WO2012097042A1 - Glass composition with low coefficient of thermal expansion, and glass fiber produced from same - Google Patents
Glass composition with low coefficient of thermal expansion, and glass fiber produced from same Download PDFInfo
- Publication number
- WO2012097042A1 WO2012097042A1 PCT/US2012/020900 US2012020900W WO2012097042A1 WO 2012097042 A1 WO2012097042 A1 WO 2012097042A1 US 2012020900 W US2012020900 W US 2012020900W WO 2012097042 A1 WO2012097042 A1 WO 2012097042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight percent
- glass
- oxide
- composition
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/2481—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including layer of mechanically interengaged strands, strand-portions or strand-like strips
- Y10T428/24818—Knitted, with particular or differential bond sites or intersections
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249942—Fibers are aligned substantially parallel
- Y10T428/249946—Glass fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
Definitions
- the present disclosure relates to a glass composition having a low thermal expansion coefficient, and a continuous method of manufacturing a glass fiber from said glass composition.
- Borosilicate glasses have a low thermal expansion coefficient, about one-third to one half that of many boron-free silicate glasses. Typically, these borosilicate glass compositions are about 70 - 80 weight percent silica, 10 - 15 weight percent boron oxide, up to 8 weight percent sodium oxide, up to 8 weight percent potassium oxide, and minor amounts of calcium oxide (lime) and aluminum oxide. Borosilicate glasses are well known for their excellent thermal stability (low thermal expansion). This is primarily due to their relatively high silica and boron oxide content. These same glasses are, however, relatively difficult to melt (have high viscosity), for the same reason. In addition, these glasses tend to have relatively low elastic moduli ( ⁇ 70 GPa) and as a result are a poor choice for applications that require rigidity and high dimensional stability.
- PCB Printed circuit boards
- a glass fiber is used in a PCB as part of an insulative component, it is desirable for the glass to have a low thermal expansion coefficient (CTE), high elastic modulus and be free from hollow filaments (trapped bubbles within the fibers).
- CTE thermal expansion coefficient
- the glass fiber in combination with a polymer binder or matrix can provide an insulative material that closely matches the metal wiring and other components of the electronic device.
- a typical printed circuit board for example, has a circuit pattern composed of an insulating layer and a metal, e.g., copper (Cu), gold (Au), or aluminum (Al).
- Metals, such as copper have thermal expansion coefficient of about 17 ppm/°C.
- a glass fiber filler in combination with a plastic binder or matrix as an insulating layer can be used to more closely match the CTE of the metal.
- the combination of glass fiber and plastic binder is of a design such that it reduces residual stress after the printed circuit boards are manufactured and reduces delamination of the insulating layers during use.
- E-glass a type of S-glass fiber
- L-glass a type of S-glass fiber
- T-glass a type of S-glass fiber
- E-glass may provide properties suitable for such applications, due to processing constraints, it is difficult to continuously process S-glass with low "hollow filament” count (the absence of a long hollow interior in the fiber, likely formed from trapped gas bubbles or seed crystals).
- E and L-glass fibers have on the one hand, very low hollow filament counts, but rather poor thermal expansion compatibility behavior and low elastic moduli.
- T-glass possesses both excellent thermal expansion and high modulus, but like S-glass, suffers from high hollow filament counts.
- the present disclosure provides a glass composition having a low coefficient of thermal expansion (CTE) in combination with a low glass viscosity profile and high elastic modulus.
- the glass composition is suitable for economical, continuous manufacturing of fibers with low hollow filament content therein.
- the low CTE fibers are particularly suitable for use in insulating layers of PCB, chip carrier substrates and/or controlled collapse (C4) ball grid array (BGA) connectors.
- C4 controlled collapse
- BGA ball grid array
- the thermal expansion coefficient, elastic modulus and potential for hollow filaments of an insulating layer of a printed circuit board can be controlled to a great extent by the instant compositions herein disclosed that are economically suitable for forming glass fiber.
