WO2012097486A1 - Radio frequency front-end circuit and mobile terminal with the circuit - Google Patents

Radio frequency front-end circuit and mobile terminal with the circuit Download PDF

Info

Publication number
WO2012097486A1
WO2012097486A1 PCT/CN2011/000937 CN2011000937W WO2012097486A1 WO 2012097486 A1 WO2012097486 A1 WO 2012097486A1 CN 2011000937 W CN2011000937 W CN 2011000937W WO 2012097486 A1 WO2012097486 A1 WO 2012097486A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
amplifier
resistor
power
mobile terminal
Prior art date
Application number
PCT/CN2011/000937
Other languages
French (fr)
Chinese (zh)
Inventor
路宁
陈俊
Original Assignee
锐迪科创微电子(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐迪科创微电子(北京)有限公司 filed Critical 锐迪科创微电子(北京)有限公司
Publication of WO2012097486A1 publication Critical patent/WO2012097486A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

A radio frequency front-end circuit and a mobile terminal with the circuit are disclosed. In the radio frequency front-end circuit, a signal output from drivers(503, 504) is inputted to a first amplifier(506) through a matching circuit(505), and the matching circuit(505) is used to enable the first amplifier(506) to work at a linear region or a quasi-linear region; a power controlling circuit(501) comprises a low dropout regulator LDO, a mobile terminal power supply voltage transformation detecting circuit and a compensation circuit; the drivers(503, 504) are connected to the low dropout regulator LDO, and the first amplifier(506) is connected to the mobile terminal power supply; the mobile terminal power supply voltage transformation detecting circuit controls the value of the voltage which the low dropout regulator LDO outputs, thus reducing the variation of the output power from the first amplifier with the mobile terminal power supply voltage. It can compensate the supply power voltage transformation to a radio frequency power amplifier of the mobile terminal system, and reduce the fluctuation of the output power.

