WO2012161217A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2012161217A1
WO2012161217A1 PCT/JP2012/063180 JP2012063180W WO2012161217A1 WO 2012161217 A1 WO2012161217 A1 WO 2012161217A1 JP 2012063180 W JP2012063180 W JP 2012063180W WO 2012161217 A1 WO2012161217 A1 WO 2012161217A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
recovered
fuel cell
water tank
water level
Prior art date
Application number
PCT/JP2012/063180
Other languages
French (fr)
Japanese (ja)
Inventor
俊幸 海野
翔 横山
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2013516413A priority Critical patent/JPWO2012161217A1/en
Publication of WO2012161217A1 publication Critical patent/WO2012161217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Various aspects and embodiments of the present invention relate to a fuel cell system that generates power using a fuel cell.
  • Patent Document 1 a fuel cell system that includes a cell stack that generates a hydrogen-containing gas using a hydrogen-containing fuel and generates power using the hydrogen-containing gas is known (see, for example, Patent Document 1).
  • the system described in Patent Document 1 includes a reformer that generates a hydrogen-containing gas and a recovered water tank that stores water to be supplied to the reformer.
  • a recovered water tank In this recovered water tank, an upper limit water level and a lower limit water level are set, and water level sensors are respectively arranged. When the water level sensor detects that the water level in the recovered water tank exceeds the upper limit water level, the supply of water to the recovered water tank is stopped.
  • Such a recovered water tank is generally provided with a pipe for preventing overflow above the upper limit water level. That is, the recovered water tank is opened to the atmosphere through a pipe for preventing overflow.
  • the water generated by the power generation of the fuel cell is recovered and stored in a recovered water tank, and the water stored in the recovered water tank is reused for power generation, etc.
  • a water self-supporting system that does not require water supply.
  • a sealed container means the container sealed with respect to external air except the air supply / exhaust flow path.
  • a fuel cell system is a fuel cell system including a cell stack that generates power using a hydrogen-containing gas.
  • the fuel cell system includes a recovered water tank, a water level sensor, a drain pipe, a valve, and a control unit.
  • the recovered water tank recovers and stores water contained in the cell stack off-gas.
  • the water level sensor detects whether or not the water level of the recovered water tank is a predetermined water level.
  • the drainage pipe is a pipe for draining the water in the recovered water tank.
  • the valve is provided in the drain pipe.
  • the water contained in the cell stack off-gas is recovered, stored in the recovered water tank, and reused. Therefore, it is possible to generate power without supplying water. Further, when the water level of the recovered water tank is a predetermined water level, the valve of the drain pipe provided in the recovered water tank is opened only for a predetermined period by the control unit. Thus, since the water in the recovered water tank can be discharged before the overflow occurs, there is no need to provide an overflow pipe that is always open to the atmosphere. Accordingly, the recovered water tank can be drained while ensuring airtightness.
  • a heat exchanger that recovers water contained in the off gas may be provided, and the recovered water tank may store water recovered by the heat exchanger.
  • a combustion unit that combusts the off-gas and a heat exchanger that recovers water contained in combustion exhaust gas of the combustion unit are provided, and the recovered water tank stores water recovered by the heat exchanger May be.
  • a hydrogen generation unit that generates a hydrogen-containing gas using a hydrogen-containing fuel may be provided, and the recovered water tank may store water in order to supply water to the hydrogen generation unit.
  • control unit counts the number of opening control instructions for the valve, and determines that an abnormality has occurred when the number of opening control instructions is a predetermined value or more continuously for a predetermined period. Also good. By comprising in this way, abnormality of a water level sensor or a valve can be detected from the contents of control.
  • the water level sensor outputs a signal when the water level of the recovered water tank is not a predetermined water level, and stops the signal when the water level of the recovered water tank is a predetermined water level or Connection may be blocked.
  • a pressure sensor for measuring a pressure of a fluid in a flow path from the cell stack to the recovered water tank includes the valve when the pressure detected by the pressure sensor is equal to or greater than a predetermined value. May be closed.
  • water can be drained while ensuring the airtightness of the recovered water tank.
  • FIG. 1 is a block diagram showing the configuration of the fuel cell system according to the present embodiment.
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • phosphoric acid a fuel cell
  • PAFC Phosphoric Acid Fuel Cell
  • MCFC molten carbonate Fuel Cell
  • 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • the fuel can be used other than the hydrogen-containing fuel that needs to be reformed, and hydrogen gas obtained by dehydrogenation of pure hydrogen or organic hydride may be used.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the off-gas combustion unit 6 mixes the outside air forcibly taken in by a blower (not shown) and off-gas, burns it in a sealed container, and forcibly releases the combustion exhaust gas to the outside as an exhaust gas (Forced Flue: FF type).
  • an airtight container means the container sealed with respect to indoors other than the external air which supplies and exhausts.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the fuel cell system 1 has a water self-supporting mechanism that collects water generated by the power generation by the cell stack 5 and stores it in a recovered water tank, and reuses the water stored in the recovered water tank for power generation and the like.
  • Water self-supporting means that the fuel cell is maintained in a state where it can continue operation without receiving water from the outside.
  • the off gas generated by the reaction of the cell stack 5 or the combustion exhaust gas discharged from the off gas combustion unit 6 contains moisture. Water is collected from these gases by condensation, treated with deionization, etc. with a water treatment device, and then reused with a reformer (steam reforming), so that fuel cells can be supplied without receiving water from the outside.
  • the mechanism that maintains the state in which the operation can be continued is called a water self-supporting mechanism.
  • FIG. 2 is a block diagram showing the configuration of the fuel cell system according to the present embodiment.
  • the fuel cell system 1 includes a heat exchanger 81, a water quality processing unit 82, and a recovered water tank 83.
  • the heat exchanger 81, the water quality treatment unit 82, and the recovered water tank 83 are elements that constitute the water supply unit 8 shown in FIG.
  • the heat exchanger 81 is connected to the off-gas combustion unit 6.
  • the heat exchanger 81 is supplied with the flue gas from the off-gas combustion unit 6.
  • the heat exchanger 81 cools the inflowing combustion exhaust gas, separates it into exhaust gas and water, and flows out.
  • the detailed structure of the heat exchanger 81 is shown in FIG. As shown in FIG. 3, the inside of the housing of the heat exchanger 81 is provided with fins 81a, and the inside of the housing is divided into two rooms by the fins 81a.
  • An inlet 81f for cooling water that communicates with the interior of one room is provided on the lower side wall of the housing.
  • a cooling water outlet 81e that communicates with the interior of one room is provided on the upper side wall of the housing. For this reason, the cooling water flows into one room from the inlet portion 81f on the lower side of the casing and flows out from the outlet portion 81e on the upper side of the casing.
  • casing is provided with the inlet part 81b for combustion exhaust gas connected to the inside of the other room.
  • An exhaust gas outlet portion 81c and a water outlet portion 81d communicating with the inside of the other room are respectively provided on the lower side wall and the lower portion of the housing.
  • the combustion exhaust gas flows into the other room from the inlet 81b at the upper part of the casing, and is cooled by the cooling water through the fins 81a on the way to the lower part of the casing. For this reason, the moisture contained in the combustion exhaust gas is condensed into water.
  • the gas separated from the combustion exhaust gas flows out from the outlet portion 81c as exhaust gas and is released to the outdoors (atmosphere) through, for example, piping. On the other hand, the separated water flows out from the outlet portion 81d by gravity.
  • the outlet 81d side of the heat exchanger 81 is connected to the water quality treatment unit 82.
  • the water quality processing unit 82 removes impurities contained in water.
  • the water from which impurities have been removed flows into the recovered water tank 83 and is stored.
  • the recovered water tank 83 is connected to the water vaporization unit 3 via a water pump 92.
  • the water vaporization unit 3 uses the water stored in the recovered water tank 83 to generate water vapor that is supplied to the hydrogen generation unit 4.
  • the water generated by the power generation of the cell stack 5 is recovered by the heat exchanger 81, impurities are removed by the water quality processing unit 82, stored in the recovered water tank 83, and reused for power generation.
  • the water self-supporting mechanism appropriately manages the water level of the recovered water tank 83 that increases and decreases every moment according to the operation status of the fuel cell system 1, thereby realizing water self-supporting.
  • a water level sensor 84 In the recovered water tank 83, a water level sensor 84 is provided.
  • the water level sensor 84 detects whether or not the water level of the recovered water tank 83 is a predetermined water level.
  • the water level sensor 84 is disposed, for example, in the vicinity of the set upper limit water level in order to detect whether or not the water level of the recovered water tank 83 is the limit water level (full water).
  • As the water level sensor 84 for example, various level sensors such as an electrode type, a float switch, an optical sensor, and a photoelectric sensor may be used, or a pressure sensor may be used instead.
  • the recovered water tank 83 is connected to a drain pipe 87 for draining the water in the recovered water tank 83.
  • the drain pipe 87 is connected to, for example, the lower part of the recovered water tank 83 so that the connection port of the drain pipe 87 is always at a position lower than the water level.
  • the drain pipe 87 is provided with an electromagnetic valve 86.
  • the water in the recovered water tank 83 is discharged when the electromagnetic valve 86 is opened, and is not discharged when the electromagnetic valve 86 is closed. Since the recovered water tank 83 communicates with the atmosphere only through the drainage pipe 87, the recovered water tank 83 remains in the atmosphere as long as the drainage pipe 87 is filled with water even when the electromagnetic valve 86 is opened. It is not open.
  • a pressure sensor for detecting the fluid pressure is disposed in the flow path from the cell stack 5 to the recovered water tank 83.
