WO2012096218A1 - 太陽電池用裏面保護シート - Google Patents

太陽電池用裏面保護シート Download PDF

Info

Publication number
WO2012096218A1
WO2012096218A1 PCT/JP2012/050116 JP2012050116W WO2012096218A1 WO 2012096218 A1 WO2012096218 A1 WO 2012096218A1 JP 2012050116 W JP2012050116 W JP 2012050116W WO 2012096218 A1 WO2012096218 A1 WO 2012096218A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
functional group
reactive functional
layer
vapor
Prior art date
Application number
PCT/JP2012/050116
Other languages
English (en)
French (fr)
Inventor
市村 茂樹
武俊 岩佐
高橋 章
榮一 杉本
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2012096218A1 publication Critical patent/WO2012096218A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention has an excellent weather resistance, an excellent water vapor barrier property, and a water vapor gas barrier even if there is some bending associated with assembly by hot press molding or vacuum / pressure air molding when manufacturing a solar cell panel.
  • the back surface protection sheet for solar cells which has the softness
  • back surface protection sheets constituting solar cell modules.
  • these sheets as a device for imparting a gas barrier property such as water vapor and oxygen gas to the sheet, a sheet in which films having different characteristics are laminated with an adhesive and multilayered is mainly used.
  • Patent Document 1 discloses a back sheet in which a water vapor-blocking metallic film for securing gas barrier properties is bonded to an electrically insulating PET film with an adhesive. Note that an aluminum foil is used for the water vapor blocking metallic film.
  • a gas barrier layer composed of a water-soluble polymer and a composite composed of one or more metal alkoxides and / or hydrolysates thereof may be formed.
  • urethane, acrylic, epoxy, and silicon adhesives are used as adhesives. These adhesives, particularly urethane adhesives that are frequently used, sometimes cause yellowing over time because the adhesives are easily hydrolyzed. In addition, for the same reason, CO 2 may be generated inside the adhesive, and in this case, the adhesive strength of the adhesive may be reduced due to the generation of CO 2 . There is a possibility that the adhesive may be peeled off from the film due to the deterioration of the adhesive or the decrease in the adhesive strength due to these factors.
  • a resin film having weather resistance such as a fluorine resin or an olefin resin
  • a resin film having weather resistance is attached to one or both surfaces of the gas barrier layer using an adhesive or the like. It is matched.
  • the C—C bond that is the main chain of the resin component is easily cut by ultraviolet rays, the deterioration of the resin film is unavoidable, and the gas barrier property is also deteriorated along with the deterioration of the weather-resistant resin film by ultraviolet rays. To do.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to satisfy the weather resistance, gas barrier properties, and flexibility at the same time, and can be used stably over time. It is to provide a protective sheet.
  • the present invention provides a back surface protection sheet for solar cells that employs the following configuration.
  • a base film comprising at least one layer; A high barrier vapor deposition film formed on the surface of the base film; A coat layer composed of at least one layer formed on a surface different from the surface on which the base film of the high barrier vapor deposition film is provided;
  • the coating layer includes a metal alkoxide having a reactive functional group (Y), an acrylic monomer having a reactive functional group (X) that reacts with the reactive functional group (Y), and a reactive functional group (
  • a back protective sheet for solar cells which is a ternary copolymer layer obtained by curing a liquid coating film having a resin component comprising an acrylic monomer having no X).
  • the metal alkoxide has a general formula: YM (OR) 3- , YRM (OR) 2 , YR 2 M (OR) (wherein M is a metal, R is an alkyl group, and Y is a functional group having reactivity)
  • the solar cell back surface protective sheet according to the present invention is a solar cell back surface protective sheet excellent in practicality that can satisfy weather resistance, gas barrier properties, and flexibility at the same time and can be used stably over time. .
  • FIG. 1 is a cross-sectional configuration diagram illustrating an example of a solar cell back surface protective sheet according to the present invention.
  • FIG. 2 is a schematic diagram for explaining the characteristics of the ternary copolymer constituting the coat layer of the solar cell back surface protective sheet according to the present invention.
  • FIG. 3 is a schematic diagram for explaining the characteristics of the polymer constituting the composite coat layer of the conventional back protective sheet for solar cells.
  • FIG. 4 is a schematic diagram for explaining the self-healing characteristics of the ternary copolymer constituting the coat layer of the solar cell back surface protective sheet according to the present invention.
  • FIG. 5 is a diagram showing an infrared total reflection absorption spectrum of a dry coating film of a commercially available emulsion main ingredient used as a liquid material used in the present invention.
  • the back surface protection sheet for solar cells includes a base film composed of at least one layer, a high barrier vapor deposition film formed on the surface of the base film, and the base film of the high barrier vapor deposition film. And a coating layer comprising at least one layer formed on a different side from the metal layer, and the coating layer reacts with the metal alkoxide having a reactive functional group (Y) and the reactive functional group (Y).
  • Liquid having a resin component composed of an acrylic monomer not having a water content means an aqueous emulsion containing a resin component composed of only the above three monomers at a predetermined concentration (preferably a concentration of 50% by weight in the end). And a resin solution obtained by dissolving a resin component consisting of only the three monomers in a non-aqueous solvent.
  • the base film may have a single layer structure or a multilayer structure of two or more layers.
  • the coating layer includes a metal alkoxide having a reactive functional group (Y), an acrylic monomer having a reactive functional group (X) that reacts with the reactive functional group (Y), and a reactive functional group (X ) Is a ternary copolymer layer obtained by polymerizing and curing a liquid coating film having a resin component composed of an acrylic monomer having no.
  • the coating film may be formed in one layer or in multiple layers.
  • FIG. 1 is a cross-sectional structure showing an embodiment of the solar cell backsheet (solar cell back surface protection sheet) of the present invention.
  • FIG. 1 there is a case of a laminated structure in which a high barrier vapor deposition film 3 made of an inorganic oxide vapor deposition film or an aluminum vapor deposition film is formed between a base film 1 having a single layer structure and a coat layer 2 having a single layer structure. It is shown.
  • the coating layer 2 and the high barrier vapor deposition film 3 are described as being formed on one surface of the base film 1, but are formed on both surfaces of the base film 1. Also good.
  • a resin film that can be molded and processed within a range that does not melt and soften while being appropriately adjusted within a predetermined heating time because it is heated in a hot press when forming a solar cell module is used. it can.
  • the material of the base film include at least one selected from polyester resins, polyolefin resins, polystyrene resins, polyamide resins, polycarbonate resins, and polyacrylonitrile resins.
  • examples of the base film 1 include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polystyrene films, polyamide films, and polycarbonate. Engineering plastic films such as films, polyacrylonitrile films, and polyimide films are used.
  • the thickness of the base film 1 is in the range of 3 ⁇ m to 300 ⁇ m.
  • the film used as this 1 layer structure base film 1 may vapor-deposit the inorganic oxide on the surface.
  • the base film when the base film has a multilayer structure, at least one of them is a film with an inorganic oxide vapor deposition film or a film with an aluminum vapor deposition film, and the vapor deposition film according to the required degree of gas barrier properties. The number of attached film layers can be incorporated.
  • bonding a film with a vapor deposition film it is preferable to bond a vapor deposition surface to the PET surface which does not have a vapor deposition film.
  • the inorganic oxide for vapor deposition silicon oxide, aluminum oxide, zinc oxide, or the like can be used, and the vapor deposition thickness is preferably 1 nm to 100 nm.
  • the high barrier vapor-deposited film 3 is made of an aluminum foil by two layers having high barrier properties, that is, the high barrier vapor-deposited film 3 and a terpolymer layer (coat layer 2) formed thereon. It is characterized by having a barrier performance comparable to a conventional high-barrier sheet material using the.
  • the high barrier vapor deposition film 3 is formed by vapor-depositing an inorganic oxide vapor deposition film such as silicon oxide, aluminum oxide or zinc oxide, or an aluminum vapor deposition film on the base film 1. Therefore, it can be directly formed on the base film 1 and it can be said that the adhesion to the base film 1 is very high.
  • the apparatus used for vapor deposition, the operating conditions of the apparatus, and the like may be the same as those of conventional vapor deposition of inorganic oxides.
  • the deposition thickness generally depends on the thickness of the ternary copolymer layer to be combined. The thickness is preferably 30.0 nm.
  • the coating layer 2 is formed in a thickness range of 5 to 300 ⁇ m on the high barrier vapor deposition film 3 formed on one side or both sides (one side in FIG. 1) of the base film 1.
  • the coat layer 2 is a resin coat layer, it has an excellent gas barrier property. Therefore, an aluminum foil to be provided via an adhesive layer is combined with the above-described high barrier vapor-deposited film 3. A high barrier property equivalent to the used high-barrier back sheet can be obtained.
  • the coating layer 2 includes a resin component composed of a metal alkoxide having a reactive functional group (Y), an acrylic monomer having a reactive functional group (X), and an acrylic monomer having no reactive functional group (X). It is the ternary copolymer layer which hardened the coating film of the liquid which has.
  • the liquid here means a metal alkoxide having a reactive functional group (Y), an acrylic monomer having a reactive functional group (X) that reacts with the reactive functional group (Y), and a reactive monomer.
