WO2012095020A1 - 一种阻尼结构 - Google Patents
一种阻尼结构 Download PDFInfo
- Publication number
- WO2012095020A1 WO2012095020A1 PCT/CN2012/070319 CN2012070319W WO2012095020A1 WO 2012095020 A1 WO2012095020 A1 WO 2012095020A1 CN 2012070319 W CN2012070319 W CN 2012070319W WO 2012095020 A1 WO2012095020 A1 WO 2012095020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavity
- piston
- sub
- axial
- chamber
- Prior art date
Links
- 238000013016 damping Methods 0.000 title claims abstract description 40
- 230000007246 mechanism Effects 0.000 claims abstract description 40
- 239000007788 liquid Substances 0.000 claims description 26
- 238000007789 sealing Methods 0.000 claims description 23
- 230000006837 decompression Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 8
- 230000007935 neutral effect Effects 0.000 claims description 5
- 230000004323 axial length Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05D—HINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
- E05D11/00—Additional features or accessories of hinges
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F5/00—Braking devices, e.g. checks; Stops; Buffers
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47K—SANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
- A47K13/00—Seats or covers for all kinds of closets
- A47K13/12—Hinges
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F5/00—Braking devices, e.g. checks; Stops; Buffers
- E05F5/06—Buffers or stops limiting opening of swinging wings, e.g. floor or wall stops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/10—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
- F16F9/14—Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/3207—Constructional features
- F16F9/3214—Constructional features of pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/3207—Constructional features
- F16F9/3228—Constructional features of connections between pistons and piston rods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/3207—Constructional features
- F16F9/3235—Constructional features of cylinders
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2201/00—Constructional elements; Accessories therefor
- E05Y2201/20—Brakes; Disengaging means; Holders; Stops; Valves; Accessories therefor
- E05Y2201/252—Type of friction
- E05Y2201/254—Fluid or viscous friction
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2201/00—Constructional elements; Accessories therefor
- E05Y2201/20—Brakes; Disengaging means; Holders; Stops; Valves; Accessories therefor
- E05Y2201/262—Type of motion, e.g. braking
- E05Y2201/266—Type of motion, e.g. braking rotary
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2999/00—Subject-matter not otherwise provided for in this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2232/00—Nature of movement
- F16F2232/06—Translation-to-rotary conversion
Definitions
- the present invention relates to a damping mechanism, for example for pivotally connecting a pivoting member, such as a toilet lid, to a mounting such as a toilet seat.
- the present invention provides a long-life damping structure for pivotally connecting a pivot member to a fixed seat, including:
- a body for attachment to one of the mount and the pivot member, the body defining a cavity having a central axis, the cavity including a threaded section having an internal thread around the central axis and a smooth segment;
- a piston comprising a threaded section having an external thread around the central axis and a piston head, the threaded section of the cavity and the threaded section of the piston forming a screw-fit fit between the inner and outer threads
- the piston is slidable along the central axis on the rotating shaft, and the piston head is in a radial clearance fit or a flexible sealing fit with a smooth section of the cavity
- the piston having an axial bore section a radial clearance fit or a flexible sealing fit with the rotating shaft, thereby separating the cavity into a first sub-chamber that accommodates the cavity thread segment and one and the first along the central axis direction a second sub-chamber that is axially opposed to the chamber, and when the piston moves along the shaft while moving axially, the liquid charged into the first and second sub-chambers is forced to pass from the sub-chamber through the piston
- the invention also provides another damping mechanism for pivotally connecting a pivoting member to a fixed seat, comprising:
- a body for attachment to one of the mount and the pivot member, the body defining a cavity having a central axis, the cavity including a threaded section having an internal thread around the central axis;
- a piston the piston including a threaded section having an external thread around the central axis, the threaded section of the cavity and the threaded section of the piston forming a screw-fit relationship between the inner and outer threads, a piston slidable along the central axis on the shaft, the piston having a radial clearance fit or a flexible sealing fit between the axial bore and the shaft, thereby aligning the chamber along the central axis
- the body is divided into a first sub-chamber and a second sub-chamber axially opposite to the first sub-chamber, and is filled into the first and second sub-chambers as the piston moves along the rotating shaft while moving in the axial direction
- the liquid is forced to flow from one of the sub-chambers to the other sub-chamber through a gap between the piston and the rotating shaft and/or a gap between the inner and outer threads, thereby
- the relative rotation between the bodies produces a damping effect.
- the rotating shaft has a radially outwardly extending
- the present invention also provides a further damping mechanism for pivotally connecting a pivoting member to a fixed seat, comprising:
- a body for attachment to one of the mount and the pivot member, the body defining a cavity having a central axis, the cavity including a threaded section having an internal thread around the central axis and a smooth Segment, smooth section with one or more axial oil grooves.
- a piston comprising a threaded section having an external thread around the central axis and a piston head, the threaded section of the cavity and the threaded section of the piston forming a screw-fit fit between the inner and outer threads
- the piston can slide along the central axis on the rotating shaft, and the piston head and the smooth portion of the cavity have a radial clearance fit or a flexible sealing fit between the regions other than the oil groove
- the piston has a radial clearance fit or a flexible sealing fit between the axial bore and the rotating shaft, thereby separating the cavity into a first sub-chamber containing the threaded section of the cavity along the central axis direction and a second sub-chamber axially opposite to the first sub-chamber, wherein the liquid charged into the first and second sub-chambers is forced from one of the sub-chambers while the piston is rotating along the rotating shaft while moving axially Flow through the oil sump and/or the radial gap to the other sub-chamber, thereby damp
- the depth or width of the oil sump is gradual.
- Still another aspect of the present invention is: a damper mechanism for pivotally connecting a pivot member to a fixed seat, comprising:
- the cavity is divided into a first sub-chamber and a second sub-chamber in the axial direction of the rotating shaft, and the liquid charged into the first and second sub-chambers is forced to rotate from the rotating shaft to one of the sub-chambers Flowing to another sub-chamber, thereby damping the relative rotation between the rotating shaft and the casing body;
- the rotating shaft has a radially outwardly extending and axially extending oil passage groove on the path section between the first sub-chamber and the second sub-chamber, and the depth or width of the oil passage is gradual.