Description

一种射频前端电路及具有该电路的移动终端  Radio frequency front end circuit and mobile terminal having the same
技术领域 本发明涉及射频领域,尤其涉及一种射频前端电路及具有该电路 的移动终端。 TECHNICAL FIELD The present invention relates to the field of radio frequency, and in particular to a radio frequency front end circuit and a mobile terminal having the same.
背景技术 Background technique
在现代无线通信系统中,移动终端中的射频前端电路是实现射频 信号无线传输的关键部件。 全球移动通信系統 (Global System for Mobile Communications, GSM )是当前应用最为广泛的移动电话标准, 世界绝大多数地区都有依据该电话标准建立的移动通信系统。 据 GSM联合委员会报道, GSM在全球有 15亿的用户, 并且用户遍布 140多个国家。 因为许多 GSM网络运营商与其他国外运营商有漫游 协议, 因此当用户到其他国家之后, 仍然可以继续使用他们的移动电 话, 为广大的 GSM用户, 特别是商务用户, 提供了极大的便利。  In modern wireless communication systems, the RF front-end circuitry in mobile terminals is a key component for wireless transmission of RF signals. The Global System for Mobile Communications (GSM) is currently the most widely used mobile phone standard, and most of the world has mobile communication systems based on the phone standard. According to the GSM Joint Commission, GSM has 1.5 billion users worldwide and users in more than 140 countries. Because many GSM network operators have roaming agreements with other foreign operators, users can continue to use their mobile phones after they arrive in other countries, which provides great convenience for the majority of GSM users, especially business users.
在 GSM蜂窝通信系统中, 射频前端电路是实现射频信号无线传 输的核心部件, 功率控制电路则是射频前端电路的重要组成部分。 功 率控制是 GSM蜂窝通信系统中一项提高频谱利用率和减少功率损耗 的关键技术,在保持链路通话质量的前提下尽可能地控制移动终端和 基站的发射功率,从而达到减少链路间相互干扰的目的。 集成在射频 前端电路中的功率控制电路的主要功能是控制功率放大电路的输出 功率,一般由基带电路里的数模转换器( Digital to Analog Converter, DAC )输出的 ramp信号控制, 通常用 Vramp表示。  In the GSM cellular communication system, the RF front-end circuit is the core component for wireless transmission of RF signals, and the power control circuit is an important part of the RF front-end circuit. Power control is a key technology in the GSM cellular communication system to improve spectrum utilization and reduce power loss. The transmission power of the mobile terminal and the base station can be controlled as much as possible while maintaining the quality of the link call, thereby reducing the mutual relationship between the links. The purpose of the interference. The main function of the power control circuit integrated in the RF front-end circuit is to control the output power of the power amplifier circuit, which is generally controlled by the ramp signal output from the digital to analog converter (DAC) in the baseband circuit, usually expressed by Vramp. .
GSM 的工作频段通常可以包括 GSM900 和 DCS1800, 其中 GSM900工作频段中的发射频率为 880-915MHZ, DCS 1800工作频段 中的发射频率为 1710-1785MHz。 GSM协议规定,移动终端发射功率 是可以被基站控制的。 基站通过下行慢速随路控制信道 (Slow Associated Control Channel, SACCH ) , 发出命令控制手机的发射功 率级别,每两个相邻功率等级之间的发射功率相差 2dB, GSM900 工 作频段的最大发射功率级别是 5 ( 33dBm ) , 最小发射功率级别是 19 ( 5dBm ) , DCS1800工作频段的最大发射功率级别是 0 ( 30dBm ) , 最小发射功率级别是 15 ( OdBm )。 GSM标准对于每个功率级别的功 率变化范围都是有着严格的要求,对于最大等级的要求标准是功率变 化在 ±2dB。 因此,对功率控制电路的控制能力也提出了严格的要求。 The working frequency band of GSM can usually include GSM900 and DCS1800, where the transmission frequency in the GSM900 working frequency band is 880-915MHZ, and the DCS 1800 working frequency band The transmission frequency in the medium is 1710-1785 MHz. The GSM protocol stipulates that the mobile terminal transmit power can be controlled by the base station. The base station sends a command to control the transmit power level of the mobile phone through a downlink slow Associated Control Channel (SACCH), and the transmit power between each two adjacent power levels is 2 dB, and the maximum transmit power level of the GSM900 operating band is It is 5 (33dBm) and the minimum transmit power level is 19 (5dBm). The maximum transmit power level of the DCS1800 operating band is 0 (30dBm) and the minimum transmit power level is 15 (OdBm). The GSM standard has strict requirements for the power variation range for each power level. For the maximum level, the required standard is a power variation of ±2 dB. Therefore, strict requirements are also imposed on the control capability of the power control circuit.
功率放大电路增益的压缩与输入信号的大小有关, 当输入信号维 持在一个 ί艮小的信号时, 其输入与输出间维持线性的关系, 即功率放 大电路的增益保持恒定; 但当输入信号增大到一定范围时, 功率放大 电路的增益将不再保持恒定, 而是趋于减小, 此现象称为增益压缩。 通常, 当小信号增益下降 ldB时所对应的输出功率为 ldB增益压缩 点功率, 如图 1 中 P— ldB所示。 一般来说, 当输出功率小于 ldB增 益压缩点功率, 功率放大电路工作在线性放大模式, 对应图 1中线性 区。 当输入功率很大时, 输出功率不再随输入功率发生变化, 功率放 大电路进入饱和状态, 此时的输出功率叫做饱和功率, 对应图 1中饱 和区。 在饱和区输入功率每增加 3dB, 输出功率变化小于 0.1dB。 输 出功率在 ldB增益压缩点功率和饱和功率之间,仍有一段緩慢变化的 阶段, 对应图 2中准线性区。 在准线性区输入功率每增加 ldB, 输出 功率增加 0.1 ~ 0.5dB;  The compression of the gain of the power amplifier circuit is related to the size of the input signal. When the input signal is maintained at a small signal, the input and output maintain a linear relationship, that is, the gain of the power amplifier circuit remains constant; When the range is large, the gain of the power amplifying circuit will no longer remain constant, but tends to decrease. This phenomenon is called gain compression. Generally, when the small signal gain drops ldB, the corresponding output power is ldB gain compression point power, as shown by P-ldB in Figure 1. In general, when the output power is less than the ldB gain compression point power, the power amplifier circuit operates in a linear amplification mode, corresponding to the linear region in Figure 1. When the input power is large, the output power no longer changes with the input power, and the power amplification circuit enters a saturated state. The output power at this time is called saturated power, corresponding to the saturation region in Figure 1. For every 3dB increase in input power in the saturation region, the output power varies by less than 0.1dB. The output power is still between the ldB gain compression point power and the saturated power, and there is still a slowly changing phase corresponding to the quasi-linear region in Figure 2. The output power increases by 0.1 ~ 0.5dB for each input ldB of the input power in the quasi-linear region;
