WO2024092793A1 - 一种配置指示方法及通信装置 - Google Patents

一种配置指示方法及通信装置 Download PDF

Info

Publication number
WO2024092793A1
WO2024092793A1 PCT/CN2022/130079 CN2022130079W WO2024092793A1 WO 2024092793 A1 WO2024092793 A1 WO 2024092793A1 CN 2022130079 W CN2022130079 W CN 2022130079W WO 2024092793 A1 WO2024092793 A1 WO 2024092793A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
configuration
transmission
data
control information
Prior art date
Application number
PCT/CN2022/130079
Other languages
English (en)
French (fr)
Inventor
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/130079 priority Critical patent/WO2024092793A1/zh
Publication of WO2024092793A1 publication Critical patent/WO2024092793A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present application relates to the field of communication technology, and in particular to a configuration indication method and a communication device.
  • relay devices are currently introduced to support multi-hop transmission from the source device to the destination device.
  • the source device needs to send data to the destination device through two relay devices, which are respectively called the first relay device and the second relay device.
  • the source device sends data to the first relay device. After receiving the data, the first relay device forwards the data to the second relay device. After receiving the data, the second relay device forwards the data to the destination device.
  • the sending device configures the corresponding transmission resources
  • the sending device configures the resources required for the current hop separately through the high-level protocol stack.
  • the sending device is a device for sending data in multi-hop transmission.
  • each hop transmission in the multi-hop transmission includes a device for sending data and a device for receiving data.
  • the sending device is the device for sending data
  • the receiving device is the device for receiving data.
  • the sending device sends data to the receiving device based on the resources configured by itself through the high-level protocol stack, after the receiving device receives the data, the data still needs to be processed by the physical (physical, PHY) layer, the media access control (media access control, MAC) layer, and the radio link layer control (radio link control, RLC) layer.
  • the protocol stack such as the packet data convergence protocol (packet data convergence protocol, PDCP) layer, the service data adaptation protocol (service data adaptation protocol, SDAP) layer or the radio resource control (radio resource control, RRC) layer.
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • RRC radio resource control
  • the present application proposes a configuration indication method and a communication device. Based on the method described in the present application, the configuration of multi-hop transmission parameters is centrally scheduled, which reduces the processing time of the relay device and thus reduces the forwarding delay.
  • the present application proposes a configuration indication method, the method comprising: obtaining first control information, the first control information being used to indicate a configuration of M-hop data transmission between a first device and a target device, the M-hop data transmission being used to transmit first data, the M-hop transmission comprising transmission between the first device and the second device, the first control information comprising first information, second information and third information, the first information indicating a configuration for transmitting the first data between the first device and the second device, the second information indicating a configuration of M-1-hop transmission, the M-1-hop transmission being an M-1-hop transmission in the M-hop transmission excluding the transmission between the first device and the second device, the third information indicating a configuration required for the target device to receive the first data, and M being an integer greater than 1; sending the first control information to the second device.
  • the first control information includes the configuration indication required for M-hop transmission and the configuration required for the destination device to receive, so the configuration required for each hop transmission in the M-hop transmission can be centrally scheduled through the first control information.
  • the first control information includes the configuration for transmitting the first data between the first device and the second device, so when the first device is used as a relay device, it is no longer necessary to configure the corresponding transmission parameters through the processing of the high-level protocol layer, which can reduce the time for configuring the transmission parameters, thereby reducing the delay of data forwarding between the first device and the second device.
  • the parameter configuration required for the subsequent transmission of the second device can also be directly based on the configuration of the M-1 hop transmission indicated by the second information of the first control information, without waiting for the sending device in each hop transmission to configure the resources required for data transmission separately through the high-level protocol configuration, thereby reducing the delay of data transmission.
  • the first device is a source device and a scheduling device, wherein the scheduling device refers to a device that configures the resources for multi-hop transmission
  • the scheduling device refers to a device that configures the resources for multi-hop transmission
  • the first device still needs to process and configure the transmission parameters corresponding to the M-hop transmission through the high-level protocol
  • the relay device in the M-hop transmission such as the second device, will no longer need to configure the corresponding transmission resources through the processing of the high-level protocol layer, thereby reducing the transmission delay.
  • the first information further indicates a transmission configuration for transmitting the second information
  • the transmission configuration for transmitting the second information includes one or more of the following: aggregation level, code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the transmission configuration of the second information also corresponds to the configuration of the control channel or data channel that carries its transmission, such as the configuration of its time domain resources and frequency domain resources.
  • the first information is carried on the first control channel
  • the second information and the third information are carried on the second control channel.
  • the first information is designed to be carried on the first control channel, which is conducive to the second device being able to read the first information more timely and perform corresponding configurations.
  • the second information and the third information are designed in the second control channel, which is also conducive to avoiding causing the first control channel to carry too much load, thereby reducing its reliability, or it can also avoid allocating more resources for the first control information in order to ensure reliability, reducing resource utilization, and causing the second device to need to detect a larger bandwidth, increasing detection complexity.
  • the first information is carried on the first control channel
  • the second information is carried on the second control channel
  • the third information is carried on the first data channel.
  • the third information is designed to be carried on the first data channel, which is conducive to reducing resource loss, especially control resource loss.
  • the third information indicates the configuration required for the target device to receive the first data
  • the second device is a relay device
  • the second device transmits data by amplification and forwarding AF
  • the second device will not apply the configuration and does not need to read the third information.
  • the third information is carried in the data channel, which avoids the consumption of control resources, while AF forwarding reduces forwarding delay.
  • the second information further indicates a configuration for transmitting the third information
  • the configuration for transmitting the third information includes one or more of the following: code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the first information or the second information also indicates a channel for transmitting the third information. If the first information or the second information indicates that the channel for transmitting the third information is a second control channel, it can be determined that the first control information is two-level control information, including first-level control information and second-level control information, wherein the first-level control information includes the first information, and the second-level control information includes the second information and the third information.
  • the first control information is three-level control information, including first-level control information, second-level control information and third-level control information, wherein the first-level control information includes the first information, the second-level control information includes the second information, and the third-level control information includes the third information.
  • the first information indicates one or more of the following configurations: a delay budget for transmission between the first device and the second device, a minimum time interval for forwarding the first data from the first link to the second link, a frequency domain resource configuration between the first device and the second device, and a time domain resource configuration between the first device and the second device.
  • the first link is a link between a network device and a terminal device
  • the second link is a link between a terminal device and a terminal device.
  • the second information indicates one or more of the following configurations: a time domain resource configuration for M-1 hop transmission, a delay budget for M-1 hop transmission, path information, a transmit beam configuration, a minimum interval between reception and forwarding times for M-1 hop sidelink transmission, and a quasi-co-location indication.
  • the third information indicates one or more of the following configurations: a new data indicator, a redundancy version, a hybrid automatic repeat request (HARQ) process number, a HARQ feedback enable, a HARQ feedback time, and a HARQ feedback resource.
  • HARQ hybrid automatic repeat request
  • the first information also indicates the configuration of the first data on the sidelink. Based on this implementation, since resources are obtained in a competitive manner in the sidelink, the first information can be carried in a control channel readable by other devices, which is conducive to other devices competing for resources other than M-hop transmission to read the configuration of the first data on the sidelink in the first information, avoid competing for the corresponding resources, and thus avoid the increase in the delay required for M-hop transmission due to competition for resources by other devices.
  • the first information also indicates one or more of the following information: end-to-end priority, carrier configuration on the sidelink, resource pool configuration, sidelink frequency domain resource configuration, sidelink resource reservation period configuration, and sidelink time domain transmission resource configuration.
  • a specific implementation manner of acquiring the first control information is: receiving second control information sent from a third device; and determining the first control information based on the second control information.
  • the third device is a network device
  • the second control information includes fourth information and fifth information
  • the fourth information indicates one or more of the following configurations: the minimum time interval for forwarding the first data from the first link to the second link, the transmission configuration of the fifth information, the structure indication of the first control information, the carrier configuration on the side link, the resource pool configuration, and the frequency domain resource configuration of the side link
  • the fifth information indicates one or more of the following configurations: the time domain resource configuration of M-hop transmission, the delay budget of M-hop transmission, the path information, the transmission beam configuration of M-hop transmission, the minimum side link start time of M-hop transmission, and the quasi-co-location indication.
  • the structure indication of the first control information refers to the control structure of the first control information generated by the first device as two-level control information or three-level control information.
  • the structure indication of the first control information also indicates that the control channel carrying the third information is a channel type, specifically a data channel or a control channel.
  • the transmission configuration of the fifth information includes one or more of the following configurations: aggregation level AL, code rate, modulation coding and strategy MCS, time domain resources, and frequency domain resources.
  • the structure of the second control information is a two-level control information structure
  • the second control information includes the first-level control information and the second-level control information
  • the first-level control information includes the fourth information
  • the second-level control information includes the fifth information
  • the transmission configuration of the fifth information refers to the transmission configuration of the second-level control information.
  • the specific implementation of determining the first control information based on the second control information is: determining the sixth information, the sixth information including one or more of the following: end-to-end priority, resource reservation period, delay budget between the first device and the second device, delay budget for M-1 hop transmission; determining the first control information based on the sixth information and the second control information.
  • the scheduling device since the scheduling device is unaware of factors such as the service type and data type of the first data, it is impossible to configure parameters such as transmission delay. Determining the sixth information through the first device is conducive to configuring more reasonable parameters, thereby improving the user experience.
  • a specific implementation manner of sending the first control information to the second device is: sending the first control information to the second set, the second set includes multiple devices, and the second device is one device in the second set. Based on this implementation manner, it is beneficial to improve the coverage of data transmission, and forwarding the first data to multiple relay devices at the same time can also enhance the reliability of data forwarding.
  • the first device is a device in a first set
  • the first set includes multiple devices
  • the first control information is transmitted on a first time-frequency resource
  • the first time-frequency resource is also used for other devices in the first set to send the first control information to devices in a second set.
  • the second information further indicates a confirmation time and a confirmation resource
  • the confirmation resource is a transmission resource used for the second set to transmit the confirmation information.
  • the method further includes: if the confirmation information is not received after the first data is sent to the second set until the confirmation time, and the number of retransmissions does not exceed the preset number, then the first data is retransmitted to multiple second devices. Based on this implementation, it is beneficial to centrally manage the configuration of the relay devices in each set, and avoid data forwarding confusion due to a large number of relay devices in a set.
  • the second information also includes a zone identification Zone ID indication.
  • Zone ID is an identifier of a set of multiple relay devices corresponding to a node in M-hop transmission, such as the identifier of the first set and the identifier of the second set in the above implementation.
  • the path information may include a source device identifier, a target device identifier, and a Zone ID of a set corresponding to multiple relay nodes between the source device and the target device.
  • the Zone ID enables the second device to determine the set corresponding to the next hop, so that the first data received through the first set can be forwarded to the corresponding next hop set.
  • M is greater than 2.
  • the present application proposes a configuration indication method, the method comprising: receiving first control information from a first device, the first control information being used to indicate the configuration of M-hop data transmission between the first device and the target device, the M-hop data transmission being used to transmit the first data, the M-hop transmission comprising the transmission between the first device and the second device, the first control information comprising the first information, the second information and the third information, the first information indicating the configuration for transmitting the first data between the first device and the second device, the second information indicating the configuration of the M-1-hop transmission, the M-1-hop transmission being the M-1-hop transmission other than the transmission between the first device and the second device in the M-hop transmission, the third information indicating the configuration required for the target device to receive the first data, and M being an integer greater than 1.
  • the corresponding beneficial effects in the second aspect and its possible implementation methods can be referred to the corresponding description of the first aspect, and the embodiments of the present application will not be repeated here.
  • the first information also indicates a configuration for transmitting the second information
  • the configuration for transmitting the second information includes one or more of the following: aggregation level, code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the first information is carried on a first control channel
  • the second information and the third information are carried on a second control channel.
  • the first information is carried on a first control channel
  • the second information is carried on a second control channel
  • the third information is carried on a first data channel.
  • the configuration for transmitting the third information includes one or more of the following: code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the first information or the second information further indicates a channel for transmitting the third information.
  • the first information indicates one or more of the following configurations: the minimum time interval for forwarding the first data from the first link to the second link, the frequency domain resource configuration between the first device and the second device, and the time domain resource configuration between the first device and the second device.
  • the first link is a link between a network device and a terminal device
  • the second link is a link between a terminal device and a terminal device.
  • the second information indicates one or more of the following configurations: the time domain resource configuration for M-1 hop transmission, the delay budget for M-1 hop transmission, the path information, the transmit beam configuration, the minimum interval between the reception and forwarding time of the M-1 hop side link transmission, and a quasi-co-location indication.
  • the third information indicates one or more of the following configurations: retransmission configuration information, a new data indicator, and a redundant version.
  • the first information further indicates configuration of the first data on the sidelink.
  • the configuration of the first data on the sidelink includes one or more of the following information: end-to-end priority, carrier configuration on the sidelink, resource pool configuration, sidelink frequency domain resource configuration, and sidelink resource reservation period configuration.
  • first control information is received from a first device.
  • the first control information is received from a first set, where the first set includes multiple devices, and the first device is one device in the first set.
  • the second information also indicates a confirmation time and a confirmation resource, where the confirmation resource is a transmission resource used to transmit confirmation information of the second set.
  • the method also includes: if first data from the first set is received, sending confirmation information to the first set on the confirmation resource within the confirmation time.
  • the second information also includes a zone identification Zone ID indication.
  • M is greater than 2.
  • the present application provides a communication device, wherein the communication device may also be a chip system.
  • the communication device may execute the method described in the first aspect.
  • the functions of the communication device may be implemented by hardware, or by hardware executing corresponding software implementations.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module may be software and/or hardware.
  • the operations and beneficial effects performed by the communication device may refer to the methods and beneficial effects described in the first aspect above, and the repetitive parts will not be repeated.
  • the present application provides a communication device, wherein the communication device may also be a chip system.
  • the communication device may execute the method described in the second aspect.
  • the functions of the communication device may be implemented by hardware, or by hardware executing corresponding software implementations.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module may be software and/or hardware.
  • the operations and beneficial effects performed by the communication device may refer to the method and beneficial effects described in the second aspect above, and the repetitive parts will not be repeated.
  • the present application provides a communication device, comprising a processor, and when the processor calls a computer program in a memory, the method described in the first aspect or the second aspect is executed.
  • the communication device further includes a memory, and the memory and the processor are coupled to each other.
  • the memory and the processor are integrated together.
  • the communication device further includes a transceiver, and the transceiver is used to send and receive data and/or signaling.
  • the present application provides a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement the method described in the first aspect or the second aspect through logic circuits or execution code instructions.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored.
  • a computer program or instruction is stored.
  • the method described in the first aspect or the second aspect is implemented.
  • an embodiment of the present application provides a computer program or a computer program product, including codes or instructions.
  • the codes or instructions are executed on a computer, the computer executes the method described in the first aspect or the second aspect.
  • an embodiment of the present application provides a communication system, which includes the communication device provided in the third and fourth aspects above.
  • FIG1 is a schematic diagram of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a three-hop transmission provided in an embodiment of the present application.
  • FIG3 is an interactive schematic diagram of a configuration indication method provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a resource structure provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of another resource structure provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of another resource structure provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of another three-hop transmission provided in an embodiment of the present application.
  • FIG8 is a transmission diagram of a first set and a second set provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of another multi-hop transmission provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of the chip provided in an embodiment of the present application.
  • At least one (item) means one or more
  • “more than one” means two or more
  • “at least two (items)” means two or three and more than three
  • and “and/or” is used to describe the corresponding relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • the character “/” generally indicates that the objects associated before and after are in an “or” relationship.
  • “At least one of the following items” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", where a, b, c can be single or multiple.
  • an embodiment of the present application provides a method for data transmission.
  • the following is an introduction to the professional terms involved in the present application:
  • system architecture of the method provided by the embodiment of the present application is briefly described below. It is understandable that the system architecture described in the embodiment of the present application is to more clearly illustrate the technical solution of the embodiment of the present application, and does not constitute a limitation on the technical solution provided by the embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as satellite communication systems and traditional mobile communication systems.
  • the satellite communication system can be integrated with the traditional mobile communication system (i.e., ground communication system).
  • Communication systems such as wireless local area network (WLAN) communication system, wireless fidelity (WiFi) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), fifth generation (5G) system or new radio (NR), sixth generation (6G) system, and other future communication systems, etc., also support communication systems that integrate multiple wireless technologies, for example, it can also be applied to drones, satellite communication systems, high altitude platform (HAPS) communication and other non-terrestrial networks (NTN) that integrate ground mobile communication networks.
  • HAPS high altitude platform
  • NTN non-terrestrial networks
  • FIG1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • the communication system includes at least one first device and at least one second device.
  • FIG1 takes a first device and a second device as an example, and the embodiment of the present application does not limit the number of first devices and second devices.
  • the first device and the second device can communicate with each other, and in addition, the first device and the second device can also establish a communication connection with other devices or equipment.
  • the first device and/or the second device may be a network device, or a device that implements a function of the network device, or a device that can support the network device to implement the function, such as a chip system, which may be installed in the network device.
  • the network device mentioned in the embodiment of the present application may be a device for communicating with a terminal device, or a device that connects a terminal device to a wireless network.
  • the network device may be a node in a radio access network, which may also be referred to as a base station, or a radio access network (RAN) node (or device).
  • RAN radio access network
  • the base station in the embodiments of the present application may include various forms of base stations, such as: a macro base station, a micro base station (also called a small station), a relay station, an access point, an evolved base station (evolved Node B, eNB or eNodeB) in LTE, a next-generation base station (gNodeB, gNB) in a 5G network, a broadband network service gateway (broadband network gateway, BNG), an aggregation switch or a non-third generation partnership project (3rd generation partnership project, 3GPP) access device, a transmitting and receiving point (transmitting and receiving point, TRP), a transmitting point (transmitting point, TP), a mobile switching center, a home base station (for example, home evolved NodeB, or home Node B, HNB), a baseband unit (b Baseband unit (BBU), baseband pool (BBU pool), or Wi-Fi access point (AP), centralized unit (CU) and distributed unit (DU) in
  • the first device and/or the second device may be a terminal device, or a device that implements a terminal device function, or a device that can support the terminal device to implement the function, such as a chip system, which may be installed in the terminal device.
  • the terminal device mentioned in the embodiments of the present application may be a device with a wireless transceiver function, specifically a user terminal (UE), an access terminal, a subscriber unit, a user station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless communication device, a user agent or a user device.
  • UE user terminal
  • the terminal device can also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a communication device carried on a high-altitude aircraft, a wearable device, a drone, a robot, a terminal in D2D, a terminal in V2X, a virtual reality (vir
  • This application does not limit the present application to wireless terminals in real-time reality (VR) terminal devices, augmented reality (AR) terminal devices, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, or terminal devices in future communication networks
  • the first device and the second device are two devices in the multi-hop transmission.
  • the multi-hop transmission includes at least one source device, at least one target device and at least one relay device.
  • Multi-hop transmission means that the data is not directly transmitted from the source device to the target device, but is forwarded through multiple relay devices between the source device and the target device, that is, the data is forwarded through one or more relay devices on the link.
  • the source device is used to transmit data to the target device and is the first device to send data in the multi-hop transmission.
  • the target device is used to receive data from the source device and is the last device to receive data in the multi-hop transmission.
  • the relay device is used to assist the source device in forwarding data to the target device and is an intermediate node between the source device and the target device.
  • the source device can also receive data sent from the target device, and the relay device can also be used to assist the target device in forwarding data to the source device.
  • Figure 2 shows a three-hop transmission method, where device 1 is the source device, device 4 is the target device, and devices 2 and 3 are both relay devices.
  • Device 1 sends data to device 2, and after receiving the data, device 2 forwards the data to device 3, and device 3 forwards the data to device 4 after receiving the data.
  • one-hop transmission represents a data transmission process
  • the first hop represents the first transmission of data
  • the second hop represents the second transmission of data.
  • M-hop transmission includes M+1 devices.
  • the i-th device can be understood as the i-th device that obtains the data.
  • the first hop represents that the first device sends data to the second device
  • the second hop represents that the second device sends data to the third device
  • the i-th hop represents that the i-th device sends data to the i+1-th device.
  • relay devices are currently introduced to support multi-hop transmission from the source device to the destination device.
  • the source device needs to send data to the destination device through two relay devices, which are respectively called the first relay device and the second relay device.
  • the source device sends data to the first relay device. After receiving the data, the first relay device forwards the data to the second relay device. After receiving the data, the second relay device forwards the data to the destination device.
  • the sending device configures the corresponding transmission resources
  • the sending device configures the resources required for the current hop separately through the high-level protocol stack.
  • the sending device is a device for sending data in multi-hop transmission.
  • each hop transmission in the multi-hop transmission includes a device for sending data and a device for receiving data.
  • the sending device is the device for sending data
  • the receiving device is the device for receiving data.
  • the sending device sends data to the receiving device based on the resources configured by itself through the high-level protocol stack
  • the data still needs to be processed by the PHY layer, MAC layer, and RLC layer, and sometimes even needs to be processed by a higher protocol layer in the protocol stack, such as the PDCP layer, SDAP layer or RRC layer.
  • Forwarding to the next hop can only be performed after being processed by the high-level protocol stack. This processing method will lead to an increase in forwarding delay, which is not conducive to low-latency service transmission. How to reduce the forwarding delay is an urgent problem to be solved.
  • the embodiment of the present application provides a configuration indication method.
