WO2012092866A1 - 终端的频偏的调整方法、终端以及tdd系统 - Google Patents

终端的频偏的调整方法、终端以及tdd系统 Download PDF

Info

Publication number
WO2012092866A1
WO2012092866A1 PCT/CN2012/070057 CN2012070057W WO2012092866A1 WO 2012092866 A1 WO2012092866 A1 WO 2012092866A1 CN 2012070057 W CN2012070057 W CN 2012070057W WO 2012092866 A1 WO2012092866 A1 WO 2012092866A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
terminal
frequency
offset compensation
temperature
Prior art date
Application number
PCT/CN2012/070057
Other languages
English (en)
French (fr)
Inventor
刘俊英
张春利
Original Assignee
意法·爱立信半导体(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 意法·爱立信半导体(北京)有限公司 filed Critical 意法·爱立信半导体(北京)有限公司
Publication of WO2012092866A1 publication Critical patent/WO2012092866A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation

Definitions

  • the present invention relates to the field of mobile communications, and in particular to a method for adjusting a frequency offset of a terminal, a terminal, and a TDD system. Background technique
  • a large number of handsets start using transceivers that include a voltage controlled crystal oscillator (VCXO) or a transceiver that includes an all digitally controlled crystal oscillator. Due to the lower cost and smaller size of the DCXO, the DCXO (Digital Temperature Compensation Oscillator) is used in the terminal design to generate the system's reference clock. Since the DCXO does not have the function of automatically adjusting the frequency, if the frequency offset is not compensated and adjusted in time, the demodulation performance of the paging information will be affected.
  • VXO voltage controlled crystal oscillator
  • DCXO Digital Temperature Compensation Oscillator
  • the technical problem to be solved by the present invention is to provide a method for adjusting the frequency offset of a terminal, a terminal, and a TDD system, which can improve the demodulation performance of the paging information by the terminal that uses the DCXO to generate the system reference clock.
  • a method for adjusting a frequency offset of a terminal where the terminal includes: a digital temperature compensation oscillator DCXO for generating a reference clock, the method comprising:
  • Step 1 Perform a first frequency offset of the radio frequency of the terminal according to a difference between a second temperature of the DCXO after the terminal wakes up and a first temperature of the DCXO before the terminal is dormant. make up;
  • Step 2 Receive service data at the radio frequency of the first frequency offset compensation, and demodulate the service data.
  • the step 1 is specifically: waking up at a time when a predetermined number of subframes are advanced than a predetermined wake-up time, And performing, according to a difference between a second temperature of the DCXO after the terminal wakes up and a first temperature of the DCXO before the terminal is dormant, performing a first frequency offset compensation;
  • the method further includes:
  • Step A1 Obtain a second frequency offset compensation value at the RF frequency after the first frequency offset compensation; Step A2, perform a second RF frequency of the terminal according to the second frequency offset compensation value Frequency offset compensation
  • the step 2 is specifically: receiving, at the radio frequency of the second frequency offset compensation, service data, and demodulating the service data.
  • the step A1 is specifically: receiving, in the current subframe after the terminal wakes up, receiving data of the slot 0 according to the radio frequency of the first frequency offset compensation, according to the traffic channel of the slot 0 Obtain a second offset compensation value.
  • the method further includes:
  • Step 3 acquiring a third frequency offset compensation value
  • Step 4 Perform third offset compensation on the demodulated service data according to the third frequency offset compensation value.
  • the step 1 includes:
  • Step B1 measuring a first temperature of the DCXO in the terminal before the terminal is dormant; step B2, after the terminal wakes up, measuring a second temperature of the DCXO of the terminal; step B3, respectively Finding a first frequency offset value corresponding to the first temperature and a second frequency offset value corresponding to the second temperature;
  • Step B4 Acquire a first frequency offset compensation according to the first frequency offset value and the second frequency offset value, a center frequency point of an operating frequency band of the terminal, and a frequency oscillation adjustment slope of an operating frequency band of the terminal.
  • the value B1 is performed according to the first frequency offset compensation value, and the first frequency offset compensation is performed.
  • the step B4 is calculated by the following formula:
  • / is the first frequency offset compensation value
  • ⁇ / is the difference between the second frequency offset value and the first frequency offset value
  • Terminal operating frequency band The center frequency point, ⁇ —5 ⁇ ⁇ is the frequency oscillation adjustment slope of the working frequency band of the terminal.
  • the predetermined number of values of the subframe is determined according to the accuracy of the temperature offset frequency offset of the DCXO and the frequency offset value of the demodulation tolerance of the TDD system in which the terminal is located.
  • a terminal including: a digital temperature compensation oscillator DCXO for generating a reference clock, further comprising:
  • a first frequency offset compensation unit configured to perform a radio frequency of the terminal according to a difference between a second temperature of the DCXO after the terminal wakes up and a first temperature of the DCXO before the terminal is dormant Frequency offset compensation
  • the demodulation unit receives the service data at the radio frequency of the first frequency offset compensation, and demodulates the service data.
  • the terminal further includes:
  • the second frequency offset compensation value acquiring unit receives the data of the time slot 0 according to the radio frequency of the first frequency offset compensation in the current subframe after the terminal wakes up, according to the service of the time slot 0 Obtaining a second frequency offset compensation value by the channel;
  • the second frequency offset compensation unit performs second frequency offset compensation of the radio frequency of the terminal according to the second frequency offset compensation value
  • the first frequency offset compensation unit is specifically: waking up at a time of a predetermined number of subframes ahead of a predetermined wake-up time, and sleeping with the DCXO at the terminal according to the second temperature after the DCXO wakes up at the terminal The difference between the first first temperatures is performed, and the first frequency offset compensation is performed;