- the present disclosure is to further provide a glass fiber, an insulating layer of a laminated circuit board, and a printed circuit board manufactured by employing the glass fiber of said composition having a low thermal expansion coefficient.
- a glass composition suitable for fiberization and having a low CTE is of a relatively low boron content.
- the glass composition disclosed herein has a boron oxide content of less than about 10 weight percent and a silica content less than about 65 weight percent, yet still provides acceptable CTE properties suitable for use in electronics.
- a glass composition having about 55 to about 65 weight percent of silicon oxide, about 15 to about 30 weight percent of aluminum oxide, about 5 to about 15 weight percent of magnesium oxide, about 3 to about 10 weight percent boron oxide, about 0 to about 11 weight percent calcium oxide, and about 0 to about 2 weight percent of alkali oxide, the remainder being trace compounds of less than about 1 weight percent, is provided.
- a glass composition consisting essentially of about 57 to about 63 weight percent of silicon oxide, about 17 to about 25 weight percent of aluminum oxide, about 7 to about 12 weight percent of magnesium oxide, about 4 to about 6 weight percent boron oxide, less than about 5 weight percent calcium oxide, and about 1 to about 2 weight percent of alkali oxide, the remainder being trace compounds of less than about 1 weight percent, is provided.
- a glass fiber manufactured by employing the glass composition is provided.
- an insulating polymer binder or matrix of a laminated circuit board the polymer binder or matrix including the glass fiber manufactured by employing the glass composition disclosed herein.
- a printed circuit board comprising an insulating polymer binder or matrix comprising a glass fiber manufactured by employing the glass composition described herein; and a circuit pattern formed on the insulating polymer binder or matrix of a printed circuit board.
- a transparent fiberglass reinforced composite article comprising: a glass fiber composition comprising glass fiber as disclosed herein and a polymer matrix having an index of refraction that differs from that of the glass fiber composition by less than 0.005, whereby the fiberglass reinforced composite article is substantially transparent to transmitted light, e.g., visible light.
- a glass composition according to an embodiment disclosed and described herein having about 55 to about 65 weight percent of silicon oxide, about 15 to about 30 weight percent of aluminum oxide, about 5 to about 15 weight percent of magnesium oxide, about 3 to about 10 weight percent boron oxide, about 0 to about 11 weight percent calcium oxide, and about 0 to about 2 weight percent of alkali oxide, the remainder being trace compounds of less than about 1 weight percent, is provided.
- Boron oxide typically acts as a fluxing agent in glass compositions.
- boron oxide lowers the melting temperature without increasing the CTE of the glass.
- levels of B 2 O 3 less than 3 weight percent are used, the glass viscosity is too high for easy melting and fining.
- B 2 O 3 the elastic modulus decreases, making the fiber's mechanical behavior less desirable.
- boron volatility also becomes a problem.
- boron oxide is preferably used within a range of about 3 to about 10 weight percent, preferably 4 to 6 weight percent, and most preferably, about 5 weight percent +/- about 0.25 weight percent.
- the amount of silicon oxide when used more than the disclosed range, the melting temperature of the glass composition may become too high. Glasses with high viscosities are typically more difficult to fine (remove gaseous bubbles, etc.) and therefore are more prone to hollow filaments.
- the amount when used less than the disclosed range, it may be difficult to obtain a desired thermal expansion coefficient of the glass composition.
- these types of glasses are prone to devitrification (have poor liquidus temperatures in relation to the fiber forming temperature) and therefore small delta T ( ⁇ ) values. Small delta T values equate to a small operating window, leading to manufacturing difficulties.
- the glass composition may further include about 0 to about 2 weight percent of alkali oxide.
- the alkali oxide can be chosen from sodium oxide, lithium oxide and potassium oxide.
- the glass composition includes about 0 to about 2 weight percent of sodium oxide and lithium oxide, and essentially no added potassium oxide, e.g. less than 0.05 weight percent potassium oxide.