  • the solution can be mainly applied to D2D, V2V, IAB, unmanned aerial vehicles (UAV), smart factories, automated machine manufacturing and other fields. In addition, it can also be applied to other fields.
  • UAV unmanned aerial vehicles
  • the embodiment of the present application does not limit the application fields to which the technical solution is applicable.
  • Figure 3 is an interactive schematic diagram of a configuration indication method provided in an embodiment of the present application.
  • the configuration indication method includes steps 301 to 302.
  • the execution subject of the method shown in Figure 3 can be the first device and the second device.
  • the execution subject of the method shown in Figure 3 can be the chip in the first device and the second device.
  • Figure 3 is illustrated by taking the first device and the second device as examples. The execution subjects of the subsequent figures are similar and will not be described in detail. Among them:
  • a first device obtains first control information, where the first control information is used to indicate a configuration of M-hop data transmission between the first device and a target device, where the M-hop data transmission is used to transmit first data, where the M-hop transmission includes transmission between the first device and the second device, and the first control information includes first information, second information, and third information.
  • the first information indicates a configuration for transmitting the first data between the first device and the second device
  • the second information indicates a configuration of M-1-hop transmission
  • the M-1-hop transmission is an M-1-hop transmission in the M-hop transmission excluding the transmission between the first device and the second device
  • the third information indicates a configuration required for the target device to receive the first data, where M is an integer greater than 1.
  • the M-hop transmission between the first device and the target device means that the data transmission from the first device to the target device needs to be forwarded through M-1 relay devices before the data can be transmitted to the target device.
  • the M-1 hop transmission described in the embodiment of the present application refers to the M-1 hop transmission other than the transmission between the first device and the second device in the M-hop transmission.
  • the transmission between the first device and the second device can be understood as the first hop transmission in the M-hop transmission, and correspondingly, the M-1 hop transmission can be understood as the remaining hop transmission except the first hop in the M-hop transmission.
  • M is 3
  • the transmission between the first device and the second device is the first hop transmission in the M-hop transmission
  • the M-1 hop transmission is the second hop transmission and the third hop transmission in the M-hop transmission.
  • the M-hop transmission between the first device and the target device belongs to the K-hop transmission between the source device and the target device, and K is an integer greater than or equal to M.
  • the K-hop transmission between the source device and the target device means that when the source device transmits data to the target device, it needs to be forwarded through K-1 relay devices before the data can be transmitted to the target device.
  • the source device is used to transmit data to the target device, and is the first device to send data in the multi-hop transmission.
  • the target device is used to receive data from the source device and is the last device to receive data in the multi-hop transmission.
  • the relay device is used to assist the source device in forwarding data to the target device and is an intermediate node between the source device and the target device.
  • the source device can also receive data sent from the target device, and the relay device can also be used to assist the target device in forwarding data to the source device, which is not limited in the embodiment of the present application.
  • the embodiment of the present application is mainly described in the subsequent description by using the source device as the data transmitter and the target device as the data receiver.
  • the scheme of the source device as the receiver and the target device as the transmitter can be obtained in the same way, and the embodiment of the present application will not be repeated.
  • the first device when K is greater than M, the first device is a relay device between the source device and the target device, and when K is equal to M, the first device is the source device.
  • the M-hop transmission includes the transmission between the first device and the second device.
  • the first device and the second device are two adjacent devices in the M-hop transmission. It can be understood that the transmission between the first device and the second device is a one-hop transmission in the M-hop transmission.
  • one or more relay devices may be included between the first device and the second device, that is, the transmission between the first device and the second device is a multi-hop transmission in the M-hop transmission.
  • the source device is the transmitter and the target device is the receiver
  • the first device in the transmission between the first device and the second device, the first device is the transmitter and the second device is the receiver.
  • the first control information includes the configuration instructions required for M-hop transmission and the configuration required for the destination device to receive, so the configuration required for each hop transmission in the M-hop transmission can be centrally scheduled through the first control information.
  • the first control information includes the configuration for transmitting the first data between the first device and the second device, so when the first device is used as a relay device, it is not necessary to configure the corresponding transmission resources through the processing of the high-level protocol layer, and can directly forward data transmission, thereby reducing the delay of data forwarding between the first device and the second device.
  • the parameter configuration required for the subsequent transmission of the second device can also be directly based on the configuration of the M-1 hop transmission indicated by the second information in the first control information, without waiting for the sending device in each hop transmission to configure the resources required for data transmission separately through the high-level protocol configuration, thereby reducing the delay of data transmission.
  • the first device is a source device and a scheduling device, wherein the scheduling device refers to a device that configures multi-hop resources
  • the scheduling device refers to a device that configures multi-hop resources
  • the first device still needs to process and configure the transmission parameters corresponding to the M-hop transmission through the high-level protocol
  • the relay device in the M-hop transmission such as the second device, will no longer need to configure the corresponding transmission resources through the processing of the high-level protocol layer, thereby reducing the transmission delay.
  • M is an integer greater than 2, and in this implementation, there are at least two relay devices between the first device and the target device. If M is larger, when the prior art is used to separately indicate the required configuration of each hop through high-level signaling, the delay required for the relay device to forward the first data is longer. If the method described in the embodiment of the present application is used, the configuration required for each hop can be centrally scheduled, and there is no need to wait for the sender to obtain the configuration parameters through the high-level protocol in each hop transmission, which is conducive to reducing the delay of data transmission.
  • the data forwarding method used in the M-hop transmission can support the amplify and forward (AF) method of layer 0 (L0, layer0), or the decode and forward (DF) method of layer 1 (L1, layer 1) or low MAC layer.
  • AF amplify and forward
  • DF decode and forward
  • L0 or L1 relay forwarding method based on centralized scheduling does not require the relay device to process the control plane and data plane of the protocol stack, but only requires the processing of the underlying protocol stack, which can greatly simplify the processing time of each relay device.
  • the received data is amplified and forwarded by radio frequency, and no decoding/encoding of the physical layer PHY is required from reception to transmission, nor is the reception and transmission processing of the protocol layers such as MAC, RLC, and PDCP required.
  • the control information required for scheduling comes from the configuration of the centralized scheduling device, which can be transmitted to the relay device hop by hop through the multi-hop physical layer control channel, without the need for the relay device to obtain it through the independent processing of each protocol layer of the protocol stack from reception to transmission.
  • L1 forwarding or low MAC forwarding on the data plane, the received data is decoded/encoded, and the decoding can jointly decode the repeatedly transmitted data.
  • the main information required for scheduling comes from the configuration of the centralized scheduling device, which can be transmitted to the relay device hop by hop through the multi-hop physical layer control channel, without the relay device having to go through the processing of the protocol stack MAC layer high layer and RLC layer, PDCP layer, RRC and other protocol layers from reception to transmission to obtain.
  • the forwarding mode of AF or DF can be combined with the good mutual assistance relationship between the centralized scheduling device or source device and the multi-hop relay device.
  • the centralized scheduling device or source device can also be used as a relay device, and the relay device can also be used as a centralized scheduling or source device.
  • the relay device configures the required forwarding resources from the available resources for forwarding according to the priority or quality of service (QoS) of the service to be forwarded, combined with the received transmission parameter configuration, and other available resources can be configured for the service of the relay itself.
  • QoS quality of service
  • the first device can determine the transmission resources required for forwarding the first data as a relay device in M-hop transmission according to the transmission parameter configuration it has obtained, and the remaining resources can be used by the first device as a transmission resource for sending data as a source device. Therefore, this low-latency multi-hop forwarding solution can be performed on various devices, does not depend on specific device types, and can be widely used.
  • the first device may be a terminal device or a network device
  • the second device may also be a terminal device or a network device. Therefore, the embodiments of the present application can support forwarding transmission between network devices, forwarding transmission between terminal devices, and forwarding transmission between terminal devices and network devices, thereby improving the coverage of data transmission.
  • the structure of the first control information is a multi-level control information structure.
  • the first-level control information is transmitted in a control channel, and the second or higher-level control information is transmitted in one or more separate channels.
  • the channel carrying the second or higher-level control information may be an additional control channel or a data channel.
  • the multi-level control information configures relatively fixed control information in the first-level control channel that requires blind detection, avoids detecting control channels that carry variable loads, and can reduce the complexity of blind decoding.
  • the size of the multi-level control information is supported to be variable.
  • the first-level control information indicates the transmission of the second or higher-level control information, thereby achieving effective transmission of data in multi-hop transmission scenarios with different hops.
  • the first control information adopts a two-level control information structure, wherein the first-level control information includes the first information, and the second-level control information includes the second information and the third information.
  • the first-level control information is transmitted on the first control channel
  • the second-level control information is transmitted on the second control channel.
  • the first information is carried in the first control channel
  • the second information and the third information are carried on the second control channel.
  • the resource method of configuring the control channel carrying the first-level control information and the second-level control information can be to determine the bandwidth of the resources of the control channel carrying the first-level control information within the first bandwidth, and the second-level control channel is transmitted on the first bandwidth.
  • the second device obtains the first information through the first bandwidth, it can also obtain the second information.
  • the time domain resources of the control channel carrying the first information are the same as the time domain resources of the control channel carrying the second information, or the time domain resources of the control channel carrying the first information are before the time domain resources of the control channel carrying the second information.
  • the control channel carrying the first-level control information and the second-level control information are transmitted in the same symbol
  • the time domain resource carrying the first-level control information is the same as the time domain resource of the control channel carrying the second-level control information
  • the frequency domain resource carrying the first-level control information is continuous with the frequency domain resource of the control channel carrying the second-level control information.
  • the first information also indicates the configuration for transmitting the second information, that is, the configuration for transmitting the second-level control information
  • the configuration for transmitting the second information includes one or more of the following: aggregation level (AL), code rate, modulation and coding scheme (MCS), time domain resources, and frequency domain resources.
  • the configuration of the second information is also the configuration of the control channel or data channel corresponding to its transmission, such as the configuration of its time domain resources and frequency domain resources.
  • the first-level control information and the second-level control information can use the same modulation method.
  • AL refers to the number of control-channel elements (CCE) constituting the control channel, that is, if a control channel is composed of a CCE, the aggregation level of the control channel is a.
  • MCS indicates the data transmission rate and the corresponding modulation method through an index.
  • the modulation mode may also be pre-configured, in which case the MCS indication for control is equivalent to the code rate for control, ie, the corresponding aggregation level.
  • the configuration for transmitting the first data between the first device and the second device indicated in the first information is the configuration applied when the first device and the second device are currently performing data transmission.
  • the configuration of M-1 hop transmission indicated by the second information and the configuration required for the target device to receive the first data indicated by the third information are both configurations applied after the first device and the second device perform data transmission, and are temporarily not susceptible to interference from adjacent devices around the current hop. Therefore, the configuration indicated by the first information is a configuration that will be applied faster in time and is more susceptible to interference from adjacent devices around the current hop.
  • the configuration indicated by the first information includes the configuration required for one-hop transmission (transmission between the first device and the second device), and the size of the first information is relatively fixed
  • the configuration indicated by the second information includes the configuration of M-1 hops
  • the size of the second information will change with the change of the number of hops. Designing the first information in the first control information and correspondingly carrying it on the first control channel is conducive to the second device being able to read the first information more timely and execute the corresponding configuration, and also enables the surrounding adjacent devices to read it in time to avoid occupying their corresponding resources.
  • the adjacent devices can also configure current resources and future resources based on the first information to avoid mutual interference.
  • Designing the second information and the third information in the second control information is also beneficial to avoiding causing the first control channel to carry too much load, thereby reducing its reliability or, in order to ensure reliability, allocating more resources to the first control channel, reducing resource utilization, and also causing the second device to have an increased complexity due to detecting a larger bandwidth.
  • the first control information adopts a three-level control information structure, wherein the first-level control information includes the first information, the second-level control information includes the second information, and the third-level control information includes the third information.
  • the first-level control information is transmitted on the first control channel
  • the second-level control information is transmitted on the second control channel
  • the third-level control information is transmitted on the first data channel.
  • the first information is carried on the first control channel
  • the second information is carried on the second control channel
  • the third information is carried on the first data channel.
  • the M-hop transmission adopts the AF forwarding method, and the control channel and the data channel separate resource mapping, that is, the control channel resources carrying the first-level control information are time-division multiplexed with the resources of the data channel carrying the third-level control information, and the resources of the control channel carrying the second-level control information are time-division multiplexed with the resources of the data channel carrying the third-level control information.
  • the time domain resources of the control channel carrying the first-level control information are the same as the time domain resources of the control channel carrying the second-level control information.
  • the time domain resources of the control channel carrying the first-level control information and the time domain resources of the data channel carrying the third-level control information are on different symbols, and the two do not overlap.
  • the second information also indicates the configuration of the data channel used to transmit the third information and carry it, specifically including one or more of the following: code rate, MCS, time domain resources, and frequency domain resources.
  • the first information indicates the configuration for transmitting the first data between the first device and the second device, that is, the configuration required for the first hop transmission in the corresponding M-hop transmission, it is the configuration applied when the first device and the second device perform data transmission.
  • the configuration of the M-1 hop transmission indicated by the second information and the configuration required for the target device to receive the first data indicated by the third information are both configurations applied after the first device and the second device perform data transmission, and are temporarily not susceptible to interference from adjacent devices around the current hop. Therefore, the configuration indicated by the first information is the configuration that will be applied the fastest in time, and is more susceptible to interference from adjacent devices around the current hop.
  • Designing the first information in the first control information and carrying the corresponding first information on the first control channel is conducive to the second device being able to read the first information more promptly and execute the corresponding configuration.
  • the configuration required for the target device to receive the first data indicated by the third information is the configuration required by the last hop target device after receiving the first data during the M-hop transmission process; the configuration indicated by the second information is a configuration that will be applied faster in time than the configuration indicated by the third information, so the second information is transmitted on the second control channel, which is conducive to the second device being able to read the second information more timely and execute the corresponding configuration, and also enables the surrounding adjacent devices to read it in time to avoid occupying its corresponding resources.
  • the adjacent devices can also configure current resources and future resources based on the first information to avoid mutual interference.
  • the control information may occupy a small part of the resources in the last symbol of the transmission resource, resulting in a waste of the symbol resource. Therefore, the third information is carried on the first data channel, which is conducive to reducing resource loss. Since the third information indicates the configuration required for the target device to receive the first data, if the second device is a relay device for AF forwarding, the second device will not apply the configuration.
  • the third information is carried in the data channel, and the relay device can only perform AF forwarding on the third information, thereby avoiding extra resource occupation of the control channel and improving resource utilization. The relay does not need to read the forwarded data, thereby reducing the forwarding delay.
  • the first control information adopts a three-level control information structure.
  • the third-level control information can also be transmitted on the third control channel, and the second information also indicates the configuration of the control channel used to transmit the third information and carry it, specifically including one or more of the following: code rate, MCS, time domain resources, and frequency domain resources. Since the third information indicates the configuration required for the target device to receive the first data, the second device, as a relay device, does not need to read the third information.
  • the third information is designed in the third control channel, which is conducive to avoiding causing the load carried in the first control channel to be too large, thereby reducing its reliability.
  • the first device is a network device
  • the second device is a terminal device
  • the first control information is downlink control information (DCI).
  • DCI downlink control information
  • the first control information is multi-level control information, and is two-level control information
  • the first-level control information included in the first control information is the first-level DCI
  • the second-level control information is the second-level DCI.
  • the first control information is three-level control information
  • the third-level control information in the first control information is the third-level DCI.
  • the first device is a terminal device
  • the second device is a terminal device
  • the first control information is sidelink control information (SCI) or supersidelink control information (SSCI).
  • the first control information is multi-level control information, and is two-level control information
  • the first-level control information included in the first control information is the first-level SCI or the first-level SSCI
  • the second-level control information is the second-level SCI or the second-level SSCI.
  • the first control information is three-level control information
  • the third-level control information in the first control information is the third-level SCI or the third-level SSCI.
  • the first information or the second information also indicates a channel for transmitting the third information. It can be understood that if the first information or the second information indicates that the channel for transmitting the third information is the second control channel, it can be determined that the first control information is two-level control information, including first-level control information and second-level control information, wherein the first-level control information includes the first information, and the second-level control information includes the second information and the third information.
  • the first control information is three-level control information, including first-level control information, second-level control information and third-level control information, wherein the first-level control information includes the first information, the second-level control information includes the second information, and the third-level control information includes the third information.
  • the structure of the first control information can be configured according to different conditions.
  • the first control information is configured as level 3 control information, and the first information or the second information indicates that the channel for transmitting the third information is the first data channel; if the first control information is less than or equal to the preset threshold, the first control information is configured as level 2 control information, and the first information or the second information indicates that the channel for transmitting the third information is the second control channel.
  • the size of the first control information is greater than the preset threshold as a condition is only an example provided in the embodiment of the present application.
  • the condition can also be other contents, such as whether K is greater than the preset threshold, where K is the number of hops for transmitting the first data between the source device and the target device, and the embodiment of the present application does not limit this.
  • the first information or the second information can indicate the channel for transmitting the third information by indicating whether to enable (on) or disable (off) the third-level control information. Specifically, if the first information or the second information indicates that the third-level control information is enabled, it is determined that the first control information is three-level control information, including first-level control information, second-level control information and third-level control information, wherein the first-level control information includes the first information, the second-level control information includes the second information, the third-level control information includes the third information, and the corresponding third information is carried on the first data channel or the third control channel.
  • the first control information is two-level control information, including first-level control information and second-level control information, wherein the first-level control information includes the first information, the second-level control information includes the second information and the third information, and the corresponding third information is carried on the second control channel. Based on this implementation method, it is conducive to enabling the second device to determine the structure of the first control information in a timely manner.
  • the structure of the first control information may also be preconfigured, in which case the first information or the second information does not need to indicate a channel for transmitting the third information.
  • the size of the first control information especially the size of the dynamic indication control information, may be reduced.
  • the structure of the first control information may also be a single-level control information structure, which is not elaborated in the embodiments of the present application.
  • the first information indicates one or more of the following configurations: a packet delay budget (PDB) for transmission between the first device and the second device, a time domain resource configuration for transmission between the first device and the second device, and a frequency domain resource configuration for transmission between the first device and the second device.
  • PDB packet delay budget
  • the PDB transmitted between the first device and the second device refers to the maximum delay interval required for the transmission of the first data between the first device and the second device. That is, the delay caused when the first device forwards the first data to the second device should not exceed the PDB transmitted between the first device and the second device.
  • the PDB transmitted between the first device and the second device can be configured based on the end-to-end PDB.
  • the PDB transmitted between the first device and the second device is indicated by the first information, which is conducive to the adjacent devices around the current hop to read the parameter and determine whether to occupy the corresponding resources in combination with the available resources, the end-to-end service quality, and the reference signal receiving power (RSRP) threshold.
  • RSRP reference signal receiving power
  • the time domain resource configuration for transmission between the first device and the second device refers to the time domain resource configuration required for the transmission of the first data between the first device and the second device, and is indicated in units of slots or subslots.
  • the time domain resource configuration also includes an indication of whether to perform one grant multiple data repeated transmission and an indication of the number of repetitions.
  • one grant corresponds to one scheduling signaling.
  • Using one scheduling signaling to schedule multiple transmissions of the same data can reduce signaling overhead and improve data transmission reliability compared to each transmission corresponding to one scheduling signaling.
  • the time domain resources are indicated in units of subslots and whether to perform one grant multiple data repeated transmission, it is beneficial to reduce delay and improve reliability.
  • the control channel and the time domain channel are time-division multiplexed. Since the control information does not occupy the resource symbols where it is located, the remaining resource symbols cannot be shared with the data channel.
  • the one grant multiple data repeated transmission method can avoid the configuration of multiple scheduling signaling grants, which is beneficial to reducing AF control overhead.
  • the time domain resource configuration includes a start time of the time domain and a time domain length, which is usually configured by a source device. Further optionally, the time domain length of each hop transmission in a multi-hop transmission configured by the source device is the same.
  • the frequency domain resource configuration for transmission between the first device and the second device refers to the frequency domain resource configuration required for transmission of the first data between the first device and the second device.
  • the frequency domain resource configuration is the frequency domain resource configuration used by the Uu link to transmit the first data.
  • the frequency domain resource configuration includes a frequency domain starting position and a frequency domain length.
  • the Uu link may have different carriers, and compared with the side link, the Uu link may have a different bandwidth such as a larger system bandwidth. Therefore, when performing AF forwarding, the frequency domain configuration of the Uu link also needs to consider the bandwidth that the side link can support.
  • One possible frequency domain bandwidth configuration is that the Uu link is also configured as the bandwidth supported by the side link.
  • the first data can be transmitted through two types of links in the M-hop transmission, and the first information also includes the following configuration: the minimum time interval for forwarding the first data from the first link to the second link.
  • the first link is a link between a network device and a terminal device, such as a Uu link
  • the second link is a link between a terminal device and a terminal device, such as a sidelink (SL) or an enhanced sidelink (SSL) link.
  • the minimum time interval for forwarding the first data from the first link to the second link can be expressed as the minimum time interval for forwarding the first data from the Uu link to the SSL link (Time gap slot & symbol UutSSL).
  • the minimum time interval for forwarding the first data from the first link to the second link can be understood as the earliest time when the second link starts to transmit after the first data is transmitted through the first link and reaches the sending device of the second link, which is indicated in units of slot and/or subslot.
  • the minimum time interval for forwarding the first data from the first link to the second link can be understood as the interval from the time the second device receives the first data sent by the first device to the start time when the second device starts forwarding the first data.
  • the M-hop transmission includes a sidelink
  • the first information also indicates the configuration of the first data on the sidelink.
  • the sidelink referred to here includes an SL link and an SSL link.
