WO2012093587A1 - Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子 - Google Patents

Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子 Download PDF

Info

Publication number
WO2012093587A1
WO2012093587A1 PCT/JP2011/079622 JP2011079622W WO2012093587A1 WO 2012093587 A1 WO2012093587 A1 WO 2012093587A1 JP 2011079622 W JP2011079622 W JP 2011079622W WO 2012093587 A1 WO2012093587 A1 WO 2012093587A1
Authority
WO
WIPO (PCT)
Prior art keywords
heusler alloy
based heusler
thin film
spin polarization
alloy
Prior art date
Application number
PCT/JP2011/079622
Other languages
English (en)
French (fr)
Inventor
有紀子 高橋
スリニバサン アナアタクリシュナン
バラプラサド ボラプラガタ
ラジニカンス アマナボルル
ジェイヴァーダン シンハ
将光 林
孝夫 古林
伸哉 葛西
重之 平山
誠司 三谷
和博 宝野
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Publication of WO2012093587A1 publication Critical patent/WO2012093587A1/ja
Priority to US13/935,095 priority Critical patent/US9336937B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1284Spin resolved measurements; Influencing spins during measurements, e.g. in spintronics devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • Y10T428/1129Super lattice [e.g., giant magneto resistance [GMR] or colossal magneto resistance [CMR], etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the present invention relates to a Co 2 Fe-based Heusler alloy having a high spin polarization and a spintronic device using the same.
  • MRAM Magnetic Random Access Memory
  • MOSFET Spin Metal Oxide Semiconductor Field Effect Transistor
  • TMR Tunnel Type Magnetoresistive Effect
  • GMR Giant Magnetoresistive Effect
  • STO torque oscillators
  • NLSV non-local spin valve
  • Co-based Heusler alloys are also developed from a practical viewpoint because their Curie points are sufficiently higher than room temperature. It is a material that has been made.
  • the Heusler alloy is represented by a chemical formula of X 2 YZ and has an L2 1 ordered structure.
  • a complete L2 1 structure cannot be obtained, and the B2 structure in which Y and Z are disordered and all atoms of X, Y, and Z are disordered.
  • An A2 structure is easily obtained.
  • Such an irregular structure has been theoretically shown to reduce the spin polarization.
  • Co 2 MnSi which is predicted to be a half metal
  • the spin polarization estimated by the point contact and reflex reflection (PCAR) method is a low value of 0.59 (59%), which is a high spin contrary to the theoretical prediction. Polarization rate is not obtained. The reason why the spin polarization is low is that the structure is in an irregular state.
  • Non-Patent Document 1 a very high spin polarization rate of 75% is realized by replacing Ge in Co 2 MnGe with Ga.
  • Co 2 MnGaGe is an intermetallic compound and has an advantage that a high degree of L2 1 order can be realized.
  • Co 2 MnGaGe contains Mn, it is easily oxidized, and there is a problem of diffusion to an Ag layer used as a nonmagnetic metal in a direct current conduction type (CPP) -GMR element (Non-patent Document 2).
  • Co 2 Fe-based Heusler alloy has no such problem, and practical Co 2 Fe-based high spin polarization material (spin polarization measured by PCAR is 0.65 or more). It is expected to be developed.
  • Non-Patent Document 3 evaluates the spin polarization using the point contact and reflex reflection method, and shows a value of 0.6 (60%).
  • a CPP-GMR element using this material has also been manufactured, and a large magnetoresistance (MR) ratio of 34% at room temperature and a sheet resistance change ( ⁇ RA) are 8 m ⁇ ⁇ ⁇ m 2 (Non-patent Document 4).
  • the spin polarization is estimated to be 0.7 (70%) at room temperature and 0.77 (77%) at 14K.
  • the spin polarization rate is increased by increasing the state of one of the majority spin and the minority spin.
  • Co 2 FeGa and Co 2 FeGe are both alloy materials reported in Non-Patent Documents 5-8, and the following has been clarified. According to it, the following has been clarified for bulk alloys.
  • Co 2 FeGa bulk alloys ⁇ L2 1 can be formed of a single phase. -Curie point is 1093K. -Spin polarization rate is 0.59 (59%). ⁇ It is not half metal in the calculation.
  • the inventors (1) Manufacture and measurement of Co 2 Fe (Ga x Ge 1-x ) bulk alloy (2) Manufacture and measurement of Co 2 Fe (Ga x Ge 1-x ) thin film alloy (3) High performance spintronic device
  • Invention 1 is a Co 2 Fe-based Heusler alloy used in a spintronic device, wherein the component composition is Co 2 Fe (Ga X Ge X-1 ) (0.25 ⁇ X ⁇ 0.60) A Co 2 Fe-based Heusler alloy is provided.
  • Invention 2 is a Co 2 Fe-based Heusler alloys of the invention 1 provides a Co 2 Fe-based Heusler alloy, wherein the spin polarization is 0.65 or more.
