WO2012093534A1 - Exposure device and exposure method - Google Patents

Exposure device and exposure method Download PDF

Info

Publication number
WO2012093534A1
WO2012093534A1 PCT/JP2011/077793 JP2011077793W WO2012093534A1 WO 2012093534 A1 WO2012093534 A1 WO 2012093534A1 JP 2011077793 W JP2011077793 W JP 2011077793W WO 2012093534 A1 WO2012093534 A1 WO 2012093534A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
substrate
chuck
alignment film
light
Prior art date
Application number
PCT/JP2011/077793
Other languages
French (fr)
Japanese (ja)
Inventor
根本亮二
片岡文雄
吉武康裕
植原聡
釜石孝生
畠山理子
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011000722A external-priority patent/JP2012141504A/en
Priority claimed from JP2011004471A external-priority patent/JP2012145786A/en
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2012093534A1 publication Critical patent/WO2012093534A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to an alignment film exposure apparatus and exposure device that irradiates an alignment film made of a polymer compound with linearly polarized exposure light to give the alignment film alignment characteristics that align the liquid crystal alignment direction.
  • the present invention relates to an alignment film exposure apparatus and exposure method for forming a plurality of different alignment regions in an alignment film on a single substrate.
  • An active matrix liquid crystal display device is manufactured by enclosing liquid crystal between a TFT (Thin Film Transistor) substrate and a color filter substrate, and arranging the liquid crystal alignment direction on the surface of the TFT substrate and the color filter substrate.
  • An alignment film is formed.
  • the process of imparting alignment characteristics to align the alignment direction of the liquid crystal on the alignment film has been conventionally performed by a “rubbing method” in which the surface of the alignment film is rubbed with a cloth, but recently, an alignment film made of a polymer compound such as polyimide.
  • a “photo-alignment method” has been developed in which anisotropy is generated by irradiating a linearly polarized ultraviolet light to selectively react a polymer chain in the polarization direction. In the photo-alignment method, as one method for causing the alignment film to exhibit a pretilt angle, there is a method of obliquely irradiating the alignment film with linearly polarized ultraviolet light.
  • Patent Document 1 in order to increase the viewing angle of a liquid crystal display device, to improve display quality, and to improve contrast, in a pair of substrates sandwiching a liquid crystal layer, an alignment film on each substrate has a pretilt direction of about 180 °.
  • Each of the substrates is divided into two different alignment regions, and the two substrates are bonded so that the boundary between the alignment regions on one substrate and the alignment region on the other substrate are substantially perpendicular to each other.
  • a forming technique is disclosed.
  • Patent Document 1 in order to form a plurality of different alignment regions on an alignment film on one substrate, it is necessary to irradiate linearly polarized ultraviolet light obliquely from different directions for each alignment region. .
  • exposure is performed using a configuration similar to that of a proximity exposure apparatus that is used in photolithography technology to transfer a mask pattern to a substrate by providing a minute gap (proximity gap) between the mask and the substrate.
  • a mask that covers a region other than the alignment region to be provided is provided, and linearly polarized exposure light is obliquely irradiated from the exposure light irradiation device to the mask.
  • the gap between the mask and the substrate differs depending on the location.
  • the position where the exposure light is irradiated onto the substrate is the mask and the substrate.
  • the exposure accuracy is lowered due to fluctuations depending on the gap between the two.
  • An object of the present invention is to form a plurality of different alignment regions in an alignment film on one substrate without using a mask. Another object of the present invention is to shorten the tact time and improve the throughput when forming a plurality of different alignment regions in an alignment film on one substrate.
  • an object of the present invention is to accurately form a plurality of different alignment regions in an alignment film on one substrate without using a mask.
  • the alignment film exposure apparatus of the present invention is supplied to a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial light modulator.
  • An adjusting device for adjusting the incident angle of the light beam a drive circuit for driving the spatial light modulator based on the drawing data, and an irradiation optical system for irradiating the light beam modulated by the spatial light modulator,
  • the incident angle of the light beam supplied to the spatial light modulator by the adjusting device By adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device, the light beam modulated by the spatial light modulator is incident on the irradiation optical system obliquely with respect to the optical axis, and irradiated.
  • the optical system includes a light beam irradiation device that irradiates a linearly polarized light beam obliquely onto the substrate supported by the chuck from the optical system, and a moving unit that relatively moves the chuck and the light beam irradiation device.
  • the alignment film exposure method of the present invention includes a spatial light modulator that supports a substrate with a chuck and modulates a light beam by changing the angle of the chuck and a plurality of mirrors arranged in two directions.
  • Adjusting device for adjusting incident angle of light beam supplied to modulator, driving circuit for driving spatial light modulator based on drawing data, and irradiation optics for irradiating light beam modulated by spatial light modulator A spatial light modulator that moves relative to the light beam irradiation device having the system and adjusts an incident angle of the light beam supplied to the spatial light modulator by the adjustment device in the light beam irradiation device.
  • the light beam modulated by is obliquely incident on the irradiation optical system with respect to its optical axis, and a linearly polarized light beam is obliquely irradiated onto the substrate supported by the chuck from the irradiation optical system.
  • a linearly polarized light beam is obliquely irradiated onto the substrate supported by the chuck from the irradiation optical system.
  • the substrate is scanned with a linearly polarized light beam emitted obliquely from the light beam irradiation device, and the alignment characteristic applied to the alignment film applied to the substrate is imparted with alignment characteristics that align the liquid crystal alignment direction.
  • the drawing data supplied to the driving circuit for driving the optical modulator can be changed to expose a desired position and an oriented region having a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
  • the incident angle of the light beam supplied to the spatial light modulator by the adjusting device by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device, the direction of the light beam applied to the substrate supported by the chuck is changed, and the pre-tilt of the alignment characteristic imparted to the alignment film The direction can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
  • the incident angle of the light beam supplied to the spatial light modulator by the adjusting device is changed, and the alignment characteristics applied to the alignment film
  • the pretilt angle can be controlled.
  • the alignment film exposure apparatus of the present invention is a light beam irradiation device to a diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system, and to a spatial light modulator for the light beam adjusted by the adjustment device. And a diaphragm moving device that moves the diaphragm in a direction perpendicular to the optical axis of the irradiation optical system.
  • the alignment film exposure method of the present invention includes a diffracted light beam that passes through the irradiation optical system in accordance with the incident angle of the light beam adjusted by the adjusting device to the spatial light modulator in the light beam irradiation device. The diaphragm for limiting the movement is moved in a direction perpendicular to the optical axis of the irradiation optical system.
  • the diaphragm that restricts the diffracted light of the light beam passing through the irradiation optical system is usually installed with the center of the aperture aligned with the optical axis of the irradiation optical system.
  • the incident angle of the light beam supplied to the spatial light modulator is adjusted by the adjusting device, and the light beam modulated by the spatial light modulator is inclined with respect to the optical axis to the irradiation optical system. Since the light beam is incident, the optical path of the light beam that passes through the irradiation optical system changes, and as it is, a part of the light beam is blocked by the diaphragm, and the light amount of the light beam that passes through the irradiation optical system decreases.
  • the diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system is moved in a direction perpendicular to the optical axis of the irradiation optical system according to the incident angle of the light beam adjusted by the adjusting device to the spatial light modulator.
  • the alignment film exposure apparatus of the present invention adjusts the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device, and irradiates the light irradiated to the substrate supported by the chuck.
  • the pretilt direction of the alignment characteristics to be applied to the alignment film can be obtained.
  • the light irradiated to the substrate supported by the chuck is adjusted by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device. Changing the pretilt direction of the alignment characteristics to be applied to the alignment film by changing the direction of the beam and combining the change of the direction of the light beam and the change of the relative movement direction of the chuck and the light beam irradiation device It is.
  • the desired pretilt direction can be obtained by combining the change of the relative movement direction of the chuck and the light beam irradiation device.
  • the alignment film exposure apparatus of the present invention includes a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial space based on drawing data.
  • irradiation optical system for irradiating the light beam modulated by the spatial light modulator
  • diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system
  • irradiation optical system for the diaphragm Having a stop moving device that moves in a direction perpendicular to the optical axis of the light beam, and the stop moving device shifts the center of the aperture of the stop from the center of the light beam modulated by the spatial light modulator, and passes through the irradiation optical system.
  • a part of the beam is blocked by a diaphragm, and a light beam irradiation device that obliquely irradiates a linearly polarized light beam from the irradiation optical system to the substrate supported by the chuck, and the chuck and the light beam irradiation device move relatively. Move It is that a stage.
  • the alignment film exposure method of the present invention also includes a spatial light modulator that supports the substrate with a chuck, changes the angle of the chuck and a plurality of mirrors arranged in two directions, and modulates the light beam.
  • the light beam irradiation device having a diaphragm moving device that moves in a direction perpendicular to the optical axis of the irradiation optical system is moved relatively, and the center of the aperture opening of the diaphragm is spatially moved by the diaphragm moving device in the light beam irradiation device.
  • the light beam modulated by the light modulator is shifted from the center of the light beam, a part of the light beam passing through the irradiation optical system is blocked by a diaphragm, and the linearly polarized light beam is obliquely directed from the irradiation optical system to the substrate supported by the chuck.
  • Irradiate By scanning a substrate by a light beam the light beam of the irradiated linearly polarized light irradiated from the device at an angle, is to impart orientation properties adjust the alignment direction of liquid crystal alignment layer coated on the substrate.
  • the aperture moving device shifts the center of the aperture of the aperture from the center of the light beam modulated by the spatial light modulator, blocks a part of the light beam that passes through the irradiation optical system with the aperture, and moves the irradiation optical system to the chuck. Since the linearly polarized light beam is obliquely irradiated onto the supported substrate, the diaphragm is perpendicular to the optical axis of the irradiation optical system without adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device. The linearly polarized light beam is obliquely irradiated from the irradiation optical system to the substrate supported by the chuck with a simple operation of moving in a specific direction.
  • the direction of the light beam applied to the substrate supported by the chuck can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
  • the alignment film exposure apparatus of the present invention changes the direction of the light beam applied to the substrate supported by the chuck by changing the moving direction of the stop by the stop moving device of the light beam irradiation device, and the light beam.
  • the pretilt direction of the alignment characteristic imparted to the alignment film is changed by combining the change in the direction and the change in the relative movement direction of the chuck and the light beam irradiation device by the moving means.
  • the alignment film exposure method of the present invention changes the direction of the light beam applied to the substrate supported by the chuck by changing the moving direction of the stop by the stop moving device of the light beam irradiation device, and the light beam
  • the pretilt direction of the alignment characteristic imparted to the alignment film is changed by combining the change in the direction and the change in the relative movement direction of the chuck and the light beam irradiation device.
  • the desired pretilt direction can be obtained by combining the change of the relative movement direction of the chuck and the light beam irradiation device.
  • the alignment film exposure apparatus of the present invention includes a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial space based on drawing data.
  • a driving circuit that drives the optical light modulator and an irradiation optical system that irradiates the light beam modulated by the spatial light modulator.
  • the linearly polarized light beam is obliquely applied from the irradiation optical system to the substrate supported by the chuck.
  • a light beam irradiating apparatus for irradiating the chuck and a moving means for relatively moving the chuck and the light beam irradiating apparatus, and the moving means relatively moves the chuck and the light beam irradiating apparatus to move the chuck from the light beam irradiating apparatus.
  • An alignment film exposure device that scans the substrate with an obliquely irradiated linearly polarized light beam and gives alignment properties applied to the alignment film applied to the substrate to align the alignment direction of the liquid crystal.
  • Detection means for detecting the displacement of the height of the surface of the substrate, and the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation device in accordance with the displacement of the height of the surface of the substrate detected by the detection means.
  • the alignment film exposure method of the present invention also includes a spatial light modulator that supports the substrate with a chuck, changes the angle of the chuck and a plurality of mirrors arranged in two directions, and modulates the light beam. And a drive circuit for driving the spatial light modulator based on the light source and an irradiation optical system for irradiating the light beam modulated by the spatial light modulator, and linearly polarized light from the irradiation optical system to the substrate supported by the chuck.
  • the light beam irradiation device that irradiates the beam obliquely moves relatively, scans the substrate with the linearly polarized light beam obliquely emitted from the light beam irradiation device, and the liquid crystal is applied to the alignment film applied to the substrate.
  • An alignment film exposure method that imparts alignment characteristics that aligns the alignment direction of the substrate, wherein the displacement of the height of the surface of the substrate supported by the chuck is detected, and according to the detected displacement of the height of the surface of the substrate,
  • Driving the light beam irradiation device Correcting the coordinate of the drawing data supplied to the road, the drawing data of the corrected coordinates, and supplies to the drive circuit of a light beam irradiation device.
  • the alignment film exposure apparatus of the present invention includes a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial space based on drawing data.
  • a driving circuit that drives the optical light modulator and an irradiation optical system that irradiates the light beam modulated by the spatial light modulator.
  • the linearly polarized light beam is obliquely applied from the irradiation optical system to the substrate supported by the chuck.
  • An alignment film exposure device that scans the substrate with an obliquely irradiated linearly polarized light beam and gives alignment properties applied to the alignment film applied to the substrate to align the alignment direction of the liquid crystal.
  • Detection means for detecting the displacement of the height of the surface of the substrate, and the chuck and the light beam irradiation device are relatively perpendicular to the surface of the substrate by the displacement of the height of the surface of the substrate detected by the detection means. And a means for moving in any direction.
  • the alignment film exposure method of the present invention also includes a spatial light modulator that supports the substrate with a chuck, changes the angle of the chuck and a plurality of mirrors arranged in two directions, and modulates the light beam. And a drive circuit for driving the spatial light modulator based on the light source and an irradiation optical system for irradiating the light beam modulated by the spatial light modulator, and linearly polarized light from the irradiation optical system to the substrate supported by the chuck.
  • the light beam irradiation device that irradiates the beam obliquely moves relatively, scans the substrate with the linearly polarized light beam obliquely emitted from the light beam irradiation device, and the liquid crystal is applied to the alignment film applied to the substrate.
  • An alignment film exposure method that imparts alignment characteristics for adjusting the alignment direction of the substrate, wherein the displacement of the height of the surface of the substrate supported by the chuck is detected, and the amount of displacement of the detected surface height of the substrate is detected by the chuck.
  • light beam irradiation equipment It is intended to move bets direction perpendicular to the relative surface of the substrate.
  • the substrate is scanned with a linearly polarized light beam emitted obliquely from the light beam irradiation device, and the alignment characteristic applied to the alignment film applied to the substrate is imparted with alignment characteristics that align the liquid crystal alignment direction.
  • the drawing data supplied to the driving circuit for driving the optical modulator can be changed to expose a desired position and an oriented region having a desired shape.
  • the height of the surface of the substrate supported by the chuck varies depending on the location due to variations in the height of the chuck surface and the substrate thickness. If they are different, the position where the light beam is irradiated onto the substrate changes as it is.
  • the displacement of the height of the surface of the substrate supported by the chuck is detected, and the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation apparatus are determined in accordance with the detected displacement of the height of the surface of the substrate.
  • the corrected drawing data of the coordinate is supplied to the drive circuit of the light beam irradiation device, or the chuck and the light beam irradiation device are relatively moved relative to the substrate by the detected displacement of the surface height of the substrate. Since the substrate moves in a direction perpendicular to the surface, the position where the light beam is applied to the substrate does not change even if the height of the surface of the substrate supported by the chuck varies depending on the location. A plurality of different alignment regions are formed with high accuracy.
  • the detection means receives a light projecting unit that irradiates the detection light obliquely to the substrate supported by the chuck, and the reflected light that is reflected by the surface of the substrate. And detecting the displacement of the height of the surface of the substrate from the change in the position of the reflected light received by the light receiving portion.
  • the alignment film exposure method of the present invention irradiates the detection light obliquely onto the substrate supported by the chuck, receives the reflected light reflected by the surface of the substrate, and detects the position of the received reflected light.
  • the displacement of the height of the surface of the substrate is detected from the change.
  • the displacement of the height of the surface of the substrate is detected with high accuracy using an optical method, and the alignment region is formed with higher accuracy.
  • the drawing data supplied to the driving circuit that drives the spatial light modulator of the light beam irradiation apparatus can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
  • the direction of the light beam applied to the substrate supported by the chuck is changed, and the pre-tilt of the alignment characteristic imparted to the alignment film The direction can be changed. Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
  • the incident angle of the light beam supplied to the spatial light modulator by the adjusting device is changed, and the alignment characteristics applied to the alignment film
  • the pretilt angle can be controlled.
  • a diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system according to the incident angle of the light beam adjusted by the adjustment apparatus to the spatial light modulator is provided in the irradiation optical system.
  • the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device the direction of the light beam irradiated to the substrate supported by the chuck is changed, and the light beam
  • the exposure light pattern and the substrate can be applied by changing the pretilt direction of the alignment characteristics to be applied to the alignment film by combining the change of the direction and the change of the relative movement direction of the chuck and the light beam irradiation device.
  • the desired pretilt direction can be obtained by combining the relative movement direction changes.
  • the center of the aperture of the aperture is shifted from the center of the light beam modulated by the spatial light modulator by the aperture moving device, and a part of the light beam that passes through the irradiation optical system is blocked by the aperture,
  • the adjusting device can irradiate the aperture without adjusting the incident angle of the light beam supplied to the spatial light modulator.
  • a linearly polarized light beam can be irradiated obliquely onto the substrate supported by the chuck from the irradiation optical system.
  • the direction of the light beam applied to the substrate supported by the chuck can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
  • the direction of movement of the diaphragm by the diaphragm moving device of the light beam irradiation device is changed to change the direction of the light beam irradiated to the substrate supported by the chuck, and the change of the direction of the light beam, the chuck and the light beam
  • the pretilt direction of the alignment characteristics applied to the alignment film in combination with the change of the relative movement direction with the irradiation device, depending on the pattern of the exposure light, the nature of the alignment film applied to the substrate, etc.
  • the substrate is scanned with a linearly polarized light beam obliquely irradiated from the light beam irradiation apparatus, and the alignment characteristics for adjusting the alignment direction of the liquid crystal are imparted to the alignment film applied to the substrate.
  • the drawing data supplied to the drive circuit that drives the spatial light modulator of the light beam irradiation apparatus and to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
  • the displacement of the height of the surface of the substrate supported by the chuck is detected, and the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation apparatus are corrected according to the detected displacement of the height of the surface of the substrate.
  • the corrected coordinate drawing data is supplied to the drive circuit of the light beam irradiation device, or the chuck and the light beam irradiation device are relatively placed on the substrate surface by the detected displacement of the substrate surface height.
  • the detection light is obliquely applied to the substrate supported by the chuck, the reflected light reflected by the surface of the substrate is received, and the change in the position of the received reflected light is detected.
  • FIG. 1 is a side view of an alignment film exposure apparatus according to an embodiment of the present invention.
  • FIG. 1 is a front view of an alignment film exposure apparatus according to an embodiment of the present invention.
  • FIG. It is a figure which shows schematic structure of the light beam irradiation apparatus by one embodiment of invention. It is a figure which shows an example of the mirror part of DMD. It is a figure explaining operation
  • FIG. 1 is a diagram showing a schematic configuration of an alignment film exposure apparatus according to an embodiment of the present invention.
  • 2 is a side view of an alignment film exposure apparatus according to an embodiment of the present invention
  • FIG. 3 is a front view of the alignment film exposure apparatus according to an embodiment of the present invention.
  • the exposure apparatus includes a base 3, an X guide 4, an X stage 5, a Y guide 6, a Y stage 7, a ⁇ stage 8, a chuck 10, a gate 11, a light beam irradiation device 20, linear scales 31, 33, encoders 32, 34, A laser length measurement system, a laser length measurement system control device 40, a stage drive circuit 60, and a main control device 70 are included.
  • the exposure apparatus includes a substrate transfer robot that loads the substrate 1 into the chuck 10 and unloads the substrate 1 from the chuck 10, a temperature control unit that performs temperature management in the apparatus, and the like.
  • the chuck 10 is at a delivery position for delivering the substrate 1.
  • the substrate 1 is carried into the chuck 10 by a substrate carrying robot (not shown), and the substrate 1 is carried out of the chuck 10 by a substrate carrying robot (not shown).
  • the chuck 10 supports the back surface of the substrate 1 by vacuum suction.
  • An alignment film made of a polymer compound such as polyimide is applied to the surface of the substrate 1.
  • a gate 11 is provided across the base 3 above the exposure position where the substrate 1 is exposed.
  • a plurality of light beam irradiation devices 20 are mounted on the gate 11.
  • the present embodiment shows an example of an exposure apparatus using eight light beam irradiation apparatuses 20, the number of light beam irradiation apparatuses is not limited to this, and the present invention is one or two or more. The present invention is applied to an exposure apparatus using a light beam irradiation apparatus.
  • FIG. 4 is a diagram showing a schematic configuration of a light beam irradiation apparatus according to an embodiment of the present invention.
  • the light beam irradiation device 20 includes an optical fiber 22, a lens 23, a mirror 24, a DMD (Digital Micromirror Device) 25, projection lenses 26a and 26b, a DMD driving circuit 27, a polarizer 28, an aperture 29, an adjusting device 50, and an aperture moving device. It is comprised including.
  • the optical fiber 22 introduces an ultraviolet light beam generated from the laser light source unit 21 into the light beam irradiation device 20.
  • the light beam emitted from the optical fiber 22 passes through the lens 23, then passes through the polarizer 28, becomes linearly polarized light, is reflected by the mirror 24, and is irradiated onto the DMD 25.
  • the DMD 25 is a spatial light modulator configured by arranging a plurality of minute mirrors that reflect a light beam in two orthogonal directions, and modulates the light beam by changing the angle of each mirror.
  • the light beam modulated by the DMD 25 is irradiated from the head unit 20a including the projection lenses 26a and 26b.
  • the DMD drive circuit 27 changes the angle of each mirror of the DMD 25 based on the drawing data supplied from the main controller 70.
  • the polarizer 28 is not limited to the position between the lens 23 and the mirror 24 and can be installed at an arbitrary position in the optical path of the light beam within the light beam irradiation device 20.
  • the chuck 10 is mounted on the ⁇ stage 8, and a Y stage 7 and an X stage 5 are provided below the ⁇ stage 8.
  • the X stage 5 is mounted on an X guide 4 provided on the base 3 and moves in the X direction along the X guide 4.
  • the Y stage 7 is mounted on a Y guide 6 provided on the X stage 5 and moves in the Y direction along the Y guide 6.
  • the ⁇ stage 8 is mounted on the Y stage 7 and rotates in the ⁇ direction.
  • the X stage 5, Y stage 7, and ⁇ stage 8 are provided with drive mechanisms (not shown) such as ball screws and motors, linear motors, etc., and each drive mechanism is driven by a stage drive circuit 60 of FIG.
  • Rotation of the ⁇ stage 8 in the ⁇ direction causes the substrate 1 mounted on the chuck 10 to rotate so that two orthogonal sides face in the X direction and the Y direction.
  • the chuck 10 is moved between the delivery position and the exposure position.
  • the light beam irradiated from the head unit 20a of each light beam irradiation apparatus 20 scans the substrate 1 in the X direction.
  • the Y stage 7 moves in the Y direction
  • the scanning region of the substrate 1 by the light beam emitted from the head unit 20a of each light beam irradiation device 20 is moved in the Y direction.
  • the main controller 70 controls the stage drive circuit 60 to rotate the ⁇ stage 8 in the ⁇ direction, move the X stage 5 in the X direction, and move the Y stage 7 in the Y direction. .
  • FIG. 5 is a diagram showing an example of the mirror part of the DMD.
  • the DMD 25 of the light beam irradiation device 20 is disposed at a predetermined angle ⁇ with respect to the scanning direction (X direction) of the substrate 1 by the light beam from the light beam irradiation device 20.
  • the scanning direction
  • any one of the plurality of mirrors 25a arranged in two orthogonal directions covers a portion corresponding to the gap between the adjacent mirrors 25a, so that the alignment film is exposed. Can be performed without gaps.
  • the substrate 10 is scanned by the light beam from the light beam irradiation device 20 by moving the chuck 10 in the X direction by the X stage 5, but the light beam irradiation device 20 is moved.
  • the substrate 1 may be scanned by the light beam from the light beam irradiation device 20.
  • the scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 is changed by moving the chuck 10 in the Y direction by the Y stage 7, but the light beam irradiation device 20.
  • the scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 may be changed.
  • the base 3 is provided with a linear scale 31 extending in the X direction.
  • the linear scale 31 is provided with a scale for detecting the amount of movement of the X stage 5 in the X direction.
  • the X stage 5 is provided with a linear scale 33 extending in the Y direction.
  • the linear scale 33 is provided with a scale for detecting the amount of movement of the Y stage 7 in the Y direction.
  • an encoder 32 is attached to one side surface of the X stage 5 so as to face the linear scale 31.
  • the encoder 32 detects the scale of the linear scale 31 and outputs a pulse signal to the main controller 70.
  • an encoder 34 is attached to one side surface of the Y stage 7 so as to face the linear scale 33.
  • the encoder 34 detects the scale of the linear scale 33 and outputs a pulse signal to the main controller 70.
  • Main controller 70 counts the pulse signal of encoder 32, detects the amount of movement of X stage 5 in the X direction, counts the pulse signal of encoder 34, and moves the amount of Y stage 7 in the Y direction. Is detected.
  • FIG. 6 is a diagram for explaining the operation of the laser measurement system.
  • the laser length measurement system is a known laser interference type length measurement system, and includes a laser light source 41, laser interferometers 42 and 44, and bar mirrors 43 and 45.
  • the bar mirror 43 is attached to one side surface of the chuck 10 that extends in the Y direction.
  • the bar mirror 45 is attached to one side surface of the chuck 10 extending in the X direction.
  • the laser interferometer 42 irradiates the laser beam from the laser light source 41 onto the bar mirror 43, receives the laser beam reflected by the bar mirror 43, and the laser beam reflected from the laser beam source 41 and the laser beam reflected by the bar mirror 43. Measure interference. This measurement is performed at two locations in the Y direction.
  • the laser length measurement system control device 40 detects the position and rotation of the chuck 10 in the X direction from the measurement result of the laser interferometer 42 under the control of the main control device 70.
  • the laser interferometer 44 irradiates the laser beam from the laser light source 41 to the bar mirror 45, receives the laser beam reflected by the bar mirror 45, and the laser beam reflected from the laser source 41 and the bar mirror 45. Measure interference with light.
  • the laser length measurement system control device 40 detects the position of the chuck 10 in the Y direction from the measurement result of the laser interferometer 44 under the control of the main control device 70.
  • the main controller 70 has a drawing controller that supplies drawing data to the DMD drive circuit 27 of the light beam irradiation device 20.
  • FIG. 7 is a diagram illustrating a schematic configuration of the drawing control unit.
  • the drawing control unit 71 includes a memory 72, a bandwidth setting unit 73, a center point coordinate determination unit 74, and a coordinate determination unit 75.
  • the memory 72 stores drawing data to be supplied to the DMD driving circuit 27 of each light beam irradiation apparatus 20 using the XY coordinates as addresses.
  • the bandwidth setting unit 73 sets the Y-direction bandwidth of the light beam emitted from the head unit 20a of the light beam irradiation apparatus 20 by determining the range of the Y coordinate of the drawing data read from the memory 72.
  • the laser length measurement system control device 40 detects the position of the chuck 10 in the X and Y directions before the exposure of the substrate 1 at the exposure position is started.
  • the center point coordinate determination unit 74 determines the XY coordinates of the center point of the chuck 10 before starting the exposure of the substrate 1 from the position in the XY direction of the chuck 10 detected by the laser length measurement system control device 40.
  • the main control device 70 controls the stage drive circuit 60 to move the chuck 10 in the X direction by the X stage 5.
  • the main controller 70 controls the stage drive circuit 60 to move the chuck 10 in the Y direction by the Y stage 7.
  • FIG. 1 when scanning the substrate 1 with the light beam from the light beam irradiation device 20, the main control device 70 controls the stage drive circuit 60 to move the chuck 10 in the X direction by the X stage 5.
  • the main controller 70 controls the stage drive circuit 60 to move the chuck 10 in the Y direction by the Y stage 7.
  • FIG. 1 when scanning the substrate 1 with the light beam
  • the center point coordinate determination unit 74 counts the pulse signals from the encoders 32 and 34, detects the amount of movement of the X stage 5 in the X direction and the amount of movement of the Y stage 7 in the Y direction, The XY coordinates of the center point of the chuck 10 are determined.
  • the coordinate determination unit 75 determines the XY coordinates of the drawing data supplied to the DMD drive circuit 27 of each light beam irradiation device 20 based on the XY coordinates of the center point of the chuck 10 determined by the center point coordinate determination unit 74.
  • the memory 72 inputs the XY coordinates determined by the coordinate determination unit 75 as an address, and outputs the drawing data stored at the input XY coordinate address to the DMD drive circuit 27 of each light beam irradiation apparatus 20.
  • the adjusting device 50 of the light beam irradiation device 20 includes a support base 51 and a linear motor.
  • the support base 51 includes a rotation mechanism 51a that supports and rotates the mirror 24, and changes the angle of the mirror 24 by rotating the rotation mechanism 51a.
  • the linear motor includes a mover 52a with a built-in coil and a stator 52b with a built-in magnet.
  • a thrust (Lorentz force) acts on the mover 52a according to Fleming's left-hand rule from the coil current and the magnetic field of the magnet of the stator 52b, and the mover 52a becomes a stator.
  • a support base 51 is mounted on the mover 52a.
  • the adjusting device 50 is not limited to a linear motor, and other moving mechanisms such as a ball screw and a motor may be used.
  • the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 to change the angle of the mirror 24, and moves the linear motor movable element 52a to adjust the position of the mirror 24.
  • the angle of incidence of the light beam irradiated from the mirror 24 onto the DMD 25 is adjusted.
  • the reflection angle of the light beam reflected by each mirror 25a of the DMD 25 changes.
  • FIG. 4 shows a state in which the central axis of the light beam reflected by each mirror 25a of the DMD 25 is parallel to the optical axes of the projection lenses 26a and 26b. At this time, the central axis of the light beam transmitted through the projection lenses 26 a and 26 b is perpendicular to the surface of the substrate 1 supported by the chuck 10.
  • FIG. 8 and 11 are diagrams for explaining the operation of the adjusting device.
  • the adjusting device 50 rotates the rotation mechanism 51a of the support base 51 counterclockwise as indicated by an arrow, moves the support base 51 to the right in the drawing as indicated by an arrow, and moves from the mirror 24 to the DMD 25.
  • the example which enlarged the incident angle of the light beam irradiated to is shown.
  • the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to the optical axis from the upper right side.
  • FIG. 8 the adjusting device 50 rotates the rotation mechanism 51a of the support base 51 counterclockwise as indicated by an arrow, moves the support base 51 to the right in the drawing as indicated by an arrow, and moves from the mirror 24 to the DMD 25.
  • the example which enlarged the incident angle of the light beam irradiated to is shown.
  • the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a o
  • the adjusting device 50 rotates the rotation mechanism 51a of the support base 51 clockwise as indicated by an arrow, moves the support base 51 leftward as indicated by an arrow, and moves from the mirror 24 to the DMD 25.
  • the example which made small the incident angle of the irradiated light beam is shown.
  • the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to its optical axis from the upper left.
  • a diaphragm 29 for limiting the diffracted light of the light beam passing through the projection lens 26b is disposed. 8 and 11, the diaphragm 29 is installed so that the center of the opening thereof is aligned with the optical axes of the projection lenses 26 a and 26 b.
  • the incident angle of the light beam irradiated from the mirror 24 to the DMD 25 is adjusted by the adjusting device 50, and the light beam reflected by each mirror 25a of the DMD 25 is inclined with respect to the optical axis to the projection lens 26a.
  • the optical path of the light beam passing through the projection lens 26a changes, and as it is, a part of the light beam is blocked by the diaphragm 29, and the light amount of the light beam passing through the projection lens 26b is reduced.
  • the diaphragm moving device includes a support plate 53 and a linear motor.
  • a diaphragm 29 is attached to the support plate 53, and an opening is provided in accordance with the opening of the diaphragm 29.
  • the linear motor includes a mover 54a incorporating a coil and a stator 54b incorporating a magnet.
  • a thrust acts on the mover 54a according to Fleming's left-hand rule from the coil current and the magnetic field of the magnet of the stator 54b. It moves along 54b.
  • a support plate 53 is attached to the mover 54a.
  • the diaphragm moving device is not limited to a linear motor, and other moving mechanisms such as a ball screw and a motor may be used.
  • FIG. 9 and 12 are views for explaining an alignment film exposure method according to an embodiment of the present invention.
  • the diaphragm moving device moves the linear motor movable element 54a in accordance with the incident angle of the light beam adjusted by the adjusting device 50 to the DMD 25, thereby moving the diaphragm 29 to the projection lenses 26a and 26b. It moves in the direction perpendicular to the optical axis.
  • FIG. 9 shows an example in which the stop moving device moves the support plate 53 in the left direction of the drawing as indicated by an arrow in accordance with the increase in the incident angle of the light beam to the DMD 25.
