WO2012091121A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2012091121A1
WO2012091121A1 PCT/JP2011/080470 JP2011080470W WO2012091121A1 WO 2012091121 A1 WO2012091121 A1 WO 2012091121A1 JP 2011080470 W JP2011080470 W JP 2011080470W WO 2012091121 A1 WO2012091121 A1 WO 2012091121A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
unit
fuel cell
cell system
damper
Prior art date
Application number
PCT/JP2011/080470
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 水野
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012551054A priority Critical patent/JPWO2012091121A1/en
Publication of WO2012091121A1 publication Critical patent/WO2012091121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • Patent Document 1 As a technology in this type of field, for example, there is a fuel cell system described in Patent Document 1.
  • This conventional fuel cell system includes an exhaust port for exhausting the exhaust gas after heat exchange with the heat exchanger to the outside of the case.
  • a separate member for collecting impurities is provided in front of the exhaust port to prevent impurities from entering the heat exchanger side from the exhaust port.
  • the installation mode of the fuel cell system there is a case where the fuel cell system is installed indoors and the exhaust port is connected to a single chimney or a collective chimney.
  • the fluid has a property of increasing as the temperature is high and the density is low, and decreasing as the temperature is low and the density is high. Therefore, in the chimney, high-temperature gas flows as an updraft in the center of the chimney, and conversely, the low-temperature gas descends along the chimney wall, creating suction, and the high-temperature gas is on the chimney side. Will be discharged efficiently. This phenomenon is known as the chimney effect.
  • the exhaust amount of the fuel cell system is controlled by a blower in the fuel cell system, but depending on the outside air temperature or the gas temperature in other exhaust lines, a high-temperature gas filling the power generation unit of the fuel cell system may be There is a possibility that the temperature of the power generation unit may be lowered by being sucked to the chimney side more than the control amount by the fuel cell system.
  • the unintentional temperature drop of the power generation unit caused by the installation mode of the fuel cell system which occurs when the fuel cell system is not executing the control for lowering the temperature of the power generation unit, causes a decrease in power generation efficiency and is stable. There is a risk of damage to power generation. Furthermore, the life of the cell stack may be reduced.
  • the present invention has been made in order to solve the above-mentioned problems, and by suppressing fluctuations in the exhaust gas flow rate caused by factors other than the operation control of the fuel cell system, the operation efficiency of the fuel cell system is reduced, or the cell stack.
  • An object of the present invention is to provide a fuel cell system capable of suppressing the shortening of the service life and capable of stable power generation.
  • a fuel cell system includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, and at least exhaust gas discharged from the power generation unit to the outside of the system.
  • This fuel cell system is provided with a damper for adjusting the flow rate of the combustion gas flowing toward the exhaust port in the exhaust path for exhausting the exhaust gas discharged from the power generation unit.
  • a damper for adjusting the flow rate of the combustion gas flowing toward the exhaust port in the exhaust path for exhausting the exhaust gas discharged from the power generation unit.
  • this fuel cell system by suppressing fluctuations in the exhaust gas flow rate caused by factors other than operation control of the fuel cell system, it is possible to suppress a decrease in the operating efficiency of the fuel cell system or a shortened life of the cell stack. Power generation is possible.
  • FIG. 1 is a diagram showing an embodiment of a fuel cell system according to the present invention. It is a figure which shows an example of the exhaust route of the fuel cell system shown in FIG. It is a figure which shows the exhaust route which concerns on a modification. It is a figure which shows the exhaust route which concerns on another modification. It is a figure which shows the exhaust route which concerns on another modification. It is a flowchart which shows the 1st form of operation
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7,
  • the water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, the control part 11, and the heat exchange part 15 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • a fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the heat exchange unit 15 moves the heat from the combustion gas to the water by circulating the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water (heat medium). Heat the water.
  • This water is stored, for example, in a hot water storage tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water storage tank to the heat exchanging unit 15.
  • FIG. 2 is a diagram illustrating an example of an exhaust path of the fuel cell system 1.
  • the exhaust path 30A of the fuel cell system 1 includes a power generation unit 21, the above-described heat exchange unit 15, and a damper 22, and is accommodated in a housing 23.
  • the casing 23 is provided with an exhaust gas flow path and an exhaust port 24 for exhausting the exhaust gas discharged from the heat exchange unit 15 to the outside.
  • the exhaust gas passage has airtightness with respect to external air.
  • the airtightness means airtightness with respect to outside air other than the gas scheduled to be discharged from the housing 25.
  • it means a structure in which gas is discharged from the housing 25 only from a dedicated gas discharge path.
  • the power generation unit 21 includes the cell stack 5 described above.
  • the power generation unit 21 includes at least the cell stack 5, and may further include an off-gas combustion unit 6, a hydrogen generation unit 4, or the like, or may not include the off-gas combustion unit 6, the hydrogen generation unit 4, or the like.
  • the heat exchanging unit 15 has, as a heat recovery water system, for example, a water channel for circulating water supplied from a hot water tank into the heat exchanging unit 15 and a water channel for discharging the water from the heat exchanging unit 15. Etc. are connected through. From the heat exchange unit 15, the exhaust gas after heat exchange is discharged toward the exhaust port 24 of the housing 23.
  • the damper 22 is, for example, an impeller in which blades are attached around a rotating shaft, or a guillotine damper in which a valve body crosses at right angles to the flow path.
  • the damper 22 is provided in the exhaust gas flow path at a position downstream of the heat exchange unit 15 and before the exhaust port 24.
  • the degree of closing of the exhaust gas flow path by the damper 22 is switched manually, for example.
  • a control unit (not shown) may be provided to control the operation of the damper 22.
  • the flow rate of the exhaust gas flowing toward the exhaust port 24 is adjusted by the above means.
  • a valve may be used in place of the damper 22.
  • the damper 22 that adjusts the flow rate of the combustion gas flowing toward the exhaust port 24 is provided in the exhaust path 30 ⁇ / b> A that exhausts the off-gas combustion gas discharged from the power generation unit 21. ing.
  • variation of the flow volume of the exhaust gas resulting from the installation aspect of the fuel cell system 1, etc. is suppressed, and it can suppress that the internal temperature of the electric power generation part 21 fluctuates. Therefore, it is possible to suppress a decrease in power generation efficiency due to fluctuations in the internal temperature of the power generation unit 21 or a shortening of the life of the cell stack 5, and a stable power generation by the fuel cell system 1 can be realized.
  • the damper 22 is provided on the downstream side of the heat exchange unit 15 in the exhaust path 30 ⁇ / b> A. Thereby, it is possible to suppress the heat quantity that should be transferred to the heat medium in the heat exchanging unit 15 from being discharged outside the fuel cell system 1 without heat exchange. Therefore, a decrease in power generation efficiency can be suppressed. Note that the position of the damper 22 may be provided upstream of the heat exchange unit 15 if the heat exchange temperature in the heat exchange unit 15 is not taken into consideration.
  • FIG. 3 is a view showing a modification of the exhaust path of the fuel cell system 1.
  • the exhaust path 30B according to the modified example includes a temperature detection unit 25 that detects an outlet temperature of the power generation unit 21 and a power generation unit 21 detected by the temperature detection unit 25, as compared to the exhaust path 30A.
  • a control unit 26 for controlling the flow rate of the exhaust gas by the damper 22 based on the outlet temperature of the exhaust gas.
  • the control unit 24 is disposed in the housing 25, but may be configured such that the function of the control unit 24 is added to the control unit 11 of the fuel cell system 1.
  • the control unit 26 determines that the flow rate of the exhaust gas flowing toward the exhaust port 24 has increased when the outlet temperature detected by the temperature detection unit 25 has decreased, and the damper so that the flow rate of the exhaust gas decreases. 22 is operated.
  • the outlet temperature of the power generation unit 21 may be any exhaust gas temperature downstream of the power generation unit 21 and upstream of the damper 22 in the exhaust path 30.
  • the temperature at the downstream of the power generation unit 21 or the inlet of the heat exchange unit 15 can be used.
  • a change in the exhaust gas flow rate in the exhaust path 30B can be detected as a change in the outlet temperature of the power generation unit 21. For this reason, it is not necessary to operate the damper 22 at an exhaust gas flow rate that does not cause a decrease in power generation efficiency of the fuel cell system 1 or a shortened life of the cell stack 5, and thus the operation frequency of the damper 22 is reduced. Can be made.
  • control part 26 is when the outlet temperature of the electric power generation part 21 detected by the temperature detection part 25 falls, and the fuel cell system 1 is not performing control which leads to the fall of the outlet temperature of the electric power generation part 21 Alternatively, it may be determined that the exhaust gas flow rate has increased unintentionally, and the damper 22 may be operated so that the exhaust gas flow rate decreases.
  • FIG. 4 is a diagram showing another modification of the exhaust path of the fuel cell system 1.
  • an exhaust path 30C according to another modification includes a temperature detection unit 25 that detects an internal temperature of the power generation unit 21 and a power generation detected by the temperature detection unit 25, as compared to the exhaust path 30A.