- the solution is directed to a plunger type damping mechanism.
- the separation of the first and second sub-chambers can be controlled by the cooperation of the piston and the inner wall of the cavity, or by the cooperation of the rotating shaft guiding surface and the cavity.
- Figure 1 is an exploded perspective view of the present invention
- Figure 2 is a perspective view of the housing body of the present invention
- Figure 3 is a perspective view of the rotating shaft of the present invention.
- Figures 4 and 5 are perspective views of the piston of the present invention.
- Figure 6 is a perspective view of the one-way valve of the present invention.
- Figure 7 is a perspective view of the end cap of the present invention.
- Figure 14 is a cross-sectional view showing another embodiment of the present invention.
- Figure 15 is a cross-sectional view showing still another embodiment of the present invention.
- a damper mechanism of the present invention for example, for pivotally connecting a pivot member (e.g., a toilet lid, not shown) to a mount (e.g., a toilet lid, not shown), including: one for connection To the housing body 1 on one of the fixing base and the pivoting member, the connecting means is, for example, a connecting hole 12 of the housing body and a connecting hole holder 11, the housing body 1 defining a cylindrical cavity 10 having a central axis (may be a stepped cylindrical cavity in other embodiments not shown) and has a first axial end (left end of the casing body 1 as shown in Figures 1 and 2) and a direction along the central axis An axially opposite second axial end (as shown in Figures 1 and 2 at the right end of the housing body 1), the cavity 10 having a first axial opening 16 at the first axial end (shown in Figures 8-11), the cavity 10 opens outside the housing body 1 via the first axial opening 16, and the aperture of the first axial opening is perpendicular to the
- the outer casing body 1 is comprised of the shoulder shoulders 17, that is, the space defined by the outer casing body 1 within the first axial opening 16 is collectively referred to as the cavity 10.
- the illustrated end wall 60 is connected to the housing body 1 in a split manner, the end wall and the housing body may also be formed in one piece; although the illustrated shoulder 17 is integral with the housing body 1, the shoulder is It can also be connected to the body of the housing. Its purpose is to facilitate the processing and installation of the present invention.
- the damper structure of the present invention further includes: a rotating shaft 2 having a projection from the first axial opening 16 in the direction of the central axis into the cavity A shaft midsection 21 in 10, and a shank 25 extending in an opposite direction from the outer portion of the housing body 1 from the shaft section, for example, through the coupling hole 26 and the coupling socket 27 on the shank
- the rotating shaft 2 is coupled to the other of the fixed seat and the pivoting member; the boundary line between the shaft middle portion 21 and the shank 25 is the first axial opening 16.
- the shaft middle section 21 and the housing body 1 are radially supported to each other such that the shaft 2 is rotatable relative to the housing body 1 about the central axis;
- the shaft further includes a a first shaft section 22 of the shaft midsection 21 extending into the cavity 10 along the central axis direction and a second shaft section 23 extending from the first shaft section in the direction of the central axis, the first shaft section
- the second shaft section 22 and the second shaft section 23 are collectively referred to as a shaft extension section having a free end portion (i.e., the second shaft section 23), and the second axial end portion of the outer casing body 1 (right end of the drawing)
- the end wall 60 has a counterbore for accommodating the second shaft portion 23 or the free end portion, so that the axial shoulder of the shaft 2 relative to the housing body 1 can be supported and restrained with the hole shoulder 17 , the right displacement, as shown.
- the cavity 10 further includes a threaded section 18 and a smooth section 19, and the shaft extension of the rotating shaft 2 (ie, the first shaft section 22 plus the second shaft section 23) axially sleeves a piston 4
- the piston includes a threaded section 47 and a piston head 48 formed with an external thread 46 about the central axis along the central axis, the threaded section 18 of the cavity and the threaded section 47 of the piston
- the screw-fit relationship between the inner and outer threads, the piston head 48 and the smooth section 19 of the cavity form a relatively sliding sealing relationship between the axial direction and the circumferential direction, for example, the smooth section of the piston head 48 and the cavity
- a flexible sealing ring or piston ring mounted to the piston head 48 can be sandwiched between 19 to form a relatively sliding sealing relationship in the axial and circumferential directions; thereby, the piston head 48 is oriented in the direction of the central axis
- the cavity 10 is partitioned into a first sub-chamber 13 adjacent to the middle of the shaft and
- the axial bore portion 42 is formed on the piston head 48 to form an axial free sliding and radial clearance fit relationship with the shaft extension; however, such axial bore segments may also Formed in the remaining position of the piston 4 and also forming an axial free sliding and radial clearance fit relationship (not shown) with the shaft extension.
- the shaft midsection 21 and the housing body, in particular its bore shoulders 17, are radially supported to each other such that the shaft 2 is rotatable relative to the housing body 1 about the central axis.
- the rotation of the shaft can also be coordinated to the support by the piston 4 or by the piston alone to the housing body 1.
- the shaft midsection 21 is a shoulder that is radially and axially supported in engagement with the shoulder 17.
- the middle section of the shaft may also be a necked or have an annular groove to achieve an axial and/or radial mutual support fit with the outer casing body 1, in particular its shoulder or some form of shoulder (not show).
- the free end portion of the shaft extension may also have a constricted or annular groove or shoulder to achieve axial and/or radial mutual support between the housing body 1 and particularly its end wall 60 (not shown) ).
- the second shaft section 23 or the free end portion is provided with a radially outwardly extending and axially extending oil groove 24, the length of the oil passage groove in the axial direction being significantly larger than the shaft on the piston head.
- the first and second sub-chambers 13 and 14 pass through the oil sump 24 as the axial length of the bore 42 is such that the axial bore 42 on the piston head slides over the second sump along the second shaft. Liquid connection. Thereby, the damping of the relative rotation between the body and the rotating shaft by the liquid is greatly alleviated, and even the damping effect is not felt.
- the oil sump 24 is open on the shaft section of the second shaft section 23 or the free end portion near its free end surface; however, the oil sump 24 may be opened in the second shaft section 23 or the free end portion. On the shaft section away from its free end face, even on the first shaft section 22.
- the oil sump 24 can also be helical or otherwise curved.