一般的 GSM移动终端的射频前端电路由功率放大电路和功率 控制电路构成, 如图 2所示, 包括功率控制电路 201和功率放大电路 202。 功率放大电路 202由驱动器 207、 驱动器 208、 输出放大器 209 和偏置电路 210构成,其中驱动器 207、驱动器 208和输出放大器 209 级联, 偏置电路 210为驱动器 207、 驱动器 208和输出放大器 209提 供偏置电压, 射频输入信号 RFIN输入驱动器 208, 输出放大器 209 输出射频输出信号 RFOUT。 驱动器 207和驱动器 208由功率控制电 路供电, 放大器由电源电压 Vbat 203供电。 功率控制电路 201主要 由放大器 211、 PMOS晶体管和电阻 203、 204组成, 移动终端的基 带控制信号 Vramp连接到放大器 211的正向输入端, 放大器 211的 输出端连接到 PMOS晶体管 212的栅极, PMOS晶体管 212的源极 连接到电源电压 Vbat 203, PMOS晶体管 212的漏极为功率控制电路 的输出节点 206。 输出节点 206为驱动器 207和驱动器 208供电。 输 出节点 206连接电阻 204, 电阻 204连接电阻 205, 电阻 205接地。 电阻 204和电阻 205之间的节点反馈至放大器 211负输入端。图 2所 示的射频前端电路工作在最大输出功率时, 功率放大电路的放大器 209工作在饱和区, 同时功率控制电路的输出电压 206不随系统供电 电源电压变化, 如图 3所示。 功率放大器在最大输出功率时工作在饱 和区, 最大输出功率主要由负载阻抗 R1()ad和系统供电电源电压 Vbat 决定,The radio frequency front end circuit of a general GSM mobile terminal is composed of a power amplifying circuit and a power control circuit. As shown in FIG. 2, the power control circuit 201 and the power amplifying circuit 202 are included. The power amplifying circuit 202 is composed of a driver 207, a driver 208, an output amplifier 209, and a bias circuit 210, wherein the driver 207, the driver 208, and the output amplifier 209 are cascaded, and the bias circuit 210 provides a bias for the driver 207, the driver 208, and the output amplifier 209. The voltage is applied, the RF input signal RFIN is input to the driver 208, and the output amplifier 209 outputs the RF output signal RFOUT. Driver 207 and driver 208 are powered by power The circuit is powered, and the amplifier is powered by the supply voltage Vbat 203. The power control circuit 201 is mainly composed of an amplifier 211, a PMOS transistor and resistors 203, 204. The baseband control signal Vramp of the mobile terminal is connected to the forward input terminal of the amplifier 211, and the output terminal of the amplifier 211 is connected to the gate of the PMOS transistor 212, PMOS. The source of transistor 212 is coupled to supply voltage Vbat 203, and the drain of PMOS transistor 212 is output node 206 of the power control circuit. Output node 206 powers driver 207 and driver 208. The output node 206 is connected to the resistor 204, the resistor 204 is connected to the resistor 205, and the resistor 205 is grounded. The node between resistor 204 and resistor 205 is fed back to the negative input of amplifier 211. When the RF front-end circuit shown in Figure 2 operates at the maximum output power, the amplifier 209 of the power amplifier circuit operates in the saturation region, and the output voltage 206 of the power control circuit does not change with the system power supply voltage, as shown in FIG. The power amplifier operates in the saturation region at the maximum output power. The maximum output power is mainly determined by the load impedance R 1()ad and the system power supply voltage Vbat.
Figure imgf000005_0001
Figure imgf000005_0001
Kload 其中 Vbat是系统供电电源 (通常是移动终端的电池) 电压, 其 正常工作的电压范围 4.2V ~ 3.5V。 由公式(1 )计算可知, 当系统供 电电源电压从 4.2 - 3.5 V变化时,输出功率的变化超过 1.3dB,如图 4 所示。 根据 GSM标准的要求, 移动终端系统对每个功率等级的功率 波动变化范围都是有着严格要求的,对于最大输出功率等级的波动变 化范围要求是系统输出功率变化在 ±2dB 以内。 如果移动终端系统在 某一个功率等级的功率波动变化超过了 GSM标准规定的范围, 将导 致移动终端无法和基站进行有效的连接、 恶化系统性能、 用户将不能 进行通话。 在实际移动终端产品的生产过程中, 考虑到系统校准、 生 产一致性、产品良率等因素后, 移动终端系统对射频功率放大器的输 出功率波动范围有着更加严格的要求,一般来说要求每个等级的输出 功率波动范围在 ±ldB以内。 如杲不对图 2所述的射频功率放大器进 行系统供电电源电压的变化补偿,将导致功率放大器的输出功率随系 统供电电源的变化而波动,在最大输出功率等级时的输出功率波动超 过 1.3dB, 考虑到芯片制造时一致性因素, 在大规模产品量产时会带 来严重的产品良率问题, 导致制造成本增加。 K load where Vbat is the voltage of the system power supply (usually the battery of the mobile terminal), and its normal working voltage range is 4.2V ~ 3.5V. Calculated by equation (1), when the system power supply voltage changes from 4.2 - 3.5 V, the output power changes by more than 1.3 dB, as shown in Figure 4. According to the requirements of the GSM standard, the mobile terminal system has strict requirements on the power fluctuation range of each power level. For the fluctuation range of the maximum output power level, the system output power variation is within ±2 dB. If the power fluctuation of the mobile terminal system at a certain power level exceeds the range specified by the GSM standard, the mobile terminal cannot perform an effective connection with the base station, deteriorate the system performance, and the user will not be able to make a call. In the production process of actual mobile terminal products, after considering factors such as system calibration, production consistency, and product yield, the mobile terminal system has stricter requirements on the output power fluctuation range of the RF power amplifier, generally requiring each The output power fluctuation range of the level is within ±ldB. If the RF power amplifier described in Figure 2 is not compensated for the variation of the system power supply voltage, the output power of the power amplifier will fluctuate with the change of the system power supply. The output power fluctuation at the maximum output power level exceeds 1.3 dB. Considering the consistency factor in chip manufacturing, it will be taken in mass production. Serious product yield problems have led to increased manufacturing costs.
发明内容 Summary of the invention
针对现有技术中存在的上述问题,本发明提供了一种射频前端电 路及具有该电路的移动终端。  In view of the above problems in the prior art, the present invention provides a radio frequency front end circuit and a mobile terminal having the same.
根据本发明, 一方面提供了一种射频前端电路, 包括功率控制电 路 501和功率放大电路 502 ,功率放大电路 501包括驱动器 503、 504 和第一放大器 506, 驱动器 503、 504输出的信号经匹配电路输入第 一放大器 506,匹配电路用于使第一放大器工作在线性区或准线性区; 功率控制电路 501 包括低压差稳压器 LDO、 移动终端电源电压变化 检测电路和补偿电路; 驱动器 503、 504连接到低压差稳压器 LDO, 第一放大器 506连接到移动终端电源;移动终端电源电压变化检测电 路控制低压差稳压器 LDO的输出电压值, 从而减小第一放大器输出 功率随移动终端电源电压的变化量。  According to the present invention, in one aspect, a radio frequency front end circuit is provided, including a power control circuit 501 and a power amplifying circuit 502. The power amplifying circuit 501 includes drivers 503, 504 and a first amplifier 506. The signals output by the drivers 503, 504 are matched by a matching circuit. Inputting a first amplifier 506, the matching circuit is configured to operate the first amplifier in a linear region or a quasi-linear region; the power control circuit 501 includes a low dropout regulator LDO, a mobile terminal power supply voltage change detecting circuit and a compensation circuit; and drivers 503, 504 Connected to the low dropout regulator LDO, the first amplifier 506 is connected to the mobile terminal power supply; the mobile terminal supply voltage change detection circuit controls the output voltage value of the low dropout regulator LDO, thereby reducing the first amplifier output power with the mobile terminal power supply The amount of change in voltage.
进一步地, 氐压差稳压器 LDO包括第二放大器 518, PMOS晶 体管 508, 电阻 R1 , 电阻 R2和电阻 R3;  Further, the differential voltage regulator LDO includes a second amplifier 518, a PMOS transistor 508, a resistor R1, a resistor R2, and a resistor R3;
移动终端的基带控制信号 519连接到第二放大器 518的正向输入 端,第二放大器 518的输出端连接到 PMOS晶体管 508的栅极, PMOS 晶体管 508的源极连接到移动终端电源电压 520, PMOS晶体管 508 的漏极为驱动器 503、 504供电; PMOS晶体管 508的漏极还连接电 阻 R1的一端, 电阻 R1的另一端分别连接第二放大器 518的负向输 入端和电阻 R2的一端, 电阻 R2的另一端连接电阻 R3的一端, 电阻 R3的另一端接地。  The baseband control signal 519 of the mobile terminal is coupled to the forward input of the second amplifier 518, the output of the second amplifier 518 is coupled to the gate of the PMOS transistor 508, and the source of the PMOS transistor 508 is coupled to the mobile terminal supply voltage 520, PMOS. The drain of the transistor 508 is powered by the driver 503, 504; the drain of the PMOS transistor 508 is also connected to one end of the resistor R1, and the other end of the resistor R1 is connected to the negative input terminal of the second amplifier 518 and one end of the resistor R2, respectively. One end is connected to one end of the resistor R3, and the other end of the resistor R3 is grounded.