  • Invention 3 uses the Co 2 Fe-based Heusler alloy thin film of Invention 1 as a ferromagnetic electrode, and consists of MgO substrate / Cr / Ag / Co 2 Fe-based Heusler alloy / Ag / Co 2 Fe-based Heusler alloy / Ag / Ru.
  • a CPP-GMR element characterized by having a thin film laminated structure is provided.
  • Invention 4 uses the Co 2 Fe-based Heusler alloy thin film of Invention 1 as a ferromagnetic electrode, and consists of MgO substrate / Cr / Ag / Co 2 Fe-based Heusler alloy / Ag / Co 2 Fe-based Heusler alloy / Ag / Ru.
  • An STO element having a thin film laminated structure is provided.
  • the invention 5 uses the Co 2 Fe-based Heusler alloy thin film of the invention 1 as a ferromagnetic electrode, and non-magnetic Ag that bridges the two thin wires made of MgO substrate / Cr / Ag / Co 2 Fe-based Heusler alloy.
  • An NLSV element having a thin wire is provided.
  • a Heusler alloy thin film having a spin polarization ratio of 0.65 or more can be manufactured by substituting part of Ge in Heusler alloy Co 2 FeGe with Ga, and a CPP-GMR element having a high MR ratio incorporating this thin film In addition, it has become possible to manufacture STO elements and NLSV elements exhibiting high output.
  • Co 2 FeGa a state density curve by the first-principles calculation Co 2 FeGe and Co 2 Fe (Ga 0.5 Ge 0.5 ).
  • the film configuration MgO substrate / Cr from the bottom (10) / Ag (100) / Co 52 Fe 22 (Ga 13 Ge 13) (12) / Ag (5) / Co 52 Fe 22 (Ga 13 Ge 13) (12) / Ag (5) / Ru (8).
  • Numbers in parentheses are film thickness in nm.
  • FIGS. 1 and 2 show state density curves of Co 2 FeGa, Co 2 FeGe and Co 2 Fe (Ga 0.5 Ge 0.5 ) according to the first principle calculation.
  • the calculation is performed by the Generalized Gradient Application (GGA) method considering the Coulomb potential, and the Coulomb potential is set to a value that reproduces the magnetization.
  • Crystal structure is two types of L2 1 and B2.
  • Co 2 FeGe has a Fermi surface in the band gap of minority spins and is a half metal
  • Co 2 FeGa has a minority spin state in the Fermi surface and is not a half metal.
  • Co 2 Fe (Ga 0.5 Ge 0.5 ) is a half metal.
  • the gap of the minority spin band becomes narrow in any alloy, but it can be seen that Co 2 Fe (Ga 0.5 Ge 0.5 ) has a Fermi surface at the center of the gap and is a half metal.
  • Co 2 Fe (Ga 0.5 Ge 0.5 ) shows half-metal properties even in the B2 structure, the Fermi surface is located in the center of the gap, and the spin polarization due to irregularity Since the influence of the decrease is small, it is expected that a thin spin polarization rate is exhibited even in a thin film in which a high L2 1 order is difficult to obtain.
  • ⁇ Bulk alloy> For the Co 2 Fe (Ga x Ge 1-x ) bulk alloy, a lump having a purity of 99.99% or more was prepared with the ingredients shown in Table 1, and a button-like bulk alloy was prepared by arc melting. At this time, the bulk alloy weighed 15 g and was heat-treated in a He atmosphere at 450 ° C. for 168 hours. From the results of chemical analysis by inductively coupled plasma emission (ICP) analysis, it was confirmed that the intended composition was obtained.
  • ICP inductively coupled plasma emission
  • the structure was evaluated by an X-ray diffraction method (XRD), the magnetic properties were evaluated by a quantum interference magnetometer (SQUID), and the spin polarization was evaluated by a point contact and reflex reflection (PCAR) method.
  • XRD X-ray diffraction method
  • SQUID quantum interference magnetometer
  • PCAR point contact and reflex reflection
  • FIG. 3 shows an XRD pattern of the Co 2 Fe (Ga x Ge 1-x ) bulk alloy.
  • L2 One single phase is obtained.
  • FIG. 5 shows changes in the XRD pattern depending on the heat treatment temperature of Co 2 Fe (Ga x Ge 1-x ).
  • Table 2 shows the intensity ratio of the corresponding L2 1 degree of order and (111) (220), corresponding to the B2 regulation of the (200) intensity ratio of (220).
  • L2 1 order parameter does not change relative to the heat treatment temperature with B2 rules degree. That is, the present alloy shows that L2 1 degree of order greater at 450 ° C. heat treatment of a relatively low temperature is obtained, which is also one of the features of the alloy.
  • FIG. 6 shows a differential thermal analysis (DTA) curve of Co 2 Fe (Ga 0.5 Ge 0.5 ). It can be seen that the Curie point is as high as 1080K, which is practically advantageous.
  • the rule / irregular transformation point of L2 1 ⁇ B2 is 1288K.
  • the Co 2 Fe (Ga 0.5 Ge 0.5 ) alloy has a high spin polarization, so an experiment with a thin film was performed.