  • the first pressure sensor 90 detects the fluid pressure in the flow path connecting the off-gas combustion unit 6 and the heat exchanger 81.
  • the second pressure sensor 91 detects the fluid pressure in the flow path connecting the heat exchanger 81 and the water quality processing unit 82.
  • the water level sensor 84, the electromagnetic valve 86, and the pressure sensors 90 and 91 described above are electrically or controllably connected to the control unit 11 described above.
  • FIG. 4 is a flowchart showing the operation of the fuel cell system 1 according to this embodiment.
  • the control process shown in FIG. 4 is executed by the control unit 11. For example, it is repeatedly executed at a predetermined interval from the power-on timing.
  • the control unit 11 determines whether or not an upper limit water level has been detected (S10).
  • the control unit 11 determines whether or not the water level sensor 84 has detected that the water level of the recovered water tank 83 has reached the upper limit water level.
  • the water level sensor 84 outputs a signal when the water level of the recovered water tank 83 is not the upper limit water level, and as shown in FIG. 5A, the recovered water tank When the water level 83 is the upper limit water level, the signal is stopped or the electrical connection is cut off (disconnected). For this reason, the control part 11 determines with having detected the upper limit water level, when a signal is no longer output from the water level sensor 84.
  • FIG. In the process of S10 when it determines with the control part 11 not detecting the upper limit water level, a counter is reset (S22). Details of the counter will be described later. Then, the control process shown in FIG. 4 ends.
  • the control unit 11 opens the electromagnetic valve 86 for a certain period (S12).
  • a value that is not too long is adopted so as not to lose water for water independence.
  • the description will be made with 2 seconds.
  • the control unit 11 closes the electromagnetic valve 86 (S14).
  • the control unit 11 increases the counter by one (S16).
  • This counter indicates the number of opening control instructions for opening the solenoid valve 86. Since the opening control of the electromagnetic valve 86 is 2 seconds here, one counter means 2 seconds. That is, this counter can also function as a timer. And the control part 11 determines whether a counter is larger than predetermined value (S18).
  • This predetermined value is determined in advance based on the margin between the detection position of the water level sensor 84 and the capacity of the recovered water tank 83, and 10 is adopted here.
  • the control unit 11 determines the elapsed time since opening the electromagnetic valve 86 using a counter. For example, if the opening control time is 2 seconds and the determination threshold value of the counter is 10 times, the control unit 11 determines whether the water level has exceeded the upper limit water level for 20 seconds from the timing when the electromagnetic valve 86 is first opened. It can be said that it is judged. If the control unit 11 determines that the counter is not greater than 10, the control unit 11 returns to the process shown in S10. Therefore, if the counter is not greater than 10, the control unit 11 repeatedly executes the processes shown in S12 to S18 as long as the upper limit water level is continuously detected in the process of S10.
  • control unit 11 determines that the counter is greater than 10, it determines that an abnormality has occurred in the fuel cell system 1 and outputs an alarm (S20). Then, the control process shown in FIG. 4 ends.
  • the fuel cell system 1 can be an FF type.
  • airtight means that it is airtight with respect to external air except the inflow path
  • the number of times of opening control instruction of the electromagnetic valve 86 is counted, and when the number of opening control instructions becomes a predetermined value or more continuously for a predetermined period, it is determined that an abnormality has occurred in the fuel cell system 1. . Since the time for the open control is fixed, the number of times for the open control can be related to the time. That is, when the water level sensor 84 detects that the water level in the recovered water tank 83 continuously exceeds the upper limit water level for a certain period, it is determined that an abnormality has occurred in the fuel cell system 1.
  • FIG. 6 is a flowchart for explaining the operation using the output result of the pressure sensor of the fuel cell system 1 according to this embodiment.
  • the control process shown in FIG. 6 is executed by the control unit 11. For example, it is repeatedly executed at a predetermined interval from the power-on timing. Note that when the control processing content of FIG. 6 contradicts the control processing content shown in FIG. 4, the control processing shown in FIG. 6 is given priority.
  • the control unit 11 performs pressure measurement (S30).
  • the controller 11 measures the fluid pressure based on the outputs from the pressure sensors 90 and 91. And the control part 11 determines whether the magnitude
  • the control part 11 closes the solenoid valve 86, when the magnitude
  • the fuel cell system 1 As described above, according to the fuel cell system 1 according to the present embodiment, water contained in the off-gas or combustion exhaust gas is recovered, stored in the recovered water tank 83, and reused. Therefore, it is possible to generate power without supplying water. .
  • the electromagnetic valve 86 of the drain pipe 87 provided in the recovered water tank 83 is opened by the control unit 11 only for a predetermined period.
  • the recovered water tank 83 can be drained while ensuring airtightness. For this reason, it becomes possible to make the fuel cell system 1 into FF type.
  • the fuel cell system 1 it is possible to detect abnormality of the water level sensor 84 or the electromagnetic valve 86 or clogging of the piping from the control content. Further, according to the fuel cell system 1 according to the present embodiment, even when the water level sensor 84 is broken, it is determined that the upper limit water level has been detected, so it is determined that an abnormality has occurred due to the control shown in FIG. be able to.
  • the fuel cell system 1 even when the pressure of the fluid in the flow path from the cell stack 5 to the recovered water tank 83 suddenly increases, the off gas or the combustion exhaust gas is not recovered from the recovered water. Release from the tank 83 to the atmosphere can be reliably prevented.
  • Each embodiment described above shows an example of the fuel cell system according to the present invention.
  • the fuel cell system according to the present invention is not limited to the fuel cell system according to the embodiment, and the fuel cell system according to the embodiment may be modified or otherwise changed without changing the gist described in each claim. It may be applied to a thing.
  • an alarm is output in S20 shown in FIG. 4 and S36 shown in FIG. 6, but the present invention is not limited to this.
  • the emergency stop of the fuel cell system 1 may be performed, and other processes may be executed.
  • the hydrogen generation unit 4 includes the reforming combustion unit, and the off-gas combustion unit 6 and the reformer are modified. It may be connected to either one of the quality combustion parts.
  • the pressure sensor 90 only needs to measure the pressure in the flow path connected to either the off-gas combustion unit 6 or the reforming combustion unit.
  • the off-gas combustion unit 6 and the reforming combustion unit may be shared by one combustion unit, and the shared combustion unit and the heat exchanger 81 may be connected.
  • the water quality processing unit 82 is disposed between the heat exchanger 81 and the recovered water tank 83, and the water recovered by the heat exchanger 81 passes through the water quality processing unit 82 and is recovered.
  • the example stored by 83 was demonstrated, it is not restricted to this.
  • the water quality processing unit 82 may be disposed between the recovered water tank 83 and the water vaporization unit 3, and the water stored in the recovered water tank 83 may be supplied to the water vaporization unit 3 through the water quality processing unit 82.
  • the water quality treatment unit 82 may be disposed between the heat exchanger 81 and the recovered water tank 83 and between the recovered water tank 83 and the water vaporization unit 3.
  • the recovery water tank 83 that recovers the moisture contained in the combustion exhaust gas obtained by burning the off gas of the cell stack 5 has been described.
  • the embodiment is not limited to this, and is included in the cathode off gas.
  • a recovered water tank that directly recovers moisture may be used. Details will be described below.
  • FIG. 7 is a block diagram showing a configuration of the fuel system 1 according to the modification.
  • the fuel system 1 shown in FIG. 7 is configured in substantially the same manner as the fuel system 1 shown in FIG. 2, and is used in the gas output destination of the off-gas combustion unit 6 and the heat exchanger 81 as compared with the fuel system 1 shown in FIG.
  • the gas input source and output destination are different.
  • the fuel system 1 shown in FIG. 7 uses a polymer electrolyte fuel cell, and is different from the fuel system 1 shown in FIG. 2 in that an anode humidifier 94 and a cathode humidifier 95 are provided.
  • anode humidifier 94 and a cathode humidifier 95 are provided.
  • the off gas of the anode 12 of the cell stack 5 is supplied to the off gas combustion unit 6 through a flow path connecting the anode 12 and the off gas combustion unit 6.
  • the off gas from the cathode 13 of the cell stack 5 is supplied to the heat exchanger 81 through a flow path connecting the cathode 13 and the heat exchanger 81.
  • the cathode offgas that has passed through the heat exchanger 81 passes through the flow path connecting the cathode 13 and the offgas combustion unit 6 and is supplied to the offgas combustion unit 6.
  • the off-gas combustion unit 6 inputs the supplied off-gas of the anode 12 and the cathode 13 and the supplied air and burns it, and exhausts the combustion exhaust gas to the outside.
  • a first pressure sensor 90 is provided in the flow path connecting the cathode 13 and the heat exchanger 81.
  • the first pressure sensor 90 detects the fluid pressure in the flow path in the flow path connecting the cathode 13 and the heat exchanger 81.
  • the hydrogen rich gas supplied to the anode 12 is humidified by the anode humidifier 94 and supplied to the anode 12.
  • the oxidant (air) supplied to the cathode 13 is humidified by the cathode humidifier 95 and supplied to the cathode 13.
  • the water stored in the recovered water tank 83 can be used as water supplied to applications other than reforming, for example, the anode humidifier 94 and the cathode humidifier 95. In the example shown in FIG. 7, the water stored in the recovered water tank 83 is supplied to the anode humidifier 94 and the cathode humidifier 95 by the water pump 93.