  • a control unit 26 that controls the flow rate of the exhaust gas by the damper 22 based on the internal temperature of the chamber 21 is further provided. In this case, the control unit 26 determines that the flow rate of the exhaust gas flowing toward the exhaust port 24 has increased when the internal temperature of the power generation unit 21 detected by the temperature detection unit 25 has decreased, and the exhaust gas flow rate has decreased.
  • the damper 22 is operated so as to.
  • a change in the exhaust gas flow rate in the exhaust path 30C can be detected as a change in the internal temperature of the power generation unit 21 including the cell stack 5. For this reason, it becomes possible to operate the damper 22 according to the change of the atmospheric temperature in which the cell stack 5 is arrange
  • control unit 26 is configured when the internal temperature of the power generation unit 21 detected by the temperature detection unit 25 decreases and the fuel cell system 1 is not executing control that leads to a decrease in the internal temperature of the power generation unit 21.
  • the damper 22 may be operated so that the exhaust gas flow rate decreases.
  • FIG. 5 is a view showing still another modified example of the exhaust path of the fuel cell system 1.
  • an exhaust path 30D according to another modification is, for example, a combustion catalyst section 27 for treating unburned components contained in exhaust gas, and a combustion catalyst section 27, compared to the exhaust path 30A.
  • a control unit 26 for controlling the flow rate of the exhaust gas by the damper 22 based on the temperature of the combustion catalyst unit 27 detected by the temperature detection unit 25.
  • the combustion catalyst unit 27 is disposed downstream of the power generation unit 21 and upstream of the heat exchange unit 15.
  • control unit 26 determines that the flow rate of the exhaust gas flowing toward the exhaust port 24 has increased when the temperature of the combustion catalyst unit 27 detected by the temperature detection unit 25 has decreased, and the exhaust gas flow rate has decreased.
  • the damper 22 is operated so as to.
  • the decrease in the exhaust gas temperature in the exhaust passage 30D may cause not only a decrease in the internal temperature of the power generation unit 21, but also a decrease in the temperature of the combustion catalyst unit 27.
  • the combustion catalyst unit 27 when the temperature falls below the activation temperature determined by the type of catalyst, it becomes impossible to appropriately treat the unburned components contained in the exhaust gas. Exhausting the gas containing unburned components outside the fuel cell system 1 results in a decrease in power generation efficiency of the fuel cell system 1 as a result.
  • a change in the exhaust gas flow rate in the exhaust passage 30D can be detected as a temperature change in the combustion catalyst unit 27.
  • the exhaust gas can be discharged outside the fuel cell system 1 in a safer state.
  • FIG. 6 is a flowchart showing a first form of damper operation control.
  • step S101 it is determined whether or not the temperature of the exhaust gas detected by the temperature detection unit 25 is lower than a predetermined first threshold temperature (step S101).
  • step S101 when it is determined that the temperature of the exhaust gas is lower than the first threshold temperature, the processing ends.
  • step S102 when it is determined in step S101 that the temperature of the exhaust gas is equal to or higher than the first threshold temperature, the damper 22 is closed (step S102).
  • step S103 it is determined whether or not the elapsed time since the damper 22 is closed exceeds a predetermined time (step S103), and after the predetermined time has elapsed, the damper 22 is opened (step S104).
  • the damper 22 since the damper 22 is opened and closed according to the temperature detected by the temperature detector 25, the temperature drop of each part in the housing 23 due to an unintended increase in the exhaust gas flow rate can be suppressed, and stable power generation can be maintained.
  • the opening / closing of the damper 22 is determined based on whether or not the temperature is lower than the first threshold temperature set in advance, the exhaust gas temperature is reduced to a level that does not affect the power generation and life of the fuel cell system 1 (the exhaust gas flow rate is reduced). In the increase), the closing operation of the damper 22 becomes unnecessary, and the mechanical deterioration of the damper 22 can be suppressed.
  • the exhaust path may not be completely blocked when the damper 22 is closed. Such a process can suppress an excessive increase in pressure on the upstream side of the damper 22. Further, after the damper 22 is closed, the fuel cell system 1 may be stopped without opening the damper 22 after a predetermined time has elapsed, or immediately after the damper 22 is opened, the process returns to step S101 to determine the exhaust gas temperature. You may go.
  • FIG. 7 is a flowchart showing a second mode of damper operation control.
  • the second mode is different from the first mode in which the damper 22 is opened in a timed manner in that it is determined whether or not the damper 22 is opened based on the temperature of the exhaust gas detected by the temperature detector 25.
  • first it is determined whether or not the temperature of the exhaust gas detected by the temperature detection unit 25 is lower than a predetermined first threshold temperature (step S201).
  • step S201 If it is determined in step S201 that the temperature of the exhaust gas is lower than the first threshold temperature, the fuel cell system 1 then performs operation control so that the temperature of the exhaust gas flowing through the exhaust path decreases. It is determined whether or not it is present (step S202). When it is determined that the operation control that lowers the temperature of the exhaust gas is being performed, it is determined that the control of the damper 22 is unnecessary, and the process ends. On the other hand, when it is determined that the operation control that lowers the temperature of the exhaust gas has not been executed, the damper 22 is closed (step S203). The closing of the damper 22 may be a binary control, or the exhaust gas flow rate may be gradually reduced by a stepwise control. Examples of the operation control that lowers the temperature of the exhaust gas include control for reducing the power generation amount and control for increasing the cathode air amount.
  • step S204 If it is determined in step 201 that the exhaust gas temperature is equal to or higher than the first threshold temperature, then whether or not the exhaust gas temperature exceeds a second threshold temperature that is higher than the first threshold temperature. Is determined (step S204). In step S204, if it is determined that the temperature of the exhaust gas does not exceed the second threshold temperature, it is determined that control of the damper 22 is unnecessary, and the process ends. On the other hand, when it is determined in step S204 that the exhaust gas temperature is equal to or lower than the second threshold temperature, the damper 22 is opened (step S205).
  • the damper 22 since the damper 22 is opened and closed according to the temperature detected by the temperature detector 25, the temperature drop of each part in the housing 23 due to an unintended increase in the exhaust gas flow rate can be suppressed, and stable power generation can be maintained.
  • the damper 22 since it is determined whether the damper 22 is opened or closed based on whether or not the temperature is lower than the first threshold temperature set in advance, the exhaust gas temperature is reduced to a level that does not affect the power generation and life of the fuel cell system 1 (the exhaust gas flow rate is reduced). In the increase), the closing operation of the damper 22 becomes unnecessary, and the mechanical deterioration of the damper 22 can be suppressed.
  • FIG. 8 is a flowchart showing a third mode of damper operation control.
  • the third mode is different from the second mode in that the amount of change in the temperature of the exhaust gas per unit time is added to the control judgment of the damper 22.
  • first it is determined whether or not the temperature of the exhaust gas detected by the temperature detection unit 25 is lower than a third threshold temperature (lower limit temperature) lower than the first threshold temperature (step). S301).
  • step S301 If it is determined in step S301 that the temperature of the exhaust gas is lower than the lower limit temperature (third threshold temperature) that allows the operation of the fuel cell system 1, the fuel cell system 1 is stopped (step S302). . By shortening the fuel cell system 1 quickly when a significant temperature drop that cannot be suppressed by temporary closing of the damper 22 occurs, the shortening of the life of the cell stack 5 can be suppressed.
  • the processing in step S301 and step S302 may be applied to the first and second modes described above.
  • step S301 if it is determined in step S301 that the temperature of the exhaust gas is equal to or higher than the lower limit temperature (third threshold temperature), then the temperature of the exhaust gas detected by the temperature detection unit 25 is set to a predetermined first temperature.
  • step S303 It is determined whether the temperature is lower than the threshold temperature (step S303). In step S303, if it is determined that the temperature of the exhaust gas is equal to or higher than the first threshold temperature, it is determined whether or not the amount of decrease in the temperature of the exhaust gas per unit time exceeds a predetermined first change amount. (Step S304).
  • step S303 If it is determined in step S303 that the temperature of the exhaust gas is lower than the first threshold temperature, or in step S304, it is determined that the amount of decrease in the temperature of the exhaust gas per unit time exceeds the first change amount. If so, it is next determined whether or not the fuel cell system 1 is performing operational control that lowers the temperature of the exhaust gas flowing through the exhaust path (step S305). When it is determined that the operation control that lowers the temperature of the exhaust gas is being performed, it is determined that the control of the damper 22 is unnecessary, and the process ends. On the other hand, when it is determined that the operation control that lowers the temperature of the exhaust gas is not being executed, the damper 22 is closed (step S306).
  • step S304 determines whether or not the amount of decrease in exhaust gas temperature per unit time is equal to or less than the first change amount. If it is determined in step S307 that the exhaust gas temperature is equal to or lower than the second threshold temperature, then whether or not the amount of increase in the exhaust gas temperature per unit time exceeds a predetermined second variation amount. A determination is made (step S308). In step S308, when it is determined that the increase amount of the exhaust gas temperature per unit time is equal to or less than the predetermined second change amount, it is determined that control of the damper 22 is unnecessary, and the process ends.