  • the thin film was formed by the DC magnetron sputtering method using a Co 46.56 Fe 22.65 Ga 17.92 Ge 15.63 target.
  • the composition of the thin film by ICP analysis is Co 52 Fe 22 Ga 13 Ge 13 .
  • As the substrate an MgO single crystal substrate was used, and Cr (10) / Ag (100) was formed as an underlayer, and then a Co 52 Fe 22 Ga 13 Ge 13 thin film was deposited to a thickness of 20 nm.
  • Cr (10) / Ag (100) indicates the film thickness (in nm) of each metal.
  • FIG. 7 shows XRD patterns of thin films having different heat treatment temperatures. Since only diffraction lines from (200) and (400) of the Co 52 Fe 22 Ga 13 Ge 13 thin film and from (100) of the MgO single crystal substrate are observed, the Co 52 Fe 22 Ga 13 Ge 13 thin film is MgO. It can be seen that epitaxial growth is performed on the single crystal substrate. In addition, diffraction lines from (200) and (400) are observed in all films at all heat treatment temperatures. It shows that these thin films have a degree of order higher than the B2 structure.
  • FIG. 8 shows the results of measurement with the film tilted.
  • a diffraction line from (111) which is a superlattice reflection of L2 1 is observed at 500 ° C. or higher. From the above, it can be seen that that is a L2 1 structure B2 structure, 500 ° C. or higher to 400 ° C..
  • FIG. 9 shows the heat treatment temperature dependence of the saturation magnetization of the Co 52 Fe 22 Ga 13 Ge 13 thin film.
  • a circle indicates a value at 10K, and a triangle indicates a value at room temperature.
  • the broken line in the figure is the theoretical value.
  • the values lower than the theoretical values include a composition shift and not being completely ordered into the L2 1 structure.
  • FIG. 10 shows the temperature change of the specific resistance.
  • the specific resistance of the Co 52 Fe 22 Ga 13 Ge 13 thin film heat-treated at 500 ° C. is reduced to about 1 / times because spin scattering is suppressed as compared with the non-heat-treated thin film. Recognize. This is considered to be due to the regularity of the structure.
  • FIG. 11 shows the heat treatment temperature dependence of the damping constant of the Co 52 Fe 22 Ga 13 Ge 13 thin film. As the heat treatment temperature increases, the damping constant decreases and becomes a low value of 0.008 after the heat treatment at 500 ° C., whereas the damping constant of permalloy, which is a general ferromagnetic material, is 0.01. Lower value than permalloy.
  • FIG. 12 shows the results of the spin polarization of the Co 52 Fe 22 Ga 13 Ge 13 thin film heat-treated at 500 ° C.
  • the surface is capped with 1 nm of Al. From the scattering factor dependence of the spin polarization, the spin polarization of this thin film is estimated to be 0.75 (75%).
  • Membrane structure MgO substrate / Cr (10) / Ag ( 100) / Co 52 Fe 22 Ga 13 Ge 13 (12) / Ag (5) / Co 52 Fe 22 Ga 13 Ge 13 (12) / Ag (5) / Ru (8), parentheses indicate the film thickness, and the unit is nm.
  • the thin film was prepared by DC and RF magnetron sputtering, and heat treatment was performed at 300 ° C. for 30 minutes after the Ag layer was formed and at 500 ° C. for 30 minutes after the Ru layer was formed. The former is for improving surface flatness, and the latter is for ordering Co 52 Fe 22 Ga 13 Ge 13 .
  • CPP-GMR element by using an EB lithography and Ar ion milling was processed into 70 ⁇ 140 ⁇ m 2, 100 ⁇ 200 ⁇ m 2, 150 ⁇ 300 ⁇ m 2, 200 oval pillar shape ⁇ 400 [mu] m 2.
  • FIG. 13 MgO substrate / Cr (10) / Ag ( 100) / Co 52 Fe 22 Ga 13 Ge 13 (12) / Ag (5) / Co 52 Fe 22 Ga 13 Ge 13 (12) / Ag (5) /
  • the magnetic field dependence of the magnetic resistance of Ru (8) is shown.
  • a triangle mark is a curve at room temperature, and a circle mark is a curve at 10K.
  • FIG. 14 shows the temperature dependence of ⁇ RA, R p (resistance when magnetized parallel) and R ap (resistance when magnetized antiparallel).
  • ⁇ RA resistance when magnetized parallel
  • R ap resistance when magnetized antiparallel
  • an STO element was fabricated using Co 52 Fe 22 Ga 13 Ge 13 as a ferromagnetic electrode, and its conduction characteristics were evaluated.
  • MgO substrate / Cr (10) / Ag ( 100) / Co 52 Fe 22 Ga 13 Ge 13 (12) / Ag (5) / Co 52 Fe 22 Ga 13 Ge 13 (12) / Ag (5) / Ru (8 ) was heat-treated at 500 ° C., and 130 ⁇ 130 nm 2 pillars were formed by fine processing.
  • a current of 4.6 ⁇ 10 7 A / cm 2 and an external magnetic field of 485 Oe an output of 2.5 nV / Hz 0.5 was obtained at about 16 GHz (FIG. 15).
  • the line width was 30 MHz, and the Q value was about 460. This value is equivalent to the value reported so far (Non-Patent Document 9).

