WO2012091127A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2012091127A1
WO2012091127A1 PCT/JP2011/080484 JP2011080484W WO2012091127A1 WO 2012091127 A1 WO2012091127 A1 WO 2012091127A1 JP 2011080484 W JP2011080484 W JP 2011080484W WO 2012091127 A1 WO2012091127 A1 WO 2012091127A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel cell
cell system
backflow
output
Prior art date
Application number
PCT/JP2011/080484
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 水野
修平 咲間
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012551056A priority Critical patent/JP5728497B2/en
Publication of WO2012091127A1 publication Critical patent/WO2012091127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • Patent Document 1 As a technology in this type of field, for example, there is a fuel cell system described in Patent Document 1.
  • This conventional fuel cell system includes an exhaust port for exhausting the exhaust gas after heat exchange with the heat exchanger to the outside of the case.
  • a separate member for collecting impurities is provided in front of the exhaust port to prevent impurities from entering the heat exchanger side from the exhaust port.
  • the installation mode of the fuel cell system there is a case where the fuel cell system is installed indoors and the exhaust port is connected to the chimney.
  • the chimney is shared with other devices, the external exhaust gas that fills the chimney may contain components that are undesirable for the fuel cell system and dust in the chimney stack.
  • the external exhaust gas in the chimney may flow into the fuel cell system.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell system capable of suppressing the inflow of external exhaust gas to the fuel cell system side.
  • a fuel cell system includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, a cathode blower that supplies cathode air to the cathode of the cell stack, A flow direction that is disposed in an exhaust port that discharges at least exhaust gas discharged from the power generation unit to the outside of the system, and an exhaust path between the power generation unit and the exhaust port, and detects the flow direction of the circulating gas in the exhaust path A detection unit, and a control unit that executes a first output increase process for increasing the supply output of the cathode air by the cathode blower compared to that during normal operation when the backflow of the flowing gas is detected by the flow direction detection unit.
  • This fuel cell system can suppress the flow of external exhaust gas to the fuel cell system side.
  • FIG. 1 is a diagram showing an embodiment of a fuel cell system according to the present invention. It is a figure which shows an example of the exhaust route of the fuel cell system shown in FIG. It is a figure which shows the other example of the exhaust route of the fuel cell system shown in FIG. It is a figure which shows an example of a flow direction detection part. It is a figure which shows the other example of a flow direction detection part. It is a flowchart which shows the operation
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7,
  • the water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, the control part 11, and the heat exchange part 15 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • a fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • a hydrogen-containing fuel that does not require a reforming process, such as pure hydrogen gas or hydrogen-enriched gas
  • One or more can be omitted.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the heat exchange unit 15 moves the heat from the combustion gas to the water by circulating the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water (heat medium). Heat the water.
  • This water is stored, for example, in a hot water storage tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water storage tank to the heat exchanging unit 15.
  • FIG. 2 is a diagram illustrating an example of an exhaust path of the fuel cell system 1.
  • the exhaust path of the fuel cell system 1 includes a power generation unit 21, the heat exchange unit 15 described above, a damper 22, a flow direction detection unit 23, and a control unit 24. Housed in the housing 25.
  • the casing 25 is provided with a circulation gas passage 27 and an exhaust port 26 through which exhaust gas (FC exhaust gas) discharged from at least the power generation unit 21 side flows.
  • the exhaust path is airtight with respect to outside air.
  • the airtightness means airtightness with respect to outside air other than the gas scheduled to be discharged from the housing 25.
  • it means a structure in which gas is discharged from the housing 25 only from a dedicated gas discharge path.
  • a water flow path through which water circulated and supplied from the hot water storage tank flows into the heat exchange section 15 and a water flow path through which the water flows out from the heat exchange section 15 are respectively connected to the heat exchange section 15 as pumps. Connected through. From the heat exchange unit 15, the exhaust gas after heat exchange is discharged toward the exhaust port 26 of the housing 25.
  • the flow direction detection unit 23 is a part that detects the flow direction of the flow gas flowing in the flow gas channel 27.
  • the flow direction detection unit 23 is configured by a fan 28 provided in a circulation gas flow path 27 toward the exhaust port 26. Since the rotation direction of the fan 28 changes depending on the flow direction of the flow gas flowing in the flow gas flow path 27, the flow direction of the flow gas can be determined from the rotation direction of the fan 28. Then, the fan 28 outputs a signal indicating the rotation direction to the control unit 24.
  • the flow direction detection unit 23 may be a flap 29 provided in a circulation gas flow path 27 toward the exhaust port 26, for example, as shown in FIG.
  • the flap 29 is inclined toward the exhaust port 26 when the circulating gas is flowing toward the exhaust port 26, and is inclined toward the opposite side of the exhaust port 26 when the circulating gas is flowing backward.
  • the inclination of the flap 29 may be determined by, for example, ON / OFF of a switch provided at the base of the flap 29, or laser detection or the like may be used.
  • image detection by a camera or the like may be performed, and detection by a strain gauge may be performed in a state where the base of the flap 29 is fixed.
  • the control unit 24 is a part that performs diagnosis processing of the flow direction of the circulating gas in the discharge path.
  • the control unit 24 is disposed in the housing 25, but may be configured such that the function of the control unit 24 is added to the control unit 11 of the fuel cell system 1.
  • the diagnosis process by the control unit 24 is repeatedly performed at predetermined intervals, for example, during operation of the fuel cell system 1.
  • FIG. 6 is a flowchart showing a first mode of operation of the control unit 24.
  • a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24.
  • the control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S101), and if the backflow of the flowing gas is not detected, step S101 is repeatedly executed.
  • step S102 a first output increase process is executed (step S102).
  • the cathode air supply output by the cathode blower 20 is increased from that during normal operation within a range in which power generation of the system can be continued.
  • step S103 After the first output increase process, it is determined again whether or not a backflow of the flowing gas is detected (step S103).
  • step S103 when the backflow of the flowing gas is not detected, an output reduction process is executed (step S104).
  • the output reduction process the cathode air supply output by the cathode blower 20 is reduced from the output during the first output increase process to the output during normal operation. Thereafter, the process returns to step S101 again, and the determination of the backflow detection of the circulating gas is repeatedly executed.