  • the fuel cell system 1 shown in FIG. 7 may be modified to the fuel cell system 1 shown in FIG. Compared with the fuel cell system 1 shown in FIG. 7, the fuel cell system 1 shown in FIG. 8 does not include the desulfurization unit 2, the water vaporization unit 3, the hydrogen generation unit 4, and the water pump 92. Instead, a hydrogen cylinder 96 for supplying pure hydrogen is provided. Other configurations are the same as those in FIG. Even the fuel cell system 1 shown in FIG. 8 can be drained while ensuring the airtightness of the recovered water tank 83. When the fuel gas is pure hydrogen, the water stored in the recovered water tank 83 can be used as water supplied to the anode humidifier 94 and the cathode humidifier 95.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a fuel cell system comprising a cell stack for generating electricity using hydrogen-containing gas. The fuel cell system has the following: a recovered water tank which recovers and stores water contained in off gas of the cell stack; a water level sensor which senses whether the water level of the recovered water tank is at a predetermined level; drainage piping for draining the water inside the recovered water tank; an electromagnetic valve provided to the drainage piping; and a control unit which opens the electromagnetic valve for only a predetermined period of time if the water level sensor senses that the water level in the recovered water tank is at the predetermined water level.

Description

燃料電池システムFuel cell system
 本発明の種々の側面及び実施形態は、燃料電池を用いて発電する燃料電池システムに関する。 Various aspects and embodiments of the present invention relate to a fuel cell system that generates power using a fuel cell.
 従来、燃料電池システムとして、水素含有燃料を用いて水素含有ガスを発生させ、当該水素含有ガスを用いて発電を行うセルスタックを備えるものが知られている(例えば、特許文献1参照。)。特許文献1記載のシステムは、水素含有ガスを発生させる改質器、及び改質器に供給する水を貯留する回収水タンクを備えている。この回収水タンクには、上限水位及び下限水位が設定されており、それぞれ水位センサが配置されている。水位センサにより回収水タンク内の水位が上限水位を超えたと検知された場合には、回収水タンクへの水の供給が停止される。なお、このような回収水タンクは、上限水位より上にオーバーフローを防止するための配管が設けられていることが一般的である。すなわち、回収水タンクはオーバーフロー防止用の配管を通じて大気に開放されている。 Conventionally, a fuel cell system that includes a cell stack that generates a hydrogen-containing gas using a hydrogen-containing fuel and generates power using the hydrogen-containing gas is known (see, for example, Patent Document 1). The system described in Patent Document 1 includes a reformer that generates a hydrogen-containing gas and a recovered water tank that stores water to be supplied to the reformer. In this recovered water tank, an upper limit water level and a lower limit water level are set, and water level sensors are respectively arranged. When the water level sensor detects that the water level in the recovered water tank exceeds the upper limit water level, the supply of water to the recovered water tank is stopped. Such a recovered water tank is generally provided with a pipe for preventing overflow above the upper limit water level. That is, the recovered water tank is opened to the atmosphere through a pipe for preventing overflow.
 また、燃料電池システムとして、燃料電池が発電することで発生する水を回収して回収水タンクに貯留するとともに回収水タンクに貯留された水を発電等に再利用し、燃料電池システムの系外から給水を不用とする水自立システムを備えるものが知られている。 In addition, as a fuel cell system, the water generated by the power generation of the fuel cell is recovered and stored in a recovered water tank, and the water stored in the recovered water tank is reused for power generation, etc. Are provided with a water self-supporting system that does not require water supply.
特開2010-238590号公報JP 2010-238590 A
 ところで、燃料電池システムは、近年急速に普及しており、ニーズに応じた利用形態を実現できることが望まれている。例えば、燃料電池システムを水自立させつつ、送風機によって屋外から強制的に取り入れた外気を燃料電池のオフガスと一緒に密閉容器内で燃焼させるとともに強制的に燃焼排ガスを屋外へ放出する強制給排気式(Forced Flue:FF式)とすることが望まれている。なお、密閉容器とは、給排気流路を除き外気に対して密閉された容器のことをいう。 By the way, the fuel cell system has been rapidly spread in recent years, and it is desired to be able to realize a usage form according to needs. For example, forced air supply / exhaust type that makes the fuel cell system water self-sustained, burns the outside air that is forcibly taken from the outside by a blower together with the off-gas of the fuel cell in a sealed container and forcibly releases the combustion exhaust gas to the outdoors (Forced Flue: FF type) is desired. In addition, a sealed container means the container sealed with respect to external air except the air supply / exhaust flow path.
 ここで、特許文献1記載の燃料電池システムを水自立システムとした場合、燃料電池から発生したオフガスに含まれる水を回収して回収水タンクに貯留することとなる。しかしながら、一般的に回収水タンクはオーバーフロー防止用の排水用配管が装置外部に開放されているため、余剰水が廃棄される本来の機能とは別に、オフガス又は燃焼排ガスの一部も排水用の配管から装置外へ漏洩されるおそれがある。すなわち、特許文献1記載の燃料電池システムを水自立システムとする場合、燃焼系統と通ずる回収水タンクの気密性は、燃料電池システムが自然給吸排気であれば十分であるものの、FF式とするためには不足である。なお、ここでいう気密性とは、回収水の流入経路を除き外気に対して気密であることをいう。 Here, when the fuel cell system described in Patent Document 1 is a water self-supporting system, water contained in the off-gas generated from the fuel cell is recovered and stored in the recovered water tank. However, in general, since the drainage pipe for preventing overflow is open to the outside of the apparatus, a part of off-gas or combustion exhaust gas is also used for drainage, in addition to the original function of discarding surplus water. There is a risk of leakage from the piping to the outside of the device. That is, when the fuel cell system described in Patent Document 1 is a water self-sustaining system, the airtightness of the recovered water tank communicating with the combustion system is FF type, although it is sufficient if the fuel cell system is natural intake / exhaust. There is not enough for that. In addition, airtight here means airtight with respect to external air except the inflow path | route of recovered water.
 本技術分野では、回収水タンクの気密性を確保しながら水自立し、FF式を採用可能な燃料電池システムが望まれている。 In this technical field, there is a demand for a fuel cell system that can maintain water self-sustained while ensuring the airtightness of the recovered water tank and adopt the FF type.
 本発明の一側面に係る燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを備える燃料電池システムである。燃料電池システムは、回収水タンク、水位センサ、排水配管、弁及び制御部を有する。回収水タンクは、セルスタックのオフガスに含まれる水を回収し貯留する。水位センサは、回収水タンクの水位が所定の水位であるか否かを検知する。排水配管は、回収水タンク内の水を排水するための配管である。弁は、排水配管に設けられる。制御部は、水位センサにより回収水タンクの水位が所定の水位であると検知された場合には弁を所定期間のみ開とする。 A fuel cell system according to one aspect of the present invention is a fuel cell system including a cell stack that generates power using a hydrogen-containing gas. The fuel cell system includes a recovered water tank, a water level sensor, a drain pipe, a valve, and a control unit. The recovered water tank recovers and stores water contained in the cell stack off-gas. The water level sensor detects whether or not the water level of the recovered water tank is a predetermined water level. The drainage pipe is a pipe for draining the water in the recovered water tank. The valve is provided in the drain pipe. When the water level sensor detects that the water level of the recovered water tank is a predetermined water level, the control unit opens the valve only for a predetermined period.
 本発明の一側面に係る燃料電池システムによれば、セルスタックのオフガスに含まれる水が回収されて回収水タンクに貯留され再利用されるため、無給水で発電することができる。また、回収水タンクの水位が所定の水位である場合には、回収水タンクに設けられた排水配管の弁が制御部により所定期間のみ開とされる。このように、オーバーフローを起こす前に回収水タンク内の水を排出することができるので、大気に常に開放されたオーバーフロー用の配管を設ける必要がない。よって、回収水タンクの気密性を確保しながら排水することができる。 According to the fuel cell system according to one aspect of the present invention, the water contained in the cell stack off-gas is recovered, stored in the recovered water tank, and reused. Therefore, it is possible to generate power without supplying water. Further, when the water level of the recovered water tank is a predetermined water level, the valve of the drain pipe provided in the recovered water tank is opened only for a predetermined period by the control unit. Thus, since the water in the recovered water tank can be discharged before the overflow occurs, there is no need to provide an overflow pipe that is always open to the atmosphere. Accordingly, the recovered water tank can be drained while ensuring airtightness.
 一実施形態では、前記オフガスに含まれる水を回収する熱交換器を備え、前記回収水タンクは、前記熱交換器により回収された水を貯留してもよい。一実施形態では、前記オフガスを燃焼させる燃焼部と、前記燃焼部の燃焼排ガスに含まれる水を回収する熱交換器を備え、前記回収水タンクは、前記熱交換器により回収された水を貯留してもよい。一実施形態では、水素含有燃料を用いて水素含有ガスを発生させる水素発生部を備え、前記回収水タンクは、前記水素発生部へ水を供給するために水を貯留してもよい。 In one embodiment, a heat exchanger that recovers water contained in the off gas may be provided, and the recovered water tank may store water recovered by the heat exchanger. In one embodiment, a combustion unit that combusts the off-gas and a heat exchanger that recovers water contained in combustion exhaust gas of the combustion unit are provided, and the recovered water tank stores water recovered by the heat exchanger May be. In one embodiment, a hydrogen generation unit that generates a hydrogen-containing gas using a hydrogen-containing fuel may be provided, and the recovered water tank may store water in order to supply water to the hydrogen generation unit.