  • step S307 When it is determined in step S307 that the temperature of the exhaust gas exceeds the second threshold temperature, or in step S308, the amount of increase in the temperature of the exhaust gas per unit time exceeds the predetermined second change amount. If it is determined that, the damper 22 is opened (step S309).
  • the damper 22 since the damper 22 is opened and closed according to the temperature detected by the temperature detector 25, the temperature drop of each part in the housing 23 due to an unintended increase in the exhaust gas flow rate can be suppressed, and stable power generation can be maintained.
  • the damper 22 since it is determined whether the damper 22 is opened or closed based on whether or not the temperature is lower than the first threshold temperature set in advance, the exhaust gas temperature is reduced to a level that does not affect the power generation and life of the fuel cell system 1 (the exhaust gas flow rate is reduced). In the increase), the closing operation of the damper 22 becomes unnecessary, and the mechanical deterioration of the damper 22 can be suppressed.
  • the damper 22 is closed when the temperature decrease amount per unit time exceeds the predetermined first change amount, An unintended exhaust gas flow rate increase (exhaust gas temperature decrease) can be suppressed more quickly.
  • the damper 22 is opened, and normality is achieved more quickly. It is possible to return to the state of the exhaust path at the time.

Abstract

A damper (22) for adjusting the flow of combustion gas flowing toward an exhaust opening (24) is provided in an exhaust channel for discharging the combustion gas of off gas emitted from a power generation unit (21) in a fuel cell system (1). The damper (22) makes it possible to suppress fluctuations in the flow of exhaust gas in the fuel cell system (1) that are caused by aspects of the configuration thereof and the like, and to suppress fluctuations in the internal temperature of the power generation unit (21). Therefore, it is possible to prevent a decline in power generation efficiency caused by fluctuations in the internal temperature of the power generation unit (21).

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 この種の分野の技術として、例えば特許文献1に記載の燃料電池システムがある。この従来の燃料電池システムは、熱交換器で熱交換された後の排ガスをケース外部に排気する排気口を備えている。排気口の手前には、不純物を収集するためのセパレート部材が設けられており、排気口から熱交換器側に不純物が入り込むことを防止している。 As a technology in this type of field, for example, there is a fuel cell system described in Patent Document 1. This conventional fuel cell system includes an exhaust port for exhausting the exhaust gas after heat exchange with the heat exchanger to the outside of the case. A separate member for collecting impurities is provided in front of the exhaust port to prevent impurities from entering the heat exchanger side from the exhaust port.
特開2009-181701号公報JP 2009-181701 A
 燃料電池システムの設置態様の一例として、燃料電池システムを屋内に設置し、排気口を単独煙突又は集合煙突に接続する場合がある。このとき、流体は、温度が高く密度の低いものほど上昇し、温度が低く密度が高いものほど下降する性質がある。したがって、煙突においては、高温の気体は煙突内の中心部分を上昇気流として流れ、反対に、低温の気体は煙突壁面付近を伝って下降することにより、吸引力が生まれ、高温の気体が煙突側に効率的に排出されることになる。この現象は、煙突効果として知られている。 As an example of the installation mode of the fuel cell system, there is a case where the fuel cell system is installed indoors and the exhaust port is connected to a single chimney or a collective chimney. At this time, the fluid has a property of increasing as the temperature is high and the density is low, and decreasing as the temperature is low and the density is high. Therefore, in the chimney, high-temperature gas flows as an updraft in the center of the chimney, and conversely, the low-temperature gas descends along the chimney wall, creating suction, and the high-temperature gas is on the chimney side. Will be discharged efficiently. This phenomenon is known as the chimney effect.
 一方、燃料電池システムの排気量は、燃料電池システム内のブロアによって制御されているが、外気温や他の排気ライン内の気体温度によっては、燃料電池システムの発電部に充満する高温の気体が、燃料電池システムによる制御量以上に煙突側に吸引され、発電部の温度が低下する可能性がある。燃料電池システムが発電部の温度を下げる制御を実行していないときに発生する、燃料電池システムの設置態様に起因する意図しない発電部の温度低下は、発電効率の低下を招き、また安定的な発電を損なうおそれがある。さらには、セルスタックの寿命低下を招くおそれもある。 On the other hand, the exhaust amount of the fuel cell system is controlled by a blower in the fuel cell system, but depending on the outside air temperature or the gas temperature in other exhaust lines, a high-temperature gas filling the power generation unit of the fuel cell system may be There is a possibility that the temperature of the power generation unit may be lowered by being sucked to the chimney side more than the control amount by the fuel cell system. The unintentional temperature drop of the power generation unit caused by the installation mode of the fuel cell system, which occurs when the fuel cell system is not executing the control for lowering the temperature of the power generation unit, causes a decrease in power generation efficiency and is stable. There is a risk of damage to power generation. Furthermore, the life of the cell stack may be reduced.
 このような問題に対し、上述した特許文献1のような燃料電池システムでは、排気口から流入する雨水や粉塵等の不純物をセパレート部材で収集することはできても、排気口から意図しない気体の流出を十分に抑制する効果があるとは言い難い。 For such a problem, in the fuel cell system as described in Patent Document 1 described above, impurities such as rainwater and dust flowing in from the exhaust port can be collected by a separate member, but unintended gas from the exhaust port can be collected. It is hard to say that there is an effect of sufficiently suppressing the outflow.
 本発明は、上記課題の解決のためになされたものであり、燃料電池システムの運転制御以外の要因による排気ガスの流量変動を抑えることにより、燃料電池システムの運転効率の低下、あるいは、セルスタックの短寿命化を抑制し、安定した発電が可能な燃料電池システムを提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and by suppressing fluctuations in the exhaust gas flow rate caused by factors other than the operation control of the fuel cell system, the operation efficiency of the fuel cell system is reduced, or the cell stack. An object of the present invention is to provide a fuel cell system capable of suppressing the shortening of the service life and capable of stable power generation.
 上記課題の解決のため、本発明の一側面に係る燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、少なくとも発電部から排出される排出ガスをシステムの外部に排出させる排気口と、排気口に向かって流れる前記排気ガスの流量を調整するダンパと、を備える。 In order to solve the above problems, a fuel cell system according to an aspect of the present invention includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, and at least exhaust gas discharged from the power generation unit to the outside of the system. An exhaust port for discharging, and a damper for adjusting a flow rate of the exhaust gas flowing toward the exhaust port.
 この燃料電池システムでは、発電部から排出される排出ガスを排気する排気経路において、排気口に向かって流れる燃焼ガスの流量を調整するダンパが設けられている。このダンパにより、燃料電池システムの設置の態様などに起因する排気ガスの流量の変動が抑えられ、発電部の内部温度の変動を抑制できる。したがって、発電部の内部温度の変動による発電効率の低下、及びセルスタックの寿命低下を抑制することができる。 This fuel cell system is provided with a damper for adjusting the flow rate of the combustion gas flowing toward the exhaust port in the exhaust path for exhausting the exhaust gas discharged from the power generation unit. By this damper, the fluctuation | variation of the flow volume of the exhaust gas resulting from the installation aspect etc. of a fuel cell system is suppressed, and the fluctuation | variation of the internal temperature of a power generation part can be suppressed. Therefore, it is possible to suppress a decrease in power generation efficiency due to a change in the internal temperature of the power generation unit and a decrease in the life of the cell stack.
 この燃料電池システムによれば、燃料電池システムの運転制御以外の要因による排気ガスの流量変動を抑えることにより、燃料電池システムの運転効率の低下、あるいは、セルスタックの短寿命化を抑制し、安定した発電が可能となる。 According to this fuel cell system, by suppressing fluctuations in the exhaust gas flow rate caused by factors other than operation control of the fuel cell system, it is possible to suppress a decrease in the operating efficiency of the fuel cell system or a shortened life of the cell stack. Power generation is possible.
本発明に係る燃料電池システムの一実施形態を示す図である。1 is a diagram showing an embodiment of a fuel cell system according to the present invention. 図1に示した燃料電池システムの排気経路の一例を示す図である。It is a figure which shows an example of the exhaust route of the fuel cell system shown in FIG. 変形例に係る排気経路を示す図である。It is a figure which shows the exhaust route which concerns on a modification. 別の変形例に係る排気経路を示す図である。It is a figure which shows the exhaust route which concerns on another modification. 更に別の変形例に係る排気経路を示す図である。It is a figure which shows the exhaust route which concerns on another modification. ダンパの動作制御の第1形態を示すフローチャートである。It is a flowchart which shows the 1st form of operation | movement control of a damper. ダンパの動作制御の第2形態を示すフローチャートである。It is a flowchart which shows the 2nd form of operation | movement control of a damper. ダンパの動作制御の第3形態を示すフローチャートである。It is a flowchart which shows the 3rd form of operation | movement control of a damper.