  • FIG. 12 shows an example in which the diaphragm moving device moves the support plate 53 in the right direction of the drawing as indicated by an arrow in accordance with the decrease in the incident angle of the light beam on the DMD 25.
  • FIGS. 10A and 13A show the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 4, and the center of the light beam 2 modulated by the DMD 25 and the opening 29 a provided in the diaphragm 29. The center matches.
  • FIG. 10B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 8, the light beam 2 modulated by the DMD 25 moves to the left side of the drawing, and the center of the light beam 2 is the aperture of the diaphragm 29. It is off the center of 29a.
  • FIG. 10A and 13A show the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 4, and the center of the light beam 2 modulated by the DMD 25 and the opening 29 a provided in the diaphragm 29. The center matches.
  • FIG. 10B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 8, the light beam 2 modulated
  • FIG. 10C shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 9.
  • the diaphragm 29 moves to the left side of the drawing, and the center of the light beam 2 modulated by the DMD 25 and the opening 29 a of the diaphragm 29.
  • the center of is consistent.
  • FIG. 13B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 11.
  • the light beam 2 modulated by the DMD 25 moves to the right side of the drawing, and the center of the light beam 2 is the diaphragm 29. It is off from the center of the opening 29a.
  • FIG. 13C shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 12, and the diaphragm 29 moves to the right side of the drawing, and the center of the light beam 2 modulated by the DMD 25 and the aperture 29a of the diaphragm 29.
  • the center of is consistent.
  • the diaphragm 29 for limiting the diffracted light of the light beam passing through the projection lens 26b is moved in a direction perpendicular to the optical axes of the projection lenses 26a and 26b according to the incident angle of the light beam adjusted by the adjusting device 50 to the DMD 25.
  • the diaphragm 29 for limiting the diffracted light of the light beam passing through the projection lens 26b is moved in a direction perpendicular to the optical axes of the projection lenses 26a and 26b according to the incident angle of the light beam adjusted by the adjusting device 50 to the DMD 25.
  • the light beam that has passed through the projection lens 26b is applied to the substrate 1 supported by the chuck 10 from the upper left.
  • the exposure apparatus relatively moves the chuck 10 and the light beam irradiation device 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation device 20.
  • the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc.
  • the pretilt direction is on the right side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted.
  • the alignment film of the substrate 1 is given an alignment characteristic in which the pretilt direction is the left side of the drawing.
  • the light beam that has passed through the projection lens 26b is applied to the substrate 1 supported by the chuck 10 from obliquely upward to the right.
  • the exposure apparatus relatively moves the chuck 10 and the light beam irradiation device 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation device 20.
  • the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc.
  • the pretilt direction is on the left side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted.
  • the alignment film of the substrate 1 is given an alignment characteristic with the pretilt direction on the right side of the drawing.
  • the combination of the direction in which the light beam is applied to the substrate 1 and the scanning direction of the substrate 1 by the light beam is not limited to the example shown in FIGS. 9 and 12, and the pattern of exposure light and the orientation applied to the substrate 1. It is determined appropriately according to the properties of the film.
  • the alignment characteristics applied to the alignment film applied to the substrate 1 are imparted with alignment characteristics that align the liquid crystal alignment direction.
  • the drawing data supplied to the DMD driving circuit 27 that drives the 20 DMDs 25 can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
  • the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50 the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the pre-tilt direction of the alignment characteristic imparted to the alignment film Can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
  • the adjusting device 50 adjusts the incident angle of the light beam supplied to the DMD 25 to change the incident angle of the light beam applied to the substrate 1 supported by the chuck 10, so that the alignment characteristic applied to the alignment film can be improved.
  • the pretilt angle can be controlled.
  • the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50 of the light beam irradiation device 20 is adjusted, and the light beam is changed.
  • the change of the direction of the above and the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20 are combined to change the pretilt direction of the alignment characteristic imparted to the alignment film, the pattern of the exposure light and the substrate 1
  • the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film, depending on the properties of the alignment film applied to the film, the change of the light beam direction, the chuck 10 and the light
  • a desired pretilt direction can be obtained in combination with a change in the direction of movement relative to the beam irradiation device 20.
  • FIG. 14 is a diagram showing a schematic configuration of a light beam irradiation apparatus according to another embodiment of the present invention.
  • the light beam irradiation apparatus 20 ′ of the present embodiment does not have the adjusting device 50 of the light beam irradiation apparatus 20 of the embodiment shown in FIG. 4, and the mirror 24 is fixed to a mirror support device (not shown).
  • Other components are the same as those of the light beam irradiation apparatus 20 of the embodiment shown in FIG.
  • the angle of the mirror 24 is set so that the central axis of the light beam reflected by each mirror 25a of the DMD 25 is parallel to the optical axis of the projection lenses 26a and 26b.
  • the central axis of the light beam that has passed through is perpendicular to the surface of the substrate 1 supported by the chuck 10.
  • the center of the opening 29a of the stop 29 is shifted from the center of the light beam modulated by the DMD 25 by the stop moving device, and a part of the light beam that passes through the projection lens 26b. Is blocked by a diaphragm 29, and a linearly polarized light beam is obliquely applied from the projection lens 26b to the substrate 1 supported by the chuck 10.
  • FIG. 15 and 17 are diagrams for explaining an alignment film exposure method according to another embodiment of the present invention.
  • the stop moving device moves the mover 54a of the linear motor to move the stop 29 in a direction perpendicular to the optical axes of the projection lenses 26a and 26b.
  • FIG. 15 shows an example in which the diaphragm moving device has moved the support plate 53 in the left direction of the drawing as indicated by an arrow.
  • FIG. 17 shows an example in which the diaphragm moving device moves the support plate 53 in the right direction of the drawing as indicated by an arrow.
  • FIGS. 16A and 18 are diagrams showing the positional relationship between the light beam and the stop.
  • FIGS. 16A and 18A show the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 14, and the center of the light beam 2 modulated by the DMD 25 and the opening 29a provided in the diaphragm 29.
  • FIG. The center matches.
  • FIG. 16B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 15, the diaphragm 29 moves to the left side of the drawing, and the center of the opening 29 a of the diaphragm 29 is modulated by the DMD 25. Is out of the center.
  • the right side portion of the light beam that has been passing through the projection lens 26b is blocked by the diaphragm 29. Therefore, in FIG. 15, the light beam that has passed through the projection lens 26b is the substrate 1 supported by the chuck 10. On the other hand, irradiation is performed obliquely from the upper left with an angle ⁇ as a whole.
  • FIG. 18B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 17.
  • the diaphragm 29 moves to the right side of the drawing, and the center of the opening 29 a of the diaphragm 29 is modulated by the DMD 25. It is off the center of the beam 2.
  • the light beam that has passed through the projection lens 26b in FIG. On the other hand, irradiation is performed obliquely from the upper right with an angle ⁇ as a whole.
  • the center of the aperture 29a of the diaphragm 29 is shifted from the center of the light beam modulated by the DMD 25 by the diaphragm moving device, and a part of the light beam passing through the projection lens 26b is blocked by the diaphragm, and supported by the chuck 10 from the projection lens 26b. Since the linearly polarized light beam is obliquely irradiated onto the substrate 1 thus formed, the diaphragm 29 is adjusted without adjusting the incident angle of the light beam supplied to the DMD 25 by the adjustment device 50 of the light beam irradiation device 20 shown in FIG.
  • the moving direction of the diaphragm 29 by the diaphragm moving device by changing the moving direction of the diaphragm 29 by the diaphragm moving device, the direction of the light beam applied to the substrate 1 supported by the chuck 10 can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. . Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
  • the exposure apparatus moves relative to the chuck 10 and the light beam irradiation apparatus 20 ′, and scans the substrate 1 with a linearly polarized light beam obliquely irradiated from the light beam irradiation apparatus 20 ′ as indicated by an arrow. Scan in the direction.
  • the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the property of the alignment film applied to the substrate 1, etc.
  • the pretilt direction is on the right side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted.
  • the alignment film of the substrate 1 is given an alignment characteristic in which the pretilt direction is the left side of the drawing.
  • the exposure apparatus moves relative to the chuck 10 and the light beam irradiation apparatus 20 ′, and scans the substrate 1 with a linearly polarized light beam obliquely irradiated from the light beam irradiation apparatus 20 ′ as indicated by an arrow. Scan in the direction.
  • the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc.
  • the pretilt direction is on the left side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted.
  • the alignment film of the substrate 1 is given an alignment characteristic with the pretilt direction on the right side of the drawing.
  • the combination of the direction in which the light beam is applied to the substrate 1 and the scanning direction of the substrate 1 by the light beam is not limited to the example shown in FIGS. It is determined appropriately according to the properties of the alignment film.
  • the moving direction of the diaphragm 29 by the diaphragm moving device of the light beam irradiation device 20 ′ By changing the moving direction of the diaphragm 29 by the diaphragm moving device of the light beam irradiation device 20 ′, the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, the direction of the light beam is changed, and the chuck 10 and the change of the relative movement direction of the light beam irradiation apparatus 20 ′ are combined to change the pretilt direction of the alignment characteristic imparted to the alignment film, so that the pattern of exposure light and the alignment film applied to the substrate 1 are changed.
  • the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film according to the nature of the light beam
  • the direction of the light beam is changed, and the chuck 10 and the light beam irradiation device 20 ′
  • the desired pretilt direction can be obtained by combining the relative movement direction changes.
  • two types of alignment region groups having different pretilt directions by 180 degrees are formed in the alignment film of the substrate.
  • four types of alignment region groups having different pretilt directions by approximately 90 degrees are formed.
  • the substrate is rotated by approximately 90 degrees, and then again shown in FIGS.
  • the substrate may be scanned with a light beam as shown in FIGS.
  • the pretilt direction is parallel to the long side or short side of the substrate.
  • the pretilt direction is inclined with respect to the long side or short side of the substrate. If necessary, a desired pretilt direction can be obtained by scanning the substrate with a light beam while rotating the substrate with respect to the XY directions.
  • the alignment direction of the liquid crystal is applied to the alignment film applied to the substrate 1 by scanning the substrate 1 with the linearly polarized light beam obliquely irradiated from the light beam irradiation devices 20, 20 ′.
  • the drawing data supplied to the DMD driving circuit 27 for driving the DMD 25 of the light beam irradiation devices 20 and 20 ′ is changed to expose the alignment region having a desired position and a desired shape. be able to. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
  • the incident angle of the light beam supplied to the DMD 25 is adjusted by the adjusting device 50, and the substrate 1 supported by the chuck 10 is irradiated.
  • the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
  • the adjusting device 50 adjusts the incident angle of the light beam supplied to the DMD 25 to change the incident angle of the light beam applied to the substrate 1 supported by the chuck 10, so that the alignment characteristic applied to the alignment film can be improved.
  • the pretilt angle can be controlled.
  • a diaphragm 29 that restricts the diffracted light of the light beam passing through the projection lens 26b in accordance with the incident angle of the light beam adjusted by the adjustment device 50 to the DMD 25 is provided with projection lenses 26a and 26b. By moving in the direction perpendicular to the optical axis, it is possible to suppress a decrease in the light amount of the light beam passing through the projection lens 26b.
  • the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the light beam is changed.
  • the pattern of the exposure light and the substrate can be changed by changing the pretilt direction of the alignment characteristic to be applied to the alignment film by combining the change of the direction of the above and the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20.
  • a desired pretilt direction can be obtained in combination with a change in relative movement direction with the light beam irradiation device 20.
  • the center of the opening 29a of the diaphragm 29 is shifted from the center of the light beam modulated by the DMD 25 by the diaphragm moving device, and the light beam passing through the projection lens 26b is shifted.
  • a part of the light is irradiated with a diaphragm 29, and a linearly polarized light beam is obliquely irradiated onto the substrate 1 supported by the chuck 10 from the projection lens 26b, whereby the adjusting device 50 of the light beam irradiation device 20 shown in FIG.
  • the projection lens 26b is supported by the chuck 10.
  • the substrate 1 can be irradiated with a linearly polarized light beam obliquely.
  • the moving direction of the diaphragm 29 by the diaphragm moving device by changing the moving direction of the diaphragm 29 by the diaphragm moving device, the direction of the light beam applied to the substrate 1 supported by the chuck 10 can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. . Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
  • the direction of movement of the diaphragm 29 by the diaphragm movement device of the light beam irradiation device 20 ′ is changed to change the direction of the light beam irradiated to the substrate 1 supported by the chuck 10, and the direction of the light beam can be changed.
  • the exposure light pattern and the substrate 1 can be applied by changing the pretilt direction of the alignment characteristic applied to the alignment film in combination with the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20 ′.
  • the chuck 10 and the light beam irradiation device The desired pretilt direction can be obtained in combination with the change of the relative movement direction with respect to 20.
  • FIG. 19 is a view showing a schematic configuration of an alignment film exposure apparatus according to another embodiment of the present invention.
  • 20 is a side view of an alignment film exposure apparatus according to another embodiment of the present invention
  • FIG. 21 is a front view of an alignment film exposure apparatus according to another embodiment of the present invention.
  • the exposure apparatus includes a base 3, an X guide 4, an X stage 5, a Y guide 6, a Y stage 7, a ⁇ stage 8, a chuck 10, a gate 11, a light beam irradiation device 20, linear scales 31, 33, encoders 32, 34, A laser length measurement system, a laser length measurement system control device 40, a stage drive circuit 60, and a main control device 70 are included.
  • the exposure apparatus includes a substrate transfer robot that loads the substrate 1 into the chuck 10 and unloads the substrate 1 from the chuck 10, a temperature control unit that performs temperature management in the apparatus, and the like.
  • the chuck 10 is at a delivery position for delivering the substrate 1.
  • the substrate 1 is carried into the chuck 10 by a substrate carrying robot (not shown), and the substrate 1 is carried out of the chuck 10 by a substrate carrying robot (not shown).
  • the chuck 10 supports the back surface of the substrate 1 by vacuum suction.
  • An alignment film made of a polymer compound such as polyimide is applied to the surface of the substrate 1.
  • a gate 11 is provided across the base 3 above the exposure position where the substrate 1 is exposed.
  • a plurality of light beam irradiation devices 20 are mounted on the gate 11.
  • the present embodiment shows an example of an exposure apparatus using eight light beam irradiation apparatuses 20, the number of light beam irradiation apparatuses is not limited to this, and the present invention is one or two or more. The present invention is applied to an exposure apparatus using a light beam irradiation apparatus.
  • FIG. 22 is a diagram showing a schematic configuration of the light beam irradiation apparatus.
  • the light beam irradiation device 20 includes an optical fiber 22, a lens 23, a mirror 24, a DMD (Digital Micromirror Device) 25, projection lenses 26a and 26b, a DMD driving circuit 27, a polarizer 28, an adjusting device 50, and a laser displacement meter. It is configured.
  • the optical fiber 22 introduces an ultraviolet light beam generated from the laser light source unit 21 into the light beam irradiation device 20.
  • the light beam emitted from the optical fiber 22 passes through the lens 23, then passes through the polarizer 28, becomes linearly polarized light, is reflected by the mirror 24, and is irradiated onto the DMD 25.
  • the DMD 25 is a spatial light modulator configured by arranging a plurality of minute mirrors that reflect a light beam in two orthogonal directions, and modulates the light beam by changing the angle of each mirror.
  • the light beam modulated by the DMD 25 is irradiated from the head unit 20a including the projection lenses 26a and 26b.
  • the DMD drive circuit 27 changes the angle of each mirror of the DMD 25 based on the drawing data supplied from the main controller 70.
  • the polarizer 28 is not limited to the position between the lens 23 and the mirror 24 and can be installed at an arbitrary position in the optical path of the light beam within the light beam irradiation device 20.
  • the chuck 10 is mounted on the ⁇ stage 8, and the Y stage 7 and the X stage 5 are provided below the ⁇ stage 8.
  • the X stage 5 is mounted on an X guide 4 provided on the base 3 and moves in the X direction along the X guide 4.
  • the Y stage 7 is mounted on a Y guide 6 provided on the X stage 5 and moves in the Y direction along the Y guide 6.
  • the ⁇ stage 8 is mounted on the Y stage 7 and rotates in the ⁇ direction.
  • the X stage 5, Y stage 7, and ⁇ stage 8 are provided with drive mechanisms (not shown) such as ball screws and motors, linear motors, etc., and each drive mechanism is driven by a stage drive circuit 60 of FIG.
  • Rotation of the ⁇ stage 8 in the ⁇ direction causes the substrate 1 mounted on the chuck 10 to rotate so that two orthogonal sides face in the X direction and the Y direction.
  • the chuck 10 is moved between the delivery position and the exposure position.
  • the light beam irradiated from the head unit 20a of each light beam irradiation apparatus 20 scans the substrate 1 in the X direction.
  • the Y stage 7 moves in the Y direction
  • the scanning region of the substrate 1 by the light beam emitted from the head unit 20a of each light beam irradiation device 20 is moved in the Y direction.
  • the main controller 70 controls the stage drive circuit 60 to rotate the ⁇ stage 8 in the ⁇ direction, move the X stage 5 in the X direction, and move the Y stage 7 in the Y direction. .
  • FIG. 23 is a diagram illustrating an example of a DMD mirror unit.
  • the DMD 25 of the light beam irradiation device 20 is disposed at a predetermined angle ⁇ with respect to the scanning direction (X direction) of the substrate 1 by the light beam from the light beam irradiation device 20.
  • the scanning direction
  • any one of the plurality of mirrors 25a arranged in two orthogonal directions covers a portion corresponding to the gap between the adjacent mirrors 25a, so that the alignment film is exposed. Can be performed without gaps.
  • the substrate 10 is scanned by the light beam from the light beam irradiation device 20 by moving the chuck 10 in the X direction by the X stage 5, but the light beam irradiation device 20 is moved.
  • the substrate 1 may be scanned by the light beam from the light beam irradiation device 20.
  • the scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 is changed by moving the chuck 10 in the Y direction by the Y stage 7, but the light beam irradiation device 20.
  • the scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 may be changed.
  • the chuck 10 may be fixed, and a stage for moving the gate 11 on which each light beam irradiation device 20 is mounted in the XY direction may be provided, and each light beam irradiation device 20 may be moved in the XY direction.
  • a laser length measurement system that detects the position of the gate 11 with three axes is provided, and the drawing control unit 71 of the main control device 70 described later is based on the detection result of the laser length measurement system.
  • the XY coordinates of the drawing data supplied to the DMD driving circuit 27 are determined.
  • the base 3 is provided with a linear scale 31 extending in the X direction.
  • the linear scale 31 is provided with a scale for detecting the amount of movement of the X stage 5 in the X direction.
  • the X stage 5 is provided with a linear scale 33 extending in the Y direction.
  • the linear scale 33 is provided with a scale for detecting the amount of movement of the Y stage 7 in the Y direction.
  • an encoder 32 is attached to one side surface of the X stage 5 so as to face the linear scale 31.
  • the encoder 32 detects the scale of the linear scale 31 and outputs a pulse signal to the main controller 70.
  • an encoder 34 is attached to one side surface of the Y stage 7 so as to face the linear scale 33.
  • the encoder 34 detects the scale of the linear scale 33 and outputs a pulse signal to the main controller 70.
  • Main controller 70 counts the pulse signal of encoder 32, detects the amount of movement of X stage 5 in the X direction, counts the pulse signal of encoder 34, and moves the amount of Y stage 7 in the Y direction. Is detected.
  • FIG. 24 is a diagram for explaining the operation of the laser measurement system.
  • the laser length measurement system is a known laser interference type length measurement system, and includes a laser light source 41, laser interferometers 42 and 44, and bar mirrors 43 and 45.
  • the bar mirror 43 is attached to one side surface of the chuck 10 that extends in the Y direction.
  • the bar mirror 45 is attached to one side surface of the chuck 10 extending in the X direction.
  • the laser interferometer 42 irradiates the laser beam from the laser light source 41 onto the bar mirror 43, receives the laser beam reflected by the bar mirror 43, and the laser beam reflected from the laser beam source 41 and the laser beam reflected by the bar mirror 43. Measure interference. This measurement is performed at two locations in the Y direction.
  • the laser length measurement system control device 40 detects the position and rotation of the chuck 10 in the X direction from the measurement result of the laser interferometer 42 under the control of the main control device 70.
  • the laser interferometer 44 irradiates the laser beam from the laser light source 41 to the bar mirror 45, receives the laser beam reflected by the bar mirror 45, and the laser beam reflected from the laser source 41 and the bar mirror 45. Measure interference with light.
  • the laser length measurement system control device 40 detects the position of the chuck 10 in the Y direction from the measurement result of the laser interferometer 44 under the control of the main control device 70.
  • the adjusting device 50 of the light beam irradiation device 20 includes a support base 51 and a linear motor.
  • the support base 51 includes a rotation mechanism 51a that supports and rotates the mirror 24, and changes the angle of the mirror 24 by rotating the rotation mechanism 51a.
  • the linear motor includes a mover 52a with a built-in coil and a stator 52b with a built-in magnet.
  • a thrust (Lorentz force) acts on the mover 52a according to Fleming's left-hand rule from the coil current and the magnetic field of the magnet of the stator 52b, and the mover 52a becomes a stator.
  • a support base 51 is mounted on the mover 52a.
  • the adjusting device 50 is not limited to a linear motor, and other moving mechanisms such as a ball screw and a motor may be used.
  • the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 to change the angle of the mirror 24, and moves the linear motor movable element 52a to adjust the position of the mirror 24.
  • the angle of incidence of the light beam irradiated from the mirror 24 onto the DMD 25 is adjusted.
  • the reflection angle of the light beam reflected by each mirror 25a of the DMD 25 changes.
  • FIG. 4 shows a state in which the central axis of the light beam reflected by each mirror 25a of the DMD 25 is parallel to the optical axes of the projection lenses 26a and 26b. At this time, the central axis of the light beam transmitted through the projection lenses 26 a and 26 b is perpendicular to the surface of the substrate 1 supported by the chuck 10.
  • 25 and 26 are diagrams for explaining an alignment film exposure method according to another embodiment of the present invention.
  • the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 counterclockwise as indicated by an arrow, and moves the support base 51 to the right in the drawing as indicated by an arrow.
  • the example which enlarged the incident angle of the light beam irradiated to is shown.
  • the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to the optical axis from the upper right side. Then, the light beam that has passed through the projection lens 26 b is applied to the substrate 1 supported by the chuck 10 from the upper left side.
  • the exposure apparatus relatively moves the chuck 10 and the light beam irradiation apparatus 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation apparatus 20.
  • the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc., the pretilt direction is on the right side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted.
  • the alignment film of the substrate 1 is given an alignment characteristic in which the pretilt direction is the left side of the drawing.
  • the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 clockwise as indicated by an arrow, and moves the support base 51 leftward as indicated by an arrow, from the mirror 24 to the DMD 25.
  • the example which made small the incident angle of the irradiated light beam is shown.
  • the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to the optical axis from the upper left oblique direction. Then, the light beam that has passed through the projection lens 26 b is applied to the substrate 1 supported by the chuck 10 from the upper right side.
  • the exposure apparatus relatively moves the chuck 10 and the light beam irradiation apparatus 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation apparatus 20.
  • the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc., the pretilt direction is on the left side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted.
  • the alignment film of the substrate 1 is given an alignment characteristic with the pretilt direction on the right side of the drawing.
  • the combination of the direction in which the light beam is applied to the substrate 1 and the scanning direction of the substrate 1 by the light beam is not limited to the example shown in FIGS. 25 and 26, and the pattern of the exposure light and the orientation applied to the substrate 1. It is determined appropriately according to the properties of the film.
  • the alignment characteristics applied to the alignment film applied to the substrate 1 are imparted with alignment characteristics that align the liquid crystal alignment direction.
  • the drawing data supplied to the DMD driving circuit 27 that drives the 20 DMDs 25 can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
  • the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50 the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the pre-tilt direction of the alignment characteristic imparted to the alignment film Can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
  • the adjusting device 50 adjusts the incident angle of the light beam supplied to the DMD 25 to change the incident angle of the light beam applied to the substrate 1 supported by the chuck 10, so that the alignment characteristic applied to the alignment film can be improved.
  • the pretilt angle can be controlled.
  • the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50 of the light beam irradiation device 20 is adjusted, and the light beam is changed.
  • the change of the direction of the above and the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20 are combined to change the pretilt direction of the alignment characteristic imparted to the alignment film, the pattern of the exposure light and the substrate 1
  • the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film, depending on the properties of the alignment film applied to the film, the change of the light beam direction, the chuck 10 and the light
  • a desired pretilt direction can be obtained in combination with a change in the direction of movement relative to the beam irradiation device 20.
  • FIG. 27 is a diagram for explaining the variation of the irradiation position of the light beam due to the displacement of the height of the surface of the substrate.
  • the displacement of the height of the surface of the substrate 1 is ⁇ Z between the case where the height of the surface of the substrate 1 is a solid line 1a and the case where the height of the surface of the substrate 1 is a broken line 1b.
  • the incident angle of the light beam on the surface of the substrate 1 is ⁇
  • the light beam is used when the surface height of the substrate 1 is a solid line 1a and when the surface height of the substrate 1 is a broken line 1b.
  • ⁇ P ⁇ Z ⁇ tan ⁇ (Formula 1) It becomes.
  • the laser displacement meter includes a light projecting unit 81 and a light receiving unit 82.
  • the light projecting unit 81 includes a laser light source 81a and a lens 81b, and irradiates the detection light generated from the laser light source 81a obliquely to the substrate 1 supported by the chuck 10 from the lens 81b.
  • the light receiving unit 82 includes a lens 82a and a CCD line sensor 82b, and the reflected light reflected from the surface of the substrate 1 by the detection light is condensed by the lens 82a and received by the CCD line sensor 82b.
  • the light receiving unit 82 of the laser displacement meter detects the displacement of the height of the surface of the substrate 1 from the change in the position of the reflected light received by the CCD line sensor 82b.
  • the main controller 70 has a drawing controller that supplies drawing data to the DMD drive circuit 27 of the light beam irradiation device 20.
  • FIG. 28 is a diagram illustrating a schematic configuration of the drawing control unit.
  • the drawing control unit 71 includes a memory 72, a bandwidth setting unit 73, a center point coordinate determination unit 74, and a coordinate determination unit 75. In FIG. 28, only the light receiving unit 82 of the laser displacement meter of one light beam irradiation device 20 is shown, and the light receiving units 82 of the laser displacement meters of the other seven light beam irradiation devices 20 are omitted.
  • the memory 72 stores drawing data to be supplied to the DMD driving circuit 27 of each light beam irradiation apparatus 20 using the XY coordinates as addresses.
  • the bandwidth setting unit 73 sets the Y-direction bandwidth of the light beam emitted from the head unit 20a of the light beam irradiation apparatus 20 by determining the range of the Y coordinate of the drawing data read from the memory 72.
  • the laser length measurement system control device 40 detects the position of the chuck 10 in the X and Y directions before the exposure of the substrate 1 at the exposure position is started.
  • the center point coordinate determination unit 74 determines the XY coordinates of the center point of the chuck 10 before starting the exposure of the substrate 1 from the position in the XY direction of the chuck 10 detected by the laser length measurement system control device 40.
  • the main control device 70 controls the stage drive circuit 60 to move the chuck 10 in the X direction by the X stage 5.
  • the main controller 70 controls the stage drive circuit 60 to move the chuck 10 in the Y direction by the Y stage 7.
  • the center point coordinate determination unit 74 counts the pulse signals from the encoders 32 and 34, detects the amount of movement of the X stage 5 in the X direction and the amount of movement of the Y stage 7 in the Y direction, The XY coordinates of the center point of the chuck 10 are determined.
  • the coordinate determination unit 75 determines the XY coordinates of the drawing data supplied to the DMD drive circuit 27 of each light beam irradiation device 20 based on the XY coordinates of the center point of the chuck 10 determined by the center point coordinate determination unit 74. Then, the coordinate determination unit 75 calculates the determined XY coordinates according to the above-described “Equation 1” by ⁇ P according to the height displacement of the surface of the substrate 1 detected by the light receiving unit 82 of the laser displacement meter. Only correct.
  • the memory 72 inputs the XY coordinates corrected by the coordinate determination unit 75 as an address, and outputs the drawing data stored at the input XY coordinate address to the DMD drive circuit 27 of each light beam irradiation apparatus 20.
  • the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are arranged in the X direction in which the light beam emitted from the light beam irradiation device 20 is inclined, and the calculated ⁇ P is determined according to this arrangement. Conversion to XY coordinates is performed to correct the XY coordinates of the drawing data.
  • the displacement of the height of the surface of the substrate 1 supported by the chuck 10 is detected, and the drawing data supplied to the DMD drive circuit 27 of the light beam irradiation device 20 is detected according to the detected displacement of the height of the surface of the substrate 1. Since the coordinates are corrected and drawing data of the corrected coordinates is supplied to the DMD driving circuit 27 of the light beam irradiation device 20, the light beam can be obtained even if the height of the surface of the substrate 1 supported by the chuck 10 varies depending on the location. The position at which the substrate 1 is irradiated does not change, and a plurality of different alignment regions are accurately formed in the alignment film on one substrate.
  • the substrate 1 supported by the chuck 10 is obliquely irradiated with the detection light, the reflected light reflected by the surface of the substrate 1 is received, and the surface of the substrate 1 is changed from the change in the position of the received reflected light. Therefore, the displacement of the height of the surface of the substrate 1 is detected with high accuracy using an optical method, and the alignment region is formed with higher accuracy.
  • the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are installed in each light beam irradiation device 20 and the coordinates of the drawing data are corrected for each light beam irradiation device 20, the surface of the substrate is complicatedly undulated. If you can.
  • FIG. 29 is a diagram showing a schematic configuration of an alignment film exposure apparatus according to still another embodiment of the present invention.
  • an elevating mechanism 9 is provided between the ⁇ stage 8 and the chuck 10
  • a guide block 10 a is attached to the bottom surface of the chuck 10
  • an elevating mechanism drive circuit 61 that drives the elevating mechanism 9 is provided.
  • Other components are the same as those of the embodiment shown in FIG.
  • the elevating mechanism 9 includes a Z guide 9a and a linear motor 9b.
  • the Z guide 9a guides the guide block 10a provided on the bottom surface of the chuck 10 up and down (Z direction).
  • the linear motor 9b is driven by an elevating mechanism driving circuit 61, and moves up and down (Z direction) by moving the chuck 10 up and down while the rod 9c contacts the bottom surface of the chuck 10.
  • the main controller 70 controls the lifting mechanism drive circuit 61 in accordance with the displacement of the surface height of the substrate 1 detected by the light receiving unit 82 of the laser displacement meter, and chucks the amount corresponding to the displacement of the surface height of the substrate 1. 10 is moved up and down (Z direction) to keep the distance from the light beam irradiation device 20 to the surface of the substrate 1 supported by the chuck 10 constant.
  • the distance from each light beam irradiation device 20 to the surface of the substrate 1 supported by the chuck 10 is kept constant by moving the chuck 10 in the Z direction.
  • a distance from each light beam irradiation device 20 to the surface of the substrate 1 supported by the chuck 10 may be kept constant by providing an elevating mechanism and moving each light beam irradiation device 20 in the Z direction.
  • the displacement of the surface height of the substrate 1 supported by the chuck 10 is detected, and the chuck 10 and the light beam irradiation device 20 are relatively moved relative to the surface of the substrate 1 by the detected displacement of the surface height of the substrate 1. Therefore, even if the height of the surface of the substrate 1 supported by the chuck 10 varies depending on the location, the position where the light beam is irradiated onto the substrate 1 does not vary, and the orientation on one substrate A plurality of different alignment regions are accurately formed in the film.
  • the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are installed in each light beam irradiation apparatus 20, but the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are installed. Further, it may be configured to be installed at one or a plurality of locations below the gate 11 to detect the displacement of the height of the surface of the substrate at one representative point on the substrate or at a plurality of arbitrary locations. In that case, as the chuck 10 moves in the X direction, the detected displacement of the height of the surface of the substrate 1 is replaced with an average displacement with respect to each light beam irradiation device 20 and supplied to each light beam irradiation device 20. XY coordinates are corrected, or the chuck 10 is moved in the Z direction. Further, the detection of the displacement of the height of the surface of the substrate 1 may be performed in real time during exposure, or may be performed in advance before exposure.
  • two types of alignment region groups having different pretilt directions of 180 degrees are formed on the alignment film of the substrate.
  • four types of alignment region groups having different pretilt directions by approximately 90 degrees are formed.
  • the substrate is rotated by approximately 90 degrees, and then again as shown in FIGS. 25 and 26.
  • the substrate may be scanned by
  • the pretilt direction is parallel to the long side or short side of the substrate.
  • the pretilt direction is inclined with respect to the long side or short side of the substrate. If necessary, a desired pretilt direction can be obtained by scanning the substrate with a light beam while rotating the substrate with respect to the XY directions.
  • the alignment is performed by adjusting the alignment direction of the liquid crystal on the alignment film applied to the substrate 1 by scanning the substrate 1 with the linearly polarized light beam irradiated obliquely from the light beam irradiation device 20.
  • the drawing data supplied to the DMD drive circuit 27 that drives the DMD 25 of the light beam irradiation device 20 can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
  • the displacement of the height of the surface of the substrate 1 supported by the chuck 10 is detected, and the drawing supplied to the DMD drive circuit 27 of the light beam irradiation apparatus 20 according to the detected displacement of the height of the surface of the substrate 1.
  • the coordinate of the data is corrected, and the drawing data of the corrected coordinate is supplied to the DMD drive circuit 27 of the light beam irradiation device 20, or the chuck 10 and the light beam are detected by the detected height displacement of the surface of the substrate 1.
  • the detection light is obliquely irradiated onto the substrate 1 supported by the chuck 10, the reflected light reflected by the surface of the substrate 1 is received, and the surface of the substrate 1 is changed from the change in the position of the received reflected light.
  • the displacement of the height it is possible to accurately detect the displacement of the height of the surface of the substrate 1 using an optical method, and to form the alignment region with higher accuracy.

