WO2012093167A1 - Materiau composite injectable renforce par des fibres naturelles - Google Patents

Materiau composite injectable renforce par des fibres naturelles Download PDF

Info

Publication number
WO2012093167A1
WO2012093167A1 PCT/EP2012/050179 EP2012050179W WO2012093167A1 WO 2012093167 A1 WO2012093167 A1 WO 2012093167A1 EP 2012050179 W EP2012050179 W EP 2012050179W WO 2012093167 A1 WO2012093167 A1 WO 2012093167A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
material according
ethylene
weight
polypropylene
Prior art date
Application number
PCT/EP2012/050179
Other languages
English (en)
Inventor
Laurence Dufrancatel
Sergio Da Costa Pito
Pauline Kannengiesser
Embarka AOUDJIT
Gérard Mougin
Original Assignee
Faurecia Interieur Industrie
Agro Fibres Technologies - Plasturgie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44022828&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012093167(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Faurecia Interieur Industrie, Agro Fibres Technologies - Plasturgie filed Critical Faurecia Interieur Industrie
Priority to US13/978,696 priority Critical patent/US9951215B2/en
Priority to PL12700027.1T priority patent/PL2661463T3/pl
Priority to ES12700027T priority patent/ES2927856T3/es
Priority to EP12700027.1A priority patent/EP2661463B1/fr
Priority to BR112013017400A priority patent/BR112013017400A2/pt
Priority to CN2012800089279A priority patent/CN103403083A/zh
Publication of WO2012093167A1 publication Critical patent/WO2012093167A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene

Definitions

  • the present invention relates to a reinforced composite material, especially for the manufacture of parts in the automotive field.
  • thermoplastic polymer in particular a polypropylene
  • the composite materials obtained are interesting but their properties still have limits, especially in terms of impact resistance. In addition, they do not always meet the specific requirements of the automotive field such as the requirements for automotive odor and volatile compounds.
  • the object of the present invention is to provide such an improved injectable composite material, especially in terms of impact resistance, compared to the mineral-filled polypropylene.
  • a composite material comprising:
  • polypropylene-polyethylene copolymer forms a matrix
  • Such a material makes it possible, by virtue of its technical profile, in particular as regards impact resistance, to achieve a mass gain of 3 to 50% compared with conventional mineral-filled polypropylene, with a reduction in thickness of the parts obtained by injection, low pressure injection, high pressure, compression injection and overmolding.
  • the thickness of an injected part of 2.5 mm can be reduced by 0.5 mm, a weight gain of 25%.
  • composite material in this specification is intended to cover heterogeneous materials that combine several types of material that do not mix.
  • composite materials composed of polymers based of hydrocarbons and generally obtained synthetically from petroleum and carbohydrate-based polymers, with extracts or derivatives of natural products.
  • Particularly targeted are materials associating a polyolefinic polymer with fibers of natural origin as defined below. The different phases of a composite material can be detected under the optical microscope.
  • melt index (IF), often referred to as MFI of the acronym for the English term “Melt Flow Index” refers to the hot fluidity of a polymer as evaluated by the polymer flow rate. melting of a given temperature, through a capillary normalized for a given period, generally 10 minutes, under a load of 2.16 kg, under the conditions indicated in the international standard ISO 1133.
  • copolymer refers to a polymer resulting from the copolymerization of at least two types of monomer, chemically different, called comonomers.
  • the copolymers obtained by the copolymerization of two monomers are sometimes called bipolymers, those obtained from three terpolymer monomers and those obtained from four quaterpolymer monomers.
  • the copolymer is thus formed of at least two repeating units. Depending on the manner in which the repeating units are distributed in the macromolecular chains, random, alternating random and random copolymers and block copolymers or block copolymers are distinguished. In addition, copolymers derived from grafting are known.
  • impact modifier is intended to cover agents added to a material in order to improve the properties of impact resistance. These modifiers are polymers or molecules that form multiphase systems with the matrix or that react chemically with the matrix, thus improving its resilience.
  • ком ⁇ онент is intended to refer to compounds having two ends of different chemical structure respectively having a particular affinity for two components of a heterogeneous material, thereby making it possible to improve the compatibility between these two components.
  • natural fibers refers to fibrous materials derived from materials of plant or animal origin.
  • matrix denotes in a composite material the continuous phase in which the other components are dispersed. Generally, but not always, the matrix is formed by the component present in majority proportion.
  • the composite material according to the invention contains, as matrix, a polypropylene-polyethylene copolymer.
  • this copolymer gives the composite material of the invention a higher impact strength than those conventionally used, comprising a polypropylene matrix.
  • the composite material has, at its specific transformation temperature, a viscosity ranging from 5 Pa.s to 1 OOOPa.s in a range of injection-specific shear rate ranging from 100s -1 to 50,000s -1. . Thanks to this characteristic, the composite material is injectable. It can then be used in most known injection processes, such as, for example, low pressure, high pressure injection, sandwich injection, bi-injection, compression injection and overmolding.
  • the specific transformation temperature is the temperature at which the material is sufficiently fluid to be injected into a cavity (for example between 220 and 240 ° C for polypropylenes and between 260 and 280 ° C for polycarbonates (PC) and polymers acrylonitrile butadiene styrene (ABS) This specific transformation temperature is specific to each material.
  • composite materials comprising a matrix based on these copolymers comprising 10 to 90 mol% of ethylene units.
  • the composite material also comprises from 0 to 10% by weight of a flow agent.
  • This fluidizing agent is preferably a low melt index (IF) polymer, preferably a polymer having a melt index of between 200 and 2000 g / 10 min at 230 ° C. under a load of 2.16 kg and in particular a polyolefin homopolymer or copolymer, especially a polyethylene homo- or copolymer, or a homopolymer polypropylene or copolymer.
  • IF low melt index
  • the fluidity agent makes it possible, if necessary, to increase the fluidity of the material so as to render it injectable. Depending on the choice made, it can also contribute to improving the impact resistance and decrease the volatile compounds released by the material. Volatile compounds are all the emissions generated by a material that can produce an odor or volatile organic compounds.
  • the flow agents can be obtained in particular by metallocene catalysis or by Ziegler Natta catalysis.
  • the fluidity agent is a polyolefin obtained not catalyzed metallocene. Indeed, it is found that metallocene catalysis leads to polyolefins whose melting temperature is much lower than a polyolefin obtained by Ziegler Natta catalysis, thus leading to a much greater fluidity of the material. In addition, induced metallocene catalysis a much narrower molecular weight distribution and thus a lower low molecular weight content thus reducing the content of potentially rejectable compounds.
  • the particularly preferred fluidizing agent is polypropylene, preferably polypropylene homopolymer obtained by metallocene catalysis.