进一步地, PMOS 晶体管 508 的 漏极输 出 电压 Further, the drain output voltage of the PMOS transistor 508
Vou = (1+^ ) , 为基带控制信号电压。 进一步地,移动终端电源电压变化检测电路包括第三放大器 516, 参考电压提供电路, 电阻 R5, 电阻 R6和参考电压输入电路; 参考电压提供电路输出的参考电压通过参考电压输入电路进入 到第三放大器 516的负向输入端,电阻 R6连接移动终端电源电压 520 和第三放大器 516的正向输入端, 电阻 R5位于第三放大器 516的输 出端和第三放大器 516的正向输入端之间; 参考电压输入电路为导线或者电阻 R7。 V ou = (1+^ ) is the baseband control signal voltage. Further, the mobile terminal power voltage change detecting circuit includes a third amplifier 516, a reference voltage supply circuit, a resistor R5, a resistor R6 and a reference voltage input circuit; a reference voltage output from the reference voltage supply circuit enters a negative input terminal of the third amplifier 516 through a reference voltage input circuit, and the resistor R6 is connected to the mobile terminal power supply voltage 520 and At the forward input of the third amplifier 516, the resistor R5 is located between the output of the third amplifier 516 and the forward input of the third amplifier 516; the reference voltage input circuit is a wire or resistor R7.
进一步地, 移动终端电源电压变化检测电路的输出电压 V = ^Vref —^Vb。,, 其中 为参考电压提供电路的输出电压, Vbal 为移动终端电源电压。 Further, the output voltage V = ^V ref —^V b of the mobile terminal power voltage change detecting circuit. , where the output voltage of the circuit is provided for the reference voltage, and Vbal is the power supply voltage of the mobile terminal.
进一步地, 参考电压提供电路为带隙基准源电路 517。 进一步地, 补偿电路为电阻 R4, 电阻 R4的一端与第三放大器连 接, 补偿电阻的另一端连接在电阻 R2和电阻 R3之间。 进一步地, 驱动器 503、 504的供电电压:  Further, the reference voltage supply circuit is a bandgap reference source circuit 517. Further, the compensation circuit is a resistor R4, one end of the resistor R4 is connected to the third amplifier, and the other end of the compensation resistor is connected between the resistor R2 and the resistor R3. Further, the supply voltages of the drivers 503, 504 are:
V RA+RA W RA ( R5 + R6 V V R A +R A W R A ( R 5 + R 6 V
ou'-LDO—、 R2R4 +R3R4+R2R, mmp R2R4+R3R4+R2R3 K R, nf R, bm) ,其中 ramp为基带控制信号电压, Vref为参考电压提供电路的输出电压, 为移动终端电源电压。 进一步地, 功率放大电路 501工作在最大输出功率等级时, 第一 放大器 506工作在线性区或准线性区。 根据本发明, 另一方面提供了一种移动终端, 包括基带控制芯片 81, 射频收发器 82, 射频前端电路 83和天线 84, 射频前端电路 83 为所述的射频前端电路。 本发明可以对移动终端系统中的射频功率放大器进行系统供电 电源电压变化的补偿, 减小输出功率的波动。 使用该补偿方法后, 当 系统供电电源电压从 4.2V到 3.5V变化时,功率放大器的输出功率保 持恒定。 另一方面, 可以保证在实际移动终端产品大规模生产、 测试 过程中提高产品的良率, 节约制造成本。 本发明的其它特征和优点将在随后的说明书中阐述。本发明的目 的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的 结构来实现和获得。 o u '- LDO —, R 2 R 4 +R 3 R 4 +R 2 R, mmp R 2 R 4 +R 3 R 4 +R 2 R 3 K R, nf R, bm) , where ramp is baseband control The signal voltage, V ref , is the output voltage of the reference voltage supply circuit and is the power supply voltage of the mobile terminal. Further, when the power amplifying circuit 501 operates at the maximum output power level, the first amplifier 506 operates in a linear region or a quasi-linear region. According to the present invention, in another aspect, a mobile terminal is provided, comprising a baseband control chip 81, a radio frequency transceiver 82, a radio frequency front end circuit 83 and an antenna 84, and the radio frequency front end circuit 83 is the radio frequency front end circuit. The invention can compensate the RF power amplifier in the mobile terminal system for the variation of the system power supply voltage, and reduce the fluctuation of the output power. With this compensation method, the output power of the power amplifier remains constant as the system supply voltage changes from 4.2V to 3.5V. On the other hand, it can ensure that the yield of the product is improved during the mass production and testing of the actual mobile terminal product, and the manufacturing cost is saved. Other features and advantages of the invention will be set forth in the description which follows. The objectives and other advantages of the invention may be realized and obtained by means of the structure particularly pointed in the appended claims.
虽然在下文中将结合一些示例性实施及使用方法来描述本发明, 但本领域技术人员应当理解为并不旨在将本发明限制于这些实施例; 反之, 旨在覆盖包含在所附的权利要求书所定义的本发明的精神与范 围内的所有替代品、 修正及等效物。  Although the present invention will be described in conjunction with the exemplary embodiments and the methods of use, it should be understood that the invention is not intended to limit the invention to the embodiments; All alternatives, modifications, and equivalents within the spirit and scope of the invention are defined by the book.
附图说明 DRAWINGS
附图用来提供对本发明的进一步理解,并且构成说明书的一部分, 与本发明的实施例一起用于解释本发明,但并不构成对本发明的限制。  The drawings are intended to provide a further understanding of the invention and are intended to be a
图 1是功率放大电路的工作模式;  Figure 1 is an operation mode of the power amplifying circuit;
图 2是现有技术中射频前端电路的结构示意图;  2 is a schematic structural view of a radio frequency front end circuit in the prior art;
图 3是现有技术中功率放大电路的电压输出曲线;  3 is a voltage output curve of a power amplifying circuit in the prior art;
图 4是现有技术中功率放大电路工作在饱和区时输出功率随电 源电压变化示意图;  4 is a schematic diagram showing changes in output power with a power supply voltage when a power amplifying circuit operates in a saturation region in the prior art;
图 5是本发明实施例提供的射频前端电路的结构示意图; 图 6是本发明实施例提供电源电压补偿后的 LDO输出曲线; 图 7是本发明实施例提供电源电压补偿后的输出功率曲线; 图 8是本发明实施例提供的移动终端;  5 is a schematic structural diagram of a radio frequency front end circuit according to an embodiment of the present invention; FIG. 6 is an LDO output curve after power supply voltage compensation according to an embodiment of the present invention; FIG. 7 is an output power curve after power supply voltage compensation according to an embodiment of the present invention; FIG. 8 is a mobile terminal according to an embodiment of the present invention;
图 9a-图 9c是 L型、 T型和 Pi型的匹配电路。  Figures 9a-9c are L, T and Pi matching circuits.
具体实施方式 以下将结合附图及实施例来详细说明本发明的实施方式,借此对 本发明如何应用技术手段来解决技术问题,以及达成技术效果的实现 过程能充分理解, 并据以实施。 需要说明的是, 在不沖突的情况下本 发明实施例以及实施例中的各个特征可以相互结合,这些均落在本发 明的保护范围之内。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and embodiments, in which the present invention can be fully understood by the application of the technical means, and the implementation of the technical effect can be fully understood and implemented. It should be noted that this is in case of no conflict. The various features of the inventive embodiments and the embodiments may be combined with each other, and these fall within the scope of the present invention.
从图 1所示的功率放大电路工作模式可以看出, 当功率放大电路 的输出功率没有达到最大功率等级时, 由于驱动器的输出功率较低, 功率放大电路的输出放大器工作在线性区模式,这时功率放大电路的 输出功率大小是由驱动器和输出放大器的增益 Gp决定的, 与电源电 压变化无关, 即  It can be seen from the working mode of the power amplifying circuit shown in FIG. 1. When the output power of the power amplifying circuit does not reach the maximum power level, since the output power of the driver is low, the output amplifier of the power amplifying circuit operates in the linear zone mode, which The output power of the power amplifier circuit is determined by the gain Gp of the driver and the output amplifier, regardless of the power supply voltage change, that is,