  • the configuration of the first data on the sidelink includes one or more of the following configurations: end-to-end priority (E2E Priority), common carrier (CC) configuration on the sidelink, resource pool (Resource pool) configuration, sidelink frequency domain resource configuration, sidelink resource reservation (Resource reservation) cycle configuration, sidelink time domain transmission resource configuration.
  • the first information is carried in a control channel that can be read by other devices, which is conducive to other devices competing for resources other than M-hop transmission to read the configuration of the first data on the sidelink in the first information, so as to avoid the adjacent devices occupying the corresponding resources, resulting in an increase in the delay required for M-hop transmission or data loss.
  • E2E Priority refers to the priority of data from the sender to the receiver. Each priority corresponds to a PDB, which is used to limit the maximum time required for the data to be transmitted from the sender to the receiver. Each priority also corresponds to the reliability of the service or the allowed packet error rate. It can be understood that the E2E Priority indicated in the first information can be used to determine the maximum time interval between the first data from the source device to the target device.
  • the CC configuration on the sidelink refers to the CC configuration required for transmitting the first data on the sidelink, as well as whether to cooperate and the corresponding CC configuration, such as configuration in a 1+3-bit manner, where 1 bit indicates whether to perform cooperative transmission of different CCs, and 3 bits can be used to indicate the selection of a CC from a maximum of 8 CCs as the data transmission in the current CC. Transmission of the same data by different CCs can be regarded as a frequency-division repeated transmission, which is used to obtain frequency diversity gain and improve reliability.
  • Resource pool configuration refers to the time-frequency domain resources that can be used to transmit the first data.
  • the maximum bandwidth size in the frequency domain can be a partial bandwidth (bandwidth part, BWP).
  • BWP bandwidth part
  • the control channel can be sent on the corresponding bandwidth of each resource pool, wherein the resource mapping of the data is configured on each resource pool in sequence, for example, once on the bandwidth 1 corresponding to resource pool 1, and once on the bandwidth 2 corresponding to resource pool 2.
  • the bandwidth-limited device can monitor the control information sent through the AF forwarding method in the resource pool where it is located, and at the same time, the AF forwarding method can use a sufficiently large bandwidth.
  • the resource pool configuration can be obtained by other devices.
  • Two frequency domain resource bandwidth configurations of the control channel For example, frequency domain resource configuration 1 and frequency domain resource configuration 2, the bandwidth range of frequency domain resource configuration 1 is limited to one subchannel, and the bandwidth range of frequency domain resource configuration 2 can be greater than one subchannel. Exemplarily, the bandwidth range of frequency domain resource configuration 2 can be within the range of 1 to 6 subchannels.
  • Frequency domain resource configuration 1 mainly considers the perceived bandwidth support capability of each device in the system and is used for the transmission of the first level control information, such as cell specific configuration.
  • the resources of the second level control information are configured through the first level control information, such as indicating the aggregation level of the second level control information through the first level control information.
  • the bandwidth of a typical frequency domain resource configuration 1 is smaller than the bandwidth of frequency domain resource configuration 2.
  • the sidelink frequency domain resource configuration refers to the frequency domain resource configuration required for the first data to be transmitted on the sidelink.
  • the sidelink frequency domain resource configuration is the sidelink amplification and forwarding frequency domain resource configuration, and the sidelink frequency domain resource configuration of each hop is the same. This configuration is mainly used for the destination device to perform resource demapping based on the frequency domain resource configuration when receiving the first data. Then the modulation symbol of the data carried by the frequency domain resource is obtained.
  • the relay device does not need to read the configuration when forwarding, but the frequency domain resource configuration can be transmitted on a control channel that can be obtained by other devices through the first information carrier, which is conducive to other devices competing for resources other than the M-hop transmission to read the configuration and avoid occupying the corresponding resources.
  • the sidelink frequency domain resource configuration is the sidelink decoding and forwarding frequency domain resource configuration.
  • the configuration can be configured by the source device, and the configuration of each hop is the same, wherein the frequency domain resources corresponding to the time domain reserved resources are also the same.
  • the sidelink time domain transmission resource configuration refers to the time domain resource configuration required for the transmission of the first data on the sidelink.
  • the time domain resource configuration includes the time domain transmission resource configuration and the time domain reserved resource configuration.
  • the time domain transmission resource refers to the time domain resource currently used to transmit the first data
  • the time domain reserved resource refers to the time domain resource used to retransmit the first data or the resource reserved for transmitting other data.
  • the sidelink reserved resource period configuration refers to the period between various resources reserved in advance for retransmission or transmission of other data in M-hop transmission.
  • the second information indicates one or more of the following configurations: time domain resource configuration of M-1 hop transmission, PDB of M-1 hop transmission, minimum interval of M-1 hop sidelink transmission reception and forwarding time (inter SSL min GAP), quasi-colocation (QCL) indication, path information, and transmit beam configuration.
  • the time domain resource configuration of M-1 hop transmission refers to the time domain resource configuration required for the transmission of each hop in the M-1 hop except the first device and the second device in the M hop transmission. Specifically, it includes time domain transmission resource configuration and time domain reserved resource configuration.
  • the time domain resource configuration can also be simplified to indicate the start time of each hop in the M-1 hop, and the time domain length is the same as the time domain length in the time domain resource configuration required for the transmission of the first device and the second device in the above-mentioned first information. Further optionally, the start time can be the first symbol of the received control information.
  • the PDB of M-1 hop transmission refers to the maximum delay corresponding to each hop transmission in the M-1 hop except the transmission between the first device and the second device in the M hop transmission.
  • the PDB of the M-1 hop transmission and the PDB transmitted between the first device and the second device can be configured based on the pre-configured E2E PDB, for example, the PDB of each hop is evenly distributed based on the E2E PDB.
  • the minimum interval between receiving and forwarding time of M-1 hop sidelink transmission refers to the minimum time interval between each device receiving the first data and forwarding the data in M-1 hop transmission.
  • the minimum interval between receiving and forwarding time of M-1 hop sidelink transmission is related to the configured subcarrier spacing, slot and subslot time granularity.
  • QCL indication refers to the parameter used to indicate the quasi-co-location relationship between the demodulation reference signal (DMRS) antenna port and the reference signal.
  • the reference signal can be a channel state information reference signal (CSI-RS) or a synchronization signal block (SSB).
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the quasi-co-location relationship is a channel condition assumption.
  • QCL can be used to determine the receiving beam information corresponding to the transmitting beam used for data transmission, so as to use the corresponding receiving beam to receive data.
  • Path information refers to the identification (ID) information of the device corresponding to each node in the M-hop transmission.
  • ID the identification information of the device corresponding to each node in the M-hop transmission.
  • the ID information is the ID information corresponding to the group of devices.
  • a group of devices may also be devices located in a certain geographical area, and the corresponding group of devices located in the area may correspond to a zone ID.
  • the transmission beam configuration refers to the transmission beam of each relay device.
  • the transmission beam can be configured by selecting from a pre-configured high-layer signaling beam set.
  • the second information may also indicate one or more of the following configurations: DMRS type (pattern), DMRS port number (port number), and MCS corresponding to the first data.
  • DMRS type pattern
  • DMRS port number port number
  • MCS MCS corresponding to the first data.
  • the second information also indicates QCL corresponding to the first data and the third information.
  • DMRS pattern refers to the type of DMRS in M-hop transmission. Specifically, it includes different time domain resource types, such as the DMRS pattern of slot and subslot, including the impact of the automatic gain control (AGC) symbol on the DMRS pattern.
  • AGC automatic gain control
  • the DMRS symbol in front of the slot or subslot of SL or SSL will be affected.
  • the DMRS symbol located in the second symbol is repeatedly transmitted in the first symbol.
  • the reserved symbol can be turned off. At this time, there is no need for the first symbol of the slot or subslot to repeatedly transmit the DMRS located in the second symbol.
  • DMRS port number refers to the number of antenna ports of each device in M-hop transmission, for example, the number is 1 or 2.
  • the QCL corresponding to the first data and the third information refers to the receiving QCL relationship between the first data and the third information, which can be understood as the assumed QCL relationship between the DMRS of the channel carried by the first data and the third information and the CSI-RS or SSB of each hop in the M-hop transmission.
  • the third information indicates one or more of the following configurations: New Data Indicator (NDI), redundancy version (RV), hybrid automatic repeat request (HARQ) process, HARQ feedback enable, HARQ feedback time, and HARQ feedback resources.
  • NDI New Data Indicator
  • RV redundancy version
  • HARQ hybrid automatic repeat request
  • the HARQ process includes a HARQ process ID.
  • the destination device can perform retransmission merging based on data of the same process, or distinguish data corresponding to different processes.
  • HARQ feedback enablement including whether HARQ feedback is supported or HARQ feedback is enabled, and if HARQ feedback is supported, the device that needs to obtain feedback information or the receiving device of feedback information, such as the corresponding sending device, or the source device, or the centralized scheduling device, or both the sending device and the source device can receive feedback information, or both the sending device and the centralized scheduling device can receive feedback information.
  • the sending device here refers to a device that sends the first data to the receiving device
  • the receiving device refers to a device that receives the first data forwarded from the sending device in M-hop transmission.
  • the first device sends the first data to the second device, the first device is the sending device, and the second device is the receiving device.
  • the sending device can be a source device or a relay device, and the receiving device can be a relay device or a destination device.
  • the HARQ feedback time refers to the time for sending feedback information.
  • the reference time corresponding to the HARQ feedback time may be the last symbol of the received data channel.
  • HARQ feedback resources refer to transmission resources of a channel that carries HARQ feedback information.
  • RV refers to the redundant version corresponding to the first data.
  • the relay device does not need to decode the first data, and therefore does not need to obtain the RV, but the destination device obtains the RV, so that the data of the same process can be retransmitted and merged.
  • NDI is used to indicate whether new data is sent or old data is resent.
  • the relay device does not need to decode the first data, and therefore does not need to obtain NDI.
  • the first information, the second information and the third information may also indicate other configurations, which is not limited in the embodiments of the present application.
  • the implementation manner of the first device acquiring the first control information is mainly divided into the following multiple implementation manners according to whether the first device is a relay device or a source device.
  • the first device is a relay device:
  • the first device obtains the first control information
  • the specific implementation manner is: the first device receives the second control information sent by the third device; the first device determines the first control information based on the second control information.
  • the third device there is M+1 hop transmission between the third device and the target device, wherein the M+1 hop transmission includes M hop transmission and transmission between the third device and the first device, and the third device may be a source device or a relay device.
  • the second control information includes information indicating the configuration required for transmission between the third device and the first device, configuration information indicating the M hop transmission, and third information. Therefore, the first device can receive the first data according to the configuration information of the transmission between the third device and the first device.
  • the specific implementation method in which the first device determines the first control information based on the second control information is to generate the first information based on the configuration required for transmission between the first device and the second device in the configuration information indicating the M hop transmission, generate the second information based on the configuration required for M-1 hop transmission in the configuration information indicating the M hop transmission, and generate the third information based on the configuration required for the indicated third information, wherein the third information in the second control information is the same as the third information in the first control information, and the first device generates the first control information based on the first information, the second information, and the third information.
  • each relay device can receive the first data according to the control information obtained in the current hop, and generate the control information required for the remaining hop transmission according to the control information, thereby realizing the centralized indication of the configuration required for each hop transmission through the control information in multi-hop transmission.
  • the frequency domain resources carrying the first control information are the same as the frequency domain resources carrying the second control information.
  • the first control information and the second control information are both two-level control information structures, the frequency domain resources carrying the first-level control information in the first control information are the same as the frequency domain resources carrying the first-level control information in the second control information, and the frequency domain resources carrying the second-level control information in the first control information are the same as the frequency domain resources carrying the second-level control information in the second control information; or, when the first control information and the second control information are both three-level control information structures, similarly, the frequency domain resources carrying the third-level control information in the first control information are the same as the frequency domain resources carrying the third-level control information in the second control information.
  • the source device transmits control information 1 to the relay device, and the relay device sends control information 2 to the target device.
  • Both control information 1 and control information 2 have a three-level structure. It can be seen from the relay device receiving control information 1 and the relay device sending control information 2 that control information 1 and control information 2 are on the same frequency domain resources, and the first-level control information in control information 1 and control information 2 are both on the same frequency domain resources, the second-level control information in control information 1 and control information 2 are both on the same frequency domain resources, and the third-level control information in control information 1 and control information 2 are both on the same frequency domain resources.
  • the first device is a source device:
  • the first device has the ability to schedule resources, and the first device obtains the first control information.
  • the specific implementation is: the first device can determine the first control information based on various factors such as the data type, service type, service quality requirements, and multi-hop channel quality information corresponding to the first data.
  • the channel quality information can be parameters such as RSRP and channel quality information indicator (Channel Quality Indicator, CQI), which is not limited in the embodiments of the present application.
  • CQI Channel Quality Indicator
  • the first device does not have the ability to schedule resources, and the first device obtains the first control information
  • the specific implementation is: the first device receives the second control information sent by the third device; the first device determines the first control information based on the second control information.
  • the third device is a scheduling device, which has the ability to schedule resources for multi-hop transmission. Based on this implementation, the configuration required for each hop in the M-hop transmission is configured by the scheduling device, which is conducive to the centralized scheduling of the M-hop transmission.
  • the second control information includes fourth information and fifth information, wherein the fourth information indicates one or more of the following configurations: the minimum time interval for forwarding the first data from the first link to the second link, the transmission configuration for transmitting the second-level control information, the structure indication of the first control information, the carrier configuration on the sidelink, the resource pool configuration, and the sidelink frequency domain resource configuration; the fifth information indicates one or more of the following configurations: the time domain resource configuration of M-hop transmission, the PDB of M-hop transmission, the path information, the transmission beam configuration of M-hop transmission, the minimum sidelink start time of M-hop transmission, and QCL.
  • the fourth information indicates one or more of the following configurations: the minimum time interval for forwarding the first data from the first link to the second link, the transmission configuration for transmitting the second-level control information, the structure indication of the first control information, the carrier configuration on the sidelink, the resource pool configuration, and the sidelink frequency domain resource configuration
  • the fifth information indicates one or more of the following configurations: the time domain resource configuration of M-hop transmission
  • the first link is a link between a network device and a terminal device, such as a Uu link
  • the second link is a link between a terminal device and a terminal device, such as an SL or SSL link.
  • the structure indication of the first control information indicates that the control structure of the first control information generated by the first device is two-level control information or three-level control information.
  • the structure indication of the first control information also indicates that the control channel carrying the third information is a channel type, specifically a data channel or a control channel.
  • the transmission configuration of the fifth information includes AL, code rate, MCS, time domain resources, and frequency domain resources.
  • the structure of the second control information is a two-level control information structure
  • the second control information includes the first-level control information and the second-level control information
  • the first-level control information includes the fourth information
  • the second-level control information includes the fifth information.
  • the third device is a network device
  • the second control information is DCI
  • the structure of the second control information is a two-level control information structure, and the time domain resources and frequency domain bandwidth carrying the second control information are unconstrained, and the multi-hop variable control amount can be handled by the second-level control information.
  • the third device is a scheduling device and does not need to transmit data, it is not necessary to enable other surrounding adjacent devices to obtain the content of the second control information, configure the fixed control indication message in the first-level control information, store the variable control parameters in the second-level control information, and configure the relatively fixed control information in the first-level control information that needs to be blindly detected, so as to avoid detecting the control channel carrying a variable load, and reduce the complexity of blind decoding.
  • the configurations indicated in the fourth information and the fifth information are the same as the configurations indicated in the first information or the second information, and some of the configurations are a collection of the configurations indicated in the first information and the second information, and the embodiments of the present application will not be repeated here.
  • the minimum time interval for forwarding the first data from the first link to the second link, the carrier configuration on the side link, the resource pool configuration, and the side link frequency domain resource configuration are the same as those described in the first information.
  • the path information and QCL are the same as those described in the second information.
  • the time domain resource configuration of the M-hop transmission includes the time domain resource configuration transmitted between the first device and the second device of the first information and the time domain resource configuration of the M-1 hop transmission in the second information
  • the PDB of the M-hop transmission includes the PDB transmitted between the first device and the second device of the first information and the PDB of the M-1 hop transmission in the second information
  • the transmit beam configuration of the M-hop transmission includes the transmit beam configuration transmitted between the first device and the second device of the first information and the transmit beam configuration of the M-1 hop transmission in the second information.
  • the first-level control information includes the fourth information
  • the second-level control information includes the fifth information
  • the fourth information and the fifth information are carried in different control channels.
  • the time domain resources of the control channel carrying the first-level control information and the time domain resources of the control channel carrying the second-level control information are mapped on the available bandwidth in the manner of first frequency domain and then time domain.
  • the resources of the control channel carrying the second-level control information are indicated by the first-level control information
  • the transmission configuration of the second-level control information indicated in the fourth information specifically includes AL, code rate, MCS, time domain resources, and frequency domain resources.
  • the AL, code rate, and MCS of the fourth information and the fifth information are the same.
  • the complexity of blind solution of multi-level control information can be reduced, and at the same time, in the design of multi-level control information, the size of the multi-level control information is supported to be variable, so it is conducive to realizing that the corresponding control information has different sizes in multi-hop transmission scenarios with different hops.
  • the fourth information further indicates one or more of the following parameters: DMRS pattern, number of DMRS ports, NDI, RV, HARQ process, HARQ feedback enable, HARQ feedback time, and HARQ feedback resources.
  • the DMRS pattern and number of DMRS ports indicated in the fourth information are the same as those in the above-mentioned second information, and the embodiments of the present application are not described in detail here.
  • NDI, RV, HARQ process, HARQ feedback enable, HARQ feedback time, and HARQ feedback resources are the same as the parameters indicated in the above-mentioned third information, and the embodiments of the present application are not described in detail here.
  • the first device determines the first control information based on the second control information
  • the specific implementation method is: the first device determines the sixth information, and the sixth information includes one or more of the following: end-to-end priority, resource reservation period, delay budget between the first device and the second device, and delay budget for M-1 hop transmission; the first device determines the first control information based on the sixth information and the second control information.
  • the first device can determine the sixth information based on factors such as the data type or service type of the first data, quality of service requirements, etc. Based on this implementation, since the scheduling device is unaware of factors such as the service type and data type of the first data, it is impossible to configure appropriate parameters (such as transmission delay, etc.). Determining the sixth information through the first device is conducive to configuring more reasonable parameters, thereby improving the user experience.
  • the number of relay devices corresponding to the node forwarding the first data can be multiple, that is, the source device or the relay device can forward the first data to the multiple relay devices corresponding to the next node by multicast, groupcast or broadcast.
  • FIG7 is a schematic diagram of a three-hop transmission, wherein the three-hop transmission includes a source device, a first set, a second set, and a target device, wherein the first set and the second set include multiple relay devices, for example, the first set includes relay device 1, relay device 2, and relay device 3, and the second set includes relay device 4, relay device 5, and relay device 6.
  • the first set and the second set are used to assist the source device in forwarding the first data to the target device.
  • the source device sends the first data to the multiple relay devices in the first set, and after receiving the first data, the multiple relay devices in the first set will forward the first data to the multiple relay devices in the second set, and after receiving the first data, the multiple relay devices in the second set will forward the data to the target device.
  • the second device is a relay device, and the first device sends the first control information to the second device.
  • the specific implementation is: the first device sends the first control information to the second set, the second set includes multiple devices, and the second device is one of the devices in the second set.
  • the way in which the first device sends the control information to the second set can be a multicast, groupcast or broadcast method, which is not limited in the embodiment of the present application.
  • the relay devices included in the set corresponding to a node can be divided based on the geographical location. In addition to the geographical location method, other division methods can also be adopted, which is not limited in the embodiment of the present application. Based on this implementation method, it is conducive to improving the coverage of data transmission, and forwarding the first data to multiple relay devices at the same time can also enhance the reliability of data forwarding.
  • the first device is a relay device
  • the first device is a device in a first set
  • the first set includes multiple devices.
  • the first control information is transmitted on a first time-frequency resource, and the first time-frequency resource is also used by other devices in the first set to send the first control information to devices in the second set.
  • FIG8 is a schematic diagram of the first set transmitting data to the second set, wherein the first set includes devices such as relay devices 1, relay devices 2, and relay devices 3, and the second set includes devices such as relay devices 4, relay devices 5, and relay devices 6.
  • Relay device 1 is the first device
  • relay device 4 is the second device.
  • each device in the first set that correctly receives the data sends the first control information to the device in the second set on the first time-frequency resource.
  • each device in the first set that correctly receives the data will also send the first data to each device in the second set on the same resource, and correspondingly, each device in the second set will also receive the first data on the same resource.
  • the same time-frequency resources, MCS, reserved resources, the same path information, DMRS configuration, and HARQ configuration can be used. Based on this implementation, it is beneficial to centrally manage the configuration of the relay devices in each set, and avoid data forwarding confusion due to a large number of relay devices in one set.
  • the second information also indicates a zone identifier (Zone ID).
  • the Zone ID is an identifier of a set of multiple relay devices corresponding to a node in M hops, for example, an identifier of a first set and an identifier of a second set.
  • the path information includes a source device identifier, a target device identifier, and a Zone ID of a set corresponding to multiple relay nodes between the source device and the target device.
  • the Zone ID enables the second device to determine the set corresponding to the next hop, so that the first data received through the first set can be forwarded to the corresponding next hop set.
  • the transmission beam configuration included in the second information is specifically a set-based beam transmission configuration, and the second information may also include a set-based beam reception configuration.