Abstract

The present invention forms a plurality of different orientation regions in an oriented film on one substrate without using a mask. A light-beam radiation device (20) has: a spatial light modulator (25) that modulates a light beam by altering the angle of a bi-directionally arrayed plurality of mirrors; an adjustment device (50) that adjusts the angle of incidence of the light beam supplied to the spatial light modulator; a drive circuit (27) that drives the spatial light modulator on the basis of rendering data; and a radiating optical system (26a, 26b) that radiates the light beam modulated by the spatial light modulator. The angle of incidence of the light beam supplied to the spatial light modulator is adjusted by the adjustment device, the light beam modulated by the spatial light modulator is caused to be incident to the radiating optical system in an oblique manner with respect to the optical axis thereof, and a linearly polarized light beam is radiated obliquely from the radiating optical system to a substrate (1) supported at a chuck.

Description

露光装置及び露光方法Exposure apparatus and exposure method
 本発明は、液晶ディスプレイ装置の製造において、高分子化合物から成る配向膜へ直線偏光の露光光を照射して、配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光装置及び露光方法に係り、特に、1つの基板上の配向膜に複数の異なる配向領域を形成する配向膜の露光装置及び露光方法に関する。 In the manufacture of a liquid crystal display device, the present invention relates to an alignment film exposure apparatus and exposure device that irradiates an alignment film made of a polymer compound with linearly polarized exposure light to give the alignment film alignment characteristics that align the liquid crystal alignment direction. In particular, the present invention relates to an alignment film exposure apparatus and exposure method for forming a plurality of different alignment regions in an alignment film on a single substrate.
 アクティブマトリクス駆動方式の液晶ディスプレイ装置は、TFT(Thin Film Transistor)基板とカラーフィルタ基板との間に液晶を封入して製造され、TFT基板及びカラーフィルタ基板の表面には、液晶の配列方向を整えるための配向膜が形成されている。配向膜に液晶の配列方向を整える配向特性を付与する処理は、従来、配向膜の表面を布で擦る「ラビング法」により行われていたが、近年、ポリイミド等の高分子化合物から成る配向膜へ直線偏光の紫外光を照射し、偏光方向の高分子鎖を選択的に反応させて、異方性を発生させる「光配向法」が開発されている。光配向法において、配向膜にプレチルト角を発現させる方法の1つとして、直線偏光の紫外光を配向膜へ斜めに照射する方法がある。 An active matrix liquid crystal display device is manufactured by enclosing liquid crystal between a TFT (Thin Film Transistor) substrate and a color filter substrate, and arranging the liquid crystal alignment direction on the surface of the TFT substrate and the color filter substrate. An alignment film is formed. The process of imparting alignment characteristics to align the alignment direction of the liquid crystal on the alignment film has been conventionally performed by a “rubbing method” in which the surface of the alignment film is rubbed with a cloth, but recently, an alignment film made of a polymer compound such as polyimide. A “photo-alignment method” has been developed in which anisotropy is generated by irradiating a linearly polarized ultraviolet light to selectively react a polymer chain in the polarization direction. In the photo-alignment method, as one method for causing the alignment film to exhibit a pretilt angle, there is a method of obliquely irradiating the alignment film with linearly polarized ultraviolet light.
 特許文献1には、液晶表示装置の視野角拡大、表示品位の向上及びコントラストの向上を図るために、液晶層を挟む一対の基板において、各基板上の配向膜を、プレチルト方向が約180°異なる2つの配向領域に各々分割し、一方の基板上の配向領域の境界と他方の基板上の配向領域の境界とが略直交するように両基板を貼り合わせて、4つの配向状態の領域を形成する技術が開示されている。 In Patent Document 1, in order to increase the viewing angle of a liquid crystal display device, to improve display quality, and to improve contrast, in a pair of substrates sandwiching a liquid crystal layer, an alignment film on each substrate has a pretilt direction of about 180 °. Each of the substrates is divided into two different alignment regions, and the two substrates are bonded so that the boundary between the alignment regions on one substrate and the alignment region on the other substrate are substantially perpendicular to each other. A forming technique is disclosed.
特開平11-352486号公報Japanese Patent Laid-Open No. 11-352486
 特許文献1に記載の様に、1つの基板上の配向膜に複数の異なる配向領域を形成するためには、直線偏光の紫外光を、配向領域毎に異なる方向から斜めに照射する必要がある。そのため、従来は、フォトリソグラフィー技術で用いられる、マスクと基板との間に微小な間隙(プロキシミティギャップ)を設けてマスクのパターンを基板へ転写するプロキシミティ露光装置と同様の構成を用い、露光する配向領域以外の領域を覆うマスクを設けて、露光光照射装置からマスクへ直線偏光の露光光を斜めに照射していた。 As described in Patent Document 1, in order to form a plurality of different alignment regions on an alignment film on one substrate, it is necessary to irradiate linearly polarized ultraviolet light obliquely from different directions for each alignment region. . For this reason, conventionally, exposure is performed using a configuration similar to that of a proximity exposure apparatus that is used in photolithography technology to transfer a mask pattern to a substrate by providing a minute gap (proximity gap) between the mask and the substrate. A mask that covers a region other than the alignment region to be provided is provided, and linearly polarized exposure light is obliquely irradiated from the exposure light irradiation device to the mask.
 しかしながら、マスクを用いた従来の方式は、露光する基板の種類毎にマスクを交換する必要がある。また、従来のプロキシミティ露光装置に用いられる露光光照射装置は、露光光を照射する方向を変更することができないため、各配向領域を露光する度に基板をチャックから取り外して基板の向きを回転させる必要がある。そのため、タクトタイムが長くなって、スループットが低下するという問題がある。 However, in the conventional method using a mask, it is necessary to replace the mask for each type of substrate to be exposed. In addition, since the exposure light irradiation device used in the conventional proximity exposure apparatus cannot change the direction of exposure light irradiation, the substrate is removed from the chuck and the orientation of the substrate is rotated each time each alignment region is exposed. It is necessary to let Therefore, there is a problem that the tact time becomes long and the throughput decreases.
 また、マスクには自重によってたわみが生じるため、マスクと基板との間のギャップが場所によって異なり、露光光をマスクから基板へ斜めに照射すると、露光光が基板へ照射される位置がマスクと基板との間のギャップに応じて変動し、露光精度が低下するという問題がある。 Also, since the mask is deflected by its own weight, the gap between the mask and the substrate differs depending on the location. When exposure light is irradiated obliquely from the mask to the substrate, the position where the exposure light is irradiated onto the substrate is the mask and the substrate. There is a problem that the exposure accuracy is lowered due to fluctuations depending on the gap between the two.
 本発明の課題は、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することである。また、本発明の課題は、1つの基板上の配向膜に複数の異なる配向領域を形成する際、タクトタイムを短縮して、スループットを向上させることである。 An object of the present invention is to form a plurality of different alignment regions in an alignment film on one substrate without using a mask. Another object of the present invention is to shorten the tact time and improve the throughput when forming a plurality of different alignment regions in an alignment film on one substrate.
 さらに、本発明の課題は、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を精度良く形成することである。 Furthermore, an object of the present invention is to accurately form a plurality of different alignment regions in an alignment film on one substrate without using a mask.
 本発明の配向膜の露光装置は、基板を支持するチャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、空間的光変調器へ供給される光ビームの入射角度を調節する調節装置、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、空間的光変調器により変調された光ビームを照射光学系へその光軸に対して斜めに入射させ、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、チャックと光ビーム照射装置とを相対的に移動する移動手段とを備えたものである。 The alignment film exposure apparatus of the present invention is supplied to a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial light modulator. An adjusting device for adjusting the incident angle of the light beam, a drive circuit for driving the spatial light modulator based on the drawing data, and an irradiation optical system for irradiating the light beam modulated by the spatial light modulator, By adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device, the light beam modulated by the spatial light modulator is incident on the irradiation optical system obliquely with respect to the optical axis, and irradiated. The optical system includes a light beam irradiation device that irradiates a linearly polarized light beam obliquely onto the substrate supported by the chuck from the optical system, and a moving unit that relatively moves the chuck and the light beam irradiation device.
 また、本発明の配向膜の露光方法は、基板をチャックで支持し、チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、空間的光変調器へ供給される光ビームの入射角度を調節する調節装置、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有する光ビーム照射装置とを、相対的に移動し、光ビーム照射装置内において、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、空間的光変調器により変調された光ビームを照射光学系へその光軸に対して斜めに入射させ、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射し、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与するものである。 Further, the alignment film exposure method of the present invention includes a spatial light modulator that supports a substrate with a chuck and modulates a light beam by changing the angle of the chuck and a plurality of mirrors arranged in two directions. Adjusting device for adjusting incident angle of light beam supplied to modulator, driving circuit for driving spatial light modulator based on drawing data, and irradiation optics for irradiating light beam modulated by spatial light modulator A spatial light modulator that moves relative to the light beam irradiation device having the system and adjusts an incident angle of the light beam supplied to the spatial light modulator by the adjustment device in the light beam irradiation device. The light beam modulated by is obliquely incident on the irradiation optical system with respect to its optical axis, and a linearly polarized light beam is obliquely irradiated onto the substrate supported by the chuck from the irradiation optical system. Irradiated By scanning a substrate by a light beam of linearly polarized light, it is to impart orientation properties adjust the alignment direction of liquid crystal alignment layer coated on the substrate.
 光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与するので、光ビーム照射装置の空間的光変調器を駆動する駆動回路へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。従って、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することができる。 The substrate is scanned with a linearly polarized light beam emitted obliquely from the light beam irradiation device, and the alignment characteristic applied to the alignment film applied to the substrate is imparted with alignment characteristics that align the liquid crystal alignment direction. The drawing data supplied to the driving circuit for driving the optical modulator can be changed to expose a desired position and an oriented region having a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
 そして、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、各配向領域を露光する度に基板をチャックから取り外して基板の向きを回転させる必要が無いので、タクトタイムが短縮されて、スループットが向上する。 Then, by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device, the direction of the light beam applied to the substrate supported by the chuck is changed, and the pre-tilt of the alignment characteristic imparted to the alignment film The direction can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
 また、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの入射角度を変更し、配向膜に付与する配向特性のプレチルト角を制御することができる。 In addition, by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device, the incident angle of the light beam applied to the substrate supported by the chuck is changed, and the alignment characteristics applied to the alignment film The pretilt angle can be controlled.
 さらに、本発明の配向膜の露光装置は、光ビーム照射装置が、照射光学系を通過する光ビームの回折光を制限する絞りと、調節装置により調節された光ビームの空間的光変調器への入射角度に応じ、絞りを照射光学系の光軸に垂直な方向へ移動する絞り移動装置とを有するものである。また、本発明の配向膜の露光方法は、光ビーム照射装置内において、調節装置により調節した光ビームの空間的光変調器への入射角度に応じ、照射光学系を通過する光ビームの回折光を制限する絞りを、照射光学系の光軸に垂直な方向へ移動するものである。 Further, the alignment film exposure apparatus of the present invention is a light beam irradiation device to a diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system, and to a spatial light modulator for the light beam adjusted by the adjustment device. And a diaphragm moving device that moves the diaphragm in a direction perpendicular to the optical axis of the irradiation optical system. Further, the alignment film exposure method of the present invention includes a diffracted light beam that passes through the irradiation optical system in accordance with the incident angle of the light beam adjusted by the adjusting device to the spatial light modulator in the light beam irradiation device. The diaphragm for limiting the movement is moved in a direction perpendicular to the optical axis of the irradiation optical system.
 照射光学系を通過する光ビームの回折光を制限する絞りは、通常、その開口の中心を照射光学系の光軸に合わせて設置される。本発明では、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、空間的光変調器により変調された光ビームを照射光学系へその光軸に対して斜めに入射させるので、照射光学系を通過する光ビームの光路が変化し、そのままでは、光ビームの一部が絞りで遮断されて、照射光学系を通過する光ビームの光量が低下する。調節装置により調節した光ビームの空間的光変調器への入射角度に応じ、照射光学系を通過する光ビームの回折光を制限する絞りを、照射光学系の光軸に垂直な方向へ移動することにより、照射光学系を通過する光ビームの光量の低下を抑制することができる。 The diaphragm that restricts the diffracted light of the light beam passing through the irradiation optical system is usually installed with the center of the aperture aligned with the optical axis of the irradiation optical system. In the present invention, the incident angle of the light beam supplied to the spatial light modulator is adjusted by the adjusting device, and the light beam modulated by the spatial light modulator is inclined with respect to the optical axis to the irradiation optical system. Since the light beam is incident, the optical path of the light beam that passes through the irradiation optical system changes, and as it is, a part of the light beam is blocked by the diaphragm, and the light amount of the light beam that passes through the irradiation optical system decreases. The diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system is moved in a direction perpendicular to the optical axis of the irradiation optical system according to the incident angle of the light beam adjusted by the adjusting device to the spatial light modulator. Thus, it is possible to suppress a decrease in the light amount of the light beam that passes through the irradiation optical system.
 さらに、本発明の配向膜の露光装置は、光ビーム照射装置の調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、移動手段によるチャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更するものである。また、本発明の配向膜の露光方法は、光ビーム照射装置の調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更するものである。 Further, the alignment film exposure apparatus of the present invention adjusts the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device, and irradiates the light irradiated to the substrate supported by the chuck. By changing the direction of the beam and changing the direction of the light beam and the change of the relative moving direction of the chuck and the light beam irradiation device by the moving means, the pretilt direction of the alignment characteristics to be applied to the alignment film can be obtained. To change. In the alignment film exposure method of the present invention, the light irradiated to the substrate supported by the chuck is adjusted by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device. Changing the pretilt direction of the alignment characteristics to be applied to the alignment film by changing the direction of the beam and combining the change of the direction of the light beam and the change of the relative movement direction of the chuck and the light beam irradiation device It is.
 露光光のパターンや基板に塗布された配向膜の性質等に応じて、光ビームによる基板の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Depending on the pattern of exposure light, the nature of the alignment film applied to the substrate, etc., when the scanning direction of the substrate by the light beam affects the pretilt direction of the alignment characteristics imparted to the alignment film, The desired pretilt direction can be obtained by combining the change of the relative movement direction of the chuck and the light beam irradiation device.
 あるいは、本発明の配向膜の露光装置は、基板を支持するチャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、空間的光変調器により変調された光ビームを照射する照射光学系、照射光学系を通過する光ビームの回折光を制限する絞り、及び絞りを照射光学系の光軸に垂直な方向へ移動する絞り移動装置を有し、絞り移動装置により絞りの開口の中心を空間的光変調器により変調された光ビームの中心からずらし、照射光学系を通過する光ビームの一部を絞りで遮断して、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、チャックと光ビーム照射装置とを相対的に移動する移動手段とを備えたものである。 Alternatively, the alignment film exposure apparatus of the present invention includes a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial space based on drawing data. Drive circuit for driving the optical modulator, irradiation optical system for irradiating the light beam modulated by the spatial light modulator, diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system, and irradiation optical system for the diaphragm Having a stop moving device that moves in a direction perpendicular to the optical axis of the light beam, and the stop moving device shifts the center of the aperture of the stop from the center of the light beam modulated by the spatial light modulator, and passes through the irradiation optical system. A part of the beam is blocked by a diaphragm, and a light beam irradiation device that obliquely irradiates a linearly polarized light beam from the irradiation optical system to the substrate supported by the chuck, and the chuck and the light beam irradiation device move relatively. Move It is that a stage.
 また、本発明の配向膜の露光方法は、基板をチャックで支持し、チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、空間的光変調器により変調された光ビームを照射する照射光学系、照射光学系を通過する光ビームの回折光を制限する絞り、及び絞りを照射光学系の光軸に垂直な方向へ移動する絞り移動装置を有する光ビーム照射装置とを、相対的に移動し、光ビーム照射装置内において、絞り移動装置により絞りの開口の中心を空間的光変調器により変調された光ビームの中心からずらし、照射光学系を通過する光ビームの一部を絞りで遮断して、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射し、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与するものである。 The alignment film exposure method of the present invention also includes a spatial light modulator that supports the substrate with a chuck, changes the angle of the chuck and a plurality of mirrors arranged in two directions, and modulates the light beam. A driving circuit for driving the spatial light modulator based on the illumination optical system for irradiating the light beam modulated by the spatial light modulator, an aperture for limiting the diffracted light of the light beam passing through the illumination optical system, and an aperture The light beam irradiation device having a diaphragm moving device that moves in a direction perpendicular to the optical axis of the irradiation optical system is moved relatively, and the center of the aperture opening of the diaphragm is spatially moved by the diaphragm moving device in the light beam irradiation device. The light beam modulated by the light modulator is shifted from the center of the light beam, a part of the light beam passing through the irradiation optical system is blocked by a diaphragm, and the linearly polarized light beam is obliquely directed from the irradiation optical system to the substrate supported by the chuck. Irradiate By scanning a substrate by a light beam the light beam of the irradiated linearly polarized light irradiated from the device at an angle, is to impart orientation properties adjust the alignment direction of liquid crystal alignment layer coated on the substrate.
 絞り移動装置により絞りの開口の中心を空間的光変調器により変調された光ビームの中心からずらし、照射光学系を通過する光ビームの一部を絞りで遮断して、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射するので、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節することなく、絞りを照射光学系の光軸に垂直な方向へ移動する簡単な動作で、照射光学系からチャックに支持された基板へ直線偏光の光ビームが斜めに照射される。 The aperture moving device shifts the center of the aperture of the aperture from the center of the light beam modulated by the spatial light modulator, blocks a part of the light beam that passes through the irradiation optical system with the aperture, and moves the irradiation optical system to the chuck. Since the linearly polarized light beam is obliquely irradiated onto the supported substrate, the diaphragm is perpendicular to the optical axis of the irradiation optical system without adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device. The linearly polarized light beam is obliquely irradiated from the irradiation optical system to the substrate supported by the chuck with a simple operation of moving in a specific direction.
 そして、絞り移動装置による絞りの移動方向を変えて、チャックに支持された基板へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、各配向領域を露光する度に基板をチャックから取り外して基板の向きを回転させる必要が無いので、タクトタイムが短縮されて、スループットが向上する。 Then, by changing the moving direction of the stop by the stop moving device, the direction of the light beam applied to the substrate supported by the chuck can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
 さらに、本発明の配向膜の露光装置は、光ビーム照射装置の絞り移動装置による絞りの移動方向を変えて、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、移動手段によるチャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更するものである。また、本発明の配向膜の露光方法は、光ビーム照射装置の絞り移動装置による絞りの移動方向を変えて、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更するものである。 Further, the alignment film exposure apparatus of the present invention changes the direction of the light beam applied to the substrate supported by the chuck by changing the moving direction of the stop by the stop moving device of the light beam irradiation device, and the light beam. The pretilt direction of the alignment characteristic imparted to the alignment film is changed by combining the change in the direction and the change in the relative movement direction of the chuck and the light beam irradiation device by the moving means. Further, the alignment film exposure method of the present invention changes the direction of the light beam applied to the substrate supported by the chuck by changing the moving direction of the stop by the stop moving device of the light beam irradiation device, and the light beam The pretilt direction of the alignment characteristic imparted to the alignment film is changed by combining the change in the direction and the change in the relative movement direction of the chuck and the light beam irradiation device.
 露光光のパターンや基板に塗布された配向膜の性質等に応じて、光ビームによる基板の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Depending on the pattern of exposure light, the nature of the alignment film applied to the substrate, etc., when the scanning direction of the substrate by the light beam affects the pretilt direction of the alignment characteristics imparted to the alignment film, The desired pretilt direction can be obtained by combining the change of the relative movement direction of the chuck and the light beam irradiation device.
 あるいは、本発明の配向膜の露光装置は、基板を支持するチャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、チャックと光ビーム照射装置とを相対的に移動する移動手段とを備え、移動手段によりチャックと光ビーム照射装置とを相対的に移動し、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光装置であって、チャックに支持された基板の表面の高さの変位を検出する検出手段と、検出手段により検出された基板の表面の高さの変位に応じて、光ビーム照射装置の駆動回路へ供給する描画データの座標を補正し、補正した座標の描画データを、光ビーム照射装置の駆動回路へ供給する手段とを備えたものである。 Alternatively, the alignment film exposure apparatus of the present invention includes a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial space based on drawing data. A driving circuit that drives the optical light modulator and an irradiation optical system that irradiates the light beam modulated by the spatial light modulator. The linearly polarized light beam is obliquely applied from the irradiation optical system to the substrate supported by the chuck. A light beam irradiating apparatus for irradiating the chuck and a moving means for relatively moving the chuck and the light beam irradiating apparatus, and the moving means relatively moves the chuck and the light beam irradiating apparatus to move the chuck from the light beam irradiating apparatus. An alignment film exposure device that scans the substrate with an obliquely irradiated linearly polarized light beam and gives alignment properties applied to the alignment film applied to the substrate to align the alignment direction of the liquid crystal. Detection means for detecting the displacement of the height of the surface of the substrate, and the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation device in accordance with the displacement of the height of the surface of the substrate detected by the detection means. Means for correcting and supplying the drawing data of the corrected coordinates to the drive circuit of the light beam irradiation apparatus.
 また、本発明の配向膜の露光方法は、基板をチャックで支持し、チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置とを、相対的に移動し、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光方法であって、チャックに支持された基板の表面の高さの変位を検出し、検出した基板の表面の高さの変位に応じて、光ビーム照射装置の駆動回路へ供給する描画データの座標を補正し、補正した座標の描画データを、光ビーム照射装置の駆動回路へ供給するものである。 The alignment film exposure method of the present invention also includes a spatial light modulator that supports the substrate with a chuck, changes the angle of the chuck and a plurality of mirrors arranged in two directions, and modulates the light beam. And a drive circuit for driving the spatial light modulator based on the light source and an irradiation optical system for irradiating the light beam modulated by the spatial light modulator, and linearly polarized light from the irradiation optical system to the substrate supported by the chuck. The light beam irradiation device that irradiates the beam obliquely moves relatively, scans the substrate with the linearly polarized light beam obliquely emitted from the light beam irradiation device, and the liquid crystal is applied to the alignment film applied to the substrate. An alignment film exposure method that imparts alignment characteristics that aligns the alignment direction of the substrate, wherein the displacement of the height of the surface of the substrate supported by the chuck is detected, and according to the detected displacement of the height of the surface of the substrate, Driving the light beam irradiation device Correcting the coordinate of the drawing data supplied to the road, the drawing data of the corrected coordinates, and supplies to the drive circuit of a light beam irradiation device.
 あるいは、本発明の配向膜の露光装置は、基板を支持するチャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、チャックと光ビーム照射装置とを相対的に移動する移動手段とを備え、移動手段によりチャックと光ビーム照射装置とを相対的に移動し、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光装置であって、チャックに支持された基板の表面の高さの変位を検出する検出手段と、検出手段により検出された基板の表面の高さの変位分だけ、チャックと光ビーム照射装置とを相対的に基板の表面に垂直な方向へ移動する手段とを備えたものである。 Alternatively, the alignment film exposure apparatus of the present invention includes a chuck that supports a substrate, a spatial light modulator that modulates a light beam by changing the angles of a plurality of mirrors arranged in two directions, and a spatial space based on drawing data. A driving circuit that drives the optical light modulator and an irradiation optical system that irradiates the light beam modulated by the spatial light modulator. The linearly polarized light beam is obliquely applied from the irradiation optical system to the substrate supported by the chuck. A light beam irradiating apparatus for irradiating the chuck and a moving means for relatively moving the chuck and the light beam irradiating apparatus, and the moving means relatively moves the chuck and the light beam irradiating apparatus to move the chuck from the light beam irradiating apparatus. An alignment film exposure device that scans the substrate with an obliquely irradiated linearly polarized light beam and gives alignment properties applied to the alignment film applied to the substrate to align the alignment direction of the liquid crystal. Detection means for detecting the displacement of the height of the surface of the substrate, and the chuck and the light beam irradiation device are relatively perpendicular to the surface of the substrate by the displacement of the height of the surface of the substrate detected by the detection means. And a means for moving in any direction.
 また、本発明の配向膜の露光方法は、基板をチャックで支持し、チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置とを、相対的に移動し、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光方法であって、チャックに支持された基板の表面の高さの変位を検出し、検出した基板の表面の高さの変位分だけ、チャックと光ビーム照射装置とを相対的に基板の表面に垂直な方向へ移動するものである。 The alignment film exposure method of the present invention also includes a spatial light modulator that supports the substrate with a chuck, changes the angle of the chuck and a plurality of mirrors arranged in two directions, and modulates the light beam. And a drive circuit for driving the spatial light modulator based on the light source and an irradiation optical system for irradiating the light beam modulated by the spatial light modulator, and linearly polarized light from the irradiation optical system to the substrate supported by the chuck. The light beam irradiation device that irradiates the beam obliquely moves relatively, scans the substrate with the linearly polarized light beam obliquely emitted from the light beam irradiation device, and the liquid crystal is applied to the alignment film applied to the substrate. An alignment film exposure method that imparts alignment characteristics for adjusting the alignment direction of the substrate, wherein the displacement of the height of the surface of the substrate supported by the chuck is detected, and the amount of displacement of the detected surface height of the substrate is detected by the chuck. And light beam irradiation equipment It is intended to move bets direction perpendicular to the relative surface of the substrate.
 光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与するので、光ビーム照射装置の空間的光変調器を駆動する駆動回路へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。このとき、光ビーム照射装置から基板へ光ビームを斜めに照射するため、チャックの表面の高さのばらつきや基板の厚さのばらつきにより、チャックに支持された基板の表面の高さが場所によって異なると、そのままでは、光ビームが基板へ照射される位置が変動する。本発明では、チャックに支持された基板の表面の高さの変位を検出し、検出した基板の表面の高さの変位に応じて、光ビーム照射装置の駆動回路へ供給する描画データの座標を補正し、補正した座標の描画データを、光ビーム照射装置の駆動回路へ供給し、あるいは、検出した基板の表面の高さの変位分だけ、チャックと光ビーム照射装置とを相対的に基板の表面に垂直な方向へ移動するので、チャックに支持された基板の表面の高さが場所により異なっても、光ビームが基板へ照射される位置が変動せず、1つの基板上の配向膜に複数の異なる配向領域が精度良く形成される。 The substrate is scanned with a linearly polarized light beam emitted obliquely from the light beam irradiation device, and the alignment characteristic applied to the alignment film applied to the substrate is imparted with alignment characteristics that align the liquid crystal alignment direction. The drawing data supplied to the driving circuit for driving the optical modulator can be changed to expose a desired position and an oriented region having a desired shape. At this time, since the light beam is irradiated obliquely onto the substrate from the light beam irradiation device, the height of the surface of the substrate supported by the chuck varies depending on the location due to variations in the height of the chuck surface and the substrate thickness. If they are different, the position where the light beam is irradiated onto the substrate changes as it is. In the present invention, the displacement of the height of the surface of the substrate supported by the chuck is detected, and the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation apparatus are determined in accordance with the detected displacement of the height of the surface of the substrate. The corrected drawing data of the coordinate is supplied to the drive circuit of the light beam irradiation device, or the chuck and the light beam irradiation device are relatively moved relative to the substrate by the detected displacement of the surface height of the substrate. Since the substrate moves in a direction perpendicular to the surface, the position where the light beam is applied to the substrate does not change even if the height of the surface of the substrate supported by the chuck varies depending on the location. A plurality of different alignment regions are formed with high accuracy.
 さらに、本発明の配向膜の露光装置は、検出手段が、検出光をチャックに支持された基板へ斜めに照射する投光部と、検出光が基板の表面で反射された反射光を受光する受光部とを有し、受光部で受光した反射光の位置の変化から、基板の表面の高さの変位を検出するものである。また、本発明の配向膜の露光方法は、検出光をチャックに支持された基板へ斜めに照射し、検出光が基板の表面で反射された反射光を受光し、受光した反射光の位置の変化から、基板の表面の高さの変位を検出するものである。光学的手法を用いて基板の表面の高さの変位が精度良く検出され、配向領域がさらに精度良く形成される。 Further, in the alignment film exposure apparatus of the present invention, the detection means receives a light projecting unit that irradiates the detection light obliquely to the substrate supported by the chuck, and the reflected light that is reflected by the surface of the substrate. And detecting the displacement of the height of the surface of the substrate from the change in the position of the reflected light received by the light receiving portion. Further, the alignment film exposure method of the present invention irradiates the detection light obliquely onto the substrate supported by the chuck, receives the reflected light reflected by the surface of the substrate, and detects the position of the received reflected light. The displacement of the height of the surface of the substrate is detected from the change. The displacement of the height of the surface of the substrate is detected with high accuracy using an optical method, and the alignment region is formed with higher accuracy.
 本発明によれば、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与することにより、光ビーム照射装置の空間的光変調器を駆動する駆動回路へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。従って、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することができる。 According to the present invention, by scanning the substrate with a linearly polarized light beam obliquely irradiated from the light beam irradiation device, and imparting the alignment characteristics to align the alignment direction of the liquid crystal to the alignment film applied to the substrate, The drawing data supplied to the driving circuit that drives the spatial light modulator of the light beam irradiation apparatus can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
 そして、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、タクトタイムを短縮して、スループットを向上させることができる。 Then, by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device, the direction of the light beam applied to the substrate supported by the chuck is changed, and the pre-tilt of the alignment characteristic imparted to the alignment film The direction can be changed. Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
 また、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの入射角度を変更し、配向膜に付与する配向特性のプレチルト角を制御することができる。 In addition, by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device, the incident angle of the light beam applied to the substrate supported by the chuck is changed, and the alignment characteristics applied to the alignment film The pretilt angle can be controlled.