 以下、図面を参照しながら、本発明に係る燃料電池システムの好適な実施形態について詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of a fuel cell system according to the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、熱交換部15とを備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。 As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, the control part 11, and the heat exchange part 15 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガスを発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
 なお、例えば純水素ガスや水素富化ガスなど、改質処理を必要としない水素含有燃料を用いる場合は、脱硫器2、水供給部8、水気化部3、および水素発生部4のうちの一つまたは複数を省略することができる。 In the case of using a hydrogen-containing fuel that does not require a reforming process, such as pure hydrogen gas or hydrogen-enriched gas, for example, among the desulfurizer 2, the water supply unit 8, the water vaporization unit 3, and the hydrogen generation unit 4 One or more can be omitted.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 熱交換部15は、セルスタック5から排出されるオフガスの燃焼ガス(すなわち、オフガス燃焼部6からの排ガス)、及び水(熱媒体)を流通させることで、燃焼ガスから水に熱を移動させて水を加熱する。この水は、例えば燃料電池システム1が設置された施設に湯を供給するための貯湯槽に貯留され、その貯湯槽から熱交換部15に循環供給されるものである。 The heat exchange unit 15 moves the heat from the combustion gas to the water by circulating the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water (heat medium). Heat the water. This water is stored, for example, in a hot water storage tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water storage tank to the heat exchanging unit 15.
 続いて、上述した燃料電池システム1の排気経路について説明する。図2は、燃料電池システム1の排気経路の一例を示す図である。 Subsequently, the exhaust path of the fuel cell system 1 will be described. FIG. 2 is a diagram illustrating an example of an exhaust path of the fuel cell system 1.
 図2に示すように、燃料電池システム1の排気経路30Aは、発電部21と、上述の熱交換部15と、ダンパ22とを含んで構成され、筐体23内に収容されている。筐体23には、熱交換部15から排出される排ガスを外部に排出させる排ガス流路及び排気口24が設けられている。詳細は図示しないが、排ガス流路は外部の空気に対して気密性を有している。なお、ここでの気密性とは、筐体25からの排出が予定されている気体以外の外気に対して気密であることを意味する。具体的には、筐体25内からの気体の排出は専用の気体排出路からのみ行われる構造を意味する。 As shown in FIG. 2, the exhaust path 30A of the fuel cell system 1 includes a power generation unit 21, the above-described heat exchange unit 15, and a damper 22, and is accommodated in a housing 23. The casing 23 is provided with an exhaust gas flow path and an exhaust port 24 for exhausting the exhaust gas discharged from the heat exchange unit 15 to the outside. Although not shown in detail, the exhaust gas passage has airtightness with respect to external air. Here, the airtightness means airtightness with respect to outside air other than the gas scheduled to be discharged from the housing 25. Specifically, it means a structure in which gas is discharged from the housing 25 only from a dedicated gas discharge path.
 発電部21は、上述したセルスタック5を含んで構成されたものである。発電部21は、少なくともセルスタック5を含むものであって、さらにオフガス燃焼部6や水素発生部4等を含む場合もあれば、オフガス燃焼部6や水素発生部4等を含まない場合もある。また、熱交換部15には、熱回収水系として、例えば貯湯槽から循環供給された水を熱交換部15に流入させる水流路、及びその水を熱交換部15から流出させる水流路がそれぞれポンプ等を介して接続されている。熱交換部15からは、熱交換後の排ガスが筐体23の排気口24に向かって排出される。 The power generation unit 21 includes the cell stack 5 described above. The power generation unit 21 includes at least the cell stack 5, and may further include an off-gas combustion unit 6, a hydrogen generation unit 4, or the like, or may not include the off-gas combustion unit 6, the hydrogen generation unit 4, or the like. . In addition, the heat exchanging unit 15 has, as a heat recovery water system, for example, a water channel for circulating water supplied from a hot water tank into the heat exchanging unit 15 and a water channel for discharging the water from the heat exchanging unit 15. Etc. are connected through. From the heat exchange unit 15, the exhaust gas after heat exchange is discharged toward the exhaust port 24 of the housing 23.
 ダンパ22は、例えば回転軸の周囲に羽根が取り付けられてなる羽根車や、弁体が流路に対して直角に横切るギロチンダンパなどである。ダンパ22は、排ガス流路において、熱交換部15の下流側で排気口24の手前となる位置に設けられている。ダンパ22による排ガス流路の閉鎖度は例えば手動によって切り替えられる。また、図示しない制御部を設け、これによりダンパ22の動作を制御してもよい。以上のような手段により、排気口24に向かって流れる排ガスの流量が調整される。ダンパ22の代わりにバルブを用いることもできる。 The damper 22 is, for example, an impeller in which blades are attached around a rotating shaft, or a guillotine damper in which a valve body crosses at right angles to the flow path. The damper 22 is provided in the exhaust gas flow path at a position downstream of the heat exchange unit 15 and before the exhaust port 24. The degree of closing of the exhaust gas flow path by the damper 22 is switched manually, for example. In addition, a control unit (not shown) may be provided to control the operation of the damper 22. The flow rate of the exhaust gas flowing toward the exhaust port 24 is adjusted by the above means. A valve may be used in place of the damper 22.
 以上説明したように、燃料電池システム1では、発電部21から排出されるオフガスの燃焼ガスを排気する排気経路30Aにおいて、排気口24に向かって流れる燃焼ガスの流量を調整するダンパ22が設けられている。このダンパ22により、燃料電池システム1の設置の態様などに起因する排気ガスの流量の変動が抑えられ、発電部21の内部温度が変動することを抑制できる。したがって、発電部21の内部温度の変動による発電効率の低下、あるいは、セルスタック5の短寿命化を抑制することができ、燃料電池システム1による安定した発電を実現することができる。 As described above, in the fuel cell system 1, the damper 22 that adjusts the flow rate of the combustion gas flowing toward the exhaust port 24 is provided in the exhaust path 30 </ b> A that exhausts the off-gas combustion gas discharged from the power generation unit 21. ing. By this damper 22, the fluctuation | variation of the flow volume of the exhaust gas resulting from the installation aspect of the fuel cell system 1, etc. is suppressed, and it can suppress that the internal temperature of the electric power generation part 21 fluctuates. Therefore, it is possible to suppress a decrease in power generation efficiency due to fluctuations in the internal temperature of the power generation unit 21 or a shortening of the life of the cell stack 5, and a stable power generation by the fuel cell system 1 can be realized.
 また、この燃料電池システム1では、排気経路30Aにおいて、ダンパ22が熱交換部15の下流側に設けられている。これにより、熱交換部15において熱媒体に受け渡すはずの熱量が熱交換されることなく燃料電池システム1の外部に排出されることを抑制できる。したがって、発電効率の低下を抑制することができる。なお、ダンパ22の位置は、熱交換部15における熱交換温度を考慮しないのであれば、熱交換部15の上流に設けてもよい。 In the fuel cell system 1, the damper 22 is provided on the downstream side of the heat exchange unit 15 in the exhaust path 30 </ b> A. Thereby, it is possible to suppress the heat quantity that should be transferred to the heat medium in the heat exchanging unit 15 from being discharged outside the fuel cell system 1 without heat exchange. Therefore, a decrease in power generation efficiency can be suppressed. Note that the position of the damper 22 may be provided upstream of the heat exchange unit 15 if the heat exchange temperature in the heat exchange unit 15 is not taken into consideration.
 また、図3は、燃料電池システム1の排気経路の変形例を示す図である。同図に示すように、変形例に係る排気経路30Bは、排気経路30Aと比較して、発電部21の出口温度を検出する温度検出部25と、温度検出部25によって検出された発電部21の出口温度に基づいてダンパ22による排ガスの流量を制御する制御部26とを更に備える。なお、図3において、制御部24は、筐体25内に配置されているが、燃料電池システム1の制御部11に制御部24の機能を付与した形態であってもよい。 FIG. 3 is a view showing a modification of the exhaust path of the fuel cell system 1. As shown in the figure, the exhaust path 30B according to the modified example includes a temperature detection unit 25 that detects an outlet temperature of the power generation unit 21 and a power generation unit 21 detected by the temperature detection unit 25, as compared to the exhaust path 30A. And a control unit 26 for controlling the flow rate of the exhaust gas by the damper 22 based on the outlet temperature of the exhaust gas. In FIG. 3, the control unit 24 is disposed in the housing 25, but may be configured such that the function of the control unit 24 is added to the control unit 11 of the fuel cell system 1.