  • the transmission beam configuration and the beam reception configuration may be stored in the local storage of each device, and triggered to be activated after receiving the first control information.
  • the second information further indicates a HARQ acknowledgment (ACK) time and an acknowledgment resource
  • the acknowledgment resource is a transmission resource used for transmitting HARQ acknowledgment information of the second set.
  • the method further includes: if the first device does not receive ACK information on a preconfigured resource, i.e., an acknowledgment resource, after sending the first data to the second set until the acknowledgment time, and the number of retransmissions does not exceed a preset number, then the first device retransmits the first data to multiple second devices.
  • the preset number is the maximum number of retransmissions, which can be configured through high-level signaling. Based on this implementation, it is beneficial to improve the reliability of successful data transmission.
  • the corresponding set of relay nodes in M hops includes multiple subsets, one subset includes one or more relay devices, and each subset includes at least one relay device for forwarding data.
  • the path for the source device to forward data to the target device can generate multiple paths based on the subset, and the forwarding resources corresponding to each path are orthogonal.
  • the first set and the second set each include two subsets, the first set includes subset 1 and subset 2, and the second set includes subset 3 and subset 4.
  • the path for the source device to transmit the first data to the target device through the first set and the second set is also divided into two paths, namely path 1 and path 2.
  • path 1 is that the source device transmits the first data to subset 1, and then subset 1 transmits the first data to subset 3, and finally subset 3 transmits it to the target device
  • path 2 is that the source device transmits the first data to subset 2, and then subset 2 transmits the first data to subset 4, and subset 4 transmits it to the target device.
  • the forwarding resources used by each path are orthogonal, which is conducive to avoiding interference and resource competition, and the multipath transmission method is conducive to improving the reliability of data transmission.
  • the first device sends first control information to the second device, and correspondingly, the second device receives the first control information sent by the first device.
  • the second device after the second device receives the first control information sent from the first device, the second device receives the first data sent from the first device based on the first information in the first control information.
  • the second device may also generate third control information based on the first control information, and send the third control information to the fourth device.
  • the third control information includes the configuration for transmitting the first data between the second device and the fourth device, and the configuration required for the target device to receive the first data.
  • the fourth device refers to the next-hop transmission device corresponding to the second device, and the configuration required for the target device to receive the first data here is the same as the third information in the above-mentioned first control information. If M is an integer greater than 2, the third control information also includes the configuration of M-2 hop transmission, wherein the M-2 hop transmission is the M-2 hop transmission in the M-1 hop transmission except for the transmission between the second device and the fourth device.
  • the specific implementation method of transmitting the third control information and the first data between the second device and the fourth device is the same as the transmission method between the first device and the second device, and can refer to the above description, and the embodiments of the present application will not be repeated here.
  • the first control information includes the configuration instructions required for the M-hop transmission and the configuration required for the destination device to receive. Therefore, the configuration required for each hop of the M-hop transmission can be centrally scheduled through the first control information.
  • the first control information includes the configuration for transmitting the first data between the first device and the second device. Therefore, when the first device is not the source device, the first device and the second device do not need to wait for the first device to configure the corresponding transmission resources, and data can be directly transmitted, thereby reducing the delay in data forwarding between the first device and the second device.
  • the resources required for the subsequent transmission of the second device can also be directly based on the configuration of the M-1 hop transmission of the first control information, without waiting for the sending device to separately configure the corresponding transmission resources, thereby reducing the delay in data transmission.
  • the first device and the second device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the communication device may be a first device.
  • the communication device may include a module or unit corresponding to the method/operation/step/action performed by the first device in the above method embodiment, and the unit may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the communication device shown in Figure 10 may be the first device, or a device that can be used in combination with the first device.
  • the communication device may also be a chip system.
  • the device may be used to perform some or all of the functions of the first device in the method embodiment described in Figure 3 above.
  • the communication device shown in Figure 10 may include a communication unit 1001 and a processing unit 1002.
  • the processing unit 1002 is used to perform data processing.
  • the communication unit 1001 integrates a receiving unit and a sending unit.
  • the communication unit 1001 may also be called a transceiver unit. Alternatively, the communication unit 1001 may also be split into a receiving unit and a sending unit.
  • the processing unit 1002 is used to obtain first control information, the first control information is used to indicate the configuration of M-hop data transmission between the first device and the target device, the M-hop data transmission is used to transmit the first data, the M-hop transmission includes the transmission between the first device and the second device, the first control information includes first information, second information and third information, the first information indicates the configuration for transmitting the first data between the first device and the second device, the second information indicates the configuration of M-1 hop transmission, the M-1 hop transmission is the M-1 hop transmission in the M-hop transmission except the transmission between the first device and the second device, the third information indicates the configuration required for the target device to receive the first data, and M is an integer greater than 1; the communication unit 1001 is used to send the first control information to the second device.
  • the first information also indicates a configuration for transmitting the second information
  • the configuration for transmitting the second information includes one or more of the following: aggregation level, code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the first information is carried on a first control channel
  • the second information and the third information are carried on a second control channel.
  • the first information is carried on a first control channel
  • the second information is carried on a second control channel
  • the third information is carried on a first data channel.
  • the second information further indicates a configuration for transmitting the third information
  • the configuration for transmitting the third information includes one or more of the following: code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the first information or the second information further indicates a channel for transmitting the third information.
  • the first information indicates one or more of the following configurations: a delay budget for transmission between the first device and the second device, a minimum time interval for forwarding the first data from the first link to the second link, a frequency domain resource configuration between the first device and the second device, and a time domain resource configuration between the first device and the second device.
  • the first link is a link between a network device and a terminal device
  • the second link is a link between a terminal device and a terminal device.
  • the second information indicates one or more of the following configurations: a time domain resource configuration for M-1 hop transmission, a delay budget for M-1 hop transmission, path information, a transmit beam configuration, a minimum interval between reception and forwarding times for M-1 hop sidelink transmission, and a quasi-co-location indication.
  • the third information indicates one or more of the following configurations: a new data indicator, a redundancy version, a HARQ process number, a HARQ feedback enable, a HARQ feedback time, and a HARQ feedback resource.
  • the first information further indicates configuration of the first data on the sidelink.
  • the configuration of the first data on the sidelink includes one or more of the following information: end-to-end priority, carrier configuration on the sidelink, resource pool configuration, sidelink frequency domain resource configuration, sidelink resource reservation period configuration, and sidelink time domain transmission resource configuration.
  • the processing unit 1002 when the processing unit 1002 obtains the first control information, it is specifically configured to: receive second control information sent from a third device; and determine the first control information based on the second control information.
  • the third device is a network device
  • the second control information includes fourth information and fifth information
  • the fourth information indicates one or more of the following configurations: the minimum time interval for forwarding the first data from the first link to the second link, the transmission configuration of the fifth information, the structure indication of the first control information, the configuration for transmitting the fifth information, the carrier configuration on the side link, the resource pool configuration, and the side link frequency domain resource configuration
  • the fifth information indicates one or more of the following configurations: the time domain resource configuration of M-hop transmission, the delay budget of M-hop transmission, the path information, the transmit beam configuration of M-hop transmission, the minimum side link start time of M-hop transmission, and the quasi-co-location indication.
  • the processing unit 1002 determines the first control information based on the second control information, and is specifically used to: determine the sixth information, the sixth information including one or more of the following: end-to-end priority, resource reservation period, delay budget between the first device and the second device, delay budget for M-1 hop transmission; determine the first control information based on the sixth information and the second control information.
  • the communication unit 1001 is used to send the first control information to the second device, specifically to send the first control information to the second set, where the second set includes multiple devices, and the second device is one device in the second set.
  • the first device is a device in a first set, the first set includes multiple devices, the first control information is transmitted on a first time-frequency resource, and the first time-frequency resource is also used by other devices in the first set to send the first control information to the device in the second set.
  • the second information also indicates a confirmation time and a confirmation resource, where the confirmation resource is a transmission resource used to transmit confirmation information of the second set.
  • the communication unit 1001 is also used to send confirmation information to the first set on the confirmation resource within the confirmation time if the first data from the first set is received.
  • the second information also includes a zone identification Zone ID indication.
  • the communication device may be a second device.
  • the communication device may include a module or unit corresponding to the method/operation/step/action performed by the second device in the above method embodiment, and the unit may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the communication device shown in FIG11 may be a second device, or a device that can be used in combination with a second device.
  • the communication device may also be a chip system.
  • the device may be used to perform some or all of the functions of the second device in the method embodiment described in FIG3 above.