P 一 G . P 一  P a G . P one
( 2 ) 其中, Gp是驱动器的增益和输出放大器的增益的乘积, Pin— am 是射频输入信号的功率。  (2) where Gp is the product of the gain of the driver and the gain of the output amplifier, and Pin- am is the power of the RF input signal.
为了补偿功率放大电路在系统供电电源电压变化时输出功率的 变化,需要把功率放大电路中输出放大器在最大功率输出时的工作模 式调整到准线性区甚至线性区。 为了达到这一目的, 本发明在驱动器 输出放大器之间设置匹配电路, 匹配电路的类型可以为 L型、 T型或 者 Pi型, 也可以是 L型、 T型和 Pi型匹配电路的任意组合, 包括相 互组合和自身的组合(例如两个 L型匹配电路组合 ), 并且级联的级 数也不限于两级, 例如三级或更多级; 匹配电路中各元件的参数可以 根据实际的情况进行选定,这对于本领域技术人员而言是容易理解的; L型、 T型和 Pi型的匹配电路分别如图 9a-图 9c所示。通过对匹配电 路进行阻抗变换, 可以把输出放大器的输入功率降低。 当功率放大电 路工作在最大输出功率等级时 (GSM900 工作频段的输出功率为 33dBm, DCS1800工作频段的输出功率为 30dBm ) , 由于输出放大 器的输入功率降低,因此输出放大器的工作模式由原来的饱和区回退 到了准线性区。 由于功率放大器进入到了准线性区, 这时功率放大器 的特性为当输入功率每增加 ldB时,输出功率增加 0.1 ~ 0.5dB。 通过 检测系统供电电源电压 Vbat的变化,调整功率控制电路的输出电压, 进而调整输出放大器的输入功率,实现补偿输出功率随系统供电电源 电压变化的目的。 图 1本发明实施例提的射频前端电路结构图。整个射频前端电路 由两部分构成, 功率放大电路 502和功率控制器电路 501。 功率放大 电路 102包括驱动器 503、 驱动器 504、 匹配电路 505、 输出放大器 506和偏置电路 507。 驱动器 503、 驱动器 504、 匹配电路 505和输出 放大器 506级联, 偏置电路 507为驱动器 503、 驱动器 504和输出放 大器 506提供偏置电压。驱动器 503和驱动器 504的供电电压由功率 控制电^:供, 输出放大器 506的供电直接由系统供电电源 (Vbat )In order to compensate for the change of the output power of the power amplifier circuit when the system power supply voltage changes, it is necessary to adjust the operation mode of the output amplifier in the power amplifier circuit at the maximum power output to the quasi-linear region or even the linear region. In order to achieve this, the present invention provides a matching circuit between the driver output amplifiers, and the matching circuit type may be L-type, T-type or Pi-type, or may be any combination of L-type, T-type and Pi-type matching circuits. Including the combination of each other and their own (for example, two L-type matching circuit combinations), and the number of cascaded stages is not limited to two levels, for example, three or more levels; the parameters of each component in the matching circuit can be based on actual conditions. Selection is made, which will be readily understood by those skilled in the art; the L, T and Pi matching circuits are shown in Figures 9a - 9c, respectively. The input power of the output amplifier can be reduced by impedance transformation of the matching circuit. When the power amplifier circuit operates at the maximum output power level (the output power of the GSM900 operating band is 33dBm and the output power of the DCS1800 operating band is 30dBm), since the input power of the output amplifier is reduced, the output mode of the output amplifier is from the original saturation region. Fall back to the quasi-linear region. Since the power amplifier enters the quasi-linear region, the power amplifier is characterized by an increase in output power of 0.1 to 0.5 dB for every ldB increase in input power. By detecting the change of the system power supply voltage Vbat, adjusting the output voltage of the power control circuit, and then adjusting the input power of the output amplifier, the purpose of compensating the output power with the system power supply voltage is realized. FIG. 1 is a structural diagram of a radio frequency front end circuit according to an embodiment of the present invention. The entire RF front end circuit is composed of two parts, a power amplifying circuit 502 and a power controller circuit 501. The power amplifying circuit 102 includes a driver 503, a driver 504, a matching circuit 505, an output amplifier 506, and a bias circuit 507. Driver 503, driver 504, matching circuit 505, and output amplifier 506 are cascaded, and bias circuit 507 provides a bias voltage for driver 503, driver 504, and output amplifier 506. The power supply voltage of the driver 503 and the driver 504 is controlled by the power supply, and the power supply of the output amplifier 506 is directly supplied by the system power supply (Vbat).
520提供。 射频输入信号 RFIN输入驱动器 503 , 输出放大器输出射 频输出信号 RFOUT。 通过对图 5中的匹配电路 505进行阻抗变换, 可以把输出放大器 506的输入功率 526降低。当功率放大电路工作在 最大输出功率等级时 (GSM900 工作频段的输出功率为 33dBm,520 available. RF input signal RFIN input driver 503, output amplifier output RF output signal RFOUT. The input power 526 of the output amplifier 506 can be reduced by impedance transforming the matching circuit 505 of FIG. When the power amplifier circuit operates at the maximum output power level (the output power of the GSM900 operating band is 33dBm,
DCS1800工作频段的输出功率为 30dBm ) , 由于输出放大器 506的 输入功率 526降低,因此输出放大器 506的工作模式由原来的饱和区 回退到了准线性区。 The output power of the DCS1800 operating band is 30 dBm. Since the input power 526 of the output amplifier 506 is lowered, the operating mode of the output amplifier 506 is retracted from the original saturation region to the quasi-linear region.
功率控制电路 501主要由一个输出电压可变的低压差稳压器( Low voltage drop out regulator, LDO )和系统供电电源电压 Vbat 520变化 检测电路构成。  The power control circuit 501 is mainly composed of a low voltage drop out regulator (LDO) with a variable output voltage and a system power supply voltage Vbat 520 change detecting circuit.
LDO由放大器 518, PMOS晶体管 508, 电阻 Rl, 电阻 R2和电 阻 R3组成。 移动终端的基带控制信号 Vramp 519连接到放大器 518 的正向输入端,放大器 518的输出连接到 PMOS晶体管 508的栅极, PMOS晶体管 508的源极连接到电源电压 Vbat 520, PMOS晶体管的 漏极为 LDO的输出节点 524。 PMOS晶体管 508的漏极连接电阻 Rl, 电阻 R1通过节点 525反馈回放大器 518的负向输入端。 电阻 R2位 于节点 525和节点 523之间, 电阻 R3连接节点 523和地。 LDO的输 入电压 电压 V。utl之间的关系表达式为:
Figure imgf000010_0001
系统供电电源电压 Vbat 520变化检测电路 502由放大器 516,带 隙基准源电路 517, 电阻 R5, 电阻 R6, 电阻 R7构成。 带隙基准源 电路 517的输出电压 Vref 521通过电阻 R7进入到放大器 516的负向 输入端,电阻 R6连接电源电压 Vbat 520和放大器 516的正向输入端, 反馈电阻 R5位于放大器 516的输出节点 522和其正向输入端之间; 可选地, 省略电阻 R7而直接将带隙基准源电路 517的输出电压 Vref 521接入放大器 516的负向输入端。 检测电路的输入电压 Vref、 Vbat 和输出电压 V。ut2之间关系表达式为:
The LDO is composed of an amplifier 518, a PMOS transistor 508, a resistor R1, a resistor R2, and a resistor R3. The baseband control signal Vramp 519 of the mobile terminal is coupled to the forward input of amplifier 518, the output of amplifier 518 is coupled to the gate of PMOS transistor 508, the source of PMOS transistor 508 is coupled to supply voltage Vbat 520, and the drain of PMOS transistor is LDO Output node 524. The drain of PMOS transistor 508 is coupled to resistor R1, which is fed back through node 525 to the negative input of amplifier 518. Resistor R2 is located between node 525 and node 523, and resistor R3 is coupled to node 523 and ground. The input voltage voltage V of the LDO. The relational expression between utl is:
Figure imgf000010_0001