- One end of the oil sump 24 is a buffer section whose cross section is gradually reduced. Thereby, the mechanism can be gradually changed from the non-damping stage to the damping stage, and the mechanism motion is more stable.
- three gradual oil passages 24 are provided in the second shaft section 23 or the free end portion of the rotating shaft, and the gradual change manner is that the depth is constant, and the oil sump side wall 241 is gradually shallower in the opposite direction to the free end. In this way, when the piston head slides to this section, the oil passage through the oil passage gradually becomes smaller.
- a one-way valve passage is provided in the piston head 48.
- the second sub-chamber is in fluid communication with the first sub-chamber through the one-way valve passage;
- the piston and the piston head can slide all the way, and are hardly affected by the liquid damping.
- the one-way valve passage is closed when the piston head moves axially away from the oil sump; thus, when the piston head 48 axially exits the oil sump 24 along the second shaft section, the piston and the piston head are opposite to the second shaft section Sliding is affected by liquid damping.
- the specific structure of the one-way valve passage includes: an annular groove 43 formed in the piston head 48, the annular groove opening radially outward and opening to the second sub-chamber 14; and a secondary groove 43 a decompression port 44 leading to the first sub-chamber; and a one-way valve ring 5 nested in the annular groove 43, the one-way valve ring being axially movable in the annular groove and flexible or The elastic portion abuts against the smooth section 19 of the cavity and slides in the axial direction, wherein the one-way valve ring 5 is in the annular groove when the piston head moves axially along the second shaft section 23 in the direction of the oil groove.
- the second sub-chamber 14 is opened by the relative displacement between the one-way valve ring 5 and the annular groove 43 (the one-way valve ring 5
- the axial spacing between the side faces 45 of the annular groove 43 and the decompression port 44 are in fluid communication with the first sub-chamber 13; the check valve ring is in the direction of the piston head moving away from the oil sump
- the axial groove is displaced relative to the piston head in the direction of the oil sump (shown to the right), and the axial interval is closed (the side of the one-way valve ring 5 and the annular groove 43)
- the sealing seal between the faces 45) closes the liquid passage of the first and second sub-chambers through the decompression port. What is described in this paragraph is only a preferred one-way valve passage specific structure, and there are other one-way valve passage structures. Many one-way valve passage structures known in the art can also be applied to the present invention.
- the decompression tunnel 44 passes radially or inwardly from the radially bottom surface of the annular groove 43 through the piston head 48 to directly or indirectly communicate with the first subchamber, for example, through a portion of the piston 4 other than the piston head. Connected to the first sub-chamber 13.
- the threaded portion of the piston threaded section 47 and the cavity threaded section 18 have a larger nominal diameter and a greater tensile strength than the integral damping mechanism. The purpose is to more effectively transfer the damping of the liquid to the relative rotation between the rotor and the pivot.
- the thread 46 is a multi-start thread. Due to the angle of rotation of the damping mechanism, large pitch threads are used and multi-start threads are used to enhance the overall strength of the threads.
- a specific structure for forming a liquid seal to the cavity 10 at a first axial end of the casing body 1 is that the shaft middle section 21 of the rotating shaft is sleeved with an elastic sealing ring 3
- the seal ring is radially pressed by the shaft middle section 21 and the cavity 10 to seal each other on the axial sides of the seal ring 3.
- the second axial end portion of the outer casing body 1 includes an open end 15 for opening the cavity to the outside of the outer casing body and a cover for closing the open end.
- the end cap 6 of the cavity, the end wall 60 of the second axial end is formed by the end cap.
- a blind hole 62 facing the cavity opening is formed on the end wall 60 around the central axis, and the second shaft segment 23 or the free end portion is inserted into the blind hole, and the two are formed.
- the blind bore constitutes a rotary bearing for supporting the rotational movement of the second shaft segment and the entire shaft.
- the circumferential drive mating relationship between the piston and the first shaft segment includes a drive neutral interval of 30-60 degrees.
- the toilet lid is now about 95-120 degrees from the plane of the toilet.
- the housing body 1 and the rotating shaft 2 are driven into a driving neutral section or stroke of a 35-70 degree angle (preferably 50 degrees), that is, the rotating shaft and the housing body start to rotate relative to each other by 35-70 degrees.
- the two rotate relative to each other without transmitting torque around the central axis, so that the piston 4 is not connected to the shaft from the shaft extension of the shaft 2 and thus does not rotate relative to the casing body 1, and the piston does not generate the shaft. Displacement.
- the inversion is repeated to cause relative rotation between the piston 4 and the outer casing body 1 through the shaft extension of the rotating shaft, and the engaging thread therebetween simultaneously causes the piston to be opposed to the outer casing body.
- An axial displacement to the left (in the direction indicated by arrow A in the figure) is generated.
- the axial bore portion 42 of the piston head 48 slides over the buffer section of the oil sump 24 along the shaft extension.
- the one-way valve ring 5 has substantially no axial displacement due to the tight fit with the body 1, so that the one-way valve ring 5 is sealed with the piston head.
- the oil sump 24 can smoothly communicate the first and second sub-chambers 13 and 14, the relative axial movement between the piston and the body when the liquid passes through the oil sump, that is, the relative rotation between the rotating shaft and the body, is generated. Lighter damping.
- the toilet lid continues to flip down, with the axial bore portion 42 of the piston head continuing to slide to the left over the shaft extension, when the toilet lid is flipped over a certain angle (eg, 45-100 degrees), the axial direction shown
- a certain angle eg, 45-100 degrees
- the bore 42 exits the sump 24 and slides to a portion of the shaft extension that mates with its radial clearance
- the liquid is forced into the second sub-chamber 14 through the radial gap from the first sub-chamber 13 through the radial gap. Therefore, the movement of the piston in the axial direction is continued to the left, that is, the continued downward tilting of the toilet lid produces a strong damping effect, the toilet lid can only slowly fall to the horizontal position, and the piston 4 also moves axially to the most Left position.
- the oil sump opens at the free end portion of the shaft extension or the second shaft portion 23.
- the oil sump can also be opened on the first shaft section 22 (not shown), so that the downward movement of the toilet lid causes the piston 4 to move axially away from the middle section of the shaft, and the upward movement causes the piston to move toward the middle of the shaft.
