WO2012091393A2 - 전자제어 연료분사밸브 - Google Patents

전자제어 연료분사밸브 Download PDF

Info

Publication number
WO2012091393A2
WO2012091393A2 PCT/KR2011/010120 KR2011010120W WO2012091393A2 WO 2012091393 A2 WO2012091393 A2 WO 2012091393A2 KR 2011010120 W KR2011010120 W KR 2011010120W WO 2012091393 A2 WO2012091393 A2 WO 2012091393A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure chamber
needle
control
flow path
Prior art date
Application number
PCT/KR2011/010120
Other languages
English (en)
French (fr)
Other versions
WO2012091393A3 (ko
Inventor
김동훈
류승협
박태형
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100136404A external-priority patent/KR101162883B1/ko
Priority claimed from KR1020100136406A external-priority patent/KR101165541B1/ko
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to EP11852720.9A priority Critical patent/EP2660460B1/en
Priority to CN201180062787.9A priority patent/CN103339369B/zh
Priority to JP2013547325A priority patent/JP5760095B2/ja
Priority to US13/997,754 priority patent/US9200606B2/en
Publication of WO2012091393A2 publication Critical patent/WO2012091393A2/ko
Publication of WO2012091393A3 publication Critical patent/WO2012091393A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/04Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure using fluid, other than fuel, for injection-valve actuation
    • F02M47/046Fluid pressure acting on injection-valve in the period of injection to open it
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/06Other fuel injectors peculiar thereto