  • step S103 if the backflow of the circulating gas is still detected, it is determined that the external exhaust gas is inflow or inflow. Then, the power generation by the fuel cell system 1 is stopped (step S105), and the fuel cell system 1 is stopped after a predetermined first stop step (step S106).
  • the first stop step here includes at least a second output increase process for increasing the supply output of the cathode air by the cathode blower 20 to the extent that the system can continue power generation.
  • the fuel cell system 1 is stopped through a predetermined procedure such as supply stop of the hydrogen-containing fuel, purge processing of the gas filling the power generation unit, cooling process of the cell stack 5 and the like.
  • FIG. 3 is a view showing another example of the exhaust path of the fuel cell system 1.
  • this exhaust path is mainly different from the above example in that a damper 22 is provided.
  • the damper 22 is for controlling the flow of circulation gas (FC exhaust gas, external exhaust gas, or mixed gas thereof) in the exhaust path.
  • circulation gas FC exhaust gas, external exhaust gas, or mixed gas thereof
  • the damper 22 is provided at a position in front of the exhaust port 26 on the downstream side of the heat exchanging unit 15 and the flow direction detecting unit 23 described later in the circulation gas flow path 27, and switches between opening and closing of the exhaust port 26.
  • a valve can be used instead of the damper.
  • FIG. 7 is a flowchart showing a second mode of operation of the control unit 24.
  • a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24.
  • the control unit 24 that has received the signal determines whether or not the backflow of the flowing gas has been detected (step S201), and if the backflow of the flowing gas is not detected, step S201 is repeatedly executed.
  • step S202 a first output increase process is executed (step S202).
  • the cathode air supply output by the cathode blower 20 is increased from that during normal operation within a range in which power generation of the system can be continued.
  • step S203 After the first output increase process, it is determined again whether or not the backflow of the flowing gas is detected (step S203).
  • step S203 when the backflow of the flowing gas is not detected, output reduction processing is executed (step S204).
  • the output reduction process the cathode air supply output by the cathode blower 20 is reduced from the output during the first output increase process to the output during normal operation. Thereafter, the process returns to step S201 again, and the determination of the backflow detection of the circulating gas is repeatedly performed.
  • step S203 if the backflow of the circulating gas is still detected, it is determined that the external exhaust gas is inflow or inflow. Then, the damper 22 is closed and the fuel cell system 1 is urgently stopped (step S205).
  • the emergency stop means that the fuel cell system 1 is stopped by omitting at least a part of the predetermined first stop step.
  • the backflow of the circulating gas when the backflow of the circulating gas is detected by the flow direction detection unit 23, the backflow is performed by executing the first output increase processing of the cathode air.
  • the flowing gas is pushed back, and the inflow of external exhaust gas is suppressed. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can.
  • the damper 22 when the backflow of the flow gas is still detected by the flow direction detection unit 23 after the output increase process by the control unit 24, the damper 22 is closed and the system is urgently stopped. It has become.
  • FIG. 8 is a flowchart showing a third form of operation of the control unit 24.
  • a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24.
  • the control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S301), and if the backflow of the flowing gas is not detected, step S301 is repeatedly executed.
  • a first output increase process is executed (step S302).
  • the cathode air supply output by the cathode blower 20 is increased from that during normal operation within a range in which power generation of the system can be continued.
  • step S303 After the first output increase process, it is determined again whether the backflow of the flowing gas is detected (step S303).
  • step S303 when the backflow of the flowing gas is not detected, output reduction processing is executed (step S304).
  • the output reduction process the cathode air supply output by the cathode blower 20 is returned from the output during the first output increase process to the output during normal operation. Thereafter, the process returns to step S301 again, and the determination of the backflow detection of the circulating gas is repeatedly performed.
  • step S303 if the backflow of the circulating gas is still detected, it is determined that the external exhaust gas is inflow or inflow. Then, the power generation by the fuel cell system 1 is stopped (step S305), and the first stop process of the system including the second output increase process is executed while the damper 22 is kept open (step S306). In the second output increase processing, the supply output of the cathode air by the cathode blower 20 is increased from the normal operation to the extent that the system can continue the power generation.
  • step S307 when the backflow of the flowing gas is not detected, the first stop process of the fuel cell system 1 is completed as it is. On the other hand, in step S307, when the backflow of the circulating gas is detected, the first stop process is interrupted, the damper 22 is closed, and the fuel cell system 1 is urgently stopped (step S308).
  • the backflow of the circulating gas when the backflow of the circulating gas is detected by the flow direction detection unit 23, the backflow is performed by executing the first output increase processing of the cathode air.
  • the flowing gas is pushed back, and the inflow of external exhaust gas is suppressed. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can.
  • the power generation of the fuel cell system 1 is stopped, and the first stop step At the same time, the second output increase processing is performed.
  • the power generation can be stabilized by stopping the power generation of the fuel cell system 1 when the second output increase process is executed. Therefore, the supply amount of cathode air can be further increased. Thereby, the circulating gas flowing backward can be pushed back more strongly.
  • the emergency stop frequency of the fuel cell system 1 can be reduced. This contributes to extending the life of the fuel cell system 1.
  • SYMBOLS 1 Fuel cell system, 5 ... Cell stack, 15 ... Heat exchange part, 20 ... Cathode blower, 21 ... Power generation part, 22 ... Damper, 23 ... Flow direction detection part, 24 ... Control part, 26 ... Exhaust port, 28 ... Fan, 29 ... flap.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The purpose is to prevent the backward flow of exhaust gas with a cathode air power increase process, in the case that a current direction detection unit (23) detects that exhaust gas flowing toward an exhaust opening (26) is flowing backward in an exhaust system for discharging combustion gas of off gas emitted from a power generation unit (21) in this fuel cell system (1). Hence, with this fuel cell system (1) it is possible to prevent life-shortening, caused by the backward flow of exhaust gas to the power generation unit (21) side, for a fuel cell stack (5), various catalysts, absorbing agents, ion-exchange resins, various auxiliaries, or the like.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 この種の分野の技術として、例えば特許文献1に記載の燃料電池システムがある。この従来の燃料電池システムは、熱交換器で熱交換された後の排ガスをケース外部に排気する排気口を備えている。排気口の手前には、不純物を収集するためのセパレート部材が設けられており、排気口から熱交換器側に不純物が入り込むことを防止している。 As a technology in this type of field, for example, there is a fuel cell system described in Patent Document 1. This conventional fuel cell system includes an exhaust port for exhausting the exhaust gas after heat exchange with the heat exchanger to the outside of the case. A separate member for collecting impurities is provided in front of the exhaust port to prevent impurities from entering the heat exchanger side from the exhaust port.