  • the demodulation unit is specifically configured to: receive the service data at the radio frequency after the second frequency offset compensation, and demodulate the service data.
  • the terminal further includes:
  • a third frequency offset compensation value acquiring unit which acquires a third frequency offset compensation value
  • the third frequency offset compensation unit performs third frequency offset compensation on the demodulated service data according to the third frequency offset compensation value.
  • the first frequency offset compensation unit includes: a first temperature measuring subunit, measuring a number of DCXOs in the terminal before the terminal is dormant
  • a second temperature measuring subunit after the terminal wakes up, measuring a DCXO of the terminal
  • Finding a sub-unit respectively searching for a first frequency offset value corresponding to the first temperature and a second frequency offset value corresponding to the second temperature;
  • a first frequency offset compensation value obtaining sub-unit, and adjusting a slope according to the first frequency offset value and the second frequency offset value, a center frequency point of an operating frequency band of the terminal, and a frequency oscillation of an operating frequency band of the terminal, Obtaining a first frequency offset compensation value;
  • the first frequency offset compensation sub-unit performs the first frequency offset compensation according to the first frequency offset compensation value.
  • a TDD system includes a terminal, and the terminal includes: a digital temperature compensation oscillator DCXO for generating a reference clock, wherein the terminal further includes:
  • the demodulation unit receives the service data at the radio frequency of the first frequency offset compensation, and demodulates the service data.
  • the terminal performs the first frequency offset compensation of the radio frequency of the terminal according to the difference between the second temperature of the DCXO after the terminal wakes up and the first temperature of the DCXO before the terminal is dormant.
  • the frequency offset can be compensated and adjusted in time, and the demodulation performance of the paging information is improved.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for adjusting a frequency offset of a terminal according to the present invention
  • 2 is a schematic flowchart of another embodiment of a method for adjusting a frequency offset of a terminal according to the present invention
  • FIG. 3 is a schematic structural diagram of a terminal according to the present invention
  • FIG. 4 is a schematic flowchart of an application scenario of a method for adjusting a frequency offset of a terminal according to the present invention. detailed description
  • the terminal includes: a digital temperature compensation oscillator DCXO for generating a reference clock, the method comprising:
  • Step 11 Perform a first frequency offset of the radio frequency of the terminal according to a difference between a second temperature of the DCXO after the terminal wakes up and a first temperature of the DCXO before the terminal is dormant. make up;
  • Step 12 Receive service data at the RF frequency after the first frequency offset compensation, and demodulate the service data.
  • the frequency offset can be compensated and adjusted in time, and the demodulation performance of the paging information is improved.
  • the terminal includes: a digital temperature compensation oscillator DCXO for generating a reference clock, the method comprising:
  • Step 21 wake up at a time when a predetermined number of subframes are advanced than a predetermined wake-up time, and according to the second temperature after the DCXO wakes up in the terminal and the first temperature of the DCXO before the terminal sleeps a difference of the first frequency offset compensation; wherein the predetermined number of values of the subframe is determined according to the accuracy of the temperature offset frequency offset of the DCXO and the frequency offset value of the demodulation tolerance of the TDD system in which the terminal is located .
  • Step 22 Acquire a second frequency offset compensation value at the radio frequency of the first frequency offset compensation. Specifically, in a current subframe after the terminal wakes up, after the first frequency offset compensation At the radio frequency, the data of slot 0 is received, and the second offset offset value is obtained according to the traffic channel of the slot 0.
  • Step 23 Perform second frequency offset compensation of the radio frequency of the terminal according to the second frequency offset compensation value.
  • Step 24 Receive service data at the RF frequency after the second frequency offset compensation, and demodulate the service data.
  • Step 25 Acquire a third frequency offset compensation value
  • Step 26 Perform third offset compensation on the demodulated service data according to the third frequency offset compensation value.
  • the step 21 includes:
  • the first frequency offset compensation value is performed.
  • a terminal includes: a digital temperature compensation oscillator DCXO for generating a reference clock, and further includes:
  • the first frequency offset compensation unit 31 performs the radio frequency of the terminal according to the difference between the second temperature of the DCXO after the terminal wakes up and the first temperature of the DCXO before the terminal is dormant.
  • the demodulation unit 32 receives the service data at the radio frequency of the first frequency offset compensation, and Demodulating the service data.
  • the terminal further includes:
  • the second frequency offset compensation value obtaining unit 33 receives the data of the time slot 0 according to the time slot 0 in the current subframe after the terminal wakes up, at the radio frequency frequency after the first frequency offset compensation.
  • the traffic channel acquires a second frequency offset compensation value
  • the second frequency offset compensation unit 34 performs second frequency offset compensation of the radio frequency of the terminal according to the second frequency offset compensation value
  • the first frequency offset compensation unit 31 is specifically configured to wake up at a time when a predetermined number of subframes are advanced than a predetermined wake-up time, and according to the DCXO, the second temperature after the terminal wakes up with the DCXO at the terminal.
  • the first frequency offset compensation is performed by a difference between the first temperatures before the sleep;
  • the demodulation unit 32 is specifically configured to: receive the service data at the radio frequency after the second frequency offset compensation, and demodulate the service data.