Definitions

  • the present invention relates to an electronically controlled fuel injection valve, which enables to control the fuel injection timing and injection amount according to a control signal independently of the operating conditions of the engine, and when no fuel injection is performed, no fuel is supplied to the nozzle unit.
  • the present invention relates to an electronically controlled fuel injection valve that prevents high pressure from constantly acting on the nozzle portion.
  • the common rail type fuel injection method that is capable of high pressure injection even at low load and easy injection control according to the control signal is mainly applied to the electronic control engine. have.
  • the conventional mechanical fuel injection valve is a structure that injects fuel by lifting the needle only through the pressure of the fuel injected into the chamber of the nozzle unit, and the injection characteristics such as the injection timing and the injection amount of the fuel are always constant, so that the engine is operated. There is a problem that fuel injection control is not achieved independently of the condition.
  • the fuel supplied to the nozzle unit through the fuel supply port is always supplied to the nozzle unit, so that a high pressure is always applied to the nozzle unit, so that a large amount of problems occur such as damage to the nozzle needle or valve seat There is a problem that fuel is leaked into the combustion chamber.
  • An object of the present invention for solving the above problems, unlike the conventional mechanical fuel injection valve, it is possible to control the injection timing and injection amount of the fuel in accordance with the control signal independent of the operating conditions of the engine,
  • the control method transmits the high pressure fuel through the control needle to the lower pressure chamber to increase the lifting force of the cutoff needle of the injection control unit, so that the control of fuel injection can be performed quickly, and the fuel injection cannot be performed.
  • the fuel is not supplied to the nozzle part to prevent the high pressure from acting on the nozzle part at all times, and to prevent a large amount of fuel from leaking into the combustion chamber when the parts such as the needle are damaged. It is to provide an electronically controlled fuel injection valve to facilitate.
  • the first flow path for the movement of the fuel injected through the fuel supply port is formed therein and the control valve housing is installed on the top A valve body;
  • a nozzle unit coupled to a lower portion of the valve body and filled with a fuel supplied through a first flow path to press a needle installed therein in an upward direction to lift the needle and inject a fuel;
  • An injection control unit installed to open and close the first flow path inside the valve body to control injection of fuel through a nozzle unit;
  • a nozzle pressurizing unit positioned under the injection control unit and applying a force to the needle of the nozzle unit in a downward direction;
  • An upper pressure chamber formed at an upper portion of the injection control unit and filled with fuel injected through a fuel supply port to form a pressure for lowering the injection control unit in a downward direction;
  • a lower pressure chamber positioned below the upper pressure chamber to form a pressure for raising the injection control part upward by filling the fuel;
  • a cut-off pressure chamber positioned below the lower pressure chamber to fill a
  • the injection control unit is installed at the center of the valve body, and is raised by the force of the pressure of the fuel filled in the lower pressure chamber and the cut-off pressure chamber to open and close the first flow path to control the fuel supply to the nozzle unit.
  • Cut-off portion to be;
  • a pressure piston installed at an upper portion of the cutoff part to apply a force to the cutoff part in a downward direction by the pressure of the fuel filled in the upper pressure chamber;
  • a spring installed to be fitted to the pressure piston to apply force to the cutoff part in a downward direction.
  • the spindle is applied to the upper direction by the pressure of the fuel filled in the lower pressure chamber;
  • a cutoff needle configured to be separated from the spindle at a lower portion of the spindle, the force being applied upward by the pressure of the fuel filled in the cutoff pressure chamber, the cutoff needle opening the first flow path when driven upward with the spindle; Characterized in that it comprises a.
  • the present invention is a valve body having a first flow path for the movement of the fuel injected through the fuel supply port is formed therein and the control valve housing is installed on the upper portion;
  • a nozzle unit coupled to a lower portion of the valve body and filled with a fuel supplied through a first flow path to press a needle installed therein to press the needle upwards to lift the needle so that fuel is injected;
  • An injection control unit installed to open and close the first flow path inside the valve body to control injection of fuel through a nozzle unit;
  • a nozzle pressurizing unit positioned under the injection control unit and applying a force to the needle of the nozzle unit in a downward direction;
  • An upper pressure chamber formed at an upper portion of the injection control unit and filled with fuel injected through a fuel supply port to form a pressure for lowering the injection control unit in a downward direction;
  • a lower pressure chamber positioned below the upper pressure chamber to form a pressure for raising the injection control part upward by filling the fuel;
  • a cut-off pressure chamber positioned below the lower pressure
  • the injection control unit is installed to be fitted to the control valve housing and located in the lower portion of the upper pressure chamber, is raised by the force of the fuel pressure filled in the lower pressure chamber and the cut-off pressure chamber to open and close the first flow path Cut-off portion; And a spring installed to be fitted to the cutoff part to apply force to the cutoff part in a downward direction.
  • the cut-off portion is formed in the center so that the control valve housing can be inserted, a plurality of connection holes are formed in the insertion hole so that the fuel of the second flow path can be supplied to the lower pressure chamber in the lower pressure
  • a spindle exerted upward by the pressure of the fuel filled in the chamber;
  • a cutoff needle configured to be separated from the spindle at a lower portion of the spindle, the force being applied upward by the pressure of the fuel filled in the cutoff pressure chamber, the cutoff needle opening the first flow path when driven upward with the spindle; Characterized in that it comprises a.
  • the valve body, the fuel of the cut-off pressure chamber is leaked to the lower pressure chamber through the gap between the outer diameter of the cut-off needle and the valve body inner diameter to prevent the pressure caused by the leakage fuel to act on the spindle additionally.
  • the fuel outlet hole is formed.
  • the nozzle pressurizing portion is formed in the upper concave chamber so that the fuel is filled when the first flow path is opened by the injection control unit is installed on the needle to force the needle in the downward direction by the pressure of the fuel Needle spindle to apply; And a nozzle spring installed on the needle spindles to apply force to the needle spindles in a downward direction.
  • the injection needle and the injection amount of the fuel can be controlled by operating the control needle according to the control signal independently of the operating conditions of the engine.
  • the control method has an effect that the control of the fuel injection is quickly carried out in such a way that the high pressure fuel is transferred to the lower pressure chamber through the control needle to increase the lifting force of the cutoff needle of the injection control unit.
  • the cutoff needle blocks the fuel delivery to the nozzle unit to prevent the high pressure from acting on the nozzle unit at all times. It is a very useful invention that it is easy to reduce the size of the spring pressing the needle of the nozzle portion or to increase the opening and closing pressure of the nozzle portion.
  • FIG. 1 is an exemplary view showing a fuel injection valve according to a first embodiment of the present invention
  • FIG. 2 is an exemplary view showing in detail the installation structure of the control needle of the fuel injection valve according to the first embodiment of the present invention
  • FIG 3 is an exemplary view showing in detail the structure of the spindle and the lower pressure chamber of the fuel injection valve according to the first embodiment of the present invention
  • FIG. 4 is an exemplary view showing a fuel outlet hole provided in a contact portion between a spindle and a cutoff needle of a cutoff part according to a first embodiment of the present invention
  • FIG. 5 is an exemplary view showing an operating state and a flow of fuel when the control needle of the fuel injection valve according to the first embodiment of the present invention is closed and no fuel is injected;
  • FIG. 6 is an exemplary view showing an operating state and a flow of fuel when a control needle of a fuel injection valve is opened and fuel is injected according to the first embodiment of the present invention
  • FIG. 7 is an exemplary view showing an operating state and a flow of fuel when the control needle of the fuel injection valve is closed again to terminate fuel injection according to the first embodiment of the present invention
  • FIG. 8 is an exemplary view showing a fuel injection valve according to a second embodiment of the present invention.
  • FIG. 9 is an exemplary view showing in detail the installation structure of the control needle of the fuel injection valve according to the second embodiment of the present invention.
  • FIG. 10 is an exemplary view showing in detail the structure of the spindle and the lower pressure chamber of the fuel injection valve according to the second embodiment of the present invention.
  • FIG. 11 is an exemplary view showing a fuel outflow hole provided in a contact portion of a spindle and a cutoff needle of a cutoff part according to a second embodiment of the present invention
  • FIG. 12 is an exemplary view showing an operating state and a flow of fuel when the control needle of the fuel injection valve according to the second embodiment of the present invention is closed and no fuel is injected;
  • FIG. 13 is an exemplary view showing an operating state and a flow of fuel when a control needle of a fuel injection valve is opened and fuel is injected according to a second embodiment of the present invention
  • FIG. 14 is an exemplary view showing an operating state and a flow of fuel when the control needle of the fuel injection valve according to the second embodiment of the present invention is closed again to terminate the fuel injection.
  • control chamber 234 control orifice
  • Chamber 420 Nozzle Spring
  • nozzle part 510 nozzle chamber
  • FIG. 1 is an exemplary view showing a fuel injection valve according to a first embodiment of the present invention
  • Figure 2 is an exemplary view showing in detail the installation structure of the control needle of the fuel injection valve according to a first embodiment of the present invention
  • Figure 3 4 is a view illustrating in detail the structure of the spindle and the lower pressure chamber of the fuel injection valve according to the first embodiment of the present invention.
  • FIG. 4 is a fuel provided at the contact portion between the spindle and the cutoff needle of the cutoff part according to the first embodiment of the present invention.
  • 5 is an exemplary view showing an outlet hole
  • FIG. 5 is an exemplary view showing an operating state and a flow of fuel when the control needle of the fuel injection valve according to the first embodiment of the present invention is closed and no fuel is injected
  • FIG. 7 illustrates an operation state and a flow of fuel when the control needle of the fuel injection valve is opened when fuel is injected
  • FIG. 7 is a control needle of the fuel injection valve according to the first embodiment of the present invention.
  • this example illustrates the operating conditions and the flow of fuel in the re-closed, when the fuel injection is ended is also,
  • the fuel injection valve 100 has a first flow path 220 formed therein so that fuel injected through the fuel supply port 210 can be moved therein, and a control valve housing ( A valve body 200 having a 241 installed therein, and a needle 520 which is coupled to a lower portion of the valve body 200 and supplied with fuel supplied through the first flow path 220, are installed therein.
  • the nozzle unit 500 is formed with a nozzle chamber 510 which lifts the needle 520 to inject fuel through the nozzle hole 530, and the inside of the valve body 200.
  • the injection control unit 300 is installed to open and close the one flow path 220 so as to control the injection of fuel through the nozzle unit 500, and the valve body to be positioned below the injection control unit 300. Installed in the interior of the 200 to the force in the downward direction to the needle 520 of the nozzle unit 500 The pressure is formed to lower the injection control unit 300 by lowering the nozzle control unit 400 and the fuel injected into the injection control unit 300 and injected through the fuel supply port 210.
  • the lower pressure chamber 230 and the lower pressure chamber to be formed in the lower portion of the upper pressure chamber 230 to form a pressure for raising the injection control unit 300 in the upper direction by filling the fuel ( 231 and a cut-off pressure that is formed below the lower pressure chamber 231 to fill a fuel moving through the first flow path 220 so that a pressure for raising the injection control unit 300 can be formed.
  • a second portion formed in the valve body 200 via the chamber 232 and the control valve housing 241 and connected to the lower pressure chamber 231 to supply fuel to the lower pressure chamber 231.
  • Euro (2 21 and a control needle 240 installed in the control valve housing 241 to control the flow rate of the fuel supplied to the lower pressure chamber 231 by opening and closing the second flow path 221 according to a control signal.
  • control chamber 233 is filled with the fuel of the lower pressure chamber 231 when the fuel is discharged, and is connected to the control chamber 233
  • the control chamber 233 is configured to include a control orifice 234 to discharge the fuel to the outside of the valve body 200.
  • the control needle 240 is operated by an actuator (not shown) operated according to a control signal to control the flow rate of the fuel flowing into the lower pressure chamber 231 by opening and closing the second flow passage 221. It is configured to do that.
  • the injection control unit 300 is installed at the center of the valve body 200 and ascended by the force of the pressure of the fuel filled in the lower pressure chamber 231 and the cut-off pressure chamber 232 to the first flow path 220.
  • the cutoff part 310 to control the fuel supply to the nozzle part 500 by opening and closing the opening, and the pressure of the fuel that is installed on the cutoff part 310 and filled in the upper pressure chamber 230.
  • the first embodiment of the present invention is configured by separating the cutoff part 310 and the pressure piston 350 as described above, and the outer diameters of the pressure piston 350 and the cutoff part 310 requiring precision processing and their installation are provided. It is easy to adjust the gap with the inner diameter of the inner space of the valve body 200 which is easy to manufacture the valve and the manufacturing cost is reduced.
  • the cutoff portion 310 and the pressure piston are integrally formed.
  • the processing surface requiring precision processing is very large in one part, the machining was difficult, but the first embodiment of the present invention
  • it is designed to minimize the processing surface that requires precise processing on each component has the advantage that the precision processing of the component is easy.
  • the cutoff part 310, the spindle 320 is applied to the upper direction by the pressure of the fuel filled in the lower pressure chamber 231, and the spindle 320 and the lower portion of the spindle 320
  • the cut-off needle is configured to be separated, and a force is applied upward by the pressure of the fuel filled in the cut-off pressure chamber 232, and opens the first flow path 220 when driven upward with the spindle 320. And 330.
  • the cutoff part 310 is separated into the spindle 320 and the cutoff needle 330, so that the precise processing is required for each part, as the cutoff part 310 and the pressure piston 350 are separated and configured.
  • Designed to minimize the machining surface has the advantage of easy precision processing of parts.
  • control chamber 233 and the control orifice 234 are connected to the lower pressure chamber 231 when the spindle is driven in the upper direction to discharge the fuel inside the lower pressure chamber 231 to the outside of the valve body 200.
  • the connection with the lower pressure chamber 231 is blocked so that fuel is not discharged.
  • valve body 200 the fuel of the cut-off pressure chamber 232 is leaked to the lower pressure chamber 231 through a gap between the outer diameter of the cut-off needle 330 and the inner diameter of the valve body 200 to the spindle ( A fuel outlet hole 235 is further formed in 320 to prevent the pressure caused by the leaked fuel from additionally acting.
  • the fuel outlet hole 235 is formed to be positioned at the contact portion of the spindle 320 and the cutoff needle 330 to more easily discharge the fuel leaking from the cutoff pressure chamber 232.
  • the nozzle pressing unit 400 when the first flow path 220 is opened by the cut-off unit 310 of the injection control unit 300 is formed with a concave-shaped chamber 411 on the top so that the fuel is filled
  • needle spindles 410 installed on the needles 520 of the nozzle unit 500 to apply the force to the needles 520 in the downward direction by the pressure of the fuel, and on the needle spindles 410. It is configured to include a nozzle spring 420 is installed to apply a force to the needle spindle 410 in the downward direction.