System power supply voltage Vbat 520 change detection circuit 502 is provided by amplifier 516 The gap reference source circuit 517, the resistor R5, the resistor R6, and the resistor R7 are formed. The output voltage Vref 521 of the bandgap reference source circuit 517 enters the negative input terminal of the amplifier 516 through the resistor R7, the resistor R6 is connected to the power supply voltage Vbat 520 and the forward input terminal of the amplifier 516, and the feedback resistor R5 is located at the output node 522 of the amplifier 516. And its forward input terminal; optionally, the resistor R7 is omitted and the output voltage Vref 521 of the bandgap reference source circuit 517 is directly connected to the negative input terminal of the amplifier 516. The input voltages V ref , V bat and the output voltage V of the detection circuit. The relational expression between ut2 is:
( 4 ) 当系统供电电源电压 Vbat 520发生变化时, 放大器 516的输出 电压会随之变化, 这样就实现了对系统供电电源电压的检测。放大器 516的输出端节点 522通过电阻 R4连接到 LDO的节点 523。 通过电 阻 R4, 把检测到的电源电压变化值传递给 LDO, 调整 LDO的输出  (4) When the system power supply voltage Vbat 520 changes, the output voltage of the amplifier 516 changes accordingly, thus detecting the power supply voltage of the system. Output node 522 of amplifier 516 is coupled to node 523 of the LDO via resistor R4. The detected power supply voltage change value is transmitted to the LDO through the resistor R4, and the output of the LDO is adjusted.
Figure imgf000011_0001
Figure imgf000011_0001
下面详细说明该表达式的推导过程 The derivation process of this expression is described in detail below.
图 5中, 节点 522的输出电压为 In Figure 5, the output voltage of node 522 is
K 1 +K 1 +
Figure imgf000011_0002
Figure imgf000011_0002
中, 节点 525的输出电压为  The output voltage of node 525 is
( 6 ) 设 LDO的输出电流 I, 节点 523的输出电压为 V523,根据基尔霍夫电 压电流定律, 流入和流出电路节点的电流是相同的, 因此
Figure imgf000011_0003
(6) Set the output current I of the LDO, and the output voltage of the node 523 is V 523. According to Kirchhoff's law of voltage and current, the current flowing into and out of the circuit node is the same, therefore
Figure imgf000011_0003
- K ( 8 )  - K ( 8 )
R2 J! 522 ― ^523 _ ^523 ( 9 ) R2 J! 522 ― ^523 _ ^523 ( 9 )
~ R4 ~ ~ ~R3  ~ R4 ~ ~ ~R3
由 (6 ) ~ ( 9 ) , 消去 I和 V523, 得到 LDO输出电压表达式 ou'-LDO 、 R2R4 + R3W , R2R4 + R3R4 + R2R3 522 From (6) ~ (9), I and V 523 are eliminated, and the LDO output voltage expressions o u '- LDO , R 2 R 4 + R 3 W , R 2 R 4 + R 3 R 4 + R 2 R 3 are obtained. 522
将(5 ) 带入(10 ) , 得到表达式(4 ) 。 Bring (5) into (10) to get the expression (4).
LDO输出电压 524随系统供电电源电压 Vbat 520的变化曲线如 图 6所示, 当系统供电电源 (电池) 电压下降时, 增大 LDO输出电 压 524, 从而使驱动器 503和驱动器 504的输出功率增大, 使得功率 放大器 502的输出放大器的输入功率 526随着系统供电电源电压 Vbat 520的下降而增加, 这样功率放大器驱动级和输出级整体上就实现了 功率补偿的效果,采用电压补偿技术之后的射频功率放大器输出功率 与 Vramp的关系如图 7所示, 当系统供电电源电压从 4.2V到 3.5V 变化时, 输出放大器 506的输出功率保持恒定。 The curve of the LDO output voltage 524 as a function of the system power supply voltage Vbat 520 is as shown in FIG. 6. When the system power supply (battery) voltage drops, the LDO output voltage 524 is increased, thereby increasing the output power of the driver 503 and the driver 504. The input power 526 of the output amplifier of the power amplifier 502 is increased as the system power supply voltage Vbat 520 decreases, so that the power amplifier driver stage and the output stage as a whole achieve power compensation effects, and the RF after the voltage compensation technique is used. The relationship between the power amplifier output power and Vramp is shown in Figure 7. When the system supply voltage changes from 4.2V to 3.5V, the output power of the output amplifier 506 remains constant.
图 8显示了本发明实施例提供的移动终端结构示意图。移动终端 基带控制芯片 81 , 射频收发器 82、 射频前端电路 83以及天线 84。 基带控制芯片 81用于合成将要发射的基带信号, 或对接收到的基带 信号进行解码; 射频收发器 82, 对从基带控制芯片 81传输来的基带 信号进行处理而生成射频信号,并将所生成的射频信号发送到射频前 端电路 83, 或对从射频前端电路 83传输来的射频信号进行处理而生 成基带信号, 并将所生成的基带信号发送到基带控制芯片 81 ; 射频 前端芯片 83, 用于对从射频收发器 82传输来的射频信号进行诸如功 率放大的处理,或接收信号并将该接收信号处理后发送至射频收发器 82; 天线 84, 其与射频前端电路 83相连接, 用于从外界接收信号或 者发射从射频前端电路传输来的信号。  FIG. 8 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention. The mobile terminal baseband control chip 81, the radio frequency transceiver 82, the radio frequency front end circuit 83, and the antenna 84. The baseband control chip 81 is configured to synthesize a baseband signal to be transmitted, or to decode the received baseband signal; the radio frequency transceiver 82 processes the baseband signal transmitted from the baseband control chip 81 to generate a radio frequency signal, and generates the generated signal. The RF signal is sent to the RF front end circuit 83, or the RF signal transmitted from the RF front end circuit 83 is processed to generate a baseband signal, and the generated baseband signal is sent to the baseband control chip 81; the RF front end chip 83 is used for Performing processing such as power amplification on the radio frequency signal transmitted from the radio frequency transceiver 82, or receiving the signal and processing the received signal to the radio frequency transceiver 82; the antenna 84 is connected to the radio frequency front end circuit 83 for The outside receives signals or transmits signals transmitted from the RF front-end circuitry.
具体而言, 进行信号发射时, 基带控制芯片 81把要发射的信息 编译成基带码(基带信号)并将其传输给射频收发器 82, 射频收发 器 82对该基带信号进行处理生成射频信号, 并将该射频信号传输到 射频前端电路 83, 射频前端电路 83将从射频收发器 82传输来的射 频信号进行功率放大并通过天线 84向外发射; 进行信号接收时, 射 频前端电路 83将通过天线 84接收到的射频信号传输给射频信号收发 器 82, 射频信号收发器 82将从射频前端电路 83接收到的射频信号 转换为基带信号, 并将该基带信号传输到基带控制芯片 81, 最后由 基带控制芯片 61将从射频收发器传输来的基带信号解译为接收信息。 Specifically, when performing signal transmission, the baseband control chip 81 compiles the information to be transmitted into a baseband code (baseband signal) and transmits it to the radio frequency transceiver 82, and the radio frequency transceiver 82 processes the baseband signal to generate a radio frequency signal. And transmitting the RF signal to The RF front-end circuit 83, the RF front-end circuit 83 performs power amplification on the RF signal transmitted from the RF transceiver 82 and transmits it through the antenna 84. When receiving the signal, the RF front-end circuit 83 transmits the RF signal received through the antenna 84. To the radio frequency signal transceiver 82, the radio frequency signal transceiver 82 converts the radio frequency signal received from the radio frequency front end circuit 83 into a baseband signal, and transmits the baseband signal to the baseband control chip 81, and finally the baseband control chip 61 transmits and receives the radio frequency signal from the radio frequency. The baseband signal transmitted by the device is interpreted as receiving information.
可选地, 所述要发射的信息或者接收信息可以包括音频信息、地 址信息(例如手机号码或网站地址)、 文字信息(例如短信息文字或 网站文字) 、 图片信息等。  Optionally, the information to be transmitted or the received information may include audio information, address information (such as a mobile phone number or a website address), text information (such as short message text or website text), picture information, and the like.
所述基带控制芯片的主要组件为处理器(如 DSP、 ARM等)和 内存(如 SRAM、 Flash等) 。 可选地, 该基带控制芯片由单一芯片 实现。  The main components of the baseband control chip are a processor (such as DSP, ARM, etc.) and a memory (such as SRAM, Flash, etc.). Optionally, the baseband control chip is implemented by a single chip.