 さらに、光ビーム照射装置内において、調節装置により調節した光ビームの空間的光変調器への入射角度に応じ、照射光学系を通過する光ビームの回折光を制限する絞りを、照射光学系の光軸に垂直な方向へ移動することにより、照射光学系を通過する光ビームの光量の低下を抑制することができる。 Further, in the light beam irradiation apparatus, a diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system according to the incident angle of the light beam adjusted by the adjustment apparatus to the spatial light modulator is provided in the irradiation optical system. By moving in the direction perpendicular to the optical axis, it is possible to suppress a decrease in the amount of light beam that passes through the irradiation optical system.
 さらに、光ビーム照射装置の調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することにより、露光光のパターンや基板に塗布された配向膜の性質等に応じて、光ビームによる基板の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Further, by adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device, the direction of the light beam irradiated to the substrate supported by the chuck is changed, and the light beam The exposure light pattern and the substrate can be applied by changing the pretilt direction of the alignment characteristics to be applied to the alignment film by combining the change of the direction and the change of the relative movement direction of the chuck and the light beam irradiation device. When the scanning direction of the substrate by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film, depending on the properties of the alignment film, the change of the light beam direction, the chuck, the light beam irradiation device, The desired pretilt direction can be obtained by combining the relative movement direction changes.
 あるいは、絞り移動装置により絞りの開口の中心を空間的光変調器により変調された光ビームの中心からずらし、照射光学系を通過する光ビームの一部を絞りで遮断して、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射することにより、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節することなく、絞りを照射光学系の光軸に垂直な方向へ移動する簡単な動作で、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射することができる。 Alternatively, the center of the aperture of the aperture is shifted from the center of the light beam modulated by the spatial light modulator by the aperture moving device, and a part of the light beam that passes through the irradiation optical system is blocked by the aperture, By irradiating a linearly polarized light beam obliquely onto the substrate supported by the chuck, the adjusting device can irradiate the aperture without adjusting the incident angle of the light beam supplied to the spatial light modulator. With a simple movement that moves in a direction perpendicular to the axis, a linearly polarized light beam can be irradiated obliquely onto the substrate supported by the chuck from the irradiation optical system.
 そして、絞り移動装置による絞りの移動方向を変えて、チャックに支持された基板へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、タクトタイムを短縮して、スループットを向上させることができる。 Then, by changing the moving direction of the stop by the stop moving device, the direction of the light beam applied to the substrate supported by the chuck can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
 さらに、光ビーム照射装置の絞り移動装置による絞りの移動方向を変えて、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することにより、露光光のパターンや基板に塗布された配向膜の性質等に応じて、光ビームによる基板の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Further, the direction of movement of the diaphragm by the diaphragm moving device of the light beam irradiation device is changed to change the direction of the light beam irradiated to the substrate supported by the chuck, and the change of the direction of the light beam, the chuck and the light beam By changing the pretilt direction of the alignment characteristics applied to the alignment film in combination with the change of the relative movement direction with the irradiation device, depending on the pattern of the exposure light, the nature of the alignment film applied to the substrate, etc. When the scanning direction of the substrate by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film, change of the direction of the light beam and change of the relative movement direction of the chuck and the light beam irradiation device are performed. In combination, a desired pretilt direction can be obtained.
 あるいは、本発明によれば、光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与することにより、光ビーム照射装置の空間的光変調器を駆動する駆動回路へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。従って、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することができる。 Alternatively, according to the present invention, the substrate is scanned with a linearly polarized light beam obliquely irradiated from the light beam irradiation apparatus, and the alignment characteristics for adjusting the alignment direction of the liquid crystal are imparted to the alignment film applied to the substrate. Thus, it is possible to change the drawing data supplied to the drive circuit that drives the spatial light modulator of the light beam irradiation apparatus, and to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
 そして、チャックに支持された基板の表面の高さの変位を検出し、検出した基板の表面の高さの変位に応じて、光ビーム照射装置の駆動回路へ供給する描画データの座標を補正し、補正した座標の描画データを、光ビーム照射装置の駆動回路へ供給し、あるいは、検出した基板の表面の高さの変位分だけ、チャックと光ビーム照射装置とを相対的に基板の表面に垂直な方向へ移動することにより、チャックに支持された基板の表面の高さが場所により異なっても、光ビームが基板へ照射される位置が変動するのを防止して、1つの基板上の配向膜に複数の異なる配向領域を精度良く形成することができる。 Then, the displacement of the height of the surface of the substrate supported by the chuck is detected, and the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation apparatus are corrected according to the detected displacement of the height of the surface of the substrate. Then, the corrected coordinate drawing data is supplied to the drive circuit of the light beam irradiation device, or the chuck and the light beam irradiation device are relatively placed on the substrate surface by the detected displacement of the substrate surface height. By moving in the vertical direction, even if the height of the surface of the substrate supported by the chuck varies from place to place, the position where the light beam is irradiated onto the substrate is prevented from fluctuating. A plurality of different alignment regions can be accurately formed in the alignment film.
 さらに、本発明によれば、検出光をチャックに支持された基板へ斜めに照射し、検出光が基板の表面で反射された反射光を受光し、受光した反射光の位置の変化から、基板の表面の高さの変位を検出することにより、光学的手法を用いて基板の表面の高さの変位を精度良く検出して、配向領域をさらに精度良く形成することができる。 Furthermore, according to the present invention, the detection light is obliquely applied to the substrate supported by the chuck, the reflected light reflected by the surface of the substrate is received, and the change in the position of the received reflected light is detected. By detecting the displacement of the surface height of the substrate, it is possible to accurately detect the displacement of the height of the surface of the substrate using an optical method and form the alignment region with higher accuracy.
本発明の一実施の形態による配向膜の露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the aligner exposure apparatus by one embodiment of this invention. 本発明の一実施の形態による配向膜の露光装置の側面図である。1 is a side view of an alignment film exposure apparatus according to an embodiment of the present invention. FIG. 本発明の一実施の形態による配向膜の露光装置の正面図である。1 is a front view of an alignment film exposure apparatus according to an embodiment of the present invention. FIG. 発明の一実施の形態による光ビーム照射装置の概略構成を示す図である。It is a figure which shows schematic structure of the light beam irradiation apparatus by one embodiment of invention. DMDのミラー部の一例を示す図である。It is a figure which shows an example of the mirror part of DMD. レーザー測長系の動作を説明する図である。It is a figure explaining operation | movement of a laser length measurement system. 描画制御部の概略構成を示す図である。It is a figure which shows schematic structure of a drawing control part. 調節装置の動作を説明する図である。It is a figure explaining operation | movement of an adjustment apparatus. 本発明の一実施の形態による配向膜の露光方法を説明する図である。It is a figure explaining the exposure method of the alignment film by one embodiment of this invention. 光ビームと絞りの位置関係を示す図である。It is a figure which shows the positional relationship of a light beam and an aperture_diaphragm | restriction. 調節装置の動作を説明する図である。It is a figure explaining operation | movement of an adjustment apparatus. 本発明の一実施の形態による配向膜の露光方法を説明する図である。It is a figure explaining the exposure method of the alignment film by one embodiment of this invention. 光ビームと絞りの位置関係を示す図である。It is a figure which shows the positional relationship of a light beam and an aperture_diaphragm | restriction. 本発明の他の実施の形態による光ビーム照射装置の概略構成を示す図である。It is a figure which shows schematic structure of the light beam irradiation apparatus by other embodiment of this invention. 本発明の他の実施の形態による配向膜の露光方法を説明する図である。It is a figure explaining the exposure method of the alignment film by other embodiment of this invention. 光ビームと絞りの位置関係を示す図である。It is a figure which shows the positional relationship of a light beam and an aperture_diaphragm | restriction. 本発明の他の実施の形態による配向膜の露光方法を説明する図である。It is a figure explaining the exposure method of the alignment film by other embodiment of this invention. 光ビームと絞りの位置関係を示す図である。It is a figure which shows the positional relationship of a light beam and an aperture_diaphragm | restriction. 本発明の他の実施の形態による配向膜の露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the aligner exposure apparatus by other embodiment of this invention. 本発明の他の実施の形態による配向膜の露光装置の側面図である。It is a side view of the aligner exposure apparatus by other embodiment of this invention. 本発明の他の実施の形態による配向膜の露光装置の正面図である。It is a front view of the aligner exposure apparatus by other embodiment of this invention. 光ビーム照射装置の概略構成を示す図である。It is a figure which shows schematic structure of a light beam irradiation apparatus. DMDのミラー部の一例を示す図である。It is a figure which shows an example of the mirror part of DMD. レーザー測長系の動作を説明する図である。It is a figure explaining operation | movement of a laser length measurement system. 本発明の他の実施の形態による配向膜の露光方法を説明する図である。It is a figure explaining the exposure method of the alignment film by other embodiment of this invention. 本発明の他の実施の形態による配向膜の露光方法を説明する図である。It is a figure explaining the exposure method of the alignment film by other embodiment of this invention. 基板の表面の高さの変位による光ビームの照射位置の変動を説明する図である。It is a figure explaining the fluctuation | variation of the irradiation position of the light beam by the displacement of the height of the surface of a board | substrate. 本発明の他の実施の形態による描画制御部の概略構成を示す図である。It is a figure which shows schematic structure of the drawing control part by other embodiment of this invention. 本発明のさらに他の実施の形態による配向膜の露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the aligner exposure apparatus by further another embodiment of this invention.
 図1は、本発明の一実施の形態による配向膜の露光装置の概略構成を示す図である。また、図2は本発明の一実施の形態による配向膜の露光装置の側面図、図3は本発明の一実施の形態による配向膜の露光装置の正面図である。露光装置は、ベース3、Xガイド4、Xステージ5、Yガイド6、Yステージ7、θステージ8、チャック10、ゲート11、光ビーム照射装置20、リニアスケール31,33、エンコーダ32,34、レーザー測長系、レーザー測長系制御装置40、ステージ駆動回路60、及び主制御装置70を含んで構成されている。なお、図2及び図3では、レーザー測長系のレーザー光源41、レーザー測長系制御装置40、ステージ駆動回路60、及び主制御装置70が省略されている。露光装置は、これらの他に、基板1をチャック10へ搬入し、また基板1をチャック10から搬出する基板搬送ロボット、装置内の温度管理を行う温度制御ユニット等を備えている。 FIG. 1 is a diagram showing a schematic configuration of an alignment film exposure apparatus according to an embodiment of the present invention. 2 is a side view of an alignment film exposure apparatus according to an embodiment of the present invention, and FIG. 3 is a front view of the alignment film exposure apparatus according to an embodiment of the present invention. The exposure apparatus includes a base 3, an X guide 4, an X stage 5, a Y guide 6, a Y stage 7, a θ stage 8, a chuck 10, a gate 11, a light beam irradiation device 20, linear scales 31, 33, encoders 32, 34, A laser length measurement system, a laser length measurement system control device 40, a stage drive circuit 60, and a main control device 70 are included. 2 and 3, the laser light source 41 of the laser measurement system, the laser measurement system control device 40, the stage drive circuit 60, and the main control device 70 are omitted. In addition to these, the exposure apparatus includes a substrate transfer robot that loads the substrate 1 into the chuck 10 and unloads the substrate 1 from the chuck 10, a temperature control unit that performs temperature management in the apparatus, and the like.
 なお、以下に説明する実施の形態におけるXY方向は例示であって、X方向とY方向とを入れ替えてもよい。 Note that the XY directions in the embodiments described below are examples, and the X direction and the Y direction may be interchanged.
 図1及び図2において、チャック10は、基板1の受け渡しを行う受け渡し位置にある。受け渡し位置において、図示しない基板搬送ロボットにより基板1がチャック10へ搬入され、また図示しない基板搬送ロボットにより基板1がチャック10から搬出される。チャック10は、基板1の裏面を真空吸着して支持する。基板1の表面には、ポリイミド等の高分子化合物から成る配向膜が塗布されている。 1 and 2, the chuck 10 is at a delivery position for delivering the substrate 1. At the delivery position, the substrate 1 is carried into the chuck 10 by a substrate carrying robot (not shown), and the substrate 1 is carried out of the chuck 10 by a substrate carrying robot (not shown). The chuck 10 supports the back surface of the substrate 1 by vacuum suction. An alignment film made of a polymer compound such as polyimide is applied to the surface of the substrate 1.
 基板1の露光を行う露光位置の上空に、ベース3をまたいでゲート11が設けられている。ゲート11には、複数の光ビーム照射装置20が搭載されている。なお、本実施の形態は、8つの光ビーム照射装置20を用いた露光装置の例を示しているが、光ビーム照射装置の数はこれに限らず、本発明は1つ又は2つ以上の光ビーム照射装置を用いた露光装置に適用される。 A gate 11 is provided across the base 3 above the exposure position where the substrate 1 is exposed. A plurality of light beam irradiation devices 20 are mounted on the gate 11. Although the present embodiment shows an example of an exposure apparatus using eight light beam irradiation apparatuses 20, the number of light beam irradiation apparatuses is not limited to this, and the present invention is one or two or more. The present invention is applied to an exposure apparatus using a light beam irradiation apparatus.
 図4は、本発明の一実施の形態による光ビーム照射装置の概略構成を示す図である。光ビーム照射装置20は、光ファイバー22、レンズ23、ミラー24、DMD(Digital Micromirror Device)25、投影レンズ26a,26b、DMD駆動回路27、偏光子28、絞り29、調節装置50、及び絞り移動装置を含んで構成されている。光ファイバー22は、レーザー光源ユニット21から発生された紫外光の光ビームを、光ビーム照射装置20内へ導入する。光ファイバー22から射出された光ビームは、レンズ23を透過した後、偏光子28を透過して直線偏光となり、ミラー24で反射されてDMD25へ照射される。DMD25は、光ビームを反射する複数の微小なミラーを直交する二方向に配列して構成された空間的光変調器であり、各ミラーの角度を変更して光ビームを変調する。DMD25により変調された光ビームは、投影レンズ26a,26bを含むヘッド部20aから照射される。DMD駆動回路27は、主制御装置70から供給された描画データに基づいて、DMD25の各ミラーの角度を変更する。 FIG. 4 is a diagram showing a schematic configuration of a light beam irradiation apparatus according to an embodiment of the present invention. The light beam irradiation device 20 includes an optical fiber 22, a lens 23, a mirror 24, a DMD (Digital Micromirror Device) 25, projection lenses 26a and 26b, a DMD driving circuit 27, a polarizer 28, an aperture 29, an adjusting device 50, and an aperture moving device. It is comprised including. The optical fiber 22 introduces an ultraviolet light beam generated from the laser light source unit 21 into the light beam irradiation device 20. The light beam emitted from the optical fiber 22 passes through the lens 23, then passes through the polarizer 28, becomes linearly polarized light, is reflected by the mirror 24, and is irradiated onto the DMD 25. The DMD 25 is a spatial light modulator configured by arranging a plurality of minute mirrors that reflect a light beam in two orthogonal directions, and modulates the light beam by changing the angle of each mirror. The light beam modulated by the DMD 25 is irradiated from the head unit 20a including the projection lenses 26a and 26b. The DMD drive circuit 27 changes the angle of each mirror of the DMD 25 based on the drawing data supplied from the main controller 70.
 なお、偏光子28は、レンズ23とミラー24の間に限らず、光ビーム照射装置20内で光ビームの光路中の任意の位置に設置することができる。 The polarizer 28 is not limited to the position between the lens 23 and the mirror 24 and can be installed at an arbitrary position in the optical path of the light beam within the light beam irradiation device 20.
 図2及び図3において、チャック10は、θステージ8に搭載されており、θステージ8の下にはYステージ7及びXステージ5が設けられている。Xステージ5は、ベース3に設けられたXガイド4に搭載され、Xガイド4に沿ってX方向へ移動する。Yステージ7は、Xステージ5に設けられたYガイド6に搭載され、Yガイド6に沿ってY方向へ移動する。θステージ8は、Yステージ7に搭載され、θ方向へ回転する。Xステージ5、Yステージ7、及びθステージ8には、ボールねじ及びモータや、リニアモータ等の図示しない駆動機構が設けられており、各駆動機構は、図1のステージ駆動回路60により駆動される。 2 and 3, the chuck 10 is mounted on the θ stage 8, and a Y stage 7 and an X stage 5 are provided below the θ stage 8. The X stage 5 is mounted on an X guide 4 provided on the base 3 and moves in the X direction along the X guide 4. The Y stage 7 is mounted on a Y guide 6 provided on the X stage 5 and moves in the Y direction along the Y guide 6. The θ stage 8 is mounted on the Y stage 7 and rotates in the θ direction. The X stage 5, Y stage 7, and θ stage 8 are provided with drive mechanisms (not shown) such as ball screws and motors, linear motors, etc., and each drive mechanism is driven by a stage drive circuit 60 of FIG. The
 θステージ8のθ方向への回転により、チャック10に搭載された基板1は、直交する二辺がX方向及びY方向へ向く様に回転される。Xステージ5のX方向への移動により、チャック10は、受け渡し位置と露光位置との間を移動される。露光位置において、Xステージ5のX方向への移動により、各光ビーム照射装置20のヘッド部20aから照射された光ビームが、基板1をX方向へ走査する。また、Yステージ7のY方向への移動により、各光ビーム照射装置20のヘッド部20aから照射された光ビームによる基板1の走査領域が、Y方向へ移動される。図1において、主制御装置70は、ステージ駆動回路60を制御して、θステージ8のθ方向へ回転、Xステージ5のX方向への移動、及びYステージ7のY方向への移動を行う。 Rotation of the θ stage 8 in the θ direction causes the substrate 1 mounted on the chuck 10 to rotate so that two orthogonal sides face in the X direction and the Y direction. As the X stage 5 moves in the X direction, the chuck 10 is moved between the delivery position and the exposure position. When the X stage 5 moves in the X direction at the exposure position, the light beam irradiated from the head unit 20a of each light beam irradiation apparatus 20 scans the substrate 1 in the X direction. In addition, as the Y stage 7 moves in the Y direction, the scanning region of the substrate 1 by the light beam emitted from the head unit 20a of each light beam irradiation device 20 is moved in the Y direction. In FIG. 1, the main controller 70 controls the stage drive circuit 60 to rotate the θ stage 8 in the θ direction, move the X stage 5 in the X direction, and move the Y stage 7 in the Y direction. .
 図5は、DMDのミラー部の一例を示す図である。光ビーム照射装置20のDMD25は、光ビーム照射装置20からの光ビームによる基板1の走査方向(X方向)に対して、所定の角度θだけ傾いて配置されている。DMD25を、走査方向に対して傾けて配置すると、直交する二方向に配列された複数のミラー25aのいずれかが、隣接するミラー25a間の隙間に対応する箇所をカバーするので、配向膜の露光を隙間無く行うことができる。 FIG. 5 is a diagram showing an example of the mirror part of the DMD. The DMD 25 of the light beam irradiation device 20 is disposed at a predetermined angle θ with respect to the scanning direction (X direction) of the substrate 1 by the light beam from the light beam irradiation device 20. When the DMD 25 is arranged to be inclined with respect to the scanning direction, any one of the plurality of mirrors 25a arranged in two orthogonal directions covers a portion corresponding to the gap between the adjacent mirrors 25a, so that the alignment film is exposed. Can be performed without gaps.
 なお、本実施の形態では、Xステージ5によりチャック10をX方向へ移動することによって、光ビーム照射装置20からの光ビームによる基板1の走査を行っているが、光ビーム照射装置20を移動することにより、光ビーム照射装置20からの光ビームによる基板1の走査を行ってもよい。また、本実施の形態では、Yステージ7によりチャック10をY方向へ移動することによって、光ビーム照射装置20からの光ビームによる基板1の走査領域を変更しているが、光ビーム照射装置20を移動することにより、光ビーム照射装置20からの光ビームによる基板1の走査領域を変更してもよい。 In the present embodiment, the substrate 10 is scanned by the light beam from the light beam irradiation device 20 by moving the chuck 10 in the X direction by the X stage 5, but the light beam irradiation device 20 is moved. By doing so, the substrate 1 may be scanned by the light beam from the light beam irradiation device 20. In the present embodiment, the scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 is changed by moving the chuck 10 in the Y direction by the Y stage 7, but the light beam irradiation device 20. , The scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 may be changed.
 図1及び図2において、ベース3には、X方向へ伸びるリニアスケール31が設置されている。リニアスケール31には、Xステージ5のX方向への移動量を検出するための目盛が付けられている。また、Xステージ5には、Y方向へ伸びるリニアスケール33が設置されている。リニアスケール33には、Yステージ7のY方向への移動量を検出するための目盛が付けられている。 1 and 2, the base 3 is provided with a linear scale 31 extending in the X direction. The linear scale 31 is provided with a scale for detecting the amount of movement of the X stage 5 in the X direction. The X stage 5 is provided with a linear scale 33 extending in the Y direction. The linear scale 33 is provided with a scale for detecting the amount of movement of the Y stage 7 in the Y direction.
 図1及び図3において、Xステージ5の一側面には、リニアスケール31に対向して、エンコーダ32が取り付けられている。エンコーダ32は、リニアスケール31の目盛を検出して、パルス信号を主制御装置70へ出力する。また、図1及び図2において、Yステージ7の一側面には、リニアスケール33に対向して、エンコーダ34が取り付けられている。エンコーダ34は、リニアスケール33の目盛を検出して、パルス信号を主制御装置70へ出力する。主制御装置70は、エンコーダ32のパルス信号をカウントして、Xステージ5のX方向への移動量を検出し、エンコーダ34のパルス信号をカウントして、Yステージ7のY方向への移動量を検出する。 1 and 3, an encoder 32 is attached to one side surface of the X stage 5 so as to face the linear scale 31. The encoder 32 detects the scale of the linear scale 31 and outputs a pulse signal to the main controller 70. 1 and 2, an encoder 34 is attached to one side surface of the Y stage 7 so as to face the linear scale 33. The encoder 34 detects the scale of the linear scale 33 and outputs a pulse signal to the main controller 70. Main controller 70 counts the pulse signal of encoder 32, detects the amount of movement of X stage 5 in the X direction, counts the pulse signal of encoder 34, and moves the amount of Y stage 7 in the Y direction. Is detected.
 図6は、レーザー測長系の動作を説明する図である。なお、図6においては、図1に示したゲート11、及び光ビーム照射装置20が省略されている。レーザー測長系は、公知のレーザー干渉式の測長系であって、レーザー光源41、レーザー干渉計42,44、及びバーミラー43,45を含んで構成されている。バーミラー43は、チャック10のY方向へ伸びる一側面に取り付けられている。また、バーミラー45は、チャック10のX方向へ伸びる一側面に取り付けられている。 FIG. 6 is a diagram for explaining the operation of the laser measurement system. In FIG. 6, the gate 11 and the light beam irradiation device 20 shown in FIG. 1 are omitted. The laser length measurement system is a known laser interference type length measurement system, and includes a laser light source 41, laser interferometers 42 and 44, and bar mirrors 43 and 45. The bar mirror 43 is attached to one side surface of the chuck 10 that extends in the Y direction. The bar mirror 45 is attached to one side surface of the chuck 10 extending in the X direction.
 レーザー干渉計42は、レーザー光源41からのレーザー光をバーミラー43へ照射し、バーミラー43により反射されたレーザー光を受光して、レーザー光源41からのレーザー光とバーミラー43により反射されたレーザー光との干渉を測定する。この測定は、Y方向の2箇所で行う。レーザー測長系制御装置40は、主制御装置70の制御により、レーザー干渉計42の測定結果から、チャック10のX方向の位置及び回転を検出する。 The laser interferometer 42 irradiates the laser beam from the laser light source 41 onto the bar mirror 43, receives the laser beam reflected by the bar mirror 43, and the laser beam reflected from the laser beam source 41 and the laser beam reflected by the bar mirror 43. Measure interference. This measurement is performed at two locations in the Y direction. The laser length measurement system control device 40 detects the position and rotation of the chuck 10 in the X direction from the measurement result of the laser interferometer 42 under the control of the main control device 70.
 一方、レーザー干渉計44は、レーザー光源41からのレーザー光をバーミラー45へ照射し、バーミラー45により反射されたレーザー光を受光して、レーザー光源41からのレーザー光とバーミラー45により反射されたレーザー光との干渉を測定する。レーザー測長系制御装置40は、主制御装置70の制御により、レーザー干渉計44の測定結果から、チャック10のY方向の位置を検出する。 On the other hand, the laser interferometer 44 irradiates the laser beam from the laser light source 41 to the bar mirror 45, receives the laser beam reflected by the bar mirror 45, and the laser beam reflected from the laser source 41 and the bar mirror 45. Measure interference with light. The laser length measurement system control device 40 detects the position of the chuck 10 in the Y direction from the measurement result of the laser interferometer 44 under the control of the main control device 70.
 図4において、主制御装置70は、光ビーム照射装置20のDMD駆動回路27へ描画データを供給する描画制御部を有する。図7は、描画制御部の概略構成を示す図である。描画制御部71は、メモリ72、バンド幅設定部73、中心点座標決定部74、及び座標決定部75を含んで構成されている。メモリ72は、各光ビーム照射装置20のDMD駆動回路27へ供給する描画データを、そのXY座標をアドレスとして記憶している。 4, the main controller 70 has a drawing controller that supplies drawing data to the DMD drive circuit 27 of the light beam irradiation device 20. FIG. 7 is a diagram illustrating a schematic configuration of the drawing control unit. The drawing control unit 71 includes a memory 72, a bandwidth setting unit 73, a center point coordinate determination unit 74, and a coordinate determination unit 75. The memory 72 stores drawing data to be supplied to the DMD driving circuit 27 of each light beam irradiation apparatus 20 using the XY coordinates as addresses.
 バンド幅設定部73は、メモリ72から読み出す描画データのY座標の範囲を決定することにより、光ビーム照射装置20のヘッド部20aから照射される光ビームのY方向のバンド幅を設定する。 The bandwidth setting unit 73 sets the Y-direction bandwidth of the light beam emitted from the head unit 20a of the light beam irradiation apparatus 20 by determining the range of the Y coordinate of the drawing data read from the memory 72.
 レーザー測長系制御装置40は、露光位置における基板1の露光を開始する前のチャック10のXY方向の位置を検出する。中心点座標決定部74は、レーザー測長系制御装置40が検出したチャック10のXY方向の位置から、基板1の露光を開始する前のチャック10の中心点のXY座標を決定する。図1において、光ビーム照射装置20からの光ビームにより基板1の走査を行う際、主制御装置70は、ステージ駆動回路60を制御して、Xステージ5によりチャック10をX方向へ移動させる。基板1の走査領域を移動する際、主制御装置70は、ステージ駆動回路60を制御して、Yステージ7によりチャック10をY方向へ移動させる。図7において、中心点座標決定部74は、エンコーダ32,34からのパルス信号をカウントして、Xステージ5のX方向への移動量及びYステージ7のY方向への移動量を検出し、チャック10の中心点のXY座標を決定する。 The laser length measurement system control device 40 detects the position of the chuck 10 in the X and Y directions before the exposure of the substrate 1 at the exposure position is started. The center point coordinate determination unit 74 determines the XY coordinates of the center point of the chuck 10 before starting the exposure of the substrate 1 from the position in the XY direction of the chuck 10 detected by the laser length measurement system control device 40. In FIG. 1, when scanning the substrate 1 with the light beam from the light beam irradiation device 20, the main control device 70 controls the stage drive circuit 60 to move the chuck 10 in the X direction by the X stage 5. When moving the scanning area of the substrate 1, the main controller 70 controls the stage drive circuit 60 to move the chuck 10 in the Y direction by the Y stage 7. In FIG. 7, the center point coordinate determination unit 74 counts the pulse signals from the encoders 32 and 34, detects the amount of movement of the X stage 5 in the X direction and the amount of movement of the Y stage 7 in the Y direction, The XY coordinates of the center point of the chuck 10 are determined.
 座標決定部75は、中心点座標決定部74が決定したチャック10の中心点のXY座標に基づき、各光ビーム照射装置20のDMD駆動回路27へ供給する描画データのXY座標を決定する。メモリ72は、座標決定部75が決定したXY座標をアドレスとして入力し、入力したXY座標のアドレスに記憶された描画データを、各光ビーム照射装置20のDMD駆動回路27へ出力する。 The coordinate determination unit 75 determines the XY coordinates of the drawing data supplied to the DMD drive circuit 27 of each light beam irradiation device 20 based on the XY coordinates of the center point of the chuck 10 determined by the center point coordinate determination unit 74. The memory 72 inputs the XY coordinates determined by the coordinate determination unit 75 as an address, and outputs the drawing data stored at the input XY coordinate address to the DMD drive circuit 27 of each light beam irradiation apparatus 20.
 以下、本発明の一実施の形態による配向膜の露光方法について説明する。図4において、光ビーム照射装置20の調節装置50は、支持台51及びリニアモータを含んで構成されている。支持台51は、ミラー24を支持して回転する回転機構51aを有し、回転機構51aを回転してミラー24の角度を変更する。リニアモータは、コイルを内蔵した可動子52aと、磁石を内蔵した固定子52bとから成る。可動子52aのコイルに電流を流すと、コイルの電流と固定子52bの磁石の磁界とから、フレミングの左手の法則によって、可動子52aに推力(ローレンツ力)が働き、可動子52aが固定子52bに沿って移動する。可動子52aには、支持台51が搭載されている。なお、調節装置50には、リニアモータに限らず、ボールねじ及びモータ等の他の移動機構を用いてもよい。 Hereinafter, an alignment film exposure method according to an embodiment of the present invention will be described. In FIG. 4, the adjusting device 50 of the light beam irradiation device 20 includes a support base 51 and a linear motor. The support base 51 includes a rotation mechanism 51a that supports and rotates the mirror 24, and changes the angle of the mirror 24 by rotating the rotation mechanism 51a. The linear motor includes a mover 52a with a built-in coil and a stator 52b with a built-in magnet. When a current is passed through the coil of the mover 52a, a thrust (Lorentz force) acts on the mover 52a according to Fleming's left-hand rule from the coil current and the magnetic field of the magnet of the stator 52b, and the mover 52a becomes a stator. Move along 52b. A support base 51 is mounted on the mover 52a. The adjusting device 50 is not limited to a linear motor, and other moving mechanisms such as a ball screw and a motor may be used.
 調節装置50は、主制御装置70の制御により、支持台51の回転機構51aを回転して、ミラー24の角度を変更すると共に、リニアモータの可動子52aを移動して、ミラー24の位置を変更し、ミラー24からDMD25へ照射される光ビームの入射角度を調節する。ミラー24からDMD25へ照射される光ビームの入射角度が変わると、DMD25の各ミラー25aにより反射される光ビームの反射角度が変化する。図4は、DMD25の各ミラー25aにより反射された光ビームの中心軸が、投影レンズ26a,26bの光軸と平行な状態を示している。このとき、投影レンズ26a,26bを透過した光ビームの中心軸は、チャック10に支持された基板1の表面に対して、垂直となる。 Under the control of the main controller 70, the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 to change the angle of the mirror 24, and moves the linear motor movable element 52a to adjust the position of the mirror 24. The angle of incidence of the light beam irradiated from the mirror 24 onto the DMD 25 is adjusted. When the incident angle of the light beam irradiated from the mirror 24 to the DMD 25 changes, the reflection angle of the light beam reflected by each mirror 25a of the DMD 25 changes. FIG. 4 shows a state in which the central axis of the light beam reflected by each mirror 25a of the DMD 25 is parallel to the optical axes of the projection lenses 26a and 26b. At this time, the central axis of the light beam transmitted through the projection lenses 26 a and 26 b is perpendicular to the surface of the substrate 1 supported by the chuck 10.
 図8及び図11は、調節装置の動作を説明する図である。図8は、調節装置50が、支持台51の回転機構51aを矢印で示す様に反時計回りへ回転し、支持台51を矢印で示す様に図面右方向へ移動して、ミラー24からDMD25へ照射される光ビームの入射角度を大きくした例を示している。このとき、図8に示す様に、DMD25の各ミラー25aにより反射された光ビームは、右斜め上方から、投影レンズ26aへその光軸に対して斜めに入射する。図11は、調節装置50が、支持台51の回転機構51aを矢印で示す様に時計回りへ回転し、支持台51を矢印で示す様に図面左方向へ移動して、ミラー24からDMD25へ照射される光ビームの入射角度を小さくした例を示している。このとき、図11に示す様に、DMD25の各ミラー25aにより反射された光ビームは、左斜め上方から、投影レンズ26aへその光軸に対して斜めに入射する。 8 and 11 are diagrams for explaining the operation of the adjusting device. In FIG. 8, the adjusting device 50 rotates the rotation mechanism 51a of the support base 51 counterclockwise as indicated by an arrow, moves the support base 51 to the right in the drawing as indicated by an arrow, and moves from the mirror 24 to the DMD 25. The example which enlarged the incident angle of the light beam irradiated to is shown. At this time, as shown in FIG. 8, the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to the optical axis from the upper right side. In FIG. 11, the adjusting device 50 rotates the rotation mechanism 51a of the support base 51 clockwise as indicated by an arrow, moves the support base 51 leftward as indicated by an arrow, and moves from the mirror 24 to the DMD 25. The example which made small the incident angle of the irradiated light beam is shown. At this time, as shown in FIG. 11, the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to its optical axis from the upper left.
 投影レンズ26aと投影レンズ26bとの間には、投影レンズ26bを通過する光ビームの回折光を制限する絞り29が配置されている。図8及び図11において、絞り29は、その開口の中心を投影レンズ26a,26bの光軸に合わせて設置されている。このとき、調節装置50によりミラー24からDMD25へ照射される光ビームの入射角度を調節して、DMD25の各ミラー25aにより反射された光ビームを、投影レンズ26aへその光軸に対して斜めに入射させると、投影レンズ26aを通過する光ビームの光路が変化し、そのままでは、光ビームの一部が絞り29で遮断されて、投影レンズ26bを通過する光ビームの光量が低下する。 Between the projection lens 26a and the projection lens 26b, a diaphragm 29 for limiting the diffracted light of the light beam passing through the projection lens 26b is disposed. 8 and 11, the diaphragm 29 is installed so that the center of the opening thereof is aligned with the optical axes of the projection lenses 26 a and 26 b. At this time, the incident angle of the light beam irradiated from the mirror 24 to the DMD 25 is adjusted by the adjusting device 50, and the light beam reflected by each mirror 25a of the DMD 25 is inclined with respect to the optical axis to the projection lens 26a. When incident, the optical path of the light beam passing through the projection lens 26a changes, and as it is, a part of the light beam is blocked by the diaphragm 29, and the light amount of the light beam passing through the projection lens 26b is reduced.
 絞り移動装置は、支持板53及びリニアモータを含んで構成されている。支持板53には、絞り29が取り付けられ、絞り29の開口に合わせて開口が設けられている。リニアモータは、コイルを内蔵した可動子54aと、磁石を内蔵した固定子54bとから成る。可動子54aのコイルに電流を流すと、コイルの電流と固定子54bの磁石の磁界とから、フレミングの左手の法則によって、可動子54aに推力(ローレンツ力)が働き、可動子54aが固定子54bに沿って移動する。可動子54aには、支持板53が取り付けられている。なお、絞り移動装置には、リニアモータに限らず、ボールねじ及びモータ等の他の移動機構を用いてもよい。 The diaphragm moving device includes a support plate 53 and a linear motor. A diaphragm 29 is attached to the support plate 53, and an opening is provided in accordance with the opening of the diaphragm 29. The linear motor includes a mover 54a incorporating a coil and a stator 54b incorporating a magnet. When a current is passed through the coil of the mover 54a, a thrust (Lorentz force) acts on the mover 54a according to Fleming's left-hand rule from the coil current and the magnetic field of the magnet of the stator 54b. It moves along 54b. A support plate 53 is attached to the mover 54a. The diaphragm moving device is not limited to a linear motor, and other moving mechanisms such as a ball screw and a motor may be used.
 図9及び図12は、本発明の一実施の形態による配向膜の露光方法を説明する図である。絞り移動装置は、主制御装置70の制御により、調節装置50により調節された光ビームのDMD25への入射角度に応じ、リニアモータの可動子54aを移動して、絞り29を投影レンズ26a,26bの光軸に垂直な方向へ移動する。図9は、絞り移動装置が、光ビームのDMD25への入射角度が大きくなったのに合わせて、支持板53を矢印で示す様に図面左方向へ移動した例を示している。また、図12は、絞り移動装置が、光ビームのDMD25への入射角度が小さくなったのに合わせて、支持板53を矢印で示す様に図面右方向へ移動した例を示している。 9 and 12 are views for explaining an alignment film exposure method according to an embodiment of the present invention. Under the control of the main controller 70, the diaphragm moving device moves the linear motor movable element 54a in accordance with the incident angle of the light beam adjusted by the adjusting device 50 to the DMD 25, thereby moving the diaphragm 29 to the projection lenses 26a and 26b. It moves in the direction perpendicular to the optical axis. FIG. 9 shows an example in which the stop moving device moves the support plate 53 in the left direction of the drawing as indicated by an arrow in accordance with the increase in the incident angle of the light beam to the DMD 25. FIG. 12 shows an example in which the diaphragm moving device moves the support plate 53 in the right direction of the drawing as indicated by an arrow in accordance with the decrease in the incident angle of the light beam on the DMD 25.