特開2009-181701号公報JP 2009-181701 A
 燃料電池システムの設置態様の一例として、燃料電池システムを屋内に設置し、排気口を煙突に接続する場合がある。その煙突を他の機器と共有している場合、煙突内に充満する外部排ガスには、燃料電池システムにとっては好ましくない成分や、集合煙突内の粉塵が含有されている可能性がある。このとき、他の機器からの排気圧力上昇や煙突自体に閉塞が生じた場合に、煙突内の外部排ガスが燃料電池システム側に流入してくる恐れがある。 As an example of the installation mode of the fuel cell system, there is a case where the fuel cell system is installed indoors and the exhaust port is connected to the chimney. When the chimney is shared with other devices, the external exhaust gas that fills the chimney may contain components that are undesirable for the fuel cell system and dust in the chimney stack. At this time, if exhaust pressure rises from other devices or the chimney itself becomes blocked, the external exhaust gas in the chimney may flow into the fuel cell system.
 上述したような従来の燃料電池システムでは、熱交換器に対して単独の排気口が設けられている。しかしながら、他の機器からの排ガス(外部排ガス)が燃料電池システム側に流入することを十分に抑制することは困難である。燃料電池システムにとって好ましくない成分や、粉塵を含む外部排ガスが燃料電池システム内に流入してくると、燃料電池システムの構成要素であるセルスタックや各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等が短寿命化するおそれがある。したがって、燃料電池システム側への外部排ガスの流入を抑制する技術が必要となっている。 In the conventional fuel cell system as described above, a single exhaust port is provided for the heat exchanger. However, it is difficult to sufficiently suppress exhaust gas (external exhaust gas) from other devices from flowing into the fuel cell system. When a component undesirable for the fuel cell system or external exhaust gas containing dust flows into the fuel cell system, the cell stack, various catalysts or adsorbents, ion exchange resins, various supplements, which are components of the fuel cell system. There is a risk that the machinery and the like will have a short life. Therefore, a technique for suppressing the inflow of external exhaust gas to the fuel cell system side is required.
 本発明は、上記課題の解決のためになされたものであり、燃料電池システム側への外部排ガスの流入を抑制できる燃料電池システムを提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell system capable of suppressing the inflow of external exhaust gas to the fuel cell system side.
 上記課題の解決のため、本発明の一側面に係る燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、セルスタックのカソードにカソード空気を供給するカソードブロワと、少なくとも発電部から排出される排出ガスをシステムの外部に排出させる排気口と、発電部と排気口との間の排気経路に配置され、当該排気経路中の流通ガスの流動方向を検出する流動方向検出部と、流動方向検出部によって流通ガスの逆流が検出された場合に、カソードブロワによるカソード空気の供給出力を通常運転時よりも増加させる第1の出力増加処理を実行する制御部と、を備える。 In order to solve the above problems, a fuel cell system according to one aspect of the present invention includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, a cathode blower that supplies cathode air to the cathode of the cell stack, A flow direction that is disposed in an exhaust port that discharges at least exhaust gas discharged from the power generation unit to the outside of the system, and an exhaust path between the power generation unit and the exhaust port, and detects the flow direction of the circulating gas in the exhaust path A detection unit, and a control unit that executes a first output increase process for increasing the supply output of the cathode air by the cathode blower compared to that during normal operation when the backflow of the flowing gas is detected by the flow direction detection unit. Prepare.
 この燃料電池システムでは、発電部から排出される排出ガスを排気する排気経路において、流動方向検出部によって排気経路に流れる流通ガスの逆流が検出された場合に、外部排ガスが流入している、または、流入する恐れがあると判断し、カソード空気の第1の出力増加処理による外部排ガスの流入抑制が実行される。したがって、この燃料電池システムでは、燃料電池システム側に外部排ガスが流入することによるセルスタックや各種触媒もしくは吸着剤、各種補機類等の短寿命化を抑制できる。 In this fuel cell system, in the exhaust path for exhausting the exhaust gas discharged from the power generation unit, when the backflow of the flowing gas flowing in the exhaust path is detected by the flow direction detection unit, external exhaust gas flows in, or Therefore, it is determined that there is a risk of inflow, and suppression of inflow of external exhaust gas is executed by the first output increase process of the cathode air. Therefore, in this fuel cell system, it is possible to suppress the shortening of the service life of the cell stack, various catalysts or adsorbents, various auxiliary machines and the like due to the flow of external exhaust gas to the fuel cell system side.
 この燃料電池システムによれば、燃料電池システム側への外部排ガスの流入を抑制できる。 This fuel cell system can suppress the flow of external exhaust gas to the fuel cell system side.
本発明に係る燃料電池システムの一実施形態を示す図である。1 is a diagram showing an embodiment of a fuel cell system according to the present invention. 図1に示した燃料電池システムの排気経路の一例を示す図である。It is a figure which shows an example of the exhaust route of the fuel cell system shown in FIG. 図1に示した燃料電池システムの排気経路の他の例を示す図である。It is a figure which shows the other example of the exhaust route of the fuel cell system shown in FIG. 流動方向検出部の一例を示す図である。It is a figure which shows an example of a flow direction detection part. 流動方向検出部の他の例を示す図である。It is a figure which shows the other example of a flow direction detection part. 制御部の第1形態に係る動作を示すフローチャートである。It is a flowchart which shows the operation | movement which concerns on the 1st form of a control part. 制御部の第2形態に係る動作を示すフローチャートである。It is a flowchart which shows the operation | movement which concerns on the 2nd form of a control part. 制御部の第3形態に係る動作を示すフローチャートである。It is a flowchart which shows the operation | movement which concerns on the 3rd form of a control part.