 一実施形態では、前記制御部は、前記弁の開制御指示の回数をカウントし、開制御指示の回数が所定期間連続して所定値以上である場合には、異常が発生したと判定してもよい。このように構成することで、制御内容から水位センサ又は弁の異常を検知することができる。 In one embodiment, the control unit counts the number of opening control instructions for the valve, and determines that an abnormality has occurred when the number of opening control instructions is a predetermined value or more continuously for a predetermined period. Also good. By comprising in this way, abnormality of a water level sensor or a valve can be detected from the contents of control.
 一実施形態では、前記水位センサは、前記回収水タンクの水位が所定の水位でない場合には信号を出力し、前記回収水タンクの水位が所定の水位である場合には信号を停止する又は電気的な接続を遮断してもよい。このように構成することで、水位センサが断線故障した場合においても異常が発生したと判定することができる。 In one embodiment, the water level sensor outputs a signal when the water level of the recovered water tank is not a predetermined water level, and stops the signal when the water level of the recovered water tank is a predetermined water level or Connection may be blocked. With this configuration, it can be determined that an abnormality has occurred even when the water level sensor has a disconnection failure.
 前記セルスタックから前記回収水タンクへ至る流路内の流体の圧力を計測する圧力センサを備え、前記制御部は、前記圧力センサにより検知された圧力が所定値以上である場合には、前記弁を閉としてもよい。このように構成することで、セルスタックから改質用水タンクへ至る流路内の流体の圧力が急激に上昇した場合であっても、オフガス又は燃焼排ガスが改質用水タンクから大気へ放出されることを確実に防止することができる。 A pressure sensor for measuring a pressure of a fluid in a flow path from the cell stack to the recovered water tank, and the control unit includes the valve when the pressure detected by the pressure sensor is equal to or greater than a predetermined value. May be closed. With this configuration, even when the pressure of the fluid in the flow path from the cell stack to the reforming water tank suddenly increases, off-gas or combustion exhaust gas is released from the reforming water tank to the atmosphere. This can be surely prevented.
 本発明によれば、回収水タンクの気密性を確保しながら排水することができる。 According to the present invention, water can be drained while ensuring the airtightness of the recovered water tank.
実施形態に係る燃料電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the fuel cell system which concerns on embodiment. 図1の燃料電池システムの水自立機構を説明する概要図である。It is a schematic diagram explaining the water self-supporting mechanism of the fuel cell system of FIG. 図2に示す熱交換器の概要図である。It is a schematic diagram of the heat exchanger shown in FIG. 実施形態に係る燃料電池システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the fuel cell system which concerns on embodiment. 実施形態に係る燃料電池システムの動作を説明する概要図である。It is a schematic diagram explaining operation | movement of the fuel cell system which concerns on embodiment. 実施形態に係る燃料電池システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the fuel cell system which concerns on embodiment. 変形例に係る燃料電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the fuel cell system which concerns on a modification. 変形例に係る燃料電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the fuel cell system which concerns on a modification.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 最初に燃料電池の基本構成について概説する。図1は、本実施形態に係る燃料電池システムの構成を示すブロック図である。図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。また、燃料については、改質が必要な水素含有燃料以外であっても利用可能であり、純水素や有機ハイドライドの脱水素処理による水素ガスを用いてもよい。 First, the basic configuration of the fuel cell will be outlined. FIG. 1 is a block diagram showing the configuration of the fuel cell system according to the present embodiment. As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like. Further, the fuel can be used other than the hydrogen-containing fuel that needs to be reformed, and hydrogen gas obtained by dehydrogenation of pure hydrogen or organic hydride may be used.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガス(水素含有ガス)を発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6は、図示しない送風機によって強制的に取り入れた外気とオフガスとを混合させて密閉容器内で燃焼させるとともに強制的に燃焼排ガスを排ガスとして屋外へ放出する強制給排気式(Forced Flue:FF式)とされている。なお、密閉容器とは、給排気する外気以外の屋内に対して密閉された容器のことをいう。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The off-gas combustion unit 6 mixes the outside air forcibly taken in by a blower (not shown) and off-gas, burns it in a sealed container, and forcibly releases the combustion exhaust gas to the outside as an exhaust gas (Forced Flue: FF type). In addition, an airtight container means the container sealed with respect to indoors other than the external air which supplies and exhausts. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 ここで、燃料電池システム1は、セルスタック5が発電することで発生する水を回収して回収水タンクに貯留するとともに回収水タンクに貯留された水を発電等に再利用する水自立機構を備えている。水自立とは、外部から水の補給を受けずに燃料電池の運転継続が可能な状態に維持されることである。セルスタック5の反応で生成されるオフガス、又は、オフガス燃焼部6から排出される燃焼排ガスには、水分が含まれている。これらのガスから凝縮によって水を回収し、水処理装置で脱イオン等の処理をした後、改質器(水蒸気改質)で再利用することで、外部から水の補給を受けずに燃料電池の運転継続が可能な状態に維持する機構を水自立機構という。 Here, the fuel cell system 1 has a water self-supporting mechanism that collects water generated by the power generation by the cell stack 5 and stores it in a recovered water tank, and reuses the water stored in the recovered water tank for power generation and the like. I have. Water self-supporting means that the fuel cell is maintained in a state where it can continue operation without receiving water from the outside. The off gas generated by the reaction of the cell stack 5 or the combustion exhaust gas discharged from the off gas combustion unit 6 contains moisture. Water is collected from these gases by condensation, treated with deionization, etc. with a water treatment device, and then reused with a reformer (steam reforming), so that fuel cells can be supplied without receiving water from the outside. The mechanism that maintains the state in which the operation can be continued is called a water self-supporting mechanism.
 以下、FF式の燃料電池システム1における水自立機構を概説する。図2は、本実施形態に係る燃料電池システムの構成を示すブロック図である。図2では、図1の水供給部8を詳細に記載し、水自立機構に関係のない部分は一部省略した。図2に示されるように、燃料電池システム1は、熱交換器81、水質処理部82及び回収水タンク83を備えている。熱交換器81、水質処理部82及び回収水タンク83は、図1に示す水供給部8を構成する要素である。 Hereinafter, the water self-supporting mechanism in the FF type fuel cell system 1 will be outlined. FIG. 2 is a block diagram showing the configuration of the fuel cell system according to the present embodiment. In FIG. 2, the water supply part 8 of FIG. 1 is described in detail, and a part not related to the water self-supporting mechanism is partially omitted. As shown in FIG. 2, the fuel cell system 1 includes a heat exchanger 81, a water quality processing unit 82, and a recovered water tank 83. The heat exchanger 81, the water quality treatment unit 82, and the recovered water tank 83 are elements that constitute the water supply unit 8 shown in FIG.
 熱交換器81は、オフガス燃焼部6に接続されている。熱交換器81には、オフガス燃焼部6の燃焼排ガスが供給される。熱交換器81は、流入した燃焼排ガスを冷却し、排ガス及び水に分離させて流出する。 The heat exchanger 81 is connected to the off-gas combustion unit 6. The heat exchanger 81 is supplied with the flue gas from the off-gas combustion unit 6. The heat exchanger 81 cools the inflowing combustion exhaust gas, separates it into exhaust gas and water, and flows out.
 熱交換器81の詳細な構成を図3に示す。図3に示されるように、熱交換器81の筐体の内部は、フィン81aが設けられており、このフィン81aによって筐体の内部は2つの部屋に分割されている。筐体の下部側壁には、一方の部屋内部へ連通する冷却水用の入口部81fが設けられている。筐体の上部側壁には、一方の部屋内部へ連通する冷却水用の出口部81eが設けられている。このため、冷却水は筐体下部側の入口部81fから一方の部屋へ流入し、筐体上部側の出口部81eから外部へ流出する。さらに、筐体の上部には、他方の部屋内部へ連通する燃焼排ガス用の入口部81bが設けられている。筐体の下部側壁及び下部には、他方の部屋内部へ連通する排ガス用の出口部81c及び水用の出口部81dがそれぞれ設けられている。燃焼排ガスは、筐体上部の入口部81bから他方の部屋へ流入し、筐体下部側へ向かう途中に、フィン81aを介して冷却水により冷却される。このため、燃焼排ガスに含まれる水分は凝縮して水となる。燃焼排ガスから分離された気体は、排ガスとして出口部81cから流出し、例えば配管を通じて屋外(大気)へ放出される。一方、分離された水は、重力により出口部81dから流出する。 The detailed structure of the heat exchanger 81 is shown in FIG. As shown in FIG. 3, the inside of the housing of the heat exchanger 81 is provided with fins 81a, and the inside of the housing is divided into two rooms by the fins 81a. An inlet 81f for cooling water that communicates with the interior of one room is provided on the lower side wall of the housing. A cooling water outlet 81e that communicates with the interior of one room is provided on the upper side wall of the housing. For this reason, the cooling water flows into one room from the inlet portion 81f on the lower side of the casing and flows out from the outlet portion 81e on the upper side of the casing. Furthermore, the upper part of the housing | casing is provided with the inlet part 81b for combustion exhaust gas connected to the inside of the other room. An exhaust gas outlet portion 81c and a water outlet portion 81d communicating with the inside of the other room are respectively provided on the lower side wall and the lower portion of the housing. The combustion exhaust gas flows into the other room from the inlet 81b at the upper part of the casing, and is cooled by the cooling water through the fins 81a on the way to the lower part of the casing. For this reason, the moisture contained in the combustion exhaust gas is condensed into water. The gas separated from the combustion exhaust gas flows out from the outlet portion 81c as exhaust gas and is released to the outdoors (atmosphere) through, for example, piping. On the other hand, the separated water flows out from the outlet portion 81d by gravity.