 図10及び図13は、光ビームと絞りの位置関係を示す図である。図10(a)及び図13(a)は、図4の状態における光ビーム2と絞り29の位置関係を示し、DMD25により変調された光ビーム2の中心と絞り29に設けられた開口29aの中心とが一致している。図10(b)は、図8の状態における光ビーム2と絞り29の位置関係を示し、DMD25により変調された光ビーム2が図面左側へ移動して、光ビーム2の中心が絞り29の開口29aの中心から外れている。図10(c)は、図9の状態における光ビーム2と絞り29の位置関係を示し、絞り29が図面左側へ移動して、DMD25により変調された光ビーム2の中心と絞り29の開口29aの中心とが一致している。また、図13(b)は、図11の状態における光ビーム2と絞り29の位置関係を示し、DMD25により変調された光ビーム2が図面右側へ移動して、光ビーム2の中心が絞り29の開口29aの中心から外れている。図13(c)は、図12の状態における光ビーム2と絞り29の位置関係を示し、絞り29が図面右側へ移動して、DMD25により変調された光ビーム2の中心と絞り29の開口29aの中心とが一致している。 10 and 13 are diagrams showing the positional relationship between the light beam and the stop. FIGS. 10A and 13A show the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 4, and the center of the light beam 2 modulated by the DMD 25 and the opening 29 a provided in the diaphragm 29. The center matches. FIG. 10B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 8, the light beam 2 modulated by the DMD 25 moves to the left side of the drawing, and the center of the light beam 2 is the aperture of the diaphragm 29. It is off the center of 29a. FIG. 10C shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 9. The diaphragm 29 moves to the left side of the drawing, and the center of the light beam 2 modulated by the DMD 25 and the opening 29 a of the diaphragm 29. The center of is consistent. FIG. 13B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 11. The light beam 2 modulated by the DMD 25 moves to the right side of the drawing, and the center of the light beam 2 is the diaphragm 29. It is off from the center of the opening 29a. FIG. 13C shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 12, and the diaphragm 29 moves to the right side of the drawing, and the center of the light beam 2 modulated by the DMD 25 and the aperture 29a of the diaphragm 29. The center of is consistent.
 調節装置50により調節した光ビームのDMD25への入射角度に応じ、投影レンズ26bを通過する光ビームの回折光を制限する絞り29を、投影レンズ26a,26bの光軸に垂直な方向へ移動することにより、投影レンズ26bを通過する光ビームの光量の低下を抑制することができる。 The diaphragm 29 for limiting the diffracted light of the light beam passing through the projection lens 26b is moved in a direction perpendicular to the optical axes of the projection lenses 26a and 26b according to the incident angle of the light beam adjusted by the adjusting device 50 to the DMD 25. Thus, it is possible to suppress a decrease in the light amount of the light beam that passes through the projection lens 26b.
 図9において、投影レンズ26bを通過した光ビームは、チャック10に支持された基板1に対して、左斜め上方から照射される。露光装置は、チャック10と光ビーム照射装置20とを相対的に移動し、光ビーム照射装置20から斜めに照射された直線偏光の光ビームにより基板1を矢印で示す走査方向へ走査する。このとき、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、プレチルト方向が露光光の進行方向に沿う場合、基板1の配向膜には、プレチルト方向が図面右側となる配向特性が付与される。また、プレチルト方向が露光光の進行方向と逆方向に沿う場合、基板1の配向膜には、プレチルト方向が図面左側となる配向特性が付与される。 In FIG. 9, the light beam that has passed through the projection lens 26b is applied to the substrate 1 supported by the chuck 10 from the upper left. The exposure apparatus relatively moves the chuck 10 and the light beam irradiation device 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation device 20. At this time, when the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc., the pretilt direction is on the right side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted. Further, when the pretilt direction is along the direction opposite to the traveling direction of the exposure light, the alignment film of the substrate 1 is given an alignment characteristic in which the pretilt direction is the left side of the drawing.
 図12において、投影レンズ26bを通過した光ビームは、チャック10に支持された基板1に対して、右斜め上方から照射される。露光装置は、チャック10と光ビーム照射装置20とを相対的に移動し、光ビーム照射装置20から斜めに照射された直線偏光の光ビームにより基板1を矢印で示す走査方向へ走査する。このとき、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、プレチルト方向が露光光の進行方向に沿う場合、基板1の配向膜には、プレチルト方向が図面左側となる配向特性が付与される。また、プレチルト方向が露光光の進行方向と逆方向に沿う場合、基板1の配向膜には、プレチルト方向が図面右側となる配向特性が付与される。 In FIG. 12, the light beam that has passed through the projection lens 26b is applied to the substrate 1 supported by the chuck 10 from obliquely upward to the right. The exposure apparatus relatively moves the chuck 10 and the light beam irradiation device 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation device 20. At this time, when the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc., the pretilt direction is on the left side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted. Further, when the pretilt direction is along the direction opposite to the traveling direction of the exposure light, the alignment film of the substrate 1 is given an alignment characteristic with the pretilt direction on the right side of the drawing.
 なお、光ビームを基板1へ照射する方向と、光ビームによる基板1の走査方向の組合せは、図9及び図12に示した例に限らず、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、適宜決定される。 The combination of the direction in which the light beam is applied to the substrate 1 and the scanning direction of the substrate 1 by the light beam is not limited to the example shown in FIGS. 9 and 12, and the pattern of exposure light and the orientation applied to the substrate 1. It is determined appropriately according to the properties of the film.
 光ビーム照射装置20から斜めに照射された直線偏光の光ビームにより基板1を走査して、基板1に塗布された配向膜に液晶の配列方向を整える配向特性を付与するので、光ビーム照射装置20のDMD25を駆動するDMD駆動回路27へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。従って、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することができる。 Since the substrate 1 is scanned with the linearly polarized light beam obliquely irradiated from the light beam irradiation device 20, the alignment characteristics applied to the alignment film applied to the substrate 1 are imparted with alignment characteristics that align the liquid crystal alignment direction. The drawing data supplied to the DMD driving circuit 27 that drives the 20 DMDs 25 can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
 そして、調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、各配向領域を露光する度に基板をチャックから取り外して基板の向きを回転させる必要が無いので、タクトタイムが短縮されて、スループットが向上する。 Then, by adjusting the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50, the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the pre-tilt direction of the alignment characteristic imparted to the alignment film Can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
 また、調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの入射角度を変更し、配向膜に付与する配向特性のプレチルト角を制御することができる。 In addition, the adjusting device 50 adjusts the incident angle of the light beam supplied to the DMD 25 to change the incident angle of the light beam applied to the substrate 1 supported by the chuck 10, so that the alignment characteristic applied to the alignment film can be improved. The pretilt angle can be controlled.
 さらに、光ビーム照射装置20の調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャック10と光ビーム照射装置20との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更するので、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、光ビームによる基板1の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャック10と光ビーム照射装置20との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Further, by adjusting the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50 of the light beam irradiation device 20, the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the light beam is changed. Since the change of the direction of the above and the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20 are combined to change the pretilt direction of the alignment characteristic imparted to the alignment film, the pattern of the exposure light and the substrate 1 When the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film, depending on the properties of the alignment film applied to the film, the change of the light beam direction, the chuck 10 and the light A desired pretilt direction can be obtained in combination with a change in the direction of movement relative to the beam irradiation device 20.
 図14は、本発明の他の実施の形態による光ビーム照射装置の概略構成を示す図である。本実施の形態の光ビーム照射装置20’は、図4に示した実施の形態の光ビーム照射装置20の調節装置50を有さず、ミラー24は、図示しないミラー支持装置に固定されている。その他の構成要素は、図4に示した実施の形態の光ビーム照射装置20と同様である。 FIG. 14 is a diagram showing a schematic configuration of a light beam irradiation apparatus according to another embodiment of the present invention. The light beam irradiation apparatus 20 ′ of the present embodiment does not have the adjusting device 50 of the light beam irradiation apparatus 20 of the embodiment shown in FIG. 4, and the mirror 24 is fixed to a mirror support device (not shown). . Other components are the same as those of the light beam irradiation apparatus 20 of the embodiment shown in FIG.
 図14において、ミラー24の角度は、DMD25の各ミラー25aにより反射された光ビームの中心軸が、投影レンズ26a,26bの光軸と平行になる様に設定されており、投影レンズ26a,26bを透過した光ビームの中心軸は、チャック10に支持された基板1の表面に対して、垂直となる。本実施の形態では、光ビーム照射装置20’内において、絞り移動装置により絞り29の開口29aの中心をDMD25により変調された光ビームの中心からずらし、投影レンズ26bを通過する光ビームの一部を絞り29で遮断して、投影レンズ26bからチャック10に支持された基板1へ直線偏光の光ビームを斜めに照射する。 In FIG. 14, the angle of the mirror 24 is set so that the central axis of the light beam reflected by each mirror 25a of the DMD 25 is parallel to the optical axis of the projection lenses 26a and 26b. The central axis of the light beam that has passed through is perpendicular to the surface of the substrate 1 supported by the chuck 10. In the present embodiment, in the light beam irradiation device 20 ′, the center of the opening 29a of the stop 29 is shifted from the center of the light beam modulated by the DMD 25 by the stop moving device, and a part of the light beam that passes through the projection lens 26b. Is blocked by a diaphragm 29, and a linearly polarized light beam is obliquely applied from the projection lens 26b to the substrate 1 supported by the chuck 10.
 図15及び図17は、本発明の他の実施の形態による配向膜の露光方法を説明する図である。絞り移動装置は、主制御装置70の制御により、リニアモータの可動子54aを移動して、絞り29を投影レンズ26a,26bの光軸に垂直な方向へ移動する。図15は、絞り移動装置が、支持板53を矢印で示す様に図面左方向へ移動した例を示している。また、図17は、絞り移動装置が、支持板53を矢印で示す様に図面右方向へ移動した例を示している。 15 and 17 are diagrams for explaining an alignment film exposure method according to another embodiment of the present invention. Under the control of the main control device 70, the stop moving device moves the mover 54a of the linear motor to move the stop 29 in a direction perpendicular to the optical axes of the projection lenses 26a and 26b. FIG. 15 shows an example in which the diaphragm moving device has moved the support plate 53 in the left direction of the drawing as indicated by an arrow. FIG. 17 shows an example in which the diaphragm moving device moves the support plate 53 in the right direction of the drawing as indicated by an arrow.
 図16及び図18は、光ビームと絞りの位置関係を示す図である。図16(a)及び図18(a)は、図14の状態における光ビーム2と絞り29の位置関係を示し、DMD25により変調された光ビーム2の中心と絞り29に設けられた開口29aの中心とが一致している。図16(b)は、図15の状態における光ビーム2と絞り29の位置関係を示し、絞り29が図面左側へ移動して、絞り29の開口29aの中心がDMD25により変調された光ビーム2の中心から外れている。このとき、今まで投影レンズ26bを通過していた光ビームの右側の部分が絞り29で遮断されるため、図15において、投影レンズ26bを通過した光ビームは、チャック10に支持された基板1に対し、全体として角度αを持って左斜め上方から照射される。 16 and 18 are diagrams showing the positional relationship between the light beam and the stop. FIGS. 16A and 18A show the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 14, and the center of the light beam 2 modulated by the DMD 25 and the opening 29a provided in the diaphragm 29. FIG. The center matches. FIG. 16B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 15, the diaphragm 29 moves to the left side of the drawing, and the center of the opening 29 a of the diaphragm 29 is modulated by the DMD 25. Is out of the center. At this time, the right side portion of the light beam that has been passing through the projection lens 26b is blocked by the diaphragm 29. Therefore, in FIG. 15, the light beam that has passed through the projection lens 26b is the substrate 1 supported by the chuck 10. On the other hand, irradiation is performed obliquely from the upper left with an angle α as a whole.
 また、図18(b)は、図17の状態における光ビーム2と絞り29の位置関係を示し、絞り29が図面右側へ移動して、絞り29の開口29aの中心がDMD25により変調された光ビーム2の中心から外れている。このとき、今まで投影レンズ26bを通過していた光ビームの左側の部分が絞り29で遮断されるため、図17において、投影レンズ26bを通過した光ビームは、チャック10に支持された基板1に対し、全体として角度αを持って右斜め上方から照射される。 FIG. 18B shows the positional relationship between the light beam 2 and the diaphragm 29 in the state of FIG. 17. The diaphragm 29 moves to the right side of the drawing, and the center of the opening 29 a of the diaphragm 29 is modulated by the DMD 25. It is off the center of the beam 2. At this time, since the left part of the light beam that has been passing through the projection lens 26b until now is blocked by the diaphragm 29, the light beam that has passed through the projection lens 26b in FIG. On the other hand, irradiation is performed obliquely from the upper right with an angle α as a whole.
 絞り移動装置により絞り29の開口29aの中心をDMD25により変調された光ビームの中心からずらし、投影レンズ26bを通過する光ビームの一部を絞りで遮断して、投影レンズ26bからチャック10に支持された基板1へ直線偏光の光ビームを斜めに照射するので、図4に示した光ビーム照射装置20の調節装置50によりDMD25へ供給される光ビームの入射角度を調節することなく、絞り29を投影レンズ26a,26bの光軸に垂直な方向へ移動する簡単な動作で、投影レンズ26bからチャック10に支持された基板1へ直線偏光の光ビームが斜めに照射される。 The center of the aperture 29a of the diaphragm 29 is shifted from the center of the light beam modulated by the DMD 25 by the diaphragm moving device, and a part of the light beam passing through the projection lens 26b is blocked by the diaphragm, and supported by the chuck 10 from the projection lens 26b. Since the linearly polarized light beam is obliquely irradiated onto the substrate 1 thus formed, the diaphragm 29 is adjusted without adjusting the incident angle of the light beam supplied to the DMD 25 by the adjustment device 50 of the light beam irradiation device 20 shown in FIG. Is moved in a direction perpendicular to the optical axes of the projection lenses 26a and 26b, and the linearly polarized light beam is obliquely irradiated onto the substrate 1 supported by the chuck 10 from the projection lens 26b.
 そして、絞り移動装置による絞り29の移動方向を変えて、チャック10に支持された基板1へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、各配向領域を露光する度に基板をチャックから取り外して基板の向きを回転させる必要が無いので、タクトタイムが短縮されて、スループットが向上する。 Then, by changing the moving direction of the diaphragm 29 by the diaphragm moving device, the direction of the light beam applied to the substrate 1 supported by the chuck 10 can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. . Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
 図15において、露光装置は、チャック10と光ビーム照射装置20’とを相対的に移動し、光ビーム照射装置20’から斜めに照射された直線偏光の光ビームにより基板1を矢印で示す走査方向へ走査する。このとき、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、プレチルト方向が露光光の進行方向に沿う場合、基板1の配向膜には、プレチルト方向が図面右側となる配向特性が付与される。また、プレチルト方向が露光光の進行方向と逆方向に沿う場合、基板1の配向膜には、プレチルト方向が図面左側となる配向特性が付与される。 In FIG. 15, the exposure apparatus moves relative to the chuck 10 and the light beam irradiation apparatus 20 ′, and scans the substrate 1 with a linearly polarized light beam obliquely irradiated from the light beam irradiation apparatus 20 ′ as indicated by an arrow. Scan in the direction. At this time, when the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the property of the alignment film applied to the substrate 1, etc., the pretilt direction is on the right side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted. Further, when the pretilt direction is along the direction opposite to the traveling direction of the exposure light, the alignment film of the substrate 1 is given an alignment characteristic in which the pretilt direction is the left side of the drawing.
 図17において、露光装置は、チャック10と光ビーム照射装置20’とを相対的に移動し、光ビーム照射装置20’から斜めに照射された直線偏光の光ビームにより基板1を矢印で示す走査方向へ走査する。このとき、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、プレチルト方向が露光光の進行方向に沿う場合、基板1の配向膜には、プレチルト方向が図面左側となる配向特性が付与される。また、プレチルト方向が露光光の進行方向と逆方向に沿う場合、基板1の配向膜には、プレチルト方向が図面右側となる配向特性が付与される。 In FIG. 17, the exposure apparatus moves relative to the chuck 10 and the light beam irradiation apparatus 20 ′, and scans the substrate 1 with a linearly polarized light beam obliquely irradiated from the light beam irradiation apparatus 20 ′ as indicated by an arrow. Scan in the direction. At this time, when the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc., the pretilt direction is on the left side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted. Further, when the pretilt direction is along the direction opposite to the traveling direction of the exposure light, the alignment film of the substrate 1 is given an alignment characteristic with the pretilt direction on the right side of the drawing.
 なお、光ビームを基板1へ照射する方向と、光ビームによる基板1の走査方向との組合せは、図15及び図17に示した例に限らず、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、適宜決定される。 The combination of the direction in which the light beam is applied to the substrate 1 and the scanning direction of the substrate 1 by the light beam is not limited to the example shown in FIGS. It is determined appropriately according to the properties of the alignment film.
 光ビーム照射装置20’の絞り移動装置による絞り29の移動方向を変えて、チャック10に支持された基板1へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャック10と光ビーム照射装置20’との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更するので、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、光ビームによる基板1の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャック10と光ビーム照射装置20’との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 By changing the moving direction of the diaphragm 29 by the diaphragm moving device of the light beam irradiation device 20 ′, the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, the direction of the light beam is changed, and the chuck 10 and the change of the relative movement direction of the light beam irradiation apparatus 20 ′ are combined to change the pretilt direction of the alignment characteristic imparted to the alignment film, so that the pattern of exposure light and the alignment film applied to the substrate 1 are changed. When the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film according to the nature of the light beam, the direction of the light beam is changed, and the chuck 10 and the light beam irradiation device 20 ′ The desired pretilt direction can be obtained by combining the relative movement direction changes.
 なお、以上説明した実施の形態では、基板の配向膜にプレチルト方向が180度異なる2種類の配向領域群を形成していたが、プレチルト方向がほぼ90度ずつ異なる4種類の配向領域群を形成する場合には、図9及び図12、あるいは図15及び図17に示す様にして光ビームによる基板の走査を行った後、基板をほぼ90度回転させてから、再び、図9及び図12、あるいは図15及び図17に示す様にして光ビームによる基板の走査を行えばよい。 In the embodiment described above, two types of alignment region groups having different pretilt directions by 180 degrees are formed in the alignment film of the substrate. However, four types of alignment region groups having different pretilt directions by approximately 90 degrees are formed. In this case, after the substrate is scanned with the light beam as shown in FIGS. 9 and 12, or FIGS. 15 and 17, the substrate is rotated by approximately 90 degrees, and then again shown in FIGS. Alternatively, the substrate may be scanned with a light beam as shown in FIGS.
 また、以上説明した実施の形態では、プレチルト方向が基板の長辺又は短辺に平行であったが、表示用パネルの特性として、プレチルト方向を基板の長辺又は短辺に対して斜めにする必要がある場合は、基板をXY方向に対して回転させた状態で光ビームによる基板の走査を行うことにより、所望のプレチルト方向を得ることができる。 In the embodiment described above, the pretilt direction is parallel to the long side or short side of the substrate. However, as a characteristic of the display panel, the pretilt direction is inclined with respect to the long side or short side of the substrate. If necessary, a desired pretilt direction can be obtained by scanning the substrate with a light beam while rotating the substrate with respect to the XY directions.
 以上説明した実施の形態によれば、光ビーム照射装置20,20’から斜めに照射された直線偏光の光ビームにより基板1を走査して、基板1に塗布された配向膜に液晶の配列方向を整える配向特性を付与することにより、光ビーム照射装置20,20’のDMD25を駆動するDMD駆動回路27へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。従って、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することができる。 According to the embodiment described above, the alignment direction of the liquid crystal is applied to the alignment film applied to the substrate 1 by scanning the substrate 1 with the linearly polarized light beam obliquely irradiated from the light beam irradiation devices 20, 20 ′. By providing the alignment characteristics for adjusting the image, the drawing data supplied to the DMD driving circuit 27 for driving the DMD 25 of the light beam irradiation devices 20 and 20 ′ is changed to expose the alignment region having a desired position and a desired shape. be able to. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
 さらに、図4及び図9から図13に示した実施の形態によれば、調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、タクトタイムを短縮して、スループットを向上させることができる。 Further, according to the embodiment shown in FIGS. 4 and 9 to 13, the incident angle of the light beam supplied to the DMD 25 is adjusted by the adjusting device 50, and the substrate 1 supported by the chuck 10 is irradiated. By changing the direction of the light beam, the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
 また、調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの入射角度を変更し、配向膜に付与する配向特性のプレチルト角を制御することができる。 In addition, the adjusting device 50 adjusts the incident angle of the light beam supplied to the DMD 25 to change the incident angle of the light beam applied to the substrate 1 supported by the chuck 10, so that the alignment characteristic applied to the alignment film can be improved. The pretilt angle can be controlled.
 さらに、光ビーム照射装置20内において、調節装置50により調節した光ビームのDMD25への入射角度に応じ、投影レンズ26bを通過する光ビームの回折光を制限する絞り29を、投影レンズ26a,26bの光軸に垂直な方向へ移動することにより、投影レンズ26bを通過する光ビームの光量の低下を抑制することができる。 Further, in the light beam irradiation device 20, a diaphragm 29 that restricts the diffracted light of the light beam passing through the projection lens 26b in accordance with the incident angle of the light beam adjusted by the adjustment device 50 to the DMD 25 is provided with projection lenses 26a and 26b. By moving in the direction perpendicular to the optical axis, it is possible to suppress a decrease in the light amount of the light beam passing through the projection lens 26b.
 さらに、光ビーム照射装置20の調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャック10と光ビーム照射装置20との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することにより、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、光ビームによる基板1の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャック10と光ビーム照射装置20との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Further, by adjusting the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50 of the light beam irradiation device 20, the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the light beam is changed. The pattern of the exposure light and the substrate can be changed by changing the pretilt direction of the alignment characteristic to be applied to the alignment film by combining the change of the direction of the above and the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20. When the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film, depending on the properties of the alignment film applied to 1, the change of the direction of the light beam, A desired pretilt direction can be obtained in combination with a change in relative movement direction with the light beam irradiation device 20.
 あるいは、図14から図18に示した実施の形態によれば、絞り移動装置により絞り29の開口29aの中心をDMD25により変調された光ビームの中心からずらし、投影レンズ26bを通過する光ビームの一部を絞り29で遮断して、投影レンズ26bからチャック10に支持された基板1へ直線偏光の光ビームを斜めに照射することにより、図4に示した光ビーム照射装置20の調節装置50によりDMD25へ供給される光ビームの入射角度を調節することなく、絞り29を投影レンズ26a,26bの光軸に垂直な方向へ移動する簡単な動作で、投影レンズ26bからチャック10に支持された基板1へ直線偏光の光ビームを斜めに照射することができる。 Alternatively, according to the embodiment shown in FIGS. 14 to 18, the center of the opening 29a of the diaphragm 29 is shifted from the center of the light beam modulated by the DMD 25 by the diaphragm moving device, and the light beam passing through the projection lens 26b is shifted. A part of the light is irradiated with a diaphragm 29, and a linearly polarized light beam is obliquely irradiated onto the substrate 1 supported by the chuck 10 from the projection lens 26b, whereby the adjusting device 50 of the light beam irradiation device 20 shown in FIG. By the simple operation of moving the diaphragm 29 in the direction perpendicular to the optical axes of the projection lenses 26a and 26b without adjusting the incident angle of the light beam supplied to the DMD 25, the projection lens 26b is supported by the chuck 10. The substrate 1 can be irradiated with a linearly polarized light beam obliquely.
 そして、絞り移動装置による絞り29の移動方向を変えて、チャック10に支持された基板1へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、タクトタイムを短縮して、スループットを向上させることができる。 Then, by changing the moving direction of the diaphragm 29 by the diaphragm moving device, the direction of the light beam applied to the substrate 1 supported by the chuck 10 can be changed, and the pretilt direction of the alignment characteristic imparted to the alignment film can be changed. . Accordingly, when a plurality of different alignment regions are formed on the alignment film on one substrate, the tact time can be shortened and the throughput can be improved.
 さらに、光ビーム照射装置20’の絞り移動装置による絞り29の移動方向を変えて、チャック10に支持された基板1へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャック10と光ビーム照射装置20’との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することにより、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、光ビームによる基板1の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャック10と光ビーム照射装置20との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Further, the direction of movement of the diaphragm 29 by the diaphragm movement device of the light beam irradiation device 20 ′ is changed to change the direction of the light beam irradiated to the substrate 1 supported by the chuck 10, and the direction of the light beam can be changed. The exposure light pattern and the substrate 1 can be applied by changing the pretilt direction of the alignment characteristic applied to the alignment film in combination with the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20 ′. When the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film according to the properties of the alignment film, the chuck 10 and the light beam irradiation device The desired pretilt direction can be obtained in combination with the change of the relative movement direction with respect to 20.
 図19は、本発明の他の実施の形態による配向膜の露光装置の概略構成を示す図である。また、図20は本発明の他の実施の形態による配向膜の露光装置の側面図、図21は本発明の他の実施の形態による配向膜の露光装置の正面図である。露光装置は、ベース3、Xガイド4、Xステージ5、Yガイド6、Yステージ7、θステージ8、チャック10、ゲート11、光ビーム照射装置20、リニアスケール31,33、エンコーダ32,34、レーザー測長系、レーザー測長系制御装置40、ステージ駆動回路60、及び主制御装置70を含んで構成されている。なお、図20及び図21では、レーザー測長系のレーザー光源41、レーザー測長系制御装置40、ステージ駆動回路60、及び主制御装置70が省略されている。露光装置は、これらの他に、基板1をチャック10へ搬入し、また基板1をチャック10から搬出する基板搬送ロボット、装置内の温度管理を行う温度制御ユニット等を備えている。 FIG. 19 is a view showing a schematic configuration of an alignment film exposure apparatus according to another embodiment of the present invention. 20 is a side view of an alignment film exposure apparatus according to another embodiment of the present invention, and FIG. 21 is a front view of an alignment film exposure apparatus according to another embodiment of the present invention. The exposure apparatus includes a base 3, an X guide 4, an X stage 5, a Y guide 6, a Y stage 7, a θ stage 8, a chuck 10, a gate 11, a light beam irradiation device 20, linear scales 31, 33, encoders 32, 34, A laser length measurement system, a laser length measurement system control device 40, a stage drive circuit 60, and a main control device 70 are included. 20 and 21, the laser length measurement laser light source 41, the laser length measurement system control device 40, the stage drive circuit 60, and the main control device 70 are omitted. In addition to these, the exposure apparatus includes a substrate transfer robot that loads the substrate 1 into the chuck 10 and unloads the substrate 1 from the chuck 10, a temperature control unit that performs temperature management in the apparatus, and the like.
 なお、以下に説明する実施の形態におけるXY方向は例示であって、X方向とY方向とを入れ替えてもよい。 Note that the XY directions in the embodiments described below are examples, and the X direction and the Y direction may be interchanged.
 図19及び図20において、チャック10は、基板1の受け渡しを行う受け渡し位置にある。受け渡し位置において、図示しない基板搬送ロボットにより基板1がチャック10へ搬入され、また図示しない基板搬送ロボットにより基板1がチャック10から搬出される。チャック10は、基板1の裏面を真空吸着して支持する。基板1の表面には、ポリイミド等の高分子化合物から成る配向膜が塗布されている。 19 and 20, the chuck 10 is at a delivery position for delivering the substrate 1. At the delivery position, the substrate 1 is carried into the chuck 10 by a substrate carrying robot (not shown), and the substrate 1 is carried out of the chuck 10 by a substrate carrying robot (not shown). The chuck 10 supports the back surface of the substrate 1 by vacuum suction. An alignment film made of a polymer compound such as polyimide is applied to the surface of the substrate 1.
 基板1の露光を行う露光位置の上空に、ベース3をまたいでゲート11が設けられている。ゲート11には、複数の光ビーム照射装置20が搭載されている。なお、本実施の形態は、8つの光ビーム照射装置20を用いた露光装置の例を示しているが、光ビーム照射装置の数はこれに限らず、本発明は1つ又は2つ以上の光ビーム照射装置を用いた露光装置に適用される。 A gate 11 is provided across the base 3 above the exposure position where the substrate 1 is exposed. A plurality of light beam irradiation devices 20 are mounted on the gate 11. Although the present embodiment shows an example of an exposure apparatus using eight light beam irradiation apparatuses 20, the number of light beam irradiation apparatuses is not limited to this, and the present invention is one or two or more. The present invention is applied to an exposure apparatus using a light beam irradiation apparatus.
 図22は、光ビーム照射装置の概略構成を示す図である。光ビーム照射装置20は、光ファイバー22、レンズ23、ミラー24、DMD(Digital Micromirror Device)25、投影レンズ26a,26b、DMD駆動回路27、偏光子28、調節装置50、及びレーザー変位計を含んで構成されている。光ファイバー22は、レーザー光源ユニット21から発生された紫外光の光ビームを、光ビーム照射装置20内へ導入する。光ファイバー22から射出された光ビームは、レンズ23を透過した後、偏光子28を透過して直線偏光となり、ミラー24で反射されてDMD25へ照射される。DMD25は、光ビームを反射する複数の微小なミラーを直交する二方向に配列して構成された空間的光変調器であり、各ミラーの角度を変更して光ビームを変調する。DMD25により変調された光ビームは、投影レンズ26a,26bを含むヘッド部20aから照射される。DMD駆動回路27は、主制御装置70から供給された描画データに基づいて、DMD25の各ミラーの角度を変更する。 FIG. 22 is a diagram showing a schematic configuration of the light beam irradiation apparatus. The light beam irradiation device 20 includes an optical fiber 22, a lens 23, a mirror 24, a DMD (Digital Micromirror Device) 25, projection lenses 26a and 26b, a DMD driving circuit 27, a polarizer 28, an adjusting device 50, and a laser displacement meter. It is configured. The optical fiber 22 introduces an ultraviolet light beam generated from the laser light source unit 21 into the light beam irradiation device 20. The light beam emitted from the optical fiber 22 passes through the lens 23, then passes through the polarizer 28, becomes linearly polarized light, is reflected by the mirror 24, and is irradiated onto the DMD 25. The DMD 25 is a spatial light modulator configured by arranging a plurality of minute mirrors that reflect a light beam in two orthogonal directions, and modulates the light beam by changing the angle of each mirror. The light beam modulated by the DMD 25 is irradiated from the head unit 20a including the projection lenses 26a and 26b. The DMD drive circuit 27 changes the angle of each mirror of the DMD 25 based on the drawing data supplied from the main controller 70.
 なお、偏光子28は、レンズ23とミラー24の間に限らず、光ビーム照射装置20内で光ビームの光路中の任意の位置に設置することができる。 The polarizer 28 is not limited to the position between the lens 23 and the mirror 24 and can be installed at an arbitrary position in the optical path of the light beam within the light beam irradiation device 20.
 図20及び図21において、チャック10は、θステージ8に搭載されており、θステージ8の下にはYステージ7及びXステージ5が設けられている。Xステージ5は、ベース3に設けられたXガイド4に搭載され、Xガイド4に沿ってX方向へ移動する。Yステージ7は、Xステージ5に設けられたYガイド6に搭載され、Yガイド6に沿ってY方向へ移動する。θステージ8は、Yステージ7に搭載され、θ方向へ回転する。Xステージ5、Yステージ7、及びθステージ8には、ボールねじ及びモータや、リニアモータ等の図示しない駆動機構が設けられており、各駆動機構は、図19のステージ駆動回路60により駆動される。 20 and 21, the chuck 10 is mounted on the θ stage 8, and the Y stage 7 and the X stage 5 are provided below the θ stage 8. The X stage 5 is mounted on an X guide 4 provided on the base 3 and moves in the X direction along the X guide 4. The Y stage 7 is mounted on a Y guide 6 provided on the X stage 5 and moves in the Y direction along the Y guide 6. The θ stage 8 is mounted on the Y stage 7 and rotates in the θ direction. The X stage 5, Y stage 7, and θ stage 8 are provided with drive mechanisms (not shown) such as ball screws and motors, linear motors, etc., and each drive mechanism is driven by a stage drive circuit 60 of FIG. The
 θステージ8のθ方向への回転により、チャック10に搭載された基板1は、直交する二辺がX方向及びY方向へ向く様に回転される。Xステージ5のX方向への移動により、チャック10は、受け渡し位置と露光位置との間を移動される。露光位置において、Xステージ5のX方向への移動により、各光ビーム照射装置20のヘッド部20aから照射された光ビームが、基板1をX方向へ走査する。また、Yステージ7のY方向への移動により、各光ビーム照射装置20のヘッド部20aから照射された光ビームによる基板1の走査領域が、Y方向へ移動される。図19において、主制御装置70は、ステージ駆動回路60を制御して、θステージ8のθ方向へ回転、Xステージ5のX方向への移動、及びYステージ7のY方向への移動を行う。 Rotation of the θ stage 8 in the θ direction causes the substrate 1 mounted on the chuck 10 to rotate so that two orthogonal sides face in the X direction and the Y direction. As the X stage 5 moves in the X direction, the chuck 10 is moved between the delivery position and the exposure position. When the X stage 5 moves in the X direction at the exposure position, the light beam irradiated from the head unit 20a of each light beam irradiation apparatus 20 scans the substrate 1 in the X direction. In addition, as the Y stage 7 moves in the Y direction, the scanning region of the substrate 1 by the light beam emitted from the head unit 20a of each light beam irradiation device 20 is moved in the Y direction. In FIG. 19, the main controller 70 controls the stage drive circuit 60 to rotate the θ stage 8 in the θ direction, move the X stage 5 in the X direction, and move the Y stage 7 in the Y direction. .
 図23は、DMDのミラー部の一例を示す図である。光ビーム照射装置20のDMD25は、光ビーム照射装置20からの光ビームによる基板1の走査方向(X方向)に対して、所定の角度θだけ傾いて配置されている。DMD25を、走査方向に対して傾けて配置すると、直交する二方向に配列された複数のミラー25aのいずれかが、隣接するミラー25a間の隙間に対応する箇所をカバーするので、配向膜の露光を隙間無く行うことができる。 FIG. 23 is a diagram illustrating an example of a DMD mirror unit. The DMD 25 of the light beam irradiation device 20 is disposed at a predetermined angle θ with respect to the scanning direction (X direction) of the substrate 1 by the light beam from the light beam irradiation device 20. When the DMD 25 is arranged to be inclined with respect to the scanning direction, any one of the plurality of mirrors 25a arranged in two orthogonal directions covers a portion corresponding to the gap between the adjacent mirrors 25a, so that the alignment film is exposed. Can be performed without gaps.
 なお、本実施の形態では、Xステージ5によりチャック10をX方向へ移動することによって、光ビーム照射装置20からの光ビームによる基板1の走査を行っているが、光ビーム照射装置20を移動することにより、光ビーム照射装置20からの光ビームによる基板1の走査を行ってもよい。また、本実施の形態では、Yステージ7によりチャック10をY方向へ移動することによって、光ビーム照射装置20からの光ビームによる基板1の走査領域を変更しているが、光ビーム照射装置20を移動することにより、光ビーム照射装置20からの光ビームによる基板1の走査領域を変更してもよい。 In the present embodiment, the substrate 10 is scanned by the light beam from the light beam irradiation device 20 by moving the chuck 10 in the X direction by the X stage 5, but the light beam irradiation device 20 is moved. By doing so, the substrate 1 may be scanned by the light beam from the light beam irradiation device 20. In the present embodiment, the scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 is changed by moving the chuck 10 in the Y direction by the Y stage 7, but the light beam irradiation device 20. , The scanning region of the substrate 1 by the light beam from the light beam irradiation device 20 may be changed.