  • the third frequency offset compensation value obtaining unit 35 acquires a third frequency offset compensation value
  • the third frequency offset compensation unit 36 performs third frequency offset compensation on the demodulated service data according to the third frequency offset compensation value.
  • the first frequency offset compensation unit 31 includes:
  • a first temperature measuring subunit measuring a number of DCXOs in the terminal before the terminal is dormant
  • a second temperature measuring subunit after the terminal wakes up, measuring a DCXO of the terminal
  • Finding a sub-unit respectively searching for a first frequency offset value corresponding to the first temperature and a second frequency offset value corresponding to the second temperature;
  • a first frequency offset compensation value obtaining sub-unit and adjusting a slope according to the first frequency offset value and the second frequency offset value, a center frequency point of an operating frequency band of the terminal, and a frequency oscillation of an operating frequency band of the terminal, Obtaining a first frequency offset compensation value;
  • the first frequency offset compensation sub-unit performs the first frequency offset compensation according to the first frequency offset compensation value.
  • a TDD system includes a terminal, and the terminal includes: a digital temperature compensation oscillator DCX0 for generating a reference clock, the terminal further comprising:
  • the demodulation unit receives the service data at the radio frequency of the first frequency offset compensation, and demodulates the service data.
  • FIG. 4 it is an application scenario of the frequency offset processing method in the idle state when the DCXO is used in the TD-SCDMA system shown in the present invention.
  • the present invention is not limited to the TD-SCDMA system and can be used in other TDD (Time Division Duplexing) systems.
  • the terminal uses the DCXO transceiver, and the terminal uses DCXO (Digital Compensation Crystal Oscillator) to generate the system reference clock, which works in the 2010 2025M frequency band.
  • DCXO Digital Compensation Crystal Oscillator
  • Step 1 The terminal wakes up n times before each sleep.
  • the SC system controller
  • the frequency offset compensation is The RF is completed before starting work, and the frequency has been stabilized.
  • step 2 is not performed.
  • the terminal performs a temperature measurement on the system clock at least once and saves the last temperature value before sleep.
  • the terminal wakes up one subframe in advance.
  • the SC schedules the system clock for temperature measurement and records the temperature value as 7 ⁇
  • the table is given by the chip manufacturer and stored in the terminal fixed memory.
  • the frequency offset value corresponding to the temperature be ⁇ ⁇ pprn, and the frequency offset corresponding to the temperature ⁇ The value is / ) ppm.
  • the frequency deviation of the temperature change during the sleep cycle is: ⁇ , - ⁇ .
  • the frequency offset adjustment slope is obtained after the terminal is powered on.
  • the system controller then adjusts the amount "adjusted to the RF frequency by analog or digital means.
  • Step 2 After the temperature compensation is completed, the terminal starts receiving the data of TS0 in the subframe of the waking nth rule, performs frequency offset estimation by using the P-CCPCH channel, and estimates in the current subframe.
  • the frequency offset feedback controls the RF frequency of the system controller to further compensate for the residual frequency offset after temperature compensation.
  • the maximum frequency deviation of 800 Hz remains after the temperature compensation frequency offset, and the simulation indicates that the TD-SCDMA system BCH broadcast channel yPICH (Paging Indicator Channel) / PCH (Paging Channel) demodulation
  • the frequency offset is limited to 200 Hz. Therefore, in order to ensure that the BCH/PICH/PCH demodulation performance wakes up, it is necessary to estimate and compensate the frequency offset before demodulation, so wake up n subframes in advance. If the frequency offset remaining after temperature compensation is small and within the range allowed by the terminal demodulation, it is not necessary to wake up in advance.
  • the frequency offset estimation uses the P-CCPCH (Primary Common Control Physical Channel) data of TS0 slot 0), and the P-CCPCH uses QPSK (Quadrature Phase Shift Keying) modulation.
  • the frequency offset estimation based on QPSK modulation can use a variety of algorithms, as illustrated below:
  • is the number of symbols before or after the Mid-amble. due to
  • the SC controls the RF frequency by analog or digital means.
  • Step 3 The terminal starts to receive data and performs corresponding demodulation.
  • the frequency offset value estimated by the frame is used to perform frequency offset compensation on the demodulated data.
  • the terminal needs to listen to the broadcast after waking up, so after performing the frequency offset compensation, the terminal starts receiving the data of TS0 for demodulation of the BCH.
  • the frequency offset estimation is performed on the demodulated P-CCPCH symbol, and the method is similar to the frequency offset estimation method described in the second step, and details are not described herein again.
  • the estimated frequency offset value is f.
  • various compensation methods for compensating the demodulated symbols using the estimated frequency offset Take one of the methods as an example: Compensation for the first data before Mid-amble f f, -m)x 2 + 72)
  • the value of the first data after the value of 1.28*10 e Mid-amble is f ⁇
  • the terminal performs operations such as decoding using the compensated data.
  • the terminal when the terminal is in an idle state, it wakes up to receive paging information in each DRX (Discontinuous Reception:) cycle. Moreover, the temperature variation in each DRX cycle may bring a large frequency offset.
  • a DCXO frequency offset adjustment method in idle mode is proposed. Firstly, the frequency offset is adjusted according to the temperature, and then according to the received TS0 data. Frequency offset estimation and adjustment ensure the demodulation performance of paging information for each DRX cycle.
  • the method embodiment is corresponding to the device embodiment, and the portion not described in detail in the method embodiment may refer to the description of the relevant part in the device embodiment, and the partial reference method not described in detail in the device embodiment. The description of the relevant parts in the embodiment can be.
  • the storage medium includes a disk, an optical disk, a read-only memory (ROM), or a random access memory (Random Access Memory). RAM) and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Transceivers (AREA)
  • Circuits Of Receivers In General (AREA)