 図2に戻り、熱交換器81の出口部81d側は、水質処理部82に接続されている。水質処理部82は、水に含まれる不純物を除去する。不純物が除去された水は、回収水タンク83へ流れ込み貯留される。回収水タンク83は、水ポンプ92を介して水気化部3に接続されている。水気化部3は、回収水タンク83に貯留された水を用いて、水素発生部4へ供給される水蒸気を生成する。 2, the outlet 81d side of the heat exchanger 81 is connected to the water quality treatment unit 82. The water quality processing unit 82 removes impurities contained in water. The water from which impurities have been removed flows into the recovered water tank 83 and is stored. The recovered water tank 83 is connected to the water vaporization unit 3 via a water pump 92. The water vaporization unit 3 uses the water stored in the recovered water tank 83 to generate water vapor that is supplied to the hydrogen generation unit 4.
 このように、セルスタック5の発電により発生した水は、熱交換器81により回収され、水質処理部82により不純物が取り除かれて回収水タンク83に貯留され、発電に再利用される。水自立機構は、燃料電池システム1の運転状況に応じて時々刻々と増減する回収水タンク83の水位を適切に管理し、水自立を実現させている。 Thus, the water generated by the power generation of the cell stack 5 is recovered by the heat exchanger 81, impurities are removed by the water quality processing unit 82, stored in the recovered water tank 83, and reused for power generation. The water self-supporting mechanism appropriately manages the water level of the recovered water tank 83 that increases and decreases every moment according to the operation status of the fuel cell system 1, thereby realizing water self-supporting.
 回収水タンク83には、水位センサ84が設けられている。水位センサ84は、回収水タンク83の水位が所定の水位であるか否かを検知する。水位センサ84は、回収水タンク83の水位が限界水位(満水)であるか否かを検知するために、例えば、設定された上限水位付近に配置される。水位センサ84としては、例えば電極式、フロートスイッチ、光学センサ、光電センサなどの各種レベルセンサ類を用いてもよく、圧力センサで代用してもよい。また、回収水タンク83には、回収水タンク83内の水を排水するための排水配管87が接続されている。排水配管87は、排水配管87の接続口が常に水位よりも低い位置となるように、例えば回収水タンク83の下部に接続されている。排水配管87には、電磁弁86が設けられている。回収水タンク83の水は、電磁弁86が開状態とされたときには放出され、電磁弁86が閉状態とされたときには放出されない。回収水タンク83は、排水配管87のみを介して大気に連通されているため、回収水タンク83は電磁弁86が開状態となったときでも排水配管87が水で満たされている限り大気に開放されていない状態となる。 In the recovered water tank 83, a water level sensor 84 is provided. The water level sensor 84 detects whether or not the water level of the recovered water tank 83 is a predetermined water level. The water level sensor 84 is disposed, for example, in the vicinity of the set upper limit water level in order to detect whether or not the water level of the recovered water tank 83 is the limit water level (full water). As the water level sensor 84, for example, various level sensors such as an electrode type, a float switch, an optical sensor, and a photoelectric sensor may be used, or a pressure sensor may be used instead. The recovered water tank 83 is connected to a drain pipe 87 for draining the water in the recovered water tank 83. The drain pipe 87 is connected to, for example, the lower part of the recovered water tank 83 so that the connection port of the drain pipe 87 is always at a position lower than the water level. The drain pipe 87 is provided with an electromagnetic valve 86. The water in the recovered water tank 83 is discharged when the electromagnetic valve 86 is opened, and is not discharged when the electromagnetic valve 86 is closed. Since the recovered water tank 83 communicates with the atmosphere only through the drainage pipe 87, the recovered water tank 83 remains in the atmosphere as long as the drainage pipe 87 is filled with water even when the electromagnetic valve 86 is opened. It is not open.
 セルスタック5から回収水タンク83までの流路には、流体圧力を検出するための圧力センサが配置されている。第1の圧力センサ90は、オフガス燃焼部6と熱交換器81とを接続する流路内の流体圧力を検出する。第2の圧力センサ91は、熱交換器81と水質処理部82とを接続する流路内の流体圧力を検出する。 In the flow path from the cell stack 5 to the recovered water tank 83, a pressure sensor for detecting the fluid pressure is disposed. The first pressure sensor 90 detects the fluid pressure in the flow path connecting the off-gas combustion unit 6 and the heat exchanger 81. The second pressure sensor 91 detects the fluid pressure in the flow path connecting the heat exchanger 81 and the water quality processing unit 82.
 上述した水位センサ84、電磁弁86、圧力センサ90,91は、上述の制御部11と電気的又は制御可能に接続されている。 The water level sensor 84, the electromagnetic valve 86, and the pressure sensors 90 and 91 described above are electrically or controllably connected to the control unit 11 described above.
 次に、本実施形態に係る燃料電池システム1の動作について説明する。図4は、本実施形態に係る燃料電池システム1の動作を示すフローチャートである。図4に示される制御処理は、制御部11により実行される。例えば、電源ONのタイミングから所定の間隔で繰り返し実行される。 Next, the operation of the fuel cell system 1 according to this embodiment will be described. FIG. 4 is a flowchart showing the operation of the fuel cell system 1 according to this embodiment. The control process shown in FIG. 4 is executed by the control unit 11. For example, it is repeatedly executed at a predetermined interval from the power-on timing.
 図4に示されるように、最初に、制御部11は、上限水位を検知したか否かを判定する(S10)。制御部11は、水位センサ84によって回収水タンク83の水位が上限水位に達したことを検知されたか否かを判定する。水位センサ84は、図5の(b)に示されるように、回収水タンク83の水位が上限水位でない場合には信号を出力し、図5の(a)に示されるように、回収水タンク83の水位が上限水位である場合には信号を停止、又は電気的な接続を遮断(断線)する。このため、制御部11は、水位センサ84から信号が出力されなくなった場合には、上限水位を検知したと判定する。S10の処理において、制御部11は、上限水位を検知していないと判定した場合には、カウンターをリセットする(S22)。カウンターの詳細については後述する。そして、図4に示す制御処理を終了する。 As shown in FIG. 4, first, the control unit 11 determines whether or not an upper limit water level has been detected (S10). The control unit 11 determines whether or not the water level sensor 84 has detected that the water level of the recovered water tank 83 has reached the upper limit water level. As shown in FIG. 5B, the water level sensor 84 outputs a signal when the water level of the recovered water tank 83 is not the upper limit water level, and as shown in FIG. 5A, the recovered water tank When the water level 83 is the upper limit water level, the signal is stopped or the electrical connection is cut off (disconnected). For this reason, the control part 11 determines with having detected the upper limit water level, when a signal is no longer output from the water level sensor 84. FIG. In the process of S10, when it determines with the control part 11 not detecting the upper limit water level, a counter is reset (S22). Details of the counter will be described later. Then, the control process shown in FIG. 4 ends.
 一方、制御部11は、上限水位を検知したと判定した場合には、一定期間電磁弁86を開とする(S12)。一定期間としては、水自立のための水を損失しないように長すぎない値が採用される。ここでは一例として2秒として説明する。一定期間経過後、制御部11は、電磁弁86を閉とする(S14)。そして、制御部11は、カウンターを1つ増加させる(S16)。このカウンターは、電磁弁86を開とする開制御指示の回数を示すものである。電磁弁86の開制御はここでは2秒であるので、カウンター1つが2秒を意味することになる。すなわち、このカウンターはタイマーとしても機能し得る。そして、制御部11は、カウンターが所定値より大きいか否かを判定する(S18)。この所定値は、水位センサ84の検知位置と回収水タンク83の容量との余裕しろに基づいて予め定められ、ここでは10が採用されている。なお、S18の処理を言い換えれば、制御部11は、カウンターを用いて電磁弁86を開としてからの経過時間を判定しているといえる。例えば、開制御の時間が2秒、カウンターの判定閾値が10回であるとすると、制御部11は、電磁弁86を最初に開としたタイミングから20秒間水位が上限水位を超えているか否かを判定しているといえる。制御部11は、カウンターが10より大きくないと判定した場合には、S10に示す処理に戻る。このため、カウンターが10より大きくない場合には、制御部11は、S10の処理で上限水位を検知し続ける限り、S12~S18に示す処理を繰り返し実行することとなる。 On the other hand, when it is determined that the upper limit water level has been detected, the control unit 11 opens the electromagnetic valve 86 for a certain period (S12). As the fixed period, a value that is not too long is adopted so as not to lose water for water independence. Here, as an example, the description will be made with 2 seconds. After a certain period of time, the control unit 11 closes the electromagnetic valve 86 (S14). Then, the control unit 11 increases the counter by one (S16). This counter indicates the number of opening control instructions for opening the solenoid valve 86. Since the opening control of the electromagnetic valve 86 is 2 seconds here, one counter means 2 seconds. That is, this counter can also function as a timer. And the control part 11 determines whether a counter is larger than predetermined value (S18). This predetermined value is determined in advance based on the margin between the detection position of the water level sensor 84 and the capacity of the recovered water tank 83, and 10 is adopted here. In other words, it can be said that the control unit 11 determines the elapsed time since opening the electromagnetic valve 86 using a counter. For example, if the opening control time is 2 seconds and the determination threshold value of the counter is 10 times, the control unit 11 determines whether the water level has exceeded the upper limit water level for 20 seconds from the timing when the electromagnetic valve 86 is first opened. It can be said that it is judged. If the control unit 11 determines that the counter is not greater than 10, the control unit 11 returns to the process shown in S10. Therefore, if the counter is not greater than 10, the control unit 11 repeatedly executes the processes shown in S12 to S18 as long as the upper limit water level is continuously detected in the process of S10.