 以下、図面を参照しながら、本発明に係る燃料電池システムの好適な実施形態について詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of a fuel cell system according to the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、熱交換部15とを備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。 As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, the control part 11, and the heat exchange part 15 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガスを発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
 なお、例えば純水素ガスや水素富化ガスなど、改質処理を必要としない水素含有燃料を用いる場合は、脱硫器2、水供給部8、水気化部3、および水素発生部4のうち一つまたは複数を省略することができる。 For example, when using a hydrogen-containing fuel that does not require a reforming process, such as pure hydrogen gas or hydrogen-enriched gas, one of the desulfurizer 2, the water supply unit 8, the water vaporization unit 3, and the hydrogen generation unit 4. One or more can be omitted.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 熱交換部15は、セルスタック5から排出されるオフガスの燃焼ガス(すなわち、オフガス燃焼部6からの排ガス)、及び水(熱媒体)を流通させることで、燃焼ガスから水に熱を移動させて水を加熱する。この水は、例えば燃料電池システム1が設置された施設に湯を供給するための貯湯槽に貯留され、その貯湯槽から熱交換部15に循環供給されるものである。 The heat exchange unit 15 moves the heat from the combustion gas to the water by circulating the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water (heat medium). Heat the water. This water is stored, for example, in a hot water storage tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water storage tank to the heat exchanging unit 15.
 続いて、上述した燃料電池システム1の排気経路について説明する。図2は、燃料電池システム1の排気経路の一例を示す図である。 Subsequently, the exhaust path of the fuel cell system 1 will be described. FIG. 2 is a diagram illustrating an example of an exhaust path of the fuel cell system 1.
 図2に示すように、燃料電池システム1の排気経路は、発電部21と、上述の熱交換部15と、ダンパ22と、流動方向検出部23と、制御部24とを含んで構成され、筐体25内に収容されている。筐体25には、少なくとも発電部21側から排出される排出ガス(FC排ガス)が流れる流通ガス流路27及び排気口26が設けられている。詳細は図示しないが、排気経路は外部の空気に対して気密性を有している。なお、ここでの気密性とは、筐体25からの排出が予定されている気体以外の外気に対して気密であることを意味する。具体的には、筐体25内からの気体の排出は専用の気体排出路からのみ行われる構造を意味する。 As shown in FIG. 2, the exhaust path of the fuel cell system 1 includes a power generation unit 21, the heat exchange unit 15 described above, a damper 22, a flow direction detection unit 23, and a control unit 24. Housed in the housing 25. The casing 25 is provided with a circulation gas passage 27 and an exhaust port 26 through which exhaust gas (FC exhaust gas) discharged from at least the power generation unit 21 side flows. Although not shown in detail, the exhaust path is airtight with respect to outside air. Here, the airtightness means airtightness with respect to outside air other than the gas scheduled to be discharged from the housing 25. Specifically, it means a structure in which gas is discharged from the housing 25 only from a dedicated gas discharge path.
 熱交換部15には、熱回収水系として、例えば貯湯槽から循環供給された水を熱交換部15に流入させる水流路、及びその水を熱交換部15から流出させる水流路がそれぞれポンプ等を介して接続されている。熱交換部15からは、熱交換後の排ガスが筐体25の排気口26に向かって排出される。 As the heat recovery water system, for example, a water flow path through which water circulated and supplied from the hot water storage tank flows into the heat exchange section 15 and a water flow path through which the water flows out from the heat exchange section 15 are respectively connected to the heat exchange section 15 as pumps. Connected through. From the heat exchange unit 15, the exhaust gas after heat exchange is discharged toward the exhaust port 26 of the housing 25.
 流動方向検出部23は、流通ガス流路27に流れる流通ガスの流動方向を検出する部分である。流動方向検出部23は、例えば図4に示すように、排気口26に向かう流通ガス流路27内に設けられたファン28によって構成されている。ファン28は、流通ガス流路27内に流れる流通ガスの流動方向によって回転方向が変化するため、ファン28の回転方向から流通ガスの流動方向を判断することができる。そして、ファン28は、回転方向を示す信号を制御部24に出力する。 The flow direction detection unit 23 is a part that detects the flow direction of the flow gas flowing in the flow gas channel 27. For example, as shown in FIG. 4, the flow direction detection unit 23 is configured by a fan 28 provided in a circulation gas flow path 27 toward the exhaust port 26. Since the rotation direction of the fan 28 changes depending on the flow direction of the flow gas flowing in the flow gas flow path 27, the flow direction of the flow gas can be determined from the rotation direction of the fan 28. Then, the fan 28 outputs a signal indicating the rotation direction to the control unit 24.
 なお、流動方向検出部23は、例えば図5に示すように、排気口26に向かう流通ガス流路27内に設けられたフラップ29であってもよい。フラップ29は、流通ガスが排気口26に向かって流れている場合には排気口26側に傾き、流通ガスが逆流している場合には排気口26と反対側に傾く。フラップ29の傾きは、例えばフラップ29の根元に設けたスイッチのON/OFFによって判断してもよく、レーザ検出等を用いてもよい。また、カメラ等による画像検出であってもよく、フラップ29の根元を固定した状態で歪みゲージによる検出を行ってもよい。 Note that the flow direction detection unit 23 may be a flap 29 provided in a circulation gas flow path 27 toward the exhaust port 26, for example, as shown in FIG. The flap 29 is inclined toward the exhaust port 26 when the circulating gas is flowing toward the exhaust port 26, and is inclined toward the opposite side of the exhaust port 26 when the circulating gas is flowing backward. The inclination of the flap 29 may be determined by, for example, ON / OFF of a switch provided at the base of the flap 29, or laser detection or the like may be used. Alternatively, image detection by a camera or the like may be performed, and detection by a strain gauge may be performed in a state where the base of the flap 29 is fixed.