  • aqueous emulsion containing a resin component consisting of only three types of monomers with an acrylic monomer having no functional group (X) at a predetermined concentration (preferably a final concentration of 50% by weight), or the above three types
  • a resin component consisting of only three types of monomers with an acrylic monomer having no functional group (X) at a predetermined concentration (preferably a final concentration of 50% by weight), or the above three types
  • the metal alkoxide having a reactive functional group is a general formula: YM (OR) 3 , YRM (OR) 2 , YR 2 M (OR) (wherein M is a metal, R is an alkyl group, Y Represents a functional group having reactivity).
  • Examples of the metal alkoxide having such a reactive functional group (Y) include ⁇ , ⁇ -ethylenically unsaturated monomers containing silane, such as vinyltrimethoxyxysilane, vinyltriisopropoxysilane, allyltrimethoxysilane, diallyl.
  • tetraalkoxysilane In addition to the metal alkoxide having the reactive functional group (Y), tetraalkoxysilane, trialkoxyaluminum, tetraalkoxytitanium and the like may be added.
  • the reactive functional group (Y) of the metal alkoxide has an isocyanate group, it is reactive for the purpose of suppressing the direct reaction with water and effectively promoting the reaction with the reactive functional group (X).
  • a capping agent also called a blocking agent or a protective agent
  • Any suitable aliphatic, alicyclic, or aromatic alkyl monoalcohol or phenolic compound can be used as the capping agent.
  • Examples of the aliphatic, alicyclic, or aromatic alkyl monoalcohol include lower aliphatic groups such as methanol, ethanol, and n-butanol, 2-methyl-2-propanol, 2-methyl-1-propanol. Mention may be made of alcohols; alicyclic alcohols such as cyclohexanol; aromatic-alkyl alcohols such as phenyl carbinol and methyl phenyl carbinol.
  • the phenolic compound includes phenolic compounds such as phenol itself and substituted phenols such as cresol and nitrophenol (the substituent does not affect the coating operation).
  • glycol ether can also be used as a capping agent.
  • Suitable glycol ethers include ethylene glycol butyl ether, diethylene glycol butyl ether, ethylene glycol methyl ether and propylene glycol methyl ether. Of the glycol ethers, diethylene glycol butyl ether is preferred.
  • capping agents include oximes such as methyl ethyl ketoxime, acetone oxime and cyclohexanone oxime, lactams such as ⁇ -caprolactam, and amines such as dibutylamine.
  • the capping agent modified with an isocyanate group is coated in the emulsion and then volatilized (azeotropically) with moisture by heat drying or decomposed by heating, whereby a reactive functional group (isocyanate)
  • the polymerization starts.
  • the desorption reaction of the capping agent is caused by heating to 80 ° C. or higher. However, when the temperature exceeds 120 ° C., the polymerization of the monomer proceeds rapidly. Therefore, the heating for desorption of the capping agent is performed at 80 ° C. It is preferable to carry out at a temperature in the range of ⁇ 120 ° C. This capping agent desorption reaction is usually realized simultaneously in the coating film drying step.
  • the reactive functional group (X) has a property of reacting with and binding to the reactive functional group (Y) of the metal alkoxide such as an ester group, an epoxy group, a ketone group, an amino group, and a hydroxyl group. It is a functional group having.
  • acrylic monomers having such a reactive functional group (X) include ⁇ , ⁇ -ethylenically unsaturated monomers such as hydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and hydroxy (meth) acrylate.
  • ⁇ , ⁇ -ethylenic group having a hydroxyl group such as propyl, hydroxybutyl (meth) acrylate, methacryl alcohol, 4-hydroxybutyl acrylate glycidyl (epoxy) ether, adduct of hydroxyethyl (meth) acrylate and ⁇ -caprolactone And saturated monomers.
  • an ⁇ , ⁇ -ethylenically unsaturated monomer may be a (meth) acrylate ester [for example, methyl (meth) acrylate, ethyl (meth) acrylate.
  • N-propyl (meth) acrylate N-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate , Lauryl methacrylate, phenyl acrylate, isobornyl (meth) acrylate, cyclohexyl methacrylate, t-butylcyclohexyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, dihydrodicyclopenta (meth) acrylate Dienyl and the like] and the like.
  • a ternary copolymer layer obtained by polymerizing and curing a liquid coating film having the above three types of monomers as resin components may be obtained by simultaneously polymerizing the three types of monomers.
  • "Acrylic monomer having reactive functional group (X)” and "acrylic monomer having no reactive functional group (X)”, “acrylic monomer having reactive functional group (X)” and “reactive functional group (Y ), “Metal alkoxide having a reactive functional group (Y)” and “acrylic monomer not having a reactive functional group (X)”, and two types of monomers are mixed in advance. Alternatively, the polymerization may be partially advanced and semi-polymerized, and then the remaining monomer components may be mixed and polymerized.
  • acrylic monomer having reactive functional group (X) and “acrylic monomer not having reactive functional group (X)”, are mixed or partially polymerized. It is preferable to employ a process in which the remaining “metal alkoxide having a reactive functional group (Y)” is mixed and polymerized after semi-polymerization.
  • the terpolymer is finally obtained by coating on the high-barrier vapor-deposited film 3 on the base film 1 as a ternary copolymer layer.
  • the timing of polymerization is mixed ⁇ polymerization (semi-polymerization) ⁇ coating (if there are remaining monomers, after additional mixing) ⁇ polymerization (drying) or mixing ⁇ coating ⁇ polymerization (drying) And you can get it.
  • aqueous solvent ion exchange water or the like is used.
  • a conventional dispersant may be added to an aqueous medium containing an organic solvent such as alcohol to improve the dispersibility.
  • a conventional homogenizer for example, trade name “NR-300”, manufactured by Microtech Nichion Co., Ltd.
  • Polymerization can be carried out by previously dropping the monomer and the polymerization initiator in a combination of two kinds.
  • the concentration of the resin component is preferably 30 to 60% by weight.
  • the dispersion of the resin component constituting the emulsion from the desired particle size is reduced, and resin component particles having a preferable particle size range can be obtained.
  • polymerization initiator examples include azo oily compounds [for example, azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2- (2-imidazoline) -2-yl) propane) and 2,2′-azobis (2,4-dimethylvaleronitrile), etc.]; aqueous compounds [eg anionic 4,4′-azobis (4-cyanovaleric acid), 2, 2-azobis (N- (2-carboxyethyl) -2-methylpropionamidine) and cationic 2,2′-azobis (2-methylpropionamidine)]; redox oily peroxides (eg, benzoyl peroxide) Oxides, parachlorobenzoyl peroxide, lauroyl peroxide and t-butyl perbenzoate); and aqueous peroxides (eg If, like potassium persulfate and ammonium persulfate) and the like.
  • the blending ratio of the conventional dispersant and the resin component composed of the three types of monomers may be adjusted to a conventional ratio when preparing an emulsion.
  • the solid content may be adjusted to a range of 5/95 to 20/80.
  • the ratio is less than 5/95, the dispersed particles aggregate to form a lump and the smoothness of the coating film tends to be impaired.
  • the ratio exceeds 20/80, the film thickness tends to be difficult to control.
  • a mercaptan such as lauryl mercaptan and a chain transfer agent such as ⁇ -methylstyrene dimer may be used as necessary.
  • the polymerization reaction temperature of the mixed monomer is determined by the initiator. For example, it is preferably 60 to 90 ° C. when an azo initiator is used, and preferably 30 to 70 ° C. when a redox initiator is used.
  • the blending amount is generally 0.1 to 5% by mass, preferably 0.2 to 2% by mass, based on the total amount of the emulsion.
  • the monomer polymerization process includes two types of monomers, “an acrylic monomer having a reactive functional group (X)” and “an acrylic monomer having no reactive functional group (X)”. It is preferable to employ a process in which mixing or polymerization is partially advanced and semi-polymerization is performed, and then the remaining “metal alkoxide having a reactive functional group (Y)” is mixed and polymerized.
  • the polymerization in the case of reacting two kinds of monomers in advance is performed in 1 to 8 hours.
  • the average particle diameter of the obtained two-component semipolymer resin particles is preferably in the range of 0.05 to 0.30 ⁇ m. If the particle diameter is less than 0.05 ⁇ m, the effect of improving workability is small, and if it exceeds 0.30 ⁇ m, the appearance of the resulting coating film may be deteriorated.
  • the particle diameter can be adjusted, for example, by adjusting the composition of the two monomer mixtures and the emulsion polymerization conditions.
  • the mass average molecular weight of the two-component semipolymer resin particles is preferably 6000 to 12000. If it is less than 6000, the control of the film thickness tends to be difficult, and if it exceeds 12,000, the smoothness of the coating film tends to decrease.
  • the resin solid content is preferably 3 to 20% by mass.
  • the resin solid content is less than 3% by mass, control of the film thickness tends to be difficult, and when it exceeds 20% by mass, the smoothness of the coating film tends to decrease.
  • non-aqueous solvent an organic solvent such as toluene or ethyl acetate is used.
  • non-aqueous solvent xylene, N-methylpyrrolidone, butyl acetate, aliphatic and / or aromatics having a relatively high boiling point, butyl diglycol acetate, acetone, and the like can be used as appropriate.
  • an initiator (azo-based or peroxide-based) that generates radicals by heat is used.
  • the above-described three kinds or two kinds of combinations of monomers and a polymerization initiator are dissolved to obtain a resin solution for polymerization or partial polymerization (semi-polymerization).
  • concentration of the resin component in the resin solution is preferably 30 to 60% by weight, more preferably 50% by weight.
  • the liquid material may be mixed with a resin component and a solvent and, if necessary, an ultraviolet scattering agent and / or an ultraviolet absorber.
  • the ultraviolet scattering agent include fine powders such as zinc oxide and titanium oxide.
  • the ultraviolet absorber include a dye having an ultraviolet absorbing ability and an acrylic polymer into which a high concentration benzotriazole group is introduced. By adding a small amount of such an ultraviolet scattering agent and / or an ultraviolet absorber, the weather resistance of the coating layer can be further improved.