 例えば、チャック10を固定し、各光ビーム照射装置20を搭載したゲート11をXY方向へ移動するステージを設け、各光ビーム照射装置20をXY方向へ移動する構成としてもよい。その場合、ゲート11の位置を3軸で検出するレーザー測長系を設け、後述する主制御装置70の描画制御部71は、レーザー測長系の検出結果に基づき、各光ビーム照射装置20のDMD駆動回路27へ供給する描画データのXY座標を決定する。 For example, the chuck 10 may be fixed, and a stage for moving the gate 11 on which each light beam irradiation device 20 is mounted in the XY direction may be provided, and each light beam irradiation device 20 may be moved in the XY direction. In that case, a laser length measurement system that detects the position of the gate 11 with three axes is provided, and the drawing control unit 71 of the main control device 70 described later is based on the detection result of the laser length measurement system. The XY coordinates of the drawing data supplied to the DMD driving circuit 27 are determined.
 図19及び図20において、ベース3には、X方向へ伸びるリニアスケール31が設置されている。リニアスケール31には、Xステージ5のX方向への移動量を検出するための目盛が付けられている。また、Xステージ5には、Y方向へ伸びるリニアスケール33が設置されている。リニアスケール33には、Yステージ7のY方向への移動量を検出するための目盛が付けられている。 19 and 20, the base 3 is provided with a linear scale 31 extending in the X direction. The linear scale 31 is provided with a scale for detecting the amount of movement of the X stage 5 in the X direction. The X stage 5 is provided with a linear scale 33 extending in the Y direction. The linear scale 33 is provided with a scale for detecting the amount of movement of the Y stage 7 in the Y direction.
 図19及び図21において、Xステージ5の一側面には、リニアスケール31に対向して、エンコーダ32が取り付けられている。エンコーダ32は、リニアスケール31の目盛を検出して、パルス信号を主制御装置70へ出力する。また、図19及び図20において、Yステージ7の一側面には、リニアスケール33に対向して、エンコーダ34が取り付けられている。エンコーダ34は、リニアスケール33の目盛を検出して、パルス信号を主制御装置70へ出力する。主制御装置70は、エンコーダ32のパルス信号をカウントして、Xステージ5のX方向への移動量を検出し、エンコーダ34のパルス信号をカウントして、Yステージ7のY方向への移動量を検出する。 19 and 21, an encoder 32 is attached to one side surface of the X stage 5 so as to face the linear scale 31. The encoder 32 detects the scale of the linear scale 31 and outputs a pulse signal to the main controller 70. 19 and 20, an encoder 34 is attached to one side surface of the Y stage 7 so as to face the linear scale 33. The encoder 34 detects the scale of the linear scale 33 and outputs a pulse signal to the main controller 70. Main controller 70 counts the pulse signal of encoder 32, detects the amount of movement of X stage 5 in the X direction, counts the pulse signal of encoder 34, and moves the amount of Y stage 7 in the Y direction. Is detected.
 図24は、レーザー測長系の動作を説明する図である。なお、図24においては、図19に示したゲート11、及び光ビーム照射装置20が省略されている。レーザー測長系は、公知のレーザー干渉式の測長系であって、レーザー光源41、レーザー干渉計42,44、及びバーミラー43,45を含んで構成されている。バーミラー43は、チャック10のY方向へ伸びる一側面に取り付けられている。また、バーミラー45は、チャック10のX方向へ伸びる一側面に取り付けられている。 FIG. 24 is a diagram for explaining the operation of the laser measurement system. In FIG. 24, the gate 11 and the light beam irradiation device 20 shown in FIG. 19 are omitted. The laser length measurement system is a known laser interference type length measurement system, and includes a laser light source 41, laser interferometers 42 and 44, and bar mirrors 43 and 45. The bar mirror 43 is attached to one side surface of the chuck 10 that extends in the Y direction. The bar mirror 45 is attached to one side surface of the chuck 10 extending in the X direction.
 レーザー干渉計42は、レーザー光源41からのレーザー光をバーミラー43へ照射し、バーミラー43により反射されたレーザー光を受光して、レーザー光源41からのレーザー光とバーミラー43により反射されたレーザー光との干渉を測定する。この測定は、Y方向の2箇所で行う。レーザー測長系制御装置40は、主制御装置70の制御により、レーザー干渉計42の測定結果から、チャック10のX方向の位置及び回転を検出する。 The laser interferometer 42 irradiates the laser beam from the laser light source 41 onto the bar mirror 43, receives the laser beam reflected by the bar mirror 43, and the laser beam reflected from the laser beam source 41 and the laser beam reflected by the bar mirror 43. Measure interference. This measurement is performed at two locations in the Y direction. The laser length measurement system control device 40 detects the position and rotation of the chuck 10 in the X direction from the measurement result of the laser interferometer 42 under the control of the main control device 70.
 一方、レーザー干渉計44は、レーザー光源41からのレーザー光をバーミラー45へ照射し、バーミラー45により反射されたレーザー光を受光して、レーザー光源41からのレーザー光とバーミラー45により反射されたレーザー光との干渉を測定する。レーザー測長系制御装置40は、主制御装置70の制御により、レーザー干渉計44の測定結果から、チャック10のY方向の位置を検出する。 On the other hand, the laser interferometer 44 irradiates the laser beam from the laser light source 41 to the bar mirror 45, receives the laser beam reflected by the bar mirror 45, and the laser beam reflected from the laser source 41 and the bar mirror 45. Measure interference with light. The laser length measurement system control device 40 detects the position of the chuck 10 in the Y direction from the measurement result of the laser interferometer 44 under the control of the main control device 70.
 以下、本発明の他の実施の形態による配向膜の露光方法について説明する。図22において、光ビーム照射装置20の調節装置50は、支持台51及びリニアモータを含んで構成されている。支持台51は、ミラー24を支持して回転する回転機構51aを有し、回転機構51aを回転してミラー24の角度を変更する。リニアモータは、コイルを内蔵した可動子52aと、磁石を内蔵した固定子52bとから成る。可動子52aのコイルに電流を流すと、コイルの電流と固定子52bの磁石の磁界とから、フレミングの左手の法則によって、可動子52aに推力(ローレンツ力)が働き、可動子52aが固定子52bに沿って移動する。可動子52aには、支持台51が搭載されている。なお、調節装置50には、リニアモータに限らず、ボールねじ及びモータ等の他の移動機構を用いてもよい。 Hereinafter, an alignment film exposure method according to another embodiment of the present invention will be described. In FIG. 22, the adjusting device 50 of the light beam irradiation device 20 includes a support base 51 and a linear motor. The support base 51 includes a rotation mechanism 51a that supports and rotates the mirror 24, and changes the angle of the mirror 24 by rotating the rotation mechanism 51a. The linear motor includes a mover 52a with a built-in coil and a stator 52b with a built-in magnet. When a current is passed through the coil of the mover 52a, a thrust (Lorentz force) acts on the mover 52a according to Fleming's left-hand rule from the coil current and the magnetic field of the magnet of the stator 52b, and the mover 52a becomes a stator. Move along 52b. A support base 51 is mounted on the mover 52a. The adjusting device 50 is not limited to a linear motor, and other moving mechanisms such as a ball screw and a motor may be used.
 調節装置50は、主制御装置70の制御により、支持台51の回転機構51aを回転して、ミラー24の角度を変更すると共に、リニアモータの可動子52aを移動して、ミラー24の位置を変更し、ミラー24からDMD25へ照射される光ビームの入射角度を調節する。ミラー24からDMD25へ照射される光ビームの入射角度が変わると、DMD25の各ミラー25aにより反射される光ビームの反射角度が変化する。図4は、DMD25の各ミラー25aにより反射された光ビームの中心軸が、投影レンズ26a,26bの光軸と平行な状態を示している。このとき、投影レンズ26a,26bを透過した光ビームの中心軸は、チャック10に支持された基板1の表面に対して、垂直となる。 Under the control of the main controller 70, the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 to change the angle of the mirror 24, and moves the linear motor movable element 52a to adjust the position of the mirror 24. The angle of incidence of the light beam irradiated from the mirror 24 onto the DMD 25 is adjusted. When the incident angle of the light beam irradiated from the mirror 24 to the DMD 25 changes, the reflection angle of the light beam reflected by each mirror 25a of the DMD 25 changes. FIG. 4 shows a state in which the central axis of the light beam reflected by each mirror 25a of the DMD 25 is parallel to the optical axes of the projection lenses 26a and 26b. At this time, the central axis of the light beam transmitted through the projection lenses 26 a and 26 b is perpendicular to the surface of the substrate 1 supported by the chuck 10.
 図25及び図26は、本発明の他の実施の形態による配向膜の露光方法を説明する図である。図25は、調節装置50が、支持台51の回転機構51aを矢印で示す様に反時計回りへ回転し、支持台51を矢印で示す様に図面右方向へ移動して、ミラー24からDMD25へ照射される光ビームの入射角度を大きくした例を示している。このとき、図25に示す様に、DMD25の各ミラー25aにより反射された光ビームは、右斜め上方から、投影レンズ26aへその光軸に対して斜めに入射する。そして、投影レンズ26bを通過した光ビームは、チャック10に支持された基板1に対して、左斜め上方から照射される。 25 and 26 are diagrams for explaining an alignment film exposure method according to another embodiment of the present invention. 25, the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 counterclockwise as indicated by an arrow, and moves the support base 51 to the right in the drawing as indicated by an arrow. The example which enlarged the incident angle of the light beam irradiated to is shown. At this time, as shown in FIG. 25, the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to the optical axis from the upper right side. Then, the light beam that has passed through the projection lens 26 b is applied to the substrate 1 supported by the chuck 10 from the upper left side.
 露光装置は、チャック10と光ビーム照射装置20とを相対的に移動し、光ビーム照射装置20から斜めに照射された直線偏光の光ビームにより基板1を矢印で示す走査方向へ走査する。このとき、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、プレチルト方向が露光光の進行方向に沿う場合、基板1の配向膜には、プレチルト方向が図面右側となる配向特性が付与される。また、プレチルト方向が露光光の進行方向と逆方向に沿う場合、基板1の配向膜には、プレチルト方向が図面左側となる配向特性が付与される。 The exposure apparatus relatively moves the chuck 10 and the light beam irradiation apparatus 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation apparatus 20. At this time, when the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc., the pretilt direction is on the right side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted. Further, when the pretilt direction is along the direction opposite to the traveling direction of the exposure light, the alignment film of the substrate 1 is given an alignment characteristic in which the pretilt direction is the left side of the drawing.
 図26は、調節装置50が、支持台51の回転機構51aを矢印で示す様に時計回りへ回転し、支持台51を矢印で示す様に図面左方向へ移動して、ミラー24からDMD25へ照射される光ビームの入射角度を小さくした例を示している。このとき、図26に示す様に、DMD25の各ミラー25aにより反射された光ビームは、左斜め上方から、投影レンズ26aへその光軸に対して斜めに入射する。そして、投影レンズ26bを通過した光ビームは、チャック10に支持された基板1に対して、右斜め上方から照射される。 In FIG. 26, the adjusting device 50 rotates the rotating mechanism 51a of the support base 51 clockwise as indicated by an arrow, and moves the support base 51 leftward as indicated by an arrow, from the mirror 24 to the DMD 25. The example which made small the incident angle of the irradiated light beam is shown. At this time, as shown in FIG. 26, the light beam reflected by each mirror 25a of the DMD 25 enters the projection lens 26a obliquely with respect to the optical axis from the upper left oblique direction. Then, the light beam that has passed through the projection lens 26 b is applied to the substrate 1 supported by the chuck 10 from the upper right side.
 露光装置は、チャック10と光ビーム照射装置20とを相対的に移動し、光ビーム照射装置20から斜めに照射された直線偏光の光ビームにより基板1を矢印で示す走査方向へ走査する。このとき、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、プレチルト方向が露光光の進行方向に沿う場合、基板1の配向膜には、プレチルト方向が図面左側となる配向特性が付与される。また、プレチルト方向が露光光の進行方向と逆方向に沿う場合、基板1の配向膜には、プレチルト方向が図面右側となる配向特性が付与される。 The exposure apparatus relatively moves the chuck 10 and the light beam irradiation apparatus 20, and scans the substrate 1 in the scanning direction indicated by the arrow by the linearly polarized light beam irradiated obliquely from the light beam irradiation apparatus 20. At this time, when the pretilt direction is along the traveling direction of the exposure light according to the pattern of the exposure light, the nature of the alignment film applied to the substrate 1, etc., the pretilt direction is on the left side of the drawing in the alignment film of the substrate 1. Orientation characteristics are imparted. Further, when the pretilt direction is along the direction opposite to the traveling direction of the exposure light, the alignment film of the substrate 1 is given an alignment characteristic with the pretilt direction on the right side of the drawing.
 なお、光ビームを基板1へ照射する方向と、光ビームによる基板1の走査方向の組合せは、図25及び図26に示した例に限らず、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、適宜決定される。 The combination of the direction in which the light beam is applied to the substrate 1 and the scanning direction of the substrate 1 by the light beam is not limited to the example shown in FIGS. 25 and 26, and the pattern of the exposure light and the orientation applied to the substrate 1. It is determined appropriately according to the properties of the film.
 光ビーム照射装置20から斜めに照射された直線偏光の光ビームにより基板1を走査して、基板1に塗布された配向膜に液晶の配列方向を整える配向特性を付与するので、光ビーム照射装置20のDMD25を駆動するDMD駆動回路27へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。従って、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することができる。 Since the substrate 1 is scanned with the linearly polarized light beam obliquely irradiated from the light beam irradiation device 20, the alignment characteristics applied to the alignment film applied to the substrate 1 are imparted with alignment characteristics that align the liquid crystal alignment direction. The drawing data supplied to the DMD driving circuit 27 that drives the 20 DMDs 25 can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
 そして、調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの方向を変え、配向膜に付与する配向特性のプレチルト方向を変更することができる。従って、1つの基板上の配向膜に複数の異なる配向領域を形成する際、各配向領域を露光する度に基板をチャックから取り外して基板の向きを回転させる必要が無いので、タクトタイムが短縮されて、スループットが向上する。 Then, by adjusting the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50, the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the pre-tilt direction of the alignment characteristic imparted to the alignment film Can be changed. Therefore, when forming a plurality of different alignment regions on the alignment film on one substrate, it is not necessary to remove the substrate from the chuck and rotate the orientation of the substrate every time each alignment region is exposed, thereby reducing the tact time. Throughput is improved.
 また、調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの入射角度を変更し、配向膜に付与する配向特性のプレチルト角を制御することができる。 In addition, the adjusting device 50 adjusts the incident angle of the light beam supplied to the DMD 25 to change the incident angle of the light beam applied to the substrate 1 supported by the chuck 10, so that the alignment characteristic applied to the alignment film can be improved. The pretilt angle can be controlled.
 さらに、光ビーム照射装置20の調節装置50によりDMD25へ供給される光ビームの入射角度を調節して、チャック10に支持された基板1へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャック10と光ビーム照射装置20との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更するので、露光光のパターンや基板1に塗布された配向膜の性質等に応じて、光ビームによる基板1の走査方向が配向膜に付与される配向特性のプレチルト方向に影響する場合、光ビームの方向の変更と、チャック10と光ビーム照射装置20との相対的な移動方向の変更とを組み合わせて、所望のプレチルト方向を得ることができる。 Further, by adjusting the incident angle of the light beam supplied to the DMD 25 by the adjusting device 50 of the light beam irradiation device 20, the direction of the light beam irradiated to the substrate 1 supported by the chuck 10 is changed, and the light beam is changed. Since the change of the direction of the above and the change of the relative movement direction of the chuck 10 and the light beam irradiation device 20 are combined to change the pretilt direction of the alignment characteristic imparted to the alignment film, the pattern of the exposure light and the substrate 1 When the scanning direction of the substrate 1 by the light beam affects the pretilt direction of the alignment characteristic imparted to the alignment film, depending on the properties of the alignment film applied to the film, the change of the light beam direction, the chuck 10 and the light A desired pretilt direction can be obtained in combination with a change in the direction of movement relative to the beam irradiation device 20.
 本発明では、光ビーム照射装置20から基板1へ光ビームを斜めに照射するため、チャック10の表面の高さのばらつきや基板1の厚さのばらつきにより、チャック10に支持された基板1の表面の高さが場所によって異なると、そのままでは、光ビームが基板1へ照射される位置が変動する。図27は、基板の表面の高さの変位による光ビームの照射位置の変動を説明する図である。基板1の表面の高さが実線1aである場合と、基板1の表面の高さが破線1bである場合とで、基板1の表面の高さの変位をΔZとする。光ビームの基板1の表面への入射角がαであるとき、基板1の表面の高さが実線1aである場合と、基板1の表面の高さが破線1bである場合とで、光ビームが基板1の表面へ照射される位置の変動ΔPは、
 ΔP=ΔZ・tanα (式1)
となる。
In the present invention, since the light beam is irradiated obliquely from the light beam irradiation device 20 to the substrate 1, the substrate 1 supported by the chuck 10 is caused by the variation in the height of the surface of the chuck 10 and the variation in the thickness of the substrate 1. If the height of the surface varies depending on the location, the position where the light beam is irradiated onto the substrate 1 varies as it is. FIG. 27 is a diagram for explaining the variation of the irradiation position of the light beam due to the displacement of the height of the surface of the substrate. The displacement of the height of the surface of the substrate 1 is ΔZ between the case where the height of the surface of the substrate 1 is a solid line 1a and the case where the height of the surface of the substrate 1 is a broken line 1b. When the incident angle of the light beam on the surface of the substrate 1 is α, the light beam is used when the surface height of the substrate 1 is a solid line 1a and when the surface height of the substrate 1 is a broken line 1b. Of the position where the surface of the substrate 1 is irradiated is ΔP,
ΔP = ΔZ · tan α (Formula 1)
It becomes.
 図22において、レーザー変位計は、投光部81と受光部82とから成る。投光部81は、レーザー光源81aとレンズ81bとを含んで構成され、レーザー光源81aから発生した検出光を、レンズ81bからチャック10に支持された基板1へ斜めに照射する。受光部82は、レンズ82aとCCDラインセンサー82bとを含んで構成され、検出光が基板1の表面で反射された反射光を、レンズ82aにより集光して、CCDラインセンサー82bで受光する。  22, the laser displacement meter includes a light projecting unit 81 and a light receiving unit 82. The light projecting unit 81 includes a laser light source 81a and a lens 81b, and irradiates the detection light generated from the laser light source 81a obliquely to the substrate 1 supported by the chuck 10 from the lens 81b. The light receiving unit 82 includes a lens 82a and a CCD line sensor 82b, and the reflected light reflected from the surface of the substrate 1 by the detection light is condensed by the lens 82a and received by the CCD line sensor 82b. *
 図27において、検出光の基板1の表面への入射角がβであるとき、基板1の表面の高さが実線1aである場合と、基板1の表面の高さが破線1bである場合とで、CCDラインセンサー82bにより受光される反射光の受光位置の変化Δεは、
 Δε=M・(ΔZ/cosβ) (Mは、レンズ82aの倍率)
となる。従って、基板1の表面の高さの変位ΔZは、
 ΔZ=(1/M)・Δε・cosβ
となり、レーザー変位計の受光部82は、CCDラインセンサー82bで受光した反射光の位置の変化から、基板1の表面の高さの変位を検出する。
In FIG. 27, when the incident angle of the detection light to the surface of the substrate 1 is β, the height of the surface of the substrate 1 is a solid line 1a, and the height of the surface of the substrate 1 is a broken line 1b. The change Δε in the light receiving position of the reflected light received by the CCD line sensor 82b is
Δε = M · (ΔZ / cos β) (M is the magnification of the lens 82a)
It becomes. Accordingly, the displacement ΔZ of the height of the surface of the substrate 1 is
ΔZ = (1 / M) · Δε · cosβ
Thus, the light receiving unit 82 of the laser displacement meter detects the displacement of the height of the surface of the substrate 1 from the change in the position of the reflected light received by the CCD line sensor 82b.
 図22において、主制御装置70は、光ビーム照射装置20のDMD駆動回路27へ描画データを供給する描画制御部を有する。図28は、描画制御部の概略構成を示す図である。描画制御部71は、メモリ72、バンド幅設定部73、中心点座標決定部74、及び座標決定部75を含んで構成されている。なお、図28では、1つの光ビーム照射装置20のレーザー変位計の受光部82のみが示され、他の7つの光ビーム照射装置20のレーザー変位計の受光部82が省略されている。メモリ72は、各光ビーム照射装置20のDMD駆動回路27へ供給する描画データを、そのXY座標をアドレスとして記憶している。 22, the main controller 70 has a drawing controller that supplies drawing data to the DMD drive circuit 27 of the light beam irradiation device 20. FIG. 28 is a diagram illustrating a schematic configuration of the drawing control unit. The drawing control unit 71 includes a memory 72, a bandwidth setting unit 73, a center point coordinate determination unit 74, and a coordinate determination unit 75. In FIG. 28, only the light receiving unit 82 of the laser displacement meter of one light beam irradiation device 20 is shown, and the light receiving units 82 of the laser displacement meters of the other seven light beam irradiation devices 20 are omitted. The memory 72 stores drawing data to be supplied to the DMD driving circuit 27 of each light beam irradiation apparatus 20 using the XY coordinates as addresses.
 バンド幅設定部73は、メモリ72から読み出す描画データのY座標の範囲を決定することにより、光ビーム照射装置20のヘッド部20aから照射される光ビームのY方向のバンド幅を設定する。 The bandwidth setting unit 73 sets the Y-direction bandwidth of the light beam emitted from the head unit 20a of the light beam irradiation apparatus 20 by determining the range of the Y coordinate of the drawing data read from the memory 72.
 レーザー測長系制御装置40は、露光位置における基板1の露光を開始する前のチャック10のXY方向の位置を検出する。中心点座標決定部74は、レーザー測長系制御装置40が検出したチャック10のXY方向の位置から、基板1の露光を開始する前のチャック10の中心点のXY座標を決定する。図19において、光ビーム照射装置20からの光ビームにより基板1の走査を行う際、主制御装置70は、ステージ駆動回路60を制御して、Xステージ5によりチャック10をX方向へ移動させる。基板1の走査領域を移動する際、主制御装置70は、ステージ駆動回路60を制御して、Yステージ7によりチャック10をY方向へ移動させる。図28において、中心点座標決定部74は、エンコーダ32,34からのパルス信号をカウントして、Xステージ5のX方向への移動量及びYステージ7のY方向への移動量を検出し、チャック10の中心点のXY座標を決定する。 The laser length measurement system control device 40 detects the position of the chuck 10 in the X and Y directions before the exposure of the substrate 1 at the exposure position is started. The center point coordinate determination unit 74 determines the XY coordinates of the center point of the chuck 10 before starting the exposure of the substrate 1 from the position in the XY direction of the chuck 10 detected by the laser length measurement system control device 40. In FIG. 19, when scanning the substrate 1 with the light beam from the light beam irradiation device 20, the main control device 70 controls the stage drive circuit 60 to move the chuck 10 in the X direction by the X stage 5. When moving the scanning area of the substrate 1, the main controller 70 controls the stage drive circuit 60 to move the chuck 10 in the Y direction by the Y stage 7. In FIG. 28, the center point coordinate determination unit 74 counts the pulse signals from the encoders 32 and 34, detects the amount of movement of the X stage 5 in the X direction and the amount of movement of the Y stage 7 in the Y direction, The XY coordinates of the center point of the chuck 10 are determined.
 座標決定部75は、中心点座標決定部74が決定したチャック10の中心点のXY座標に基づき、各光ビーム照射装置20のDMD駆動回路27へ供給する描画データのXY座標を決定する。そして、座標決定部75は、レーザー変位計の受光部82が検出した基板1の表面の高さの変位に応じて、決定したXY座標を、上述の「式1」を用いて算出したΔP分だけ補正する。メモリ72は、座標決定部75が補正したXY座標をアドレスとして入力し、入力したXY座標のアドレスに記憶された描画データを、各光ビーム照射装置20のDMD駆動回路27へ出力する。 The coordinate determination unit 75 determines the XY coordinates of the drawing data supplied to the DMD drive circuit 27 of each light beam irradiation device 20 based on the XY coordinates of the center point of the chuck 10 determined by the center point coordinate determination unit 74. Then, the coordinate determination unit 75 calculates the determined XY coordinates according to the above-described “Equation 1” by ΔP according to the height displacement of the surface of the substrate 1 detected by the light receiving unit 82 of the laser displacement meter. Only correct. The memory 72 inputs the XY coordinates corrected by the coordinate determination unit 75 as an address, and outputs the drawing data stored at the input XY coordinate address to the DMD drive circuit 27 of each light beam irradiation apparatus 20.
 なお、レーザー変位計の投光部81及び受光部82は、光ビーム照射装置20から照射される光ビームが傾斜するX方向に配置し、算出したΔPを、この配置に応じて、チャック10のXY座標に変換して、描画データのXY座標の補正を行う。 Note that the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are arranged in the X direction in which the light beam emitted from the light beam irradiation device 20 is inclined, and the calculated ΔP is determined according to this arrangement. Conversion to XY coordinates is performed to correct the XY coordinates of the drawing data.
 チャック10に支持された基板1の表面の高さの変位を検出し、検出した基板1の表面の高さの変位に応じて、光ビーム照射装置20のDMD駆動回路27へ供給する描画データの座標を補正し、補正した座標の描画データを、光ビーム照射装置20のDMD駆動回路27へ供給するので、チャック10に支持された基板1の表面の高さが場所により異なっても、光ビームが基板1へ照射される位置が変動せず、1つの基板上の配向膜に複数の異なる配向領域が精度良く形成される。 The displacement of the height of the surface of the substrate 1 supported by the chuck 10 is detected, and the drawing data supplied to the DMD drive circuit 27 of the light beam irradiation device 20 is detected according to the detected displacement of the height of the surface of the substrate 1. Since the coordinates are corrected and drawing data of the corrected coordinates is supplied to the DMD driving circuit 27 of the light beam irradiation device 20, the light beam can be obtained even if the height of the surface of the substrate 1 supported by the chuck 10 varies depending on the location. The position at which the substrate 1 is irradiated does not change, and a plurality of different alignment regions are accurately formed in the alignment film on one substrate.
 また、検出光をチャック10に支持された基板1へ斜めに照射し、検出光が基板1の表面で反射された反射光を受光し、受光した反射光の位置の変化から、基板1の表面の高さの変位を検出するので、光学的手法を用いて基板1の表面の高さの変位が精度良く検出され、配向領域がさらに精度良く形成される。 Further, the substrate 1 supported by the chuck 10 is obliquely irradiated with the detection light, the reflected light reflected by the surface of the substrate 1 is received, and the surface of the substrate 1 is changed from the change in the position of the received reflected light. Therefore, the displacement of the height of the surface of the substrate 1 is detected with high accuracy using an optical method, and the alignment region is formed with higher accuracy.
 また、レーザー変位計の投光部81及び受光部82を、各光ビーム照射装置20に設置し、描画データの座標の補正を光ビーム照射装置20毎に行うので、基板の表面が複雑に起伏する場合に対応することができる。 Further, since the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are installed in each light beam irradiation device 20 and the coordinates of the drawing data are corrected for each light beam irradiation device 20, the surface of the substrate is complicatedly undulated. If you can.
 図29は、本発明のさらに他の実施の形態による配向膜の露光装置の概略構成を示す図である。本実施の形態は、θステージ8とチャック10との間に昇降機構9を設け、チャック10の底面にガイドブロック10aを取り付け、昇降機構9を駆動する昇降機構駆動回路61を備えたものである。その他の構成要素は、図19に示した実施の形態と同様である。 FIG. 29 is a diagram showing a schematic configuration of an alignment film exposure apparatus according to still another embodiment of the present invention. In this embodiment, an elevating mechanism 9 is provided between the θ stage 8 and the chuck 10, a guide block 10 a is attached to the bottom surface of the chuck 10, and an elevating mechanism drive circuit 61 that drives the elevating mechanism 9 is provided. . Other components are the same as those of the embodiment shown in FIG.
 昇降機構9は、Zガイド9aと直動モータ9bとを含んで構成されている。Zガイド9aは、チャック10の底面に設けたガイドブロック10aを上下(Z方向)に案内する。直動モータ9bは、昇降機構駆動回路61により駆動され、ロッド9cがチャック10の底面に接触しながら昇降して、チャック10を上下(Z方向)に移動する。主制御装置70は、レーザー変位計の受光部82が検出した基板1の表面の高さの変位に応じて、昇降機構駆動回路61を制御し、基板1の表面の高さの変位分だけチャック10を上下(Z方向)に移動させて、光ビーム照射装置20からチャック10に支持された基板1の表面までの距離を一定に保つ。 The elevating mechanism 9 includes a Z guide 9a and a linear motor 9b. The Z guide 9a guides the guide block 10a provided on the bottom surface of the chuck 10 up and down (Z direction). The linear motor 9b is driven by an elevating mechanism driving circuit 61, and moves up and down (Z direction) by moving the chuck 10 up and down while the rod 9c contacts the bottom surface of the chuck 10. The main controller 70 controls the lifting mechanism drive circuit 61 in accordance with the displacement of the surface height of the substrate 1 detected by the light receiving unit 82 of the laser displacement meter, and chucks the amount corresponding to the displacement of the surface height of the substrate 1. 10 is moved up and down (Z direction) to keep the distance from the light beam irradiation device 20 to the surface of the substrate 1 supported by the chuck 10 constant.
 なお、本実施の形態では、チャック10をZ方向へ移動することにより、各光ビーム照射装置20からチャック10に支持された基板1の表面までの距離を一定に保っているが、ゲート11に昇降機構を設けて、各光ビーム照射装置20をZ方向へ移動することにより、各光ビーム照射装置20からチャック10に支持された基板1の表面までの距離を一定に保ってもよい。 In this embodiment, the distance from each light beam irradiation device 20 to the surface of the substrate 1 supported by the chuck 10 is kept constant by moving the chuck 10 in the Z direction. A distance from each light beam irradiation device 20 to the surface of the substrate 1 supported by the chuck 10 may be kept constant by providing an elevating mechanism and moving each light beam irradiation device 20 in the Z direction.
 チャック10に支持された基板1の表面の高さの変位を検出し、検出した基板1の表面の高さの変位分だけ、チャック10と光ビーム照射装置20とを相対的に基板1の表面に垂直な方向へ移動するので、チャック10に支持された基板1の表面の高さが場所により異なっても、光ビームが基板1へ照射される位置が変動せず、1つの基板上の配向膜に複数の異なる配向領域が精度良く形成される。 The displacement of the surface height of the substrate 1 supported by the chuck 10 is detected, and the chuck 10 and the light beam irradiation device 20 are relatively moved relative to the surface of the substrate 1 by the detected displacement of the surface height of the substrate 1. Therefore, even if the height of the surface of the substrate 1 supported by the chuck 10 varies depending on the location, the position where the light beam is irradiated onto the substrate 1 does not vary, and the orientation on one substrate A plurality of different alignment regions are accurately formed in the film.
 なお、以上説明した実施の形態では、レーザー変位計の投光部81及び受光部82を、各光ビーム照射装置20に設置していたが、レーザー変位計の投光部81及び受光部82を、ゲート11の下方の1箇所又は複数箇所に設置して、基板上の代表点1箇所又は任意の複数箇所で基板の表面の高さの変位を検出する構成としてもよい。その場合、チャック10のX方向への移動に従い、検出した基板1の表面の高さの変位を、各光ビーム照射装置20に対する平均変位に置き換えて、各光ビーム照射装置20へ供給する描画データのXY座標の補正、またはチャック10のZ方向への移動を行う。また、基板1の表面の高さの変位の検出は、露光時にリアルタイムで行ってもよく、予め露光前に行ってもよい。 In the embodiment described above, the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are installed in each light beam irradiation apparatus 20, but the light projecting unit 81 and the light receiving unit 82 of the laser displacement meter are installed. Further, it may be configured to be installed at one or a plurality of locations below the gate 11 to detect the displacement of the height of the surface of the substrate at one representative point on the substrate or at a plurality of arbitrary locations. In that case, as the chuck 10 moves in the X direction, the detected displacement of the height of the surface of the substrate 1 is replaced with an average displacement with respect to each light beam irradiation device 20 and supplied to each light beam irradiation device 20. XY coordinates are corrected, or the chuck 10 is moved in the Z direction. Further, the detection of the displacement of the height of the surface of the substrate 1 may be performed in real time during exposure, or may be performed in advance before exposure.
 また、以上説明した実施の形態では、基板の配向膜にプレチルト方向が180度異なる2種類の配向領域群を形成していたが、プレチルト方向がほぼ90度ずつ異なる4種類の配向領域群を形成する場合には、図25及び図26に示す様にして光ビームによる基板の走査を行った後、基板をほぼ90度回転させてから、再び、図25及び図26に示す様にして光ビームによる基板の走査を行えばよい。 In the embodiment described above, two types of alignment region groups having different pretilt directions of 180 degrees are formed on the alignment film of the substrate. However, four types of alignment region groups having different pretilt directions by approximately 90 degrees are formed. In this case, after the substrate is scanned with the light beam as shown in FIGS. 25 and 26, the substrate is rotated by approximately 90 degrees, and then again as shown in FIGS. 25 and 26. The substrate may be scanned by
 また、以上説明した実施の形態では、プレチルト方向が基板の長辺又は短辺に平行であったが、表示用パネルの特性として、プレチルト方向を基板の長辺又は短辺に対して斜めにする必要がある場合は、基板をXY方向に対して回転させた状態で光ビームによる基板の走査を行うことにより、所望のプレチルト方向を得ることができる。 In the embodiment described above, the pretilt direction is parallel to the long side or short side of the substrate. However, as a characteristic of the display panel, the pretilt direction is inclined with respect to the long side or short side of the substrate. If necessary, a desired pretilt direction can be obtained by scanning the substrate with a light beam while rotating the substrate with respect to the XY directions.
 以上説明した実施の形態によれば、光ビーム照射装置20から斜めに照射された直線偏光の光ビームにより基板1を走査して、基板1に塗布された配向膜に液晶の配列方向を整える配向特性を付与することにより、光ビーム照射装置20のDMD25を駆動するDMD駆動回路27へ供給する描画データを変更して、所望の位置及び所望の形状の配向領域を露光することができる。従って、マスクを用いることなく、1つの基板上の配向膜に複数の異なる配向領域を形成することができる。 According to the embodiment described above, the alignment is performed by adjusting the alignment direction of the liquid crystal on the alignment film applied to the substrate 1 by scanning the substrate 1 with the linearly polarized light beam irradiated obliquely from the light beam irradiation device 20. By imparting the characteristics, the drawing data supplied to the DMD drive circuit 27 that drives the DMD 25 of the light beam irradiation device 20 can be changed to expose the alignment region having a desired position and a desired shape. Therefore, a plurality of different alignment regions can be formed in the alignment film on one substrate without using a mask.
 そして、チャック10に支持された基板1の表面の高さの変位を検出し、検出した基板1の表面の高さの変位に応じて、光ビーム照射装置20のDMD駆動回路27へ供給する描画データの座標を補正し、補正した座標の描画データを、光ビーム照射装置20のDMD駆動回路27へ供給し、あるいは、検出した基板1の表面の高さの変位分だけ、チャック10と光ビーム照射装置20とを相対的に基板1の表面に垂直な方向へ移動することにより、チャック10に支持された基板1の表面の高さが場所により異なっても、光ビームが基板1へ照射される位置が変動するのを防止して、1つの基板上の配向膜に複数の異なる配向領域を精度良く形成することができる。 Then, the displacement of the height of the surface of the substrate 1 supported by the chuck 10 is detected, and the drawing supplied to the DMD drive circuit 27 of the light beam irradiation apparatus 20 according to the detected displacement of the height of the surface of the substrate 1. The coordinate of the data is corrected, and the drawing data of the corrected coordinate is supplied to the DMD drive circuit 27 of the light beam irradiation device 20, or the chuck 10 and the light beam are detected by the detected height displacement of the surface of the substrate 1. By moving the irradiation device 20 in a direction perpendicular to the surface of the substrate 1, the light beam is irradiated onto the substrate 1 even if the height of the surface of the substrate 1 supported by the chuck 10 varies depending on the location. And a plurality of different alignment regions can be accurately formed in the alignment film on one substrate.
 さらに、検出光をチャック10に支持された基板1へ斜めに照射し、検出光が基板1の表面で反射された反射光を受光し、受光した反射光の位置の変化から、基板1の表面の高さの変位を検出することにより、光学的手法を用いて基板1の表面の高さの変位を精度良く検出して、配向領域をさらに精度良く形成することができる。 Further, the detection light is obliquely irradiated onto the substrate 1 supported by the chuck 10, the reflected light reflected by the surface of the substrate 1 is received, and the surface of the substrate 1 is changed from the change in the position of the received reflected light. By detecting the displacement of the height, it is possible to accurately detect the displacement of the height of the surface of the substrate 1 using an optical method, and to form the alignment region with higher accuracy.
 1 基板
 3 ベース
 4 Xガイド
 5 Xステージ
 6 Yガイド
 7 Yステージ
 8 θステージ
 10 チャック
 11 ゲート
 20,20’ 光ビーム照射装置
 20a ヘッド部
 21 レーザー光源ユニット
 22 光ファイバー
 23 レンズ
 24 ミラー
 25 DMD(Digital Micromirror Device)
 26a,26b 投影レンズ
 27 DMD駆動回路
 28 偏光子
 29 絞り
 31,33 リニアスケール
 32,34 エンコーダ
 40 レーザー測長系制御装置
 41 レーザー光源
 42,44 レーザー干渉計
 43,45 バーミラー
 50 調節装置
 51 支持台
 51a 回転機構
 52a,54a 可動子
 52b,54b 固定子
 53 支持板
 60 ステージ駆動回路
 70 主制御装置
 71 描画制御部
 72 メモリ
 73 バンド幅設定部
 74 中心点座標決定部
 75 座標決定部
 81 投光部
 81a レーザー光源
 81b レンズ
 82 受光部
 82a レンズ
 82b CCDラインセンサー
DESCRIPTION OF SYMBOLS 1 Substrate 3 Base 4 X guide 5 X stage 6 Y guide 7 Y stage 8 θ stage 10 Chuck 11 Gate 20, 20 'Light beam irradiation device 20a Head part 21 Laser light source unit 22 Optical fiber 23 Lens 24 Mirror 25 DMD (Digital Micromirror Device) )
26a, 26b Projection lens 27 DMD drive circuit 28 Polarizer 29 Aperture 31, 33 Linear scale 32, 34 Encoder 40 Laser measurement system control device 41 Laser light source 42, 44 Laser interferometer 43, 45 Bar mirror 50 Adjustment device 51 Support base 51a Rotating mechanism 52a, 54a Movable element 52b, 54b Stator 53 Support plate 60 Stage drive circuit 70 Main controller 71 Drawing controller 72 Memory 73 Bandwidth setting unit 74 Center point coordinate determining unit 75 Coordinate determining unit 81 Projecting unit 81a Laser Light source 81b Lens 82 Light receiving part 82a Lens 82b CCD line sensor