Claims

权利要求书 Claim
1、 一种射频前端电路, 包括功率控制电路(501 )和功率放大电 路(502) , 功率放大电路 (502) 包括驱动器 (503、 504)和第一 放大器 (506) , 其特征在于, 驱动器 ( 503、 504)输出的信号经匹 配电路输入第一放大器(506) , 匹配电路用于使第一放大器工作在 线性区或准线性区; 功率控制电路(501 ) 包括低压差稳压器 LDO、 移动终端电源电压变化检测电路和补偿电路; 驱动器(503、 504)连 接到低压差稳压器 LDO, 第一放大器 (506)连接到移动终端电源; 移动终端电源电压变化检测电路控制低压差稳压器 LDO的输出电压 值, 从而减小第一放大器输出功率随移动终端电源电压的变化量。  A radio frequency front end circuit comprising a power control circuit (501) and a power amplifying circuit (502), the power amplifying circuit (502) comprising a driver (503, 504) and a first amplifier (506), characterized in that the driver ( 503, 504) The output signal is input to the first amplifier (506) through a matching circuit, and the matching circuit is used to operate the first amplifier in a linear region or a quasi-linear region; the power control circuit (501) includes a low dropout regulator LDO, moving Terminal power supply voltage change detection circuit and compensation circuit; driver (503, 504) is connected to low dropout regulator LDO, first amplifier (506) is connected to mobile terminal power supply; mobile terminal power supply voltage change detection circuit controls low dropout regulator The output voltage value of the LDO, thereby reducing the amount of change in the output power of the first amplifier with the power supply voltage of the mobile terminal.
2、 如权利要求 1所述的射频前端电路, 其特征在于, 低压差稳 压器 LDO包括第二放大器(518),PMOS晶体管(508),电阻(R1 ), 电阻(R2)和电阻(R3) ;  2. The RF front end circuit according to claim 1, wherein the low dropout regulator LDO comprises a second amplifier (518), a PMOS transistor (508), a resistor (R1), a resistor (R2) and a resistor (R3). ) ;
移动终端的基带控制信号(519)连接到第二放大器(518)的正 向输入端, 第二放大器(518)的输出端连接到 PMOS晶体管(508) 的栅极, PMOS晶体管( 508 )的源极连接到移动终端电源电压( 520 ), PMOS晶体管 (508) 的漏极为驱动器 (503、 504)供电; PMOS晶 体管 (508)的漏极还连接电阻(R1 ) 的一端, 电阻(R1 )的另一端 分别连接第二放大器 (518) 的负向输入端和电阻(R2) 的一端, 电 阻(R2) 的另一端连接电阻(R3) 的一端, 电阻(R3) 的另一端接 地。  The baseband control signal (519) of the mobile terminal is coupled to the forward input of the second amplifier (518), the output of the second amplifier (518) is coupled to the gate of the PMOS transistor (508), the source of the PMOS transistor (508) The pole is connected to the mobile terminal power supply voltage (520), the drain of the PMOS transistor (508) is powered by the driver (503, 504); the drain of the PMOS transistor (508) is also connected to one end of the resistor (R1), and the other of the resistor (R1) One end is connected to the negative input terminal of the second amplifier (518) and one end of the resistor (R2), the other end of the resistor (R2) is connected to one end of the resistor (R3), and the other end of the resistor (R3) is grounded.
3、 如权利要求 2所述的射频前端电路, 其特征在于, PMOS晶 体管 (508) 的漏极输出电压 ^,=(1 + ^^) ,, mp为基带控制信 号电压。 3. The RF front-end circuit according to claim 2, wherein the drain output voltage of the PMOS transistor (508) is ^, = (1 + ^^), and mp is a baseband control signal voltage.
4、 如权利要求 2所述的射频前端电路, 其特征在于, 移动终端 电源电压变化检测电路包括第三放大器(516),参考电压提供电路, 电阻(R5) , 电阻(R6)和参考电压输入电路; 参考电压提供电路输出的参考电压通过参考电压输入电路进入 到第三放大器(516) 的负向输入端, 电阻(R6)连接移动终端电源 电压(520)和第三放大器(516)的正向输入端, 电阻(R5)位于第 三放大器(516) 的输出端和第三放大器 (516) 的正向输入端之间; 参考电压输入电路为导线或者电阻(R7) 。 4. The RF front-end circuit according to claim 2, wherein the mobile terminal power supply voltage change detecting circuit comprises a third amplifier (516), a reference voltage supply circuit, a resistor (R5), a resistor (R6), and a reference voltage input. The reference voltage of the reference voltage supply circuit is input through the reference voltage input circuit To the negative input of the third amplifier (516), the resistor (R6) is connected to the mobile terminal supply voltage (520) and the forward input of the third amplifier (516), and the resistor (R5) is located at the third amplifier (516). The output is connected between the positive input of the third amplifier (516); the reference voltage input circuit is a wire or a resistor (R7).
5、 如权利要求 4所述的射频前端电路, 其特征在于, 移动终端 电源电压变化检测电路的输出电压 。„,2 =(1+^) - ^, 其中 ^为 5. The radio frequency front end circuit according to claim 4, wherein the output voltage of the terminal power supply voltage change detecting circuit is mobile. „, 2 =(1 + ^) - ^, where ^ is
R6 R6 R 6 R 6
参考电压提供电路的输出电压, 为移动终端电源电压。 The reference voltage provides the output voltage of the circuit, which is the power supply voltage of the mobile terminal.
6、 如权利要求 4所述的射频前端电路, 其特征在于, 参考电压 提供电路为带隙基准源电路(517) 。 6. The RF front end circuit of claim 4 wherein the reference voltage supply circuit is a bandgap reference source circuit (517).
7、 如权利要求 4所述的射频前端电路, 其特征在于, 补偿电路 为电阻(R4) , 电阻(R4) 的一端与第三放大器连接, 补偿电阻的 另一端连接在电阻(R2)和电阻(R3)之间。  7. The RF front-end circuit according to claim 4, wherein the compensation circuit is a resistor (R4), one end of the resistor (R4) is connected to the third amplifier, and the other end of the compensation resistor is connected to the resistor (R2) and the resistor. Between (R3).
8、如权利要求 7所述的射频前端电路,其特征在于,驱动器( 503、 504) 的供电电压:  8. The RF front end circuit of claim 7, wherein the supply voltage of the driver (503, 504) is:
V =(\ ν _ LV ) oul-L∞—、
Figure imgf000015_0001
re R, b )
V = (\ ν _ L V ) o ul - L∞ —,
Figure imgf000015_0001
Re R, b )
,其中 „ ^为基带控制信号电压, RE/为参考电压提供电路的输出电压, ,为移动终端电源电压。 Where „ ^ is the baseband control signal voltage, RE/ is the reference voltage to provide the output voltage of the circuit, and is the mobile terminal supply voltage.
9、如权利要求 1-8任意一项所述的射频前端电路,其特征在于, 功率放大电路(501 )工作在最大输出功率等级时,第一放大器(506) 工作在线性区或准线性区。  The RF front-end circuit according to any one of claims 1-8, wherein when the power amplifying circuit (501) operates at a maximum output power level, the first amplifier (506) operates in a linear region or a quasi-linear region. .
10、一种移动终端,包括基带控制芯片( 81 ) ,射频收发器( 82 ) , 射频前端电路(83)和天线(84) , 其特征在于,射频前端电路(83) 为如权利要求 1-9任意一项所述的射频前端电路。  10. A mobile terminal comprising a baseband control chip (81), a radio frequency transceiver (82), a radio frequency front end circuit (83) and an antenna (84), wherein the radio frequency front end circuit (83) is as claimed in claim 1 9. The RF front end circuit of any of the preceding claims.
PCT/CN2011/000937 2011-01-21 2011-06-03 Radio frequency front-end circuit and mobile terminal with the circuit WO2012097486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110023832.1 2011-01-21
CN201110023832.1A CN102185566B (en) 2011-01-21 2011-01-21 Radio frequency front end circuit and mobile terminal with the circuit