  • polyethylene and in particular polyethylene modified with alkenes or any type of graft, is a particularly preferred fluidizing agent for certain applications because it makes it possible to improve the performance in terms of impact resistance, in addition to the modifiers. shocks, discussed below.
  • the material according to the invention also contains 1 to 20% by weight, preferably 2 to 10 and most particularly 4 to 8% by weight of impact modifier.
  • the addition of the impact modifier increases the impact resistance of the composite material by up to 200%.
  • the impact modifier is preferably an elastomeric compound, especially chosen from the group consisting of the ethylene-propylene-diene monomer (EPDM), the ethylene-propylene monomer (EPM), the ethylene-propylene rubber (EPR) and the elastomeric polyolefins ( POE), copolymers and terpolymers based on ethylene and propylene, nitrile - butadiene rubber (NBR), isobutylene (IB), chlorinated rubber, poly (styrene - butadiene - styrene (SBS), styrene-ethylene-butene-styrene copolymer (SEBS), isobutylene-isoprene rubber (IIR), styrene-isoprene-styrene copolymer (SIS), chlorinated polyethylene (CM), isoprene, ethylene-butene, their mixtures and derivatives, in particular grafted
  • the composite material according to the invention also comprises 1 to 20%, preferably 5 to 15% by weight of a compatibilizing agent.
  • the compatibilizing agent ensures a good affinity between the fibers and the other ingredients of the material, in particular the polymer matrix, and thus makes it possible to obtain a homogeneous mixture.
  • a compatibilizing agent it may be envisaged in particular a compound chosen from polyolefins grafted with polar groups.
  • polyolefins it is possible to envisage the use of (co) polymers of polypropylene.
  • polyolefins grafted with a carboxylic acid or one of its esters or anhydrides are particularly preferred.
  • carboxylic acids that are useful for grafting, mention may in particular be made of maleic acid and maleic anhydride.
  • the composite material according to the invention further contains 3 to 70%, preferably 5 to 40% and most preferably 10 to 30% by weight of natural fibers.
  • the material remains injectable.
  • optimum injection behavior is observed when the composite material contains less than 30% by weight of natural fibers.
  • the natural fibers are preferably selected from the group consisting of cotton, flax, hemp, hemp, abaca, banana, jute, ramie, raffia, sisal, broom, wool , alpaca, mohair, cashmere, angora, silk, bamboo, miscanthus, kenaf, coco, agave, sorghum, switch-grass and wood.
  • the length of the natural fibers may vary widely, depending on the applications envisaged for the composite material.
  • fibers having an average length of between 0.1 and 10 mm are preferably used.
  • the fibers are preferably used after drying at a water content of less than 5% by weight. They can then be subjected to a surface treatment in order to increase compatibility with the matrix, in particular with silanes.
  • the invention provides a process for preparing the composite material described above comprising the steps of:
  • steps (i) to (v) are carried out in a screw extruder.
  • the invention relates to the use of the composite material described for the manufacture of parts by injection, in particular for the interior of automobiles.
  • the increase in the thermal resistance obtained, in particular thanks to the fibers, is particularly advantageous for applications of the type of interior vehicle parts such as, for example, dashboards or door panels. Indeed these vehicle interior parts can be subjected to high temperatures of up to 120 ⁇ , especially in the area near glass surfaces.
  • the plastic material in the form of granules is introduced into a heated and temperature-controlled plasticization screw and softened under the combined action of the screw and the temperature to reach at the front of the screw a viscous state, constituting the reserve of material ready to be injected.
  • the material present at the front of the plasticizing screw is then injected under high pressure into a mold (or cavity) having the shape of the desired part and whose temperature is below the transformation temperature.
  • a constant pressure is applied for a given time to continue to feed the footprints to compensate for the withdrawal of the material during cooling.
  • the piece is then cooled for a few seconds and then ejected.
  • a first hopper is charged with 39 kg of propylene-ethylene copolymer, 8 kg of metallocene-catalyzed polypropylene (MFI 400) and, as an additive, 20 kg of an impact modifier ( EP5 1060 sold by the company HIFAX) and 3 kg of a compatibilizing agent and then 30 kg of red hemp fiber, half of which is introduced by means of a second hopper located downstream.
  • MFI 400 metallocene-catalyzed polypropylene
  • EP5 1060 sold by the company HIFAX
  • compatibilizing agent 3 kg of a compatibilizing agent
  • the mixture is extrusion compounded under the following conditions: Temperature: 180 ° C.
  • the composite material is obtained in the form of granules that can be used for the manufacture of parts by injection.
  • the formulation of the composite material makes it possible to obtain a material having a higher technical profile than the standard materials, which allows a reduction in the thickness of the pieces from 2.5 mm to 2 mm.
  • the weight saving reaches about 25%.
  • the table below summarizes the key properties of the prepared composite.
  • vehicle interior trim parts for example de-icing ducts or reinforcing pieces adapted to withstand the impacts of one of the members of the passengers against said reinforcing pieces during a vehicle impact against another vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Matériau composite injectable renforcé par des fibres naturelles L'invention concerne un matériau composite injectable comprenant : (a) 28 à 95 % en poids d'un copolymère polypropylène-polyéthylène; (b) 0 à 10 % en poids d'agent de fluidité; (c) 1 à 20 % en poids d'un modifiant choc; (d) 1 à 20 % en poids d'un agent compatibilisant; et (e) 3 à 70 % en poids de fibres naturelles, dans lequel le copolymère polypropylène-polyéthylène forme une matrice. Elle concerne également un procédé de préparation de ce matériau composite ainsi qu'un procédé pour son utilisation pour la fabrication de pièces par injection ou par surmoulage.