 一方、制御部11は、カウンターが10より大きいと判定した場合には、燃料電池システム1に異常が発生したと判定し、アラームを出力する(S20)。そして、図4に示す制御処理を終了する。 On the other hand, if the control unit 11 determines that the counter is greater than 10, it determines that an abnormality has occurred in the fuel cell system 1 and outputs an alarm (S20). Then, the control process shown in FIG. 4 ends.
 以上で図4に示す制御処理を終了する。図4に示す制御処理を実行することにより、回収水タンク83内の水位が上限水位を超えた場合には、電磁弁86が開とされ、上限水位を下回るまで回収水タンク83に貯留された水が放出される。このため、回収水タンク83は、大気開放を避けた状態で、水位が上限水位を下回るように制御される。このように、上限水位を超えるときのみ回収水タンク83は水を放出するように制御されるため、セルスタック5から流出されたオフガス又はオフガス燃焼部6から流出された燃焼排ガスが熱交換器81、水質処理部82を経由して回収水タンク83へ到達し、外気へ放出されることを回避することができる。従って、燃料電池システム1を例えば屋内に配置した場合であっても、燃焼系統と通ずる回収水タンク83の気密性が確保されていることから有害なガスが屋内へ放出されることはない。よって、燃料電池システム1をFF式とすることができる。なお、気密性とは、回収水の流入経路を除き外気に対して気密であることをいう。 This completes the control process shown in FIG. By executing the control process shown in FIG. 4, when the water level in the recovered water tank 83 exceeds the upper limit water level, the electromagnetic valve 86 is opened and stored in the recovered water tank 83 until the water level falls below the upper limit water level. Water is released. For this reason, the recovered water tank 83 is controlled so that the water level is lower than the upper limit water level in a state where opening to the atmosphere is avoided. Thus, since the recovered water tank 83 is controlled so as to release water only when the upper limit water level is exceeded, the off-gas that has flowed out of the cell stack 5 or the flue gas that has flowed out of the off-gas combustion unit 6 is converted into the heat exchanger 81. Thus, it is possible to avoid reaching the recovered water tank 83 via the water quality processing unit 82 and being released to the outside air. Therefore, even when the fuel cell system 1 is placed indoors, for example, since the airtightness of the recovered water tank 83 communicating with the combustion system is ensured, no harmful gas is released indoors. Therefore, the fuel cell system 1 can be an FF type. In addition, airtight means that it is airtight with respect to external air except the inflow path | route of recovered water.
 また、一定期間、電磁弁86を開制御しているにもかかわらず水位が低下しない場合には、逆流や排水配管87のつまり等が考えられる。このため、電磁弁86の開制御指示の回数がカウントされ、開制御指示の回数が所定期間連続して所定値以上となった場合には、燃料電池システム1に異常が発生したと判定される。なお、開制御の時間は一定とされているので、開制御指示の回数は時間に関連付けすることができる。すなわち、一定期間、水位センサ84により回収水タンク83の水位が連続して上限水位を超えていると検知された場合には、燃料電池システム1に異常が発生したと判定される。 Further, if the water level does not decrease even though the electromagnetic valve 86 is controlled to open for a certain period of time, backflow or clogging of the drainage pipe 87 may be considered. For this reason, the number of times of opening control instruction of the electromagnetic valve 86 is counted, and when the number of opening control instructions becomes a predetermined value or more continuously for a predetermined period, it is determined that an abnormality has occurred in the fuel cell system 1. . Since the time for the open control is fixed, the number of times for the open control can be related to the time. That is, when the water level sensor 84 detects that the water level in the recovered water tank 83 continuously exceeds the upper limit water level for a certain period, it is determined that an abnormality has occurred in the fuel cell system 1.
 次に、圧力センサの出力結果を用いた動作について説明する。図6は、本実施形態に係る燃料電池システム1の圧力センサの出力結果を用いた動作を説明するフローチャートである。図6に示される制御処理は、制御部11により実行される。例えば、電源ONのタイミングから所定の間隔で繰り返し実行される。なお、図6の制御処理内容が図4に示す制御処理内容に矛盾する場合には、図6に示す制御処理が優先されるものとする。 Next, the operation using the output result of the pressure sensor will be described. FIG. 6 is a flowchart for explaining the operation using the output result of the pressure sensor of the fuel cell system 1 according to this embodiment. The control process shown in FIG. 6 is executed by the control unit 11. For example, it is repeatedly executed at a predetermined interval from the power-on timing. Note that when the control processing content of FIG. 6 contradicts the control processing content shown in FIG. 4, the control processing shown in FIG. 6 is given priority.
 図6に示されるように、最初に、制御部11は、圧力測定を行う(S30)。制御部11は、圧力センサ90,91からの出力によって流体圧力を計測する。そして、制御部11は、流体圧力の大きさが所定値(閾値)以上であるか否かを判定する(S32)。そして、制御部11は、流体圧力の大きさが所定値以上でない場合には、図6に示す制御処理を終了する。一方、制御部11は、流体圧力の大きさが所定値以上の場合には、電磁弁86を閉とする(S34)。そして、アラームを出力する(S36)。そして、図4に示す制御処理を終了する。そして、図6に示す制御処理を終了する。 As shown in FIG. 6, first, the control unit 11 performs pressure measurement (S30). The controller 11 measures the fluid pressure based on the outputs from the pressure sensors 90 and 91. And the control part 11 determines whether the magnitude | size of fluid pressure is more than predetermined value (threshold value) (S32). And the control part 11 complete | finishes the control processing shown in FIG. 6, when the magnitude | size of a fluid pressure is not more than predetermined value. On the other hand, the control part 11 closes the solenoid valve 86, when the magnitude | size of a fluid pressure is more than predetermined value (S34). Then, an alarm is output (S36). Then, the control process shown in FIG. 4 ends. Then, the control process shown in FIG. 6 ends.
 以上で図6に示す制御処理を終了する。図6に示す制御処理を実行することにより、流体圧力が所定値を超えた場合には、電磁弁86が閉とされる。このため、流体圧力の増大によって、セルスタック5から流出されたオフガス又はオフガス燃焼部6から流出された燃焼排ガスが熱交換器81、水質処理部82を経由して回収水タンク83へ到達し、外気へ放出されることを回避することができる。 This completes the control process shown in FIG. When the control pressure shown in FIG. 6 is executed and the fluid pressure exceeds a predetermined value, the electromagnetic valve 86 is closed. For this reason, due to the increase in fluid pressure, the off-gas flowing out from the cell stack 5 or the combustion exhaust gas flowing out from the off-gas combustion unit 6 reaches the recovered water tank 83 via the heat exchanger 81 and the water quality treatment unit 82, Release to the outside air can be avoided.
 上述の通り、本実施形態に係る燃料電池システム1によれば、オフガス又は燃焼排ガスに含まれる水が回収されて回収水タンク83に貯留され再利用されるため、無給水で発電することができる。また、回収水タンク83の水位が所定の水位である場合には、回収水タンク83に設けられた排水配管87の電磁弁86が制御部11により所定期間のみ開とされる。このように、オーバーフローを起こす前に回収水タンク83内の水を排出することができるので、大気に常に開放されたオーバーフロー用の配管を設ける必要がない。よって、回収水タンク83の気密性を確保しながら排水することができる。このため、燃料電池システム1をFF式とすることが可能となる。 As described above, according to the fuel cell system 1 according to the present embodiment, water contained in the off-gas or combustion exhaust gas is recovered, stored in the recovered water tank 83, and reused. Therefore, it is possible to generate power without supplying water. . When the water level of the recovered water tank 83 is a predetermined water level, the electromagnetic valve 86 of the drain pipe 87 provided in the recovered water tank 83 is opened by the control unit 11 only for a predetermined period. Thus, since the water in the recovered water tank 83 can be discharged before the overflow occurs, it is not necessary to provide an overflow pipe that is always open to the atmosphere. Therefore, the recovered water tank 83 can be drained while ensuring airtightness. For this reason, it becomes possible to make the fuel cell system 1 into FF type.
 また、本実施形態に係る燃料電池システム1によれば、水位センサ84若しくは電磁弁86の異常又は配管のつまり等を制御内容から検知することができる。また、本実施形態に係る燃料電池システム1によれば、水位センサ84が断線故障した場合においても、上限水位を検知したと判定されるので、図4に示す制御により異常が発生したと判定することができる。 Further, according to the fuel cell system 1 according to the present embodiment, it is possible to detect abnormality of the water level sensor 84 or the electromagnetic valve 86 or clogging of the piping from the control content. Further, according to the fuel cell system 1 according to the present embodiment, even when the water level sensor 84 is broken, it is determined that the upper limit water level has been detected, so it is determined that an abnormality has occurred due to the control shown in FIG. be able to.
 さらに、本実施形態に係る燃料電池システム1によれば、セルスタック5から回収水タンク83へ至る流路内の流体の圧力が急激に上昇した場合であっても、オフガス又は燃焼排ガスが回収水タンク83から大気へ放出されることを確実に防止することができる。 Furthermore, according to the fuel cell system 1 according to the present embodiment, even when the pressure of the fluid in the flow path from the cell stack 5 to the recovered water tank 83 suddenly increases, the off gas or the combustion exhaust gas is not recovered from the recovered water. Release from the tank 83 to the atmosphere can be reliably prevented.