Claims (18)

  1.  基板を支持するチャックと、
     二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、空間的光変調器へ供給される光ビームの入射角度を調節する調節装置、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、空間的光変調器により変調された光ビームを照射光学系へその光軸に対して斜めに入射させ、照射光学系から前記チャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、
     前記チャックと前記光ビーム照射装置とを相対的に移動する移動手段とを備えたことを特徴とする配向膜の露光装置。
    A chuck for supporting the substrate;
    A spatial light modulator that modulates the light beam by changing the angles of a plurality of mirrors arranged in two directions, an adjustment device that adjusts the incident angle of the light beam supplied to the spatial light modulator, and based on drawing data A driving circuit for driving the spatial light modulator and an irradiation optical system for irradiating the light beam modulated by the spatial light modulator, and an incident angle of the light beam supplied to the spatial light modulator by the adjusting device The light beam modulated by the spatial light modulator is incident on the irradiation optical system obliquely with respect to its optical axis, and a linearly polarized light beam is incident on the substrate supported by the chuck from the irradiation optical system. A light beam irradiation device that irradiates obliquely;
    An alignment film exposure apparatus comprising: a moving means for relatively moving the chuck and the light beam irradiation apparatus.
  2.  前記光ビーム照射装置は、
     前記照射光学系を通過する光ビームの回折光を制限する絞りと、
     前記調節装置により調節された光ビームの前記空間的光変調器への入射角度に応じ、前記絞りを前記照射光学系の光軸に垂直な方向へ移動する絞り移動装置とを有することを特徴とする請求項1に記載の配向膜の露光装置。
    The light beam irradiation device includes:
    A diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system;
    A diaphragm moving device that moves the diaphragm in a direction perpendicular to the optical axis of the irradiation optical system according to an incident angle of the light beam adjusted by the adjusting device to the spatial light modulator. The alignment film exposure apparatus according to claim 1.
  3.  前記光ビーム照射装置の調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、前記チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、前記移動手段による前記チャックと前記光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することを特徴とする請求項1又は請求項2に記載の配向膜の露光装置。 Adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device to change the direction of the light beam applied to the substrate supported by the chuck; and And changing the pretilt direction of the alignment characteristics imparted to the alignment film by combining the change of the direction of the above and the change of the relative movement direction of the chuck and the light beam irradiation device by the moving means. The alignment film exposure apparatus according to claim 1.
  4.  基板をチャックで支持し、
     チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、空間的光変調器へ供給される光ビームの入射角度を調節する調節装置、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有する光ビーム照射装置とを、相対的に移動し、
     光ビーム照射装置内において、調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、空間的光変調器により変調された光ビームを照射光学系へその光軸に対して斜めに入射させ、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射し、
     光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与することを特徴とする配向膜の露光方法。
    Support the substrate with a chuck,
    A spatial light modulator that modulates the light beam by changing the angle of the chuck and a plurality of mirrors arranged in two directions, an adjustment device that adjusts the incident angle of the light beam supplied to the spatial light modulator, and drawing data And a light beam irradiation apparatus having an irradiation optical system for irradiating a light beam modulated by the spatial light modulator, and a driving circuit for driving the spatial light modulator based on
    In the light beam irradiation device, the adjusting device adjusts the incident angle of the light beam supplied to the spatial light modulator, and the light beam modulated by the spatial light modulator is applied to the irradiation optical system with respect to its optical axis. And obliquely irradiate a linearly polarized light beam onto the substrate supported by the chuck from the irradiation optical system,
    Alignment film exposure characterized by imparting alignment characteristics that align the alignment direction of the liquid crystal to the alignment film applied to the substrate by scanning the substrate with a linearly polarized light beam obliquely irradiated from a light beam irradiation device Method.
  5.  光ビーム照射装置内において、調節装置により調節した光ビームの空間的光変調器への入射角度に応じ、照射光学系を通過する光ビームの回折光を制限する絞りを、照射光学系の光軸に垂直な方向へ移動することを特徴とする請求項4に記載の配向膜の露光方法。 In the light beam irradiation device, a diaphragm that restricts the diffracted light of the light beam passing through the irradiation optical system according to the incident angle of the light beam adjusted by the adjustment device to the spatial light modulator is set to the optical axis of the irradiation optical system. The alignment film exposure method according to claim 4, wherein the alignment film is moved in a direction perpendicular to the alignment film.
  6.  光ビーム照射装置の調節装置により空間的光変調器へ供給される光ビームの入射角度を調節して、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することを特徴とする請求項4又は請求項5に記載の配向膜の露光方法。 By adjusting the incident angle of the light beam supplied to the spatial light modulator by the adjusting device of the light beam irradiation device, the direction of the light beam irradiated to the substrate supported by the chuck is changed, and the direction of the light beam 6. The pretilt direction of the alignment characteristic imparted to the alignment film is changed by combining the change of the above and the change of the relative movement direction of the chuck and the light beam irradiation device. The exposure method of the alignment film of description.
  7.  基板を支持するチャックと、
     二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、空間的光変調器により変調された光ビームを照射する照射光学系、照射光学系を通過する光ビームの回折光を制限する絞り、及び絞りを照射光学系の光軸に垂直な方向へ移動する絞り移動装置を有し、絞り移動装置により絞りの開口の中心を空間的光変調器により変調された光ビームの中心からずらし、照射光学系を通過する光ビームの一部を絞りで遮断して、照射光学系から前記チャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、
     前記チャックと前記光ビーム照射装置とを相対的に移動する移動手段とを備えたことを特徴とする配向膜の露光装置。
    A chuck for supporting the substrate;
    Modulated by a spatial light modulator that modulates the light beam by changing the angle of multiple mirrors arranged in two directions, a drive circuit that drives the spatial light modulator based on drawing data, and a spatial light modulator An aperture optical system that irradiates a light beam, an aperture that restricts the diffracted light of the light beam that passes through the illumination optical system, and an aperture moving device that moves the aperture in a direction perpendicular to the optical axis of the illumination optical system. The center of the aperture of the stop is shifted from the center of the light beam modulated by the spatial light modulator by the device, and a part of the light beam passing through the irradiation optical system is blocked by the stop, and supported by the chuck from the irradiation optical system A light beam irradiation device for irradiating a linearly polarized light beam obliquely to the substrate,
    An alignment film exposure apparatus comprising: a moving means for relatively moving the chuck and the light beam irradiation apparatus.
  8.  前記光ビーム照射装置の絞り移動装置による絞りの移動方向を変えて、前記チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、前記移動手段による前記チャックと前記光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することを特徴とする請求項7に記載の配向膜の露光装置。 By changing the moving direction of the stop by the stop moving device of the light beam irradiating device, changing the direction of the light beam applied to the substrate supported by the chuck, changing the direction of the light beam, and by the moving means The alignment film exposure according to claim 7, wherein a pretilt direction of an alignment characteristic imparted to the alignment film is changed by combining a change in a relative movement direction of the chuck and the light beam irradiation device. apparatus.
  9.  基板をチャックで支持し、
     チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、空間的光変調器により変調された光ビームを照射する照射光学系、照射光学系を通過する光ビームの回折光を制限する絞り、及び絞りを照射光学系の光軸に垂直な方向へ移動する絞り移動装置を有する光ビーム照射装置とを、相対的に移動し、
     光ビーム照射装置内において、絞り移動装置により絞りの開口の中心を空間的光変調器により変調された光ビームの中心からずらし、照射光学系を通過する光ビームの一部を絞りで遮断して、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射し、
     光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与することを特徴とする配向膜の露光方法。
    Support the substrate with a chuck,
    A spatial light modulator that modulates a light beam by changing the angle of a chuck and a plurality of mirrors arranged in two directions, a drive circuit that drives the spatial light modulator based on drawing data, and a spatial light modulator Light having an irradiation optical system for irradiating a modulated light beam, a diaphragm for limiting the diffracted light of the light beam passing through the irradiation optical system, and a diaphragm moving device for moving the diaphragm in a direction perpendicular to the optical axis of the irradiation optical system Move relative to the beam irradiation device,
    In the light beam irradiation device, the center of the aperture of the stop is shifted from the center of the light beam modulated by the spatial light modulator by the stop moving device, and a part of the light beam passing through the irradiation optical system is blocked by the stop. Irradiating linearly polarized light beam obliquely from the irradiation optical system to the substrate supported by the chuck,
    Alignment film exposure characterized by imparting alignment characteristics that align the alignment direction of the liquid crystal to the alignment film applied to the substrate by scanning the substrate with a linearly polarized light beam obliquely irradiated from a light beam irradiation device Method.
  10.  光ビーム照射装置の絞り移動装置による絞りの移動方向を変えて、チャックに支持された基板へ照射される光ビームの方向を変え、かつ、光ビームの方向の変更と、チャックと光ビーム照射装置との相対的な移動方向の変更とを組み合わせて、配向膜に付与する配向特性のプレチルト方向を変更することを特徴とする請求項9に記載の配向膜の露光方法。 Changing the moving direction of the stop by the stop moving device of the light beam irradiation device, changing the direction of the light beam irradiated to the substrate supported by the chuck, changing the direction of the light beam, and the chuck and the light beam irradiation device The alignment film exposure method according to claim 9, wherein the pretilt direction of the alignment characteristic imparted to the alignment film is changed in combination with a change in relative movement direction.
  11.  基板を支持するチャックと、
     二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系から前記チャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、
     前記チャックと前記光ビーム照射装置とを相対的に移動する移動手段とを備え、
     前記移動手段により前記チャックと前記光ビーム照射装置とを相対的に移動し、前記光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光装置であって、
     前記チャックに支持された基板の表面の高さの変位を検出する検出手段と、
     前記検出手段により検出された基板の表面の高さの変位に応じて、前記光ビーム照射装置の駆動回路へ供給する描画データの座標を補正し、補正した座標の描画データを、前記光ビーム照射装置の駆動回路へ供給する手段とを備えたことを特徴とする配向膜の露光装置。
    A chuck for supporting the substrate;
    It is modulated by a spatial light modulator that modulates the light beam by changing the angle of a plurality of mirrors arranged in two directions, a drive circuit that drives the spatial light modulator based on drawing data, and a spatial light modulator. A light beam irradiation device that irradiates a linearly polarized light beam obliquely from the irradiation optical system to the substrate supported by the chuck;
    A moving means for relatively moving the chuck and the light beam irradiation device;
    An alignment film applied to the substrate by relatively moving the chuck and the light beam irradiation device by the moving means, scanning the substrate with a linearly polarized light beam obliquely irradiated from the light beam irradiation device. An alignment film exposure apparatus that imparts alignment characteristics to align the alignment direction of the liquid crystal,
    Detecting means for detecting the displacement of the height of the surface of the substrate supported by the chuck;
    In accordance with the displacement of the height of the surface of the substrate detected by the detection means, the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation device are corrected, and the drawing data of the corrected coordinates is applied to the light beam irradiation. An alignment film exposure apparatus comprising: means for supplying to a drive circuit of the apparatus.
  12.  前記検出手段は、検出光を前記チャックに支持された基板へ斜めに照射する投光部と、検出光が基板の表面で反射された反射光を受光する受光部とを有し、受光部で受光した反射光の位置の変化から、基板の表面の高さの変位を検出することを特徴とする請求項11に記載の配向膜の露光装置。 The detection means includes a light projecting unit that irradiates the detection light to the substrate supported by the chuck at an angle, and a light receiving unit that receives the reflected light reflected by the surface of the substrate. 12. The alignment film exposure apparatus according to claim 11, wherein the displacement of the height of the surface of the substrate is detected from a change in the position of the received reflected light.
  13.  基板をチャックで支持し、
     チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置とを、相対的に移動し、
     光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光方法であって、
     チャックに支持された基板の表面の高さの変位を検出し、
     検出した基板の表面の高さの変位に応じて、光ビーム照射装置の駆動回路へ供給する描画データの座標を補正し、補正した座標の描画データを、光ビーム照射装置の駆動回路へ供給することを特徴とする配向膜の露光方法。
    Support the substrate with a chuck,
    A spatial light modulator that modulates a light beam by changing the angles of a chuck and a plurality of mirrors arranged in two directions, a drive circuit that drives the spatial light modulator based on drawing data, and a spatial light modulator A light beam irradiation device that irradiates a linearly polarized light beam obliquely from the irradiation optical system to the substrate supported by the chuck, and relatively moves the irradiation optical system that irradiates the light beam modulated by
    An alignment film exposure method for imparting alignment characteristics to align an alignment direction of liquid crystals on an alignment film applied to the substrate by scanning the substrate with a linearly polarized light beam obliquely irradiated from a light beam irradiation device,
    Detects the height displacement of the surface of the substrate supported by the chuck,
    In accordance with the detected displacement of the surface height of the substrate, the coordinates of the drawing data supplied to the drive circuit of the light beam irradiation apparatus are corrected, and the drawing data of the corrected coordinates is supplied to the drive circuit of the light beam irradiation apparatus. An alignment film exposure method characterized by the above.
  14.  検出光をチャックに支持された基板へ斜めに照射し、
     検出光が基板の表面で反射された反射光を受光し、
     受光した反射光の位置の変化から、基板の表面の高さの変位を検出することを特徴とする請求項13に記載の配向膜の露光方法。
    Irradiate the detection light obliquely to the substrate supported by the chuck,
    The detection light receives the reflected light reflected by the surface of the substrate,
    14. The alignment film exposure method according to claim 13, wherein the displacement of the height of the surface of the substrate is detected from the change in the position of the received reflected light.
  15.  基板を支持するチャックと、
     二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系から前記チャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置と、
     前記チャックと前記光ビーム照射装置とを相対的に移動する移動手段とを備え、
     前記移動手段により前記チャックと前記光ビーム照射装置とを相対的に移動し、前記光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光装置であって、
     前記チャックに支持された基板の表面の高さの変位を検出する検出手段と、
     前記検出手段により検出された基板の表面の高さの変位分だけ、前記チャックと前記光ビーム照射装置とを相対的に基板の表面に垂直な方向へ移動する手段とを備えたことを特徴とする配向膜の露光装置。
    A chuck for supporting the substrate;
    It is modulated by a spatial light modulator that modulates the light beam by changing the angles of a plurality of mirrors arranged in two directions, a drive circuit that drives the spatial light modulator based on drawing data, and a spatial light modulator. A light beam irradiation device that irradiates a linearly polarized light beam obliquely from the irradiation optical system to the substrate supported by the chuck;
    A moving means for relatively moving the chuck and the light beam irradiation device;
    An alignment film applied to the substrate by relatively moving the chuck and the light beam irradiation device by the moving means, scanning the substrate with a linearly polarized light beam obliquely irradiated from the light beam irradiation device. An alignment film exposure apparatus that imparts alignment characteristics to align the alignment direction of the liquid crystal,
    Detecting means for detecting a displacement of the height of the surface of the substrate supported by the chuck;
    And a means for moving the chuck and the light beam irradiation device in a direction relatively perpendicular to the surface of the substrate by a displacement of the height of the surface of the substrate detected by the detection means. An alignment film exposure apparatus.
  16.  前記検出手段は、検出光を前記チャックに支持された基板へ斜めに照射する投光部と、検出光が基板の表面で反射された反射光を受光する受光部とを有し、受光部で受光した反射光の位置の変化から、基板の表面の高さの変位を検出することを特徴とする請求項15に記載の配向膜の露光装置。 The detection means includes a light projecting unit that irradiates the detection light to the substrate supported by the chuck at an angle, and a light receiving unit that receives the reflected light reflected by the surface of the substrate. 16. The alignment film exposure apparatus according to claim 15, wherein the displacement of the height of the surface of the substrate is detected from the change in the position of the received reflected light.
  17.  基板をチャックで支持し、
     チャックと、二方向に配列した複数のミラーの角度を変更して光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有し、照射光学系からチャックに支持された基板へ直線偏光の光ビームを斜めに照射する光ビーム照射装置とを、相対的に移動し、
     光ビーム照射装置から斜めに照射された直線偏光の光ビームにより基板を走査して、基板に塗布された配向膜に液晶の配列方向を整える配向特性を付与する配向膜の露光方法であって、
     チャックに支持された基板の表面の高さの変位を検出し、
     検出した基板の表面の高さの変位分だけ、チャックと光ビーム照射装置とを相対的に基板の表面に垂直な方向へ移動することを特徴とする配向膜の露光方法。
    Support the substrate with a chuck,
    A spatial light modulator that modulates a light beam by changing the angles of a chuck and a plurality of mirrors arranged in two directions, a drive circuit that drives the spatial light modulator based on drawing data, and a spatial light modulator A light beam irradiation device that irradiates a linearly polarized light beam obliquely from the irradiation optical system to the substrate supported by the chuck, and relatively moves the irradiation optical system that irradiates the light beam modulated by
    An alignment film exposure method for imparting alignment characteristics to align an alignment direction of liquid crystals on an alignment film applied to the substrate by scanning the substrate with a linearly polarized light beam obliquely irradiated from a light beam irradiation device,
    Detects the height displacement of the surface of the substrate supported by the chuck,
    An alignment film exposure method, wherein the chuck and the light beam irradiation device are moved in a direction relatively perpendicular to the surface of the substrate by the detected displacement of the height of the surface of the substrate.
  18.  検出光をチャックに支持された基板へ斜めに照射し、
     検出光が基板の表面で反射された反射光を受光し、
     受光した反射光の位置の変化から、基板の表面の高さの変位を検出することを特徴とする請求項17に記載の配向膜の露光方法。
    Irradiate the detection light obliquely to the substrate supported by the chuck,
    The detection light receives the reflected light reflected by the surface of the substrate,
    18. The alignment film exposure method according to claim 17, wherein a displacement of the height of the surface of the substrate is detected from a change in the position of the received reflected light.
PCT/JP2011/077793 2011-01-05 2011-12-01 Exposure device and exposure method WO2012093534A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-000722 2011-01-05
JP2011000722A JP2012141504A (en) 2011-01-05 2011-01-05 Exposure device and exposure method
JP2011004471A JP2012145786A (en) 2011-01-13 2011-01-13 Exposure device and exposure method
JP2011-004471 2011-01-13