- the alkaline metal oxides are a useful fluxing agent for the glass composition capable of lowering the glass melt viscosity (temperature), but when used in an excess amount, alkaline metal oxides may significantly increase the CTE beyond the desired limit as well as deteriorate the chemical durability of the glass composition.
- Low glass viscosity is important for good fining and for providing for low hollow filament content fibers. More than 2 weight percent alkalis can also worsen devitrification behavior.
- a glass fiber is prepared by using the glass composition disclosed and described is provided.
- the glass composition disclosed and described herein has certain processing parameters as described below so that it is relatively economical and productive to form the glass composition into the glass fiber.
- an insulating polymer binder or matrix suitable for use in a printed circuit board is provided.
- the insulating polymer binder or matrix comprises the glass fiber in which the glass fiber as disclosed herein is dispersed, distributed or suspended.
- a printed circuit board or printed circuit board assembly including the insulating polymer binder or matrix of a printed circuit board or assembly and/or a circuit pattern formed on the insulating polymer binder or matrix of the printed circuit board or assembly.
- the insulating polymer binder or matrix comprises the glass fiber as disclosed herein in which the glass fiber is dispersed, distributed or suspended.
- a transparent composite comprising the instant glass fiber in combination with a transparent polymer matrix.
- the composite is configured such that the fiber and the polymer matrix have a difference in index of refraction of less than 0.005, is provided.
- Such transparent composites are suitable as transparent armor, windshields and/or other automotive or aircraft transparencies.
- the instant glass fiber has a lower thermal expansion coefficient as well as higher elastic modulus than both conventional E-glass fiber and L-Glass fiber, while providing manufacturability advantages over E-Glass and L-Glass.
- the instant glass fiber has much lower CTE than E-Glass or L-Glass.
- the lower thermal expansion coefficient of the instant glass fiber provides improved compatibility with insulating polymer binder or matrix materials for circuit boards or assemblies, chip carrier substrates, (e.g., ball grid arrays) and/or connectors.
- the instant glass fiber has a very desirable combination of benefits when compared to conventional glass fibers.
- the instant glass fiber has a CTE and elastic modulus properties that are only slightly inferior to S-Glass.
- the instant glass fiber is comparatively a much easier glass to melt and fine, thus allowing continuous production of essentially hollow- filament- free fibers.
- a glass fiber is typically formed by melting a glass composition at 1000 °C or higher and then passing through the melted composition through a nozzle.
- the instant glasses disclosed and described herein are suitable for melting in traditional commercially available refractory-oxide lined glass melters that are widely used in the manufacture of glass reinforcement fibers, in what is commonly called a direct-melt process.
- the instant glasses disclosed and described herein can also be suitably formed in refractory metal- and refractory metal alloy lined melters.
- the glass batch disclosed and described herein is melted, in some instances using a glass melting furnace made from appropriate refractory materials such as alumina, chromic oxide, silica, alumina-silica, zircon, zirconia-alumina-silica, or similar oxide based refractory materials, or is refractory metal- and refractory metal alloy lined.
- a glass melting furnace made from appropriate refractory materials such as alumina, chromic oxide, silica, alumina-silica, zircon, zirconia-alumina-silica, or similar oxide based refractory materials, or is refractory metal- and refractory metal alloy lined.
- glass melting furnaces include one more bubblers and/or electrical boost electrodes.
- the bubblers and/or electrical boost electrodes increase the temperature of the bulk glass and increase the molten glass circulation under the batch cover.
- the melted glass composition disclosed herein is delivered to a bushing assembly from a forehearth.
- the bushing includes a tip plate with a plurality of nozzles, each nozzle discharges a stream of molten glass, which are mechanically drawn to form continuous filaments.
- the glass fibers according to the instant disclosure are obtainable from the glasses of the composition described as above to provide a large number of streams of molten glass flowing out of a large number of orifices located in the base of one or more bushings that are attenuated into the form of one or more groups of continuous filaments and then these strands are combined into one or more fibers, which are collected on a moving support.