  • the coating layer has a multilayer structure, it is preferable to mix the ultraviolet scattering agent and / or ultraviolet absorber in at least one layer, and the ultraviolet scattering agent and / or ultraviolet absorber is mixed in two or more layers or all layers. May be mixed.
  • liquid material products having an emulsion composition are commercially available, and it is also possible to use them.
  • examples of commercially available products include “Cirrus (trade name)” manufactured by Toagosei Co., Ltd. and “Sherastar MK (trade name)” manufactured by Nippon Paint Co., Ltd.
  • the coating film of the liquid material is formed so that the film thickness after drying is 6 to 350 ⁇ m To do.
  • a coating method of the liquid material conventionally known means such as a dipping method, a roll coating method, a screen printing method, a spray method and the like that are generally used can be used.
  • a plurality of thin coating layers may be laminated to have a predetermined film thickness. In the case of multiple layers, it is repeated that after the previously applied layer is dried, the next layer is applied, the layer is dried, and then the next layer is applied.
  • Step of forming a coat layer comprising a terpolymer layer This process includes a coating film drying process for drying the coating film, and a dry coating film curing process for finally forming a cured film (ternary copolymer layer) composed of the ternary copolymer after drying. ,included.
  • the solvent is vaporized from the liquid coating film to stabilize the shape of the coating film.
  • the drying temperature is preferably 80 ° C to 120 ° C. If it is less than 80 degreeC, vaporization of a solvent will become inadequate, and if it exceeds 100 degreeC, the polymerization reaction of the unreacted monomer in a coating film will be started.
  • the drying time depends on the drying temperature, it is preferably 10 to 15 minutes at 100 ° C., for example.
  • the coating film whose shape has been stabilized by drying is cured by polymerizing the unreacted monomer in the coating film.
  • the polymerization temperature of the unreacted monomer is preferably 80 ° C to 120 ° C.
  • the polymerization time depends on the polymerization temperature, it is preferably 10 to 15 minutes at 100 ° C., for example.
  • the coating layer 2 made of the terpolymer layer has gas barrier properties, weather resistance and surface covering properties (surface adhesiveness) while maintaining flexibility, the obtained sheet does not use an adhesive. It can be manufactured and has excellent long-term reliability as a back surface protection sheet for solar cells.
  • PVA polyvinyl alcohol
  • PVA has been used as a water-soluble polymer material.
  • PVA has a water vapor permeability of 1100 g / m 2 ⁇ 24 hr (measurement conditions: 25 ° C., 90% RH, thickness of 25 ⁇ m), and has a poor water vapor barrier property but excellent flexibility.
  • the conventional back surface protection sheet for solar cells cracks when bent only with an inorganic oxide vapor deposition film as a gas barrier layer cannot be prevented. Therefore, by laminating a flexible polymer film such as PVA, Gas barrier properties are secured while maintaining flexibility. Therefore, the gas barrier property was insufficient without the aluminum foil. That is, an adhesive layer is required, the number of laminated layers is increased, and it is difficult to control the total thickness of the sheets.
  • acrylic is used as a monomer (monomer) copolymerizable with the metal alkoxide in the coat layer 2 used in combination with the high barrier vapor-deposited film 3.
  • PMMA polymethyl methacrylate
  • PMMA has a water vapor permeability of 41 g / m 2 ⁇ 24 hr (measurement conditions: 25 ° C., 90% RH, thickness 25 ⁇ m), and has a gas barrier higher than that of PVA. It is known that the property is excellent.
  • the measured values of water vapor permeability of the above polyvinyl alcohol and polymethyl methacrylate were ““ Test methods and evaluation results for animal properties of plastic materials ⁇ 5> ”, Takeo Yasuda, p.119, vol.51, No. The source is “6, Plastics”.
  • the monomer material of the ternary copolymer layer constituting the coat layer includes an acrylic monomer having a reactive functional group (X), an acrylic monomer having no reactive functional group (X), and It consists of three types of monomers of a metal alkoxide having a reactive functional group (Y) that reacts with the reactive functional group (X). And the liquid body which has these three types of monomers as a resin component is formed, and let the ternary copolymer layer which formed this liquid body into a film into a coating layer.
  • ternary copolymer layer constituting such a coat layer, as shown in FIG. 2, two kinds of acrylic monomers are combined in a chain by radical polymerization reaction, and the formed acrylic polymer chains are more flexible. Sex is maintained.
  • chain acrylic polymer a plurality of functional groups (X) derived from an acrylic monomer having one reactive functional group (X) are scattered at intervals.
  • (X) and the functional group (Y) in the metal alkoxide react and bond.
  • an MO bond is formed by hydrolysis of metal alkoxides having a reactive functional group (Y), and the ternary copolymer acquires a network structure. With this network structure, flexibility and high water vapor gas barrier properties and weather resistance can be realized. Therefore, even if the sheet of the present invention is bent, cracks do not occur and the gas barrier property does not deteriorate significantly.
  • the conventional product is used as a resin film having weather resistance by adhering a fluorine-based resin or the like on the gas barrier layer described above.
  • the C—F bond energy is 116 kcal, which is very strong against the ultraviolet energy of 96 kcal, but the C—C bond energy of the main chain is 85 kcal and weak against ultraviolet rays. Therefore, deterioration of the resin due to ultraviolet rays occurs.
  • the metal alkoxide and polymer complex of the gas barrier layer is a complex with a simple polymer that does not have a chemical bond with the hydrolysis product of the metal alkoxide.
  • the C—C bond (85 kcal) of the acrylic polymer portion is broken by ultraviolet rays.
  • the MO bond (106 to 145 kcal) by the metal alkoxide is not broken. Even if the hydrolysis of the metal alkoxide progresses due to moisture in the air or in the polymer, and the C—C bond of the acrylic polymer is broken by the ultraviolet ray, self-healing can be performed by increasing the MO bond. There is almost no deterioration by.
  • the ternary copolymer layer can be bonded to a resin such as PET with a chemical bond, the adhesive property is excellent even when directly laminated on the base film 1. Even when it is laminated on the high barrier vapor-deposited film 3 as described above, it exhibits excellent adhesiveness.
  • An adhesive layer is unnecessary between the high barrier vapor deposition film 3 and the ternary copolymer layer (coat layer 2), and the high barrier vapor deposition film 3 is strongly coated by curing the coating film. There is no fear of peeling between the coating layer 2 and the high barrier vapor deposition film 3.
  • the sheet according to the present invention is excellent in flexibility, super weather resistance, and water vapor gas barrier properties, and can be provided as a back surface protection sheet for solar cells that can be used stably over time.
  • a metal alkoxide having a reactive functional group (Y), an acrylic monomer having a reactive functional group (X) that reacts with the reactive functional group (Y), and 3-glycidoxypropyltriethoxysilane was used as a metal alkoxide having a reactive functional group (Y) among the three types of monomers including an acrylic monomer having no reactive functional group (X).
  • a mixture of these monomers A commercially available product (the main ingredient of “Sherastar MK” from Nippon Paint Co., Ltd.) was used.
  • the commercially available product is a mixture of an acrylic monomer having the reactive functional group (X) and an acrylic monomer having no reactive functional group (X)
  • the surface of the dried coating film of the product The infrared total reflection absorption spectrum can be confirmed. This infrared total reflection absorption spectrum is shown in FIG.
  • Example 1 in Example 1 of the present invention, as an acrylic resin component A, an aqueous emulsion comprising 3-glycidoxypropyltriethoxysilane (1 part by weight) blended with 15 parts by weight of the main component of Shellaster MK: 100 A liquid material blended in parts by weight was prepared.
  • PET polyethylene terephthalate
  • Ester Film 5000 sold by Toyobo Co., Ltd.
  • Vapor-deposited PET subjected to SiOx vapor deposition with a thickness of 10 nm was used.
  • the liquid was applied on the upper surface of the high barrier vapor-deposited film, and the coating was heated at 80 ° C. for 10 minutes to evaporate the aqueous solvent and dried.
  • the obtained dried coating film was heated at 100 ° C. for 10 minutes to polymerize unreacted monomers constituting the coating film, thereby obtaining a copolymer layer (coat layer).
  • the thickness of the obtained film was 20 ⁇ m.
  • a sheet solar cell back surface protection sheet
  • a sheet was obtained which did not use an adhesive in which a 20 ⁇ m thick coat layer (copolymer layer) was laminated on the deposition surface of a 250 ⁇ m thick base film. .
  • water vapor barrier property water vapor transmission amount
  • Comparative Example 1 As Comparative Example 1, a fluorinated PVF film having a thickness of 25 ⁇ m, a polyethylene terephthalate (PET) film having a thickness of 188 ⁇ m (trade name “Ester Film 5000” manufactured by Toyobo Co., Ltd.), and silicon oxide are deposited by several tens of nm. A multilayer film obtained by bonding a polyethylene terephthalate (PET) film having a thickness of 12 ⁇ m (trade name “Ecosia VE500” manufactured by Toyobo Co., Ltd.) with a urethane adhesive having a thickness of 5 ⁇ m was used.
  • PET polyethylene terephthalate
  • Example 1 When the above-described Example 1 and Comparative Example 1 were subjected to a test of immersion in warm water of 85 ° C. for 72 hours, the sheet of Comparative Example 1 was peeled, whereas the sheet of Example 1 was separated from the copolymer layer. SiOx vapor-deposited PET did not peel off (see Table 2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の太陽電池用裏面保護シートは、少なくとも1層からなる基材フィルムと、前記基材フィルムの表面に形成された高バリア性蒸着膜と、前記高バリア性蒸着膜の前記基材フィルムが設けられた面と異なる面側に形成された少なくとも1層からなるコート層と、を備え、前記コート層は、反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性の官能基(X)を有するアクリル系モノマーと、反応性の官能基(X)を有さないアクリル系モノマーとからなる樹脂成分を有する液状体の塗膜を硬化してなる三元共重合体層である。