Publications (1)

Publication Number Publication Date
WO2012093534A1 true WO2012093534A1 (en) 2012-07-12

Family

ID=46457396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077793 WO2012093534A1 (en) 2011-01-05 2011-12-01 Exposure device and exposure method

Country Status (2)

Country Link
TW (1) TW201234136A (en)
WO (1) WO2012093534A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107179A (en) * 2023-04-11 2023-05-12 深圳市龙图光罩股份有限公司 Mask alignment calibration method, device, equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739184B (en) * 2014-12-07 2019-01-29 上海微电子装备(集团)股份有限公司 Alignment apparatus, alignment system and alignment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352486A (en) * 1998-06-08 1999-12-24 Sharp Corp Liquid crystal electrooptical device
JP2003318096A (en) * 2002-04-25 2003-11-07 Dainippon Screen Mfg Co Ltd Light beam radiation device
JP2008242147A (en) * 2007-03-28 2008-10-09 Sei Tsunezo Laser irradiation optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352486A (en) * 1998-06-08 1999-12-24 Sharp Corp Liquid crystal electrooptical device
JP2003318096A (en) * 2002-04-25 2003-11-07 Dainippon Screen Mfg Co Ltd Light beam radiation device
JP2008242147A (en) * 2007-03-28 2008-10-09 Sei Tsunezo Laser irradiation optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107179A (en) * 2023-04-11 2023-05-12 深圳市龙图光罩股份有限公司 Mask alignment calibration method, device, equipment and storage medium
CN116107179B (en) * 2023-04-11 2023-06-13 深圳市龙图光罩股份有限公司 Mask alignment calibration method, device, equipment and storage medium

Also Published As

Publication number Publication date
TW201234136A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5438148B2 (en) Measuring method, measuring apparatus, and lithographic apparatus
CN102200693B (en) Illumination system and lithographic apparatus
JP2012173693A (en) Exposure device and exposure method
CN103765303A (en) Photo-orienting illumination device
CN103048885A (en) Ultra-large size flat panel display maskless photolithography system and method
US20130088704A1 (en) Ultra-Large Size Flat Panel Display Maskless Photolithography System and Method
CN101551508A (en) Image position adjustment device and optical device
TWI417679B (en) Lithographic apparatus and patterning device
KR102192203B1 (en) Optical alignment control method and optical alignment device
JP2002350858A (en) Light orientation device
WO2012093534A1 (en) Exposure device and exposure method
JP2012123207A (en) Exposure apparatus and exposure method
JP2009246165A (en) Exposure device
JP5611016B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2012145786A (en) Exposure device and exposure method
JP2009210960A (en) Laser direct drawing device
KR20100042864A (en) Exposure apparatus and method to measure straitness thereof
US20180017781A1 (en) Frustrated cube assembly
JP5430589B2 (en) Exposure apparatus and exposure method
JP2011007974A (en) Exposure device, exposure method, and method of manufacturing display panel substrate
US11243480B2 (en) System for making accurate grating patterns using multiple writing columns each making multiple scans
JP5473880B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2012141504A (en) Exposure device and exposure method
JP2000012422A (en) Aligner
JPWO2012132561A1 (en) Alignment film exposure method and system for liquid crystal, and liquid crystal panel manufactured using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855086

Country of ref document: EP

Kind code of ref document: A1