Description

终端的频偏的调整方法、 终端以及 TDD系统 技术领域
本发明涉及移动通信领域, 特别是指一种终端的频偏的调整方法、 终端 以及 TDD系统。 背景技术
在时钟接口电路中,大量手机开始使用包含电压控制晶体振荡器(VCXO) 的收发器或者使用包含全数字控制晶体振荡器的收发器。 由于 DCXO的成本 更低、 体积更小, 因此终端设计中使用 DCXO (数字温补振荡器) 产生系统 的基准时钟。 由于 DCXO没有自动调节频率的功能, 因此如果不及时对频偏 进行补偿和调整, 会影响寻呼信息的解调性能。 发明内容
本发明要解决的技术问题是提供一种终端的频偏的调整方法、 终端以及 TDD系统,能够提高使用 DCXO产生系统基准时钟的终端对寻呼信息的解调 性能。
为解决上述技术问题, 本发明的实施例提供技术方案如下:
一方面, 提供一种终端的频偏的调整方法, 所述终端包括: 用于产生基 准时钟的数字温补振荡器 DCXO, 所述方法包括:
歩骤 1,根据所述 DCXO在所述终端唤醒后的第二温度与所述 DCXO在 所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频率的第一频 偏补偿;
歩骤 2, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对所 述业务数据进行解调。
所述歩骤 1具体为: 在比预定唤醒时刻提前预定数量子帧的时刻醒来, 并根据所述 DCXO在所述终端唤醒后的第二温度与所述 DCXO在所述终端休 眠前的第一温度之间的差值, 进行第一频偏补偿;
所述歩骤 1之后, 所述歩骤 2之前, 所述方法还包括:
歩骤 A1 , 在所述第一频偏补偿后的射频频率下, 获取第二频偏补偿值; 歩骤 A2, 根据所述第二频偏补偿值, 进行所述终端的射频频率的第二频 偏补偿;
所述歩骤 2具体为: 在所述第二频偏补偿后的射频频率下, 接收业务数 据, 并对所述业务数据进行解调。
所述歩骤 A1 具体为: 在所述终端唤醒后的当前子帧内, 在所述第一频 偏补偿后的射频频率下, 接收时隙 0的数据, 根据所述时隙 0的业务信道获 取第二频偏补偿值。
所述方法还包括:
歩骤 3, 获取第三频偏补偿值;
歩骤 4, 根据所述第三频偏补偿值, 对解调的所述业务数据进行第三频 偏补偿。
所述歩骤 1包括:
歩骤 B1 , 在所述终端休眠前, 测量所述终端中 DCXO的第一温度; 歩骤 B2, 在所述终端醒来后, 测量所述终端的 DCXO的第二温度; 歩骤 B3 , 分别查找所述第一温度对应的第一频偏值和所述第二温度对应 的第二频偏值;
歩骤 B4, 根据所述第一频偏值和所述第二频偏值、 所述终端的工作频段 的中心频点以及所述终端的工作频段的频振调整斜率,获取第一频偏补偿值; 歩骤 B5 , 根据所述第一频偏补偿值, 进行第一频偏补偿。
所述歩骤 B4采用以下公式进行计算:
Δ/* Μ * 7^^_ ,其中, /为所述第一频偏补偿值, Δ/为 所述第二频偏值与所述第一频偏值之间的差值; Μ为所述终端的工作频段的 中心频点, ^—5^ ^为所述终端的工作频段的频振调整斜率。 所述子帧的预定数量的值根据所述 DCXO的温度补偿频偏的精度和所述 终端所在的 TDD系统的解调容忍的频偏值确定。
另一方面, 提供一种终端, 包括: 用于产生基准时钟的数字温补振荡器 DCXO, 其特征在于, 还包括:
第一频偏补偿单元, 根据所述 DCXO在所述终端唤醒后的第二温度与所 述 DCXO在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频 率的第一频偏补偿;
解调单元, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对 所述业务数据进行解调。
所述的终端, 还包括:
第二频偏补偿值获取单元, 在所述终端唤醒后的当前子帧内, 在所述第 一频偏补偿后的射频频率下, 接收时隙 0的数据, 根据所述时隙 0的业务信 道获取第二频偏补偿值;
第二频偏补偿单元, 根据所述第二频偏补偿值进行所述终端的射频频率 的第二频偏补偿;
所述第一频偏补偿单元具体为: 在比预定唤醒时刻提前预定数量子帧的 时刻醒来,并根据所述 DCXO在所述终端唤醒后的第二温度与所述 DCXO在 所述终端休眠前的第一温度之间的差值, 进行第一频偏补偿;
所述解调单元具体为: 在所述第二频偏补偿后的射频频率下, 接收业务 数据, 并对所述业务数据进行解调。
所述的终端, 还包括:
第三频偏补偿值获取单元, 获取第三频偏补偿值;
第三频偏补偿单元, 根据所述第三频偏补偿值, 对解调的所述业务数据 进行第三频偏补偿。
所述第一频偏补偿单元包括: 第一温度测量子单元, 在所述终端休眠前, 测量所述终端中 DCXO的第
" ~~ *温度;
第二温度测量子单元, 在所述终端醒来后, 测量所述终端的 DCXO的第
~ "温度;
查找子单元, 分别查找所述第一温度对应的第一频偏值和所述第二温度 对应的第二频偏值;
第一频偏补偿值获取子单元, 根据所述第一频偏值和所述第二频偏值、 所述终端的工作频段的中心频点以及所述终端的工作频段的频振调整斜率, 获取第一频偏补偿值;
第一频偏补偿子单元, 根据所述第一频偏补偿值, 进行第一频偏补偿。 另一方面, 提供一种 TDD系统, 所述 TDD系统包括终端, 所述终端包 括: 用于产生基准时钟的数字温补振荡器 DCXO, 其特征在于, 所述终端还 包括:
第一频偏补偿单元, 根据所述 DCXO在所述终端唤醒后的第二温度与所 述 DCXO在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频 率的第一频偏补偿;
解调单元, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对 所述业务数据进行解调。
本发明的实施例具有以下有益效果:
上述方案中, 终端根据 DCXO 在所述终端唤醒后的第二温度与所述 DCXO在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频率 的第一频偏补偿, 能够对频偏及时进行补偿和调整, 提高了寻呼信息的解调 性能。 附图说明