- the action process and direction of the one-way valve are also opposite to the action process and direction shown in Figures 8-11.
- first shaft segment and the second shaft segment can be replaced with each other along the central axis direction, so that the piston also needs to be rotated 180 degrees to pass through the sleeve to the shaft extension portion.
- Such structural design can be considered as an equivalent replacement for the present invention.
- another damper mechanism of the present invention is used for pivotally connecting a pivoting member to a fixed seat, including:
- a body for attachment to one of the mount and the pivot member, the body defining a cavity having a central axis, the cavity including a threaded section having an internal thread around the central axis;
- a piston the piston including a threaded section having an external thread around the central axis, the threaded section of the cavity and the threaded section of the piston forming a screw-fit relationship between the inner and outer threads, a piston slidable along the central axis on the shaft, the piston having a radial clearance fit or a flexible sealing fit between the axial bore and the shaft, thereby aligning the chamber along the central axis
- the body is divided into a first sub-chamber and a second sub-chamber axially opposite to the first sub-chamber.
- the invention is: charging the first sum
- the liquid of the second sub-chamber is forced to flow from one of the sub-chambers through the gap between the piston 4 and the rotating shaft 2 and/or the gap between the inner and outer threads to the other sub-chamber, Thereby, a damping effect is exerted on the relative rotation between the rotating shaft and the body.
- the rotating shaft has a radially outwardly extending and axially extending oil passage groove on the path segment in which the piston slides, and the depth or width of the oil passage groove is gradual.
- another damper mechanism of the present invention is used for pivotally connecting a pivoting member to a fixing base, including:
- the housing body defining a cavity having a central axis, the cavity including a threaded section having an internal thread around the central axis and a
- the smooth section has a smooth section with one or more axial oil grooves 240 (similar to the aforementioned oil sump 24).
- a piston comprising a threaded section having an external thread around the central axis and a piston head, the threaded section of the cavity and the threaded section of the piston forming a screw-fit fit between the inner and outer threads
- the piston can slide along the central axis on the rotating shaft, and the piston head and the smooth portion of the cavity have a radial clearance fit or a flexible sealing fit between the regions other than the oil groove, the piston has a radial clearance fit or a flexible sealing fit between the axial bore segment and the rotating shaft, thereby separating the cavity into a first sub-chamber containing the threaded section of the cavity along the central axis direction And a second sub-chamber axially opposite to the first sub-chamber, wherein the liquid charged into the first and second sub-chambers is forced to be separated from one of the chambers while the piston is rotated along the rotating shaft while moving axially The chamber flows through the oil sump and/or the radial gap to the other sub-chamber,