Description

太陽電池用裏面保護シート
 本発明は、優れた耐侯性を有するとともに、優れた耐水蒸気バリア性を備え、太陽電池パネルを製造する時の熱プレス成型や真空圧空成型の組み付け成型時に伴う多少の屈曲があっても水蒸気ガスバリア性が損なわれることのない柔軟性を有し、かつ積層間の剥離を経時的に誘引する可能性のある接着剤層を不要とする太陽電池用裏面保護シートに関する。
 従来、太陽電池モジュールを構成する裏面保護シートとして、いくつかの構成が提案されている。これらのシートは、シートに水蒸気、酸素ガス等のガスバリア性を付与する工夫として、特性の異なるフィルムをそれぞれ接着剤で貼り合せ多層化したものが主流に用いられている。
 例えば、特許文献1には、電気絶縁性PETフィルムに対して、ガスバリア性を確保するための水蒸気遮断性金属質フィルムを接着剤で貼り合せたバックシートが開示されている。なお、水蒸気遮断性金属質フィルムには、アルミニウム箔が用いられている。
 また、ガスバリア性の確保のため、水溶性高分子と1種類以上の金属アルコキシド及び/又はその加水分解物からなる複合物とからなるガスバリア層を形成させる場合もある。
特開2009-224761号公報
 上記特許文献1に開示のようなバックシートでは、接着剤として、ウレタン系、アクリル系、エポキシ系、シリコン系の各々の接着剤が用いられている。これらの接着剤、特に多用されているウレタン系接着剤は、接着剤が加水分解しやすいために経時的に黄変が生じる場合があった。また、同様の理由によって接着剤内部においてCOが発生する場合もあり、その場合には、COの発生によって接着剤の接着強度が低下する場合があった。これらの要因による接着剤の変質や接着強度の低下によって、接着剤がフィルムから剥離してしまうというおそれがあった。
 また、上記のような従来のシートにおいて、耐侯性を付与するために、耐侯性を有する樹脂フィルム、例えばフッ素系樹脂又はオレフィン系樹脂などをガスバリア層の片面又は両面へ接着剤などを用いて貼り合わせている。これらの樹脂フィルムは、いずれも紫外線により樹脂成分の主鎖となるC-C結合が切られ易いため、樹脂フィルムの劣化が避けられず、紫外線による耐侯性樹脂フィルムの劣化と共にそのガスバリア性も劣化する。そして、かかるガスバリア性の劣化に伴って、外部より裏面保護シート内部へ水蒸気が侵入して、基材フィルムと接着している接着層の接着剤が加水分解して劣化するため、基材フィルムと耐侯性樹脂フィルムの剥離等が発生するという問題がある。
 本発明は、上記従来技術の問題点に鑑みてなされたもので、その目的は、耐候性、ガスバリア性、柔軟性を同時に満足し、経時的に安定して使用することのできる太陽電池用裏面保護シートを提供することにある。
 上記課題を解決するために、本発明は、下記構成を採用した太陽電池用裏面保護シートを提供する。
[1] 少なくとも1層からなる基材フィルムと、
 前記基材フィルムの表面に形成された高バリア性蒸着膜と、
 前記高バリア性蒸着膜の前記基材フィルムが設けられた面と異なる面側に形成された少なくとも1層からなるコート層と、
 を備え、
 前記コート層は、反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性の官能基(X)を有するアクリル系モノマーと、反応性の官能基(X)を有さないアクリル系モノマーとからなる樹脂成分を有する液状体の塗膜を硬化してなる三元共重合体層であることを特徴とする太陽電池用裏面保護シート。
[2] 前記金属アルコキシドは、一般式:YM(OR)-、YRM(OR)、YRM(OR)(式中、Mは金属、Rはアルキル基、Yは反応性を有する官能基を示す)で表される化合物であることを特徴とする上記[1]に記載の太陽電池用裏面保護シート。
[3] 前記高バリア性蒸着膜は、無機酸化物蒸着膜から構成されていることを特徴とする、上記[1]に記載の太陽電池用裏面保護シート。
[4] 前記高バリア性蒸着膜は、アルミニウム蒸着膜から構成されていることを特徴とする、上記[1]に記載の太陽電池用裏面保護シート。
 本発明に係る太陽電池用裏面保護シートは、耐候性、ガスバリア性、柔軟性を同時に満足し、経時的に安定して使用することのできる、実用性に優れた太陽電池用裏面保護シートである。
図1は、本発明に係る太陽電池用裏面保護シートの一例を示す断面構成図である。 図2は、本発明に係る太陽電池用裏面保護シートのコート層を構成する三元共重合体の特性を説明するための模式図である。 図3は、従来の太陽電池用裏面保護シートの複合系コート層を構成する重合体の特性を説明するための模式図である。 図4は、本発明に係る太陽電池用裏面保護シートのコート層を構成する三元共重合体の自己修復特性を説明するための模式図である。 図5は、本発明で使用する液状体の材料として使用した市販品エマルション主剤の乾燥塗膜の赤外線全反射吸収スペクトルを示す図である。
 本発明に係る太陽電池用裏面保護シートは、少なくとも1層からなる基材フィルムと、前記基材フィルムの表面に形成された高バリア性蒸着膜と、前記高バリア性蒸着膜の前記基材フィルムと異なる側に形成された少なくとも1層からなるコート層と、を備え、前記コート層は、反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性の官能基(X)を有するアクリル系モノマーと、反応性の官能基(X)を有さないアクリル系モノマーとからなる樹脂成分(アクリル系樹脂成分A)を有する液状体の塗膜を硬化してなる三元共重合体層であることを特徴とする。
 上記の「反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性の官能基(X)を有するアクリル系モノマーと、反応性の官能基(X)を有さないアクリル系モノマーとからなる樹脂成分を有する液状体」とは、前記3種のモノマーのみからなる樹脂成分を所定の濃度(好ましくは、最終的に濃度50重量%)で含む水系エマルション、及び前記3種のモノマーのみからなる樹脂成分を非水系の溶媒に溶解した樹脂溶液を意味する。
 上記基材フィルムは、1層構成でもよく、2層以上の多層構成でもよい。コート層は、反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性の官能基(X)を有するアクリル系モノマーと、反応性の官能基(X)を有さないアクリル系モノマーとからなる樹脂成分を有する液状体の塗膜を重合、硬化させた三元共重合体層である。前記塗膜は1層に形成してもよいし、多層に形成してもよい。
 図1は、本発明の太陽電池バックシート(太陽電池用裏面保護シート)の一実施形態を示す断面構造である。図1では、1層構成の基材フィルム1と1層構成のコート層2との間に無機酸化物蒸着膜またはアルミニウム蒸着膜からなる高バリア性蒸着膜3が形成された積層構造の場合が示されている。以下、図面を参照しつつ、各構成要素について説明する。なお、本実施形態では、コート層2および高バリア性蒸着膜3が基材フィルム1の一方の面に形成されるものとして説明するが、基材フィルム1の両面に形成されるものであってもよい。
(基材フィルムを用意する工程)
 基材フィルム1としては、太陽電池モジュールを形成する際の熱プレスにおいて、加温されるため所定の加熱時間内で適宜調整しながら溶融軟化しない範囲内で成形加工可能な樹脂フィルムを用いることができる。かかる基材フィルムの材質としては、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド樹脂、ポリカーボネート樹脂、及びポリアクリロニトリル樹脂から選ばれる少なくとも1種を挙げることができる。換言すれば、基材フィルム1の種類としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル系フィルム、ポリエチレン、ポリプロピレン等のポリオレフィン系フィルム、ポリスチレン系フィルム、ポリアミドフィルム、ポリカーボネートフィルム、ポリアクリロニトリルフィルム、ポリイミドフィルム等のエンプラフィルムが用いられる。
 基材フィルム1の厚さは3μm~300μmの範囲とする。
 また、上記基材フィルム1は1層構成である場合の例示であるが、この1層構成の基材フィルム1として用いるフィルムは無機酸化物をその表面に蒸着されたものであってもよい。本発明において、基材フィルムを多層構成とする場合は、その内の少なくとも1層を無機酸化物蒸着膜付きフィルムまたはアルミニウム蒸着膜付きフィルムとし、必要とされるガスバリア性の度合いに応じて蒸着膜付きフィルムの層数を組み込むことができる。また蒸着膜付きフィルムを貼り合わせる場合は、蒸着面を、蒸着膜の付いてないPET面に貼り合わせることが好ましい。
 蒸着用の無機酸化物としては、酸化珪素や酸化アルミニウム、酸化亜鉛などを用いることができ、その蒸着厚さは1nm~100nmとすることが好ましい。