 この場合、制御部26は、温度検出部25によって検出された出口温度が低下した場合に、排気口24に向かって流れる排ガスの流量が増加したと判断し、排ガスの流量が減少するようにダンパ22を動作させる。ここでいう発電部21の出口温度とは、排気経路30内において、発電部21の下流で且つダンパ22の上流における排ガス温度であればよい。例えば発電部21の直下流や熱交換部15の入口などにおける温度を用いることができる。 In this case, the control unit 26 determines that the flow rate of the exhaust gas flowing toward the exhaust port 24 has increased when the outlet temperature detected by the temperature detection unit 25 has decreased, and the damper so that the flow rate of the exhaust gas decreases. 22 is operated. Here, the outlet temperature of the power generation unit 21 may be any exhaust gas temperature downstream of the power generation unit 21 and upstream of the damper 22 in the exhaust path 30. For example, the temperature at the downstream of the power generation unit 21 or the inlet of the heat exchange unit 15 can be used.
 このような構成によれば、排気経路30Bにおける排ガス流量の変化を発電部21の出口温度の変化として検知できる。このため、燃料電池システム1の発電効率の低下、あるいは、セルスタック5の短寿命化を招かない程度の排ガス流量においては、ダンパ22を動作させる必要がないことから、ダンパ22の動作頻度を低減させることができる。 According to such a configuration, a change in the exhaust gas flow rate in the exhaust path 30B can be detected as a change in the outlet temperature of the power generation unit 21. For this reason, it is not necessary to operate the damper 22 at an exhaust gas flow rate that does not cause a decrease in power generation efficiency of the fuel cell system 1 or a shortened life of the cell stack 5, and thus the operation frequency of the damper 22 is reduced. Can be made.
 また、制御部26は、温度検出部25によって検出される発電部21の出口温度が低下し、かつ、燃料電池システム1が発電部21の出口温度の低下につながる制御を実行していない場合に、排ガス流量の増加が意図せずに生じたと判断し、排ガスの流量が減少するようにダンパ22を動作させてもよい。 Moreover, the control part 26 is when the outlet temperature of the electric power generation part 21 detected by the temperature detection part 25 falls, and the fuel cell system 1 is not performing control which leads to the fall of the outlet temperature of the electric power generation part 21 Alternatively, it may be determined that the exhaust gas flow rate has increased unintentionally, and the damper 22 may be operated so that the exhaust gas flow rate decreases.
 この場合、燃料電池システム1の運転制御に起因して発電部21の出口温度が変化したのか(意図した温度変化)、あるいは、燃料電池システム1の運転制御に起因せずに発電部21の出口温度が変化したのか(意図しない温度変化)であるかを判定することが可能となる。したがって、意図しない排ガス温度変化が生じたときにダンパ22を動作させればよいので、ダンパ22を動作させるべきタイミングをより正確に判断することができる。 In this case, whether the outlet temperature of the power generation unit 21 has changed due to operation control of the fuel cell system 1 (intended temperature change), or the outlet of the power generation unit 21 has not occurred due to operation control of the fuel cell system 1. It is possible to determine whether the temperature has changed (unintended temperature change). Therefore, it is only necessary to operate the damper 22 when an unintended exhaust gas temperature change occurs. Therefore, it is possible to more accurately determine the timing at which the damper 22 should be operated.
 図4は、燃料電池システム1の排気経路の別の変形例を示す図である。同図に示すように、別の変形例に係る排気経路30Cは、排気経路30Aと比較して、発電部21の内部温度を検出する温度検出部25と、温度検出部25によって検出された発電室21の内部温度に基づいてダンパ22による排ガスの流量を制御する制御部26とを更に備える。この場合、制御部26は、温度検出部25によって検出された発電部21の内部温度が低下した場合に、排気口24に向かって流れる排ガスの流量が増加したと判断し、排ガスの流量が減少するようにダンパ22を動作させる。 FIG. 4 is a diagram showing another modification of the exhaust path of the fuel cell system 1. As shown in the figure, an exhaust path 30C according to another modification includes a temperature detection unit 25 that detects an internal temperature of the power generation unit 21 and a power generation detected by the temperature detection unit 25, as compared to the exhaust path 30A. A control unit 26 that controls the flow rate of the exhaust gas by the damper 22 based on the internal temperature of the chamber 21 is further provided. In this case, the control unit 26 determines that the flow rate of the exhaust gas flowing toward the exhaust port 24 has increased when the internal temperature of the power generation unit 21 detected by the temperature detection unit 25 has decreased, and the exhaust gas flow rate has decreased. The damper 22 is operated so as to.
 このような構成によれば、排気経路30Cにおける排ガス流量の変化をセルスタック5を含む発電部21の内部温度の変化として検知できる。このため、セルスタック5が配置されている雰囲気温度の変化に応じてダンパ22を操作することが可能となる。したがって、燃料電池システム1の発電効率の低下、あるいは、セルスタック5の短寿命化を招く程度に排ガス流量が変化した場合にダンパ22を動作させればよいことから、ダンパ22の動作頻度を低減させることができる。 According to such a configuration, a change in the exhaust gas flow rate in the exhaust path 30C can be detected as a change in the internal temperature of the power generation unit 21 including the cell stack 5. For this reason, it becomes possible to operate the damper 22 according to the change of the atmospheric temperature in which the cell stack 5 is arrange | positioned. Therefore, it is only necessary to operate the damper 22 when the exhaust gas flow rate has changed to such an extent that the power generation efficiency of the fuel cell system 1 is reduced or the life of the cell stack 5 is shortened. Can be made.
 また、制御部26は、温度検出部25によって検出される発電部21の内部温度が低下し、かつ、燃料電池システム1が発電部21の内部温度の低下につながる制御を実行していない場合に、排ガス流量の増加が意図せずに生じたと判断し、排ガスの流量が減少するようにダンパ22を動作させてもよい。 In addition, the control unit 26 is configured when the internal temperature of the power generation unit 21 detected by the temperature detection unit 25 decreases and the fuel cell system 1 is not executing control that leads to a decrease in the internal temperature of the power generation unit 21. Alternatively, it may be determined that the exhaust gas flow rate has increased unintentionally, and the damper 22 may be operated so that the exhaust gas flow rate decreases.
 図5は、燃料電池システム1の排気経路の更に別の変形例を示す図である。同図に示すように、別の変形例に係る排気経路30Dは、排気経路30Aと比較して、例えば排ガス中に含まれる未燃成分を処理するための燃焼触媒部27と、燃焼触媒部27の温度を検出する温度検出部25と、温度検出部25によって検出された燃焼触媒部27の温度に基づいてダンパ22による排ガスの流量を制御する制御部26とを更に備える。燃焼触媒部27は、発電部21の下流で且つ熱交換部15の上流に配置されている。この場合、制御部26は、温度検出部25によって検出された燃焼触媒部27の温度が低下した場合に、排気口24に向かって流れる排ガスの流量が増加したと判断し、排ガスの流量が減少するようにダンパ22を動作させる。 FIG. 5 is a view showing still another modified example of the exhaust path of the fuel cell system 1. As shown in the figure, an exhaust path 30D according to another modification is, for example, a combustion catalyst section 27 for treating unburned components contained in exhaust gas, and a combustion catalyst section 27, compared to the exhaust path 30A. And a control unit 26 for controlling the flow rate of the exhaust gas by the damper 22 based on the temperature of the combustion catalyst unit 27 detected by the temperature detection unit 25. The combustion catalyst unit 27 is disposed downstream of the power generation unit 21 and upstream of the heat exchange unit 15. In this case, the control unit 26 determines that the flow rate of the exhaust gas flowing toward the exhaust port 24 has increased when the temperature of the combustion catalyst unit 27 detected by the temperature detection unit 25 has decreased, and the exhaust gas flow rate has decreased. The damper 22 is operated so as to.
 排気経路30Dの排ガス温度の低下は、発電部21の内部温度の低下だけでなく、燃焼触媒部27の温度低下も引き起こす可能性がある。燃焼触媒部27では、その温度が触媒の種類によって定められる活性温度を下回ると、排ガス中に含まれる未燃成分を適切に処理することができなくなる。未燃成分を含むガスを燃料電池システム1の外部に排出してしまうことは、結果として燃料電池システム1の発電効率の低下につながる。これに対し、この変形例では、排気経路30Dにおける排ガス流量の変化を燃焼触媒部27の温度変化として検知できる。これにより、排ガス中に含まれる未燃成分を適切に燃焼処理させて、その熱を熱回収系によって回収して利用することが可能となるので、燃料電池システム1の発電効率の低下を抑制できる。また、より安全性の高い状態で排ガスを燃料電池システム1の外部に排出できる。 The decrease in the exhaust gas temperature in the exhaust passage 30D may cause not only a decrease in the internal temperature of the power generation unit 21, but also a decrease in the temperature of the combustion catalyst unit 27. In the combustion catalyst unit 27, when the temperature falls below the activation temperature determined by the type of catalyst, it becomes impossible to appropriately treat the unburned components contained in the exhaust gas. Exhausting the gas containing unburned components outside the fuel cell system 1 results in a decrease in power generation efficiency of the fuel cell system 1 as a result. On the other hand, in this modification, a change in the exhaust gas flow rate in the exhaust passage 30D can be detected as a temperature change in the combustion catalyst unit 27. As a result, it is possible to appropriately burn the unburned components contained in the exhaust gas and recover and use the heat by the heat recovery system, so that it is possible to suppress a decrease in power generation efficiency of the fuel cell system 1. . Further, the exhaust gas can be discharged outside the fuel cell system 1 in a safer state.