- the design cavity of the present invention is divided into a first sub-chamber and a second sub-chamber in the axial direction of the rotating shaft, and the liquid charged into the first and second sub-chambers is forced from one of the sub-chambers according to the rotation of the rotating shaft Flowing to another sub-chamber, thereby damping the relative rotation between the rotating shaft and the housing body; the rotating shaft is on a path segment between the first sub-chamber and the second sub-chamber
- the opening has a radially outwardly extending axially extending oil sump whose depth or width is gradual.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Fluid-Damping Devices (AREA)
- Toilet Supplies (AREA)
Description
Claims (26)
- 一种阻尼机构,用于把一个枢转件枢转式连接到一个固定座上,包括:一用于连接到所述固定座和枢转件之一上的本体,该本体具有一中心轴线的腔体,腔体内壁设有内螺纹的螺纹段和一光滑段;一转轴,一端插进所述腔体内,另一端连接到所述固定座或枢转件上;和一活塞,所述活塞包括一个环绕所述中心轴线制有外螺纹的螺纹段和一个活塞头,所述腔体的螺纹段和所述活塞的螺纹段构成内、外螺纹之间的旋接配合关系,所述活塞有一轴向孔,使活塞可沿所述转轴上滑动,所述活塞头与所述腔体的光滑段之间径向间隙配合或柔性密封配合,所述活塞有一个轴向孔段与所述转轴之间径向间隙配合或柔性密封配合,由此沿所述中心轴线方向把所述腔体分隔为一个容纳着所述腔体螺纹段的第一分腔室和一个与第一分腔室轴向相对的第二分腔室,在活塞随转轴转动而同时沿轴向移动时,充入第一和第二分腔室的液体受迫从其中一个分腔室通过所述活塞的轴向孔与所述转轴之间的径向间隙和/或所述活塞头与所述腔体的光滑段之间的径向间隙向另一个分腔室流动,由此对所述转轴与所述外壳本体之间的相对转动产生阻尼作用;所述转轴在所述活塞头滑动的路径段上开有一径向向外开口且轴向延伸的过油槽,所述过油槽的深度或宽度是渐变的。
- 如权利要求1所述的阻尼机构,其特征在于,所述转轴上有三个截面渐变的过油槽。
- 如权利要求1或2所述的阻尼机构,其特征在于,所述本体具有一第一轴向端部和一沿中心轴线方向与第一轴向端部轴向相对的第二轴向端部,所述腔体在第一轴向端部有一个沿所述中心轴线方向通到所述外壳本体之外的第一轴向开口;第二轴向端部具有一个沿轴向方向封盖住所述腔体的端盖;和所述转轴具有一个从所述第一轴向开口沿所述中心轴线方向伸进所述腔体内的轴中段和一个从所述轴中段沿所述中心轴线方向继续伸进所述腔体的轴伸段,该轴伸段具有一个自由端部分,所述轴中段和所述自由端部分两者之中至少之一与所述外壳本体之间设有至少一个轴向相对限位装置;及所述活塞可沿所述转轴的轴伸段滑动,所述轴向孔段形成在活塞头上且与所述轴伸段之间构成径向间隙配合关系。
- 如权利要求1-3任一项所述的阻尼机构,其特征在于,在所述轴伸段开有所述的过油槽,所述过油槽沿轴向方向上的长度明显大于所述轴向孔段的轴向长度,从而在该轴向孔段顺着所述轴伸段滑到过油槽上方时,第一和第二分腔室就通过过油槽液体连通。
- 如权利要求3或4所述的阻尼机构,其特征在于,在活塞头上设有一个单向阀通路,当活塞头向过油槽方向轴向移动时,第二分腔室与第一分腔室经该单向阀通路液体连通;在活塞头沿远离过油槽方向轴向移动时,该单向阀通路闭合。
- 如权利要求5所述的阻尼机构,其特征在于,所述单向阀通路包括:一个在活塞头上制成的环状槽,所述环状槽径向向外开口并向第二分腔室开通;一个从环状槽通往第一分腔室的解压孔道;和一个套进所述环状槽中的单向阀环,所述单向阀环可在环状槽中轴向移动,并且可顶靠着所述腔体的光滑段沿轴向密封滑动,其中,在活塞头向过油槽方向轴向移动时,所述单向阀环在环状槽中相对于活塞头向相反方向位移,第二分腔室经单向阀环与环状槽之间相对位移而打开的轴向间隔以及经解压孔道与第一分腔室液体连通;在所述活塞头沿远离过油槽方向移动时,所述单向阀环在环状槽中相对于活塞头朝过油槽方向位移,则所述轴向间隔闭合,单向阀环就关闭第一和第二分腔室经解压孔道的液体通道。
- 如权利要求6所述的阻尼机构,其特征在于,所述解压孔道从环状槽的径向底面径向向内穿过活塞头而连通到第一分腔室。
- 如权利要求1-7任一项所述的阻尼机构,其特征在于,所述活塞螺纹段和腔体螺纹段的螺纹是大螺距螺纹。
- 如权利要求8所述的阻尼机构,其特征在于,所述螺纹是多头螺纹。
- 如权利要求利要求3-9任一项所述的阻尼机构,其特征在于,在所述轴中段和所述腔体之间套有一个密封环。
- 如权利要求3-10任一项所述的阻尼机构,其特征在于,所述第二轴向端部包括一个使所述腔体开通到外壳本体之外的开口端和一个盖住该开口端而封闭住所述腔体的端盖,所述第二轴向端部的端壁是由该端盖构成的。
- 如权利要求11所述的阻尼机构,其特征在于,在所述端壁上环绕所述中心轴线形成一个面向所述腔体开口的盲孔,所述轴伸段的自由端部分插入该盲孔中,两者之间构成轴向顶接和径向支承关系,所述盲孔构成一个旋转支座用于支承所述轴伸段以及整个转轴的旋转运动。
- 如权利要求1-12任一项所述的阻尼机构,其特征在于,所述活塞与主轴段相互之间构成的周向驱动配合关系包括一个30-60度角的驱动空档区间。
- 一种阻尼式机构,用于把一个枢转件枢转式连接到一个固定座上,包括:一用于连接到所述固定座和枢转件之一上的本体,该本体限定一个具有一中心轴线的腔体,腔体内包括一环绕所述中心轴线设有内螺纹的螺纹段;一插进所述腔体内的转轴,用于连接到所述固定座和枢转件之中的另一个上;和一活塞,所述活塞包括一个环绕所述中心轴线制有外螺纹的螺纹段,所述腔体的螺纹段和所述活塞的螺纹段构成内、外螺纹之间的旋接配合关系,所述活塞可沿所述中心轴线在所述转轴上滑动,所述活塞有一个轴向孔段与所述转轴之间径向间隙配合或柔性密封配合,由此沿所述中心轴线方向把所述腔体分隔为一个第一分腔室和一个与第一分腔室轴向相对的第二分腔室,在活塞随转轴转动而同时沿轴向移动时,充入第一和第二分腔室的液体受迫从其中一个分腔室通过所述活塞与所述转轴之间的间隙和/或所述内、外螺纹之间的间隙向另一个分腔室流动,由此对所述转轴与所述外壳本体之间的相对转动产生阻尼作用;在所述转轴上在所述活塞头滑动的路径段开有一径向向外开口且轴向延伸的过油槽,所述过油槽的深度或宽度是渐变的。
- 如权利要求14所述的阻尼机构,其特征在于,所述转轴上有三个深度不同渐变的过油槽。
- 一种阻尼机构,用于把一个枢转件枢转式连接到一个固定座上,包括:一用于连接到所述固定座和枢转件之一上的本体,该本体限定一个具有一中心轴线的腔体,腔体内包括一环绕所述中心轴线设有内螺纹的螺纹段和一光滑段,光滑段带有一条或多条轴向过油槽;一插进所述腔体内的转轴,用于连接到所述固定座和枢转件之中的另一个上;和一活塞,所述活塞包括一个环绕所述中心轴线制有外螺纹的螺纹段和一个活塞头,所述腔体的螺纹段和所述活塞的螺纹段构成内、外螺纹之间的旋接配合关系,所述活塞可沿所述中心轴线在所述转轴上滑动,所述活塞头与所述腔体光滑段除过油槽以外的区域之间径向间隙配合或柔性密封配合,所述活塞有一个轴向孔段与所述转轴之间径向间隙配合或柔性密封配合,由此沿所述中心轴线方向把所述腔体分隔为一个容纳着所述腔体螺纹段的第一分腔室和一个与第一分腔室轴向相对的第二分腔室,在活塞随转轴转动而同时沿轴向移动时,充入第一和第二分腔室的液体受迫从其中一个分腔室通过所述过油槽和/或所述径向间隙向另一个分腔室流动,由此对所述转轴与所述外壳本体之间的相对转动产生阻尼作用。
- 如权利要求16所述的阻尼机构,其特征在于,所述腔体光滑段带有三条轴向深度不同渐变的过油槽。