 制御部24は、排出経路における流通ガスの流動方向の診断処理を行う部分である。図2において、制御部24は、筐体25内に配置されているが、燃料電池システム1の制御部11に制御部24の機能を付与した形態であってもよい。この制御部24による診断処理は、例えば燃料電池システム1の運転中、所定の間隔で繰り返し実施される。 The control unit 24 is a part that performs diagnosis processing of the flow direction of the circulating gas in the discharge path. In FIG. 2, the control unit 24 is disposed in the housing 25, but may be configured such that the function of the control unit 24 is added to the control unit 11 of the fuel cell system 1. The diagnosis process by the control unit 24 is repeatedly performed at predetermined intervals, for example, during operation of the fuel cell system 1.
 図6は、制御部24の動作の第1形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断され(ステップS101)、流通ガスの逆流が検出されない場合には、ステップS101が繰り返し実行される。一方、ステップS101において、流通ガスの逆流が検出された場合には、第1の出力増加処理が実行される(ステップS102)。第1の出力増加処理では、カソードブロワ20によるカソード空気の供給出力が、システムの発電継続が可能な範囲で通常運転時よりも増加される。 FIG. 6 is a flowchart showing a first mode of operation of the control unit 24. In the example of the figure, when the diagnostic process is started, a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24. The control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S101), and if the backflow of the flowing gas is not detected, step S101 is repeatedly executed. On the other hand, if a backflow of the flowing gas is detected in step S101, a first output increase process is executed (step S102). In the first output increase process, the cathode air supply output by the cathode blower 20 is increased from that during normal operation within a range in which power generation of the system can be continued.
 第1の出力増加処理の後、流通ガスの逆流が検出されたか否かが再度判断される(ステップS103)。ステップS103において、流通ガスの逆流が検出されない場合には、出力減少処理が実行される(ステップS104)。出力減少処理では、カソードブロワ20によるカソード空気の供給出力を第1の出力増加処理時の出力から通常運転時の出力まで減少させる。その後、再びステップS101に戻り、流通ガスの逆流検出の判断が繰り返し実行される。 After the first output increase process, it is determined again whether or not a backflow of the flowing gas is detected (step S103). In step S103, when the backflow of the flowing gas is not detected, an output reduction process is executed (step S104). In the output reduction process, the cathode air supply output by the cathode blower 20 is reduced from the output during the first output increase process to the output during normal operation. Thereafter, the process returns to step S101 again, and the determination of the backflow detection of the circulating gas is repeatedly executed.
 ステップS103において、流通ガスの逆流が依然として検出される場合、外部排ガスが流入している、または、流入する恐れがあると判断される。そして、燃料電池システム1による発電が停止され(ステップS105)、燃料電池システム1は、予め定められた第1停止工程を経て停止される(ステップS106)。なお、ここでいう第1停止工程とは、カソードブロワ20によるカソード空気の供給出力を、システムの発電継続が可能な範囲を超える程度に増加させる第2の出力増加処理を少なくとも含む。その他、例えば水素含有燃料の供給停止、発電部内に充満するガスのパージ処理、セルスタック5の冷却工程等、予め定められた手順を経て燃料電池システム1を停止させることをいう。 In step S103, if the backflow of the circulating gas is still detected, it is determined that the external exhaust gas is inflow or inflow. Then, the power generation by the fuel cell system 1 is stopped (step S105), and the fuel cell system 1 is stopped after a predetermined first stop step (step S106). Note that the first stop step here includes at least a second output increase process for increasing the supply output of the cathode air by the cathode blower 20 to the extent that the system can continue power generation. In addition, for example, the fuel cell system 1 is stopped through a predetermined procedure such as supply stop of the hydrogen-containing fuel, purge processing of the gas filling the power generation unit, cooling process of the cell stack 5 and the like.
 この実施形態では、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、カソード空気の第1の出力増加処理を実行することにより、逆流している流通ガスが押し戻され、外部排ガスの流入抑制が図られる。また、制御部24による出力増加処理の実行後、流動方向検出部23によって流通ガスの逆流が依然として検出された場合に、システムが予め定められた第1停止工程を経て停止するようになっている。したがって、この燃料電池システム1では、燃料電池システム1側に外部排ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。 In this embodiment, in the exhaust path for exhausting the FC exhaust gas, when the backflow of the circulating gas is detected by the flow direction detection unit 23, the backflow is performed by executing the first output increase processing of the cathode air. The circulating gas is pushed back, and the inflow of external exhaust gas is suppressed. In addition, after the execution of the output increase process by the control unit 24, when the backflow of the flow gas is still detected by the flow direction detection unit 23, the system is stopped through a predetermined first stop step. . Therefore, in this fuel cell system 1, various catalysts or adsorbents mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of external exhaust gas to the fuel cell system 1 side, ion exchange resins, and various auxiliary machines Etc. can be shortened.
 図3は、燃料電池システム1の排気経路の他の例を示す図である。図3に示すように、この排気経路は、ダンパ22が設けられている点で上記例と主に相違している。ダンパ22は排気経路内の流通ガス(FC排ガス、外部排ガス、またはそれらの混合ガス)の流れを制御するためのものである。例えば回転軸の周囲に羽根が取り付けられてなる羽根車や、弁体が流路に対して直角に横切るギロチンダンパなどである。ダンパ22は、流通ガス流路27において、熱交換部15及び後述の流動方向検出部23の下流側で排気口26の手前となる位置に設けられ、排気口26の開閉を切り替える。なお、ダンパの代わりにバルブを用いることもできる。 FIG. 3 is a view showing another example of the exhaust path of the fuel cell system 1. As shown in FIG. 3, this exhaust path is mainly different from the above example in that a damper 22 is provided. The damper 22 is for controlling the flow of circulation gas (FC exhaust gas, external exhaust gas, or mixed gas thereof) in the exhaust path. For example, an impeller in which blades are attached around a rotating shaft, or a guillotine damper in which a valve body crosses at right angles to a flow path. The damper 22 is provided at a position in front of the exhaust port 26 on the downstream side of the heat exchanging unit 15 and the flow direction detecting unit 23 described later in the circulation gas flow path 27, and switches between opening and closing of the exhaust port 26. A valve can be used instead of the damper.