 なお、上述した各実施形態は本発明に係る燃料電池システムの一例を示すものである。本発明に係る燃料電池システムは、実施形態に係る燃料電池システムに限られるものではなく、各請求項に記載した要旨を変更しない範囲で、実施形態に係る燃料電池システムを変形し、又は他のものに適用したものであってもよい。 Each embodiment described above shows an example of the fuel cell system according to the present invention. The fuel cell system according to the present invention is not limited to the fuel cell system according to the embodiment, and the fuel cell system according to the embodiment may be modified or otherwise changed without changing the gist described in each claim. It may be applied to a thing.
 例えば、上述した実施形態では、第1の圧力センサ90及び第2の圧力センサ91を備える例を説明したが、必ずしも備える必要はない。また、何れか一方のみ備える構成としてもよい。 For example, in the above-described embodiment, an example in which the first pressure sensor 90 and the second pressure sensor 91 are provided has been described. Moreover, it is good also as a structure provided only with either one.
 また、上述した実施形態では、図4に示すS20及び図6に示すS36においてアラームを出力しているが、これに限られるものではない。例えば、燃料電池システム1の緊急停止であってもよいし、その他の処理を実行してもよい。 In the embodiment described above, an alarm is output in S20 shown in FIG. 4 and S36 shown in FIG. 6, but the present invention is not limited to this. For example, the emergency stop of the fuel cell system 1 may be performed, and other processes may be executed.
 また、上述した実施形態では、図2に示す熱交換器81がオフガス燃焼部6に接続される例を説明したが、水素発生部4に改質用燃焼部を備え、オフガス燃焼部6及び改質用燃焼部の何れか一方に接続される場合であってもよい。この場合、圧力センサ90はオフガス燃焼部6及び改質用燃焼部の何れかに接続する流路の圧力のみを測定すればよい。さらに、オフガス燃焼部6及び改質用燃焼部を一つの燃焼部で共用し、共用した燃焼部と熱交換器81とが接続されていてもよい。 In the above-described embodiment, the example in which the heat exchanger 81 shown in FIG. 2 is connected to the off-gas combustion unit 6 has been described. However, the hydrogen generation unit 4 includes the reforming combustion unit, and the off-gas combustion unit 6 and the reformer are modified. It may be connected to either one of the quality combustion parts. In this case, the pressure sensor 90 only needs to measure the pressure in the flow path connected to either the off-gas combustion unit 6 or the reforming combustion unit. Further, the off-gas combustion unit 6 and the reforming combustion unit may be shared by one combustion unit, and the shared combustion unit and the heat exchanger 81 may be connected.
 また、上述した実施形態では、熱交換器81と回収水タンク83との間に水質処理部82を配置し、熱交換器81で回収された水が水質処理部82を通過して回収水タンク83に貯留される例を説明したが、これに限られるものではない。例えば、回収水タンク83と水気化部3との間に水質処理部82を配置し、回収水タンク83に貯留した水が水質処理部82を通過して水気化部3へ供給されてもよい。また、熱交換器81と回収水タンク83との間、及び、回収水タンク83と水気化部3との間のいずれにも水質処理部82を配置してもよい。 In the above-described embodiment, the water quality processing unit 82 is disposed between the heat exchanger 81 and the recovered water tank 83, and the water recovered by the heat exchanger 81 passes through the water quality processing unit 82 and is recovered. Although the example stored by 83 was demonstrated, it is not restricted to this. For example, the water quality processing unit 82 may be disposed between the recovered water tank 83 and the water vaporization unit 3, and the water stored in the recovered water tank 83 may be supplied to the water vaporization unit 3 through the water quality processing unit 82. . Further, the water quality treatment unit 82 may be disposed between the heat exchanger 81 and the recovered water tank 83 and between the recovered water tank 83 and the water vaporization unit 3.
 また、上述した実施形態では、セルスタック5のオフガスを燃焼させた燃焼排ガスに含まれる水分を回収する回収水タンク83を説明したが、これに限られるのものではなく、カソードのオフガスに含まれる水分を直接回収する回収水タンクであってもよい。以下、詳細を説明する。 Further, in the above-described embodiment, the recovery water tank 83 that recovers the moisture contained in the combustion exhaust gas obtained by burning the off gas of the cell stack 5 has been described. However, the embodiment is not limited to this, and is included in the cathode off gas. A recovered water tank that directly recovers moisture may be used. Details will be described below.
 図7は、変形例に係る燃料システム1の構成を示すブロック図である。図7に示す燃料システム1は、図2に示す燃料システム1とほぼ同様に構成され、図2に示す燃料システム1と比べて、オフガス燃焼部6のガスの出力先、熱交換器81で用いるガスの入力元と出力先とが異なる。さらに、図7に示す燃料システム1は、固体高分子形燃料電池を用いており、アノード加湿器94及びカソード加湿器95を備える点が図2に示す燃料システム1と相違する。以下は説明理解の容易性を考慮して、重複する説明は省略し、相違点を中心に説明する。 FIG. 7 is a block diagram showing a configuration of the fuel system 1 according to the modification. The fuel system 1 shown in FIG. 7 is configured in substantially the same manner as the fuel system 1 shown in FIG. 2, and is used in the gas output destination of the off-gas combustion unit 6 and the heat exchanger 81 as compared with the fuel system 1 shown in FIG. The gas input source and output destination are different. Further, the fuel system 1 shown in FIG. 7 uses a polymer electrolyte fuel cell, and is different from the fuel system 1 shown in FIG. 2 in that an anode humidifier 94 and a cathode humidifier 95 are provided. In the following, in consideration of the ease of understanding the explanation, the overlapping explanation will be omitted, and the explanation will focus on the differences.
 セルスタック5のアノード12のオフガスは、アノード12とオフガス燃焼部6とを接続する流路を通り、オフガス燃焼部6へ供給される。セルスタック5のカソード13のオフガスは、カソード13と熱交換器81とを接続する流路を通り、熱交換器81へ供給される。熱交換器81を通過したカソードオフガスは、カソード13とオフガス燃焼部6とを接続する流路を通り、オフガス燃焼部6へ供給される。 The off gas of the anode 12 of the cell stack 5 is supplied to the off gas combustion unit 6 through a flow path connecting the anode 12 and the off gas combustion unit 6. The off gas from the cathode 13 of the cell stack 5 is supplied to the heat exchanger 81 through a flow path connecting the cathode 13 and the heat exchanger 81. The cathode offgas that has passed through the heat exchanger 81 passes through the flow path connecting the cathode 13 and the offgas combustion unit 6 and is supplied to the offgas combustion unit 6.
 オフガス燃焼部6は、供給されたアノード12及びカソード13のオフガスと、供給された空気とを入力して燃焼し、燃焼排ガスを外部へ排気する。 The off-gas combustion unit 6 inputs the supplied off-gas of the anode 12 and the cathode 13 and the supplied air and burns it, and exhausts the combustion exhaust gas to the outside.
 カソード13と熱交換器81とを接続する流路には、第1の圧力センサ90が設けられている。第1の圧力センサ90は、カソード13と熱交換器81とを接続する流路内に流路内の流体圧力を検出する。 A first pressure sensor 90 is provided in the flow path connecting the cathode 13 and the heat exchanger 81. The first pressure sensor 90 detects the fluid pressure in the flow path in the flow path connecting the cathode 13 and the heat exchanger 81.
 アノード12に供給される水素リッチガスは、アノード加湿器94によって加湿されてアノード12へ供給される。カソード13へ供給される酸化剤(空気)は、カソード加湿器95によって加湿されてカソード13へ供給される。回収水タンク83に貯留された水は、改質以外の用途、例えば、アノード加湿器94及びカソード加湿器95へ供給する水として用いることができる。図7に示す例では、回収水タンク83に貯留された水が水ポンプ93によってアノード加湿器94及びカソード加湿器95へ供給される。 The hydrogen rich gas supplied to the anode 12 is humidified by the anode humidifier 94 and supplied to the anode 12. The oxidant (air) supplied to the cathode 13 is humidified by the cathode humidifier 95 and supplied to the cathode 13. The water stored in the recovered water tank 83 can be used as water supplied to applications other than reforming, for example, the anode humidifier 94 and the cathode humidifier 95. In the example shown in FIG. 7, the water stored in the recovered water tank 83 is supplied to the anode humidifier 94 and the cathode humidifier 95 by the water pump 93.
 図7に示す燃料電池システム1であっても、回収水タンク83の気密性を確保しながら排水することができる。 7 can be drained while ensuring the airtightness of the recovered water tank 83.
 さらに、図7に示す燃料電池システム1を図8に示す燃料電池システム1へ変形してもよい。図8に示す燃料電池システム1は、図7に示す燃料電池システム1と比べて、脱硫部2、水気化部3、水素発生部4及び水ポンプ92を備えておらず、これらの構成要素の替わりとして純水素を供給する水素ボンベ96を備えている点が相違する。その他の構成は図7と同一である。図8に示す燃料電池システム1であっても、回収水タンク83の気密性を確保しながら排水することができる。また、燃料ガスが純水素の場合には、回収水タンク83に貯留された水はアノード加湿器94及びカソード加湿器95へ供給する水として用いることができる。 Furthermore, the fuel cell system 1 shown in FIG. 7 may be modified to the fuel cell system 1 shown in FIG. Compared with the fuel cell system 1 shown in FIG. 7, the fuel cell system 1 shown in FIG. 8 does not include the desulfurization unit 2, the water vaporization unit 3, the hydrogen generation unit 4, and the water pump 92. Instead, a hydrogen cylinder 96 for supplying pure hydrogen is provided. Other configurations are the same as those in FIG. Even the fuel cell system 1 shown in FIG. 8 can be drained while ensuring the airtightness of the recovered water tank 83. When the fuel gas is pure hydrogen, the water stored in the recovered water tank 83 can be used as water supplied to the anode humidifier 94 and the cathode humidifier 95.