- This may be a rotating support, when the fibers are collected in the form of wound packages, or in the form of a support that moves translationally when the fibers are chopped by a device that also serves to draw them or when the fibers are sprayed by a device serving to draw them, so as to form a mat.
- Table 1 presents examples of low CTE glass compositions suitable for fiberization.
- compositions of low C ⁇ glasses disclosed herein.
- Table 2 presents the measured physical properties of the compositions of Table 1. Examples 1-6 were found to have low CTE values, less than about 3.6 while having high elastic modulus. CTE values were measured with a dilatometer and are reported over a temperature range from 25 to 300°C.
- Table 3 presents the measured processing parameters for the glass
- compositions of Table 1 The Examples 1-6 had acceptable manufacturable delta T values of between 30-about 50 °C. When these glasses were held at temperatures below the liquidus temperature for long periods of time devitrifacation with Cordierite as the primary phase was observed. Moreover, the glass compositions above presented liquidus temperatures unexpectedly low, about 1320 °C to about 1370 °C (-2420-2500 °F). Liquidus
- Table 4 is a listing of comparative physical parameters for glasses that are provided in fiber form.
- Stripline technique per IPC-TM-650 (2.5.5.5.1). ** Average data for E-Glass measured by IPC 3-12d Task Group. @ Average tensile load to failure for L-Glass fiber (D510) vs. E-Glass (D450). ⁇ Determined by sonic pulse echo technique on bulk annealed samples.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201280005031.5A CN103347831B (zh) | 2011-01-11 | 2012-01-11 | 热膨胀系数低的玻璃组合物和由其制成的玻璃纤维 |
| JP2013548633A JP6377350B2 (ja) | 2011-01-11 | 2012-01-11 | 低い熱膨張係数を有するガラス組成物、および該ガラス組成物から生成されるガラス繊維 |
| KR1020137018068A KR102012750B1 (ko) | 2011-01-11 | 2012-01-11 | 낮은 열팽창 계수를 갖는 유리 조성물 및 이로부터 제조된 유리 섬유 |
| EP12701304.3A EP2663535A1 (en) | 2011-01-11 | 2012-01-11 | Glass composition with low coefficient of thermal expansion, and glass fiber produced from same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161431712P | 2011-01-11 | 2011-01-11 | |
| US61/431,712 | 2011-01-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012097042A1 true WO2012097042A1 (en) | 2012-07-19 |
Family
ID=45532071
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/020900 Ceased WO2012097042A1 (en) | 2011-01-11 | 2012-01-11 | Glass composition with low coefficient of thermal expansion, and glass fiber produced from same |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US8728964B2 (enExample) |
| EP (1) | EP2663535A1 (enExample) |
| JP (2) | JP6377350B2 (enExample) |
| KR (1) | KR102012750B1 (enExample) |
| CN (1) | CN103347831B (enExample) |
| TW (1) | TWI565675B (enExample) |
| WO (1) | WO2012097042A1 (enExample) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9650282B2 (en) * | 2011-02-23 | 2017-05-16 | Dening Yang | Glass fiber with properties of high strength, energy saving, environment protecting and low viscosity, production method thereof and composite material containing the same |
| US9413464B2 (en) * | 2013-09-09 | 2016-08-09 | Finisar Corporation | Optoelectronic assembly for signal conversion |