 図7は、制御部24の動作の第2形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断され(ステップS201)、流通ガスの逆流が検出されない場合には、ステップS201が繰り返し実行される。一方、ステップS201において、流通ガスの逆流が検出された場合には、第1の出力増加処理が実行される(ステップS202)。第1の出力増加処理では、カソードブロワ20によるカソード空気の供給出力が、システムの発電継続が可能な範囲で通常運転時よりも増加される。 FIG. 7 is a flowchart showing a second mode of operation of the control unit 24. In the example of the figure, when the diagnostic process is started, a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24. The control unit 24 that has received the signal determines whether or not the backflow of the flowing gas has been detected (step S201), and if the backflow of the flowing gas is not detected, step S201 is repeatedly executed. On the other hand, if a backflow of the flowing gas is detected in step S201, a first output increase process is executed (step S202). In the first output increase process, the cathode air supply output by the cathode blower 20 is increased from that during normal operation within a range in which power generation of the system can be continued.
 第1の出力増加処理の後、流通ガスの逆流が検出されたか否かが再度判断される(ステップS203)。ステップS203において、流通ガスの逆流が検出されない場合には、出力減少処理が実行される(ステップS204)。出力減少処理では、カソードブロワ20によるカソード空気の供給出力を第1の出力増加処理時の出力から通常運転時の出力まで減少させる。その後、再びステップS201に戻り、流通ガスの逆流検出の判断が繰り返し実行される。 After the first output increase process, it is determined again whether or not the backflow of the flowing gas is detected (step S203). In step S203, when the backflow of the flowing gas is not detected, output reduction processing is executed (step S204). In the output reduction process, the cathode air supply output by the cathode blower 20 is reduced from the output during the first output increase process to the output during normal operation. Thereafter, the process returns to step S201 again, and the determination of the backflow detection of the circulating gas is repeatedly performed.
 ステップS203において、流通ガスの逆流が依然として検出される場合、外部排ガスが流入している、または、流入する恐れがあると判断される。そして、ダンパ22が閉鎖され、燃料電池システム1が緊急停止される(ステップS205)。なお、ここでいう緊急停止とは、予め定められた第1停止工程の少なくとも一部を省略して燃料電池システム1を停止させることをいう。 In step S203, if the backflow of the circulating gas is still detected, it is determined that the external exhaust gas is inflow or inflow. Then, the damper 22 is closed and the fuel cell system 1 is urgently stopped (step S205). Here, the emergency stop means that the fuel cell system 1 is stopped by omitting at least a part of the predetermined first stop step.
 この実施形態においても、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、カソード空気の第1の出力増加処理を実行することにより、逆流している流通ガスが押し戻され、外部排ガスの流入抑制が図られる。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。また、この実施形態では、また、制御部24による出力増加処理の実行後、流動方向検出部23によって流通ガスの逆流が依然として検出された場合に、ダンパ22が閉鎖され、システムが緊急停止するようになっている。 Also in this embodiment, in the exhaust path for exhausting the FC exhaust gas, when the backflow of the circulating gas is detected by the flow direction detection unit 23, the backflow is performed by executing the first output increase processing of the cathode air. The flowing gas is pushed back, and the inflow of external exhaust gas is suppressed. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can. Moreover, in this embodiment, when the backflow of the flow gas is still detected by the flow direction detection unit 23 after the output increase process by the control unit 24, the damper 22 is closed and the system is urgently stopped. It has become.
 また、図8は、制御部24の動作の第3形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断され(ステップS301)、流通ガスの逆流が検出されない場合には、ステップS301が繰り返し実行される。一方、ステップS301において、流通ガスの逆流が検出された場合には、第1の出力増加処理が実行される(ステップS302)。第1の出力増加処理では、カソードブロワ20によるカソード空気の供給出力が、システムの発電継続が可能な範囲で通常運転時よりも増加される。 FIG. 8 is a flowchart showing a third form of operation of the control unit 24. In the example of the figure, when the diagnostic process is started, a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24. The control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S301), and if the backflow of the flowing gas is not detected, step S301 is repeatedly executed. On the other hand, if a backflow of the circulating gas is detected in step S301, a first output increase process is executed (step S302). In the first output increase process, the cathode air supply output by the cathode blower 20 is increased from that during normal operation within a range in which power generation of the system can be continued.
 第1の出力増加処理の後、流通ガスの逆流が検出されたか否かが再度判断される(ステップS303)。ステップS303において、流通ガスの逆流が検出されない場合には、出力減少処理が実行される(ステップS304)。出力減少処理では、カソードブロワ20によるカソード空気の供給出力を第1の出力増加処理時の出力から通常運転時の出力に戻される。その後、再びステップS301に戻り、流通ガスの逆流検出の判断が繰り返し実行される。 After the first output increase process, it is determined again whether the backflow of the flowing gas is detected (step S303). In step S303, when the backflow of the flowing gas is not detected, output reduction processing is executed (step S304). In the output reduction process, the cathode air supply output by the cathode blower 20 is returned from the output during the first output increase process to the output during normal operation. Thereafter, the process returns to step S301 again, and the determination of the backflow detection of the circulating gas is repeatedly performed.
 ステップS303において、流通ガスの逆流が依然として検出される場合、外部排ガスが流入している、または、流入する恐れがあると判断される。そして、燃料電池システム1による発電が停止され(ステップS305)、ダンパ22の開放が維持されたまま、第2の出力増加処理を含むシステムの第1停止工程が実行される(ステップS306)。第2の出力増加処理では、カソードブロワ20によるカソード空気の供給出力が、システムの発電継続が可能な範囲を超える程度で通常運転時よりも増加される。 In step S303, if the backflow of the circulating gas is still detected, it is determined that the external exhaust gas is inflow or inflow. Then, the power generation by the fuel cell system 1 is stopped (step S305), and the first stop process of the system including the second output increase process is executed while the damper 22 is kept open (step S306). In the second output increase processing, the supply output of the cathode air by the cathode blower 20 is increased from the normal operation to the extent that the system can continue the power generation.