  • the spindle 320 and the cut-off needle 330 are stepped pressure acting surfaces such that the driving force acts upward by the pressure of the fuel filled in the lower pressure chamber 231 and the cut-off pressure chamber 232. 333 is formed.
  • the high-pressure fuel supplied through the fuel supply port 210 is the upper pressure chamber 230 formed on the upper portion of the injection control unit 300, that is, the pressure piston 350 And the cutoff pressure chamber 232 through the first flow path 220.
  • the cutoff pressure chamber 232 the sum of the force acting downward from the pressure piston 350 and the force acting downward by the spring 340 due to the pressure of the fuel charged in the upper pressure chamber 230 is the cutoff pressure chamber 232.
  • the cutoff part 310 is maintained in a closed state because the cutoff part 310 is larger than a force due to the pressure acting upwardly through the cutoff part 310.
  • the needle spring 420 of the nozzle part 500 also acts downward.
  • the closed state is maintained by the force of) and no fuel injection occurs through the nozzle hole 530.
  • the force due to the pressure of the fuel acting on the spindle 320 and the cutoff needle 330 of the cutoff part 310 in the upward direction is increased by the pressure of the fuel filled in the upper pressure chamber 230.
  • the cutoff needle 330 rises as the force of the force acting on the upper portion and the force acting in the downward direction by the spring 340 rises, thereby opening the first flow path 220 so that the high-pressure fuel is driven by the needle spindle (
  • the chamber 411 and the nozzle unit 500 formed on the upper portion 410 are delivered to the nozzle chamber 510.
  • the force for lifting the needle of the nozzle unit 500 by the pressure of the fuel delivered to the nozzle chamber 510 is applied to the pressure acting downward by the fuel filled in the chamber 411 on the needle spindle 410.
  • the force by the force and the nozzle spring 420 is greater than the combined force of the force acting downward to the needle spindle 410, the needle 520 of the nozzle unit 500 is raised and the fuel through the nozzle hole 530 Injection is made.
  • the opening pressure of the nozzle is determined by the force of the pressure acting on the needle spindles 410 and the force of the nozzle spring 420 by the fuel filled in the chamber 411 formed on the needle spindles 410.
  • the force of the nozzle spring 420 can be reduced compared to the case where the needle 520 of the nozzle 500 is pressed by the nozzle spring 420 only, the size of the nozzle spring 420 is reduced or the nozzle part 500 is reduced. It is easy to increase the open pressure of
  • control needle 240 is moved in a downward direction in accordance with a control signal to block the second flow path (221).
  • the force due to the pressure of the fuel filled in the spindle 320 and the cutoff pressure chamber 232 to raise the cutoff needle 330 is applied to the upper portion of the pressure piston 350 by the fuel filled in the upper pressure chamber 230.
  • the force due to the applied pressure and the spring 340 is smaller than the force of the force pressing the spindle 320 and the cut-off needle 330.
  • the cutoff needle 330 is lowered to block the first flow path 220, and the fuel of a high pressure is no longer formed through the first flow path 220 and the chamber 411 and the nozzle part formed on the needle spindle 410. It cannot be delivered to the nozzle chamber 510 of 500.
  • the fuel remaining in the first flow path 220 is injected through the nozzle hole 530 of the nozzle unit 500, so that the pressure in the nozzle chamber 510 is reduced, thereby reducing the nozzle.
  • the force for pushing up the needle 520 of the part 500 is reduced, and this force is applied to the needle spindle 410 by the fuel filled in the chamber 411 above the needle spindle 410 and the nozzle spring.
  • the needle 520 of the nozzle unit 500 descends to block the flow path to the nozzle hole 530, and the injection of fuel is terminated.
  • the fuel injection valve according to the first embodiment of the present invention operates the control needle 240 in accordance with a control signal independently of the operating conditions of the engine, and thus the injection timing and injection amount of the fuel. Can be controlled.
  • the fuel injection control method transmits the high-pressure fuel through the control needle 240 to the lower pressure chamber 231 to increase the force for lifting the cutoff needle 330 of the injection control unit 300, fuel injection. Control is quick.
  • the nozzle unit 500 has an advantage of easy replacement.
  • the cutoff needle 330 is closed to block the first flow path 220 so that fuel delivery to the nozzle unit 500 is blocked, so that the high pressure is constantly applied to the nozzle unit 500.
  • a safety function to prevent a large amount of fuel from leaking into the combustion chamber in case of a problem such as damage to the needle 520 of the nozzle unit 500 or a seat of the valve.
  • the opening pressure of the nozzle unit 500 is determined by the force of the pressure acting on the needle spindle 410 and the force of the nozzle spring 420, the needle of the nozzle unit 500 by the nozzle spring 420 alone ( Since the force of the nozzle spring 420 can be reduced compared to the case of pressing 520, the size of the nozzle spring 420 can be reduced, and the opening and closing pressure of the nozzle unit 500 can be easily increased. .
  • FIG. 8 is an exemplary view showing a fuel injection valve according to a second embodiment of the present invention
  • Figure 9 is an exemplary view showing in detail the installation structure of the control needle of the fuel injection valve according to a second embodiment of the present invention
  • Figure 10 Is an exemplary view showing in detail the structure of the spindle and the lower pressure chamber of the fuel injection valve according to the second embodiment of the present invention
  • Figure 11 is installed on the contact portion of the spindle and the cut-off needle of the cut-off portion according to the second embodiment of the present invention
  • 12 is an exemplary view showing a fuel outlet hole
  • FIG. 12 is an exemplary view showing an operating state and a flow of fuel when the control needle of the fuel injection valve according to the second embodiment of the present invention is closed and no fuel is injected; Exemplary view showing the operating state and the flow of fuel when the control needle of the fuel injection valve according to the second embodiment of the invention is opened fuel injection, Figure 14 is a view of the fuel injection valve according to the second embodiment of the present invention As an exemplary view showing the operating state and the flow of fuel when the control needle is closed again and the fuel injection is finished.
  • the fuel injection valve 100 has a first flow path 220 formed therein so that fuel injected through the fuel supply port 210 can be moved therein, and
  • the valve body 200 is installed in the control valve housing 241, the needle coupled to the lower portion of the valve body 200 and the fuel supplied through the first flow path 220 is filled in the needle 520 ),
  • the nozzle body 500 having the nozzle chamber 510 for lifting the needle 520 to inject fuel through the nozzle hole 530, and the valve body 200 by pressing the upper direction.
  • An injection control unit 300 installed to open and close the first flow path 220 to control injection of fuel through the nozzle unit 500, and positioned below the injection control unit 300.
  • the nozzle pressurizing unit 400 that applies a force and the fuel that is formed on the injection control unit 300 and injected through the fuel supply port 210 are filled to lower the injection control unit 300 downward.
  • the control chamber 233 is formed in the valve body 200 to be connected to the needle 240 and the lower pressure chamber 231 to fill the fuel of the lower pressure chamber 231 when the fuel is discharged, and the control chamber ( It is configured to include a control orifice 234 connected to the 233 to allow the fuel in the control chamber 233 to be discharged to the outside of the valve body (100).
  • the control needle 240 is operated by an actuator (not shown) operated according to a control signal to open and close the second flow path 221 to control the flow rate of the fuel flowing into the lower pressure chamber 231. It is configured to be.
  • the injection control unit 300 is installed to be fitted to the control valve housing 241 and is positioned below the upper pressure chamber 230, and the fuel is filled in the lower pressure chamber 231 and the cutoff pressure chamber 232.
  • Cut-off portion 310 is raised by the force by the pressure to open and close the first flow path 220, and the spring is installed to fit to the cut-off portion 310 to apply a force to the cut-off portion 310 in the downward direction (340) It is configured to include).
  • the cut-off part 310 has an insertion hole 321 formed in the center of the control valve housing 241 so that the control valve housing 241 can be inserted therein, and the second passage 221 formed in the control valve housing 241 has the lower pressure chamber.
  • a plurality of connection holes 322 connected to the lower pressure chamber 231 are formed in the insertion hole 321 to be connected to the 231, so that the pressure of the fuel filled in the lower pressure chamber 231 is formed.
  • the spindle 320 is applied to the upper direction by the force, and is separated from the spindle 320 at the lower portion of the spindle 320, the force in the upper direction by the pressure of the fuel filled in the cut-off pressure chamber 232
  • the cutoff needle 330 is applied to the opening 320 and the first flow path 220 when driven upwardly together with the spindle 320.
  • the second embodiment of the present invention forms a second flow path 221 in the control valve housing 241 and inserts the control valve housing 241 into the insertion hole 321 of the spindle 320.
  • the second passage 221 is positioned inside the 320.
  • the structure of the second flow path 221 is simplified, and the processing of the second flow path 221 is easier than that of forming the flow path in the valve body 200. Do.
  • the high pressure fuel filled in the upper pressure chamber 230 and the lower pressure chamber 231 and the cutoff pressure chamber 232 is interposed between the spindle 320 and the cutoff needle 330 and the inner diameter of the inner space of the valve body 200.
  • the gap In order to prevent leakage into the gap, the gap must be precisely processed with a very small gap. If the spindle 320 and the cutoff needle 330 are integrally formed, machining is difficult because there are many machining surfaces that require precision machining on one part.
  • the present invention is configured by separating the spindle 320 and the cut-off needle 330 as described above, it can be designed to minimize the processing surface that requires precise processing on each part, the advantage of easy precision processing of parts have.
  • control chamber 233 and the control orifice 234 are connected to the lower pressure chamber 231 when the spindle 320 is driven in the upper direction to supply fuel in the lower pressure chamber 231 to the valve body 200.
  • the connection with the lower pressure chamber 231 is blocked so that fuel is not discharged.
  • valve body 200 the fuel of the cut-off pressure chamber 232 is leaked to the lower pressure chamber 231 through a gap between the outer diameter of the cut-off needle 330 and the inner diameter of the valve body 200 to the spindle ( A fuel outlet hole 235 is further formed in 320 to prevent the pressure caused by the leaked fuel from additionally acting.
  • the fuel outlet hole 235 is formed to be positioned at the contact portion of the spindle 320 and the cutoff needle 330 to more easily discharge the fuel leaking from the cutoff pressure chamber 232.
  • the nozzle pressing unit 400 when the first flow path 220 is opened by the cut-off unit 310 of the injection control unit 300 is formed with a concave-shaped chamber 411 on the top so that the fuel is filled
  • needle spindles 410 installed on the needles 520 of the nozzle unit 500 to apply the force to the needles 520 in the downward direction by the pressure of the fuel, and on the needle spindles 410. It is configured to include a nozzle spring 420 is installed to apply a force to the needle spindle 410 in the downward direction.
  • the spindle 320 and the cut-off needle 330 are stepped pressure acting surfaces such that the driving force acts upward by the pressure of the fuel filled in the lower pressure chamber 231 and the cut-off pressure chamber 232. 333 is formed.
  • the high-pressure fuel supplied through the fuel supply port 210 is an upper portion of the injection control unit 300, that is, the spindle 320 of the cutoff unit 310 constituting the injection control unit 300.
  • the cutoff pressure chamber 232 is filled through the upper pressure chamber 230 and the first flow path 220 positioned at an upper portion thereof.
  • the cutoff part 310 maintains the closed state because the cutoff part 310 is larger than a force caused by the pressure acting upwardly through the cutoff part 310.
  • the needle spring 420 of the nozzle part 500 also acts downward.
  • the closed state is maintained by the force of) and no fuel injection occurs through the nozzle hole 530.
  • the actuator when the fuel injection is started, when the actuator (actuator) is operated in accordance with the control signal to raise the control needle 240 up, the second flow path 221 blocked by the control needle 240 is opened to control the high-pressure fuel
  • the second passage 221 formed in the valve housing 241 is transferred to the lower pressure chamber 231 through the connection hole 322 in the spindle 320 and filled in the lower pressure chamber 231.
  • the pressure of the fuel acts on the pressure action surface 333 of the spindle 320.
  • the force due to the pressure of the fuel acting upward to the spindle 320 and the cutoff needle 330 of the cutoff portion 310 through the cutoff pressure chamber 232 and the lower pressure chamber 231 is applied to the upper pressure chamber (
  • the cutoff needle 330 is raised while being larger than the combined force of the force acting on the upper portion of the spindle 320 and the force acting downward by the spring 340 due to the pressure of the fuel filled in the 230.
  • the high-pressure fuel is transferred to the chamber 411 and the nozzle chamber 510 of the nozzle unit 500 formed on the needle spindle 410.
  • the force to lift the needle 520 of the nozzle unit 500 by the pressure of the fuel delivered to the nozzle chamber 510 acts downward by the fuel filled in the chamber 411 on the needle spindle 410.
  • the force due to the pressure and the nozzle spring 420 becomes greater than the combined force of the force acting downward to the needle spindle 410, the needle 520 of the nozzle unit 500 is raised and the nozzle hole 530 Through the injection of the fuel is made.
  • the opening pressure of the nozzle is determined by the force of the pressure acting on the needle spindles 410 and the force of the nozzle spring 420 by the fuel filled in the chamber 411 formed on the needle spindles 410.
  • the force of the nozzle spring 420 can be reduced compared to the case where the needle 520 of the nozzle unit 500 is pressed by the nozzle spring 420 alone, the size of the nozzle spring 420 can be reduced or the nozzle unit 500 can be reduced. It is easy to increase the opening pressure.
  • control needle 240 is moved in a downward direction in accordance with a control signal to block the second flow path (221).
  • the force by the pressure of the fuel filled in the cut-off pressure chamber 232 to raise the cut-off needle 330 is the force by the pressure acting on the upper part of the spindle 320 by the fuel filled in the upper pressure chamber 230.
  • the spring 340 is smaller than the force of the pressing force of the spindle 320 and the cut-off needle 330.
  • the cutoff needle 330 is lowered to block the first flow path 220, and the fuel of a high pressure is no longer formed through the first flow path 220 and the chamber 411 and the nozzle part formed on the needle spindle 410. It cannot be delivered to the nozzle chamber 510 of 500.
  • the fuel remaining in the first flow path 220 is injected through the nozzle hole 530 of the nozzle unit 500, so that the pressure in the nozzle chamber 510 is reduced, thereby reducing the nozzle.
  • the force for pushing up the needle 520 of the part 500 is reduced, and this force is applied to the needle spindle 411 by the fuel filled in the chamber 411 on the needle spindle 410 and the nozzle spring.
  • the needle 520 of the nozzle unit 500 descends to block the flow path to the nozzle hole 530, and the injection of fuel is terminated.
  • the fuel injection valve according to the second embodiment of the present invention controls the injection timing and the injection amount of the fuel by operating the control needle 240 according to a control signal independently of the engine operating conditions. You can do it.
  • the second flow path 221 is formed through the control valve housing 241, it is easier to manufacture the flow path than the second flow path 221 is formed in the valve body 200.
  • the fuel injection control method transmits the high-pressure fuel through the control needle 240 to the lower pressure chamber 231 to increase the force for lifting the cutoff needle 330 of the injection control unit 300, fuel injection. Control is quick.
  • the nozzle unit 500 has an advantage of easy replacement.
  • the cutoff needle 330 is closed to block the first flow path 220 so that fuel delivery to the nozzle unit 500 is blocked, so that the high pressure is constantly applied to the nozzle unit 500.
  • a safety function to prevent a large amount of fuel from leaking into the combustion chamber in case of a problem such as damage to the needle 520 of the nozzle unit 500 or a seat of the valve.
  • the opening pressure of the nozzle unit 500 is determined by the force of the pressure acting on the needle spindle 410 and the force of the nozzle spring 420, the needle of the nozzle unit 500 by the nozzle spring 420 alone ( Since the force of the nozzle spring 420 can be reduced compared to the case of pressing 520, the size of the nozzle spring 420 can be reduced, and the opening and closing pressure of the nozzle unit 500 can be easily increased. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