(高バリア性蒸着膜を形成する工程)
 本発明において、高バリア性蒸着膜3は、該高バリア性蒸着膜3とその上に形成される三元共重合体層(コート層2)との2つのバリア性の高い層によって、アルミニウム箔を用いた従来の高バリア性のシート材料に匹敵するバリア性能を有することを特徴としている。
 高バリア性蒸着膜3は、酸化珪素や酸化アルミニウム、酸化亜鉛などの無機酸化物蒸着膜、またはアルミニウム蒸着膜を基材フィルム1上に蒸着することにより形成される。従って、基材フィルム1に直接形成することができ、基材フィルム1への接着性は非常に高いということができる。
 蒸着に用いられる装置、装置の操作条件などは、無機酸化物の従来の蒸着と同様であってよい。アルミニウム箔を用いた従来の高バリア性のシート材料に匹敵するバリア性能を有するためには、組み合わせる三元共重合体層の厚みにも依存するが、一般に、その蒸着厚さは5.0nm~30.0nmとすることが好ましい。
(液状体を用意する工程)
 本発明では、基材フィルム1の片面又は両面(図1では片面)に形成した高バリア性蒸着膜3の上に、厚さ5~300μmの範囲で、コート層2を形成する。該コート層2は、樹脂コート層であるにも拘わらず、優れたガスバリア性を有するので、上述の高バリア性蒸着膜3との組み合わせにより、接着剤層を介して設けることになるアルミニウム箔を用いた高バリア性の裏面シートと同等の高いバリア性を得ることが可能となる。
 コート層2は、反応性官能基(Y)を有する金属アルコキシド、反応性官能基(X)を有するアクリル系モノマー、反応性の官能基(X)を有さないアクリル系モノマーからなる樹脂成分を有する液状体の塗膜を硬化させた三元共重合体層である。ここでいう液状体とは、反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性の官能基(X)を有するアクリル系モノマーと、反応性の官能基(X)を有さないアクリル系モノマーとの3種のモノマーのみからなる樹脂成分を所定の濃度(好ましくは、最終的に濃度50重量%)で含む水系エマルションであるか、前記3種のモノマーのみからなる樹脂成分を非水系の溶媒に溶解した樹脂溶液である。
 上記反応性官能基(Y)を有する金属アルコキシドとは、一般式:YM(OR)、YRM(OR)、YRM(OR)(式中、Mは金属、Rはアルキル基、Yは反応性を有する官能基を示す)で表される化合物である。
 かかる反応性官能基(Y)を有する金属アルコキシドとしては、特にシランを含んだα,β-エチレン性不飽和モノマー、例えば、ビニルトリメトキシキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、ジアリルジメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-オクタイノイルチオ-1-プロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトシキシシラン、3-イソシアネートプロピルトリエトシキシシラン、3-イソシアンネートプロピルトリメトシキシシランなどのα,β-エチレン性不飽和モノマーなどから選ばれる1種又は混合物を挙げることができる。
 なお、上記の反応性官能基(Y)を有する金属アルコキシドに加えて、テトラアルコキシシラン、トリアルコキシアルミニウム、テトラアルコキシチタンなどを添加してもよい。
 なお、上記金属アルコキシドの反応性官能基(Y)にイソシアネート基を有する場合、水との直接反応を抑制し、反応性官能基(X)との反応を有効に進める事を目的に、反応性官能基(Y)に対してキャッピング剤(ブロック剤、又は保護剤とも呼ばれている)を用いる。キャッピング剤としては、任意の適切な脂肪族、脂環式、又は芳香族のアルキルモノアルコール又はフェノール性化合物が使用され得る。
 上記脂肪族、脂環式、又は芳香族のアルキルモノアルコールとしては、例えば、メタノール、エタノール、及びn-ブタノール、2-メチル-2-プロパノール、2-メチル-1-プロパノールのような低級脂肪族アルコール;シクロヘキサノールのような脂環式アルコール;フェニルカルビノール及びメチルフェニルカルビノールのような芳香族-アルキルアルコールを挙げることができる。
 上記フェノール性化合物としては、フェノール自身及びクレゾール及びニトロフェノールのような置換フェノール(該置換基はコーティング操作に影響しない)のようなフェノール性化合物が包含される。
 キャッピング剤としては、その他に、グリコールエーテルも使用され得る。適切なグリコールエーテルとしては、エチレングリコールブチルエーテル、ジエチレングリコールブチルエーテル、エチレングリコールメチルエーテル及びプロピレングリコールメチルエーテルが挙げられる。グリコールエーテルの中でもジエチレングリコールブチルエーテルが好ましい。
 さらに、他のキャッピング剤としては、メチルエチルケトオキシム、アセトンオキシム及びシクロヘキサノンオキシムのようなオキシム、ε-カプロラクタムのようなラクタム、及びジブチルアミンのようなアミンが挙げられる。
 適切なキャッピング剤を用いるに当たっては、塗膜の乾燥、反応温度に適したものを選択し用いることができる。
 反応は、イソシアネート基に修飾したキャッピング剤が、エマルション中において、塗工された後、加熱乾燥で水分とともに揮発(共沸)されるか、加熱で分解されることで、反応性官能基(イソシアネート基)から外れ、それとともに重合が始まる。キャッピング剤の脱離反応は80℃以上に加熱することにより生じるが、120℃を超えて加熱すると、モノマーの重合が急速に進行するので、キャッピング剤の脱離を目的とする加熱は、80℃~120℃の範囲内の温度にて行うことが好ましい。このキャッピング剤の脱離反応は、通常塗膜の乾燥工程において同時に実現される。
 また、上記反応性官能基(X)とは、エステル基、エポキシ基、ケトン基、アミノ基、水酸基、などの、前記金属アルコキシドの反応性官能基(Y)と互いに反応して結合する特性を有する官能基である。
 かかる反応性官能基(X)を有するアクリルモノマーとしては、α,β-エチレン性不飽和モノマー、例えば(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、メタクリルアルコール、4ヒドロキシブチルアクリレートグリシジル(エポキシ)エーテル、(メタ)アクリル酸ヒドロキシエチルとε-カプロラクトンとの付加物などの水酸基を有するα,β-エチレン性不飽和モノマーなどが挙げられる。
 また、「反応性の官能基(X)を有さない」とは、上記反応性官能基(Y)を有する金属アルコキシドと反応する官能基を有さないことを意味する。
 かかる反応性官能基(X)を有さないアクリルモノマーしては、α,β-エチレン性不飽和モノマーとして、(メタ)アクリル酸エステル[例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、メタクリル酸ラウリル、アクリル酸フェニル、(メタ)アクリル酸イソボルニル、メタクリル酸シクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタジエニル、(メタ)アクリル酸ジヒドロジシクロペンタジエニル等]などが挙げられる。
 上述の3種のモノマーを樹脂成分として有する液状体の塗膜を重合、硬化させて得られる三元共重合体層は、3種のモノマーを同時に重合させることにより得てもよいし、「反応性官能基(X)を有するアクリルモノマー」と「反応性の官能基(X)を有さないアクリルモノマー」、「反応性官能基(X)を有するアクリルモノマー」と「反応性官能基(Y)を有する金属アルコキシド」、「反応性官能基(Y)を有する金属アルコキシド)」と「反応性の官能基(X)を有さないアクリルモノマー」の各々の組み合わせで予め2種のモノマーを混合又は重合を部分的に進め半重合した後、残るモノマー成分を混合し、重合することにより、得てもよい。これらの重合プロセスの内でも、「反応性官能基(X)を有するアクリルモノマー」と「反応性の官能基(X)を有さないアクリルモノマー」の2種のモノマーを混合又は重合を部分的に進め半重合した後、残る「反応性官能基(Y)を有する金属アルコキシド)」を混合し、重合するプロセスを採用することが、好ましい。
 また、三元共重合体は、最終的に三元共重合体層として基材フィルム1上の高バリア性蒸着膜3の上で塗工して得られるが、各々のモノマーの混合、塗工、重合のタイミングは、混合→重合(半重合)→塗工(残りのモノマーがある場合は、追加混合した後)→重合(乾燥)、または混合→塗工→重合(乾燥)の各々の組み合わせで、得ることができる。
(水系溶媒によるエマルションの調製方法)