Description

Matériau composite injectable renforcé par des fibres naturelles
La présente invention concerne un matériau composite renforcé, notamment pour la fabrication de pièces dans le domaine automobile.
Dans le cadre d'une recherche de réduction de la pression d'un produit sur les ressources et l'environnement tout au long de son cycle de vie, de l'extraction des matières premières jusqu'à son traitement en fin de vie, l'utilisation de matériaux verts issus du monde végétal est particulièrement recherchée.
Ainsi, il est connu de WO 2006/108256 d'associer des fibres de chanvre à un polymère thermoplastique, notamment un polypropylène, pour préparer un matériau injectable.
Les matériaux composites obtenus sont intéressants mais leurs propriétés présentent encore des limites, notamment en matière de résistance aux chocs. Par ailleurs, ils ne répondent pas toujours aux exigences spécifiques au domaine automobile comme les exigences en matière d'odeur automobile et de rejet de composés volatils.
Aussi, le but de la présente invention est de proposer un tel matériau composite injectable amélioré, notamment au niveau de la résistance aux chocs, comparé au polypropylène à charge minérale.
Ce but est atteint selon l'invention par un matériau composite comprenant :
(a) 28 à 95 % en poids d'un copolymère polypropylène-polyéthylène ;
(b) 0 à 10 % en poids d'agent de fluidité, notamment une polyoléfine telle que le polyéthylène ou le polypropylène homopolymère ;
(c) 1 à 20 % en poids d'un modifiant choc ;
(d) 1 à 20 % en poids d'un agent compatibilisant ; et
(e) 3 à 70 % en poids de fibres naturelles,
dans lequel le copolymère polypropylène-polyéthylène forme une matrice.
Un tel matériau permet de par son profil technique, notamment en matière de résistance aux chocs, d'atteindre un gain de masse de 3 à 50% comparé au polypropylène à charge minérale conventionnel, avec une réduction d'épaisseur des pièces obtenues par injection, injection basse pression, haute pression, injection compression et surmoulage. A titre d'exemple, l'épaisseur d'une pièce injectée de 2,5mm peut être réduite de 0,5 mm, soit un gain de masse de 25%.
On entend dans le présent exposé par le terme « matériau composite >> couvrir les matériaux hétérogènes associant plusieurs types de matière qui ne se mélangent pas. Particulièrement visés sont les matériaux composites composés de polymères à base d'hydrocarbures et généralement obtenus par voie synthétique à partir de pétrole et de polymères à base de carbohydrates, avec des extraits ou dérivés de produits naturels. Particulièrement visés sont des matériaux associant un polymère polyoléfinique avec des fibres d'origine naturelles telles que définies ci-après. Les différentes phases d'un matériau composite peuvent être détectées sous le microscope optique.
On entend par le terme « indice de fluidité >> (IF), souvent appelé MFI de l'acronyme du terme analogue anglais « Melt Flow Index >>, la fluidité à chaud d'un polymère telle qu'évaluée par le débit du polymère en fusion d'une température donnée, à travers un capillaire normalisé pendant une période donnée, généralement 10 minutes, sous une charge de 2,16 kg, dans les conditions indiquées dans la norme internationale ISO 1 133.
On entend par le terme « copolymère >>, par opposition au terme « homopolymère >>, désigner un polymère issu de la copolymérisation d'au moins deux types de monomère, chimiquement différents, appelés comonomères. Les copolymères obtenus par la copolymérisation de deux monomères sont parfois appelés bipolymères, ceux obtenus à partir de trois monomères terpolymères et ceux obtenus à partir de quatre monomères quaterpolymères. Le copolymère est donc formé d'au moins deux motifs de répétition. Suivant la manière dont les motifs de répétition sont répartis dans les chaînes macromoléculaires, on distingue les copolymères à enchaînement aléatoire, alterné et statistique et les copolymères séquencés ou copolymères blocs. Par ailleurs, on connaît des copolymères issus de greffage.
On entend par le terme « modifiant choc >> couvrir les agents ajoutés à un matériau en vue d'améliorer les propriétés au niveau de la résistance aux chocs. Ces modifiants sont des polymères ou des molécules qui forment des systèmes multiphasés avec la matrice ou qui réagissent chimiquement avec la matrice, améliorant ainsi sa résilience.
On entend par le terme « agent compatibilisant >> viser les composés présentant deux extrémités de structure chimique différente ayant respectivement une affinité particulière pour deux composantes d'un matériau hétérogène permettant de ce fait d'améliorer la compatibilité entre ces deux composantes.
On entend par le terme « fibres naturelles >> viser des matériaux fibreux issus de matières d'origine végétale ou animale.
Enfin, on entend par le terme « matrice >> désigner dans un matériau composite la phase continue dans laquelle les autres composantes se trouvent dispersées. Généralement, mais pas toujours, la matrice est formée par la composante présente en proportion majoritaire. Le matériau composite selon l'invention contient à titre de matrice un copolymère polypropylène-polyéthylène.
En effet, il s'avère que ce copolymère confère au matériau composite de l'invention une résistance aux chocs supérieure à ceux traditionnellement utilisés, comportant une matrice en polypropylène.
De préférence, le matériau composite présente, à sa température de transformation spécifique, une viscosité allant de 5 Pa.s à l OOOPa.s dans une gamme de vitesse de cisaillement spécifique à l'injection allant de 100s"1 à 50 000s"1. Grâce à cette caractéristique, le matériau composite est injectable. Il est alors utilisable dans la plupart des procédés d'injection connus, comme par exemples l'injection basse pression, haute pression, l'injection sandwich, la bi-injection, l'injection compression et le surmoulage. La température de transformation spécifique est la température à laquelle le matériau est suffisamment fluide pour pourvoir être injecté dans une cavité (par exemple entre 220 et 240 °C pour les polypropylènes et entre 260 et 280 °C pour les polycarbonates (PC) et les polymères acrylonitrile butadiène styrène (ABS). Cette température de transformation spécifique est propre à chaque matériau.
Particulièrement préférés sont les matériaux composites comportant une matrice à base de ces copolymères comportant 10 à 90 % molaires de motifs d'éthylène.
Le matériau composite comporte par ailleurs de 0 à 10 % en poids d'un agent de fluidité. Cet agent de fluidité est de préférence un polymère de faible indice de fluidité (IF), de préférence un polymère présentant un indice de fluidité compris entre 200 et 2000 g/ 10 min à 230 °C sous une charge de 2,16 kg et en particulier une polyoléfine homopolymère ou copolymère, notamment un polyéthylène homo- ou copolymère, ou encore un polypropylène homopolymère ou copolymère.
L'agent de fluidité permet si nécessaire d'augmenter la fluidité du matériau de manière à le rendre injectable. Selon le choix opéré, il peut par ailleurs contribuer à améliorer la résistance aux chocs et diminuer les composés volatils dégagés par le matériau. On entend par composés volatils, l'ensemble des émissions générées par un matériau susceptibles de produire une odeur ou des composés organiques volatils.
Ainsi, les agents de fluidité peuvent être obtenus notamment par catalyse metallocène ou par catalyse Ziegler Natta. Avantageusement, l'agent de fluidité est une polyoléfine obtenue pas catalyse métallocène. En effet, on constate que la catalyse métallocène conduit à des polyoléfines dont la température de fusion est beaucoup plus basse qu'une polyoléfine obtenue par catalyse Ziegler Natta, conduisant ainsi à une fluidité du matériau beaucoup plus importante. De plus, la catalyse par metallocène induit une distribution des masses moléculaires beaucoup plus étroite et donc une teneur en molécules de faibles masses plus faible réduisant ainsi la teneur en composés susceptible d'être rejetés. Il n'est donc pas nécessaire, comme dans le cas de polyoléfines obtenues par catalyse Ziegler-Natta, d'utiliser des moyens chimiques, tels que la rupture de chaînes par attaque acide (exemple anhydrides maléiques) pour atteindre des fluidités élevés. Cette technique génère alors beaucoup de composés volatils.