 次に、制御部26によるダンパ22の動作制御について説明する。この制御部26による制御は、例えば燃料電池システム1の運転中、所定の間隔で繰り返し実施される。図6は、ダンパの動作制御の第1形態を示すフローチャートである。同図の例では、まず、温度検出部25によって検出される排ガスの温度が予め定められた第1の閾値温度未満であるか否かの判断がなされる(ステップS101)。ステップS101において、排ガスの温度が第1の閾値温度未満であると判断された場合には、そのまま処理が終了する。一方、ステップS101において、排ガスの温度が第1の閾値温度以上であると判断された場合には、ダンパ22が閉鎖される(ステップS102)。そして、ダンパ22が閉鎖されてからの経過時間が所定時間を超えたか否かが判断され(ステップS103)、所定時間の経過の後、ダンパ22が開放される(ステップS104)。 Next, the operation control of the damper 22 by the control unit 26 will be described. The control by the control unit 26 is repeatedly performed at predetermined intervals, for example, during operation of the fuel cell system 1. FIG. 6 is a flowchart showing a first form of damper operation control. In the example shown in the figure, first, it is determined whether or not the temperature of the exhaust gas detected by the temperature detection unit 25 is lower than a predetermined first threshold temperature (step S101). In step S101, when it is determined that the temperature of the exhaust gas is lower than the first threshold temperature, the processing ends. On the other hand, when it is determined in step S101 that the temperature of the exhaust gas is equal to or higher than the first threshold temperature, the damper 22 is closed (step S102). Then, it is determined whether or not the elapsed time since the damper 22 is closed exceeds a predetermined time (step S103), and after the predetermined time has elapsed, the damper 22 is opened (step S104).
 この形態では、温度検出部25が検出する温度によってダンパ22を開閉するため、意図しない排ガス流量の増加による筐体23内の各部の温度低下を抑制でき、安定的な発電を維持できる。また、予め定める第1の閾値温度未満であるか否かを基準としてダンパ22の開閉を判断するため、燃料電池システム1の発電や寿命に影響を及ぼさない程度の排ガス温度の低下(排ガス流量の増加)ではダンパ22の閉鎖動作が不要となり、ダンパ22の機械的劣化を抑制することができる。 In this embodiment, since the damper 22 is opened and closed according to the temperature detected by the temperature detector 25, the temperature drop of each part in the housing 23 due to an unintended increase in the exhaust gas flow rate can be suppressed, and stable power generation can be maintained. In addition, since the opening / closing of the damper 22 is determined based on whether or not the temperature is lower than the first threshold temperature set in advance, the exhaust gas temperature is reduced to a level that does not affect the power generation and life of the fuel cell system 1 (the exhaust gas flow rate is reduced). In the increase), the closing operation of the damper 22 becomes unnecessary, and the mechanical deterioration of the damper 22 can be suppressed.
 なお、ダンパ22の閉鎖時に排気経路が完全に遮断されないようにしてもよい。このような処理により、ダンパ22の上流側における圧力の過上昇を抑制できる。また、ダンパ22の閉鎖の後、所定時間経過後のダンパ22の開放を行わずに燃料電池システム1を停止させてもよいし、ダンパ22の開放後に直ちにステップS101に戻って排ガス温度の判断を行ってもよい。 The exhaust path may not be completely blocked when the damper 22 is closed. Such a process can suppress an excessive increase in pressure on the upstream side of the damper 22. Further, after the damper 22 is closed, the fuel cell system 1 may be stopped without opening the damper 22 after a predetermined time has elapsed, or immediately after the damper 22 is opened, the process returns to step S101 to determine the exhaust gas temperature. You may go.
 図7は、ダンパの動作制御の第2形態を示すフローチャートである。この第2形態は、温度検出部25によって検出される排ガスの温度によってダンパ22の開放を行うか否かを判断する点で、時限式でダンパ22を開放する上記第1形態と異なっている。同図の例では、まず、温度検出部25によって検出される排ガスの温度が予め定められた第1の閾値温度未満であるか否かの判断がなされる(ステップS201)。 FIG. 7 is a flowchart showing a second mode of damper operation control. The second mode is different from the first mode in which the damper 22 is opened in a timed manner in that it is determined whether or not the damper 22 is opened based on the temperature of the exhaust gas detected by the temperature detector 25. In the example shown in the figure, first, it is determined whether or not the temperature of the exhaust gas detected by the temperature detection unit 25 is lower than a predetermined first threshold temperature (step S201).
 ステップS201において、排ガスの温度が第1の閾値温度未満であると判断された場合には、次に、燃料電池システム1が排気経路に流通する排ガスの温度が低下するような運転制御を実行しているか否かの判断がなされる(ステップS202)。排ガスの温度が低下するような運転制御が実行されていると判断された場合、ダンパ22の制御は不要であると判断され、処理が終了する。一方、排ガスの温度が低下するような運転制御が実行されていないと判断された場合、ダンパ22の閉鎖がなされる(ステップS203)。ダンパ22の閉鎖は、2値制御としてもよいし、段階的な制御によって排ガスの流量を徐々に減少させるようにしてもよい。なお、排ガスの温度が低下するような運転制御としては、例えば発電量を低下させる制御や、カソード空気量を増加させる制御等が挙げられる。 If it is determined in step S201 that the temperature of the exhaust gas is lower than the first threshold temperature, the fuel cell system 1 then performs operation control so that the temperature of the exhaust gas flowing through the exhaust path decreases. It is determined whether or not it is present (step S202). When it is determined that the operation control that lowers the temperature of the exhaust gas is being performed, it is determined that the control of the damper 22 is unnecessary, and the process ends. On the other hand, when it is determined that the operation control that lowers the temperature of the exhaust gas has not been executed, the damper 22 is closed (step S203). The closing of the damper 22 may be a binary control, or the exhaust gas flow rate may be gradually reduced by a stepwise control. Examples of the operation control that lowers the temperature of the exhaust gas include control for reducing the power generation amount and control for increasing the cathode air amount.
 ステップ201において、排ガスの温度が第1の閾値温度以上であると判断された場合には、次に、排ガスの温度が第1の閾値温度よりも高い第2の閾値温度を超えているか否かの判断がなされる(ステップS204)。ステップS204において、排ガスの温度が第2の閾値温度を超えていないと判断された場合には、ダンパ22の制御は不要であると判断され、処理が終了する。一方、ステップS204において、排ガスの温度が第2の閾値温度以下であると判断された場合には、ダンパ22が開放される(ステップS205)。 If it is determined in step 201 that the exhaust gas temperature is equal to or higher than the first threshold temperature, then whether or not the exhaust gas temperature exceeds a second threshold temperature that is higher than the first threshold temperature. Is determined (step S204). In step S204, if it is determined that the temperature of the exhaust gas does not exceed the second threshold temperature, it is determined that control of the damper 22 is unnecessary, and the process ends. On the other hand, when it is determined in step S204 that the exhaust gas temperature is equal to or lower than the second threshold temperature, the damper 22 is opened (step S205).
 この形態においても、温度検出部25が検出する温度によってダンパ22を開閉するため、意図しない排ガス流量の増加による筐体23内の各部の温度低下を抑制でき、安定的な発電を維持できる。また、予め定める第1の閾値温度未満であるか否かを基準としてダンパ22の開閉を判断するため、燃料電池システム1の発電や寿命に影響を及ぼさない程度の排ガス温度の低下(排ガス流量の増加)ではダンパ22の閉鎖動作が不要となり、ダンパ22の機械的劣化を抑制することができる。 Also in this embodiment, since the damper 22 is opened and closed according to the temperature detected by the temperature detector 25, the temperature drop of each part in the housing 23 due to an unintended increase in the exhaust gas flow rate can be suppressed, and stable power generation can be maintained. In addition, since it is determined whether the damper 22 is opened or closed based on whether or not the temperature is lower than the first threshold temperature set in advance, the exhaust gas temperature is reduced to a level that does not affect the power generation and life of the fuel cell system 1 (the exhaust gas flow rate is reduced). In the increase), the closing operation of the damper 22 becomes unnecessary, and the mechanical deterioration of the damper 22 can be suppressed.