 水系溶媒としては、イオン交換水などを用いる。必要に応じてアルコールなどのような有機溶剤を含む水性媒体中に、慣用の分散剤を加えて分散性を向上させることもできる。その後、前記水系溶媒に対して、慣用のホモジナイザー(例えば、マイクロテック・ニチオン社製、商品名「NR-300」)を用いて、均一に分散させ、加熱撹拌下、上述組み合わせで3種、または予め2種の組み合わせでモノマーおよび重合開始剤を滴下することにより重合を行うことができる。樹脂成分の濃度としては、30~60重量%とすることが好ましい。
 上記方法により、エマルションを構成する樹脂成分の所望の粒子径からのバラツキが少なくなり、好ましい粒径範囲の樹脂成分粒子を得ることができる。
 上記重合開始剤としては、アゾ系の油性化合物[例えば、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2-(2-イミダゾリン-2-イル)プロパン)および2,2’-アゾビス(2,4-ジメチルバレロニトリル)など];水性化合物[例えば、アニオン系の4,4’-アゾビス(4-シアノ吉草酸)、2,2-アゾビス(N-(2-カルボキシエチル)-2-メチルプロピオンアミジン)およびカチオン系の2,2’-アゾビス(2-メチルプロピオンアミジン)];レドックス系の油性過酸化物(例えば、ベンゾイルパーオキサイド、パラクロロベンゾイルパーオキサイド、ラウロイルパーオキサイドおよびt-ブチルパーベンゾエートなど);および水性過酸化物(例えば、過硫酸カリおよび過硫酸アンモニウムなど)が挙げられる。
 なお、先の分散剤以外に、当業者に通常使用されているものや乳化剤、例えば、アントックス(Antox)MS-60(商品名:日本乳化剤社製)、エレミノールJS-2(商品名:三洋化成工業社製)、アデカリアソープNE-20(商品名:旭電化社製)およびアクアロンHS-10(商品名:第一工業製薬社製)などを併用してもよい。
 上記慣用の分散剤と上記3種のモノマーからなる樹脂成分との配合比率は、エマルションを調製する場合の慣用の比率に調整すればよい。例えば、固形分質量比で5/95~20/80の範囲に調整すればよい。5/95未満だと分散粒子が凝集して塊が発生して塗膜の平滑性が損なわれる傾向となり、20/80を超えると、膜厚の制御が難しくなる傾向となる。
 また、分子量を調節するために、ラウリルメルカプタンのようなメルカプタンおよびα-メチルスチレンダイマーなどのような連鎖移動剤を必要に応じて用いてもよい。
 混合モノマーの重合反応温度は開始剤により決定され、例えば、アゾ系開始剤を用いた場合では60~90℃であり、レドックス系開始剤を用いた場合では30~70℃で行うことが好ましい。開始剤を用いる場合の配合量は、エマルションの総量に対して、一般に0.1~5質量%であり、好ましくは0.2~2質量%である。
 先に述べたように、モノマーの重合プロセスとしては、「反応性官能基(X)を有するアクリルモノマー」と「反応性の官能基(X)を有さないアクリルモノマー」の2種のモノマーを混合又は重合を部分的に進め半重合した後、残る「反応性官能基(Y)を有する金属アルコキシド)」を混合し、重合するプロセスを採用することが、好ましい。
 予め2種のモノマーを反応させる場合の重合は、1~8時間で行なわれる。
 上述の、「反応性官能基(X)を有するアクリルモノマー」と「反応性の官能基(X)を有さないアクリルモノマー」の2種のモノマーを部分的に重合(半重合)して得られた2成分半重合樹脂粒子の平均粒子径としては、0.05~0.30μmの範囲であることが好ましい。粒子径が0.05μm未満であると、作業性の改善の効果が小さく、0.30μmを上回ると、得られる塗膜の外観が悪化する恐れがある。この粒子径の調節は、例えば、上記2種のモノマー混合物の組成や乳化重合条件を調整することにより可能である。
 また、上記2成分半重合樹脂粒子の質量平均分子量は6000~12000であることが好ましい。6000未満だと膜厚の制御が難しくなる傾向となり、12000を超えると塗膜の平滑性が低下する傾向となる。
 上述の組成からなるエマルションにおいては、樹脂固形分量が3~20質量%であることが好ましい。樹脂固形分量が3質量%未満だと、膜厚の制御が難しくなる傾向となり、20質量%を超えると、塗膜の平滑性が低下する傾向となる。
(非水系溶媒を用いた樹脂溶液の調製方法)
 非水系溶媒としては、トルエンや酢酸エチルなどの有機溶剤が用いられる。非水系溶媒としては、その他に、キシレン、N-メチルピロリドン、ブチルアセテート、比較的高沸点の脂肪族及び/もしくは芳香族、ブチルジグリコールアセテート、アセトン等などを適宜用いることもできる。
 また、重合開始剤としては、熱でラジカルを発生する開始剤(アゾ系、過酸化物系)が用いられる。
 前記非水系溶媒に対して、上述の3種、または予め2種の組み合わせのモノマー、および重合開始剤を溶解させて、重合又は部分重合(半重合)の樹脂溶液を得る。樹脂溶液中の樹脂成分の濃度としては、30~60重量%とすることが好ましく、さらに好ましくは50重量%である。
 上記液状体には、樹脂成分と溶媒に、さらに、必要に応じて、紫外線散乱剤又は/及び紫外線吸収剤を混合してもよい。紫外線散乱剤としては、酸化亜鉛、酸化チタンなどの微粉末が挙げられる。紫外線吸収剤としては、紫外線吸収能を有する色素や、高濃度ベンゾトリアゾール基を導入したアクリルポリマーなどを挙げることができる。かかる紫外線散乱剤又は/及び紫外線吸収剤を少量添加することで、コート層の耐侯性をさらに向上することができる。コート層が多層構成である場合は、その少なくとも1層に上記紫外線散乱剤又は/及び紫外線吸収剤を混入することが好ましく、2層以上もしくは全ての層に上記紫外線散乱剤又は/及び紫外線吸収剤を混入してもよい。
 上記液状体としては、エマルション組成の製品が市販されているので、それらを使用することも可能である。市販品としては、例えば、東亞合成株式会社製の「シーラス(商品名)」や日本ペイント株式会社の「シェラスターMK(商品名)」などが挙げられる。
(液状体の塗膜を形成する工程)
 基材フィルム1の片面又は両面(図1では片面)に形成された高バリア性蒸着膜3の上面に、乾燥後の膜厚が6~350μmとなるように、前記液状体の塗膜を形成する。液状体の塗布方法としては、一般に用いられるディッピング法、ロールコーティング法、スクリーン印刷法、スプレー法などの従来公知の手段を用いることができる。また、厚さを均一にコントロールするために、薄いコーティング層を多重に積層して所定の膜厚としてもよい。多重に積層する場合は、先に塗布した層を乾燥させた後に次の層を塗布し、その層を乾燥させて、さらに次の層を塗布することを繰り返す。
(三元共重合体層からなるコート層を形成する工程)
 この工程には、塗膜を乾燥させる塗膜乾燥工程と、乾燥後、最終的に三元共重合体から構成される硬化膜(三元共重合体層)にする乾燥塗膜硬化工程とが、含まれる。
(塗膜乾燥工程)
 この塗膜乾燥工程では、上記液状体の塗膜から溶媒を気化させて、塗膜の形状を安定化させる。乾燥の温度は80℃~120℃が好ましい。80℃未満では溶媒の気化が不十分になり、100℃を超えると、塗膜中の未反応モノマーの重合反応が開始される。乾燥時間は、乾燥温度に依存するが、例えば、好ましくは、100℃で、10分~15分である。
(乾燥塗膜硬化工程)
 乾燥により形状が安定化した塗膜を、塗膜中の未反応モノマーを重合させることにより、硬化させる。未反応モノマーの重合温度は、80℃~120℃が好ましい。80℃未満では、重合が不十分となり、120℃を超えると、PETの高バリア性蒸着膜3上に膜形成させる上で、PETの収縮が始まり、塗膜も密着性等に悪影響を与えるという不都合が生じる。重合時間は、重合温度に依存するが、例えば、好ましくは、100℃で、10分~15分である。
(三元共重合体層の特性及び三元共重合体層をコート層として有するシートの特性)
 上記三元共重合体層からなるコート層2は柔軟性を保ちながらガスバリア性及び耐侯性および表面被覆性(表面接着性)を有しているので、得られるシートは、接着剤を用いずに製造することができ、太陽電池用裏面保護シートとして、長期信頼性に優れたものとなる。
 従来、水溶性高分子材料として、ポリビニルアルコール(PVA)が用いられている。PVAは、その水蒸気透過度が1100g/m・24hr(測定条件:25℃、90%RH、厚さ25μm)であり、水蒸気バリア性は悪いが、柔軟性に優れている。従来の太陽電池用裏面保護シートにおいては、ガスバリア層とする無機酸化物蒸着膜のみでは屈曲したときのクラックが防止できないため、PVAのような柔軟性のある高分子膜を積層することにより、対屈曲性を保持しながら、ガスバリア性を確保している。そのため、アルミニウム箔なしではガスバリア性が不十分であった。すなわち、接着剤層が必要であり、積層数も多くなり、シートの総計厚みの制御が難しくなっていた。