Le choix de tels agents de fluidité contribue dès lors à rendre le matériau composite injectable - du fait de la plus faible longueur de chaîne des composés - et à respecter les exigences de rejet de composés volatils des constructeurs automobiles - du fait d'une faible teneur en composés susceptibles d'être rejetés du matériau.
L'agent de fluidité particulièrement préféré est le polypropylène, de préférence le polypropylène homopolymère obtenu par catalyse métallocène.
Par ailleurs, le polyéthylène, et en particulier le polyéthylène modifiée par des alcènes ou tout type de greffon, est un agent de fluidité particulièrement préféré pour certaines applications car il permet d'améliorer les performances en termes de résistance aux chocs, en complément des modifiants chocs, discutés ci-après.
Le matériau selon l'invention contient en outre 1 à 20% en poids, de préférence 2 à 10 et tout particulièrement 4 à 8 % en poids de modifiant choc.
L'addition du modifiant choc permet d'augmenter la résistance aux chocs du matériau composite de jusqu'à 200%.
Le modifiant choc est de préférence un composé élastomérique, notamment choisi parmi le groupe constitué par le monomère éthylène- propylène-diène (EPDM), le monomère éthylène-propylène (EPM), le caoutchouc éthylène-propylène (EPR), les polyoléfines élastomères (POE), les copolymères et terpolymères à base d'éthylène et de propylène, le caoutchouc de nitrile - butadiène (NBR), l'isobutylène (IB), le caoutchouc chloré, le poly(styrène-butadiène-styrène (SBS), le copolymère styrène-éthylène-butène- styrène (SEBS), le caoutchouc isobutylène-isoprène (IIR), le copolymère styrène- isoprène-styrène (SIS), le polyéthylène chloré (CM), l'isoprène, l'éthylène-butène, leurs mélanges et dérivés, notamment greffés par du acide maléique et/ou de l'anhydride d'acide maléique.
Le matériau composite selon l'invention comprend par ailleurs 1 à 20%, de préférence 5 à 15 % en poids d'un agent compatibilisant.
L'agent compatibilisant assure une bonne affinité entre les fibres et les autres ingrédients du matériau, notamment la matrice polymère et permet ainsi l'obtention d'un mélange homogène. A titre d'agent compatibilisant, il peut être envisagé notamment un composé choisi parmi les polyoléfines greffées par des groupes polaires. A titre de polyoléfines, on peut notamment envisager l'utilisation de (co)polymères du polypropylène.
Particulièrement préférés sont les polyoléfines greffées par un acide carboxylique ou un de ses esters ou anhydrides. Parmi les acides carboxyliques utiles pour le greffage, on peut mentionner notamment l'acide maléique et l'anhydride maléique.
Le matériau composite selon l'invention contient en outre 3 à 70 %, de préférence 5 à 40% et tout particulièrement 10 à 30% en poids de fibres naturelles.
La présence de fibres permet notamment d'augmenter la résistance thermique du matériau.
Même en présence de ces fibres naturelles, le matériau reste injectable. Toutefois, on observe un comportement à l'injection optimum lorsque le matériau composite contient moins de 30% en poids de fibres naturelles.
Les fibres naturelles sont de préférence choisis dans le groupe constitué par le coton, le lin, le chanvre, le chanvre de Manille ou l'abaca, le bananier, le jute, la ramie, le raphia, le sisal, le genêt, la laine, l'alpaga, le mohair, le cachemire, l'angora, la soie, le bambou, le miscanthus, le kenaf, le coco, l'agave, le sorgo, le switch-grass et le bois.
La longueur des fibres naturelles peut varier largement, selon les applications envisagées pour le matériau composite. Pour la fabrication de pièces intérieures pour l'automobile, on utilise de préférence des fibres dont la longueur moyenne est comprise entre 0,1 et 10 mm.
Les fibres sont de préférence utilisées après séchage à une teneur en eau inférieure à 5% en poids. Elles peuvent ensuite être soumis à un traitement de surface afin d'augmenter la compatibilité avec la matrice, en particulier avec des silanes.
Selon un second aspect, l'invention vise un procédé de préparation du matériau composite décrit ci-dessus comprenant les étapes consistant à :
(i) introduction des composantes polymériques (a) à (d) et d'au moins une partie de la composante (e) dans un dispositif de mélange approprié ;
(ii) fusion et mélange desdites composantes dans le dispositif de mélange;
(iii) le cas échéant, introduction du reste de la composante (e) dans le mélange ;
(iv) fusion et mélange final des composantes ; et
(v) granulation.
De préférence, les étapes (i) à (v) sont réalisées dans une extrudeuse à vis. Selon un troisième aspect, l'invention concerne l'utilisation du matériau composite décrit pour la fabrication de pièces par injection, notamment destinées à l'intérieur d'automobiles.
L'augmentation de la résistance thermique obtenue notamment grâce aux fibres est particulièrement intéressante pour des applications de type pièces d'intérieur véhicule comme par exemple des planches de bord, des panneaux de porte. En effet ces pièces d'intérieur véhicule peuvent être soumises à des températures élevées pouvant atteindre 120 ^, surtout dans la zone proche des surfaces vitrées.
L'injection de pièces en utilisant le matériau composite décrit peut être réalisée de manière conventionnelle, par exemple comme suit.
La matière plastique sous forme de granulé est introduite dans une vis de plastification chauffée et régulée en température et ramollie sous l'action conjuguée de la vis et de la température pour atteindre à l'avant de la vis un état visqueux, constituant la réserve de matière prête à être injectée.
La matière présente à l'avant de la vis de plastification est ensuite injectée sous forte pression à l'intérieur d'un moule (ou cavité) présentant la forme de la pièce souhaitée et dont la température est inférieure à la température de transformation.
Une pression constante est appliquée pendant un temps déterminé afin de continuer à alimenter les empreintes afin de palier au retrait de la matière durant son refroidissement. La pièce est ensuite refroidie durant quelques secondes puis éjectée.
L'invention sera expliquée plus en détail au moyen des exemples qui suivent, donnés à titre purement illustratif. EXEMPLE
Dans une extrudeuse à bivis, on introduit par une première trémie 39 kg un copolymère de propylène et d'éthylène, 8 kg de polypropylène obtenu par catalyse métallocène (MFI 400) et, à titre d'additif 20 kg d'un modifiant choc (EP5 1060 vendu par la société HIFAX) et 3 kg d'un agent compatibilisant puis 30 kg de fibres de chanvre rouies, dont la moitié est introduit au moyen d'une seconde trémie située en aval. Les composantes et leurs proportions respectives sont indiquées dans le tableau 1 ci- dessous.
Tableau 1 : Composition du matériau composite
Composante Proportion [% en poids]
Copolymère de propylène - éthylène 39 Polypropylène 8
Modifiant choc 20
Agent compatibilisant 3
Fibres naturelles 30
Le mélange est soumis à un compoundage par extrusion dans les conditions suivantes : Température : 180 °C
Pression : 5 à 30 bars
On obtient le matériau composite sous forme de granulés susceptibles d'être utilisés pour la fabrication de pièces par injection.
La formulation du matériau composite permet d'obtenir un matériau présentant un profil technique supérieur aux matériaux standards, ce qui permet une réduction de l'épaisseur des pièces de 2,5 mm à 2mm. Compte tenu de la réduction de densité par ailleurs du matériau selon l'invention par rapport au matériau standard, le gain de masse atteint environ 25%. Le tableau ci-dessous rassemble les propriétés clés du composite préparé.
Tableau 2 : Profil de propriétés mécaniques, thermiques, et rhéologiques
Figure imgf000008_0001
Ces propriétés permettent d'utiliser ce matériau composite pour fabriquer des pièces destinées à l'habillage intérieur d'automobiles, notamment des planches de bord, des panneaux de porte, qu'ils soient revêtus ou non, mais aussi des pièces destinées à la structure de pièces d'habillage intérieur de véhicule, par exemple des conduits de dégivrage ou encore des pièces de renforts adaptées pour résister à des impacts d'un des membres des passagers contre ces dites pièces de renfort lors d'un impact de véhicule contre un autre véhicule.