- 一种阻尼机构,用于把一个枢转件枢转式连接到一个固定座上,包括:一用于连接到所述固定座和枢转件之一上的本体,该本体具有一腔体;一转轴,一端插进所述腔体内,另一端连接到所述固定座或枢转件上;所述的腔体在转轴的轴向上被分割成第一分腔室和第二分腔室,充入第一和第二分腔室的液体随转轴的转动受迫从其中一个分腔室向另一个分腔室流动,由此对所述转轴与所述外壳本体之间的相对转动产生阻尼作用;所述转轴在所述第一分腔室与第二分腔室之间路径段上开有一径向向外开口且轴向延伸的过油槽,所述过油槽的深度或宽度是渐变的。
- 根据权利要求18所述的阻尼机构,其特征在于所述的腔体是具有一中心轴线的腔体,并且所述的腔体内壁设有内螺纹的螺纹段和一光滑段;一活塞,所述活塞包括一个环绕所述中心轴线制有外螺纹的螺纹段和一个活塞头,所述腔体的螺纹段和所述活塞的螺纹段构成内、外螺纹之间的旋接配合关系,所述活塞有一轴向孔,使活塞可沿所述转轴上滑动,所述活塞头与所述腔体的光滑段之间径向间隙配合或柔性密封配合,所述活塞有一个轴向孔段与所述转轴之间径向间隙配合或柔性密封配合,由此沿所述中心轴线方向把所述腔体分隔为一个容纳着所述腔体螺纹段的第一分腔室和一个与第一分腔室轴向相对的第二分腔室,在活塞随转轴转动而同时沿轴向移动时,充入第一和第二分腔室的液体受迫从其中一个分腔室通过所述活塞的轴向孔与所述转轴之间的径向间隙和/或所述活塞头与所述腔体的光滑段之间的径向间隙向另一个分腔室流动,由此对所述转轴与所述外壳本体之间的相对转动产生阻尼作用;所述转轴在所述活塞头滑动的路径段上开有一径向向外开口且轴向延伸的过油槽,所述过油槽的深度或宽度是渐变的。
- 如权利要求19所述的阻尼机构,其特征在于,所述转轴上有三个截面渐变的过油槽。
- 如权利要求18或19所述的阻尼机构,其特征在于,所述本体具有一第一轴向端部和一沿中心轴线方向与第一轴向端部轴向相对的第二轴向端部,所述腔体在第一轴向端部有一个沿所述中心轴线方向通到所述外壳本体之外的第一轴向开口;第二轴向端部具有一个沿轴向方向封盖住所述腔体的端盖;和所述转轴具有一个从所述第一轴向开口沿所述中心轴线方向伸进所述腔体内的轴中段和一个从所述轴中段沿所述中心轴线方向继续伸进所述腔体的轴伸段,该轴伸段具有一个自由端部分,所述轴中段和所述自由端部分两者之中至少之一与所述外壳本体之间设有至少一个轴向相对限位装置;及所述活塞可沿所述转轴的轴伸段滑动,所述轴向孔段形成在活塞头上且与所述轴伸段之间构成径向间隙配合关系。
- 如权利要求19-21任一项所述的阻尼机构,其特征在于,在所述轴伸段开有所述的过油槽,所述过油槽沿轴向方向上的长度明显大于所述轴向孔段的轴向长度,从而在该轴向孔段顺着所述轴伸段滑到过油槽上方时,第一和第二分腔室就通过过油槽液体连通。
- 如权利要求21或22所述的阻尼机构,其特征在于,在活塞头上设有一个单向阀通路,当活塞头向过油槽方向轴向移动时,第二分腔室与第一分腔室经该单向阀通路液体连通;在活塞头沿远离过油槽方向轴向移动时,该单向阀通路闭合。
- 如权利要求23所述的阻尼机构,其特征在于,所述单向阀通路包括:一个在活塞头上制成的环状槽,所述环状槽径向向外开口并向第二分腔室开通;一个从环状槽通往第一分腔室的解压孔道;和一个套进所述环状槽中的单向阀环,所述单向阀环可在环状槽中轴向移动,并且可顶靠着所述腔体的光滑段沿轴向密封滑动,其中,在活塞头向过油槽方向轴向移动时,所述单向阀环在环状槽中相对于活塞头向相反方向位移,第二分腔室经单向阀环与环状槽之间相对位移而打开的轴向间隔以及经解压孔道与第一分腔室液体连通;在所述活塞头沿远离过油槽方向移动时,所述单向阀环在环状槽中相对于活塞头朝过油槽方向位移,则所述轴向间隔闭合,单向阀环就关闭第一和第二分腔室经解压孔道的液体通道。
- 如权利要求24所述的阻尼机构,其特征在于,所述解压孔道从环状槽的径向底面径向向内穿过活塞头而连通到第一分腔室。
- 如权利要求24所述的阻尼机构,其特征在于,所述单向阀为一V字型的密封环,其V字开口朝向转轴的轴伸段。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013548733A JP6222603B2 (ja) | 2011-01-14 | 2012-01-13 | 減衰機構 |
US13/978,507 US9115519B2 (en) | 2011-01-14 | 2012-01-13 | Damping structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110007867 | 2011-01-14 | ||
CN201110007867.6 | 2011-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012095020A1 true WO2012095020A1 (zh) | 2012-07-19 |
Family
ID=46468604
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/070319 WO2012095020A1 (zh) | 2011-01-14 | 2012-01-13 | 一种阻尼结构 |
PCT/CN2012/070316 WO2012095017A1 (zh) | 2011-01-14 | 2012-01-13 | 一种阻尼式结构 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/070316 WO2012095017A1 (zh) | 2011-01-14 | 2012-01-13 | 一种阻尼式结构 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9115519B2 (zh) |
JP (1) | JP6222603B2 (zh) |
CN (4) | CN102587775B (zh) |
WO (2) | WO2012095020A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103527027A (zh) * | 2013-09-18 | 2014-01-22 | 陈朝朗 | 可调节扭力旋转阻尼器 |
CN103790458A (zh) * | 2014-03-03 | 2014-05-14 | 苏州升德精密电气有限公司 | 一种外力阻尼装置 |
CN106522718A (zh) * | 2017-01-03 | 2017-03-22 | 厦门德浦精密科技有限公司 | 一种磁力阻尼器 |
CN109372930A (zh) * | 2018-12-11 | 2019-02-22 | 深圳市无疆智创科技有限公司 | 一种自适应阻尼活塞及减震器 |
CN110318622A (zh) * | 2019-07-09 | 2019-10-11 | 陈朝朗 | 一种微小型单向阻力旋转阻尼器 |
US11846337B2 (en) * | 2018-08-17 | 2023-12-19 | Nidec Gpm Gmbh | Damping element with thread portion |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102587775B (zh) * | 2011-01-14 | 2016-04-06 | 李飞勇 | 一种阻尼结构 |
EP3124809B1 (en) * | 2014-03-25 | 2020-01-29 | Xiangji Wang | Damping rotating-shaft mechanism with auto compensation |
US9725940B2 (en) * | 2014-07-24 | 2017-08-08 | Michael Lambright | Door hinge closing mechanism |
CN105041092B (zh) * | 2015-08-25 | 2017-06-16 | 厦门德浦精密科技有限公司 | 一种柱塞式阻尼器及其转轴 |
CN105240571A (zh) * | 2015-10-23 | 2016-01-13 | 无锡惠发特精密机械有限公司 | 电梯用液压缓冲器 |
CN105863422B (zh) * | 2016-04-14 | 2017-07-28 | 银都餐饮设备股份有限公司 | 一种阻尼铰链 |