 また、システムの第1停止工程の実行と共に、流通ガスの逆流が検出されたか否かが更に判断される(ステップS307)。ステップS307において、流通ガスの逆流が検出されない場合には、そのまま燃料電池システム1の第1停止工程が完了される。一方、ステップS307において、流通ガスの逆流が検出された場合には第1停止工程が中断され、ダンパ22が閉鎖されて燃料電池システム1が緊急停止される(ステップS308)。 Further, along with the execution of the first stop process of the system, it is further determined whether or not the backflow of the circulating gas is detected (step S307). In step S307, when the backflow of the flowing gas is not detected, the first stop process of the fuel cell system 1 is completed as it is. On the other hand, in step S307, when the backflow of the circulating gas is detected, the first stop process is interrupted, the damper 22 is closed, and the fuel cell system 1 is urgently stopped (step S308).
 この実施形態においても、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、カソード空気の第1の出力増加処理を実行することにより、逆流している流通ガスが押し戻され、外部排ガスの流入抑制が図られる。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。 Also in this embodiment, in the exhaust path for exhausting the FC exhaust gas, when the backflow of the circulating gas is detected by the flow direction detection unit 23, the backflow is performed by executing the first output increase processing of the cathode air. The flowing gas is pushed back, and the inflow of external exhaust gas is suppressed. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can.
 また、この実施形態では、燃料電池システム1の発電を継続しながら実行する第1の出力増加処理によっても流通ガスの逆流が解消しない場合、燃料電池システム1の発電を停止し、第1停止工程と共に第2の出力増加処理を行うようになっている。燃料電池システム1の発電を安定的に維持しながら増量できるカソード空気の供給量には限りがあるが、第2の出力増加処理実行時では、燃料電池システム1の発電を停止させることで発電安定性を考慮する必要がなくなるため、カソード空気の供給量を更に増加できる。これにより、逆流している流通ガスを一層強く押し戻すことができる。また、緊急停止工程を実行する前に、第2の出力増加処理を含む第1停止工程を試みるため、燃料電池システム1の緊急停止頻度を低減できる。このことは、燃料電池システム1の長寿命化に寄与する。 Further, in this embodiment, when the backflow of the circulating gas is not eliminated even by the first output increase process that is executed while the power generation of the fuel cell system 1 is continued, the power generation of the fuel cell system 1 is stopped, and the first stop step At the same time, the second output increase processing is performed. Although there is a limit to the amount of cathode air that can be increased while stably maintaining the power generation of the fuel cell system 1, the power generation can be stabilized by stopping the power generation of the fuel cell system 1 when the second output increase process is executed. Therefore, the supply amount of cathode air can be further increased. Thereby, the circulating gas flowing backward can be pushed back more strongly. Moreover, since the 1st stop process including a 2nd output increase process is tried before performing an emergency stop process, the emergency stop frequency of the fuel cell system 1 can be reduced. This contributes to extending the life of the fuel cell system 1.
 1…燃料電池システム、5…セルスタック、15…熱交換部、20…カソードブロワ、21…発電部、22…ダンパ、23…流動方向検出部、24…制御部、26…排気口、28…ファン、29…フラップ。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 5 ... Cell stack, 15 ... Heat exchange part, 20 ... Cathode blower, 21 ... Power generation part, 22 ... Damper, 23 ... Flow direction detection part, 24 ... Control part, 26 ... Exhaust port, 28 ... Fan, 29 ... flap.

Claims (9)

  1.  水素含有ガスを用いて発電を行うセルスタックを含む発電部と、
     前記セルスタックのカソードにカソード空気を供給するカソードブロワと、
     少なくとも前記発電部から排出される排出ガスをシステムの外部に排出させる排気口と、
     前記発電部と前記排気口との間の排気経路に配置され、当該排気経路中の流通ガスの流動方向を検出する流動方向検出部と、
     前記流動方向検出部によって前記流通ガスの逆流が検出された場合に、前記カソードブロワによる前記カソード空気の供給出力を通常運転時よりも増加させる第1の出力増加処理を実行する制御部と、を備える燃料電池システム。
    A power generation unit including a cell stack that generates power using a hydrogen-containing gas;
    A cathode blower for supplying cathode air to the cathode of the cell stack;
    An exhaust port for discharging exhaust gas discharged from at least the power generation unit to the outside of the system;
    A flow direction detection unit that is disposed in an exhaust path between the power generation unit and the exhaust port and detects a flow direction of the flow gas in the exhaust path;
    A control unit that executes a first output increase process for increasing the supply output of the cathode air by the cathode blower compared to during normal operation when the flow direction detection unit detects a backflow of the flow gas. A fuel cell system provided.
  2.  前記制御部は、システムの発電を継続しながら、システムの発電継続が可能な範囲の前記カソード空気の供給出力で前記第1の出力増加処理を実行する請求項1記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein the control unit executes the first output increase processing with the supply output of the cathode air in a range in which the power generation of the system can be continued while continuing the power generation of the system.
  3.  前記制御部は、前記第1の出力増加処理の実行後、前記流動方向検出部によって前記流通ガスの逆流が検出されなくなった場合に、前記カソード空気の供給出力を通常運転時の出力に設定することを特徴とする請求項2に記載の燃料電池システム。 The control unit sets the cathode air supply output to an output during normal operation when the flow direction detection unit no longer detects the backflow of the flow gas after the first output increase process. The fuel cell system according to claim 2.
  4.  前記制御部は、前記第1の出力増加処理の実行後、依然として前記流通ガスの逆流が検出される場合に、システムの発電を停止し、前記システムの発電継続が可能な範囲を超える前記カソード空気を供給する第2の出力増加処理を含む第1停止工程を実行する請求項2又は3に記載の燃料電池システム。 The control unit stops the power generation of the system when the backflow of the circulation gas is still detected after the first output increasing process, and the cathode air exceeds a range in which the power generation of the system can be continued. The fuel cell system according to claim 2 or 3, wherein a first stop step including a second output increase process for supplying the fuel is executed.
  5.  前記排気経路において、前記排気口の開閉を切り替えるダンパを更に備え、
     前記制御部は、前記第1の出力増加処理の実行後、前記流動方向検出部によって前記流通ガスの逆流が依然として検出された場合に、前記ダンパを閉鎖してシステムを緊急停止させる請求項2又は3記載の燃料電池システム。
    A damper for switching opening and closing of the exhaust port in the exhaust path;
    The control unit closes the damper and urgently stops the system when the backflow of the flow gas is still detected by the flow direction detection unit after the execution of the first output increase process. 3. The fuel cell system according to 3.