본 발명은 전자제어 연료분사밸브에 관한 것으로, 기존 기계식 연료분사밸브와는 달리 엔진의 운전 조건과 독립적으로 제어 신호에 따라 연료의 분사시기와 분사량 등을 제어할 수 있도록 하고, 연료 분사의 제어 방식이 제어니들을 통해 고압의 연료를 하부압력챔버로 전달하여 분사제어부의 컷오프니들을 들어올리는 힘을 증가시키는 방식으로, 연료 분사의 제어가 신속하게 이루어질 수 있도록 하며, 연료분사가 이루어지지 않을 경우에는 노즐부에 연료가 공급되지 않아 노즐부에 고압이 상시 작용하는 것을 방지하고, 니들 등의 부품 손상시 다량의 연료가 연소실 내로 누유되는 것을 방지하도록 하며 제2유로의 구조가 단순하여 가공이 용이하도록 하는 전자제어 연료분사밸브를 제공함에 있다.

Description

전자제어 연료분사밸브
본 발명은 전자제어 연료분사밸브에 관한 것으로, 엔진의 운전 조건과 독립적으로 제어 신호에 따라 연료분사 시기와 분사량을 제어할 수 있도록 하고 연료분사가 이루어지지 않을 경우에는 노즐부에 연료가 공급되지 않아 노즐부에 고압이 상시 작용하는 것을 방지하는 전자제어 연료분사밸브에 관한 것이다.
전자제어 기술의 발전에 따라 전자제어 엔진이 급속히 확산되는 추세 속에서, 저 부하에서도 고압 분사가 가능하고 제어 신호에 따라 분사 제어가 용이한 커먼레일 형태의 연료분사 방식이 전자제어 엔진에 주로 적용되고 있다.
커먼레일 연료분사시스템의 핵심 장치인 전자제어 연료분사밸브에 대한 많은 연구 개발이 이뤄지고 있으며, 연료분사밸브의 성능 향상을 위해 다양한 형태의 연료분사밸브 구동 방식에 대한 특허가 다수 출원되고 있다.
종래의 기계식 연료분사밸브는 노즐부의 챔버에 주입되는 연료의 압력을 통해서만 니들을 들어올려 연료를 분사하는 구조로써, 연료의 분사 시기와 분사량 등의 분사특성이 항상 일정한 형태를 가지므로, 엔진의 운전 조건과 독립적으로 연료분사 제어가 이루어지 못하는 문제점이 있다.
또한 종래의 전자제어 연료분사밸브의 경우 연료공급구를 통해 노즐부에 공급되는 연료가 상시 노즐부에 공급됨으로써, 노즐부에 고압이 상시 작용하여 노즐의 니들이나 밸브 시트 손상과 같은 문제 발생시 다량의 연료가 연소실로 누유되는 문제점이 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 기존 기계식 연료분사밸브와는 달리 엔진의 운전 조건과 독립적으로 제어 신호에 따라 연료의 분사시기와 분사량 등을 제어할 수 있도록 하고, 연료 분사의 제어 방식이 제어니들을 통해 고압의 연료를 하부압력챔버로 전달하여 분사제어부의 컷오프니들을 들어올리는 힘을 증가시키는 방식으로, 연료 분사의 제어가 신속하게 이루어질 수 있도록 하며, 연료분사가 이루어지지 않을 경우에는 노즐부에 연료가 공급되지 않아 노즐부에 고압이 상시 작용하는 것을 방지하고, 니들 등의 부품 손상시 다량의 연료가 연소실 내로 누유되는 것을 방지하도록 하며 제2유로의 구조가 단순하여 가공이 용이하도록 하는 전자제어 연료분사밸브를 제공함에 있다.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은, 연료공급구를 통해 주입되는 연료의 이동을 위한 제1유로가 내부에 형성되고 상부에 제어밸브하우징이 설치되어 있는 밸브몸체; 상기 밸브몸체의 하부에 결합되고 제1유로를 통해 공급되는 연료가 채워져 내부에 설치되는 니들을 상부 방향으로 가압해줌으로써, 니들을 들어올려 연료가 분사되도록 하는 노즐챔버가 형성되어 있는 노즐부; 상기 밸브몸체의 내부에서 상기 제1유로를 개폐할 수 있도록 설치되어 노즐부를 통한 연료의 분사를 제어할 수 있도록 하는 분사제어부; 상기 분사제어부의 하부에 위치하고 상기 노즐부의 니들에 하부방향으로 힘을 가해주는 노즐가압부; 상기 분사제어부의 상부에 형성되고 연료공급구를 통해 주입되는 연료가 채워짐으로써 분사제어부를 하부방향으로 하강시켜주기 위한 압력이 형성되도록 하는 상부압력챔버; 상기 상부압력챔버의 하부에 위치하고 연료가 채워짐으로서 상기 분사제어부를 상부방향으로 상승시켜주기 위한 압력이 형성되도록 하는 하부압력챔버; 상기 하부압력챔버의 하부에 위치하고 상기 제1유로를 통해 이동되는 연료가 채워짐으로써 상기 분사제어부를 상승시켜주기 위한 압력이 형성될 수 있도록 하는 컷오프압력챔버; 상기 제어밸브하우징을 거쳐서 상기 밸브몸체에 형성되고 상기 하부압력챔버에 연결되어 하부압력챔버에 연료가 공급될 수 있도록 하는 제2유로; 상기 제어밸브하우징에 설치되어 제어신호에 따라 상기 제2유로를 개폐해줌으로써 하부압력챔버로 공급되는 연료의 유량을 제어해주는 제어니들; 상기 하부압력챔버와 연결되도록 밸브몸체에 형성되어 연료의 배출시 하부압력챔버의 연료가 채워지는 제어챔버; 상기 제어챔버에 연결되어 제어챔버 내부의 연료가 밸브몸체의 외부로 배출되도록 하는 제어오리피스;를 포함하여 구성되는 것을 특징으로 한다.
또한 상기 분사제어부는, 상기 밸브몸체의 중심에 설치되고, 상기 하부압력챔버 및 컷오프압력챔버에 채워지는 연료의 압력에 의한 힘으로 상승되어 제1유로를 개폐시켜 노즐부로의 연료 공급을 제어할 수 있도록 하는 컷오프부; 상기 컷오프부의 상부에 설치되어 상부압력챔버에 채워지는 연료에 의한 압력으로 상기 컷오프부를 하부방향으로 힘을 가해주는 압력피스톤; 상기 압력피스톤에 끼워지도록 설치되어 상기 컷오프부를 하부방향으로 힘을 가해주는 스프링;을 포함하여 구성되는 것을 특징으로 한다.
또한 상기 컷오프부는, 상기 하부압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지는 스핀들; 상기 스핀들의 하부에서 스핀들과 분리되도록 구성되고, 컷오프압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지고, 상기 스핀들과 함께 상부방향으로 구동시 제1유로를 개방해주는 컷오프니들;을 포함하여 구성되는 것을 특징으로 한다.
한편 본 발명은 연료공급구를 통해 주입되는 연료의 이동을 위한 제1유로가 내부에 형성되고 상부에 제어밸브하우징이 설치되어 있는 밸브몸체; 상기 밸브몸체의 하부에 결합되고 제1유로를 통해 공급되는 연료가 채워져 내부에 설치되는 니들을 상부 방향으로 가압해줌으로써 니들을 들어올려 연료가 분사되도록 하는 노즐챔버가 형성되어 있는 노즐부; 상기 밸브몸체의 내부에서 상기 제1유로를 개폐할 수 있도록 설치되어 노즐부를 통한 연료의 분사를 제어할 수 있도록 하는 분사제어부; 상기 분사제어부의 하부에 위치하고 상기 노즐부의 니들에 하부방향으로 힘을 가해주는 노즐가압부; 상기 분사제어부의 상부에 형성되고 연료공급구를 통해 주입되는 연료가 채워짐으로써 분사제어부를 하부방향으로 하강시켜주기 위한 압력이 형성되도록 하는 상부압력챔버; 상기 상부압력챔버의 하부에 위치하고 연료가 채워짐으로서 상기 분사제어부를 상부방향으로 상승시켜주기 위한 압력이 형성되도록 하는 하부압력챔버; 상기 하부압력챔버의 하부에 위치하고 상기 제1유로를 통해 이동되는 연료가 채워짐으로써 상기 분사제어부를 상승시켜주기 위한 압력이 형성될 수 있도록 하는 컷오프압력챔버; 상기 제어밸브하우징을 통해 상기 분사제어부의 내부로 형성되어 상기 하부압력챔버에 연결됨으로써 하부압력챔버에 연료가 공급될 수 있도록 하는 제2유로; 상기 제어밸브하우징에 설치되어 제어신호에 따라 상기 제2유로를 개폐해줌으로써 하부압력챔버로 공급되는 연료의 유량을 제어해주는 제어니들; 상기 하부압력챔버와 연결되도록 밸브몸체에 형성되어 연료의 배출시 하부압력챔버의 연료가 채워지는 제어챔버; 상기 제어챔버에 연결되어 제어챔버 내부의 연료가 밸브몸체의 외부로 배출되도록 하는 제어오리피스;를 포함하여 구성되는 것을 특징으로 한다.
또한 상기 분사제어부는, 상기 제어밸브하우징에 끼워지도록 설치되고 상부압력챔버의 하부에 위치하며, 상기 하부압력챔버 및 컷오프압력챔버에 채워지는 연료의 압력에 의한 힘으로 상승되어 제1유로를 개폐해주는 컷오프부; 상기 컷오프부에 끼워지도록 설치되어 컷오프부를 하부방향으로 힘을 가해주는 스프링;을 포함하여 구성되는 것을 특징으로 한다.
또한 상기 컷오프부는, 상기 제어밸브하우징이 삽입될 수 있도록 중심부에 삽입홀이 형성되고, 상기 삽입홀의 내부에 하부압력챔버로 제2유로의 연료가 공급될 수 있도록 다수의 연결홀이 형성되어 하부압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지는 스핀들; 상기 스핀들의 하부에서 스핀들과 분리되도록 구성되고, 컷오프압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지고, 상기 스핀들과 함께 상부방향으로 구동시 제1유로를 개방해주는 컷오프니들;을 포함하여 구성되는 것을 특징으로 한다.
한편 상기 밸브몸체에는, 상기 컷오프압력챔버의 연료가 상기 컷오프니들의 외경과 밸브몸체 내경 사이의 간극을 통하여 하부압력챔버로 누설되어 상기 스핀들에 누설 연료에 의한 압력이 부가적으로 작용하는 것을 방지하기 위하여 연료유출홀이 더 형성되는 것을 특징으로 한다.
또한 상기 노즐가압부는, 상기 분사제어부에 의해 제1유로가 개방될 경우 연료가 채워질 수 있도록 상부에 오목한 형태의 챔버가 형성되고 상기 니들의 상부에 설치되어 연료에 의한 압력으로 니들을 하부방향으로 힘을 가해주는 니들스핀들; 상기 니들스핀들의 상부에 설치되어 니들스핀들을 하부방향으로 힘을 가해주는 노즐스프링;을 포함하여 구성되는 것을 특징으로 한다. 이상에서 설명한 바와 같이 본 발명에 의하면, 기존의 기계식 연료분사밸브와는 달리 엔진의 운전 조건과 독립적으로 제어신호에 따라 제어니들을 작동하여 연료의 분사시기와 분사량을 제어할 수 있고, 연료분사의 제어방식이 제어니들을 통해 고압의 연료를 하부압력챔버로 전달하여 분사제어부의 컷오프니들을 들어올리는 힘을 증가시키는 방식으로 연료 분사의 제어가 신속하게 이루어지는 효과가 있다.
또한 구조가 간단하여 부품의 교체가 용이하고, 스핀들과 피스톤을 분리하여 제작하여 정밀 가공이 필요한 가공면을 최소화함으로써 부품의 정밀 가공이 용이하여 제작비를 절감할 수 있으며, 제2유로를 제어밸브하우징에 형성함으로써 유로의 가공이 용이하고, 정밀 가공이 필요한 가공면을 최소화함으로써 부품의 정밀 가공이 용이하여 제작비를 절감할 수 있는 효과가 있다.
또한 연료의 분사가 이루어지지 않는 기간에는 컷오프니들이 노즐부로의 연료전달을 차단하여 노즐부에 고압이 상시 작용하는 것을 방지함으로써 부품의 문제발생시 다량의 연료가 연소실로 누유되는 것을 방지하여 매우 안전하며, 노즐부의 니들을 누르는 스프링의 크기를 작게 하거나, 노즐부의 개방 및 폐쇄압력을 증가시키기가 용이한 매우 유용한 발명이다.
도 1 은 본 발명의 제1실시예에 의한 연료분사밸브를 나타낸 예시도,
도 2 는 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들의 설치구조를 상세히 나타낸 예시도,
도 3 은 본 발명의 제1실시예에 의한 연료분사밸브의 스핀들과 하부압력챔버의 구조를 상세히 나타낸 예시도,
도 4 는 본 발명의 제1실시예에 의한 컷오프부의 스핀들과 컷오프니들의 접촉부분에 설치된 연료유출홀을 나타낸 예시도,
도 5 는 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들이 닫혀 연료가 분사되지 않는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도,
도 6 은 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들이 열려 연료가 분사되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도,
도 7 은 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들이 다시 닫혀 연료분사가 종료되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도,
도 8 은 본 발명의 제2실시예에 의한 연료분사밸브를 나타낸 예시도,
도 9 는 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들의 설치구조를 상세히 나타낸 예시도,
도 10 은 본 발명의 제2실시예에 의한 연료분사밸브의 스핀들과 하부압력챔버의 구조를 상세히 나타낸 예시도,
도 11 은 본 발명의 제2실시예에 의한 컷오프부의 스핀들과 컷오프니들의 접촉부분에 설치된 연료유출홀을 나타낸 예시도,
도 12 는 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들이 닫혀 연료가 분사되지 않는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도,
도 13 은 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들이 열려 연료가 분사되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도,
도 14 는 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들이 다시 닫혀 연료분사가 종료되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도.
(부호의 설명)
(100) : 연료분사밸브 (200) : 밸브몸체
(210) : 연료공급구 (220) : 제1유로
(221) : 제2유로 (230) : 상부압력챔버
(231) : 하부압력챔버 (232) : 컷오프압력챔버
(233) : 제어챔버 (234) : 제어오리피스
(235) : 연료유출홀 (240) : 제어니들
(241) : 제어밸브하우징 (300) : 분사제어부
(310) : 컷오프부 (320) : 스핀들
(321) : 삽입홀 (322) : 연결홀
(330) : 컷오프니들 (333) : 압력작용면
(340) : 스프링 (350) : 압력피스톤
(400) : 노즐가압부 (410) : 니들스핀들
(411) : 챔버 (420) : 노즐스프링
(500) : 노즐부 (510) : 노즐챔버
(520) : 니들 (530) : 노즐홀
이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