Claims

REVENDICATIONS
1 . - Matériau composite comprenant :
(a) 28 à 95 % en poids d'un copolymère polypropylène-polyéthylène ;
(b) 0 à 10 % en poids d'agent de fluidité ;
(c) 1 à 20 % en poids d'un modifiant choc ;
(d) 1 à 20 % en poids d'un agent compatibilisant ; et
(e) 3 à 70 % en poids de fibres naturelles,
dans lequel le copolymère polypropylène-polyéthylène forme une matrice.
2. Matériau composite selon la revendication 1 , dans lequel l'agent de fluidité est un polymère présentant un indice de fluidité compris entre 200 et 2000 g/ 10 min à 230 °C sous une charge de 2,16 kg.
3. Matériau composite selon la revendication 1 ou 2, dans lequel l'agent de fluidité est une polyoléfine.
4. Matériau composite selon l'une des revendications 1 à 3, dans lequel l'agent de fluidité est une polyoléfine obtenue par catalyse metallocène.
5. Matériau composite selon l'une des revendications 1 à 4, dans lequel l'agent de fluidité est choisi parmi le groupe constitué par un polypropylène homopolymère, un polypropylène copolymère, un polyéthylène homopolymère et un polyéthylène copolymère.
6. Matériau composite selon l'une des revendications 1 à 5, présentant, à sa température de transformation spécifique, une viscosité allant de 5 Pa.s à 1000Pa.s dans une gamme de vitesse de cisaillement spécifique à l'injection allant de 100s"1 à 50 000s"1.
7. Matériau composite selon l'une des revendications 1 à 6, dans lequel le copolymère polypropylène-polyéthylène comporte 10 à 90 % molaires d'éthylène.
8. Matériau composite selon l'une des revendications 1 à 7, dans lequel le modifiant choc est choisi parmi le groupe constitué par le monomère éthylène- propylène- diène (EPDM), le monomère éthylène-propylène (EPM), le caoutchouc éthylène- propylène (EPR), les polyoléfines élastomères (POE), les copolymères et terpolymères à base d'éthylène et de propylène, le caoutchouc de nitrile - butadiène (NBR), l'isobutylène (IB), le caoutchouc chloré, le poly(styrène-butadiène-styrène (SBS), le copolymère styrène-éthylène-butène-styrène (SEBS), le caoutchouc isobutylène-isoprène (IIR), le copolymère styrène-isoprène-styrène (SIS), el polyéthylène chloré (CM), l'isoprène, l'éthylène-butène, leurs mélanges et dérivés, notamment greffés par du acide maléique et/ou de l'anhydride d'acide maléique.
9. Matériau composite selon l'une des revendications 1 à 8, dans lequel l'agent compatibilisant est choisi dans le groupe constitué par les polyoléfines greffées par un acide carboxylique ou un de ses esters ou anhydrides.
10. Matériau composite selon l'une des revendications 1 à 9, dans lequel les fibres naturelles sont choisis dans le groupe constitué par le coton, le lin, le chanvre, le chanvre de Manille ou l'abaca, le bananier, le jute, la ramie, le raphia, le sisal, le genêt, la laine, l'alpaga, le mohair, le cachemire, l'angora, la soie, le bambou, le miscanthus, le kenaf, le coco, l'agave, le sorgo, le switch-grass et le bois.
1 1 . Matériau composite selon l'une des revendications 1 à 10, comprenant 10 à 30 % en poids de fibres naturelles.
12. Procédé de préparation d'un matériau composite selon l'une des revendications 1 à 1 1 , comprenant les étapes consistant à :
(i) introduction des composantes polymériques (a) à (d) et d'au moins une partie de la composante (e) dans un dispositif de mélange approprié ;
(ii) fusion et mélange desdites composantes dans le dispositif de mélange;
(iii) le cas échéant, introduction du reste de la composante (e) dans le mélange ;
(iv) fusion et mélange final des composantes ; et
(v) granulation.
13. Procédé de préparation selon la revendication 12, dans lequel les étapes (i) à (v) sont réalisées dans une extrudeuse à vis.
14. Utilisation du matériau composite selon l'une des revendications 1 à 1 1 pour la fabrication de pièces par injection.
15. Utilisation selon la revendication 14 pour la fabrication de pièces d'intérieur de véhicule.
PCT/EP2012/050179 2011-01-07 2012-01-06 Materiau composite injectable renforce par des fibres naturelles WO2012093167A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/978,696 US9951215B2 (en) 2011-01-07 2012-01-06 Injectable composite material reinforced by natural fibers
PL12700027.1T PL2661463T3 (pl) 2011-01-07 2012-01-06 Materiał kompozytowy do wtryskiwania wzmocniony włóknami naturalnymi
ES12700027T ES2927856T3 (es) 2011-01-07 2012-01-06 Material compuesto inyectable reforzado mediante fibras naturales
EP12700027.1A EP2661463B1 (fr) 2011-01-07 2012-01-06 Materiau composite injectable renforce par des fibres naturelles
BR112013017400A BR112013017400A2 (pt) 2011-01-07 2012-01-06 material compósito injetável reforçado por fibras naturais
CN2012800089279A CN103403083A (zh) 2011-01-07 2012-01-06 天然纤维增强的可注射复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1150131A FR2970257B1 (fr) 2011-01-07 2011-01-07 Materiau composite injectable renforce par des fibres naturelles
FR1150131 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093167A1 true WO2012093167A1 (fr) 2012-07-12

Family

ID=44022828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/050179 WO2012093167A1 (fr) 2011-01-07 2012-01-06 Materiau composite injectable renforce par des fibres naturelles

Country Status (9)