CN107476697A (zh) * | 2016-06-07 | 2017-12-15 | 川湖科技股份有限公司 | 家具铰链及其阻尼装置 |
CN106761108A (zh) * | 2017-01-11 | 2017-05-31 | 揭阳市灿煌五金制品有限公司 | 一种铰链缓冲器 |
US10562420B2 (en) * | 2017-05-03 | 2020-02-18 | Ford Global Technologies, Llc | Vehicle seat including energy absorbing device |
CN107939646A (zh) * | 2017-07-11 | 2018-04-20 | 浙江巨霸焊接设备制造有限公司 | 一种无油空压机的曲轴安装结构 |
US11148830B2 (en) | 2017-08-04 | 2021-10-19 | Rocket Lab Usa, Inc. | Satellite deployer with composite guide rail |
CN107906161A (zh) * | 2017-12-12 | 2018-04-13 | 西安科飞机电科技有限公司 | 缓冲器 |
CN107939820B (zh) * | 2017-12-29 | 2024-06-07 | 昆山嘉玮泰传动科技有限公司 | 扭力线性变化的封闭式转轴及电子设备 |
US11072958B2 (en) * | 2018-08-07 | 2021-07-27 | Kem Hongkong Limited | Damper hinge and western-style toilet using the same |
CN108814394A (zh) * | 2018-08-15 | 2018-11-16 | 厦门德浦精密科技有限公司 | 一种可调式的马桶盖板缓降机构 |
WO2020101608A2 (en) * | 2018-10-15 | 2020-05-22 | Nova Kalip Sanayi̇ Anoni̇m Şi̇rketi̇ | Slow closing damper assembly for lids and handles |
CN109987022B (zh) * | 2019-04-22 | 2023-12-01 | 宁波福尔达智能科技股份有限公司 | 车载阅读灯 |
CN111561538B (zh) * | 2020-06-11 | 2022-12-16 | 蔡燕辉 | 一种旋转阻尼器 |
CN111750745B (zh) * | 2020-06-16 | 2024-04-05 | 南京理工大学 | 一种用于旋转弹丸弹体与引信径向定位的止口结构 |
EP4083467A1 (de) * | 2021-04-30 | 2022-11-02 | Geberit International AG | Dämpfer für eine drehbewegung, insbesondere von toilettendeckeln oder -sitzen |
CN115234119A (zh) * | 2021-07-16 | 2022-10-25 | 福建西河卫浴科技有限公司 | 一种阻尼机构及门 |
CN113819183A (zh) * | 2021-11-03 | 2021-12-21 | 李祉谌 | 一种车用可调柔性缓冲减震阻尼装置 |
CN115306244B (zh) * | 2022-06-02 | 2023-09-19 | 海益(厦门)建材工业有限公司 | 多腔体阻尼器 |
CN116250754A (zh) * | 2023-02-27 | 2023-06-13 | 厦门豪帝卫浴工业有限公司 | 一种旋转式阻尼机构 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62261727A (ja) * | 1986-05-09 | 1987-11-13 | Fuji Seiki Kk | ロ−タリ−ダンパ |
CN2173840Y (zh) * | 1993-11-20 | 1994-08-10 | 萧春松 | 盖子缓冲器 |
CN201671468U (zh) * | 2010-05-06 | 2010-12-15 | 厦门瑞尔特卫浴工业有限公司 | 一种马桶盖板缓降阻尼转轴 |
CN202148758U (zh) * | 2011-01-14 | 2012-02-22 | 漳州威迪亚卫浴有限公司 | 一种阻尼式机构 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU624027B2 (en) * | 1989-10-11 | 1992-05-28 | Sugatsune Industrial Co., Ltd | Door hinge |
US5419013A (en) * | 1993-12-10 | 1995-05-30 | Hsiao; Chun-Sung | Hydraulic hinge having rotatable shaft and linearly movable plug forming fluid chambers |
CN2336134Y (zh) * | 1998-03-04 | 1999-09-01 | 徐铭 | 液压缓冲器 |
US6205619B1 (en) * | 1998-09-17 | 2001-03-27 | Jang Jong-Bok | Hydraulic automatic-shock-absorbing hinge device |
US6464052B1 (en) * | 2002-02-13 | 2002-10-15 | Chun-Sung Hsiao | Rotatable hydraulic damper |
US7051618B2 (en) * | 2002-10-15 | 2006-05-30 | Illnois Tool Works Inc | Ultrasonic welded hinge damper |
KR101071909B1 (ko) * | 2004-09-03 | 2011-10-11 | 이미재 | 유압식 완충경첩 |
CN200968130Y (zh) * | 2006-10-14 | 2007-10-31 | 李浩典 | 一种家具门铰链缓冲器 |
WO2009044910A1 (ja) * | 2007-10-05 | 2009-04-09 | Sugatsune Kogyo Co., Ltd. | ヒンジ装置 |
DE202007014471U1 (de) * | 2007-10-16 | 2009-03-12 | Sfs Intec Holding Ag | Scharnier für eine Gepäckbox o.dgl. |
CA2710407C (en) * | 2007-12-26 | 2012-03-27 | Sugatsune Kogyo Co., Ltd. | Rotary damper |
CN201219865Y (zh) * | 2008-04-30 | 2009-04-15 | 厦门豪帝卫浴工业有限公司 | 一种阻尼装置 |
EP2187084A1 (en) * | 2008-11-14 | 2010-05-19 | Joseph Talpe | Hydraulic rotation damper |
KR100937780B1 (ko) * | 2009-06-08 | 2010-01-20 | 주식회사 삼홍테크 | 캠을 이용한 오일 댐퍼 |
CN102341023B (zh) * | 2009-10-28 | 2013-06-05 | 柳志芳 | 阻尼机构 |
CN102587775B (zh) * | 2011-01-14 | 2016-04-06 | 李飞勇 | 一种阻尼结构 |
WO2012150481A1 (en) * | 2011-05-04 | 2012-11-08 | Ol.Mi S.R.L. | Hinge |
US8745820B2 (en) * | 2011-09-30 | 2014-06-10 | Itt Manufacturing Enterprises Llc | Rotary hinge with adjustable damping assembly |