도 1 은 본 발명의 제1실시예에 의한 연료분사밸브를 나타낸 예시도, 도 2 는 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들의 설치구조를 상세히 나타낸 예시도, 도 3 은 본 발명의 제1실시예에 의한 연료분사밸브의 스핀들과 하부압력챔버의 구조를 상세히 나타낸 예시도, 도 4 는 본 발명의 제1실시예에 의한 컷오프부의 스핀들과 컷오프니들의 접촉부분에 설치된 연료유출홀을 나타낸 예시도, 도 5 는 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들이 닫혀 연료가 분사되지 않는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도, 도 6 은 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들이 열려 연료가 분사되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도, 도 7 은 본 발명의 제1실시예에 의한 연료분사밸브의 제어니들이 다시 닫혀 연료분사가 종료되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도로서,
도면에서와 같이 본 발명에 의한 연료분사밸브(100)는, 연료공급구(210)를 통해 주입되는 연료가 이동될 수 있도록 제1유로(220)가 내부에 형성되고, 상부에 제어밸브하우징(241)이 설치되어 있는 밸브몸체(200)와, 상기 밸브몸체(200)의 하부에 결합되고 상기 제1유로(220)를 통해 공급되는 연료가 채워져 내부에 설치되는 니들(520)을 상부 방향으로 가압해줌으로써, 니들(520)을 들어올려 연료가 노즐홀(530)을 통해 분사되도록 하는 노즐챔버(510)가 형성되어 있는 노즐부(500)와, 상기 밸브몸체(200)의 내부에서 상기 제1유로(220)를 개폐할 수 있도록 설치되어 상기 노즐부(500)를 통한 연료의 분사를 제어할 수 있도록 하는 분사제어부(300)와, 상기 분사제어부(300)의 하부에 위치하도록 상기 밸브몸체(200)의 내부에 설치되어 노즐부(500)의 니들(520)에 하부방향으로 힘을 가해주는 노즐가압부(400)와, 상기 분사제어부(300)의 상부에 형성되고 연료공급구(210)를 통해 주입되는 연료가 채워짐으로서 분사제어부(300)를 하부방향으로 하강시켜주기 위한 압력이 형성될 수 있도록 하는 상부압력챔버(230)와, 상기 상부압력챔버(230)의 하부에 위치하고 연료가 채워짐으로써 상기 분사제어부(300)를 상부방향으로 상승시켜주기 위한 압력이 형성되도록 하는 하부압력챔버(231)와, 상기 하부압력챔버(231)의 하부에 위치하고 상기 제1유로(220)를 통해 이동되는 연료가 채워짐으로써 상기 분사제어부(300)를 상승시켜주기 위한 압력이 형성될 수 있도록 하는 컷오프압력챔버(232)와, 상기 제어밸브하우징(241)을 거쳐서 상기 밸브몸체(200)에 형성되고 상기 하부압력챔버(231)에 연결되어 하부압력챔버(231)에 연료가 공급될 수 있도록 하는 제2유로(221)와, 상기 제어밸브하우징(241)에 설치되어 제어신호에 따라 상기 제2유로(221)를 개폐해줌으로써 하부압력챔버(231)로 공급되는 연료의 유량을 제어해주는 제어니들(240)과, 상기 하부압력챔버(231)와 연결되도록 밸브몸체(200)에 형성되어 연료의 배출시 하부압력챔버(231)의 연료가 채워지는 제어챔버(233)와, 상기 제어챔버(233)에 연결되어 제어챔버(233) 내부의 연료가 밸브몸체(200)의 외부로 배출되도록 하는 제어오리피스(234)를 포함하여 구성된다.
상기 제어니들은(240)은 제어신호에 따라 작동되는 구동기(actuator, 도시없음)에 의해 작동되어 상기 제2유로(221)를 개폐하여 상기 하부압력챔버(231)로 유입되는 연료의 유량을 제어할 수 있도록 구성되는 것이다.
상기 분사제어부(300)는 밸브몸체(200)의 중심에 설치되고 상기 하부압력챔버(231) 및 컷오프압력챔버(232)에 채워지는 연료의 압력에 의한 힘으로 상승되어 상기 제1유로(220)를 개폐시켜 노즐부(500)로의 연료 공급을 제어할 수 있도록 하는 컷오프부(310)와, 상기 컷오프부(310)의 상부에 설치되어 상부압력챔버(230)에 채워지는 연료에 의한 압력으로 상기 컷오프부(310)를 하부방향으로 힘을 가해주는 압력피스톤(350)과, 상기 압력피스톤(350)에 끼워지도록 설치되어 상기 컷오프부(310)를 하부방향으로 힘을 가해주는 스프링(340)을 포함하여 구성된다.
이와 같은 본 발명의 제1실시예는 상기와 같이 컷오프부(310)와 압력피스톤(350)을 분리하여 구성함으로써, 정밀가공이 필요한 압력피스톤(350) 및 컷오프부(310)의 외경과 이들이 설치되는 밸브몸체(200) 내부 공간의 내경과의 간극조절이 용이하여 이로 인해 밸브제작이 쉽고 제작비용이 절감된다.
즉 상부압력챔버(230) 및 하부압력챔버(231) 내부에 채워지는 고압의 연료가 압력피스톤(350) 및 컷오프부(310)와 밸브몸체(200) 내부공간의 내경 사이 간극으로 누설되는 것을 방지하기 위해 간극을 매우 작게 정밀 가공해야 하는데, 컷오프부(310)와 압력피스톤이 일체로 형성되면 하나의 부품에 정밀가공이 필요한 가공면이 매우 많아지기 때문에 가공이 어려웠으나, 본 발명의 제1실시예는 상기와 같이 컷오프부(310)와 압력피스톤(350)을 분리하여 구성함으로써, 각각의 부품에 정밀한 가공이 필요한 가공면을 최소화 되도록 설계하여 부품의 정밀 가공이 용이한 장점이 있다.
한편 상기 컷오프부(310)는, 상기 하부압력챔버(231)에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지는 스핀들(320)과, 상기 스핀들(320)의 하부에서 스핀들(320)과 분리되도록 구성되고, 컷오프압력챔버(232)에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지고, 상기 스핀들(320)과 함께 상부방향으로 구동시 제1유로(220)를 개방해주는 컷오프니들(330)을 포함하여 구성된다.
이와 같이 컷오프부(310)를 스핀들(320)과 컷오프니들(330)로 분리하여 구성함으로써, 상기 컷오프부(310)와 압력피스톤(350)을 분리하여 구성한 것과 같이 각각의 부품에 정밀한 가공이 필요한 가공면을 최소화 되도록 설계하여 부품의 정밀 가공이 용이한 장점이 있다.
한편 상기 제어챔버(233) 및 제어오리피스(234)는 스핀들이 상부방향으로 구동될 때에는 하부압력챔버(231)와 연결되어 하부압력챔버(231) 내부의 연료를 밸브몸체(200)의 외부로 배출하는 반면 스핀들(320)이 구동되지 않은 경우에는 하부압력챔버(231)와 연결이 차단되어 연료가 배출되지 않도록 형성되어 있다.
한편 상기 밸브몸체(200)에는 상기 컷오프압력챔버(232)의 연료가 상기 컷오프니들(330)의 외경과 밸브몸체(200) 내경 사이의 간극을 통하여 하부압력챔버(231)로 누설되어 상기 스핀들(320)에 누설 연료에 의한 압력이 부가적으로 작용하는 것을 방지하기 위하여 연료유출홀(235)이 더 형성된다.
이러한 연료유출홀(235)은 상기 스핀들(320)과 컷오프니들(330)의 접촉부분에 위치하도록 형성되어 컷오프압력챔버(232)에서 누설되는 연료가 보다 용이하게 배출될 수 있도록 하는 것이다.
한편 상기 노즐가압부(400)는, 상기 분사제어부(300)의 컷오프부(310)에 의해 제1유로(220)가 개방될 경우 연료가 채워질 수 있도록 상부에 오목한 형태의 챔버(411)가 형성되고, 상기 노즐부(500)의 니들(520) 상부에 설치되어 연료에 의한 압력으로 니들(520)을 하부방향으로 힘을 가해주는 니들스핀들(410)과, 상기 니들스핀들(410)의 상부에 설치되어 니들스핀들(410)을 하부방향으로 힘을 가해주는 노즐스프링(420)을 포함하여 구성된다.
한편 상기 스핀들(320)과, 컷오프니들(330)에는 하부압력챔버(231) 및 컷오프압력챔버(232)에서 채워지는 연료의 압력에 의해 상부방향으로 구동력이 작용할 수 있도록 단턱진 형태의 압력작용면(333)이 형성된다.
이와 같이 구성되는 본 발명의 제1실시예에 의한 연료분사밸브의 작동상태를 설명한다.
먼저 연료가 분사되지 않을 경우에는, 상기 연료공급구(210)를 통해 공급되는 고압의 연료는 분사제어부(300)의 상부, 즉 압력피스톤(350)의 상부에 형성되어 있는 상부압력챔버(230) 및 제1유로(220)를 통해 상기 컷오프압력챔버(232)에 채워진다.
이렇게 연료분사가 이루어지지 않는 대기 기간에는 제어니들(240)이 제2유로(221)를 밀폐하여 닫고 있기 때문에 연료가 제2유로(221)를 통해 하부압력챔버(231)에 전달되지 않는다.
따라서 상부압력챔버에(230) 충전된 연료의 압력에 의해 압력피스톤(350) 상부에서 하부방향으로 작용하는 힘과, 스프링(340)에 의해 하부방향으로 작용하는 힘의 합이 컷오프압력챔버(232)를 통해 컷오프부(310)에 상부방향으로 작용하는 압력에 의한 힘보다 크기 때문에 컷오프부(310)가 닫혀있는 상태를 유지한다.
이렇게 제1유로(220)가 컷오프부(310)에 닫혀져 고압의 연료가 노즐부(500)로 전달되지 못함에 따라 노즐부(500)의 니들(520)도 하부방향으로 작용하는 노즐스프링(420)의 힘에 의해 닫힘 상태를 유지하게 되고 노즐홀(530)을 통해 연료분사가 발생하지 않게 된다.
한편 연료분사가 시작될 경우에는, 제어신호에 따라 구동기(actuator)가 작동하여 제어니들(240)을 위로 상승시키면 제어니들(240)이 막고 있는 제2유로(221)가 개방되어 고압의 연료가 하부압력챔버(231)로 전달되고, 하부압력챔버(231)에 채워지는 연료의 압력이 컷오프부(310)의 스핀들(320)에 형성되어 있는 압력작용면(333)에 작용한다.
이에 따라 컷오프부(310)의 스핀들(320)과 컷오프니들(330)에 상부방향으로 작용하는 연료의 압력에 의한 힘이 상부압력챔버(230)에 채워진 연료의 압력에 의해 압력피스톤(350)의 상부에 작용하는 힘 및 스프링(340)에 의해 하부방향으로 작용하는 힘의 합력보다 커지면서 컷오프니들(330)이 상승하게 되고, 이로 인해 제1유로(220)가 개방됨으로써 고압의 연료가 니들스핀들(410) 상부에 형성된 챔버(411) 및 노즐부(500)의 노즐챔버(510)에 전달되게 된다.
이렇게 노즐챔버(510)에 전달된 연료의 압력에 의해 노즐부(500)의 니들을 들어올리도록 하는 힘이 니들스핀들(410) 상부의 챔버(411)에 채워진 연료에 의해 하부방향으로 작용하는 압력에 의한 힘 및 노즐스프링(420)에 의해 니들스핀들(410)에 하부방향으로 작용하는 힘의 합력보다 커지게 되면 노즐부(500)의 니들(520)이 상승하게 되고 노즐홀(530)을 통해 연료의 분사가 이루어지게 된다.
여기서 니들스핀들(410) 상부에 형성된 챔버(411)에 채워지는 연료에 의해 니들스핀들(410) 상부에 작용하는 압력에 의한 힘과 노즐스프링(420)의 힘에 의해 노즐의 개방 압력이 결정되는데, 이 경우 노즐스프링만(420)으로 노즐부(500)의 니들(520)을 누르는 경우에 비해 노즐스프링(420)의 힘을 줄일 수 있으므로, 노즐스프링(420)의 크기를 작게 하거나 노즐부(500)의 개방 압력을 증가시키기가 용이하다.
한편 연료분사가 종료될 경우에는, 제어신호에 따라 상기 제어니들(240)이 하부방향으로 이동하여 제2유로(221)를 차단하게 된다.
이렇게 제2유로(221)가 차단되면 하부압력챔버(231)에는 더 이상의 연료공급이 없는 반면 제어오리피스(234)를 통해 연료가 배출되면서 하부압력챔버(231) 내의 압력이 떨어지게 된다.
이에 따라 스핀들(320) 및 컷오프압력챔버(232)에 채워져 컷오프니들(330)을 상승시키는 연료의 압력에 의한 힘이, 상부압력챔버(230)에 채워지는 연료에 의한 압력피스톤(350) 상부에 작용하는 압력에 의한 힘과 스프링(340)에 의해 스핀들(320)과 컷오프니들(330)을 누르는 힘의 합력보다 작아지게 된다.
따라서 컷오프니들(330)이 하강하여 제1유로(220)가 차단되고, 더 이상 고압의 연료는 제1유로(220)를 통해 니들스핀들(410)의 상부에 형성된 챔버(411)와 노즐부(500)의 노즐챔버(510)에 전달되지 못한다.
또한 상기와 같이 컷오프니들(330)이 닫힌 이후에는 제1유로(220)에 남아 있던 연료는 노즐부(500)의 노즐홀(530)을 통해 분사됨으로써 노즐챔버(510)의 압력이 감소하여 노즐부(500)의 니들(520)을 밀어 올리는 힘이 감소하게 되고, 이 힘이 니들스핀들(410) 상부의 챔버(411)에 채워진 연료에 의해 니들스핀들(410) 상부에 작용하는 힘과 노즐스프링(420)에 의해 작용되는 힘의 합력보다 작아지게 되면 노즐부(500)의 니들(520)이 하강하여 노즐홀(530)로의 유로를 차단하게 되고 연료의 분사가 종료되는 것이다.
이와 같은 본 발명의 제1실시예에 의한 연료분사밸브는 기존의 기계식 연료분사밸브와는 다르게 엔진의 운전조건과 독립적으로, 제어신호에 따라 제어니들(240)을 작동하여 연료의 분사 시기와 분사량을 제어할 수 있게 된다.
또한 연료분사의 제어방식이 제어니들(240)을 통해 고압의 연료를 하부압력챔버(231)로 전달하여 분사제어부(300)의 컷오프니들(330)을 들어올리는 힘을 증가시키는 방식으로, 연료 분사의 제어가 신속하다.
또한 구조가 간단하여 부품의 조립 및 교체가 용이하며, 특히 노즐부(500)의 교체가 용이한 장점이 있다.
아울러 연료분사가 이루어지지 않는 기간 동안은, 컷오프니들(330)이 닫혀 제1유로(220)를 차단함으로써 노즐부(500)로의 연료전달이 차단되어 노즐부(500)에 고압이 상시 작용하는 것을 방지하고, 노즐부(500)의 니들(520)이나 밸브의 시트 손상과 같은 문제발생시 다량의 연료가 연소실로 누유되는 것을 방지하는 안전기능을 갖는다.
또한 니들스핀들(410) 상부에 작용하는 압력에 의한 힘과 노즐스프링(420)의 힘에 의해 노즐부(500)의 개방 압력이 결정됨으로써, 노즐스프링(420)만으로 노즐부(500)의 니들(520)을 누르는 경우에 비해 노즐스프링(420)의 힘을 줄일 수 있으므로 노즐스프링(420)의 크기를 작게 할 수 있고, 노즐부(500)의 개방 및 폐쇄 압력을 증가시키기가 용이한 장점이 있다.