Abstract

CoFe(GaGeX-1)であり且つ0.25<X<0.60を満足する、PCAR法により測定したスピン偏極率が0.65以上でキュリー点が1288Kに達するホイスラー合金であり、当該ホイスラー合金を電極としたCPP-GMR素子は世界最高のMR比を、STO素子では高い出力を、NLSV素子では高いスピン信号を示す。

Description

Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子
 本発明は、高いスピン偏極率を有するCoFe基ホイスラー合金とこれを用いたスピントロニクスデバイスに関するものである。
 磁気ランダムアクセスメモリー(MRAM)、スピン金属酸化物半導体電界効果型トランジスタ(MOSFET)、ハードディスクの再生ヘッドに用いられているトンネル型磁気抵抗効果(TMR)素子、巨大磁気抵抗効果(GMR)素子やスピントルクオシレータ(STO)、次世代の再生ヘッドとして注目されている非局所スピンバルブ(NLSV)素子などのスピントロニクスを応用したデバイスでは高い特性を得るために高いスピン偏極率を示す材料が求められている。高スピン偏極率材料として注目されているのがCo基ホイスラー合金である。いくつかのCo基ホイスラー合金は理論的にスピン偏極率が1(100%)のハーフメタルが予測されている。(フェルミ面において片方のスピンの状態がない(スピン偏極率=1)物質をハーフメタルと呼ぶ。)またCo基ホイスラー合金はキュリー点も室温よりも十分に高いことから実用的な観点から開発がなされている材料である。
ホイスラー合金はXYZの化学式で表されL2の規則構造をとる。しかし、L2構造への規則化のキネティクスが小さいために完全なL2構造は得られず、YとZが不規則化したB2構造やX、Y、Zのすべての原子が不規則化したA2構造が容易に得られる。このような不規則構造では、スピン偏極率が減少することが理論的に示されている。実際に、ハーフメタルと予測されているCoMnSiでは点接触アンドレーフ反射(PCAR)法で見積もったスピン偏極率は0.59(59%)と低い値であり、理論予測に反して高スピン偏極率は得られていない。スピン偏極率が低いのは、構造が不規則状態であるためである。
高スピン偏極率を示す材料の探索はこれまでにも行われている。非特許文献1によるとCoMnGeのGeをGaで置換することにより75%という非常に高いスピン偏極率を実現している。CoMnGaGeは金属間化合物であり、高いL2規則度を実現できるという長所を持っている。しかし、CoMnGaGeはMnを含むために酸化されやすく、また面直通電型(CPP)-GMR素子の非磁性金属として使われるAg層への拡散という問題(非特許文献2)がある。このような問題のないのがCoFe系のホイスラー合金であリ、実用的なCoFe系の高スピン偏極率材料(PCARで測定されるスピン偏極率が0.65以上)を開発することが期待されている。
CoFe系のホイスラー合金では、CoFeSiのSiをAlで置換したCoFeAl0.5Si0.5が高いスピン偏極率を持つ材料として知られている。非特許文献3には、点接触アンドレーフ反射法を用いてスピン偏極率が評価されており、0.6(60%)の値を示す。またこの材料を用いたCPP-GMR素子も作製されており、室温で34%の大きな磁気抵抗(MR)比、面積抵抗変化(ΔRA)は8mΩ・μmである(非特許文献4)。さらに、スピン偏極率も室温で0.7(70%)、14Kで0.77(77%)と見積もられる。
 さらなるスピントロニクス素子の高性能化にはCoFeAlSiよりも大きなスピン偏極率を示す材料の開発が望まれている。 
B. Varaprasad et al., Appl. Phys. Express. 3, 023002 (2010). N. Hase et al., JAP108, 093916 (2010). T.M. Nakatani et al., J. Appl. Phys., 102, 033916 (2007). T.M. Nakatani et al., Appl. Phys. Lett., 96, 212501 (2010). B. Balke et al., APL 90, 172501 (2007). M. Zhang et al., JPD 37, 2049 (2004). R.Y. Umetsu et al., JAC 499, 1 (2010). K.R. Kumar et al., IEEE Trans. Magn., 45, 3997 (2009). 文部科学省 次世代IT基盤技術構築のための研究開発「高機能・超低消費電力コンピューティングのためのデバイス・システム基盤技術の研究開発」及び(独)新エネルギー・産業技術総合開発機構「超高密度ナノビット磁気記録技術の開発(グリーンITプロジェクト)」 合同成果報告会 平成22年10月29日 Y. Fukuma et al., Natute Mater. 10, 527 (2011).
 高いスピン偏極率を示すCoFe基ホイスラー合金、及びこれを使用した高性能なスピントロニクス素子を提供することを課題とする。
本発明では、ホイスラー合金CoFeGeのGeの一部をGaで置換することにより、多数スピンと少数スピンの内の片方のスピンの状態を増加させることによりスピン偏極率を増加させた。
 ホイスラー合金のCoFeGa、CoFeGeは、ともに非特許文献5-8で報告されている合金材料であるが、それによると以下のことが明らかになっている。それによるとバルクの合金については、以下のことが明らかになっている。
CoFeGaバルク合金:・L2単相での形成が可能。
・キュリー点が1093K。
・スピン偏極率は0.59(59%)。
・計算ではハーフメタルではない。
CoFeGeバルク合金:・L2単相の形成は困難。
             ・計算ではハーフメタル性が示されている。
しかしながら、CoFe(GaGe)合金に関しては、バルク合金、薄膜合金のいずれについても報告されていない。
 そこで、発明者らは、
(1)CoFe(GaGe1-x)バルク合金の製造及び特性測定
(2)CoFe(GaGe1-x)薄膜合金の製造及び特性測定
(3)高性能スピントロニクス素子の製作
の手順で、実験を進め、高いスピン偏極率を持ち、高いGMR比及び発振特性を示すCoFe(GaGe1-x)薄膜合金を見出し、この薄膜を組み込んだ高性能スピントロニクス素子を開発した。
発明1は、スピントロニクスデバイスに用いられるCoFe基ホイスラー合金であって、成分組成がCoFe(GaGeX-1)(0.25<X<0.60)であることを特徴とするCoFe基ホイスラー合金を提供する。
 発明2は、発明1のCoFe基ホイスラー合金であって、スピン偏極率が0.65以上であることを特徴とするCoFe基ホイスラー合金を提供する。