  • the communication device shown in FIG11 may include a communication unit 1101.
  • the communication unit 1101 integrates a receiving unit and a sending unit.
  • the communication unit 1101 may also be referred to as a transceiver unit.
  • the communication unit 1101 may also be split into a receiving unit and a sending unit.
  • the communication unit 1101 is used to receive first control information from a first device, where the first control information is used to indicate a configuration of M-hop data transmission between the first device and a target device, where the M-hop data transmission is used to transmit first data, where the M-hop transmission includes transmission between the first device and the second device, and the first control information includes first information, second information, and third information.
  • the first information indicates a configuration for transmitting the first data between the first device and the second device
  • the second information indicates a configuration of M-1-hop transmission
  • the M-1-hop transmission is an M-1-hop transmission in the M-hop transmission excluding the transmission between the first device and the second device
  • the third information indicates a configuration required for the target device to receive the first data, where M is an integer greater than 1.
  • the first information also indicates a configuration for transmitting the second information
  • the configuration for transmitting the second information includes one or more of the following: aggregation level, code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the first information is carried on a first control channel
  • the second information and the third information are carried on a second control channel.
  • the first information is carried on a first control channel
  • the second information is carried on a second control channel
  • the third information is carried on a first data channel.
  • the second information further indicates a configuration for transmitting the third information
  • the configuration for transmitting the third information includes one or more of the following: code rate, modulation and coding strategy, time domain resources, and frequency domain resources.
  • the first information or the second information further indicates a channel for transmitting the third information.
  • the first information indicates one or more of the following configurations: a delay budget for transmission between the first device and the second device, a minimum time interval for forwarding the first data from the first link to the second link, a frequency domain resource configuration between the first device and the second device, and a time domain resource configuration between the first device and the second device.
  • the first link is a link between a network device and a terminal device
  • the second link is a link between a terminal device and a terminal device.
  • the second information indicates one or more of the following configurations: a time domain resource configuration for M-1 hop transmission, a delay budget for M-1 hop transmission, path information, a transmit beam configuration, a minimum interval between reception and forwarding times for M-1 hop sidelink transmission, and a quasi-co-location indication.
  • the third information indicates one or more of the following configurations: a hybrid automatic repeat request (HARQ) process number, HARQ feedback enable, HARQ feedback time, and HARQ feedback resources.
  • HARQ hybrid automatic repeat request
  • the first information further indicates configuration of the first data on the sidelink.
  • the configuration of the first data on the sidelink includes one or more of the following information: end-to-end priority, carrier configuration on the sidelink, resource pool configuration, sidelink frequency domain resource configuration, and sidelink resource reservation period configuration.
  • the communication unit 1101 when used to receive the first control information from the first device, it is specifically used to: receive the first control information from a first set, the first set includes multiple devices, and the first device is one device in the first set.
  • the second device is a device in a second set, the second set includes multiple devices, the first control information is transmitted on the first time-frequency resource, and the first time-frequency resource is also used by other devices in the second set to receive the first control information sent by the first set.
  • the second information also indicates a confirmation time and a confirmation resource
  • the confirmation resource is a transmission resource used to transmit confirmation information of the second set.
  • the communication unit 1101 is also used to retransmit the first data to multiple second devices if no confirmation information is received after the first data is sent to the second set until the confirmation time, and the number of retransmissions does not exceed a preset number.
  • the second information also includes a zone identification Zone ID indication.
  • M is greater than 2.
  • FIG12 is a schematic diagram of the structure of a communication device.
  • the communication device 1200 may be the first device in the above method embodiment, or may be a chip, a chip system, or a processor that supports the first device to implement the above method.
  • the communication device may be used to implement the method described in the above method embodiment, and the details may refer to the description in the above method embodiment.
  • the communication device 1200 may be the second device in the above method embodiment, or may be a chip, a chip system, or a processor that supports the second device to implement the above method.
  • the communication device may be used to implement the method described in the above method embodiment, and the details may refer to the description in the above method embodiment.
  • the communication device 1200 may include one or more processors 1201.
  • the processor 1201 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal, a terminal chip, a DU or a CU, etc.), execute a software program, and process the data of the software program.
  • the communication device 1200 may include one or more memories 1202, on which instructions 1204 may be stored, and the instructions may be executed on the processor 1201, so that the communication device 1200 performs the method described in the above method embodiment.
  • data may also be stored in the memory 1202.
  • the processor 1201 and the memory 1202 may be provided separately or integrated together.
  • the communication device 1200 may further include a transceiver 1205 and an antenna 1206.
  • the transceiver 1205 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1205 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 1200 is a first device: the processor 1201 is used to perform the data processing operation of the first device in the above method embodiment.
  • the transceiver 1205 is used to perform the data transceiving operation of the first device in the above method embodiment.
  • the communication device 1200 is a second device: the processor 1201 is used to perform the data processing operation of the second device in the above method embodiment.
  • the transceiver 1205 is used to perform the data transceiving operation of the second device in the above method embodiment.
  • the processor 1201 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1201 may store an instruction 1203, and the instruction 1203 runs on the processor 1201, so that the communication device 1200 can execute the method described in the above method embodiment.
  • the instruction 1203 may be solidified in the processor 1201, in which case the processor 1201 may be implemented by hardware.
  • the communication device 1200 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the embodiments of the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • IC integrated circuit
  • RFIC radio frequency integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • the communication device described in the above embodiments may be a first device or a second device, but the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 12.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and instructions;
  • ASIC such as modem (Mobile Station Modem, MSM);
  • the communication device may be a chip or a chip system
  • the schematic diagram of the chip structure shown in FIG13 includes a processor 1301 and an interface 1302.
  • a memory 1303 may also be included.
  • the number of processors 1301 may be one or more, and the number of interfaces 1302 may be multiple.
  • the interface 1302 is used to input or output signals
  • the processor 1301 is used to execute the data processing operation of the terminal device in the above method embodiment.
  • the interface 1302 is used to input or output signals
  • the processor 1301 is used to execute the data processing operation of the network device in the above method embodiment.
  • the processor in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an ASIC, a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchlink DRAM
  • DR RAM direct rambus RAM
  • the present application also provides a computer-readable medium for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the present application also provides a computer program product for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种配置指示方法及通信装置,该方法包括:获取第一控制信息,第一控制信息用于指示第一装置和目标装置之间的M跳数据传输的配置,M跳数据传输用于传输第一数据,M跳传输包括第一装置与第二装置之间的传输,第一控制信息包括第一信息、第二信息和第三信息,第一信息指示第一装置与第二装置之间用于传输第一数据的配置,第二信息指示M-1跳传输的配置,M-1跳传输为M跳传输中除第一装置与第二装置之间的传输之外的M-1跳传输,第三信息指示目标装置接收第一数据所需的配置,M为大于1的整数;向第二装置发送第一控制信息。基于本申请所描述的方法,集中式调度多跳的传输资源配置,从而降低中继装置的转发时延。

Description

一种配置指示方法及通信装置 技术领域
本申请涉及通信技术领域,特别涉及一种配置指示方法及通信装置。
背景技术
随着互联网应用和无线网络设备的大规模普及,人们对无线通信的需求在逐渐增加。为了能够提升通信覆盖,现阶段引入了中继装置支持从源装置到目的装置的多跳传输。以三跳传输为示例,源装置需要通过两个中继装置向目标装置发送数据,两个中继装置分别称为第一中继装置和第二中继装置,源装置向第一中继装置发送数据,第一中继装置在接收到数据后,转发该数据至第二中继装置,第二中继装置在接收到数据后将该数据转发至目标装置。
然而,发送装置在配置对应的传输资源时,是发送装置通过高层协议栈单独配置当前跳的所需的资源。发送装置为多跳传输中用于发送数据的装置,具体的,在多跳传输中的每一跳传输中,均包括一个发送数据的装置和一个接收数据的装置。其中,发送装置即该发送数据的装置,接收装置为该接收数据的装置。当发送装置基于自己通过高层协议栈配置的资源向接收装置发送数据,接收装置接收到数据后,该数据还需要经过物理(physical,PHY)层,媒质接入控制(media access control,MAC)层,无线链路层控制(radio link control,RLC)层处理,有时甚至还需协议栈中更高的协议层进行处理,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层,服务数据适配协议(service data adaptation protocol,SDAP)层或无线资源控制(radio resource control,RRC)层的。在经过高层协议栈处理后才能进行下一跳的转发。这样的处理方式,将会导致转发时延增大,不利于低时延的业务传输。如何降低的转发时延,是亟需解决的问题。
发明内容
本申请提出了一种配置指示方法及通信装置,基于本申请所描述的方法,集中式调度多跳的传输参数的配置,减少了中继装置处理的时间,从而降低转发时延。
第一方面,本申请提出了一种配置指示方法,该方法包括:获取第一控制信息,第一控制信息用于指示第一装置和目标装置之间的M跳数据传输的配置,M跳数据传输用于传输第一数据,M跳传输包括第一装置与第二装置之间的传输,第一控制信息包括第一信息、第二信息和第三信息,第一信息指示第一装置与第二装置之间用于传输第一数据的配置,第二信息指示M-1跳传输的配置,M-1跳传输为M跳传输中除第一装置与第二装置之间的传输之外的M-1跳传输,第三信息指示目标装置接收第一数据所需的配置,M为大于1的整数;向第二装置发送第一控制信息。
基于第一方面所描述的方法,第一控制信息中包括了M跳传输所需的配置指示以及目的装置接收所需的配置,因此通过第一控制信息能够集中式地调度M跳传输中每一跳传输所需要的配置。其中,第一控制信息中包括第一装置与第二装置之间用于传输第一数据的配置,因此第一装置在作为中继装置时无需再经高层协议层的处理配置对应的传输参数,可以减少配置传输参数的时间,从而降低第一装置和第二装置数据转发的时延。除此以外,在M-1跳 的传输中,例如第二装置的后续传输所需的参数配置,也可以直接根据该第一控制信息的第二信息所指示的M-1跳传输的配置,无需等待各跳传输中的发送装置通过高层协议配置单独配置数据传输所需的资源,从而降低数据传输的时延。若第一装置为源装置以及调度装置时,其中,调度装置指的是配置多跳传输的资源的装置,第一装置仍需要通过高层协议进行处理配置M跳传输所对应的传输参数,M跳传输中的中继装置,例如第二装置,将都无需再高层协议层的处理配置对应的传输资源,从而可以降低传输时延。
在一种可能的实现方式中,第一信息还指示用于传输第二信息的传输配置,用于传输第二信息的传输配置包括以下一项或者多项:聚合级别、码率、调制与编码策略、时域资源、频域资源。第二信息的传输配置也对应承载其传输的控制信道或数据信道的配置,如其时域资源,频域资源的配置。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息和第三信息承载于第二控制信道。基于该实现方式,将第一信息设计承载于第一控制信道上,有利于第二装置能够更及时地读取到第一信息并执行相应的配置,将第二信息和第三信息设计在第二控制信道中也有利于避免造成第一控制信道承载的载荷太大,从而降低其可靠性,或者也可以避免为了保证可靠性,为第一控制信息配置更多的资源,降低资源利用率,同时导致第二装置因需要检测更大带宽,增加检测复杂度。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息承载于第二控制信道,第三信息承载于第一数据信道。基于该实现方式,设计第三信息承载于第一数据信道上,有利于减少资源的损耗,尤其是控制资源的损耗。可选地,由于第三信息指示目标装置接收第一数据所需的配置,若第二装置为中继装置,第二装置通过放大转发AF的方式传输数据时,第二装置将不会应用到该配置,无需读取第三信息。第三信息承载于在数据信道中,避免了对控制资源的消耗,而AF转发则降低了转发时延。
在一种可能的实现方式中,第二信息还指示用于传输第三信息的配置,用于传输第三信息的配置包括以下一项或者多项:码率、调制与编码策略、时域资源、频域资源。
在一种可能的实现方式中,第一信息或第二信息还指示传输第三信息的信道。其中,若第一信息或第二信息指示传输第三信息的信道为第二控制信道,则可以确定该第一控制信息的为两级控制信息,包括第一级控制信息、第二级控制信息,其中,第一级控制信息包括第一信息,第二级控制信息包括第二信息和第三信息。对应的,若第一信息或第二信息指示传输第三信息为第一数据信道,则可以确定该第一控制信息为三级控制信息,包括第一级控制信息,第二级控制信息和第三级控制信息,其中,第一级控制信息中包括第一信息,第二级控制信息中包括第二信息,第三级控制信息包括第三信息。基于该实现方式,有利于控制可用资源适配不同大小载荷的控制信息,减少控制资源额外占用造成的资源浪费。
在一种可能的实现方式中,第一信息指示以下一项或者多项配置:第一装置和第二装置之间传输的时延预算、第一数据从第一链路至第二链路转发的最小时间间隔、第一装置与第二装置之间的频域资源配置、第一装置与第二装置之间的时域资源配置,第一链路为网络设备与终端设备之间的链路,第二链路为终端设备与终端设备之间的链路;第二信息指示以下一项或者多项配置:M-1跳传输的时域资源配置、M-1跳传输的时延预算、路径信息、发送波束配置、M-1跳侧行链路传输接收和转发时间的最小间隔、准共址指示;第三信息指示以下一项或者多项配置:新数据指示符、冗余版本、混合自动重传(HARQ)进程号、HARQ反馈(feedback)使能、HARQ反馈时间、HARQ反馈资源。
在一种可能的实现方式中,第一信息还指示第一数据在侧行链路上的配置。基于该实现 方式,由于在侧行链路中,资源是采用的竞争的方式获取的,该第一信息可以承载在可供其它设备可读的控制信道中,有利于M跳传输以外的其它的竞争资源的装置能够读取到该第一信息中关于第一数据在侧行链路上的配置,避免竞争对应的资源,因此也可以避免由于其它设备竞争资源而导致M跳传输所需的时延增加。
在一种可能的实现方式中,第一信息还指示以下信息中的一项或者多项:端到端的优先级、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置、侧行链路资源预留周期配置、侧行链路时域传输资源配置。
在一种可能的实现方式中,获取第一控制信息的具体实现方式为:接收来自第三装置发送的第二控制信息;基于第二控制信息确定第一控制信息。
在一种可能的实现方式中,第三装置为网络设备,第二控制信息包括第四信息和第五信息;第四信息指示以下一项或者多项配置:第一数据从第一链路至第二链路转发的最小时间间隔、第五信息的传输配置、第一控制信息的结构指示、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置;第五信息指示以下一项或者多项配置:M跳传输的时域资源配置、M跳传输的时延预算、路径信息、M跳传输的发送波束配置、M跳传输的最小侧行链路开始时间、准共址指示。其中,第一控制信息的结构指示指第一装置生成的第一控制信息的控制结构为两级控制信息或者三级控制信息,可选地,若指示了第一控制信息的结构为三级控制信息,第一控制信息的结构指示还指示该承载第三信息的控制信道为信道类型,具体为数据信道或者控制信道。第五信息的传输配置包括以下一项或者多项配置:聚合级别AL、码率、调制编码与策略MCS、时域资源、频域资源。可选地,第二控制信息的结构为两级控制信息的结构,第二控制信息中包括第一级控制信息和第二级控制信息,第一级控制信息中包括第四信息,第二级控制信息中包括第五信息,第五信息的传输配置指第二级控制信息的传输配置。基于该实现方式,通过第三装置配置M跳传输中每一跳所需的配置,有利于实现对M跳传输的集中调度。