한편 도 8 은 본 발명의 제2실시예에 의한 연료분사밸브를 나타낸 예시도, 도 9 는 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들의 설치구조를 상세히 나타낸 예시도, 도 10 은 본 발명의 제2실시예에 의한 연료분사밸브의 스핀들과 하부압력챔버의 구조를 상세히 나타낸 예시도, 도 11 은 본 발명의 제2실시예에 의한 컷오프부의 스핀들과 컷오프니들의 접촉부분에 설치된 연료유출홀을 나타낸 예시도, 도 12 는 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들이 닫혀 연료가 분사되지 않는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도, 도 13 은 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들이 열려 연료가 분사되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도, 도 14 는 본 발명의 제2실시예에 의한 연료분사밸브의 제어니들이 다시 닫혀 연료분사가 종료되는 경우에서의 작동상태 및 연료의 흐름을 나타낸 예시도로서.
도면에서와 같이 본 발명의 제2실시예에 의한 연료분사밸브(100)는, 연료공급구(210)를 통해 주입되는 연료가 이동될 수 있도록 제1유로(220)가 내부에 형성되고, 상부에 제어밸브하우징(241)이 설치되어 있는 밸브몸체(200)와, 상기 밸브몸체(200)의 하부에 결합되고 상기 제1유로(220)를 통해 공급되는 연료가 채워져 내부에 설치되는 니들(520)을 상부 방향으로 가압해줌으로써, 니들(520)을 들어올려 연료가 노즐홀(530)을 통해 분사되도록 하는 노즐챔버(510)가 형성되어 있는 노즐부(500)와, 상기 밸브몸체(200)의 내부에서 상기 제1유로(220)를 개폐할 수 있도록 설치되어 노즐부(500)를 통한 연료의 분사를 제어할 수 있도록 하는 분사제어부(300)와, 상기 분사제어부(300)의 하부에 위치하도록 상기 밸브몸체(200)의 내부에 설치되어 노즐부(500)의 니들(520)에 하부방향으로 힘을 가해주는 노즐가압부(400)와, 상기 분사제어부(300)의 상부에 형성되고 연료공급구(210)를 통해 주입되는 연료가 채워짐으로써 분사제어부(300)를 하부방향으로 하강시켜주기 위한 압력이 형성되도록 하는 상부압력챔버(230)와, 상기 상부압력챔버(230)의 하부에 위치하고 연료가 채워짐으로서 상기 분사제어부(300)를 상부방향으로 상승시켜주기 위한 압력이 형성되도록 하는 하부압력챔버(231)와, 상기 하부압력챔버(231)의 하부에 위치하고 상기 제1유로(220)를 통해 이동되는 연료가 채워짐으로써 상기 분사제어부(300)를 상승시켜주기 위한 압력이 형성될 수 있도록 하는 컷오프압력챔버(232)와, 상기 제어밸브하우징(241)을 통해 상기 분사제어부(300)의 내부로 형성되어 상기 하부압력챔버(231)에 연결됨으로써 하부압력챔버(231)에 연료가 공급될 수 있도록 하는 제2유로(221)와, 상기 제어밸브하우징(241)에 설치되어 제어신호에 따라 상기 제2유로(221)를 개폐해줌으로써 하부압력챔버(231)로 공급되는 연료의 유량을 제어해주는 제어니들(240)과, 상기 하부압력챔버(231)와 연결되도록 밸브몸체(200)에 형성되어 연료의 배출시 하부압력챔버(231)의 연료가 채워지는 제어챔버(233)와, 상기 제어챔버(233)에 연결되어 제어챔버(233) 내부의 연료가 밸브몸체(100)의 외부로 배출되도록 하는 제어오리피스(234)를 포함하여 구성되는 구성된다.
상기 제어니들(240)은 제어신호에 따라 작동되는 구동기(actuator, 도시없음)에 의해 작동되어 상기 제2유로(221)를 개폐하여 상기 하부압력챔버(231)로 유입되는 연료의 유량을 제어할 수 있도록 구성되는 것이다.
상기 분사제어부(300)는 상기 제어밸브하우징(241)에 끼워지도록 설치되고 상부압력챔버(230)의 하부에 위치하며, 상기 하부압력챔버(231) 및 컷오프압력챔버(232)에 채워지는 연료의 압력에 의한 힘으로 상승되어 제1유로(220)를 개폐해주는 컷오프부(310)와, 상기 컷오프부(310)에 끼워지도록 설치되어 컷오프부(310)를 하부방향으로 힘을 가해주는 스프링(340)을 포함하여 구성된다.
상기 컷오프부(310)는 제어밸브하우징(241)이 삽입될 수 있도록 중심부에 삽입홀(321)이 형성되고, 제어밸브하우징(241)에 형성되어 있는 제2유로(221)가 상기 하부압력챔버(231)와 연결되도록 상기 삽입홀(321)의 내부에 하부압력챔버(231)와 연결되는 다수의 연결홀(322)이 형성되도록 구성되어, 하부압력챔버(231)에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지는 스핀들(320)과, 상기 스핀들(320)의 하부에서 스핀들(320)과 분리되도록 구성되고, 컷오프압력챔버(232)에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지고, 상기 스핀들(320)과 함께 상부방향으로 구동시 제1유로(220)를 개방해주는 컷오프니들(330)을 포함하여 구성된다.
이와 같은 본 발명의 제2실시예는 상기 제어밸브하우징(241)에 제2유로(221)를 형성하고, 이 제어밸브하우징(241)을 스핀들(320)의 삽입홀(321)에 삽입함으로써 스핀들(320)의 내부에 제2유로(221)가 위치하게 된다.
이러한 제2유로는 상기와 같이 제어밸브하우징(241)에 형성함으로써 제2유로(221)의 구조가 단순해지고 밸브몸체(200)에 유로를 형성하는 것에 비하여 제2유로(221)의 가공이 용이하다.
또한 컷오프부(310)의 스핀들(320)과 컷오프니들(330)을 분리시켜 구성함으로서 정밀 가공이 필요한 스핀들(320)과 컷오프니들(330)의 외경과 이들이 설치되는 밸브몸체(200) 내부 공간의 내경과의 간극 조절이 용이하여 밸브제작이 쉽고 제작비용을 절감할 수 있다.
즉, 상부압력챔버(230) 및 하부압력챔버(231) 그리고 컷오프압력챔버(232)에 채워지는 고압의 연료가 스핀들(320) 및 컷오프니들(330)과 밸브몸체(200) 내부 공간의 내경 사이 간극으로 누설되는 것을 방지하기 위해 간극을 매우 작게 정밀 가공해야 하는데, 스핀들(320)과 컷오프니들(330)이 일체로 형성되면 하나의 부품에 정밀 가공이 필요한 가공면이 매우 많아지기 때문에 가공이 어려웠으나, 본 발명은 상기와 같이 스핀들(320)과 컷오프니들(330)을 분리하여 구성함으로써, 각각의 부품에 정밀한 가공이 필요한 가공면을 최소화 되도록 설계할 수 있어 부품의 정밀 가공이 용이한 장점이 있다.
한편 상기 제어챔버(233) 및 제어오리피스(234)는 스핀들(320)이 상부방향으로 구동될 때에는 하부압력챔버(231)와 연결되어 하부압력챔버(231) 내부의 연료를 밸브몸체(200)의 외부로 배출하는 반면 스핀들(320)이 구동되지 않은 경우에는 하부압력챔버(231)와 연결이 차단되어 연료가 배출되지 않도록 형성되어 있다.
한편 상기 밸브몸체(200)에는 상기 컷오프압력챔버(232)의 연료가 상기 컷오프니들(330)의 외경과 밸브몸체(200) 내경 사이의 간극을 통하여 하부압력챔버(231)로 누설되어 상기 스핀들(320)에 누설 연료에 의한 압력이 부가적으로 작용하는 것을 방지하기 위하여 연료유출홀(235)이 더 형성된다.
이러한 연료유출홀(235)은 상기 스핀들(320)과 컷오프니들(330)의 접촉부분에 위치하도록 형성되어 컷오프압력챔버(232)에서 누설되는 연료가 보다 용이하게 배출될 수 있도록 하는 것이다.
한편 상기 노즐가압부(400)는, 상기 분사제어부(300)의 컷오프부(310)에 의해 제1유로(220)가 개방될 경우 연료가 채워질 수 있도록 상부에 오목한 형태의 챔버(411)가 형성되고, 상기 노즐부(500)의 니들(520) 상부에 설치되어 연료에 의한 압력으로 니들(520)을 하부방향으로 힘을 가해주는 니들스핀들(410)과, 상기 니들스핀들(410)의 상부에 설치되어 니들스핀들(410)을 하부방향으로 힘을 가해주는 노즐스프링(420)을 포함하여 구성된다.
한편 상기 스핀들(320)과, 컷오프니들(330)에는 하부압력챔버(231) 및 컷오프압력챔버(232)에서 채워지는 연료의 압력에 의해 상부방향으로 구동력이 작용할 수 있도록 단턱진 형태의 압력작용면(333)이 형성된다.
이와 같이 구성되는 본 발명의 제2실시예에 의한 연료분사밸브의 작동상태를 설명한다.
먼저 연료가 분사되지 않을 경우에는 상기 연료공급구(210)를 통해 공급되는 고압의 연료는 분사제어부(300)의 상부, 즉 분사제어부(300)를 구성하는 컷오프부(310)의 스핀들(320) 상부에 위치하고 있는 상부압력챔버(230) 및 상기 제1유로(220)를 통해 상기 컷오프압력챔버(232)에 채워진다.
이렇게 연료분사가 이루어지지 않는 대기 기간에는 제어니들(240)이 제2유로(221)를 밀폐하여 닫고 있기 때문에 연료가 제2유로(221)를 통해 하부압력챔버(231)에 전달되지 않는다.
따라서 상부압력챔버(230)에 충전된 연료의 압력에 의해 스핀들(320)의 상부에서 하부방향으로 작용하는 힘과 스프링(340)에 의해 하부방향으로 작용하는 힘의 합이 컷오프압력챔버(232)를 통해 컷오프부(310)에 상부방향으로 작용하는 압력에 의한 힘보다 보다 크기 때문에 컷오프부(310)가 닫혀있는 상태를 유지한다.
이렇게 제1유로(220)가 컷오프부(310)에 닫혀져 고압의 연료가 노즐부(500)로 전달되지 못함에 따라 노즐부(500)의 니들(520)도 하부방향으로 작용하는 노즐스프링(420)의 힘에 의해 닫힘 상태를 유지하게 되고 노즐홀(530)을 통해 연료분사가 발생하지 않게 된다.
한편 연료분사가 시작될 경우에는, 제어신호에 따라 구동기(actuator)가 작동하여 제어니들(240)을 위로 상승시키면 제어니들(240)이 막고 있는 제2유로(221)가 개방되어 고압의 연료가 제어밸브하우징(241)에 형성되어 있는 제2유로(221)를 통해 스핀들(320)의 내부에서 연결홀(322)을 거쳐 하부압력챔버(231)로 전달되고, 하부압력챔버(231)에 채워지는 연료의 압력이 스핀들(320)의 압력작용면(333)에 작용한다.
이에 따라 컷오프압력챔버(232) 및 하부압력챔버(231)를 통해 컷오프부(310)의 스핀들(320)과 컷오프니들(330)에 상부방향으로 작용하는 연료의 압력에 의한 힘이 상부압력챔버(230)에 채워진 연료의 압력에 의해 스핀들(320)의 상부에 작용하는 힘 및 스프링(340)에 의해 하부방향으로 작용하는 힘의 합력보다 커지면서 컷오프니들(330)이 상승하게 되고, 이로 인해 제1유로(220)가 개방됨으로써 고압의 연료가 니들스핀들(410) 상부에 형성된 챔버(411) 및 노즐부(500)의 노즐챔버(510)에 전달되게 된다.
이렇게 노즐챔버(510)에 전달된 연료의 압력에 의해 노즐부(500)의 니들(520)을 들어올리도록 하는 힘이 니들스핀들(410) 상부의 챔버(411)에 채워진 연료에 의해 하부방향으로 작용하는 압력에 의한 힘 및 노즐스프링(420)에 의해 니들스핀들(410)에 하부방향으로 작용하는 힘의 합력보다 커지게 되면 노즐부(500)의 니들(520)이 상승하게 되고 노즐홀(530)을 통해 연료의 분사가 이루어지게 된다.
여기서 니들스핀들(410) 상부에 형성된 챔버(411)에 채워지는 연료에 의해 니들스핀들(410) 상부에 작용하는 압력에 의한 힘과 노즐스프링(420)의 힘에 의해 노즐의 개방 압력이 결정되는데, 이 경우 노즐스프링(420)만으로 노즐부(500)의 니들(520)을 누르는 경우에 비해 노즐스프링(420)의 힘을 줄일 수 있으므로, 노즐스프링(420)의 크기를 작게 하거나 노즐부(500)의 개방 압력을 증가시키기가 용이하다.
한편 연료분사가 종료될 경우에는, 제어신호에 따라 상기 제어니들(240)이 하부방향으로 이동하여 제2유로(221)를 차단하게 된다.
이렇게 제2유로(221)가 차단되면 하부압력챔버(231)에는 더 이상의 연료공급이 없는 반면 제어오리피스(234)를 통해 연료가 배출되면서 하부압력챔버(231) 내의 압력이 떨어지게 된다.
이에 따라 컷오프압력챔버(232)에 채워져 컷오프니들(330)을 상승시키는 연료의 압력에 의한 힘이, 상부압력챔버(230)에 채워지는 연료에 의한 스핀들(320) 상부에 작용하는 압력에 의한 힘과 스프링(340)에 의해 스핀들(320)과 컷오프니들(330)을 누르는 힘의 합력보다 작아지게 된다.
따라서 컷오프니들(330)이 하강하여 제1유로(220)가 차단되고, 더 이상 고압의 연료는 제1유로(220)를 통해 니들스핀들(410)의 상부에 형성된 챔버(411)와 노즐부(500)의 노즐챔버(510)에 전달되지 못한다.
또한 상기와 같이 컷오프니들(330)이 닫힌 이후에는 제1유로(220)에 남아 있던 연료는 노즐부(500)의 노즐홀(530)을 통해 분사됨으로써 노즐챔버(510)의 압력이 감소하여 노즐부(500)의 니들(520)을 밀어 올리는 힘이 감소하게 되고, 이 힘이 니들스핀들(410) 상부의 챔버(411)에 채워진 연료에 의해 니들스핀들(411) 상부에 작용하는 힘과 노즐스프링(420)에 의해 작용되는 힘의 합력보다 작아지게 되면 노즐부(500)의 니들(520)이 하강하여 노즐홀(530)로의 유로를 차단하게 되고 연료의 분사가 종료되는 것이다.
이와 같은 본 발명의 제2실시예의 연료분사밸브는 기존의 기계식 연료분사밸브와는 다르게 엔진의 운전조건과 독립적으로, 제어신호에 따라 제어니들(240)을 작동하여 연료의 분사 시기와 분사량을 제어할 수 있게 된다.
또한 제2유로(221)가 제어밸브하우징(241)을 통해 형성됨으로써 밸브몸체(200)에 제2유로(221)를 형성하는 것 보다 유로의 가공이 쉬워 밸브 제작이 용이하다.
또한 연료분사의 제어방식이 제어니들(240)을 통해 고압의 연료를 하부압력챔버(231)로 전달하여 분사제어부(300)의 컷오프니들(330)을 들어올리는 힘을 증가시키는 방식으로, 연료 분사의 제어가 신속하다.
또한 구조가 간단하여 부품의 조립 및 교체가 용이하며, 특히 노즐부(500)의 교체가 용이한 장점이 있다.
아울러 연료분사가 이루어지지 않는 기간 동안은, 컷오프니들(330)이 닫혀 제1유로(220)를 차단함으로써 노즐부(500)로의 연료전달이 차단되어 노즐부(500)에 고압이 상시 작용하는 것을 방지하고, 노즐부(500)의 니들(520)이나 밸브의 시트 손상과 같은 문제발생시 다량의 연료가 연소실로 누유되는 것을 방지하는 안전기능을 갖는다.
또한 니들스핀들(410) 상부에 작용하는 압력에 의한 힘과 노즐스프링(420)의 힘에 의해 노즐부(500)의 개방 압력이 결정됨으로써, 노즐스프링(420)만으로 노즐부(500)의 니들(520)을 누르는 경우에 비해 노즐스프링(420)의 힘을 줄일 수 있으므로 노즐스프링(420)의 크기를 작게 할 수 있고, 노즐부(500)의 개방 및 폐쇄 압력을 증가시키기가 용이한 장점이 있다.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (8)