発明3は、発明1のCoFe基ホイスラー合金薄膜を強磁性電極として使用し、MgO基板/Cr/Ag/ CoFe基ホイスラー合金/Ag/CoFe基ホイスラー合金/Ag/Ruからなる薄膜積層構造を有することを特徴とするCPP-GMR素子を提供する。
発明4は、発明1のCoFe基ホイスラー合金薄膜を強磁性電極として使用し、MgO基板/Cr/Ag/ CoFe基ホイスラー合金/Ag/CoFe基ホイスラー合金/Ag/Ruからなる薄膜積層構造を有することを特徴とするSTO素子を提供する。
発明5は、発明1のCoFe基ホイスラー合金薄膜を強磁性電極として使用し、MgO基板/Cr/Ag/ CoFe基ホイスラー合金からなる2本の細線とそれらを橋渡しするAgの非磁性細線を有することを特徴とするNLSV素子を提供する。
 ホイスラー合金CoFeGeのGeの一部をGaで置換することにより、スピン偏極率が0.65以上のホイスラー合金薄膜が製造でき、この薄膜を組み込んだ、高いMR比を示すCPP-GMR素子、高出力を示すSTO素子及びNLSV素子の製造が可能になった。
CoFeGa、CoFeGe及びCoFe(Ga0.5Ge0.5)の第一原理計算による状態密度曲線。 CoFeGa、CoFeGe及びCoFe(Ga0.5Ge0.5)の第一原理計算による状態密度曲線(フェルミ面付近を拡大したもの)。 CoFe(GaGe1-x)バルク合金のXRDパターン。 CoFe(GaGe1-x)バルク合金のスピン偏極率のx(Ga)依存性。 CoFe(Ga0.5Ge0.5)の熱処理温度によるXRDパターンの変化。 CoFe(Ga0.5Ge0.5)のDTA曲線。 熱処理温度の異なるCo52Fe22(Ga13Ge13)薄膜のXRDパターン。 熱処理温度の異なるCo52Fe22(Ga13Ge13)薄膜のXRDパターン。 Co52Fe22(Ga13Ge13)薄膜の飽和磁化の熱処理温度依存性。 Co52Fe22(Ga13Ge13)薄膜の比抵抗の温度変化。 Co52Fe22(Ga13Ge13)薄膜のダンピング定数の熱処理温度依存性。 500℃で熱処理したCo52Fe22(Ga13Ge13)薄膜のスピン偏極率測定結果。 CPP-GMR素子の概念図。膜構成は下からMgO基板/Cr(10)/Ag(100)/Co52Fe22(Ga13Ge13)(12)/Ag(5)/Co52Fe22(Ga13Ge13)(12)/Ag(5)/Ru(8)。括弧内の数字は膜厚で単位はnm。 MgO基板/Cr(10)/Ag(100)/Co52Fe22(Ga13Ge13)(12)/Ag(5)/Co52Fe22(Ga13Ge13)(12)/Ag(5)/Ru(8)の磁気抵抗の磁場依存性。括弧内の数字は膜厚で単位はnm。 ΔRA、R(磁化平行時の抵抗)とRap(磁化反平行時の抵抗)の温度依存性。 STO素子の概念図。膜構成は下からMgO基板/Cr(10)/Ag(100)/Co52Fe22(Ga13Ge13)(10)/Ag(5)/Co52Fe22(Ga13Ge13)(2)/Ag(5)/Ru(8)。括弧内の数字は膜厚で単位はnm。 MgO基板/Cr(10)/Ag(100)/Co52Fe22(Ga13Ge13)(12)/Ag(5)/Co52Fe22(Ga13Ge13)(12)/Ag(5)/Ru(8)の発振特性。 NLSV素子のSEM像。(a)非局所配置と(b)局所配置。 CFGGを用いたNLSV素子の非局所配置の抵抗曲線。 CFGGを用いたNLSV素子の局所配置の抵抗曲線。
 本発明は、上記の通りの特徴を持つものであるが、以下にその実施の形態について説明する。
<第一原理計算>図1と図2にCoFeGa、CoFeGe及びCoFe(Ga0.5Ge0.5)の第一原理計算による状態密度曲線を示す。計算はクーロンポテンシャルを考慮したGeneralized Gradient Approximation(GGA)法により行い、クーロンポテンシャルは磁化を再現するような値としている。結晶構造はL2とB2の2通りである。L2構造では、CoFeGeはフェルミ面が少数スピンのバンドギャップ中にありハーフメタル、CoFeGaはフェルミ面に少数スピンの状態が存在しておりハーフメタルではない。CoFe(Ga0.5Ge0.5)ではハーフメタルである。B2構造の場合は、いずれの合金も少数スピンバンドのギャップが狭くなるが、CoFe(Ga0.5Ge0.5)ではギャップの中央にフェルミ面が存在しハーフメタルであることがわかる。以上のことより、CoFe(Ga0.5Ge0.5)ではB2構造でもハーフメタル性が示されていること、フェルミ面がギャップ中央に位置しており不規則によるスピン偏極率の減少の影響が少ないことから、高いL2規則度が得にくい薄膜においても高いスピン偏極率を示すことが予想される。
<合金バルク>
CoFe(GaGe1-x)バルク合金は、表1に示す成分配合で99.99%以上の純度の塊を用意し、それらをアーク溶解でボタン状のバルク合金を作製した。このときのバルク合金の重さは15gでこれを450℃で168時間、He雰囲気中での熱処理を行った。誘導結合プラズマ発光(ICP)分析による化学分析の結果より狙い通りの組成が得られていることを確認している。
Figure JPOXMLDOC01-appb-T000001
構造はエックス線回折法(XRD)で、磁気特性は量子干渉磁束計(SQUID)で、スピン偏極率は点接触アンドレーフ反射(PCAR)法で評価した。
図3にCoFe(GaGe1-x)バルク合金のXRDパターンを示す。x=0のCoFeGeではL2構造にピーク以外に、*で示すように第2相のピークがあり、L2単相となっていないが、x=0.25~1の組成ではL2単相が得られている。
図4にスピン偏極率のx依存性を示す。x=0.5のところで極大を示し、0.68という高い値が得られた。高スピン偏極率(0.65以上)は0.25<x<0.60で得られており、この組成範囲の材料を使ったスピントロニクス素子で高い特性が得られる。
図5に、CoFe(GaGe1-x)の熱処理温度によるXRDパターンの変化を示す。表2に、L2規則度に対応する(111)と(220)の強度比、B2規則度に対応する(200)と(220)の強度比を示す。L2規則度、B2規則度とも熱処理温度に対して変化をしない。すなわち、本合金は比較的低い温度の450℃の熱処理でも高いL2規則度が得られることを示しており、これも本合金の特徴の一つである。
Figure JPOXMLDOC01-appb-T000002
 図6に、CoFe(Ga0.5Ge0.5)の示差熱分析(DTA)曲線を示す。キュリー点が1080Kと高く実用的に有利であることがわかる。また、L2・B2の規則・不規則変態点は1288Kである。
<合金薄膜>