在一种可能的实现方式中,基于第二控制信息确定第一控制信息的具体实现方式为:确定第六信息,第六信息包括以下一项或者多项:端到端的优先级、资源预留周期、第一装置与第二装置之间的时延预算、M-1跳传输的时延预算;基于第六信息和第二控制信息确定第一控制信息。基于该实现方式,由于调度装置不知晓第一数据的业务类型、数据类型等因素,因此无法配置诸如传输时延等参数,通过第一装置确定第六信息,有利于配置更合理的参数,从而提高用户的体验。
在一种可能的实现方式中,向第二装置发送第一控制信息的具体实现方式为:向第二集合发送第一控制信息,第二集合包括多个装置,第二装置为第二集合中的一个装置。基于该实现方式,有利于提高数据传输的覆盖率,同时将第一数据转发给多个中继设备,也能够增强数据转发的可靠性。
在一种可能的实现方式中,第一装置为第一集合中的装置,第一集合中包括多个装置,第一控制信息在第一时频资源上传输,第一时频资源还用于第一集合中的其它装置向第二集合中的装置发送第一控制信息。基于该实现方式,有利于提高数据传输的覆盖率,同时将第一数据转发给多个中继设备,也能够增强数据转发的可靠性。
在一种可能的实现方式中,第二信息还指示确认时间和确认资源,确认资源为用于第二集合传输确认信息的传输资源,该方法还包括:若向第二集合发送第一数据至确认时间后未接收到确认信息,且重传次数未超过预设次数,则向多个第二装置重传第一数据。基于该实现方式,有利于集中式的管理每一个集合中的中继装置的配置,避免由于一个集合中的中继 装置的数量较多,而出现数据转发混乱的情况。
在一种可能的实现方式中,第二信息还包括区标识Zone ID指示。Zone ID为M跳传输中的一个节点所对应的多个中继装置的集合的标识,例如上述实现方式中的第一集合的标识和第二集合的标识。结合上述描述的第二信息中所指示的路径信息,该路径信息可以包括源装置标识、目标装置标识、源装置至目标装置的之间的多个中继节点对应的集合的Zone ID,通过该Zone ID能够使第二装置确定下一跳对应的集合,从而可以将通过第一集合接收到的第一数据,转发给对应的下一跳集合。
在一种可能的实现方式中,M大于2。
第二方面,本申请提出了一种配置指示方法,该方法包括:接收来自第一装置的第一控制信息,第一控制信息用于指示第一装置和目标装置之间的M跳数据传输的配置,M跳数据传输用于传输第一数据,M跳传输包括第一装置与第二装置之间的传输,第一控制信息包括第一信息、第二信息和第三信息,第一信息指示第一装置与第二装置之间用于传输第一数据的配置,第二信息指示M-1跳传输的配置,M-1跳传输为M跳传输中除第一装置与第二装置之间的传输之外的M-1跳传输,第三信息指示目标装置接收第一数据所需的配置,M为大于1的整数。其中,第二方面及其可能的实现方式中对应的有益效果可以参见第一方面对应的描述,本申请实施例在此不再赘述。
在一种可能的实现方式中,第一信息还指示用于传输第二信息的配置,用于传输第二信息的配置包括以下一项或者多项:聚合级别、码率、调制与编码策略、时域资源、频域资源。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息和第三信息承载于第二控制信道。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息承载于第二控制信道,第三信息承载于第一数据信道。
在一种可能的实现方式中,用于传输第三信息的配置包括以下一项或者多项:码率、调制与编码策略、时域资源、频域资源。
在一种可能的实现方式中,第一信息或第二信息还指示传输第三信息的信道。
在一种可能的实现方式中,第一信息指示以下一项或者多项配置:第一数据从第一链路至第二链路转发的最小时间间隔、第一装置与第二装置之间的频域资源配置、第一装置与第二装置之间的时域资源配置,第一链路为网络设备与终端设备之间的链路,第二链路为终端设备与终端设备之间的链路;第二信息指示以下一项或者多项配置:M-1跳传输的时域资源配置、M-1跳传输的时延预算、路径信息、发送波束配置、M-1跳侧行链路传输接收和转发时间的最小间隔、准共址指示;第三信息指示以下一项或者多项配置:重传配置信息、新数据指示符、冗余版本。
在一种可能的实现方式中,第一信息还指示第一数据在侧行链路上的配置。
在一种可能的实现方式中,第一数据在侧行链路上的配置包括以下信息中的一项或者多项:端到端的优先级、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置、侧行链路资源预留周期配置。
在一种可能的实现方式中,接收来自第一装置的第一控制信息,具体实现方式为:接收来自第一集合的第一控制信息,第一集合包括多个装置,第一装置为第一集合中的一个装置。
在一种可能的实现方式中,第二信息还指示确认时间和确认资源,确认资源为用于第二集合传输确认信息的传输资源,该方法还包括:若接收到来自第一集合的第一数据,则在确认时间内,在确认资源上向第一集合发送确认信息。
在一种可能的实现方式中,第二信息还包括区标识Zone ID指示。
在一种可能的实现方式中,M大于2。
第三方面,本申请提供了一种通信装置,其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第四方面,本申请提供了一种通信装置,其中,该通信装置还可以为芯片系统。该通信装置可执行第二方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第二方面所述的方法以及有益效果,重复之处不再赘述。
第五方面,本申请提供了一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面或第二方面所述的方法被执行。
一种可能的实现中,该通信装置还包括存储器,该存储器和处理器相互耦合。可选的,该存储器与处理器集成在一起。
一种可能的实现中,该通信装置还包括收发器,该收发器用于收发数据和/或信令。
第六方面,本申请提供了一种通信装置,通信装置包括处理器和接口电路,该接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第一方面或第二方面所述的方法。
第七方面,本申请提供了一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,实现如第一方面或第二方面所述的方法。
第八方面,本申请实施例提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行如第一方面或第二方面所述的方法。
第九方面,本申请实施例提供一种通信系统,该系统包括上述第三方面和第四方面提供的通信装置。
附图说明
图1是本申请实施例提供的一种通信系统的示意图;
图2是本申请实施例提供的一种三跳传输的示意图;
图3是本申请实施例提供的一种配置指示方法的交互示意图;
图4是本申请实施例提供的一个资源结构的示意图;
图5是本申请实施例提供的又一个资源结构的示意图;
图6是本申请实施例提供的又一个资源结构的示意图;
图7是本申请实施例提供的又一种三跳传输的示意图;
图8是本申请实施例提供的一种第一集合和第二集合的传输示意图;
图9是本申请实施例提供的又一种多跳传输的示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的又一种通信装置的结构示意图;
图12是本申请实施例提供的又一种通信装置的结构示意图;
图13是本申请实施例提供的芯片的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了能够使带宽能力较低的终端设备接收高聚合等级的候选物理下行控制信道(Physical Downlink Control Channel,PDCCH),本申请实施例提供了一种数据传输的方法,下面先对本申请涉及的专业术语进行介绍:
下面对本申请实施例的系统架构进行介绍:
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的方法的系统架构进行简要说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、传统的移动通信系统。其中,所述卫星通信系统可以与传统的移动通信系统(即地面通信系统)相融合。通信系统例如:无线局域网(wireless local area network,WLAN)通信系统,无线保真(wireless fidelity,WiFi)系统,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR),第六代(6th generation,6G)系统,以及其他未来的通信系统等,还支持多种无线技术融合的通信系统,例如,还可以应用于无人机、卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)融合地面移动通信网络的系统。
图1为适用于本申请实施例的通信系统的示意图。通信系统包括至少一个第一装置和至少一个第二装置。图1以一个第一装置和一个第二装置为示例,本申请实施例对于第一装置 和第二装置的数量不作限定。第一装置和第二装置之间能够进行通信,除此以外,第一装置以及第二装置还可以和其它装置或者设备建立通信连接。
在一种可能的实现方式中,第一装置和/或第二装置可以为网络设备,或者实现网络设备功能的装置,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。本申请实施例中的提及的网络设备可以是用于与终端设备通信的设备,也可以是一种将终端设备接入到无线网络的设备。网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。示例性的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、LTE中的演进型基站(evolved Node B,eNB或eNodeB)、5G网络中的下一代基站(gNodeB,gNB)、宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或Wi-Fi接入点(access point,AP)、云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、接入回传一化链路(integrated access and backhaul,IAB)节点、设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信、物联网(Internet of Things)通信以及6G等5G之后演进的通信系统中承担基站功能的设备等。
在另一种可能的实现方式中,第一装置和/或第二装置可以为终端设备,或者实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中提及的终端设备,可以是一种具有无线收发功能的设备,具体可以指用户终端(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、D2D中的终端、V2X中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中的终端设备等,本申请不作限制。
其中,第一装置和第二装置为多跳传输中的两个装置。通常情况下,多跳传输中包括至少一个源装置,至少一个目标装置和至少一个中继装置。多跳传输指数据不是直接从源装置到目标装置的一次传输,而是经过从源装置到目标装置之间的多个中继装置的转发,即数据是通过链路上的一个或多个中继装置转发完成的。源装置用于将数据传输给目标装置,是多跳传输中的第一个发送数据的装置。目标装置用于接收来自源装置的数据,是多跳传输中的最后一个接收到数据的装置。中继装置用于协助源装置将数据转发给目标装置,是源装置和目标装置之间的中间节点。除此以外,源装置也可以接收到来自目标装置发送的数据,中继 装置也可以用于协助目标装置将数据转发给源装置。
以图2为示例,图2示出了一种三跳传输的方式,装置1作为源装置,装置4为目标装置,装置2和装置3均为中继装置。装置1向装置2发送数据,装置2在接收到数据后,转发该数据至装置3,装置3在接收到数据后将装置转发至装置4。
其中,在多跳传输中,一跳传输表示数据的一次传输过程,第一跳表示数据的第一次传输,第二跳表示数据的第二次传输。以M跳传输作为示例,M跳传输中包括M+1个装置,在进行数据传输时,数据将按序经过M+1个装置,其中,第i个装置可以理解为第i个获取到该数据的装置。对应的,第一跳表示第一个装置向第二个装置发送数据,第二跳表示第二个装置向第三个装置发送数据,对应的,第i跳表示第i个装置向第i+1个装置发送数据。
基于上述所描述的通信系统,下面要主要介绍本申请实施例的技术背景。
随着互联网应用和无线网络设备的大规模普及,人们对无线通信的需求在逐渐增加。为了能够提升通信覆盖,现阶段引入了中继装置支持从源装置到目的装置的多跳传输。以三跳传输为示例,源装置需要通过两个中继装置向目标装置发送数据,两个中继装置分别称为第一中继装置和第二中继装置,源装置向第一中继装置发送数据,第一中继装置在接收到数据后,转发该数据至第二中继装置,第二中继装置在接收到数据后将该数据转发至目标装置。
然而,发送装置在配置对应的传输资源时,是发送装置通过高层协议栈单独配置当前跳的所需的资源。发送装置为多跳传输中用于发送数据的装置,具体的,在多跳传输中的每一跳传输中,均包括一个发送数据的装置和一个接收数据的装置。其中,发送装置即该发送数据的装置,接收装置为该接收数据的装置。当发送装置基于自己通过高层协议栈配置的资源向接收装置发送数据,接收装置接收到数据后,该数据还需要经过PHY层,MAC层,RLC层处理,有时甚至还需协议栈中更高的协议层进行处理,例如PDCP层,SDAP层或RRC层的。在经过高层协议栈处理后才能进行下一跳的转发。这样的处理方式,将会导致转发时延增大,不利于低时延的业务传输。如何降低的转发时延,是亟需解决的问题。
如何降低中继装置的转发时延,本申请实施例提供的一种配置指示的方式,该方案主要可以应用于D2D、V2V、IAB、无人驾驶飞机(Unmanned Aerial Vehicle,UAV)、智能化工厂、自动化机器制造等领域中,除此以外还可以应用于其它领域,本申请实施例对于本技术方案所适用的应用领域不作限定。
请参见图3,图3是本申请实施例提供的一种配置指示方法的交互示意图。如图3所示,该配置指示方法包括步骤301~步骤302。图3所示的方法执行主体可以为第一装置和第二装置。或者,图3所示的方法执行主体可以为第一装置和第二装置中的芯片。图3以第一装置和第二装置为例进行说明。后续图的执行主体同理,后续不再赘述。其中:
301、第一装置获取第一控制信息,第一控制信息用于指示第一装置和目标装置之间的M跳数据传输的配置,该M跳数据传输用于传输第一数据,该M跳传输包括第一装置与第二装置之间的传输,第一控制信息包括第一信息、第二信息和第三信息,第一信息指示第一装置与第二装置之间用于传输第一数据的配置,第二信息指示M-1跳传输的配置,M-1跳传输为M跳传输中除第一装置与第二装置之间的传输之外的M-1跳传输,第三信息指示目标装置接收第一数据所需的配置,M为大于1的整数。
本申请实施例中,第一装置和目标装置的M跳传输指第一装置向目标装置传输数据需要通过M-1个中继装置进行转发,才能将数据传输装置目标装置。其中,本申请实施例中所描述的M-1跳传输指的是在M跳传输中除第一装置与第二装置之间的传输之外的M-1跳传输, 第一装置和第二装置之间的传输可以理解为M跳传输中的第一跳传输,对应的,M-1跳传输可以理解为M跳传输中的除了第一跳以外的剩余跳传输。示例性的,假设M为3,第一装置和第二装置之间的传输为该M跳传输中的第一跳传输,M-1跳传输为该M跳传输中的第二跳传输和第三跳传输。
其中,第一装置和目标装置的M跳传输属于源装置和目标装置之间的K跳传输,K为大于或等于M的整数。基于上述对多跳传输的描述,源装置和目标装置之间的K跳传输,指源装置向目标装置传输数据时,还需要通过K-1个中继装置进行转发,才能将数据传输装置目标装置。其中,源装置用于将数据传输给目标装置,是多跳传输中的第一个发送数据的装置。目标装置用于接收来自源装置的数据,是多跳传输中的最后一个接收到数据的装置。中继装置用于协助源装置将数据转发给目标装置,是源装置和目标装置之间的中间节点。除此以外,源装置也可以接收到来自目标装置发送的数据,中继装置也可以用于协助目标装置将数据转发给源装置,本申请实施例对此不作限定。本申请实施例在后续描述主要通过源装置作为数据的发送端,目标装置作为数据的接收端进行描述,源装置作为接收端,目标装置作为发送端的方案可以同理得到,本申请实施例不再赘述。
其中,当K大于M时,第一装置为源装置和目标装置之间的中继装置,当K等于M时,第一装置为源装置。M跳传输中包括第一装置和第二装置之间的传输,可选地,第一装置和第二装置为在M跳传输中相邻的两个装置,可以理解的,第一装置和第二装置之间的传输为M跳传输中的一跳传输。又或者,第一装置和第二装置之间还可以包括一个或者多个中继装置,即第一装置和第二装置之间的传输为M跳传输中的多跳传输。在源装置作为发送端,目标装置作为接收端的情况下,第一装置与第二装置之间传输中,第一装置为发送端,第二装置为接收端。
基于本申请所描述的方法,第一控制信息中包括了M跳传输所需的配置指示以及目的装置接收所需的配置,因此通过第一控制信息能够集中式地调度M跳传输中每一跳传输所需要的配置。其中,第一控制信息中包括第一装置与第二装置之间用于传输第一数据的配置,因此第一装置在作为中继装置时,无需经高层协议层的处理配置对应的传输资源,可以直接进行数据转发传输,从而降低第一装置和第二装置数据转发的时延。除此以外,在M-1跳的传输中,例如,第二装置的后续传输所需的参数配置也可以直接根据该第一控制信息的中第二信息所指示的M-1跳传输的配置,无需等待各跳传输中的发送装置通过高层协议配置单独配置数据传输所需的资源,从而降低数据传输的时延。若第一装置为源装置以及调度装置时,其中,调度装置指的是配置多跳资源的装置,第一装置仍需要通过高层协议进行处理配置M跳传输所对应的传输参数,M跳传输中的中继装置,例如第二装置,将都无需再高层协议层的处理配置对应的传输资源,从而可以降低传输时延。
在一种可能的实现方式中,M为大于2的整数,在该实现方式中,第一装置与目标装置之间至少存在两个中继装置。若M越大,采用现有技术中的通过高层信令单独指示每一跳所需配置时,中继装置转发第一数据所需要的时延越多,若采用本申请实施例所描述的方法,可以集中式地调度每一跳所需的配置,每一跳传输中无需再单独等待发送端通过高层协议沾配置参数,从而有利于降低数据传输的时延。
在一种可能的实现方式中,该M跳传输中采用的数据转发方式可以支持层0(L0,layer0)的放大转发(amplify and forward,AF)方式,或者,层1(L1,layer 1)或低(low)MAC层的译码转发(decode and forward,DF)方式。这种基于集中调度的L0或L1的中继转发方式,不需要中继装置处进行协议栈控制面和数据面各个协议层的处理,只需要底层协议栈的 处理,可以极大地简化各个中继装置的处理时间。具体来看,对于L0转发,在数据面上,接收到的数据进行如射频放大转发,从接收到发送不需要物理层PHY的译码/编码等,也不需要MAC、RLC、PDCP等协议层的接收和发送的处理。在控制面上,调度所需要的控制信息来自集中调度装置的配置,其可以通过多跳的物理层控制信道逐跳传递到该中继装置,而不需要中继装置从接收到发送经历协议栈各个协议层的独自处理而获取。对于L1转发或low MAC转发,在数据面上,对接收到的数据进行译码/编码,其译码可以将重复传输的数据进行联合译码,具体需要经历PHY或PHY和低MAC层处理,如HARQ重传合并部分,而不需要MAC层的高层部分如RLC数据的复用解复用,不需要RLC、PDCP等高层协议的处理。控制面上,调度所需要的主要信息来自集中调度装置的配置,其可以通过多跳物理层控制信道逐跳传递到该中继装置,而不需要中继装置从接收到发送经历协议栈MAC层高层及RLC层,PDCP层,RRC等各个协议层的处理而获取。采用AF或者DF的转发方式,可以结合基于集中调度装置或源装置和多跳中继装置间彼此良好的互助关系,示例性的,集中调度装置或源装置也可以作为中继装置,而中继装置也可以作为集中调度或源装置。中继装置根据待转发业务的优先级或服务质量(Quality of Service,QoS),结合收到的传输参数配置,从可用的资源中配置所需要的转发资源供转发使用,而其它可用资源可为中继自身的业务进行配置使用。例如,假设第一装置在M跳传输中为中继装置,但第一装置自身还可能作为源装置与其它装置进行通信,因此,第一装置可以根据自己获取到的传输参数配置,确定自己在M跳传输作为中继装置转发第一数据所需的传输资源,剩余的资源第一装置可以用于作为源装置发送数据的传输资源。从而这种低时延多跳转发方案可在各种设备上进行、不依赖于特定设备类型,可以得到广泛使用。
在一种可能的实现方式中,第一装置可以为终端设备或者网络设备,第二装置也可以为终端设备或者网络设备。因此,在本申请实施例所能够支持包括网络设备与网络设备之间的转发传输,终端设备与终端设备之间的转发传输,终端设备与网络设备之间的转发传输,从而提高数据传输的覆盖率。
下面本申请实施例将从分别从第一控制信息的结构、第一信息、第二信息和第三信息所指示的配置、第一装置获取第一控制信息的实现方式等多个方面进行介绍本申请所描述的方法:
一、第一控制信息的结构:
在一种可能的实现方式中,第一控制信息的结构为多级控制信息的结构。在多级控制信息中,第一级控制信息在控制信道中传输,而第二或者更高级别的控制信息在一个或者多个单独的信道中传输。承载第二或更高级别的控制信息的信道可以是附加控制信道,或者数据信道。多级控制信息将相对固定的控制信息配置在需要盲检测的第一级控制信道中,避免检测携带可变载荷的控制信道,可以降低盲解测的复杂度。同时多级控制信息的设计中,支持多级控制信息的大小是可变的,通过将跳数可变导致载荷可变的多跳控制信息配置在第二或更高级别的控制信息对应的信道上,通过第一级控制信息指示第二或更高级控制信息的传输,从而实现在不同跳数的多跳传输场景下数据的有效传输。
可选地,该第一控制信息采用两级控制信息的结构,其中,第一级控制信息中包括第一信息,第二级控制信息中包括第二信息和第三信息。
进一步可选地,第一级控制信息在第一控制信道上传输,第二级控制信息在第二控制信道上传输。对应的,第一信息承载于第一控制信道中,第二信息和第三信息承载于第二控制信道上。其中,配置承载第一级控制信息和第二级控制信息的控制信道的资源方式可以为, 将承载第一级控制信息的控制信道的资源的带宽确定在第一带宽内,第二级控制信道在该第一带宽上传输,第二装置在通过第一带宽获取到第一信息时,同样也能够获取到第二信息。又或者,承载第一信息的控制信道的时域资源与承载第二信息的控制信道的时域资源相同或者承载第一信息的控制信道的时域资源在承载第二信息的控制信道的时域资源之前。
示例性的,如图4所示,承载第一级控制信息和第二级控制信息的控制信道均在同一个符号中传输,承载第一级控制信息的时域资源与承载第二级控制信息的控制信道的时域资源相同,承载第一级控制信息的频域资源与承载第二级控制信息的控制信道的频域资源连续。第一信息还指示用于传输第二信息的配置,即传输第二级控制信息的配置,用于传输第二信息配置包括以下一项或者多项:聚合级别(aggregation level,AL)、码率、调制与编码策略(modulation and coding scheme,MCS)、时域资源、频域资源。第二信息的配置也即对应承载其传输的控制信道或数据信道的配置,如其时域资源,频域资源的配置。其中,第一级控制信息和第二级控制信息可以采用相同的调制方式。其中,AL指构成控制信道的控制信道单元(Control-channel element,CCE)数量,即一个控制信道由a个CCE构成,则该控制信道的聚合等级为a。MCS通过索引指示数据的传输速率以及对应的调制方式。调制方式也可以进行预配置,此时针对控制的MCS指示相当于控制的码率也即对应聚合级别。
由于第一信息中指示第一装置与第二装置之间用于传输第一数据的配置,即对应M跳传输中的第一跳传输所需的配置,是第一装置和第二装置当前进行数据传输时应用到的配置。第二信息所指示的M-1跳传输的配置以及第三信息指示目标装置接收第一数据所需的配置,均是在第一装置和第二装置进行数据传输后所应用到的配置,暂时不易受到当前跳周围的临近设备的干扰。因此,第一信息指示的配置在时间上是会更快应用到的配置,更容易受到当前跳周围的临近设备的干扰。同时,第一信息所指示的配置包括一跳传输(第一装置与第二装置之间的传输)所需的配置,第一信息的大小相对比较固定,而第二信息所指示的配置包括M-1跳的配置,且第二信息的大小会随着跳数的变化而变化。将第一信息设计在第一控制信息中,对应的承载于第一控制信道上,有利于第二装置能够更及时地读取到第一信息并执行相应的配置,同时也能够使周围的临近设备能够及时读取,避免占用其对应的资源,临近设备也可以基于该第一信息配置当前资源和未来资源,从而避免互相干扰。将第二信息和第三信息设计在第二控制信息中也有利于避免造成第一控制信道中承载的载荷太大,从而降低其可靠性或为了保证可靠性,为第一控制信道需配置更多的资源,降低资源利用率,还导致第二装置因检测更大带宽带来了复杂度的增加。
可选地,该第一控制信息采用三级控制信息的结构,其中,第一级控制信息中包括第一信息,第二级控制信息中包括第二信息,第三级控制信息中包括第三信息。
进一步可选地,第一级控制信息在第一控制信道上传输,第二级控制信息在第二控制信道上传输,第三级控制信息在第一数据信道上传输。对应的,第一信息承载于第一控制信道上,第二信息承载于第二控制信道上,第三信息承载于第一数据信道上。配置承载第一信息和第二信息的资源方式可以与上述该第一控制信息采用二级控制信息的结构的描述相同,本申请实施例在此不再赘述。更进一步可选地,M跳传输采用AF转发方式,控制信道与数据信道分离资源映射,即承载的第一级控制信息的控制信道资源与承载第三级控制信息的数据信道的资源时分复用,以及承载第二级控制信息的控制信道的资源与承载第三级控制信息的数据信道的资源时分复用。例如图5所示,承载第一级控制信息的控制信道时域资源与承载第二级控制信息的控制信道的时域资源相同,在同一个符号上,承载第一级控制信息的控制信道的时域资源与承载第三级控制信息的数据信道的时域资源在不同的符号上,两者不重叠。 进一步,第二信息还指示用于传输第三信息和承载其的数据信道的配置,具体包括以下一项或者多项:码率、MCS、时域资源、频域资源。
由于第一信息中指示第一装置与第二装置之间用于传输第一数据的配置,即对应M跳传输中的第一跳传输所需的配置,是第一装置和第二装置进行数据传输时应用到的配置。第二信息所指示的M-1跳传输的配置以及第三信息指示目标装置接收第一数据所需的配置,均是在第一装置和第二装置进行数据传输后所应用到的配置,暂时不易受到当前跳周围的临近设备的干扰。因此,第一信息指示的配置在时间上是当前最快会应用到的配置,更容易受到当前跳周围的临近设备的干扰。将第一信息设计在第一控制信息中,对应的第一信息承载于第一控制信道上,有利于第二装置能够更及时地读取到第一信息,并执行相应的配置。同理可得,由于第三信息所指示目标装置接收第一数据所需的配置,在M跳传输的过程中,是最后一跳目标装置接收到第一数据后所需要的配置;第二信息所指示的配置相比于第三信息所指示的配置在时间上是会更快应用到的配置,因此第二信息在第二控制信道上传输,有利于第二装置能够更及时地读取到第二信息并执行相应的配置,同时也能够使周围的临近设备能够及时读取,避免占用其对应的资源,临近设备也可以基于该第一信息配置当前资源和未来资源,从而避免互相干扰。除此以外,在AF转发方式中,可能会出现控制信息占用了传输资源中的最后一个符号中的很少一部分资源的情况,从而造成了该符号资源的浪费。因此,第三信息承载于第一数据信道上,有利于减少资源的损耗。由于第三信息指示目标装置接收第一数据所需的配置,若第二装置为AF转发的中继装置,第二装置将不会应用到该配置。第三信息承载于在数据信道中,中继装置可以对该第三信息仅进行AF转发,避免了控制信道额外的资源占用,提高了资源利用率,而中继无需读取转发数据,降低了转发时延。
其中,该第一控制信息采用三级控制信息的结构,第三级控制信息除了在第一数据信道上传输,同时也可以在第三控制信道上传输,且第二信息还指示用于传输第三信息和承载其的控制信道的配置,具体包括以下一项或者多项:码率、MCS、时域资源、频域资源。由于第三信息指示目标装置接收第一数据所需的配置,第二装置作为中继装置因此可以无需读取第三信息,将第三信息设计在第三控制信道中,有利于避免造成第一控制信道中承载的载荷太大,从而降低其可靠性。
在一种可能的实现方式中,第一装置为网络设备,第二装置为终端设备,则第一控制信息为下行控制信息(downlink control information,DCI)。可选地,若第一控制信息为多级控制信息,且为两级控制信息,则第一控制信息中包括的第一级控制信息为第一级DCI,第二级控制信息为第二级DCI。若第一控制信息为三级控制信息,则第一控制信息中的第三级控制信息为第三级DCI。
在一种可能的实现方式中,第一装置为终端设备,第二装置为终端设备,则第一控制信息为侧行控制信息(sidelink control information,SCI)或增强侧行控制信息(supersidelink control information,SSCI)。可选地,若第一控制信息为多级控制信息,且为两级控制信息,则第一控制信息中包括的第一级控制信息为第一级SCI或者第一级SSCI,第二级控制信息为第二级SCI或第二级SSCI。若第一控制信息为三级控制信息,则第一控制信息中的第三级控制信息为第三级SCI或第三级SSCI。
结合上述所描述的第一控制信息的结构为两级控制信息或三级控制信息的情况下,在一种可能的实现方式中,第一信息或第二信息还指示传输第三信息的信道。可以理解的,若第一信息或第二信息指示传输第三信息的信道为第二控制信道,则可以确定该第一控制信息为二级控制信息,包括第一级控制信息、第二级控制信息,其中,第一级控制信息包括第一信 息,第二级控制信息包括第二信息和第三信息。对应的,若第一信息或第二信息指示传输第三信息的信道为第一数据信道,则可以确定该第一控制信息为三级控制信息,包括第一级控制信息、第二级控制信息和第三级控制信息,其中,第一级控制信息中包括第一信息,第二级控制信息中包括第二信息,第三级控制信息包括第三信息。基于该实现方式,有利于能够控制可用资源适配不同大小载荷的控制信息,减少控制资源额外占用造成的资源浪费。例如,可以根据不同的条件来配置第一控制信息的结构,若第一控制信息的载荷大于预设阈值,则配置第一控制信息为三级控制信息,第一信息或第二信息指示传输第三信息的信道为第一数据信道;若第一控制信息小于或等于预设阈值,则配置第一控制信息为二级控制信息,第一信息或第二信息指示传输第三信息的信道为第二控制信道。其中,第一控制信息的大小是否大于预设阈值作为条件仅为本申请实施例提供的一种示例,该条件还可以为其它内容,例如K是否大于预设阈值,其中,K为源装置与目标装置之间传输第一数据的跳数,本申请实施例对此不做限定。