| CN104478223B (zh) * | 2014-12-05 | 2017-05-24 | 中材科技股份有限公司 | 一种高性能玻璃纤维 |
| CN108349218B (zh) | 2015-11-05 | 2021-04-27 | 康宁股份有限公司 | 具有确定模量对比的层压玻璃制品及其形成方法 |
| JP6669893B2 (ja) | 2016-04-29 | 2020-03-18 | フィニサー コーポレイション | ガラスアセンブリ上の接合チップ |
| US11739807B2 (en) * | 2017-10-20 | 2023-08-29 | Nitto Boseki Co., Ltd. | Energy absorption member |
| JP7417600B2 (ja) * | 2018-10-12 | 2024-01-18 | モーフォトニクス ホールディング ベスローテン フェノーツハップ | 調整可能な高い寸法安定性を有するフレキシブルスタンプ |
| CN112500172B (zh) * | 2020-05-11 | 2021-10-01 | 深圳前海发维新材料科技有限公司 | 一种高软化点、低热膨胀系数、高耐磨、低热导率的玻璃复合材料在发动机气轮机中的应用 |
| JP2021003899A (ja) * | 2020-10-08 | 2021-01-14 | 日東紡績株式会社 | ガラス繊維強化樹脂成形品 |
| CN112745031B (zh) * | 2021-01-06 | 2022-03-18 | 泰山玻璃纤维有限公司 | 一种低热膨胀系数高强度玻璃纤维 |
| CN112624620B (zh) * | 2021-01-06 | 2022-04-05 | 泰山玻璃纤维有限公司 | 一种低热膨胀系数玻璃纤维 |
| TWI777470B (zh) * | 2021-03-25 | 2022-09-11 | 富喬工業股份有限公司 | 玻璃組成物及玻璃纖維 |
| CN113105118A (zh) * | 2021-04-14 | 2021-07-13 | 台嘉蚌埠玻璃纤维有限公司 | 低热膨胀系数的玻璃组合物及其制造的玻璃纤维 |
| CN113979635B (zh) * | 2021-11-23 | 2022-06-10 | 清远忠信世纪电子材料有限公司 | 一种低膨胀系数玻璃纤维 |
| WO2023096243A1 (ko) * | 2021-11-25 | 2023-06-01 | 광주과학기술원 | 유전율이 낮은 산화물계 유리 조성물 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB479173A (en) * | 1935-09-24 | 1938-01-31 | Corning Glass Works | Improvements in tempered glass articles |
| FR2666082A1 (fr) * | 1990-08-23 | 1992-02-28 | Nippon Electric Glass Co | Composition de fibres de verre de protection contre le rayonnement ultraviolet. |
| EP0960075A1 (en) * | 1996-12-17 | 1999-12-01 | Corning Incorporated | Glasses for display panels and photovoltaic devices |
| WO2007055968A2 (en) * | 2005-11-04 | 2007-05-18 | Ocv Intellectual Capital, Llc | Composition for high performance glass, high performance glass fibers and articles therefrom |
| US20070265156A1 (en) * | 1999-08-05 | 2007-11-15 | Ulrich Peuchert | Alkali-free aluminoborosilicate glass, and uses thereof |
| FR2916198A1 (fr) * | 2007-05-16 | 2008-11-21 | Saint Gobain | Substrats de verre pour ecrans de visualisation |
| WO2010075267A1 (en) * | 2008-12-22 | 2010-07-01 | Ocv Intellectual Capital, Llc | Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR807762A (fr) * | 1935-09-24 | 1937-01-21 | Corning Glass Works | Objets en verre trempé et leur procédé de fabrication |
| NL257758A (enExample) * | 1958-12-02 | |||
| US3892581A (en) * | 1973-09-10 | 1975-07-01 | Ppg Industries Inc | Glass fiber compositions |
| US4582748A (en) * | 1984-01-26 | 1986-04-15 | Owens-Corning Fiberglas Corporation | Glass compositions having low expansion and dielectric constants |
| JP4378152B2 (ja) * | 2003-11-07 | 2009-12-02 | 岡本硝子株式会社 | 耐熱性ガラス |
| CN101855277B (zh) * | 2007-11-13 | 2013-01-23 | 日东纺绩株式会社 | 具有不燃性和透明性的纤维增强树脂片材及其制造方法 |
-
2012
- 2012-01-10 TW TW101100967A patent/TWI565675B/zh not_active IP Right Cessation
- 2012-01-11 JP JP2013548633A patent/JP6377350B2/ja not_active Expired - Fee Related
- 2012-01-11 US US13/348,073 patent/US8728964B2/en active Active
- 2012-01-11 WO PCT/US2012/020900 patent/WO2012097042A1/en not_active Ceased
- 2012-01-11 EP EP12701304.3A patent/EP2663535A1/en not_active Withdrawn
- 2012-01-11 CN CN201280005031.5A patent/CN103347831B/zh not_active Expired - Fee Related