以上のバルク合金の実験から、CoFe(Ga0.5Ge0.5)合金は高いスピン偏極率を持つので、薄膜による実験を行った。薄膜はCo46.56Fe22.65Ga17.92Ge15.63ターゲットを用いたDCマグネトロンスパッタ法により行った。ICP分析による薄膜の組成はCo52Fe22Ga13Ge13である。基板はMgO単結晶基板を用い、下地層としてCr(10)/Ag(100)を成膜した後に、Co52Fe22Ga13Ge13薄膜を20nm堆積した。ここで、Cr(10)/Ag(100)は、それぞれの金属の成膜厚み(nm単位)を示す。
図7に、熱処理温度の異なる薄膜のXRDパターンを示す。Co52Fe22Ga13Ge13薄膜の(200)と(400)およびMgO単結晶基板の(100)からの回折線のみが観測されていることから、Co52Fe22Ga13Ge13薄膜がMgO単結晶基板上にエピタキシャル成長をしていることがわかる。また、すべての熱処理温度において(200)と(400)からの回折線がすべての膜で観測されている。これらの薄膜がB2構造以上の規則度を持っていることを示している。
Co52Fe22Ga13Ge13薄膜はエピタキシャル膜なので、膜を傾けて測定することにより、他の面の回折線を測定することができる。膜を傾けて測定した結果を図8に示す。L2の超格子反射である(111)からの回折線が500℃以上で観察される。以上のことから、400℃まではB2構造、500℃以上でL2構造になっていることがわかる。XRDパターンから見積もった500℃で熱処理をした薄膜のB2規則度は0.8、L2規則度は0.11となる。Co52Fe22Ga13Ge13薄膜の格子定数をネルソンレーリー関数を用いたコーエン法で見積もった結果、a=0.576nm、c=0.570nmとなりほぼ立方晶である。
図9にCo52Fe22Ga13Ge13薄膜の飽和磁化の熱処理温度依存性を示す。○印が10Kでの値、△印が室温での値を示している。図中の破線は理論値である。理論値よりも低い値となっているのは、組成ずれ及び完全にL2構造に規則化していないことが挙げられる。
 図10に、比抵抗の温度変化を示す。500℃で熱処理したCo52Fe22Ga13Ge13薄膜の比抵抗は熱処理をしていないものに比較して、スピンの散乱が抑えられるため、1/3倍程度にまで減少していることがわかる。これは構造の規則度に起因しているものと考えられる。
電流によってCo52Fe22Ga13Ge13薄膜の磁気モーメントを歳差運動させるときに、ダンピング定数が低いとその応答がよくなるため、スピントルクオシレータ素子ではダンピング定数が低いことが望まれる。図11にCo52Fe22Ga13Ge13薄膜のダンピング定数の熱処理温度依存性を示す。熱処理温度の増加とともにダンピング定数は減少し、500℃熱処理後で0.008という低い値となり、一般的な強磁性材料であるパーマロイのダンピング定数が、0.01であるのに対し、この値はパーマロイよりも低い値となる。
図12に500℃で熱処理したCo52Fe22Ga13Ge13薄膜のスピン偏極率の結果を示す。Co52Fe22Ga13Ge13表面の酸化防止のために、1nmのAlでキャップしている。スピン偏極率の散乱因子依存性から、本薄膜のスピン偏極率は0.75(75%)と見積もられる。
 <スピントロニクス素子の作製>
Co52Fe22Ga13Ge13薄膜の実験結果より、500℃の熱処理によりL2構造と高いスピン偏極率が得られることが明らかとなった。そこでCo52Fe22Ga13Ge13を強磁性電極としてCPP-GMR素子を作製し、その伝導特性の評価を行った。
膜構造は、MgO基板/Cr(10)/Ag(100)/Co52Fe22Ga13Ge13(12)/Ag(5)/Co52Fe22Ga13Ge13(12)/Ag(5)/Ru(8)であり、括弧の中は膜厚を示し、単位はnmである。薄膜はDC及びRFマグネトロンスパッタ法で作製し、Ag層成膜後に300℃で30分、Ru層成膜後に500℃で30分の熱処理を行っている。前者は表面平坦性の向上を、後者はCo52Fe22Ga13Ge13の規則化のためである。CPP-GMR素子は、EBリソグラフィーとArイオンミリングを用いて、70×140μm、100×200μm、150×300μm、200×400μmの楕円形のピラー形状に加工した。
図13にMgO基板/Cr(10)/Ag(100)/Co52Fe22Ga13Ge13(12)/Ag(5)/Co52Fe22Ga13Ge13(12)/Ag(5)/Ru(8)の磁気抵抗の磁場依存性を示す。△印が室温、○印が10Kでの曲線である。上下Co52Fe22Ga13Ge13電極が反平行状態になったときに高い磁気抵抗を示している。室温で面積抵抗変化(ΔRA)=9.5mΩ・μm、MR=41.7%、10KでΔRA=26.4mΩ・μm、MR=129.1%という大きな値を示した。一般的な強磁性材料であるCoFe/Cu/CoFeでは室温でΔRA=2mΩ・μm、MR比は数%であり、これと比較しても非常に大きな値が実現されていることがわかる。
 図14にΔRA、R(磁化平行時の抵抗)とRap(磁化反平行時の抵抗)の温度依存性を示す。温度の上昇とともにRは増加、Rapは減少し、その結果ΔRAは減少する。ΔRAの減少はスピン偏極率が温度上昇とともに減少しているためと考えられる。
また、Co52Fe22Ga13Ge13を強磁性電極としてSTO素子を作製し、その伝導特性の評価を行った。MgO基板/Cr(10)/Ag(100)/Co52Fe22Ga13Ge13(12)/Ag(5)/Co52Fe22Ga13Ge13(12)/Ag(5)/Ru(8)の膜を500℃で熱処理を行い、微細加工により130×130nmのピラーを形成した。4.6×10 A/cmの電流、外部磁場が485 Oeを印加することにより、約16GHzで2.5nV/Hz0.5の出力を得た(図15)。なお、このときの線幅は30MHz、Q値は約460であった。この値は現在までに報告されている値と同等のものである(非特許文献9)。
更に、Co52Fe22Ga13Ge13で2本の強磁性細線(幅100nm)とそれを橋渡しするような非磁性細線(Ag、幅150nm)を微細加工により作製し、NLSV素子の伝導特性の評価を行った。図19に示すように、非局所配置のときに室温で114mΩという非常に大きなスピン信号が得られた。この値は現在までに報告されている値よりも大きい(非特許文献10)。本NLSV素子はすべて金属で形成され素子抵抗が小さい。そのため大きなスピン流の生成が可能である。図20に示す局所配置での抵抗変化は非局所配置のそれの2倍となっており、解析的な計算結果と一致している。
もちろん、この発明は以上の例に限定されるものではなく、細部に付いては様々な態様が可能であることは言うまでもない。
 高MR比の本願発明材料よる素子を用いることにより、2T/inchを超えるような密度での再生ヘッド、高周波アシスト磁気記録(MAMR)ヘッドを提供することが可能となった。更に、高いスピン偏極率を持つ本願発明材料から半導体へ高効率のスピン注入が可能となる。