图 1为本发明所述的终端的频偏的调整方法的一实施例的流程示意图; 图 2为本发明所述的终端的频偏的调整方法的另一实施例的流程示意图; 图 3为本发明所述的终端的结构示意图;
图 4为本发明所述的终端的频偏的调整方法的应用场景的流程示意图。 具体实施方式
为使本发明的实施例要解决的技术问题、 技术方案和优点更加清楚, 下 面将结合附图及具体实施例进行详细描述。
如图 1所示, 为本发明所述的一种终端的频偏的调整方法, 所述终端包 括: 用于产生基准时钟的数字温补振荡器 DCXO, 所述方法包括:
歩骤 11, 根据所述 DCXO在所述终端唤醒后的第二温度与所述 DCXO 在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频率的第一 频偏补偿;
歩骤 12, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对所 述业务数据进行解调。
上述方案中, 能够对频偏及时进行补偿和调整, 提高了寻呼信息的解调 性能。
如图 2所示, 为本发明所述的一种终端的频偏的调整方法, 所述终端包 括: 用于产生基准时钟的数字温补振荡器 DCXO, 所述方法包括:
歩骤 21, 在比预定唤醒时刻提前预定数量子帧的时刻醒来, 并根据所述 DCXO在所述终端唤醒后的第二温度与所述 DCXO在所述终端休眠前的第一 温度之间的差值, 进行第一频偏补偿; 其中, 所述子帧的预定数量的值根据 所述 DCXO的温度补偿频偏的精度和所述终端所在的 TDD系统的解调容忍 的频偏值确定。
歩骤 22, 在所述第一频偏补偿后的射频频率下, 获取第二频偏补偿值; 具体为: 在所述终端唤醒后的当前子帧内, 在所述第一频偏补偿后的射频频 率下,接收时隙 0的数据,根据所述时隙 0的业务信道获取第二频偏补偿值。 歩骤 23, 根据所述第二频偏补偿值, 进行所述终端的射频频率的第二频 偏补偿;
歩骤 24, 在所述第二频偏补偿后的射频频率下, 接收业务数据, 并对所 述业务数据进行解调。
歩骤 25, 获取第三频偏补偿值;
歩骤 26, 根据所述第三频偏补偿值, 对解调的所述业务数据进行第三频 偏补偿。
所述歩骤 21包括:
首先, 在所述终端休眠前, 测量所述终端中 DCXO的第一温度; 然后, 在所述终端醒来后, 测量所述终端的 DCXO的第二温度; 然后, 分别查找所述第一温度对应的第一频偏值和所述第二温度对应的 第二频偏值;
然后, 根据所述第一频偏值和所述第二频偏值、 所述终端的工作频段的 中心频点以及所述终端的工作频段的频振调整斜率, 获取第一频偏补偿值; 其中, 采用以下公式进行计算: η = - ;Τ Μ ^ FOE— Step , 其中, n为 所述第一频偏补偿值, Δ 为所述第二频偏值与所述第一频偏值之间的差值; Μ为所述终端的工作频段的中心频点, FCE _ Step为所述终端的工作频 段的频振调整斜率。
然后, 根据所述第一频偏补偿值, 进行第一频偏补偿。
如图 3所示, 为本发明所述的一种终端, 包括: 用于产生基准时钟的数 字温补振荡器 DCXO, 还包括:
第一频偏补偿单元 31,根据所述 DCXO在所述终端唤醒后的第二温度与 所述 DCXO在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频 频率的第一频偏补偿;
解调单元 32, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并 对所述业务数据进行解调。
所述的终端, 还包括:
第二频偏补偿值获取单元 33, 在所述终端唤醒后的当前子帧内, 在所述 第一频偏补偿后的射频频率下, 接收时隙 0的数据, 根据所述时隙 0的业务 信道获取第二频偏补偿值;
第二频偏补偿单元 34, 根据所述第二频偏补偿值进行所述终端的射频频 率的第二频偏补偿;
所述第一频偏补偿单元 31具体为:在比预定唤醒时刻提前预定数量子帧 的时刻醒来, 并根据所述 DCXO在所述终端唤醒后的第二温度与所述 DCXO 在所述终端休眠前的第一温度之间的差值, 进行第一频偏补偿;
所述解调单元 32具体为: 在所述第二频偏补偿后的射频频率下, 接收业 务数据, 并对所述业务数据进行解调。
所述的终端, 还包括:
第三频偏补偿值获取单元 35, 获取第三频偏补偿值;
第三频偏补偿单元 36, 根据所述第三频偏补偿值, 对解调的所述业务数 据进行第三频偏补偿。
所述第一频偏补偿单元 31包括:
第一温度测量子单元, 在所述终端休眠前, 测量所述终端中 DCXO的第
" ~~ *温度;
第二温度测量子单元, 在所述终端醒来后, 测量所述终端的 DCXO的第
~ "温度;
查找子单元, 分别查找所述第一温度对应的第一频偏值和所述第二温度 对应的第二频偏值;
第一频偏补偿值获取子单元, 根据所述第一频偏值和所述第二频偏值、 所述终端的工作频段的中心频点以及所述终端的工作频段的频振调整斜率, 获取第一频偏补偿值; 第一频偏补偿子单元, 根据所述第一频偏补偿值, 进行第一频偏补偿。 另一方面, 提供一种 TDD系统, 所述 TDD系统包括终端, 所述终端包 括: 用于产生基准时钟的数字温补振荡器 DCX0, 所述终端还包括:
第一频偏补偿单元, 根据所述 DCX0在所述终端唤醒后的第二温度与所 述 DCX0在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频 率的第一频偏补偿;
解调单元, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对 所述业务数据进行解调。
如图 4所示, 为本发明所示的 TD-SCDMA系统采用 DCXO时, 空闲状 态下的频偏处理方法的应用场景。 本发明不限于 TD-SCDMA系统, 可以用 于其他 TDD (Time Division Duplexing, 时分双工)系统。 本应用场景中, 终 端采用 DCXO的收发器, 终端利用 DCXO (数字补偿晶体振荡器)产生系统基 准时钟,, 工作在 2010 2025M的频段。 当处于空闲模式时, 本实现方法的工 作流程如下: 包括:
歩骤 1 : 终端在每次睡眠时都提前 n个子帧醒来, 在每次睡眠醒来时, SC(系统控制器)调度温度测量, 并根据温度变化进行频偏补偿, 该频偏补偿 在射频开始工作前完成, 并保证频率已经达到稳定的状态; 其中, n值取决 于温度补偿频偏的精度和 TDD系统解调容忍的频偏,推荐范围 η={0,1,2,3,4}。 当 n为 0时, 不进行歩骤 2。
具体来说, 首先, 在每次睡眠之前, 终端对系统时钟至少进行一次温度 测量, 并保存睡眠之前最后一次的温度值为 。
然后, 在给定的睡眠周期内, 终端提前一个子帧醒来。 首先 SC 调度系 统时钟进行温度测量, 并记录温度值为7^
然后, 根据温度值查表得到相应的频偏值, 该表由芯片厂商给出并保存 在终端固定存储器里。设温度 对应的频偏值为^ ^pprn,温度 ^对应的频偏 值为/ ) ppm。 则该睡眠周期内随温度变化的频偏为: = ΑΆ、- ΑΆ 。
然后, 根据工作频段的中心频点 (2017.4MHz) 将频偏从 ppm转化 Hz, 具体为: F(HZ) = A/ * 2017.4 。
然后, 根据该工作频段的频偏调整斜率 ^^-^ ^得到此次调整的频偏控 制字为: n =—F、H^ FOE—Step。 其中, 频偏调整斜率 在终端开机后 获取。
然后,系统控制器将调整量 "通过模拟或者数字方式作用到射频频率的调 整。
歩骤 2: 在进行完温度补偿后, 终端在醒来的第 n个规则的子帧内, 开 始接收 TS0的数据, 利用 P-CCPCH信道进行频偏估计, 并在当前子帧内将 估计的频偏反馈给系统控制器控制射频频率, 以进一歩补偿温度补偿后残留 的频偏。
根据晶体特性和大量研究得出, 在温度补偿频偏后仍残留最大为 800Hz 的频偏,而仿真指出 TD-SCDMA系统 BCH广播信道 yPICH(寻呼指示信道) /PCH (寻呼信道) 解调的频偏限制为 200Hz。 因此, 为了保证睡眠醒来 BCH/PICH/PCH的解调性能, 需在解调前进行频偏的估计和补偿, 故提前 n 个子帧醒来。 如果温度补偿后残留的频偏较小且在终端解调允许的范围内, 则不用提前醒来。
该频偏估计利用 TS0时隙 0)的 P-CCPCH (主公共控制物理信道)数据, P-CCPCH采用 QPSK (四相相移键控) 调制。 而基于 QPSK调制的频偏估计 可以采用多种算法, 举例说明如下:
根据 TD-SCDMA时隙结构, 假设解调后位于 Mid-amble码(中间码)前 面的 P-CCPCH的符号为 i( ), 位于 Mid-amble码后面的 P-CCPCH的符号为 r2 (0。基于解调符号得到的硬判符号分别为 ^ W和 ^ 0)。令 = rx { )* conj{d, (/ )),
1^ = ^ ) ^0« ^2^),«^ (; 表示 的共轭。 将 Mid-amble 前后符号共轭相乘: N
Q = ^7(z)*co^( (z
'=1 , ^为 Mid-amble前或者后的符号个数。 由于
P-CCPCH映射 理码道, 可将两个码道累加: = G+ , 最后得到频 偏值为: , =
Figure imgf000012_0001
(NQ + 144)) ,其中 arg[ 为复数 的相位, 2为扩频因 子, ^为码片速率。。
当帧估计的频偏值应当在当帧反馈给 SC, SC通过模拟或者数字的方式 控制射频频率。
歩骤 3: 终端开始接收数据进行相应的解调, 为了进一歩克服频偏的影 响,在解调过程中需要利用当帧估计出的频偏值对解调的数据进行频偏补偿。
假设终端睡眠醒来后需要监听广播, 因此在进行频偏补偿后, 终端开始 接收 TS0的数据进行 BCH的解调。 对解调的 P-CCPCH符号进行频偏估计, 该方法与歩骤二中所述的频偏估计方法类似, 这里不再赘述。
假设估计出的频偏值为 f 利用估计出的频偏对解调的符号进行补 偿的补偿方法有多种。 以其中一种方法为例: Mid-amble前第 ^个数据的补偿 f f, -m)x 2 + 72)
值为 1.28*10e Mid-amble 后第 ^个数据的补偿值为 f π
† ― J ― * (ffl X (9 + 72
1.28*106 ^ , 最 后 补 偿 后 的 数 据 为 : W = )
Figure imgf000012_0002
其中, ri W为补偿后隱据, r(i) 为 补偿前的数据, e是常数。 然后, 终端利用补偿后的数据进行解码等操作。
本发明中,终端处于空闲状态时,在每个 DRX ( Discontinuous Reception , 非连续接收:)周期醒来接收寻呼信息。 并且, 在每个 DRX周期温度的变化可 能带来较大的频偏, 提出了一种空闲模式下 DCXO的频偏调整方法, 先根据 温度对频偏进行调整, 再根据接收的 TS0的数据进行频偏估计和调整, 保证 了每个 DRX周期寻呼信息的解调性能。 所述方法实施例是与所述装置实施例相对应的, 在方法实施例中未详细 描述的部分参照装置实施例中相关部分的描述即可, 在装置实施例中未详细 描述的部分参照方法实施例中相关部分的描述即可。
本领域普通技术人员可以理解, 实现上述实施例方法中的全部或部分歩 骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算 机可读取存储介质中, 该程序在执行时, 包括如上述方法实施例的歩骤, 所 述的存储介质,如:磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM) 或随机存储记忆体 (Random Access Memory, RAM) 等。
在本发明各方法实施例中, 所述各歩骤的序号并不能用于限定各歩骤的 先后顺序, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 对各歩骤的先后变化也在本发明的保护范围之内。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明所述原理的前提下, 还可以作出若干改进和 润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种终端的频偏的调整方法, 所述终端包括: 用于产生基准时钟的数 字温补振荡器 DCX0, 其特征在于, 所述方法包括:
歩骤 1, 根据所述 DCX0在所述终端唤醒后的第二温度与所述 DCX0在所述终 端休眠前的第一温度之间的差值,进行所述终端的射频频率的第一频偏补偿; 歩骤 2, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对所述 业务数据进行解调。
2. 根据权利要求 1所述的终端的频偏的调整方法, 其特征在于, 所述歩骤 1具体为: 在比预定唤醒时刻提前预定数量子帧的时刻醒来, 并 根据所述 DCX0在所述终端唤醒后的第二温度与所述 DCX0在所述终端休眠前的 第一温度之间的差值, 进行第一频偏补偿;
所述歩骤 1之后, 所述歩骤 2之前, 所述方法还包括:
歩骤 Al, 在所述第一频偏补偿后的射频频率下, 获取第二频偏补偿值; 歩骤 A2, 根据所述第二频偏补偿值, 进行所述终端的射频频率的第二频 偏补偿;
所述歩骤 2具体为:在所述第二频偏补偿后的射频频率下,接收业务数据, 并对所述业务数据进行解调。
3. 根据权利要求 2所述的终端的频偏的调整方法, 其特征在于, 所述歩 骤 A1具体为: 在所述终端唤醒后的当前子帧内, 在所述第一频偏补偿后的射 频频率下, 接收时隙 0的数据, 根据所述时隙 0的业务信道获取第二频偏补偿 值。
4. 根据权利要求 1所述的终端的频偏的调整方法, 其特征在于, 所述方 法还包括:
歩骤 3, 获取第三频偏补偿值;
歩骤 4, 根据所述第三频偏补偿值, 对解调的所述业务数据进行第三频偏 补偿。
5. 根据权利要求 1所述的终端的频偏的调整方法, 其特征在于, 所述歩 骤 1包括:
歩骤 Bl, 在所述终端休眠前, 测量所述终端中 DCX0的第一温度; 歩骤 B2, 在所述终端醒来后, 测量所述终端的 DCX0的第二温度; 歩骤 B3, 分别查找所述第一温度对应的第一频偏值和所述第二温度对应 的第二频偏值;
歩骤 B4, 根据所述第一频偏值和所述第二频偏值、 所述终端的工作频段 的中心频点以及所述终端的工作频段的频振调整斜率,获取第一频偏补偿值; 歩骤 B5, 根据所述第一频偏补偿值, 进行第一频偏补偿。
6. 根据权利要求 5所述的终端的频偏的调整方法, 其特征在于, 所述歩 骤 B4采用以下公式进行计算:
Δ/ * Λ^ 7¾^— ,其中, ;为所述第一频偏补偿值, Δ/为 所述第二频偏值与所述第一频偏值之间的差值; M为所述终端的工作频段的 中心频点, — 为所述终端的工作频段的频振调整斜率。
7. 根据权利要求 2所述的终端的频偏的调整方法, 其特征在于, 所述子帧的预定数量的值根据所述 DCX0的温度补偿频偏的精度和所述终 端所在的 TDD系统的解调容忍的频偏值确定。
8. 一种终端, 包括: 用于产生基准时钟的数字温补振荡器 DCX0, 其特征 在于, 还包括:
第一频偏补偿单元, 根据所述 DCX0在所述终端唤醒后的第二温度与所述 DCX0在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频率的 第一频偏补偿;
解调单元, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对 所述业务数据进行解调。
9. 根据权利要求 8所述的终端, 其特征在于, 还包括:
第二频偏补偿值获取单元, 在所述终端唤醒后的当前子帧内, 在所述第 一频偏补偿后的射频频率下, 接收时隙 0的数据, 根据所述时隙 0的业务信道 获取第二频偏补偿值;
第二频偏补偿单元, 根据所述第二频偏补偿值进行所述终端的射频频率 的第二频偏补偿;
所述第一频偏补偿单元具体为: 在比预定唤醒时刻提前预定数量子帧的 时刻醒来, 并根据所述 DCX0在所述终端唤醒后的第二温度与所述 DCX0在所述 终端休眠前的第一温度之间的差值, 进行第一频偏补偿;
所述解调单元具体为: 在所述第二频偏补偿后的射频频率下, 接收业务 数据, 并对所述业务数据进行解调。
10. 根据权利要求 8所述的终端, 其特征在于, 还包括:
第三频偏补偿值获取单元, 获取第三频偏补偿值;
第三频偏补偿单元, 根据所述第三频偏补偿值, 对解调的所述业务数据 进行第三频偏补偿。
11. 根据权利要求 8所述的终端, 其特征在于, 所述第一频偏补偿单元包 括:
第一温度测量子单元, 在所述终端休眠前, 测量所述终端中 DCX0的第一 温度;
第二温度测量子单元, 在所述终端醒来后, 测量所述终端的 DCX0的第二 温度;
查找子单元, 分别查找所述第一温度对应的第一频偏值和所述第二温度 对应的第二频偏值;
第一频偏补偿值获取子单元, 根据所述第一频偏值和所述第二频偏值、 所述终端的工作频段的中心频点以及所述终端的工作频段的频振调整斜率, 获取第一频偏补偿值; 第一频偏补偿子单元, 根据所述第一频偏补偿值, 进行第一频偏补偿。
12 . 一种 TDD系统, 所述 TDD系统包括终端, 所述终端包括: 用于产生基 准时钟的数字温补振荡器 DCX0 , 其特征在于, 所述终端还包括:
第一频偏补偿单元, 根据所述 DCX0在所述终端唤醒后的第二温度与所述 DCX0在所述终端休眠前的第一温度之间的差值, 进行所述终端的射频频率的 第一频偏补偿;
解调单元, 在所述第一频偏补偿后的射频频率下, 接收业务数据, 并对 所述业务数据进行解调。
PCT/CN2012/070057 2011-01-06 2012-01-05 终端的频偏的调整方法、终端以及tdd系统 WO2012092866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110005534.XA CN102065040B (zh) 2011-01-06 2011-01-06 终端的频偏的调整方法、终端以及tdd系统
CN201110005534.X 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012092866A1 true WO2012092866A1 (zh) 2012-07-12