 また、この形態では、温度検出部25によって検出される排ガス温度の低下が、燃料電池システム1の運転に起因するものであるか否かを判断してダンパ22の開閉を実行する。このため、ダンパ22の機械的劣化の一層の抑制が図られる。また、温度検出部25によって検出される排ガス温度が第1の閾値温度よりも高い第2の閾値温度を超えている場合にダンパ22の開放動作を実行するため、ダンパ22の頻繁な閉鎖動作が不要となり、ダンパ22の機械的劣化を抑制することができる。意図しない排ガス温度の低下(排ガス流量増加)が解消した場合は、速やかに正常時の排気経路の状態に戻すことができる。 Further, in this embodiment, it is determined whether or not the decrease in the exhaust gas temperature detected by the temperature detector 25 is caused by the operation of the fuel cell system 1, and the damper 22 is opened and closed. For this reason, further suppression of the mechanical deterioration of the damper 22 is achieved. In addition, when the exhaust gas temperature detected by the temperature detector 25 exceeds the second threshold temperature higher than the first threshold temperature, the damper 22 is opened, so that the damper 22 is frequently closed. It becomes unnecessary and the mechanical deterioration of the damper 22 can be suppressed. When the unintended exhaust gas temperature decrease (exhaust gas flow rate increase) is resolved, it can be quickly returned to the normal exhaust path state.
 図8は、ダンパの動作制御の第3形態を示すフローチャートである。この第3形態は、排ガスの温度の単位時間当たりの変化量をダンパ22の制御判断に加味している点で、上記第2形態と異なっている。同図の例では、まず、温度検出部25によって検出される排ガスの温度が第1の閾値温度よりも低い第3の閾値温度(下限温度)未満であるか否かの判断がなされる(ステップS301)。 FIG. 8 is a flowchart showing a third mode of damper operation control. The third mode is different from the second mode in that the amount of change in the temperature of the exhaust gas per unit time is added to the control judgment of the damper 22. In the example shown in the figure, first, it is determined whether or not the temperature of the exhaust gas detected by the temperature detection unit 25 is lower than a third threshold temperature (lower limit temperature) lower than the first threshold temperature (step). S301).
 ステップS301において、排ガスの温度が燃料電池システム1の運転を許容することができる下限温度(第3の閾値温度)未満であると判断された場合、燃料電池システム1が停止される(ステップS302)。ダンパ22の一時的な閉鎖では抑制できないような著しい温度低下が生じた場合に迅速に燃料電池システム1を停止させることにより、セルスタック5の短寿命化を抑制できる。このステップS301及びステップS302の処理は、上述した第1形態及び第2形態に適用してもよい。一方、ステップS301において、排ガスの温度が下限温度(第3の閾値温度)以上であると判断された場合、次に、温度検出部25によって検出される排ガスの温度が予め定められた第1の閾値温度未満であるか否かの判断がなされる(ステップS303)。ステップS303において、排ガスの温度が第1の閾値温度以上であると判断された場合、排ガスの温度の単位時間当たりの低下量が所定の第1の変化量を超えているか否かの判断がなされる(ステップS304)。 If it is determined in step S301 that the temperature of the exhaust gas is lower than the lower limit temperature (third threshold temperature) that allows the operation of the fuel cell system 1, the fuel cell system 1 is stopped (step S302). . By shortening the fuel cell system 1 quickly when a significant temperature drop that cannot be suppressed by temporary closing of the damper 22 occurs, the shortening of the life of the cell stack 5 can be suppressed. The processing in step S301 and step S302 may be applied to the first and second modes described above. On the other hand, if it is determined in step S301 that the temperature of the exhaust gas is equal to or higher than the lower limit temperature (third threshold temperature), then the temperature of the exhaust gas detected by the temperature detection unit 25 is set to a predetermined first temperature. It is determined whether the temperature is lower than the threshold temperature (step S303). In step S303, if it is determined that the temperature of the exhaust gas is equal to or higher than the first threshold temperature, it is determined whether or not the amount of decrease in the temperature of the exhaust gas per unit time exceeds a predetermined first change amount. (Step S304).
 ステップS303において、排ガスの温度が第1の閾値温度未満であると判断された場合、又はステップS304において、排ガスの温度の単位時間当たりの低下量が第1の変化量を超えていると判断された場合、次に、燃料電池システム1が排気経路に流通する排ガスの温度が低下するような運転制御を実行しているか否かの判断がなされる(ステップS305)。排ガスの温度が低下するような運転制御が実行されていると判断された場合、ダンパ22の制御は不要であると判断され、処理が終了する。一方、排ガスの温度が低下するような運転制御が実行されていないと判断された場合、ダンパ22の閉鎖がなされる(ステップS306)。 If it is determined in step S303 that the temperature of the exhaust gas is lower than the first threshold temperature, or in step S304, it is determined that the amount of decrease in the temperature of the exhaust gas per unit time exceeds the first change amount. If so, it is next determined whether or not the fuel cell system 1 is performing operational control that lowers the temperature of the exhaust gas flowing through the exhaust path (step S305). When it is determined that the operation control that lowers the temperature of the exhaust gas is being performed, it is determined that the control of the damper 22 is unnecessary, and the process ends. On the other hand, when it is determined that the operation control that lowers the temperature of the exhaust gas is not being executed, the damper 22 is closed (step S306).
 一方、ステップS304において、排ガスの温度の単位時間当たりの低下量が第1の変化量以下であると判断された場合、次に、排ガスの温度が第1の閾値温度よりも高い第2の閾値温度を超えているか否かの判断がなされる(ステップS307)。ステップS307において、排ガスの温度が第2の閾値温度以下であると判断された場合、次に、排ガスの温度の単位時間当たりの上昇量が所定の第2の変化量を超えているか否かの判断がなされる(ステップS308)。ステップS308において、排ガスの温度の単位時間当たりの上昇量が所定の第2の変化量以下であると判断された場合、ダンパ22の制御は不要であると判断され、処理が終了する。 On the other hand, if it is determined in step S304 that the amount of decrease in exhaust gas temperature per unit time is equal to or less than the first change amount, then the second threshold value in which the exhaust gas temperature is higher than the first threshold temperature. It is determined whether or not the temperature is exceeded (step S307). If it is determined in step S307 that the exhaust gas temperature is equal to or lower than the second threshold temperature, then whether or not the amount of increase in the exhaust gas temperature per unit time exceeds a predetermined second variation amount. A determination is made (step S308). In step S308, when it is determined that the increase amount of the exhaust gas temperature per unit time is equal to or less than the predetermined second change amount, it is determined that control of the damper 22 is unnecessary, and the process ends.
 ステップS307において、排ガスの温度が第2の閾値温度を超えていると判断された場合、又はステップS308において、排ガスの温度の単位時間当たりの上昇量が所定の第2の変化量を超えていると判断された場合、ダンパ22の開放がなされる(ステップS309)。 When it is determined in step S307 that the temperature of the exhaust gas exceeds the second threshold temperature, or in step S308, the amount of increase in the temperature of the exhaust gas per unit time exceeds the predetermined second change amount. If it is determined that, the damper 22 is opened (step S309).
 この形態においても、温度検出部25が検出する温度によってダンパ22を開閉するため、意図しない排ガス流量の増加による筐体23内の各部の温度低下を抑制でき、安定的な発電を維持できる。また、予め定める第1の閾値温度未満であるか否かを基準としてダンパ22の開閉を判断するため、燃料電池システム1の発電や寿命に影響を及ぼさない程度の排ガス温度の低下(排ガス流量の増加)ではダンパ22の閉鎖動作が不要となり、ダンパ22の機械的劣化を抑制することができる。 Also in this embodiment, since the damper 22 is opened and closed according to the temperature detected by the temperature detector 25, the temperature drop of each part in the housing 23 due to an unintended increase in the exhaust gas flow rate can be suppressed, and stable power generation can be maintained. In addition, since it is determined whether the damper 22 is opened or closed based on whether or not the temperature is lower than the first threshold temperature set in advance, the exhaust gas temperature is reduced to a level that does not affect the power generation and life of the fuel cell system 1 (the exhaust gas flow rate is reduced). In the increase), the closing operation of the damper 22 becomes unnecessary, and the mechanical deterioration of the damper 22 can be suppressed.
 また、この形態では、排ガスの温度が第1の閾値温度を超えていても、単位時間当たりの温度低下量が所定の第1の変化量を超えている場合には、ダンパ22が閉鎖され、より迅速に意図しない排ガス流量増加(排ガス温度低下)を抑制できる。また、排ガスの温度が第2の閾値温度以下であっても、単位時間当たりの温度上昇量が所定の第2の変化量を超えている場合には、ダンパ22が開放され、より迅速に正常時の排気経路の状態に戻すことができる。 Further, in this embodiment, even if the temperature of the exhaust gas exceeds the first threshold temperature, the damper 22 is closed when the temperature decrease amount per unit time exceeds the predetermined first change amount, An unintended exhaust gas flow rate increase (exhaust gas temperature decrease) can be suppressed more quickly. In addition, even if the temperature of the exhaust gas is equal to or lower than the second threshold temperature, if the amount of temperature increase per unit time exceeds the predetermined second change amount, the damper 22 is opened, and normality is achieved more quickly. It is possible to return to the state of the exhaust path at the time.
 1…燃料電池システム、5…セルスタック、15…熱交換部、21…発電部、22…ダンパ、24…排気口、25…温度検出部、26…制御部、27…燃焼触媒部、30A~30D…排気経路。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 5 ... Cell stack, 15 ... Heat exchange part, 21 ... Power generation part, 22 ... Damper, 24 ... Exhaust port, 25 ... Temperature detection part, 26 ... Control part, 27 ... Combustion catalyst part, 30A- 30D: Exhaust path.