Claims (5)

  1.  スピントロニクスデバイスに用いられるCoFe基ホイスラー合金であって、下記式1に示すような成分組成(0.25<X<0.60)であることを特徴とするCoFe基ホイスラー合金。
    <式1>
    CoFe(GaGe1-x)(0.25<X<0.60)
  2. 請求項1のCoFe基ホイスラー合金であって、スピン偏極率が0.65以上であることを特徴とするCoFe基ホイスラー合金。
  3. 請求項1のCoFe基ホイスラー合金を強磁性電極として使用し、MgO基板/Cr/Ag/ CoFe基ホイスラー合金/Ag/CoFe基ホイスラー合金/Ag/Ruからなる薄膜積層構造を有することを特徴とするCPP-GMR素子。
  4. 請求項1のCoFe基ホイスラー合金を強磁性電極として使用し、MgO基板/Cr/Ag/ CoFe基ホイスラー合金/Ag/CoFe基ホイスラー合金/Ag/Ruからなる薄膜積層構造を有することを特徴とするSTO素子。
  5. 請求項1のCoFe基ホイスラー合金を強磁性電極として使用し、MgO基板/Cr/Ag/ CoFe基ホイスラー合金からなる2本の強磁性細線とそれを橋渡しするAgの非磁性細線からなる構造を有することを特徴とするNLSV素子。
     
     
     
PCT/JP2011/079622 2011-01-07 2011-12-21 Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子 WO2012093587A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/935,095 US9336937B2 (en) 2011-01-07 2013-07-03 Co2Fe-based heusler alloy and spintronics devices using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011002410 2011-01-07
JP2011-002410 2011-01-07
JP2011227488A JP5696990B2 (ja) 2011-01-07 2011-10-14 Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子
JP2011-227488 2011-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/935,095 Continuation US9336937B2 (en) 2011-01-07 2013-07-03 Co2Fe-based heusler alloy and spintronics devices using the same

Publications (1)

Publication Number Publication Date
WO2012093587A1 true WO2012093587A1 (ja) 2012-07-12

Family

ID=46457447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079622 WO2012093587A1 (ja) 2011-01-07 2011-12-21 Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子

Country Status (3)

Country Link
US (1) US9336937B2 (ja)
JP (1) JP5696990B2 (ja)
WO (1) WO2012093587A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063412A1 (zh) * 2012-10-26 2014-05-01 苏州大学 基于磁温差电效应的传感器元件及其实现方法
US10205091B2 (en) 2015-12-04 2019-02-12 National Institute For Materials Science Monocrystalline magneto resistance element, method for producing the same and method for using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230597B2 (en) * 2013-11-01 2016-01-05 HGST Netherlands B.V. Magnetic head having a spin torque oscillator (STO) with a hybrid heusler field generation layer (FGL)
WO2016017612A1 (ja) * 2014-08-01 2016-02-04 国立研究開発法人物質・材料研究機構 磁気抵抗素子、当該磁気抵抗素子を用いた磁気ヘッド及び磁気再生装置
EP3235018A4 (en) * 2014-12-18 2018-08-15 Intel Corporation Method for fabricating spin logic devices from in-situ deposited magnetic stacks
US9728210B2 (en) 2015-11-25 2017-08-08 Western Digital Technologies, Inc. Texture-control layer for spin torque oscillator
US10408896B2 (en) 2017-03-13 2019-09-10 University Of Utah Research Foundation Spintronic devices
US10396123B2 (en) * 2017-07-26 2019-08-27 International Business Machines Corporation Templating layers for perpendicularly magnetized Heusler films
JP2020155564A (ja) * 2019-03-20 2020-09-24 キオクシア株式会社 磁気記憶装置
JP6806199B1 (ja) * 2019-08-08 2021-01-06 Tdk株式会社 磁気抵抗効果素子およびホイスラー合金
JP6806939B1 (ja) 2019-08-08 2021-01-06 Tdk株式会社 磁気抵抗効果素子およびホイスラー合金