可选地,第一信息或第二信息可以采用指示启用(on)或关闭(off)第三级控制信息的方式,来指示传输第三信息的信道。具体的,第一信息或第二信息指示启用第三级控制信息,则确定该第一控制信息的为三级控制信息,包括第一级控制信息、第二级控制信息和第三级控制信息,其中,第一级控制信息包括第一信息,第二级控制信息包括第二信息,第三级控制信息包括第三信息,对应的第三信息承载于第一数据信道或者第三控制信道。第一信息或第二信息指示关闭第三级控制信息,则该第一控制信息为两级控制信息,包括第一级控制信息和第二级控制信息,其中,第一级控制信息中包括第一信息,第二级控制信息中包括第二信息和第三信息,对应的第三信息承载于第二控制信道。基于该实现方式,有利于使第二装置能够及时确定该第一控制信息的结构。
其中,可选地,第一控制信息的结构还可以是预先配置好的,在该情况下,第一信息或第二信息无需指示传输第三信息的信道。基于该实现方式,可以减少第一控制信息的大小,尤其是动态指示控制信息的大小。
还需补充说明的是,第一控制信息的结构还可以是单级控制信息的结构,本申请实施例在此不作赘述。
二、第一信息、第二信息和第三信息所指示的配置
1、第一信息指示以下一项或者多项的配置:第一装置和第二装置之间传输的分组或包时延预算(packet delay budget,PDB)、第一装置和第二装置之间传输的时域资源配置、第一装置和第二装置之间传输的频域资源配置。其中:
第一装置和第二装置之间传输的PDB,指第一数据在第一装置和第二装置之间传输的所需的最大时延间隔。即第一装置向第二装置转发第一数据时所造成的时延不应超过第一装置和第二装置之间传输的PDB。其中,该第一装置和第二装置之间传输的PDB可以基于端到端的PDB进行配置。该第一装置和第二装置之间传输的PDB通过第一信息指示,有利于当前跳周围的临近设备读取该参数,并结合可用资源,端到端的服务质量、以及参考信号接收功率(Reference Signal Receiving Power,RSRP)门限确定是否占用其对应的资源。其中,当第一装置和第二装置之间为SSL链路或者SL链路时,第一信息中将会包括该参数,若当第一装置和第二装置之间为Uu链路时,第一信息可以不包括该参数。
第一装置和第二装置之间传输的时域资源配置,指第一数据在第一装置和第二装置之间传输所需的时域资源配置,采用以时隙(slot)或者子时隙(subslot)的方式作为单位进行指 示。可选地,该时域资源配置还包括是否进行一次授权(one grant)多数据重复传输指示和重复次数指示。其中,one grant对应一次调度信令,采用一次调度信令调度针对同一个数据的多次传输相比每次传输都对应一次调度信令可以降低信令开销,同时提高数据传输的可靠性。其中,若采用subslot为单位的方式指示时域资源以及指示是否进行one grant多数据重复传输,有利于降低时延提高可靠性。在AF转发中控制信道和时域信道时分复用,由于控制信息未占满所在的资源符号,也无法将剩余的资源符号共享给数据信道使用,采用one grant多数据重复传输的方式可以避免多个调度信令grant的配置,有利于降低AF控制开销。可选地,该时域资源配在包括时域的开始时间和时域长度,通常是由源装置进行配置的,进一步可选地,源装置配置的多跳传输中的每一跳传输的时域长度相同。
第一装置和第二装置之间传输的频域资源配置,指第一数据在第一装置和第二装置之间传输所需的频域资源配置。可选地,若第一装置为网络设备,第二装置为终端设备,则该频域资源配置为Uu链路传输第一数据所使用的频域资源配置。可选地,该频域资源配置包括频域开始位置和频域长度。其中,Uu链路可能具有不同的载波,相比侧行链路,Uu链路可能具有不同的带宽如更大的系统带宽。因此,在进行AF转发时,Uu链路的频域配置也需要考虑侧行链路能够支持的带宽,一种可能的频域带宽配置是Uu链路也配置为侧行链路支持的带宽。
在一种可能的实现方式中,M跳传输中第一数据可以通过两种类型的链路进行传输,则第一信息还包括以下配置:第一数据从第一链路至第二链路转发的最小时间间隔。进一步可选地,第一链路为网络设备与终端设备之间的链路,例如Uu链路,第二链路为终端设备与终端设备之间的链路,例如侧行链路(sidelink,SL)或者增强侧行(super sidelink,SSL)链路。可选地,该第一数据从第一链路至第二链路转发的最小时间间隔可以表示为该第一数据从Uu链路至SSL链路转发的最小时间间隔(Time gap slot&symbol UutSSL)。第一数据从第一链路至第二链路转发的最小时间间隔,可以理解为,第一数据经过第一链路传输到达第二链路的发送设备后,第二链路开始传输的最早时间,通过slot和/或subslot为单位进行指示。示例性的,假设在M跳传输中只有第一装置为网络设备,其它装置均为终端设备,即第一装置和第二装置之间是Uu链路,M-1跳传输中的链路均为SL链路或者SSL链路,则该第一数据从第一链路至第二链路转发的最小时间间隔,可以理解为,第二装置接收到来自第一装置发送的第一数据后至第二装置开始转发该第一数据的开始时间的间隔。
在一种可能的实现方式中,M跳传输中包括侧行链路,该第一信息还指示第一数据在侧行链路上的配置。其中,此处指的侧行链路包括SL链路和SSL链路。可选地,第一数据在侧行链路上的配置包括以下配置中的一项或者多项:端到端的优先级(E2E Priority)、侧行链路上的载波(Common Carrier,CC)配置、资源池(Resource pool)配置、侧行链路频域资源配置、侧行链路资源预留(Resource reservation)周期配置、侧行链路时域传输资源配置。基于该实现方式,由于在侧行链路中,资源是采用的竞争的方式获取的,该第一信息承载在其它装置可以读取到的控制信道中,有利于M跳传输以外的其它的竞争资源的装置能够读取到该第一信息中关于第一数据在侧行链路上的配置,避免临近装置占用对应的资源导致M跳传输所需的时延增加或数据丢失。
E2E Priority,指数据从发送端至接收端的优先级,每个优先级对应一个PDB,用于限定该数据从发送端至接收端所需的最大时间,每个优先级还对应该业务的可靠性或允许的误包率。可以理解的,第一信息中所指示的E2E Priority可以用于确定第一数据从源装置至目标装置之间的最大时间间隔。
侧行链路上的CC配置,指在侧行链路上传输第一数据所需的CC配置,以及是否协作以及对应的CC配置,如按照1+3比特的方式进行配置,其中1比特进行指示是否进行不同CC的协作传输,3比特可以用来指示在最大8个CC中选择一个CC作为数据在当前CC的传输。不同CC传输同一数据,可以看做一种频分的重复传输,用来获取频率分集增益,提高可靠性。
Resource pool配置,指传输第一数据可使用的时频域资源。其中,频域最大带宽大小可以为部分带宽(bandwidth part,BWP)。当配置的资源池大于1个时,可以在每个资源池上对应的带宽发送控制信道,其中,数据的资源映射则是按次顺序在各个资源池上进行配置,例如,一次在资源池1对应的带宽1,一次在资源池2对应的带宽2。基于该实现方式,可以保证带宽受限的装置能够在自己所在的资源池监听通过AF转发方式的发送控制信息,同时也可以使得AF转发方式使用足够大的带宽。其中,Resource pool配置可被其它装置获取到的控制信道的2种频域资源带宽配置。例如频域资源配置1和频域资源配置2,频域资源配置1带宽范围限于一个子信道(subchannel)内,频域资源配置2带宽范围可以大于1个subchannel,示例性的,频域资源配置2的带宽范围可以在1~6个subchannel范围内。频域资源配置1主要虑系统内的各个装置的感知带宽支持能力,用于第一级控制信息的传输,例如为小区专用(cell specific)配置。第二级控制信息的资源通过第一级控制信息进行配置,如通过第一级控制信息指示第二级控制信息的聚合级别等参数。典型频域资源配置1的带宽小于频域资源配置2的带宽。
侧行链路频域资源配置,指第一数据在侧行链路上传输所需的频域资源配置。可选地,若在M跳传输中,采用AF转发的方式,该侧行链路频域资源配置为侧行链路放大转发频域资源配置,每一跳的侧行链路频域资源配置都是相同的,该配置主要用于目的装置在接收第一数据基于该频域资源配置进行资源解映射。进而获取在该频域资源承载的数据的调制符号。中继装置转发时可以无需读取该配置,但该频域资源配置可以通过第一信息承载在其它装置可以获取到的控制信道上传输,有利于使M跳传输以外的其它竞争资源的装置读取到该配置,避免占用对应的资源。可选地,若在M跳传输中,采用DF转发的方式,该侧行链路频域资源配置为侧行链路译码转发频域资源配置。可选地,该配置可以由源装置配置,每一跳配置均相同,其中,时域预留资源对应的频域资源也相同。
侧行链路时域传输资源配置,指的是第一数据在侧行链路上传输所需要的时域资源配置。其中,该时域资源配置包括了时域传输资源配置和时域预留资源配置。其中,时域传输资源指当前用于传输第一数据的时域资源,时域预留资源指用于重传第一数据的时域资源或者预留用于传输其它数据的资源。
侧行链路预留资源周期配置,指M跳传输预先预留的用于重传或者传输其它数据的各个资源之间的周期。
2、第二信息指示以下一项或者多项的配置:M-1跳传输的时域资源配置、M-1跳传输的PDB、M-1跳侧行链路传输接收和转发时间的最小间隔(inter SSL min GAP)、准共址(quasi-colocation,QCL)指示、路径信息、发送波束配置。
M-1跳传输的时域资源配置,指M跳传输中除第一装置和第二装置以外的M-1跳中的每一跳的传输所需的时域资源配置。具体包括时域传输资源配置和时域预留资源配置。可选地,时域资源配置也可以简化为指示M-1跳中每一跳的开始时间,时域长度与上述第一信息中第一装置和第二装置传输所需的时域资源配置中的时域长度相同。进一步可选地,该开始时间可以为接收到控制信息的第一个符号。
M-1跳传输的PDB,指M跳传输中除以第一装置和第二装置以外的M-1跳中的每一跳传输对应的最大时延。可选地,可以基于预先配置E2E PDB配置该M-1跳传输的PDB和第一装置和第二装置之间传输的PDB,例如,基于E2E PDB平均分配每一跳的PDB。
M-1跳侧行链路传输接收和转发时间的最小间隔,指M-1跳传输中每一个装置在接收到第一数据后至转发该数据时的最小时间间隔。M-1跳侧行链路传输接收和转发时间的最小间隔与配置的子载波间隔、slot和subslot时间粒度有关。
QCL指示,指用于指示解调参考信号(Demodulation Reference Signal,DMRS)天线端口与参考信号之间的准共址关系参数。参考信号可以为信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)或同步信号块(Synchronization Signal and PBCH block,SSB)等,准共址关系为一种信道条件假设。QCL可以用于确定数据传输所采用的发送波束对应的接收波束信息,从而采用对应的接收波束接收数据。
路径信息,指M跳传输中每一个节点对应的装置的标识(ID)信息。可选地,若一节点对应的装置为一组装置,一组装置中包括了一个或者多个装置,则该ID信息为该组装置对应的ID信息。一组装置也可以为位于一定地理区域的装置,相应的位于该区域的一组装置可以对应区域(zone)ID。
发送波束配置,指每一个中继装置的发送波束。可选地,配置该发送波束可以通过预配置的高层信令波束集合中选择。
在一种可能的实现方式中,该第二信息还可以指示以下一项或者多项配置:DMRS类型(pattern)、DMRS端口数量(port number),第一数据对应的MCS。可选地,若第一控制信息为三级控制信息,且第三信息承载于数据信道,该第二信息还指示第一数据和第三信息对应的QCL。
DMRS pattern,指M跳传输中的DMRS的类型。具体包括不同时域资源类型,例如slot和subslot的DMRS pattern考虑包括有无自动增益控制(AutomaticGain Control,AGC)符号对DMRS pattern的影响。对于考虑DMRS有受到AGC影响时,位于SL或SSL的slot或subslot的前面的DMRS符号会受到影响,一种情况是当slot或subslot的首符号用于AGC时,位于第二个符号的DMRS符号在首符号进行重复传输。另一种情况是当AGC影响可控时可以关闭预留符号,此时不需要slot或subslot的首符号对位于第二个符号的DMRS进行重复传输。
DMRS port number,指M跳传输中各个装置的天线端口个数,例如个数为1或2。
第一数据和第三信息对应的QCL:指第一数据和第三信息的接收QCL关系,可以理解为第一数据和第三信息所承载的信道的DMRS与M跳传输中每跳的CSI-RS或SSB的QCL假设关系。
3、第三信息指示以下一项或者多项配置:新数据指示符(New Data Indicator,NDI)、冗余版本(redundancy version,RV)、混合自动重传(hybrid automatic repeat request,HARQ)进程、HARQ反馈(feedback)使能、HARQ反馈时间、HARQ反馈资源。
HARQ进程,包括HARQ进程ID,目的装置可以基于同一进程的数据进行重传合并,或者将不同的进程对应的数据区分开。
HARQ反馈使能,包括是否支持HARQ反馈或HARQ反馈的使能,以及若支持HARQ反馈需要获取反馈信息的装置或反馈信息的接收装置,例如对应的发送装置,或者源装置,或者集中调度装置,又或者可以发送端装置和源装置均接收反馈信息,或者可以发送端装置和集中调度装置均接收反馈信息。此处的发送装置指向接收装置发送第一数据的装置,接收装置指M跳传输中,接收到来自发送端装置转发的第一数据的装置。例如在第一装置和第二 装置的传输中,第一装置向第二装置发送第一数据,第一装置即为发送装置,第二装置即为接收装置。发送装置可以为源装置或者中继装置,接收装置可以为中继装置或者目的装置。
HARQ反馈时间,指发送反馈信息的时间,该HARQ的反馈时间对应的参考时间可以为接收数据信道的最后一个符号。
HARQ反馈资源,指承载HARQ反馈信息的信道的传输资源。
RV,指第一数据所对应的冗余版本。可选地,在AF转发中,中继装置无需对第一数据进行译码,因此无需获取RV,但目的装置获取RV,从而可以对同一进程的数据进行重传合并。
NDI,用于指示是新数据发送还是旧数据重发。可选地,在AF转发中,中继装置无需对第一数据进行译码,因此无需获取NDI。
其中,还需要补充的是,除了上述所描述的第一信息、第二信息和第三信息所指示的配置,第一信息、第二信息和第三信息还可以指示其它配置,本申请实施例对此不作限定。
三、第一装置获取第一控制信息的实现方式:
其中,第一装置获取第一控制信息实现方式主要根据第一装置为中继装置或源装置分为了以下多种实现方式。
1、第一装置为中继装置:
在一种可能的实现方式中,第一装置获取第一控制信息,具体实现方式为:第一装置接收来自第三装置发送的第二控制信息;第一装置基于第二控制信息确定第一控制信息。
在该实现方式中,第三装置与目标装置之间存在M+1跳传输,其中,该M+1跳传输包括了M跳传输和第三装置与第一装置之间的传输,该第三装置可以为源装置或者中继装置。对应的,第二控制信息中包括指示第三装置与第一装置之间传输所需的配置的信息、指示M跳传输所需的配置信息和第三信息。因此,第一装置可以根据第三装置与第一装置之间传输的配置的信息接收第一数据。第一装置基于第二控制信息确定第一控制信息的具体实现方式为,基于指示M跳传输所需的配置信息中的第一装置和第二装置之间的传输所需的配置生成第一信息,基于指示M跳传输所需的配置信息中M-1跳传输所需的配置生成第二信息,基于指示的第三信息所需的配置生成第三信息,其中,第二控制信息中的第三信息和第一控制信息中的第三信息相同,第一装置基于该第一信息、第二信息和第三信息生成第一控制信息。基于该实现方式,每一个中继装置均能够根据当前跳获取到的控制信息接收第一数据,且根据该控制信息去生成剩余跳传输所需的控制信息,从而实现在多跳传输中通过控制信息集中式指示每一跳传输所需的配置。
可选地,承载第一控制信息的频域资源和承载第二控制信息的频域资源相同。基于上述的描述可知,在源装置和目标装置之间的多跳传输中,每一跳传输都需要生成一个控制信息,用于指示当前跳的传输配置以及剩余跳的配置,其中,每一跳的控制信息均可以在同一频域资源上传输。进一步可选地,该第一控制信息和第二控制信息均为两级控制信息的结构,承载第一控制信息中的第一级控制信息的频域资源和承载第二控制信息中的第一级控制信息的频域资源相同,承载第一控制信息中的第二级控制信息的频域资源和承载第二控制信息中的第二级控制信息的频域资源相同;或者,该第一控制信息和第二控制信息均为三级控制信息的结构时,同理,承载第一控制信息中的第三级控制信息的频域资源和承载第二控制信息中的第三级控制信息的频域资源相同。示例性的,如图6所示,源装置向中继装置传输的控制信息1,中继装置向目标装置发送控制信息2,控制信息1和控制信息2均为三级结构,通过 中继装置的接收控制信息1和中继装置发送控制信息2可见,控制信息1和控制信息2在同一频域资源上,且控制信息1和控制信息2中的第一级控制信息均在同一频域资源上,控制信息1和控制信息2中的第二级控制信息均在同一频域资源上,控制信息1和控制信息2中的第三级控制信息均在同一频域资源上。
2、第一装置为源装置:
在一种可能的实现方式中,第一装置具备调度资源的能力,第一装置获取第一控制信息,具体实现方式为:第一装置可以基于第一数据所对应的数据类型、业务类型,服务质量要求,多跳信道质量信息等各个因素确定第一控制信息,信道质量信息可以为RSRP、信道质量的信息指示(Channel Quality Indicator,CQI)等参数,本申请实施例对此不作限定。基于该实现方式,第一装置可以集中式地调度M跳传输中每一跳所需的配置,无需其它设备调度,从而可以降低数据传输的时延。
在又一种可能的实现方式,第一装置不具备调度资源的能力,第一装置获取第一控制信息,具体实现方式为:第一装置接收来自第三装置发送的第二控制信息;第一装置基于第二控制信息确定第一控制信息。在该实现方式中,第三装置为调度装置,具备调度多跳传输的资源的能力。基于该实现方式,通过调度装置配置M跳传输中每一跳所需的配置,有利于实现对M跳传输的集中调度。
一种可能的实现中,第二控制信息包括第四信息和第五信息,其中,第四信息指示以下一项或者多项配置:第一数据从第一链路至第二链路转发的最小时间间隔、传输第二级控制信息的传输配置、第一控制信息的结构指示、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置;第五信息指示以下一项或者多项配置:M跳传输的时域资源配置、M跳传输的PDB、路径信息、M跳传输的发送波束配置、M跳传输的最小侧行链路开始时间、QCL。进一步可选地,第一链路为网络设备与终端设备之间的链路,例如Uu链路,第二链路为终端设备与终端设备之间的链路,例如SL或者SSL链路。其中,第一控制信息的结构指示指第一装置生成的第一控制信息的控制结构为两级控制信息或者三级控制信息,可选地,若指示了第一控制信息的结构为第三级控制信息,第一控制信息的结构指示还指示该承载第三信息的控制信道为信道类型,具体为数据信道或者控制信道。第五信息的传输配置包括AL、码率、MCS、时域资源、频域资源。
一种可能的实现中,第二控制信息的结构为两级控制信息的结构,第二控制信息中包括第一级控制信息和第二级控制信息,第一级控制信息中包括第四信息,第二级控制信息中包括第五信息。可选地,该第三装置为网络设备,该第二控制信息为DCI,由于Uu链路没有数据传输,因此该第二控制信息的结构为两级控制信息结构,且承载该第二控制信息的时域资源和频域带宽无约束,可以通过第二级控制信息应对多跳可变控制量。由于第三装置为调度装置,无需传输数据,因此可以无需使其它周围的临近装置获取该第二控制信息的内容,将固定的控制指示消息配置在第一级控制信息,将可变控制参数存储在第二级控制信息中,将相对固定的控制信息配置在需要盲检测的第一级控制信息中,避免检测携带可变载荷的控制信道,可以降低盲解测的复杂度。
其中,第四信息和第五信息中所指示的配置中存在部分配置与上述第一信息或第二信息中所指示的配置相同,存在部分配置是第一信息和第二信息中所指示的配置的集合,本申请实施例在此不再赘述。具体的,第一数据从第一链路至第二链路转发的最小时间间隔、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置与上述第一信息中描述的相同。路径信息、QCL与上述第二信息中描述的相同。M跳传输的时域资源配置包括上述第一信息的 第一装置与第二装置之间传输的时域资源配置和第二信息中M-1跳传输的时域资源配置,M跳传输的PDB包括第一信息的第一装置与第二装置之间传输的PDB和第二信息中M-1跳传输的PDB,M跳传输的发送波束配置第一信息的第一装置与第二装置之间传输的发送波束配置和第二信息中M-1跳传输的发送波束配置。
当该第二控制信息为两级控制信息的结构时,第一级控制信息中包括第四信息,第二级控制信息中包括第五信息。对应的,第四信息和第五信息承载于不同的控制信道中。其中,承载第一级控制信息的控制信道的时域资源和承载第二级控制信息的控制信道的时域资源的按照先频域后时域的方式在可用的带宽上进行映射。又或者,承载第二级控制信息的控制信道的资源由第一级控制信息指示,第四信息中所指示的第二级控制信息的传输配置,即第五信息的传输配置,具体包括AL、码率、MCS、时域资源、频域资源。其中,可选地,第四信息和第五信息的AL,码率、MCS相同。基于该实现方式,多级控制信息的可以降低盲解的复杂度,同时多级控制信息的设计中,支持多级控制信息的大小是可变的,因此有利于实现在不同跳数的多跳传输场景下,对应的控制信息的大小不同。
一种可能的实现中,该第四信息还指示以下参数中的一项或者多项:DMRS pattern、DMRS端口数量、NDI、RV、HARQ进程、HARQ反馈使能、HARQ反馈时间、HARQ反馈资源。其中,第四信息中所指示的DMRS pattern、DMRS端口数量与上述第二信息中的相同,本申请实施例在此不作赘述。其中,NDI、RV、HARQ进程、HARQ反馈使能、HARQ反馈时间、HARQ反馈资源与上述第三信息中所指示的参数相同,本申请实施例在此不作赘述。
一种可能的实现中,第一装置基于第二控制信息确定第一控制信息,具体实现方式为:第一装置确定第六信息,第六信息包括以下一项或者多项:端到端的优先级、资源预留周期、第一装置与第二装置之间的时延预算、M-1跳传输的时延预算;第一装置基于第六信息和第二控制信息确定第一控制信息。在该实现方式中,第一装置可以基于第一数据的数据类型或者业务类型,服务质量要求等因素,从而确定第六信息。基于该实现方式,由于调度装置不知晓第一数据的业务类型数据类型等因素,无法配置合适的参数(例如传输时延等),通过第一装置确定第六信息,有利于配置更合理的参数,从而提高用户的体验。
基于上述介绍,下面将主要介绍本申请实施例可以适用的一种特殊的场景,即在多跳传输中,转发第一数据的节点所对应的中继设备的数量可以为多个,即源装置或者中继装置可以通过多播、组播或者广播的方式将第一数据转发至下一个节点所对应的多个中继设备。
示例性的,如图7所示,图7为一种三跳传输的示意图,其中,该三跳传输中包括了源装置、第一集合、第二集合和目标装置,其中,第一集合和第二集合中包括了多个中继装置,例如第一集合中包括了中继装置1、中继装置2和中继装置3等装置,第二集合中包括了中继装置4、中继装置5和中继装置6等装置。第一集合和第二集合用于协助源装置将第一数据转发至目标装置。具体的,源装置将第一数据发送至第一集合中的多个中继装置,第一集合中的多个中继装置在接收到第一数据后,会将该第一数据转发至第二集合中的多个中继装置,第二集合中的多个中继装置在接收到该第一数据后,会将该数据转发至目标装置。
结合上述所描述的场景,在一种可能的实现方式中,第二装置为中继装置,第一装置向第二装置发送第一控制信息,具体实现方式为:第一装置向第二集合发送第一控制信息,第二集合包括多个装置,第二装置为第二集合中的一个装置。其中,第一装置向第二集合发送控制信息的方式可以为多播、组播或者广播中的一种方式,本申请实施例对此不作限定。可选地,可以基于地理位置的方式划分一个节点所对应的集合中包括的中继设备。除了地理位 置的方式,还可以采取其他的划分方式,本申请实施例对此不作限定。基于该实现方式,有利于提高数据传输的覆盖率,同时将第一数据转发给多个中继设备,也能够增强数据转发的可靠性。
一种可能的实现中,第一装置为中继装置,第一装置为第一集合中的装置,第一集合中包括多个装置。可选地,第一控制信息在第一时频资源上传输,第一时频资源还用于第一集合中的其它装置向第二集合中的装置发送第一控制信息。示例性的,如图8所示,图8为第一集合向第二集合传输数据的示意图,其中,第一集合中包括了中继装置1、中继装置2和中继装置3等装置,第二集合中包括了中继装置4、中继装置5和中继装置6等装置。中继装置1为第一装置,中继装置4为第二装置。其中,第一集合中正确接收到数据的每个装置均在第一时频资源上向第二集合中的装置发送第一控制信息。其中,由于第一集合和第二集合均执行第一控制信息中的配置,因此,第一集合中正确接收到数据的每个装置也会在同一资源上向第二集合中的每个装置发送第一数据,对应的,第二集合中的每个装置也会在同一资源上接收第一数据。具体的,第一集合中的多个中继装置向第二集合中的多个中继装置转发第一数据时,可以使用相同的时频资源、MCS、预留资源、相同的路径信息、DMRS配置、HARQ配置。基于该实现方式,有利于集中式的管理每一个集合中的中继装置的配置,避免由于一个集合中的中继装置的数量较多,而出现数据转发混乱的情况。
一种可能的实现中,第二信息还指示区标识(Zone ID)。其中,Zone ID为,M跳中的一个节点所对应的多个中继装置的集合的标识,例如,第一集合的标识和第二集合的标识。结合上述描述中第二信息中指示路径信息,在该场景下,该路径信息包括源装置标识、目标装置标识、源装置至目标装置的之间的多个中继节点对应的集合的Zone ID。通过该Zone ID能够使第二装置确定下一跳对应的集合,从而可以将通过第一集合接收到的第一数据,转发给对应的下一跳集合。可选地,该第二信息所包括的发送波束配置具体为基于集合的波束发送配置,该第二信息还可以包括基于集合的波束接收配置。其中,该发送波束配置和波束接收配置可以存储在每个装置的本地存储中,当接收到第一控制信息后触发激活。
一种可能的实现中,第二信息还指示HARQ确认(acknowledge,ACK)时间和确认资源,确认资源为用于第二集合传输HARQ确认信息的传输资源,该方法还包括:若第一装置向第二集合发送第一数据至确认时间后在预配置的资源上,即确认资源上未接收到ACK信息,且重传次数未超过预设次数,则第一装置向多个第二装置重传第一数据。可选地,该预设次数为最大重传次数,可以通过高层信令配置。基于该实现方式,有利于提高数据传输成功的可靠性。
在一种可能的实现方式中,M跳中的中继节点中对应的集合中包括多个子集合,一个子集合中包括一个或者多个中继装置,每一个子集合中包括至少一个中继装置用于转发数据。源装置将数据转发至目标装置的路径可以基于子集合生成多个路径,每个路径对应的转发资源正交。示例性的,如图9所示,其中,第一集合和第二集合均包括两个子集合,第一集合包括子集合1和子集合2,第二集合包括子集合3和子集合4。对应的,源装置通过第一集合和第二集合将第一数据传输到目标装置的路径也分为了两个路径,分别为路径1和路径2。其中,路径1为源装置将第一数据传输至子集合1,然后子集合1再将第一数据传输子集合3,最后子集合3传输至目标装置,以及,路径2为源装置将第一数据传输至子集合2,然后子集合2再将第一数据传输至子集合4,由子集合4传输至目标装置。其中,每个路径所使用的转发资源之间正交,有利于避免干扰和资源竞争,同时多径传输的方式有利于提高数据传输的可靠性。
302、第一装置向第二装置发送第一控制信息,对应的,第二装置接收来自第一装置发送的第一控制信息。
本申请实施例中,当第二装置接收到来自第一装置发送的第一控制信息后,第二装置基于第一控制信息中的第一信息接收来自第一装置发送的第一数据。
当第二装置接收到第一数据后,第二装置还可以基于第一控制信息生成第三控制信息,并向第四装置发送该第三控制信息。第三控制信息中包括了第二装置与第四装置之间用于传输第一数据的配置、以及目标装置接收第一数据所需的配置。第四装置指第二装置对应的下一跳传输装置,此处的目标装置接收第一数据所需的配置与上述第一控制信息中的第三信息相同。若M为大于2的整数,则该第三控制信息还包括M-2跳传输的配置,其中M-2跳传输为M-1跳传输中除第二装置与第四装置之间的传输之外的M-2跳传输。其中,第二装置与第四装置之间传输第三控制信息和第一数据的具体实现方式与第一装置和第二装置之间的传输方式相同,可以参见前述描述,本申请实施例在此不作赘述。
基于该实现方式,第一控制信息中包括了M跳传输所需的配置指示以及目的装置接收所需的配置,因此通过第一控制信息能够集中式地调度M跳传输中每一跳传输所需要的配置。其中,第一控制信息中包括第一装置与第二装置之间用于传输第一数据的配置,因此第一装置不是源装置时,第一装置和第二装置之间无需再等待第一装置配置对应的传输资源,可以直接进行数据传输,从而降低第一装置和第二装置数据转发的时延。除此以外,在M-1跳的传输中,例如,第二装置的后续传输所需的资源也可以直接根据该第一控制信息的M-1跳传输的配置,无需等待发送设备再单独配置对应的传输资源,从而降低数据传输的时延。
为了实现上述本申请实施例提供的方法中的各功能,第一装置和第二装置均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
请参见图10,图10示出了本申请实施例的一种通信装置的结构示意图。该通信装置可以是第一装置。一种可能的实现中,该通信装置可以包括执行上述方法实施例中第一装置执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
图10所示的通信装置可以是第一装置,或者是能够和第一装置匹配使用的装置。其中,该通信装置还可以为芯片系统。该装置可以用于执行上述图3所描述的方法实施例中第一装置的部分或全部功能。图10所示的通信装置可以包括通信单元1001和处理单元1002。其中,处理单元1002,用于进行数据处理。通信单元1001集成有接收单元和发送单元。通信单元1001也可以称为收发单元。或者,也可将通信单元1001拆分为接收单元和发送单元。其中:
该处理单元1002,用于获取第一控制信息,第一控制信息用于指示第一装置和目标装置之间的M跳数据传输的配置,M跳数据传输用于传输第一数据,M跳传输包括第一装置与第二装置之间的传输,第一控制信息包括第一信息、第二信息和第三信息,第一信息指示第一装置与第二装置之间用于传输第一数据的配置,第二信息指示M-1跳传输的配置,M-1跳传输为M跳传输中除第一装置与第二装置之间的传输之外的M-1跳传输,第三信息指示目标装置接收第一数据所需的配置,M为大于1的整数;该通信单元1001,用于向第二装置发送第一控制信息。