Country Link
US (1) US9951215B2 (fr)
EP (1) EP2661463B1 (fr)
CN (2) CN107903506A (fr)
BR (1) BR112013017400A2 (fr)
ES (1) ES2927856T3 (fr)
FR (1) FR2970257B1 (fr)
PL (1) PL2661463T3 (fr)
PT (1) PT2661463T (fr)
WO (1) WO2012093167A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCS20130027A1 (it) * 2013-11-30 2015-05-31 Consorzio Per Le Tecnologie Biomedi Che Avanzate Materiali compositi ottenuti da fibre estratte da fibre vegetali di ginestra e polimeri e processo per ottenerli
DE102019116200A1 (de) 2018-06-22 2019-12-24 Faurecia Interieur Industrie Zusammensetzung auf der Basis von natürlichen Fasern und pulverförmigem Polypropylen-Homopolymer
FR3085379A1 (fr) 2018-08-28 2020-03-06 Faurecia Interieur Industrie Materiau composite ductile a base de fibres naturelles
FR3100156A1 (fr) 2019-08-27 2021-03-05 Faurecia Interieur Industrie Matériau multicouche présentant une résilience améliorée
FR3109154A1 (fr) 2020-04-14 2021-10-15 Psa Automobiles Sa Matériau composite pour réaliser des pièces d’aspect pour l’intérieur d’un véhicule automobile, méthode de fabrication associée et pièces d’aspect comprenant ce matériau composite
WO2021248219A1 (fr) * 2020-06-10 2021-12-16 Artecola Química S.A. Composite hybride de matrice polymère et procédé de traitement
DE102014226948B4 (de) 2014-03-07 2023-06-29 Hyundai Motor Company Polyolefin-Naturfaser-Verbundzusammensetzung, Verfahren zum Extrusionsformen unter Verwendung derselben und geformtes Erzeugnis, das über ein derartiges Verfahren hergestellt wird

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2663149T3 (es) * 2015-11-04 2018-04-11 Borealis Ag Composición de polipropileno-polietileno con fluidez mejorada
CN105599402A (zh) * 2016-01-08 2016-05-25 江苏新雷模塑有限公司 一种新能源汽车注塑抗菌仪表台及其制备方法
DE102017211562B4 (de) 2017-07-06 2021-12-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtete Cellulosefaser, Verfahren zu deren Herstellung, faserverstärkter Verbundwerkstoff, Verfahren zu dessen Herstellung und dessen Verwendung
US11192595B2 (en) * 2018-01-09 2021-12-07 Faurecia Emissions Control Technologies, Usa, Llc Overmolded brackets for composite shock tower
FR3080380B1 (fr) * 2018-04-24 2020-10-16 Faurecia Interieur Ind Materiau composite a base de fibres naturelles lignocellulosiques presentant des proprietes rheologiques ameliorees et des emissions reduites d'odeurs et de composes organiques volatils
JP7211824B2 (ja) * 2019-01-15 2023-01-24 三井化学株式会社 樹脂組成物、およびこれを用いた合成木材
CN114231046B (zh) * 2021-12-09 2023-04-25 金发科技股份有限公司 一种高强度高耐热的木塑复合材料及其制备方法
CN114575019B (zh) * 2022-02-11 2023-06-06 安徽农业大学 一种竹原纤维3d编织床垫填充材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051060A1 (fr) 1980-10-27 1982-05-05 Österreichische Hiag-Werke Aktiengesellschaft Plaque isolante et procédé pour sa fabrication
WO2004016667A2 (fr) * 2002-08-16 2004-02-26 Equistar Chemicals, Lp Copolymeres de propylene greffes ameliores et melanges adhesifs
US20040214925A1 (en) * 2003-04-14 2004-10-28 Sigworth William D. Coupling agents for natural fiber-filled polyolefins
WO2006108256A1 (fr) 2005-04-13 2006-10-19 Ford Motor Company Brasil Ltda. Materiel destine a un moulage par injection, son procede, et son utilisation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599576B2 (ja) 1981-01-06 1984-03-03 チッソ株式会社 ポリオレフイン樹脂組成物
US6455636B2 (en) * 2000-01-19 2002-09-24 Sumitomo Chemical Company, Limited Thermoplastic resin composition
US6576700B2 (en) * 2000-04-12 2003-06-10 General Electric Company High flow polyphenylene ether formulations
CN100441636C (zh) * 2002-09-20 2008-12-10 通用电气公司 引擎盖下组件
US7041716B2 (en) 2003-07-11 2006-05-09 National Research Council Of Canada Cellulose filled thermoplastic composites
JP2005206639A (ja) 2004-01-20 2005-08-04 Riken Technos Corp 有機充填剤を含む樹脂組成物
DE102004016163A1 (de) 2004-03-26 2005-10-13 Kometra Kunststoff-Modifikatoren Und -Additiv Gmbh Polypropylen-Verbunde
EP1741725B1 (fr) * 2005-07-08 2014-04-09 Borealis Technology Oy Composition à base de polypropylène
US8227550B2 (en) 2006-12-20 2012-07-24 Basell Poliolefine Italia S.R.L. Filled polyolefin compositions
CN101568589B (zh) 2006-12-20 2012-11-14 巴塞尔聚烯烃意大利有限责任公司 填充的聚烯烃组合物
EP1990362A1 (fr) * 2007-05-09 2008-11-12 Borealis Technology Oy Compositions de polyoléfine dotées de fibres régénérées de cellulose fortement cristalline
EP2386601B1 (fr) * 2010-05-11 2012-07-04 Borealis AG Polypropylène branché à une longue chaîne à grande aptitude à l'écoulement
CN101831112B (zh) 2010-05-14 2013-02-20 广州金发绿可木塑科技有限公司 一种无卤阻燃型注塑级聚烯烃木塑复合材料及其制备方法
BR112015003091B1 (pt) * 2012-08-27 2021-08-03 Borealis Ag Composição reforçada com fibra, seus artigos automotivo e de espuma e seu processo de preparação