  1. 연료공급구를 통해 주입되는 연료의 이동을 위한 제1유로가 내부에 형성되고 상부에 제어밸브하우징이 설치되어 있는 밸브몸체;
    상기 밸브몸체의 하부에 결합되고 제1유로를 통해 공급되는 연료가 채워져 내부에 설치되는 니들을 상부 방향으로 가압해줌으로써, 니들을 들어올려 연료가 분사되도록 하는 노즐챔버가 형성되어 있는 노즐부;
    상기 밸브몸체의 내부에서 상기 제1유로를 개폐할 수 있도록 설치되어 노즐부를 통한 연료의 분사를 제어할 수 있도록 하는 분사제어부;
    상기 분사제어부의 하부에 위치하고 상기 노즐부의 니들에 하부방향으로 힘을 가해주는 노즐가압부;
    상기 분사제어부의 상부에 형성되고 연료공급구를 통해 주입되는 연료가 채워짐으로써 분사제어부를 하부방향으로 하강시켜주기 위한 압력이 형성되도록 하는 상부압력챔버;
    상기 상부압력챔버의 하부에 위치하고 연료가 채워짐으로서 상기 분사제어부를 상부방향으로 상승시켜주기 위한 압력이 형성되도록 하는 하부압력챔버;
    상기 하부압력챔버의 하부에 위치하고 상기 제1유로를 통해 이동되는 연료가 채워짐으로써 상기 분사제어부를 상승시켜주기 위한 압력이 형성될 수 있도록 하는 컷오프압력챔버;
    상기 제어밸브하우징을 거쳐서 상기 밸브몸체에 형성되고 상기 하부압력챔버에 연결되어 하부압력챔버에 연료가 공급될 수 있도록 하는 제2유로;
    상기 제어밸브하우징에 설치되어 제어신호에 따라 상기 제2유로를 개폐해줌으로써 하부압력챔버로 공급되는 연료의 유량을 제어해주는 제어니들;
    상기 하부압력챔버와 연결되도록 밸브몸체에 형성되어 연료의 배출시 하부압력챔버의 연료가 채워지는 제어챔버;
    상기 제어챔버에 연결되어 제어챔버 내부의 연료가 밸브몸체의 외부로 배출되도록 하는 제어오리피스;를 포함하여 구성되는 것을 특징으로 하는 전자제어 연료분사밸브.
  2. 제 1 항에 있어서,
    상기 분사제어부는,
    상기 밸브몸체의 중심에 설치되고, 상기 하부압력챔버 및 컷오프압력챔버에 채워지는 연료의 압력에 의한 힘으로 상승되어 제1유로를 개폐시켜 노즐부로의 연료 공급을 제어할 수 있도록 하는 컷오프부;
    상기 컷오프부의 상부에 설치되어 상부압력챔버에 채워지는 연료에 의한 압력으로 상기 컷오프부를 하부방향으로 힘을 가해주는 압력피스톤;
    상기 압력피스톤에 끼워지도록 설치되어 상기 컷오프부를 하부방향으로 힘을 가해주는 스프링;을 포함하여 구성되는 것을 특징으로 하는 전자제어 연료분사밸브.
  3. 제 2 항에 있어서,
    상기 컷오프부는,
    상기 하부압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지는 스핀들;
    상기 스핀들의 하부에서 스핀들과 분리되도록 구성되고, 컷오프압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지고, 상기 스핀들과 함께 상부방향으로 구동시 제1유로를 개방해주는 컷오프니들;을 포함하여 구성되는 것을 특징으로 하는 전자제어 연료분사밸브.
  4. 연료공급구를 통해 주입되는 연료의 이동을 위한 제1유로가 내부에 형성되고 상부에 제어밸브하우징이 설치되어 있는 밸브몸체;
    상기 밸브몸체의 하부에 결합되고 제1유로를 통해 공급되는 연료가 채워져 내부에 설치되는 니들을 상부 방향으로 가압해줌으로써 니들을 들어올려 연료가 분사되도록 하는 노즐챔버가 형성되어 있는 노즐부;
    상기 밸브몸체의 내부에서 상기 제1유로를 개폐할 수 있도록 설치되어 노즐부를 통한 연료의 분사를 제어할 수 있도록 하는 분사제어부;
    상기 분사제어부의 하부에 위치하고 상기 노즐부의 니들에 하부방향으로 힘을 가해주는 노즐가압부;
    상기 분사제어부의 상부에 형성되고 연료공급구를 통해 주입되는 연료가 채워짐으로써 분사제어부를 하부방향으로 하강시켜주기 위한 압력이 형성되도록 하는 상부압력챔버;
    상기 상부압력챔버의 하부에 위치하고 연료가 채워짐으로서 상기 분사제어부를 상부방향으로 상승시켜주기 위한 압력이 형성되도록 하는 하부압력챔버;
    상기 하부압력챔버의 하부에 위치하고 상기 제1유로를 통해 이동되는 연료가 채워짐으로써 상기 분사제어부를 상승시켜주기 위한 압력이 형성될 수 있도록 하는 컷오프압력챔버;
    상기 제어밸브하우징을 통해 상기 분사제어부의 내부로 형성되어 상기 하부압력챔버에 연결됨으로써 하부압력챔버에 연료가 공급될 수 있도록 하는 제2유로;
    상기 제어밸브하우징에 설치되어 제어신호에 따라 상기 제2유로를 개폐해줌으로써 하부압력챔버로 공급되는 연료의 유량을 제어해주는 제어니들;
    상기 하부압력챔버와 연결되도록 밸브몸체에 형성되어 연료의 배출시 하부압력챔버의 연료가 채워지는 제어챔버;
    상기 제어챔버에 연결되어 제어챔버 내부의 연료가 밸브몸체의 외부로 배출되도록 하는 제어오리피스;를 포함하여 구성되는 것을 특징으로 하는 전자제어 연료분사밸브.
  5. 제 4 항에 있어서,
    상기 분사제어부는,
    상기 제어밸브하우징에 끼워지도록 설치되고 상부압력챔버의 하부에 위치하며, 상기 하부압력챔버 및 컷오프압력챔버에 채워지는 연료의 압력에 의한 힘으로 상승되어 제1유로를 개폐해주는 컷오프부;
    상기 컷오프부에 끼워지도록 설치되어 컷오프부를 하부방향으로 힘을 가해주는 스프링;을 포함하여 구성되는 것을 특징으로 하는 전자제어 연료분사밸브.
  6. 제 5 항에 있어서,
    상기 컷오프부는,
    상기 제어밸브하우징이 삽입될 수 있도록 중심부에 삽입홀이 형성되고, 상기 삽입홀의 내부에 하부압력챔버로 제2유로의 연료가 공급될 수 있도록 다수의 연결홀이 형성되어 하부압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지는 스핀들;
    상기 스핀들의 하부에서 스핀들과 분리되도록 구성되고, 컷오프압력챔버에 채워지는 연료의 압력에 의해 상부방향으로 힘이 가해지고, 상기 스핀들과 함께 상부방향으로 구동시 제1유로를 개방해주는 컷오프니들;을 포함하여 구성되는 것을 특징으로 하는 전자제어 연료분사밸브.
  7. 제 3 항 또는 제 6 항에 있어서,
    상기 밸브몸체에는, 상기 컷오프압력챔버의 연료가 상기 컷오프니들의 외경과 밸브몸체 내경 사이의 간극을 통하여 하부압력챔버로 누설되어 상기 스핀들에 누설 연료에 의한 압력이 부가적으로 작용하는 것을 방지하기 위하여 연료유출홀이 더 형성되는 것을 특징으로 하는 전자제어 연료분사밸브.
  8. 제 1 항 또는 제 4 항에 있어서,
    상기 노즐가압부는,
    상기 분사제어부에 의해 제1유로가 개방될 경우 연료가 채워질 수 있도록 상부에 오목한 형태의 챔버가 형성되고 상기 니들의 상부에 설치되어 연료에 의한 압력으로 니들을 하부방향으로 힘을 가해주는 니들스핀들;
    상기 니들스핀들의 상부에 설치되어 니들스핀들을 하부방향으로 힘을 가해주는 노즐스프링;을 포함하여 구성되는 것을 특징으로 하는 전자제어 연료분사밸브.
PCT/KR2011/010120 2010-12-28 2011-12-26 전자제어 연료분사밸브 WO2012091393A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11852720.9A EP2660460B1 (en) 2010-12-28 2011-12-26 Electronically controlled fuel injection valve
CN201180062787.9A CN103339369B (zh) 2010-12-28 2011-12-26 电子控制燃料喷射阀
JP2013547325A JP5760095B2 (ja) 2010-12-28 2011-12-26 電子制御燃料噴射弁
US13/997,754 US9200606B2 (en) 2010-12-28 2011-12-26 Electronically controlled fuel injection valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100136404A KR101162883B1 (ko) 2010-12-28 2010-12-28 전자제어 연료분사밸브
KR10-2010-0136404 2010-12-28
KR10-2010-0136406 2010-12-28
KR1020100136406A KR101165541B1 (ko) 2010-12-28 2010-12-28 전자제어 연료분사밸브