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524689A (ja) * 2001-02-23 2004-08-12 インターナショナル・ビジネス・マシーンズ・コーポレーション 巨大磁気抵抗およびスピン分極トンネルを有する化合物、その製造および使用方法
JP2010037580A (ja) * 2008-08-01 2010-02-18 National Institute For Materials Science Co基ホイスラー合金
JP2010126733A (ja) * 2008-11-25 2010-06-10 National Institute For Materials Science Co基ホイスラー合金とこれを用いた磁性素子。

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189039A (ja) * 2006-01-13 2007-07-26 Alps Electric Co Ltd トンネル型磁気検出素子及びその製造方法
US20070171579A1 (en) * 2006-01-20 2007-07-26 Alps Electric Co., Ltd. Tunnel type magnetic detection element in which crystal orientation of magnetic layer and barrier layer is selected and manufacturing method thereof
US20090168269A1 (en) * 2007-12-28 2009-07-02 Matthew Joseph Carey Current perpendicular to plane spin valve with high-polarization material in ap1 layer for reduced spin torque
US8810973B2 (en) * 2008-05-13 2014-08-19 HGST Netherlands B.V. Current perpendicular to plane magnetoresistive sensor employing half metal alloys for improved sensor performance
US8953283B2 (en) * 2012-11-29 2015-02-10 Kabushiki Kaisha Toshiba Magnetic head, magnetic head assembly, and magnetic recording/reproduction apparatus
US9076467B2 (en) * 2013-07-02 2015-07-07 HGST Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with multilayer reference layer including a crystalline CoFeX layer and a Heusler alloy layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524689A (ja) * 2001-02-23 2004-08-12 インターナショナル・ビジネス・マシーンズ・コーポレーション 巨大磁気抵抗およびスピン分極トンネルを有する化合物、その製造および使用方法
JP2010037580A (ja) * 2008-08-01 2010-02-18 National Institute For Materials Science Co基ホイスラー合金
JP2010126733A (ja) * 2008-11-25 2010-06-10 National Institute For Materials Science Co基ホイスラー合金とこれを用いた磁性素子。

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063412A1 (zh) * 2012-10-26 2014-05-01 苏州大学 基于磁温差电效应的传感器元件及其实现方法
US9797962B2 (en) 2012-10-26 2017-10-24 Soochow University Sensor element based on magneto-thermoelectric effect, and realizing method thereof
US10205091B2 (en) 2015-12-04 2019-02-12 National Institute For Materials Science Monocrystalline magneto resistance element, method for producing the same and method for using same
US10749105B2 (en) 2015-12-04 2020-08-18 National Institute For Materials Science Monocrystalline magneto resistance element, method for producing the same and method for using same

Also Published As

Publication number Publication date
US9336937B2 (en) 2016-05-10
US20130302649A1 (en) 2013-11-14
JP2012156485A (ja) 2012-08-16
JP5696990B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5696990B2 (ja) Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子
Inomata et al. Large tunneling magnetoresistance at room temperature using a Heusler alloy with the B2 structure
JP5634385B2 (ja) スピントランスファー発振器構造およびその形成方法
JP5586028B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
JP5527669B2 (ja) 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
US20090015969A1 (en) Magnetic thin film, magnetoresistance effect device and magnetic device using the same
JPWO2007126071A1 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2010140586A (ja) 磁気抵抗効果型磁気ヘッド
JPWO2016158926A1 (ja) 磁気抵抗効果素子
Nakatani et al. Advanced CPP-GMR spin-valve sensors for narrow reader applications
Qader et al. The magnetic, electrical and structural properties of copper-permalloy alloys
Sepehri-Amin et al. Design of spin-injection-layer in all-in-plane spin-torque-oscillator for microwave assisted magnetic recording
Tao et al. Transport Properties in Sputtered CoFeB/MgAl 2 O 4/CoFeB Magnetic Tunnel Junctions
Ravi Spin transport through silicon using a double perovskite-based magnetic tunnel junction
JP2004221526A (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
Ohnuma et al. High frequency magnetic properties and GMR effect of nano-granular magnetic thin films
Gabor et al. The influence of the capping layer on the perpendicular magnetic anisotropy in permalloy thin films
US9070389B2 (en) Magnetic recording and reproducing apparatus
JP2019102799A (ja) 磁気抵抗効果素子
Yang et al. The microstructure and magnetic properties of Co2MnSi thin films deposited on Si substrate
JP4953064B2 (ja) ホイスラー合金とそれを用いたtmr素子又はgmr素子
JP5389370B2 (ja) 強磁性薄膜材料とその製造方法
Feng et al. Effect of Ta capping layer on the magnetic coupling oscillation of L10-MnGa/Co/Ta films
Tahmasebi et al. Influence of spin polarizer on the magnetoresistance, switching property, and interlayer interactions in Co/Pd single spin valves
Liu et al. Effect of Pt doping Ni on the structural and magnetic properties of hexagonal MnNiGa alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854589

Country of ref document: EP

Kind code of ref document: A1