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051060A1 (fr) 1980-10-27 1982-05-05 Österreichische Hiag-Werke Aktiengesellschaft Plaque isolante et procédé pour sa fabrication
WO2004016667A2 (fr) * 2002-08-16 2004-02-26 Equistar Chemicals, Lp Copolymeres de propylene greffes ameliores et melanges adhesifs
US20040214925A1 (en) * 2003-04-14 2004-10-28 Sigworth William D. Coupling agents for natural fiber-filled polyolefins
WO2006108256A1 (fr) 2005-04-13 2006-10-19 Ford Motor Company Brasil Ltda. Materiel destine a un moulage par injection, son procede, et son utilisation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCS20130027A1 (it) * 2013-11-30 2015-05-31 Consorzio Per Le Tecnologie Biomedi Che Avanzate Materiali compositi ottenuti da fibre estratte da fibre vegetali di ginestra e polimeri e processo per ottenerli
DE102014226948B4 (de) 2014-03-07 2023-06-29 Hyundai Motor Company Polyolefin-Naturfaser-Verbundzusammensetzung, Verfahren zum Extrusionsformen unter Verwendung derselben und geformtes Erzeugnis, das über ein derartiges Verfahren hergestellt wird
DE102019116200A1 (de) 2018-06-22 2019-12-24 Faurecia Interieur Industrie Zusammensetzung auf der Basis von natürlichen Fasern und pulverförmigem Polypropylen-Homopolymer
US11485842B2 (en) 2018-06-22 2022-11-01 Faurecia Interieur Industrie Natural fibers and powdery polypropylene homopolymer based composition
FR3085379A1 (fr) 2018-08-28 2020-03-06 Faurecia Interieur Industrie Materiau composite ductile a base de fibres naturelles
FR3100156A1 (fr) 2019-08-27 2021-03-05 Faurecia Interieur Industrie Matériau multicouche présentant une résilience améliorée
FR3109154A1 (fr) 2020-04-14 2021-10-15 Psa Automobiles Sa Matériau composite pour réaliser des pièces d’aspect pour l’intérieur d’un véhicule automobile, méthode de fabrication associée et pièces d’aspect comprenant ce matériau composite
WO2021248219A1 (fr) * 2020-06-10 2021-12-16 Artecola Química S.A. Composite hybride de matrice polymère et procédé de traitement

Also Published As

Publication number Publication date
PL2661463T3 (pl) 2022-12-19
BR112013017400A2 (pt) 2017-10-17
CN103403083A (zh) 2013-11-20
EP2661463A1 (fr) 2013-11-13
FR2970257A1 (fr) 2012-07-13
US20140291894A1 (en) 2014-10-02
PT2661463T (pt) 2022-10-18
US9951215B2 (en) 2018-04-24
FR2970257B1 (fr) 2012-12-28
ES2927856T3 (es) 2022-11-11
CN107903506A (zh) 2018-04-13
EP2661463B1 (fr) 2022-09-28

Similar Documents

Publication Publication Date Title
EP2661463B1 (fr) Materiau composite injectable renforce par des fibres naturelles
EP1177229B1 (fr) Polyolefines et procede pour leur fabrication
EP0816427B1 (fr) Composition à base de polyoléfines et de copolymére éthyléne-acétate de vinyle
MX2007013639A (es) Metodo para formar materiales mixtos de polipropileno reforzados con fibras.
CA2699744A1 (fr) Polyamide composition
FR2915749A1 (fr) Compositions formees d'une matrice de polyolefine et d'une charge minerale lamellaire et procede d'extrusion compoundage associe
FR2763073A1 (fr) Polymere charge par des particules solides passees par un etat de suspension
FR3080380A1 (fr) Materiau composite a base de fibres naturelles lignocellulosiques presentant des proprietes rheologiques ameliorees et des emissions reduites d'odeurs et de composes organiques volatils
US11485842B2 (en) Natural fibers and powdery polypropylene homopolymer based composition
FR3079521A1 (fr) Composition thermoplastique a base de polyolefines pour la realisation d'objets de proprietes antistatiques permanentes.
EP3224013B1 (fr) Procede de surmoulage sur un insert plastique et piece automobile obtenue par ce procede
EP1599509B1 (fr) PROC D POUR LA MODIFICATION DE POLYOL FINES GREFF ES, COMPOSITIONS ET ARTICLES COMPRENANT LES POLYOL& Eacute;FINES AINSI MODIFI ES
FR3085379A1 (fr) Materiau composite ductile a base de fibres naturelles
BE1008979A3 (fr) Compositions a base de polymere du propylene et de copolymere ethylene-acetate de vinyle, procede pour leur mise en oeuvre, feuilles obtenues a partir de ces compositions.
EP1749851B1 (fr) Composition comprenant au moins deux polymères thermoplastiques incompatibles et un agent compatibilisant, son procédé de préparation et son utilisation
WO2013093364A9 (fr) Procédé de fabrication d'une composition a base de polymère a fluidité contrôlée
FR3100156A1 (fr) Matériau multicouche présentant une résilience améliorée
EP3371249B1 (fr) Matériau destiné a l'injection pour moulage, a base de matière thermoplastique, billes de verre creuses et fibres, procédé de fabrication et utilisation d'un tel matériau
BE1027573B1 (fr) Composition de polyethylene ayant un escr, une resistance aux chocs et une resistance a l'usure ameliores ainsi qu'un procede pour les preparer
EP2542395A1 (fr) Procede de fabrication de granules de polypropylene post reticulable apres transformation; granules obtenus et articles moules fabriques a partir des granules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12700027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012700027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1301003802

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13978696

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013017400

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013017400

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013017400

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130705