Family

ID=44000147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070057 WO2012092866A1 (zh) 2011-01-06 2012-01-05 终端的频偏的调整方法、终端以及tdd系统

Country Status (2)

Country Link
CN (1) CN102065040B (zh)
WO (1) WO2012092866A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717725A (zh) * 2013-12-12 2015-06-17 展讯通信(上海)有限公司 一种lte系统非连续接收模式下的同步方法
CN112600776A (zh) * 2020-12-08 2021-04-02 上海擎昆信息科技有限公司 一种适用于ofdm系统的频偏补偿方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065040B (zh) * 2011-01-06 2015-05-20 意法·爱立信半导体(北京)有限公司 终端的频偏的调整方法、终端以及tdd系统
CN106028436B (zh) * 2016-04-28 2019-10-25 华为技术有限公司 一种时频偏补偿的方法及用户终端
US10367677B2 (en) 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10630410B2 (en) 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
CN110855590A (zh) * 2019-11-18 2020-02-28 紫光展锐(重庆)科技有限公司 频偏补偿方法、系统、电子设备及计算机可读存储介质
CN117118431B (zh) * 2023-09-06 2024-03-29 上海锐星微电子科技有限公司 一种温度频偏补偿方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093638A1 (en) * 2003-11-03 2005-05-05 Heng-Chih Lin Methods and apparatus to control frequency offsets in digitally controlled crystal oscillators
CN201536362U (zh) * 2009-09-19 2010-07-28 无锡爱睿芯电子有限公司 温度感应振荡器以及温度频率校正系统
CN101842974A (zh) * 2007-10-30 2010-09-22 高通股份有限公司 晶体振荡器的温度补偿
CN102065040A (zh) * 2011-01-06 2011-05-18 意法·爱立信半导体(北京)有限公司 终端的频偏的调整方法、终端以及tdd系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691993B1 (ko) * 2005-10-26 2007-03-09 엘지전자 주식회사 온도에 따른 주파수 에러를 보상하는 이동 단말기
US7456782B2 (en) * 2005-12-29 2008-11-25 Sirf Technology, Inc. Timing calibration for fast signal reacquisition in navigational receivers
KR100668910B1 (ko) * 2006-02-15 2007-01-12 삼성전자주식회사 전세계 위치 확인 시스템을 이용한 이동 단말의 기준시계공유 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050093638A1 (en) * 2003-11-03 2005-05-05 Heng-Chih Lin Methods and apparatus to control frequency offsets in digitally controlled crystal oscillators
CN101842974A (zh) * 2007-10-30 2010-09-22 高通股份有限公司 晶体振荡器的温度补偿
CN201536362U (zh) * 2009-09-19 2010-07-28 无锡爱睿芯电子有限公司 温度感应振荡器以及温度频率校正系统
CN102065040A (zh) * 2011-01-06 2011-05-18 意法·爱立信半导体(北京)有限公司 终端的频偏的调整方法、终端以及tdd系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717725A (zh) * 2013-12-12 2015-06-17 展讯通信(上海)有限公司 一种lte系统非连续接收模式下的同步方法
CN104717725B (zh) * 2013-12-12 2018-09-07 展讯通信(上海)有限公司 一种lte系统非连续接收模式下的同步方法
CN112600776A (zh) * 2020-12-08 2021-04-02 上海擎昆信息科技有限公司 一种适用于ofdm系统的频偏补偿方法和装置
CN112600776B (zh) * 2020-12-08 2022-11-25 上海擎昆信息科技有限公司 一种适用于ofdm系统的频偏补偿方法和装置

Also Published As

Publication number Publication date
CN102065040A (zh) 2011-05-18
CN102065040B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2012092866A1 (zh) 终端的频偏的调整方法、终端以及tdd系统
US10211838B2 (en) Time-frequency deviation compensation method, and user terminal
EP2803231B1 (en) Methods and apparatus for power consumption management during discontinuous reception
JP5237436B2 (ja) アクセス端末においてスリープ期間中に生じるドリフトを補償すること
TWI504211B (zh) 用於用戶識別模組的方法及其系統與射頻通訊介面
US7680071B2 (en) Method and apparatus for managing power during a discontinuous reception mode
JP5043115B2 (ja) 周波数修正を効率的に適用するための方法および装置
US8787945B1 (en) Correction of timing errors to enable long sleep times
WO2015054123A1 (en) Transport and error compensation of a globally synchronized time-base
JP2008544591A (ja) 複数のサブキャリアを用いる無線通信システムのための自動周波数制御
US9307571B2 (en) Communication device and frequency offset calibrating method
CN102098250A (zh) 一种多模终端的频偏处理方法及装置
JP3560489B2 (ja) 効率的に電源供給を制御する通信装置、制御方法、及び記録媒体
WO2013154608A1 (en) Systems and methods for clock compensation
JP3272273B2 (ja) 間欠受信装置
US9560588B2 (en) Apparatus, system, and method for PDCCH preparation in radio frequency circuitry
WO2005064874A1 (en) Frequency control for a mobile communications device
JPH08307304A (ja) 移動体通信端末
JP3439448B2 (ja) 効率的に電源供給を制御する通信装置、制御方法、及び記録媒体
TWI306718B (en) Precise sleep timer using a low-cost and low-accuracy clock
CN116233997A (zh) 一种低功耗时频偏同步的方法、用户设备和系统
JP2005073102A (ja) 間欠受信装置、間欠受信方法、間欠受信プログラム、及び、プログラム記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.10.13)

122 Ep: pct application non-entry in european phase

Ref document number: 12732444

Country of ref document: EP

Kind code of ref document: A1