 本発明では、高いガスバリア性を確保するために、前記高バリア性蒸着膜3と組み合わせて使用するコート層2に、金属アルコキシドと共重合できる単量体(モノマー)としてアクリル系を用いている。一般にその重合体のアクリル系樹脂であるポリメチルメタクリレート(PMMA)は、その水蒸気透過度が41g/m・24hr(測定条件:25℃、90%RH、厚さ25μm)であり、PVAよりガスバリア性が優れていることが知られている。
 なお、上記ポリビニルアルコール及びポリメチルメタクリレートの水蒸気透過度の測定値は、『「プラスチック材料の各動物性の試験法と評価結果〈5〉」、安田武夫、p.119、vol.51, No.6、プラスチックス』を出典としたものである。
 本発明では、コート層を構成する三元共重合体層のモノマー材料は、反応性官能基(X)を有するアクリル系モノマー、反応性の官能基(X)を有さないアクリル系モノマー、および前記反応性官能基(X)と反応する反応性官能基(Y)を有する金属アルコキシドの3種のモノマーからなる。そして、この3種のモノマーを樹脂成分として有する液状体を形成し、この液状体を成膜化した三元共重合体層をコート層とする。
 かかるコート層を構成する三元共重合体層においては、図2に示すように、2種のアクリル系モノマーがラジカル重合反応により鎖状に結合し、形成されたアクリル系高分子の鎖により柔軟性が保たれる。そして、鎖状のアクリル系高分子中には、一方の反応性官能基(X)を有するアクリル系モノマー由来の複数の官能基(X)が間隔を開けて点在しており、その官能基(X)と金属アルコキシド中の官能基(Y)とが反応して結合する。また、反応性官能基(Y)を有する金属アルコキシド同士の加水分解によってM-O結合が形成され、三元共重合体は網目構造を獲得する。この網目構造により柔軟性と高い水蒸気ガスバリア性及び耐侯性が実現できる。したがって、本発明のシートは、屈曲してもクラックが生じてガスバリア性が著しく劣化することがない。
 また、従来品は、耐侯性を有する樹脂フィルムとして、前述のガスバリア層の上にフッ素系樹脂などを接着して用いているが、下記(表1)に示すように、C-F結合エネルギーは116kcalであり、紫外線エネルギーの96kcalに対して、非常に強いが、主鎖となるC-C結合エネルギーは85kcalと紫外線に対して弱い。そのため紫外線による樹脂の劣化が起こる。さらに、ガスバリア層の金属アルコキシドと高分子の複合体は、図3に示すように、金属アルコキシドの加水分解生成物とは化学結合を伴わない単なる高分子との複合体であるため紫外線により高分子の主鎖となるC-C結合が切れてしまうと(図3の×印部分)、高分子部分が紫外線により劣化してしまい、著しく水蒸気ガスバリア性が劣化してしまうという問題がある。
Figure JPOXMLDOC01-appb-T000001
 これに対し、本発明にかかるシートのコート層に用いられている三元共重合体層では、図4に示すように、紫外線によりアクリル系高分子部分のC-C結合(85kcal)が切れても(図4の×印部分)、金属アルコキシドによるM-O結合(106~145kcal)は切れない。また、空気中または高分子中の湿気により金属アルコキシドの加水分解が進み、紫外線によりアクリル系高分子のC-C結合が切れても、M-O結合の増大により自己修復できるため、全体として紫外線による劣化はほとんどない。
 さらに、上記三元共重合体層は、PETなどの樹脂とも化学結合を伴って接着可能なため、基材フィルム1に直接積層する場合であっても接着性は優れており、また、本発明でのように高バリア性蒸着膜3に積層する場合でも、優れた接着性を発揮する。高バリア性蒸着膜3と三元共重合体層(コート層2)との間に接着剤層は不要であり、塗膜を硬化することで高バリア性蒸着膜3に強くコートされるので、該コート層2と高バリア性蒸着膜3との間での剥離の心配はない。また、金属アルコキシドは、水分により加水分解してM-O結合が網目状に形成され、アクリル系高分子の-CH-CHR-は、一般にほとんど加水分解しないと言われている。それ故、従来のように耐侯性フィルムとガスバリア性を付与した基材フィルムとを接着剤によって接着した構造のシートの欠点、すなわち、長期間使用時における樹脂フィルムの劣化により外部から水分が浸入して接着剤が加水分解により劣化し、フィルム同士が剥離するような問題は、本発明のシートでは起こらない。
 以上のことから、本発明にかかるシートは、柔軟性、超耐侯性、水蒸気ガスバリア性に優れ、経時的に安定して使用可能な太陽電池用裏面保護シートとして提供できる。
 以下の実施例では、アクリル系樹脂成分Aに関して、反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性官能基(X)を有するアクリル系モノマーと、反応性官能基(X)を有さないアクリル系モノマーとの3種のモノマーのうちの、反応性官能基(Y)を有する金属アルコキシドとして、3-グリシドキシプロピルトリエトキシシランを用いた。また、残りの前記反応性官能基(Y)と反応する反応性官能基(X)を有するアクリル系モノマーと、反応性官能基(X)を有さないアクリル系モノマーについては、これらモノマーの混合物である市販の製品(日本ペイント株式会社の「シェラスターMK」の主剤)を用いた。
 前記市販の製品が、前記反応性官能基(X)を有するアクリル系モノマーと、反応性官能基(X)を有さないアクリル系モノマーの混合物である点については、該製品の乾燥塗膜表面の赤外線全反射吸収スペクトルにより確認することができる。この赤外線全反射吸収スペクトルを図5に示した。
 図5に見るように、波数(wavenumber)3650~3200(cm-1)、1760~1715(cm-1)、1150~1025(cm-1)に代表的なピークが現れており、これらは、それぞれ、反応性官能基(X)を有するアクリル系モノマーのカルボン酸(COOH基)や水酸基(OH)を含むユニット部のOH基に由来する吸収、反応性官能基(X)を有しないアクリル系モノマーのエステル(COOR)を含むユニット部のC=Oに由来する吸収、反応性官能基(X)を有しないアクリル系モノマーのエステル(COOR)やエーテル(COC)を含むユニット部のC-O-Cに由来する吸収である。
(実施例1)
 本発明の実施例1では、アクリル系樹脂成分Aとして、シェラスターMKの主剤15重量部に対して、3-グリシドキシプロピルトリエトキシシラン(1重量部)を配合してなる水系エマルション:100重量部に配合してなる液状体を用意した。
 下記(表2)に示すように、基材フィルムとして厚さ250μmのポリエチレンテレフタレート(PET)フィルム(東洋紡績株式会社製、商品名「エステルフィルム5000」)の上に、高バリア性蒸着膜として約10nmの厚みのSiOx蒸着を施した蒸着PET用いた。
 上記高バリア性蒸着膜の上面に、上記液状体を塗布し、その塗膜を80℃、10分間加熱して水系溶媒を気化させて乾燥させた。
 得られた乾燥塗膜を100℃、10分間加熱して、塗膜を構成する未反応モノマーを重合させて、共重合体層(コート層)を得た。得られた膜の厚みは、20μmであった。
 以上により、厚さ250μmの基材フィルムの蒸着面に20μm厚のコート層(共重合体層)が積層されてなる接着剤を全く使用してないシート(太陽電池用裏面保護シート)を得た。このシートの水蒸気バリア性(水蒸気透過量)を測定したところ、0.01g/m・24hであった。
(比較例1)
 比較例1として、厚さ25μmのフッ素系PVFフィルムと、厚さ188μmのポリエチレンテレフタレート(PET)フィルム(東洋紡績株式会社製、商品名「エステルフィルム5000」)、および酸化珪素を数十nm蒸着された厚さ12μmのポリエチレンテレフタレート(PET)フィルム(東洋紡績株式会社製、商品名「エコシアールVE500」)とを、厚さ5μmのウレタン系接着剤でそれぞれ接着した多層フィルムを用いた。ウレタン系接着剤は東洋インキ株式会社製、「TMOFLEX AD-502」を用いた。
 以上により、接着剤を用いて積層されてなるシート(太陽電池用裏面保護シート)を得た。このシートの水蒸気バリア性(水蒸気透過量)を測定したところ、1.02g/m・24hであった。
Figure JPOXMLDOC01-appb-T000002
 上記実施例1および比較例1に対して85℃の温水に72時間浸漬させる試験を行ったところ、比較例1のシートが剥離したのに対し、実施例1のシートは、共重合体層とSiOx蒸着PETとが剥離しなかった(表2参照)。
 以上のことから、本発明によれば、水蒸気ガスバリア性に優れ、かつ長期耐侯性及び耐久性に優れた太陽電池用裏面保護シートを提供することができる。
 1 基材フィルム
 2 コート層
 3 高バリア性蒸着膜