在一种可能的实现方式中,第一信息还指示用于传输第二信息的配置,用于传输第二信 息的配置包括以下一项或者多项:聚合级别、码率、调制与编码策略、时域资源、频域资源。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息和第三信息承载于第二控制信道。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息承载于第二控制信道,第三信息承载于第一数据信道。
在一种可能的实现方式中,第二信息还指示用于传输第三信息的配置,用于传输第三信息的配置包括以下一项或者多项:码率、调制与编码策略、时域资源、频域资源。
在一种可能的实现方式中,第一信息或第二信息还指示传输第三信息的信道。
在一种可能的实现方式中,第一信息指示以下一项或者多项配置:第一装置和第二装置之间传输的时延预算、第一数据从第一链路至第二链路转发的最小时间间隔、第一装置与第二装置之间的频域资源配置、第一装置与第二装置之间的时域资源配置,第一链路为网络设备与终端设备之间的链路,第二链路为终端设备与终端设备之间的链路;第二信息指示以下一项或者多项配置:M-1跳传输的时域资源配置、M-1跳传输的时延预算、路径信息、发送波束配置、M-1跳侧行链路传输接收和转发时间的最小间隔、准共址指示;第三信息指示以下一项或者多项配置:新数据指示符、冗余版本、HARQ进程号、HARQ反馈(feedback)使能、HARQ反馈时间、HARQ反馈资源。
在一种可能的实现方式中,第一信息还指示第一数据在侧行链路上的配置。
在一种可能的实现方式中,第一数据在侧行链路上的配置包括以下信息中的一项或者多项:端到端的优先级、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置、侧行链路资源预留周期配置、侧行链路时域传输资源配置。
在一种可能的实现方式中,处理单元1002获取第一控制信息时,具体用于:接收来自第三装置发送的第二控制信息;基于第二控制信息确定第一控制信息。
在一种可能的实现方式中,第三装置为网络设备,第二控制信息包括第四信息和第五信息;第四信息指示以下一项或者多项配置:第一数据从第一链路至第二链路转发的最小时间间隔、第五信息的传输配置、第一控制信息的结构指示、用于传输第五信息的配置、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置;第五信息指示以下一项或者多项配置:M跳传输的时域资源配置、M跳传输的时延预算、路径信息、M跳传输的发送波束配置、M跳传输的最小侧行链路开始时间、准共址指示。
在一种可能的实现方式中,处理单元1002基于第二控制信息确定第一控制信息,具体用于:确定第六信息,第六信息包括以下一项或者多项:端到端的优先级、资源预留周期、第一装置与第二装置之间的时延预算、M-1跳传输的时延预算;基于第六信息和第二控制信息确定第一控制信息。
在一种可能的实现方式中,通信单元1001,用于向第二装置发送第一控制信息,具体用于:向第二集合发送第一控制信息,第二集合包括多个装置,第二装置为第二集合中的一个装置。
在一种可能的实现方式中,第一装置为第一集合中的装置,第一集合中包括多个装置,第一控制信息在第一时频资源上传输,第一时频资源还用于第一集合中的其它装置向第二集合中的装置发送第一控制信息。
在一种可能的实现方式中,第二信息还指示确认时间和确认资源,确认资源为用于第二集合传输确认信息的传输资源,通信单元1001,还用于若接收到来自第一集合的第一数据,则在所述确认时间内,在确认资源上向第一集合发送确认信息。
在一种可能的实现方式中,第二信息还包括区标识Zone ID指示。
请参见图11,图11示出了本申请实施例的一种通信装置的结构示意图。该通信装置可以是第二装置。一种可能的实现中,该通信装置可以包括执行上述方法实施例中第二装置执行的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
图11所示的通信装置可以是第二装置,或者是能够和第二装置匹配使用的装置。其中,该通信装置还可以为芯片系统。该装置可以用于执行上述图3所描述的方法实施例中第二装置的部分或全部功能。图11所示的通信装置可以包括通信单元1101。通信单元1101集成有接收单元和发送单元。通信单元1101也可以称为收发单元。或者,也可将通信单元1101拆分为接收单元和发送单元。其中:
通信单元1101,用于接收来自第一装置的第一控制信息,第一控制信息用于指示第一装置和目标装置之间的M跳数据传输的配置,M跳数据传输用于传输第一数据,M跳传输包括第一装置与第二装置之间的传输,第一控制信息包括第一信息、第二信息和第三信息,第一信息指示第一装置与第二装置之间用于传输第一数据的配置,第二信息指示M-1跳传输的配置,M-1跳传输为M跳传输中除第一装置与第二装置之间的传输之外的M-1跳传输,第三信息指示目标装置接收第一数据所需的配置,M为大于1的整数。
在一种可能的实现方式中,第一信息还指示用于传输第二信息的配置,用于传输第二信息的配置包括以下一项或者多项:聚合级别、码率、调制与编码策略、时域资源、频域资源。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息和第三信息承载于第二控制信道。
在一种可能的实现方式中,第一信息承载于第一控制信道,第二信息承载于第二控制信道,第三信息承载于第一数据信道。
在一种可能的实现方式中,第二信息还指示用于传输第三信息的配置,用于传输第三信息的配置包括以下一项或者多项:码率、调制与编码策略、时域资源、频域资源。
在一种可能的实现方式中,第一信息或第二信息还指示传输第三信息的信道。
在一种可能的实现方式中,第一信息指示以下一项或者多项配置:第一装置和第二装置之间传输的时延预算、第一数据从第一链路至第二链路转发的最小时间间隔、第一装置与第二装置之间的频域资源配置、第一装置与第二装置之间的时域资源配置,第一链路为网络设备与终端设备之间的链路,第二链路为终端设备与终端设备之间的链路;第二信息指示以下一项或者多项配置:M-1跳传输的时域资源配置、M-1跳传输的时延预算、路径信息、发送波束配置、M-1跳侧行链路传输接收和转发时间的最小间隔、准共址指示;第三信息指示以下一项或者多项配置:混合自动重传(HARQ)进程号、HARQ反馈(feedback)使能、HARQ反馈时间、HARQ反馈资源。
在一种可能的实现方式中,第一信息还指示第一数据在侧行链路上的配置。
在一种可能的实现方式中,第一数据在侧行链路上的配置包括以下信息中的一项或者多项:端到端的优先级、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置、侧行链路资源预留周期配置。
在一种可能的实现方式中,通信单元1101用于接收来自第一装置的第一控制信息时,具体用于:接收来自第一集合的第一控制信息,第一集合包括多个装置,第一装置为第一集合中的一个装置。
在一种可能的实现方式中,第二装置为第二集合中的装置,第二集合中包括多个装置,第一控制信息在第一时频资源上传输,第一时频资源还用于第二集合中的其它装置接收第一集合发送的第一控制信息。
在一种可能的实现方式中,第二信息还指示确认时间和确认资源,确认资源为用于第二集合传输确认信息的传输资源,通信单元1101,还用于若向第二集合发送第一数据至确认时间后未接收到确认信息,且重传次数未超过预设次数,则向多个第二装置重传第一数据。
在一种可能的实现方式中,第二信息还包括区标识Zone ID指示。
在一种可能的实现方式中,M大于2。
图12给出了一种通信装置的结构示意图。所述通信装置1200可以是上述方法实施例中的第一装置,还可以是支持第一装置实现上述方法的芯片、芯片系统、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
或者,所述通信装置1200可以是上述方法实施例中的第二装置,还可以是支持第二装置实现上述方法的芯片、芯片系统、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1200可以包括一个或多个处理器1201。所述处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1200中可以包括一个或多个存储器1202,其上可以存有指令1204,所述指令可在所述处理器1201上被运行,使得所述通信装置1200执行上述方法实施例中描述的方法。可选的,所述存储器1202中还可以存储有数据。所述处理器1201和存储器1202可以单独设置,也可以集成在一起。
可选的,所述通信装置1200还可以包括收发器1205、天线1206。所述收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
所述通信装置1200为第一装置:处理器1201用于执行上述方法实施例中第一装置的数据处理操作。收发器1205用于执行上述方法实施例中第一装置的数据收发操作。
或者,所述通信装置1200为第二装置:处理器1201用于执行上述方法实施例中第二装置的数据处理操作。收发器1205用于执行上述方法实施例中第二装置的数据收发操作。
另一种可能的设计中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1201可以存有指令1203,指令1203在处理器1201上运行,可使得所述通信装置1200执行上述方法实施例中描述的方法。指令1203可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
又一种可能的设计中,通信装置1200可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路 (integrated circuit,IC)、模拟IC、射频集成电路(Radio Frequency Integrated Circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
以上实施例描述中的通信装置可以是第一装置、第二装置,但本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(Mobile Station Modem,MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器1301、接口1302。可选的,还可包括存储器1303。其中,处理器1301的数量可以是一个或多个,接口1302的数量可以是多个。
一种设计中,对于芯片用于实现本申请实施例中终端设备的功能的情况:
所述接口1302,用于输入或输出信号;
所述处理器1301,用于执行上述方法实施例中终端设备的数据处理操作。
另一种设计中,对于芯片用于实现本申请实施例中网络设备的功能的情况:
所述接口1302,用于输入或输出信号;
所述处理器1301,用于执行上述方法实施例中网络设备的数据处理操作。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的通信装置也可以相应的实现这些特征或功能,在此不予赘述。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、ASIC、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drive,SSD))等。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (39)

  1. 一种配置指示方法,其特征在于,所述方法包括:
    第一装置获取第一控制信息,所述第一控制信息用于指示第一装置和目标装置之间的M跳数据传输的配置,所述M跳数据传输用于传输第一数据,所述M跳传输包括所述第一装置与第二装置之间的传输,所述第一控制信息包括第一信息、第二信息和第三信息,所述第一信息指示所述第一装置与第二装置之间用于传输所述第一数据的配置,所述第二信息指示M-1跳传输的配置,所述M-1跳传输为所述M跳传输中除所述第一装置与第二装置之间的传输之外的M-1跳传输,所述第三信息指示所述目标装置接收第一数据所需的配置,所述M为大于1的整数;
    所述第一装置向所述第二装置发送所述第一控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息还指示用于传输所述第二信息的配置,所述用于传输所述第二信息的配置包括以下一项或者多项:聚合级别、码率、调制与编码策略、时域资源、频域资源。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息承载于第一控制信道,所述第二信息和所述第三信息承载于第二控制信道。
  4. 根据权利要求2所述的方法,其特征在于,所述第一信息承载于第一控制信道,所述第二信息承载于第二控制信道,所述第三信息承载于第一数据信道。
  5. 根据权利要求4所述的方法,其特征在于,所述第二信息还指示用于传输所述第三信息的配置,所述用于传输所述第三信息的配置包括以下一项或者多项:码率、调制与编码策略、时域资源、频域资源。
  6. 根据权利要求3~5中任意一项所述的方法,其特征在于,所述第一信息或所述第二信息还指示传输第三信息的信道。
  7. 根据权利要求1~6中任意一项所述的方法,其特征在于,
    所述第一信息指示以下一项或者多项配置:
    所述第一数据从第一链路至第二链路转发的最小时间间隔、所述第一装置和所述第二装置之间传输的时延预算、所述第一装置与所述第二装置之间的频域资源配置、所述第一装置与所述第二装置之间的时域资源配置,所述第一链路为网络设备与终端设备之间的链路,所述第二链路为终端设备与终端设备之间的链路;
    所述第二信息指示以下一项或者多项配置:
    所述M-1跳传输的时域资源配置、所述M-1跳传输的时延预算、路径信息、发送波束配置、所述M-1跳侧行链路传输接收和转发时间的最小间隔、准共址指示;
    所述第三信息指示以下一项或者多项配置:
    新数据指示符、冗余版本、混合自动重传HARQ进程号、HARQ反馈使能、HARQ反馈时间、HARQ反馈资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息还指示所述第一数据在侧行链路上的配置。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一数据在侧行链路上的配置包括以下信息中的一项或者多项:
    端到端的优先级、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置、侧行链路资源预留周期配置、侧行链路时域传输资源配置。
  10. 根据权利要求9所述的方法,其特征在于,所述第一装置获取第一控制信息,包括:
    所述第一装置接收来自第三装置发送的第二控制信息;
    所述第一装置基于所述第二控制信息确定所述第一控制信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第三装置为网络设备,所述第二控制信息包括第四信息和第五信息;
    所述第四信息指示以下一项或者多项配置:
    用于传输所述第五信息的配置、所述侧行链路上的载波配置、所述资源池配置、所述侧行链路频域资源配置、所述第一数据从第一链路至第二链路转发的最小时间间隔、所述第五信息的传输配置、所述第一控制信息的结构指示;
    所述第五信息指示以下一项或者多项配置:
    所述M跳传输的时域资源配置、所述M跳传输的时延预算、所述路径信息、所述M跳传输的发送波束配置、所述M跳传输的最小侧行链路开始时间、所述准共址指示。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一装置基于所述第二控制信息确定所述第一控制信息,包括:
    所述第一装置确定第六信息,所述第六信息包括以下一项或者多项:所述端到端的优先级、所述资源预留周期、所述第一装置与所述第二装置之间的时延预算、所述M-1跳传输的时延预算;
    所述第一装置基于所述第六信息和所述第二控制信息确定所述第一控制信息。
  13. 根据权利要求7~10中任意一项所述的方法,其特征在于,所述第一装置向所述第二装置发送所述第一控制信息,包括:
    所述第一装置向第二集合发送所述第一控制信息,所述第二集合包括多个装置,所述第二装置为所述第二集合中的一个装置。
  14. 根据权利要求13所述的方法,其特征在于,所述第一装置为第一集合中的装置,所述第一集合中包括多个装置,所述第一控制信息在第一时频资源上传输,所述第一时频资源还用于第一集合中的其它装置向第二集合中的装置发送所述第一控制信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第二信息还指示确认时间和确认资源,所述确认资源为用于所述第二集合传输确认信息的传输资源,所述方法还包括:
    若所述第一装置向所述第二集合发送所述第一数据至所述确认时间后未接收到所述确认 信息,且重传次数未超过预设次数,则向所述多个第二装置重传所述第一数据。
  16. 根据权利要求13~15中任意一项所述的方法,其特征在于,所述第二信息还包括区标识Zone ID指示。
  17. 根据权利要求1~16中任意一项所述的方法,其特征在于,所述M大于2。
  18. 一种配置指示方法,其特征在于,所述方法包括:
    第二装置接收来自第一装置的第一控制信息,所述第一控制信息用于指示所述第一装置和目标装置之间的M跳数据传输的配置,所述M跳数据传输用于传输第一数据,所述M跳传输包括所述第一装置与第二装置之间的传输,所述第一控制信息包括第一信息、第二信息和第三信息,所述第一信息指示所述第一装置与第二装置之间用于传输所述第一数据的配置,所述第二信息指示M-1跳传输的配置,所述M-1跳传输为所述M跳传输中除所述第一装置与第二装置之间的传输之外的M-1跳传输,所述第三信息指示所述目标装置接收第一数据所需的配置,所述M为大于1的整数;
    所述第二装置基于所述第一控制信息接收来自所述第一装置的所述第一数据。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信息还指示用于传输所述第二信息的配置,所述用于传输所述第二信息的配置包括以下一项或者多项:聚合级别、码率、调制与编码策略、时域资源、频域资源。
  20. 根据权利要求19所述的方法,其特征在于,所述第一信息承载于第一控制信道,所述第二信息和所述第三信息承载于第二控制信道。
  21. 根据权利要求19所述的方法,其特征在于,所述第一信息承载于第一控制信道,所述第二信息承载于第二控制信道,所述第三信息承载于第一数据信道。
  22. 根据权利要求21所述的方法,其特征在于,所述第二信息还指示用于传输所述第三信息的配置,所述用于传输所述第三信息的配置包括以下一项或者多项:码率、调制与编码策略、时域资源、频域资源。
  23. 根据权利要求20~22中任意一项所述的方法,其特征在于,所述第一信息或所述第二信息还指示传输第三信息的信道。
  24. 根据权利要求18~23中任意一项所述的方法,其特征在于,
    所述第一信息指示以下一项或者多项配置:
    所述第一数据从第一链路至第二链路转发的最小时间间隔、所述第一装置和所述第二装置之间传输的时延预算、所述第一装置与所述第二装置之间的频域资源配置、所述第一装置与所述第二装置之间的时域资源配置,所述第一链路为网络设备与终端设备之间的链路,所述第二链路为终端设备与终端设备之间的链路;
    所述第二信息指示以下一项或者多项配置:
    所述M-1跳传输的时域资源配置、所述M-1跳传输的时延预算、路径信息、发送波束配置、所述M-1跳侧行链路传输接收和转发时间的最小间隔、准共址指示;
    所述第三信息指示以下一项或者多项配置:
    混合自动重传HARQ进程号、HARQ反馈使能、HARQ反馈时间、HARQ反馈资源。
  25. 根据权利要求24所述的方法,其特征在于,所述第一信息还指示所述第一数据在侧行链路上的配置。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第一数据在侧行链路上的配置包括以下信息中的一项或者多项:
    端到端的优先级、侧行链路上的载波配置、资源池配置、侧行链路频域资源配置、侧行链路资源预留周期配置、侧行链路时域传输资源配置。
  27. 根据权利要求24~26中任意一项所述的方法,其特征在于,
    所述第二装置接收来自第一装置的第一控制信息,包括:
    所述第二装置接收来自第一集合的第一控制信息,所述第一集合包括多个装置,所述第一装置为所述第一集合中的一个装置。
  28. 根据权利要求27所述的方法,其特征在于,所述第二装置为第二集合中的装置,所述第二集合中包括多个装置,所述第一控制信息在第一时频资源上传输,所述第一时频资源还用于第二集合中的其它装置接收第一集合发送的所述第一控制信息。
  29. 根据权利要求28所述的方法,其特征在于,所述第二信息还指示确认时间和确认资源,所述确认资源为用于所述第二集合传输确认信息的传输资源,所述方法还包括:
    若所述第二装置接收到来自所述第一集合的第一数据,则在所述确认时间内,在所述确认资源上向所述第一集合发送确认信息。
  30. 根据权利要求27~29中任意一项所述的方法,其特征在于,所述第二信息还包括区标识Zone ID指示。
  31. 根据权利要求18~30中任意一项所述的方法,其特征在于,所述M大于2。
  32. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求1~17中任一项所述的方法的模块或单元。
  33. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求18~31中任一项所述的方法的模块或单元。
  34. 一种通信装置,其特征在于,包括与存储器耦合的处理器,所述处理器用于执行所述存储器中存储的计算机程序或指令,以实现如权利要求1~17中任一项所述的方法或如权利要求18~31中任一项所述的方法。
  35. 根据权利要求34所述的装置,其特征在于,所述装置还包括所述存储器,和/或收发器,所述收发器用于收发数据和/或信令。
  36. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行指令用于实现如权利要求1~17中任一项所述的方法,或,所述处理器通过逻辑电路或执行指令用于实现如权利要求18~31中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,如权利要求1~17中任一项所述的方法被执行,或,如权利要求18~31中任一项所述的方法被执行。
  38. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,如权利要求1~17中任一项所述的方法被执行,或,如权利要求18~31中任一项所述的方法被执行。
  39. 一种通信系统,其特征在于,所述通信系统包括第一装置和第二装置,所述第一装置用于执行如上述权利要求1~17中任意一项所述的方法,所述第二装置用于执行如上述权利要求18~31中任意一项所述的方法。
PCT/CN2022/130079 2022-11-04 2022-11-04 一种配置指示方法及通信装置 WO2024092793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130079 WO2024092793A1 (zh) 2022-11-04 2022-11-04 一种配置指示方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130079 WO2024092793A1 (zh) 2022-11-04 2022-11-04 一种配置指示方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024092793A1 true WO2024092793A1 (zh) 2024-05-10

Family

ID=90929503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130079 WO2024092793A1 (zh) 2022-11-04 2022-11-04 一种配置指示方法及通信装置

Country Status (1)

Country Link
WO (1) WO2024092793A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067503A1 (zh) * 2015-10-23 2017-04-27 华为技术有限公司 一种资源指示方法、装置及系统
CN111082893A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 数据发送的方法及装置
CN112839368A (zh) * 2019-11-22 2021-05-25 联发科技(新加坡)私人有限公司 分组路由方法和用户设备
WO2021134696A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 多跳路径数据传输方法及相关装置
WO2021212254A1 (en) * 2020-04-20 2021-10-28 Qualcomm Incorporated Hop-based channel occupancy time (cot) sharing
CN113676845A (zh) * 2020-05-13 2021-11-19 成都鼎桥通信技术有限公司 一种近距离业务多跳中继通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067503A1 (zh) * 2015-10-23 2017-04-27 华为技术有限公司 一种资源指示方法、装置及系统
CN111082893A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 数据发送的方法及装置
CN112839368A (zh) * 2019-11-22 2021-05-25 联发科技(新加坡)私人有限公司 分组路由方法和用户设备
WO2021134696A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 多跳路径数据传输方法及相关装置
WO2021212254A1 (en) * 2020-04-20 2021-10-28 Qualcomm Incorporated Hop-based channel occupancy time (cot) sharing
CN113676845A (zh) * 2020-05-13 2021-11-19 成都鼎桥通信技术有限公司 一种近距离业务多跳中继通信方法

Similar Documents

Publication Publication Date Title
US11910429B2 (en) Feedback reporting for sidelink
US11838928B2 (en) Dynamic resource management
US11991701B2 (en) Time domain resource allocation for downlink data repetitions
US10314068B2 (en) Communication control method and user terminal
US11653375B2 (en) Transmit power adjustment for full duplex feedback
US11937129B2 (en) Out-of-order handling without flow control feedback
WO2021041380A1 (en) Multiplexing uplink control information on uplink shared channel transmissions
US20210337516A1 (en) Communication control method
TW202002696A (zh) 處理在頻寬部分中的實體下鏈路共享通道的裝置及方法
WO2024066145A1 (zh) 侧行通信的方法及装置
TW202029681A (zh) 用於harq傳輸之方法及通訊裝置
US11711321B2 (en) Combining with variable limited buffer rate matching
WO2024092793A1 (zh) 一种配置指示方法及通信装置
US20210337574A1 (en) Handling collisions between a feedback message and uplink control information
US20230073645A1 (en) Acknowledgment reporting for multi-link transmissions
EP4154455A1 (en) Configured grant enhancements in unlicensed band
TWI841783B (zh) 存取網路和副鏈路聯合排程
US20230209643A1 (en) Discontinuous reception alignment for wireless communications
US20240007257A1 (en) Techniques for downlink feedback from multiple transmission and reception points
US12015998B2 (en) Device cooperation for mitigation of deafness in sidelink communications
WO2023115321A1 (en) Groupcast retransmission techniques
US20230224012A1 (en) Feedback codebook generation based on transmission scheduling rules
US20240048299A1 (en) Frequency hopping and available slot determination for full-duplex operation
JP2022068858A (ja) Harq再送信を処理するデバイス
JP2023160784A (ja) マルチ・セル・スケジューリングを処理するためのデバイス及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964096

Country of ref document: EP

Kind code of ref document: A1