 1…燃料電池システム、4…水素発生部、5…セルスタック、6…オフガス燃焼部、11…制御部、81…熱交換器、83…回収水タンク、84…水位センサ、86…排水配管、87…電磁弁、90,91…圧力センサ。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 4 ... Hydrogen generation part, 5 ... Cell stack, 6 ... Off gas combustion part, 11 ... Control part, 81 ... Heat exchanger, 83 ... Recovery water tank, 84 ... Water level sensor, 86 ... Drain piping, 87 ... Solenoid valve, 90, 91 ... Pressure sensor.

Claims (7)

  1.  水素含有ガスを用いて発電を行うセルスタックを備える燃料電池システムであって、
     前記セルスタックのオフガスに含まれる水を回収し貯留する回収水タンクと、
     前記回収水タンクの水位が所定の水位であるか否かを検知する水位センサと、
     前記回収水タンク内の水を排水するための排水配管と、
     前記排水配管に設けられた弁と、
     前記水位センサにより前記回収水タンクの水位が所定の水位であると検知された場合には前記弁を所定期間のみ開とする制御部と、
    を有する燃料電池システム。
    A fuel cell system including a cell stack that generates power using a hydrogen-containing gas,
    A recovered water tank for recovering and storing water contained in the off gas of the cell stack;
    A water level sensor for detecting whether or not the water level of the recovered water tank is a predetermined water level;
    Drainage piping for draining water in the recovered water tank;
    A valve provided in the drainage pipe;
    A control unit that opens the valve only for a predetermined period when the water level sensor detects that the water level of the recovered water tank is a predetermined water level;
    A fuel cell system.
  2.  前記オフガスに含まれる水を回収する熱交換器を備え、
     前記回収水タンクは、前記熱交換器により回収された水を貯留する請求項1に記載の燃料電池システム。
    A heat exchanger for recovering water contained in the off gas;
    The fuel cell system according to claim 1, wherein the recovered water tank stores water recovered by the heat exchanger.
  3.  前記オフガスを燃焼させる燃焼部と、
     前記燃焼部の燃焼排ガスに含まれる水を回収する熱交換器を備え、
     前記回収水タンクは、前記熱交換器により回収された水を貯留する請求項1に記載の燃料電池システム。
    A combustion section for burning the off-gas;
    A heat exchanger for recovering water contained in the combustion exhaust gas of the combustion section;
    The fuel cell system according to claim 1, wherein the recovered water tank stores water recovered by the heat exchanger.
  4.  水素含有燃料を用いて水素含有ガスを発生させる水素発生部を備え、
     前記回収水タンクは、前記水素発生部へ水を供給するために水を貯留する請求項1~3の何れか一項に記載の燃料電池システム。
    Provided with a hydrogen generation part that generates hydrogen-containing gas using hydrogen-containing fuel,
    The fuel cell system according to any one of claims 1 to 3, wherein the recovered water tank stores water in order to supply water to the hydrogen generator.
  5.  前記制御部は、前記弁の開制御指示の回数をカウントし、開制御指示の回数が所定期間連続して所定値以上である場合には、異常が発生したと判定する請求項1~4の何れか一項に記載の燃料電池システム。 5. The control unit according to claim 1, wherein the controller counts the number of opening control instructions for the valve and determines that an abnormality has occurred when the number of opening control instructions is a predetermined value or more continuously for a predetermined period. The fuel cell system according to any one of the above.
  6.  前記水位センサは、前記回収水タンクの水位が所定の水位でない場合には信号を出力し、前記回収水タンクの水位が所定の水位である場合には信号を停止する又は電気的な接続を遮断する請求項1~5の何れか一項に記載の燃料電池システム。 The water level sensor outputs a signal when the water level of the recovered water tank is not a predetermined water level, and stops the signal or interrupts electrical connection when the water level of the recovered water tank is a predetermined water level. The fuel cell system according to any one of claims 1 to 5.
  7.  前記セルスタックから前記回収水タンクへ至る流路内の流体の圧力を計測する圧力センサを備え、
     前記制御部は、前記圧力センサにより検知された圧力が所定値以上である場合には、前記弁を閉とする請求項1~6の何れか一項に記載の燃料電池システム。
    A pressure sensor that measures the pressure of the fluid in the flow path from the cell stack to the recovered water tank;
    The fuel cell system according to any one of claims 1 to 6, wherein the control unit closes the valve when the pressure detected by the pressure sensor is equal to or higher than a predetermined value.
PCT/JP2012/063180 2011-05-23 2012-05-23 Fuel cell system WO2012161217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013516413A JPWO2012161217A1 (en) 2011-05-23 2012-05-23 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-114747 2011-05-23
JP2011114747 2011-05-23

Publications (1)

Publication Number Publication Date
WO2012161217A1 true WO2012161217A1 (en) 2012-11-29

Family

ID=47217293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063180 WO2012161217A1 (en) 2011-05-23 2012-05-23 Fuel cell system

Country Status (2)

Country Link
JP (1) JPWO2012161217A1 (en)
WO (1) WO2012161217A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153086A (en) * 2016-07-27 2016-11-23 河北秦汉电子科技有限公司 A kind of electromagnetic valve work condition checkout gear
KR20190106288A (en) * 2018-03-08 2019-09-18 현대자동차주식회사 Water trap apparatus for fuel cell and method for controlling the same
US10700369B2 (en) * 2018-02-02 2020-06-30 Hyundai Motor Company Method of diagnosing level sensor failure in fuel cell water trap and control unit using the same
JP2020149813A (en) * 2019-03-12 2020-09-17 株式会社豊田自動織機 Fuel cell system, vehicle, and method for controlling fuel cell system
CN112531186A (en) * 2019-09-19 2021-03-19 本田技研工业株式会社 Fault detection processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147262A (en) * 1995-11-22 1997-06-06 Takenaka Komuten Co Ltd Abnormally warning device
JP2006172953A (en) * 2004-12-16 2006-06-29 Equos Research Co Ltd Fuel cell system and trouble detection method of fuel cell system
JP2006339078A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Fuel cell system
JP2007257953A (en) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2008159462A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device
JP2009110849A (en) * 2007-10-31 2009-05-21 Nissan Motor Co Ltd Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147262A (en) * 1995-11-22 1997-06-06 Takenaka Komuten Co Ltd Abnormally warning device
JP2006172953A (en) * 2004-12-16 2006-06-29 Equos Research Co Ltd Fuel cell system and trouble detection method of fuel cell system
JP2006339078A (en) * 2005-06-03 2006-12-14 Toyota Motor Corp Fuel cell system
JP2007257953A (en) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd Fuel cell system
JP2008159462A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device
JP2009110849A (en) * 2007-10-31 2009-05-21 Nissan Motor Co Ltd Fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153086A (en) * 2016-07-27 2016-11-23 河北秦汉电子科技有限公司 A kind of electromagnetic valve work condition checkout gear
US10700369B2 (en) * 2018-02-02 2020-06-30 Hyundai Motor Company Method of diagnosing level sensor failure in fuel cell water trap and control unit using the same
KR20190106288A (en) * 2018-03-08 2019-09-18 현대자동차주식회사 Water trap apparatus for fuel cell and method for controlling the same
KR102575714B1 (en) * 2018-03-08 2023-09-07 현대자동차주식회사 Water trap apparatus for fuel cell and method for controlling the same
JP2020149813A (en) * 2019-03-12 2020-09-17 株式会社豊田自動織機 Fuel cell system, vehicle, and method for controlling fuel cell system
JP7189813B2 (en) 2019-03-12 2022-12-14 株式会社豊田自動織機 FUEL CELL SYSTEM, VEHICLE, AND CONTROL METHOD FOR FUEL CELL SYSTEM
CN112531186A (en) * 2019-09-19 2021-03-19 本田技研工业株式会社 Fault detection processing method

Also Published As

Publication number Publication date
JPWO2012161217A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5789780B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP5248176B2 (en) Fuel cell system
WO2012161217A1 (en) Fuel cell system
JP2009004346A (en) Reformer, fuel cell system, and shut-down method for reformer
JP5852011B2 (en) Fuel cell system
JP2007311350A (en) Fuel cell system
JP2003163021A (en) Solid polymer fuel cell system
WO2012091121A1 (en) Fuel cell system
JP2011018534A (en) Fuel cell system
WO2010079561A1 (en) Fuel cell system
WO2017110090A1 (en) Fuel cell system
EP3147981A1 (en) Fuell cell system
JP2007194098A (en) Fuel cell power generation system
JP2009076392A (en) Liquid fuel cell power generation system
JP5782458B2 (en) Fuel cell system
JP2008251447A (en) Drain treatment device of fuel cell power generation device
WO2012091120A1 (en) Fuel cell system
JP4610906B2 (en) Fuel cell power generation system and method for starting fuel cell power generation system
JP4977312B2 (en) Method for stopping fuel cell power generation system
JP5171384B2 (en) Desulfurization apparatus and fuel cell system
JP5738319B2 (en) Fuel cell system
JP2012138265A (en) Fuel cell system and desulfurizer
JP5728497B2 (en) Fuel cell system
JP2021190285A (en) Solid oxide type fuel cell system
JP6707894B2 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789884

Country of ref document: EP

Kind code of ref document: A1