- 2012-01-11 KR KR1020137018068A patent/KR102012750B1/ko not_active Expired - Fee Related
-
2017
- 2017-11-01 JP JP2017211659A patent/JP2018048079A/ja active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB479173A (en) * | 1935-09-24 | 1938-01-31 | Corning Glass Works | Improvements in tempered glass articles |
| FR2666082A1 (fr) * | 1990-08-23 | 1992-02-28 | Nippon Electric Glass Co | Composition de fibres de verre de protection contre le rayonnement ultraviolet. |
| EP0960075A1 (en) * | 1996-12-17 | 1999-12-01 | Corning Incorporated | Glasses for display panels and photovoltaic devices |
| US20070265156A1 (en) * | 1999-08-05 | 2007-11-15 | Ulrich Peuchert | Alkali-free aluminoborosilicate glass, and uses thereof |
| WO2007055968A2 (en) * | 2005-11-04 | 2007-05-18 | Ocv Intellectual Capital, Llc | Composition for high performance glass, high performance glass fibers and articles therefrom |
| FR2916198A1 (fr) * | 2007-05-16 | 2008-11-21 | Saint Gobain | Substrats de verre pour ecrans de visualisation |
| WO2010075267A1 (en) * | 2008-12-22 | 2010-07-01 | Ocv Intellectual Capital, Llc | Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103347831B (zh) | 2016-01-20 |
| TW201235327A (en) | 2012-09-01 |
| JP2014502951A (ja) | 2014-02-06 |
| CN103347831A (zh) | 2013-10-09 |
| JP2018048079A (ja) | 2018-03-29 |
| TWI565675B (zh) | 2017-01-11 |
| EP2663535A1 (en) | 2013-11-20 |
| KR20140032365A (ko) | 2014-03-14 |
| US8728964B2 (en) | 2014-05-20 |
| US20120178610A1 (en) | 2012-07-12 |
| KR102012750B1 (ko) | 2019-08-21 |
| JP6377350B2 (ja) | 2018-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8728964B2 (en) | Glass composition with low coefficient of thermal expansion, and glass fiber produced from same | |
| KR102321888B1 (ko) | 저 유전성 유리 조성물, 섬유 및 물품 | |
| EP1951633B1 (en) | Composition for high performance glass, high performance glass fibers and articles therefrom | |
| JP5655293B2 (ja) | ガラス繊維用ガラス組成物、ガラス繊維及びガラス製シート状物 | |
| JP2014502951A5 (enExample) | ||
| JP5545590B2 (ja) | ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物 | |
| KR101758938B1 (ko) | 향상된 모듈러스의 리튬프리 유리 | |
| CA2824644C (en) | High strength glass composition and fibers | |
| CN108947261B (zh) | 制备高强度、轻质玻璃纤维的组合物及其用途 | |
| EP2630095B1 (en) | Glass composition for producing high strength and high modulus fibers | |
| WO2014062715A1 (en) | High modulus glass fibers | |
| WO2010109721A1 (ja) | ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物 | |
| JP2003171143A (ja) | ガラス繊維用ガラス組成物 | |
| WO2012104999A1 (ja) | ガラス繊維 | |
| EP2630094B1 (en) | Glass composition for producing high strength and high modulus fibers | |
| EP2588423A2 (en) | Glass composition for producing high strength and high modulus fibers | |
| CN114538783A (zh) | 高强度、低膨胀系数玻璃纤维及复合材料 | |
| EP2588424A2 (en) | Glass composition for producing high strength and high modulus fibers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12701304 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2013548633 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20137018068 Country of ref document: KR Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012701304 Country of ref document: EP |