh)
WO (1) WO2016095522A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817196A (zh) * 2016-12-19 2017-06-09 上海华为技术有限公司 数据传输方法及基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067604A1 (en) * 2008-09-17 2010-03-18 Texas Instruments Incorporated Network multiple antenna transmission employing an x2 interface
CN102186265A (zh) * 2011-05-04 2011-09-14 京信通信系统(中国)有限公司 分布式基站及其组网方法
CN102742317A (zh) * 2011-11-25 2012-10-17 华为技术有限公司 通信系统、方法及设备
CN102916732A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种实现超级小区数据传输的方法、系统及控制站
CN104170303A (zh) * 2014-01-29 2014-11-26 华为技术有限公司 一种数据传输方法、设备和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166804A1 (en) * 2008-09-17 2010-03-24 Panasonic Corporation Deactivation of semi-persistent resource allocations in a mobile communication network
CN102208967B (zh) * 2010-03-31 2014-04-09 中兴通讯股份有限公司 一种lte终端非自适应重传功率控制的方法及装置
KR20130108931A (ko) * 2012-03-26 2013-10-07 주식회사 팬택 하이브리드 arq 정보 전송 방법 및 하이브리드 arq 정보 수신 방법
CN103391159B (zh) * 2012-05-11 2016-06-01 上海贝尔股份有限公司 处理tdd中harq冲突和pusch重传冲突的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100067604A1 (en) * 2008-09-17 2010-03-18 Texas Instruments Incorporated Network multiple antenna transmission employing an x2 interface
CN102186265A (zh) * 2011-05-04 2011-09-14 京信通信系统(中国)有限公司 分布式基站及其组网方法
CN102916732A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种实现超级小区数据传输的方法、系统及控制站
CN102742317A (zh) * 2011-11-25 2012-10-17 华为技术有限公司 通信系统、方法及设备
CN104170303A (zh) * 2014-01-29 2014-11-26 华为技术有限公司 一种数据传输方法、设备和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817196A (zh) * 2016-12-19 2017-06-09 上海华为技术有限公司 数据传输方法及基站

Also Published As

Publication number Publication date
CN105763302A (zh) 2016-07-13
CN105763302B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
US11006427B2 (en) Communication system, base station, and communication terminal for controlling interference from neighboring cells
US20220132460A1 (en) Communication system, base station, and host device
US9420433B2 (en) Method and apparatus for receiving data in user equipment of supporting multimedia broadcast multicast service
US10389564B2 (en) Radio base station, user terminal and radio communication method
JP6644810B2 (ja) 共通ランダムアクセスチャネルリソースに基づく協調ランダムアクセス
US9615301B2 (en) Base station handover method and system for communications system
US11716113B2 (en) Frequency pre-compensation for high-speed train single frequency networks
US20220070829A1 (en) Communication device and communication method
JP6553592B2 (ja) 通信制御方法及びユーザ端末
WO2018030158A1 (ja) 通信装置、通信方法及びプログラム
US20220287003A1 (en) Communication system, communication terminal, and network
US10172054B2 (en) Communication control method and user terminal
US9877351B2 (en) Mobile communication system, user terminal, and base station
WO2011020407A1 (zh) 辅载波小区同步方法及终端
US20160269982A1 (en) RRC Diversity
US20220386333A1 (en) Communication system, communication terminal, and base station
US20160165560A1 (en) Radio base station, user terminal and radio communication method
WO2016112715A1 (zh) 一种辅服务小区的资源的控制、管理方法和装置
US20170105230A1 (en) Communication control method and user terminal
WO2012094928A1 (zh) 一种传输上行协作数据的方法及系统
JP2015065608A (ja) 基地局、ユーザ端末及び無線通信制御方法
US20230292391A1 (en) Communication system and communication terminal
KR20160111830A (ko) 기지국 장비, 하향링크 협력 전송 방법 및 상향링크 협력 전송 방법
WO2016095522A1 (zh) 基于超级小区的数据传输方法和系统
WO2024092793A1 (zh) 一种配置指示方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869033

Country of ref document: EP

Kind code of ref document: A1