Claims (4)

  1.  少なくとも1層からなる基材フィルムと、
     前記基材フィルムの表面に形成された高バリア性蒸着膜と、
     前記高バリア性蒸着膜の前記基材フィルムが設けられた面と異なる面側に形成された少なくとも1層からなるコート層と、
     を備え、
     前記コート層は、反応性官能基(Y)を有する金属アルコキシドと、前記反応性官能基(Y)と反応する反応性の官能基(X)を有するアクリル系モノマーと、反応性の官能基(X)を有さないアクリル系モノマーとからなる樹脂成分を有する液状体の塗膜を硬化してなる三元共重合体層であることを特徴とする太陽電池用裏面保護シート。
  2.  前記金属アルコキシドは、一般式:YM(OR)-、YRM(OR)、YRM(OR)(式中、Mは金属、Rはアルキル基、Yは反応性を有する官能基を示す)で表される化合物であることを特徴とする請求項1に記載の太陽電池用裏面保護シート。
  3.  前記高バリア性蒸着膜は、無機酸化物蒸着膜から構成されていることを特徴とする請求項1に記載の太陽電池用裏面保護シート。
  4.  前記高バリア性蒸着膜は、アルミニウム蒸着膜から構成されていることを特徴とする請求項1に記載の太陽電池用裏面保護シート。
PCT/JP2012/050116 2011-01-14 2012-01-05 太陽電池用裏面保護シート WO2012096218A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011006480A JP2012151153A (ja) 2011-01-14 2011-01-14 太陽電池用裏面保護シート
JP2011-006480 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096218A1 true WO2012096218A1 (ja) 2012-07-19

Family

ID=46507118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050116 WO2012096218A1 (ja) 2011-01-14 2012-01-05 太陽電池用裏面保護シート

Country Status (3)

Country Link
JP (1) JP2012151153A (ja)
TW (1) TW201234627A (ja)
WO (1) WO2012096218A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083988A (ja) * 2000-09-08 2002-03-22 Dainippon Printing Co Ltd 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2008254193A (ja) * 2007-03-30 2008-10-23 Tohcello Co Ltd ガスバリア性積層体
WO2009133827A1 (ja) * 2008-04-28 2009-11-05 旭化成ケミカルズ株式会社 太陽電池バックシート用積層体およびそれを有するバックシート
JP2010016286A (ja) * 2008-07-07 2010-01-21 Toppan Printing Co Ltd 太陽電池裏面封止用シート
WO2010058695A1 (ja) * 2008-11-21 2010-05-27 テクノポリマー株式会社 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
WO2011007700A1 (ja) * 2009-07-15 2011-01-20 日本発條株式会社 太陽電池用裏面保護シート及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083988A (ja) * 2000-09-08 2002-03-22 Dainippon Printing Co Ltd 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2008254193A (ja) * 2007-03-30 2008-10-23 Tohcello Co Ltd ガスバリア性積層体
WO2009133827A1 (ja) * 2008-04-28 2009-11-05 旭化成ケミカルズ株式会社 太陽電池バックシート用積層体およびそれを有するバックシート
JP2010016286A (ja) * 2008-07-07 2010-01-21 Toppan Printing Co Ltd 太陽電池裏面封止用シート
WO2010058695A1 (ja) * 2008-11-21 2010-05-27 テクノポリマー株式会社 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
WO2011007700A1 (ja) * 2009-07-15 2011-01-20 日本発條株式会社 太陽電池用裏面保護シート及びその製造方法

Also Published As

Publication number Publication date
JP2012151153A (ja) 2012-08-09
TW201234627A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP4734480B2 (ja) 太陽電池用裏面保護シート及びその製造方法
JP4734468B1 (ja) 太陽電池モジュール用基材及びその製造方法
TW201211197A (en) Highly-adhesive agent for a solar-cell back-side protective sheet, solar-cell back-side protective sheet, and solar cell module
JP5966821B2 (ja) ガスバリア積層フィルム
WO2012133748A1 (ja) 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
JP6036047B2 (ja) 易接着性裏面保護シート及びそれを用いた太陽電池モジュール
JP2014015566A (ja) コーティング剤組成物および太陽電池用裏面保護シート
JP5974294B2 (ja) 太陽電池裏面保護シート用易接着剤、及び太陽電池裏面保護シート、ならびに太陽電池モジュール
KR101373580B1 (ko) 고차단성 코팅층 함유 태양전지 모듈용 백시트
WO2012096218A1 (ja) 太陽電池用裏面保護シート
JP5899754B2 (ja) 易接着層組成物、及びそれを用いた易接着性裏面保護シート
WO2012096217A1 (ja) 太陽電池用裏面保護シート
WO2012096216A1 (ja) 太陽電池用裏面保護シート
WO2012096215A1 (ja) 太陽電池用裏面保護シート
JP6361235B2 (ja) 遮光シート、並びにそれを使用した太陽電池モジュール用裏面保護シート及び太陽電池モジュール
JP6003490B2 (ja) 易接着層組成物、及びそれを用いた白色裏面保護シート
WO2012101860A1 (ja) ガスバリア性フィルム、装置及びガスバリア性フィルムの製造方法
JP2014105330A (ja) 積層シート接合用樹脂組成物
JP2017028107A (ja) 太陽電池モジュール用裏面保護シート及びそれを用いた太陽電池モジュール
JP2020095994A (ja) 太陽電池用フロントシート及びその製造方法並びに太陽電池モジュール
JP6115222B2 (ja) 太陽電池モジュール用裏面保護シート
JP2013239627A (ja) 太陽電池モジュール用裏面保護シート
JP2011178115A (ja) ガスバリア性積層体およびそれを用いた太陽電池用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734009

Country of ref document: EP

Kind code of ref document: A1