Publications (2)

Publication Number Publication Date
WO2012091393A2 true WO2012091393A2 (ko) 2012-07-05
WO2012091393A3 WO2012091393A3 (ko) 2012-08-23

Family

ID=46383671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010120 WO2012091393A2 (ko) 2010-12-28 2011-12-26 전자제어 연료분사밸브

Country Status (4)

Country Link
EP (1) EP2660460B1 (ko)
JP (1) JP5760095B2 (ko)
CN (1) CN103339369B (ko)
WO (1) WO2012091393A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3267028A1 (en) * 2016-07-06 2018-01-10 Continental Automotive GmbH Valve assembly for an injection valve, injection valve and injection method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161773A (en) * 1994-05-31 2000-12-19 Caterpillar Inc. Fuel injector nozzle with guide to check clearance passage providing injection rate shaping
JPH10131828A (ja) * 1996-10-31 1998-05-19 Mitsubishi Heavy Ind Ltd 噴射弁装置
DE19701879A1 (de) * 1997-01-21 1998-07-23 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19717419C1 (de) * 1997-04-25 1998-07-30 Daimler Benz Ag Speichereinspritzsystem für eine mehrzylindrige Brennkraftmaschine mit magnetventilgesteuerten Kraftstoffeinspritzventilen
JP3991470B2 (ja) * 1998-09-14 2007-10-17 株式会社デンソー 噴射弁
DE10001828A1 (de) * 2000-01-18 2001-07-19 Fev Motorentech Gmbh Direktgesteuerte Kraftstoffeinspritzeinrichtung für eine Kolbenbrennkraftmaschine
US7124746B2 (en) * 2002-07-16 2006-10-24 Brocco Douglas S Method and apparatus for controlling a fuel injector
DE10359169A1 (de) * 2003-12-17 2005-07-21 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
JP5044368B2 (ja) * 2007-11-06 2012-10-10 株式会社デンソー 燃料噴射弁
JP5257216B2 (ja) * 2009-04-20 2013-08-07 トヨタ自動車株式会社 燃料噴射弁

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2660460A4

Also Published As

Publication number Publication date
CN103339369B (zh) 2015-07-01
EP2660460B1 (en) 2017-03-08
EP2660460A2 (en) 2013-11-06
WO2012091393A3 (ko) 2012-08-23
CN103339369A (zh) 2013-10-02
JP5760095B2 (ja) 2015-08-05
JP2014501360A (ja) 2014-01-20
EP2660460A4 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
EP1041272B1 (en) Fuel injector
WO2012002620A1 (ko) 펌핑 기능 노즐을 가진 디젤엔진과 가스엔진용 이중 연료분사밸브
EP2273097B1 (en) Fuel Injector
KR20070046890A (ko) 내연기관의 연소 챔버 내부로 연료를 분사하는 장치
CN104481765B (zh) 燃料喷射阀
WO2014112668A1 (ko) 건설기계의 유량 제어장치 및 제어방법
WO2013147444A1 (ko) 냉간 등방압 프레스와 일반프레스 복합장비
WO2012091393A2 (ko) 전자제어 연료분사밸브
KR20070059068A (ko) 내연기관의 연소 챔버 내부로 연료를 분사하는 장치
WO2014098284A1 (ko) 플로팅 기능이 구비된 건설기계
WO2012091367A2 (ko) 전자제어 연료분사밸브
ITTO970874A1 (it) Iniettore di combustibile a comando elettromagnetico per motori a combustione interna.
WO2012057530A2 (ko) 내연기관용 연료분사밸브
WO2012011650A1 (ko) 2중 연료분사밸브
WO2018131836A1 (ko) 핫런너의 사이드게이트 밸브장치
WO2016108558A1 (en) Spray apparatus for spraying water and discharging residual water and method for controlling the same
KR101290549B1 (ko) 사출성형기용 핫런너 밸브장치
WO2023219312A1 (ko) 대형제품용 양면사출금형 조립체
JP4273468B2 (ja) 内燃機関用燃料噴射装置等の圧力の異なる二つの空洞部の間のシール装置
WO2013062343A2 (ko) 디젤엔진의 연료분사노즐
WO2012070709A1 (ko) 사출금형 장치
US20080169357A1 (en) Fuel Injector That Opens In Two Stages
KR20140016747A (ko) 인젝터의 밸브 조립장치
US5988533A (en) Magnetic valve controlled fuel injector
KR101165541B1 (ko) 전자제어 연료분사밸브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852720

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013547325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011852720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011852720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13997754

Country of ref document: US