Publications (1)

Publication Number Publication Date
WO2012097486A1 true WO2012097486A1 (en) 2012-07-26

Family

ID=44571652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000937 WO2012097486A1 (en) 2011-01-21 2011-06-03 Radio frequency front-end circuit and mobile terminal with the circuit

Country Status (3)

Country Link
CN (1) CN102185566B (en)
TW (1) TWI526006B (en)
WO (1) WO2012097486A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655406A (en) * 2021-08-12 2021-11-16 惠州Tcl云创科技有限公司 RF coaxial cable connection detection circuit, detection method and mobile terminal
CN114362784A (en) * 2021-12-22 2022-04-15 北京融为科技有限公司 Portable satellite measurement and control data transmission integrated terminal
CN115454195A (en) * 2022-11-02 2022-12-09 安徽大学 Low dropout regulator and voltage power supply management chip

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811892B (en) * 2016-04-20 2018-11-27 广东工业大学 A kind of double bias supplying circuits of mobile terminal
CN109842389B (en) * 2017-11-28 2023-08-22 锐迪科微电子(上海)有限公司 Radio frequency power amplifier and power control circuit thereof
CN108306696B (en) * 2018-01-17 2021-04-13 Oppo广东移动通信有限公司 Electronic device and method for improving antenna radiation index
CN108919874B (en) * 2018-08-30 2023-07-11 北京神经元网络技术有限公司 Low-dropout linear voltage regulator
GB2581497A (en) * 2019-02-19 2020-08-26 Sony Semiconductor Solutions Corp A device, method and computer program product for amplification of an input signal
CN110809310B (en) * 2019-11-07 2022-12-20 上海创功通讯技术有限公司 Radio frequency power consumption reduction circuit and method based on power amplifier power supply optimization
KR20210151399A (en) * 2020-06-05 2021-12-14 에스케이하이닉스 주식회사 Bias generation circuit, buffer circuit including the bias generation circuit and semiconductor system including the buffer circuit
CN113437991B (en) * 2021-06-28 2022-12-06 展讯通信(上海)有限公司 Radio frequency power amplifying circuit, chip and communication equipment
CN117412265B (en) * 2023-10-18 2024-03-29 广州通则康威科技股份有限公司 Power linear control method and device for LTE-R data terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200944592Y (en) * 2006-08-28 2007-09-05 大唐移动通信设备有限公司 Time division duplex RF front end
US20080188196A1 (en) * 2007-02-07 2008-08-07 National Applied Research Laboratories Adapter for the RF front end processor chip
CN101917166A (en) * 2010-07-28 2010-12-15 锐迪科创微电子(北京)有限公司 Configurable radio-frequency power amplifier and radio-frequency transmitting front-end module with same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514485B2 (en) * 2004-03-19 2010-07-28 パナソニック株式会社 High frequency power amplifier
JP4683468B2 (en) * 2005-03-22 2011-05-18 ルネサスエレクトロニクス株式会社 High frequency power amplifier circuit
CN101394152B (en) * 2007-09-20 2010-08-11 锐迪科科技有限公司 Radio frequency power amplifier circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200944592Y (en) * 2006-08-28 2007-09-05 大唐移动通信设备有限公司 Time division duplex RF front end
US20080188196A1 (en) * 2007-02-07 2008-08-07 National Applied Research Laboratories Adapter for the RF front end processor chip
CN101917166A (en) * 2010-07-28 2010-12-15 锐迪科创微电子(北京)有限公司 Configurable radio-frequency power amplifier and radio-frequency transmitting front-end module with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655406A (en) * 2021-08-12 2021-11-16 惠州Tcl云创科技有限公司 RF coaxial cable connection detection circuit, detection method and mobile terminal
CN114362784A (en) * 2021-12-22 2022-04-15 北京融为科技有限公司 Portable satellite measurement and control data transmission integrated terminal
CN114362784B (en) * 2021-12-22 2024-04-12 北京融为科技有限公司 Portable satellite measurement and control data transmission integrated terminal
CN115454195A (en) * 2022-11-02 2022-12-09 安徽大学 Low dropout regulator and voltage power supply management chip
CN115454195B (en) * 2022-11-02 2024-03-01 安徽大学 Low-dropout linear voltage regulator and voltage power supply management chip

Also Published As

Publication number Publication date
TW201233082A (en) 2012-08-01
CN102185566A (en) 2011-09-14
TWI526006B (en) 2016-03-11
CN102185566B (en) 2013-03-13

Similar Documents

Publication Publication Date Title
TWI526006B (en) RF front end circuit and mobile terminal having the same
US9083282B2 (en) Apparatus and methods for power amplifiers
CN101729029B (en) Electronic devices with calibrated radio frequency communications circuitry
KR101793732B1 (en) Apparatus and method for a tunable multi-band power amplifier module
US8160520B2 (en) Supply control for multiple power modes of a power amplifier
WO2013094415A1 (en) Semiconductor integrated circuit device and high-frequency power amplifier module
CN102347732B (en) Power control circuit and radio frequency power amplifier module with same
JP5601604B2 (en) Semiconductor integrated circuit device and high frequency power amplifier module
US10298191B2 (en) Power amplifier module
US7715812B2 (en) RF power amplifier
TW201445876A (en) Apparatus and methods for envelope shaping in power amplifier systems
JP2003510882A (en) Method and apparatus for wireless telephone transmit power amplification with reduced power consumption
US8884703B2 (en) VRAMP limiting using resistors
US8629724B2 (en) Power amplifier
CN108900167B (en) Impedance compensation circuit and power amplification compensation circuit
US20170141734A1 (en) Circuits and methods for controlling power amplifiers
US20100194473A1 (en) Power amplifier with reconfigurable direct current coupling
JP2009212870A (en) Rf power amplifier
US20230208367A1 (en) Power amplifier distortion network
US20130222064A1 (en) Low Voltage Operation For A Power Amplifier
US20150188501A1 (en) Power amplifying apparatus
KR20180111117A (en) Power amplifying apparatus with dual operation mode
US20110269510A1 (en) Apparatus and method for preventing transmission degradation in wireless communication system
CN117081519A (en) Radio frequency power amplifier and mobile terminal
JP2010068077A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856079

Country of ref document: EP

Kind code of ref document: A1