TWM458775U (zh) * | 2013-02-08 | 2013-08-01 | Jarllytec Co Ltd | 阻尼式轉軸裝置及具有阻尼式轉軸裝置的支撐結構 |
-
2012
- 2012-01-13 CN CN201210011903.0A patent/CN102587775B/zh active Active
- 2012-01-13 US US13/978,507 patent/US9115519B2/en not_active Expired - Fee Related
- 2012-01-13 WO PCT/CN2012/070319 patent/WO2012095020A1/zh active Application Filing
- 2012-01-13 CN CN201210011904.5A patent/CN102578951B/zh active Active
- 2012-01-13 CN CN201310683625.8A patent/CN103758422B/zh active Active
- 2012-01-13 CN CN2012200180829U patent/CN203022493U/zh not_active Expired - Fee Related
- 2012-01-13 WO PCT/CN2012/070316 patent/WO2012095017A1/zh active Application Filing
- 2012-01-13 JP JP2013548733A patent/JP6222603B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62261727A (ja) * | 1986-05-09 | 1987-11-13 | Fuji Seiki Kk | ロ−タリ−ダンパ |
CN2173840Y (zh) * | 1993-11-20 | 1994-08-10 | 萧春松 | 盖子缓冲器 |
CN201671468U (zh) * | 2010-05-06 | 2010-12-15 | 厦门瑞尔特卫浴工业有限公司 | 一种马桶盖板缓降阻尼转轴 |
CN202148758U (zh) * | 2011-01-14 | 2012-02-22 | 漳州威迪亚卫浴有限公司 | 一种阻尼式机构 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103527027A (zh) * | 2013-09-18 | 2014-01-22 | 陈朝朗 | 可调节扭力旋转阻尼器 |
CN103527027B (zh) * | 2013-09-18 | 2015-12-30 | 陈朝朗 | 可调节扭力旋转阻尼器 |
CN103790458A (zh) * | 2014-03-03 | 2014-05-14 | 苏州升德精密电气有限公司 | 一种外力阻尼装置 |
CN106522718A (zh) * | 2017-01-03 | 2017-03-22 | 厦门德浦精密科技有限公司 | 一种磁力阻尼器 |
US11846337B2 (en) * | 2018-08-17 | 2023-12-19 | Nidec Gpm Gmbh | Damping element with thread portion |
CN109372930A (zh) * | 2018-12-11 | 2019-02-22 | 深圳市无疆智创科技有限公司 | 一种自适应阻尼活塞及减震器 |
CN110318622A (zh) * | 2019-07-09 | 2019-10-11 | 陈朝朗 | 一种微小型单向阻力旋转阻尼器 |
CN110318622B (zh) * | 2019-07-09 | 2024-01-12 | 陈朝朗 | 一种微小型单向阻力旋转阻尼器 |
Also Published As
Publication number | Publication date |
---|---|
US20130276268A1 (en) | 2013-10-24 |
CN102587775B (zh) | 2016-04-06 |
CN102578951B (zh) | 2014-04-16 |
JP6222603B2 (ja) | 2017-11-01 |
WO2012095017A1 (zh) | 2012-07-19 |
JP2014502684A (ja) | 2014-02-03 |
CN102578951A (zh) | 2012-07-18 |
CN103758422B (zh) | 2016-06-08 |
CN102587775A (zh) | 2012-07-18 |
CN103758422A (zh) | 2014-04-30 |
CN203022493U (zh) | 2013-06-26 |
US9115519B2 (en) | 2015-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012095020A1 (zh) | 一种阻尼结构 | |
WO2013115458A1 (ko) | 가전 제품 도어의 싱글 힌지 댐핑 장치 | |
WO2013154332A1 (ko) | 도어용 경첩장치 | |
CN207921390U (zh) | 一种换向阀 | |
ITRM950701A1 (it) | Testa di chiusura con innesto magnetico | |
US10381899B2 (en) | Sidewall coring structure directly driven by an electric motor | |
CN110499984B (zh) | 一种芯轴及装置有该芯轴的防暴力万向液压合页 | |
WO2015039429A1 (zh) | 高频脉冲发生器及其加载系统 | |
CN212225952U (zh) | 一种蜗轮蜗杆减速机防护外壳 | |
CN102561861A (zh) | 电动合页装置 | |
CN201100054Y (zh) | 关门器组合构造 | |
UA80554C2 (en) | Synchronization driving dispatch device of blast-furnace | |
CN201899438U (zh) | 一种盖板慢落转轴 | |
CN105484505B (zh) | 一种可变角度竖向混凝土结构爬升装置及其使用方法 | |
WO2017128971A1 (zh) | 一种阻尼器 | |
WO2011088634A1 (zh) | 电锤的快速装夹装置 | |
CN210948164U (zh) | 关门缓冲合页 | |
JP6514838B1 (ja) | 多坑井用ビームポンピングシステムの調整可能な共用平衡装置 | |
CN102011530A (zh) | 液压旋转装置 | |
CN107911978B (zh) | 封闭式变扭力转轴及电子设备 | |
CN201103305Y (zh) | 闭门器 | |
CN211875142U (zh) | 一种便于维护的闸阀 | |
CN209457533U (zh) | 一种高耐磨长寿命门窗主传动杆 | |
RU57346U1 (ru) | Устройство для герметизации устья скважины | |
CN203477155U (zh) | 一种回转液压阻尼平衡装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12734487 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13978507 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2013548733 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12734487 Country of ref document: EP Kind code of ref document: A1 |