  6.  前記排気経路において、前記排気口の開閉を切り替えるダンパを更に備え、
     前記制御部は、前記第1の出力増加処理の実行後、前記流動方向検出部によって前記流通ガスの逆流が依然として検出された場合に、システムの発電を停止した後に前記第1停止工程を実行し、当該第1停止工程を実行している間に前記流動方向検出部によって前記流通ガスの逆流が依然として検出された場合に、前記ダンパを閉鎖してシステムを緊急停止させる請求項4に記載の燃料電池システム。
    A damper for switching opening and closing of the exhaust port in the exhaust path;
    The control unit executes the first stop process after stopping the power generation of the system when the backflow of the circulating gas is still detected by the flow direction detection unit after the execution of the first output increase process. 5. The fuel according to claim 4, wherein when the backflow of the flow gas is still detected by the flow direction detection unit while the first stop process is being performed, the damper is closed and the system is urgently stopped. Battery system.
  7.  前記セルスタックから排出されるオフガスの燃焼ガス、及び液体の熱媒体を流通させ、前記燃焼ガスから前記熱媒体に熱を移動させて前記熱媒体を加熱する熱交換部を更に備え、前記排気口が燃料電池システム外部に排出する前記排出ガスは、熱交換部から排出される前記燃焼ガスであり、前記流動方向検出部が検出するガスは、前記排気口に向かって流れる前記燃焼ガスである請求項1に記載の燃料電池システム。 The exhaust port further comprises a heat exchanging unit that circulates an off-gas combustion gas discharged from the cell stack and a liquid heat medium, transfers heat from the combustion gas to the heat medium, and heats the heat medium. The exhaust gas discharged to the outside of the fuel cell system is the combustion gas exhausted from a heat exchange unit, and the gas detected by the flow direction detection unit is the combustion gas flowing toward the exhaust port. Item 4. The fuel cell system according to Item 1.
  8.  前記排気口の開閉を切り替えるダンパを更に備え、前記制御部は、前記出力増加処理の実行後、前記流動方向検出部によって前記燃焼ガスの逆流が依然として検出された場合に、前記ダンパを閉じてシステムを、予め定める第1停止工程の少なくとも一部を省略する第2停止工程を経て停止させる請求項7に記載の燃料電池システム。 A damper that switches between opening and closing of the exhaust port, and the controller closes the damper when the backflow of the combustion gas is still detected by the flow direction detection unit after the output increase process is performed. The fuel cell system according to claim 7, wherein the fuel cell system is stopped through a second stop step in which at least a part of the predetermined first stop step is omitted.
  9.  前記制御部は、前記出力増加処理の実行の後、前記流動方向検出部によって前記燃焼ガスの逆流が検出されなくなった場合に、前記カソードブロワによる前記カソード空気の供給出力を通常運転時の出力まで減少させる出力減少処理を実行し、前記出力減少処理の実行後、前記流動方向検出部によって前記燃焼ガスの逆流が再び検出された場合に、前記出力増加処理を再び実行する請求項7又は8に記載の燃料電池システム。 The control unit, after the execution of the output increase process, when the backflow of the combustion gas is no longer detected by the flow direction detection unit, the cathode blower supply output to the output during normal operation The output increasing process is performed again when the output decreasing process to be decreased is executed, and the backflow of the combustion gas is detected again by the flow direction detection unit after the output decreasing process is executed. The fuel cell system described.
PCT/JP2011/080484 2010-12-28 2011-12-28 Fuel cell system WO2012091127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551056A JP5728497B2 (en) 2010-12-28 2011-12-28 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292346 2010-12-28
JP2010292346 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091127A1 true WO2012091127A1 (en) 2012-07-05

Family

ID=46383214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080484 WO2012091127A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Country Status (2)

Country Link
JP (1) JP5728497B2 (en)
WO (1) WO2012091127A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922714A (en) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd Off-gas recycle system of fuel cell power generating device
JP2008135267A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device
JP2008159460A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device
JP2009032513A (en) * 2007-07-26 2009-02-12 Toyota Motor Corp Fuel cell automobile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737633B2 (en) * 1998-05-20 2006-01-18 東芝キヤリア株式会社 Ventilation fan
JP2008243591A (en) * 2007-03-27 2008-10-09 Kyocera Corp Fuel cell device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922714A (en) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd Off-gas recycle system of fuel cell power generating device
JP2008135267A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device
JP2008159460A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device
JP2009032513A (en) * 2007-07-26 2009-02-12 Toyota Motor Corp Fuel cell automobile

Also Published As

Publication number Publication date
JP5728497B2 (en) 2015-06-03
JPWO2012091127A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5852011B2 (en) Fuel cell system
JP5536636B2 (en) Fuel cell system
WO2012091121A1 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
WO2012161217A1 (en) Fuel cell system
JP5536635B2 (en) Fuel cell system
WO2012091120A1 (en) Fuel cell system
JP5728497B2 (en) Fuel cell system
JP5291915B2 (en) Indirect internal reforming type solid oxide fuel cell and operation method thereof
JP5782458B2 (en) Fuel cell system
WO2012090875A1 (en) Fuel cell system and desulfurization device
JP5086144B2 (en) Hydrogen production apparatus and method for stopping fuel cell system
JP5738319B2 (en) Fuel cell system
WO2012091037A1 (en) Fuel cell system
JP2016119151A (en) Fuel cell system and operation method of fuel cell system
JP5400425B2 (en) Hydrogen production apparatus and fuel cell system
JP2016062797A (en) Desulfurization container
JP5390887B2 (en) Hydrogen production apparatus and fuel cell system
KR20230120801A (en) Fuel cell system and method for operating the same
KR101358132B1 (en) Fuel exhausting system for ship
JP2006032174A (en) Fuel cell power generation system and stopping method for it
WO2012090964A1 (en) Fuel cell system
JP2016021282A (en) Desulfurization system and desulfurization method
JP2008097962A (en) Fuel cell system and its operation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853693

Country of ref document: EP

Kind code of ref document: A1