Claims (15)

  1.  水素含有ガスを用いて発電を行うセルスタックを含む発電部と、
     少なくとも前記発電部から排出される排出ガスをシステムの外部に排出させる排気口と、
     前記排気口に向かって流れる前記排気ガスの流量を調整するダンパと、を備える燃料電池システム。
    A power generation unit including a cell stack that generates power using a hydrogen-containing gas;
    An exhaust port for discharging exhaust gas discharged from at least the power generation unit to the outside of the system;
    And a damper for adjusting a flow rate of the exhaust gas flowing toward the exhaust port.
  2.  前記発電部と前記排気口との間の排気経路に前記ダンパが配置されている請求項1記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the damper is disposed in an exhaust path between the power generation unit and the exhaust port.
  3.  少なくとも前記排出ガス及び熱媒体を流通させ、前記排出ガスから前記熱媒体に熱を移動させて前記熱媒体を加熱する熱交換部を更に備え、
     前記熱交換部は、前記排気経路において、前記発電部の下流且つ前記ダンパの上流に配置されている請求項2に記載の燃料電池システム。
    Further comprising a heat exchanging unit that circulates at least the exhaust gas and the heat medium, heats the heat medium by transferring heat from the exhaust gas to the heat medium,
    The fuel cell system according to claim 2, wherein the heat exchange unit is disposed downstream of the power generation unit and upstream of the damper in the exhaust path.
  4.  前記ダンパの動作を制御する制御部と、
     前記排気経路に配置された温度検出部と、を備え、
     前記制御部は、前記温度検出部によって検出される温度に基づいて、前記ダンパの開閉を制御する請求項2記載の燃料電池システム。
    A control unit for controlling the operation of the damper;
    A temperature detector disposed in the exhaust path,
    The fuel cell system according to claim 2, wherein the control unit controls opening / closing of the damper based on a temperature detected by the temperature detection unit.
  5.  前記温度検出部によって検出される温度が予め定められた第1の閾値温度未満である場合、又は前記温度検出部によって検出される温度の単位時間当たりの低下量が所定の第1の変化量を超えて低下した場合に、前記制御部は、前記排気経路を流れる前記排出ガスの流量が減少するように前記ダンパを制御する請求項4記載の燃料電池システム。 When the temperature detected by the temperature detection unit is less than a predetermined first threshold temperature, or the amount of decrease in the temperature detected by the temperature detection unit per unit time is a predetermined first change amount. 5. The fuel cell system according to claim 4, wherein the control unit controls the damper so that a flow rate of the exhaust gas flowing through the exhaust path decreases when the pressure drops exceeding the limit.
  6.  前記温度検出部によって検出される温度が予め定められた第1の閾値温度未満である場合、又は前記温度検出部によって検出される温度の単位時間当たりの低下量が所定の第1の変化量を超えて低下した場合であって、前記燃料電池システムが前記排気経路に流通する前記排出ガスの温度が低下する運転制御を実行していない場合に、前記制御部は、前記排気経路を流れる前記排出ガスの流量が減少するように前記ダンパを制御する請求項4記載の燃料電池システム。 When the temperature detected by the temperature detection unit is less than a predetermined first threshold temperature, or the amount of decrease in the temperature detected by the temperature detection unit per unit time is a predetermined first change amount. And when the fuel cell system is not performing operation control in which the temperature of the exhaust gas flowing through the exhaust path decreases, the control unit is configured to discharge the exhaust flowing through the exhaust path. The fuel cell system according to claim 4, wherein the damper is controlled so that a gas flow rate decreases.
  7.  前記温度検出部によって検出される温度が前記第1の閾値温度よりも高い第2の閾値温度を超えている場合、又は前記温度検出部によって検出される温度の単位時間当たりの上昇量が所定の第2の変化量を超えて上昇した場合に、前記制御部は、前記排気経路を流れる前記排出ガスの流量が増加するように前記ダンパを制御する請求項4~6のいずれか一項記載の燃料電池システム。 When the temperature detected by the temperature detection unit exceeds a second threshold temperature higher than the first threshold temperature, or when the temperature detected by the temperature detection unit is increased by a predetermined time The control unit according to any one of claims 4 to 6, wherein the control unit controls the damper so that a flow rate of the exhaust gas flowing through the exhaust path increases when the second change amount is exceeded. Fuel cell system.
  8.  前記温度検出部によって検出される温度が前記第1の閾値温度よりも低い第3の閾値温度未満である場合、前記制御部は、前記システムの運転を停止させる請求項4~7のいずれか一項記載の燃料電池システム。 8. The control unit according to claim 4, wherein when the temperature detected by the temperature detection unit is lower than a third threshold temperature lower than the first threshold temperature, the control unit stops the operation of the system. The fuel cell system according to item.
  9.  前記温度検出部は、前記発電部の出口温度を検出する請求項4~8のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 4 to 8, wherein the temperature detection unit detects an outlet temperature of the power generation unit.
  10.  前記発電部の下流且つ前記ダンパの上流に燃焼触媒部を備え、
     前記発電部の出口温度は、前記燃焼触媒部の温度である請求項9記載の燃料電池システム。
    A combustion catalyst unit is provided downstream of the power generation unit and upstream of the damper,
    The fuel cell system according to claim 9, wherein an outlet temperature of the power generation unit is a temperature of the combustion catalyst unit.
  11.  前記温度検出部は、前記発電部の内部温度を検出する請求項4~8のいずれか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 4 to 8, wherein the temperature detection unit detects an internal temperature of the power generation unit.
  12.  前記セルスタックから排出されるオフガスの燃焼ガス、及び液体の熱媒体を流通させ、前記燃焼ガスから前記熱媒体に熱を移動させて前記熱媒体を加熱する熱交換部を更に備え、
     前記排出ガスは、前記熱交換部を経て前記排気口からシステムの外部に排出される請求項1に記載の燃料電池システム。
    It further comprises a heat exchanging unit that circulates the off-gas combustion gas discharged from the cell stack and a liquid heat medium, transfers heat from the combustion gas to the heat medium, and heats the heat medium.
    The fuel cell system according to claim 1, wherein the exhaust gas is exhausted from the exhaust port to the outside of the system through the heat exchange unit.
  13.  前記発電部の出口温度を検出する温度検出部と、
     前記温度検出部によって検出された前記出口温度に基づいて前記ダンパによる前記燃料ガスの流量を制御する流量制御部と、を備える請求項12に記載の燃料電池システム。
    A temperature detection unit for detecting an outlet temperature of the power generation unit;
    The fuel cell system according to claim 12, further comprising: a flow rate control unit that controls a flow rate of the fuel gas by the damper based on the outlet temperature detected by the temperature detection unit.
  14.  前記発電部の内部温度を検出する温度検出部と、
     前記温度検出部によって検出された前記内部温度に基づいて前記ダンパによる前記燃料ガスの流量を制御する流量制御部と、を備える請求項12に記載の燃料電池システム。
    A temperature detection unit for detecting an internal temperature of the power generation unit;
    The fuel cell system according to claim 12, further comprising: a flow rate control unit that controls a flow rate of the fuel gas by the damper based on the internal temperature detected by the temperature detection unit.
  15.  前記ダンパは、前記熱交換部の下流側に設けられている請求項12~14のいずれか一項に記載の燃料電池システム。
     
    The fuel cell system according to any one of claims 12 to 14, wherein the damper is provided on a downstream side of the heat exchange unit.
PCT/JP2011/080470 2010-12-28 2011-12-28 Fuel cell system WO2012091121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551054A JPWO2012091121A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292334 2010-12-28
JP2010292334 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091121A1 true WO2012091121A1 (en) 2012-07-05

Family

ID=46383208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080470 WO2012091121A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Country Status (2)

Country Link
JP (1) JPWO2012091121A1 (en)
WO (1) WO2012091121A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036036A1 (en) * 2012-08-30 2014-03-06 Edlund David J Hydrogen generation assemblies
US8961627B2 (en) 2011-07-07 2015-02-24 David J Edlund Hydrogen generation assemblies and hydrogen purification devices
US9187324B2 (en) 2012-08-30 2015-11-17 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922714A (en) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd Off-gas recycle system of fuel cell power generating device
JP2001066074A (en) * 1999-08-26 2001-03-16 Hitachi Ltd Method and device for recovering heat of exhaust gas
JP2006156169A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Fuel cell system, method for controlling the same, and method for detecting fault thereof
JP2007059212A (en) * 2005-08-24 2007-03-08 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system and heat exchanger built-in type catalyst combustion device
JP2008135267A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109724B2 (en) * 1996-03-29 2008-07-02 株式会社エクォス・リサーチ Fuel cell power generator
JP4843147B2 (en) * 2000-05-30 2011-12-21 本田技研工業株式会社 Fuel cell warm-up system
JP2005050639A (en) * 2003-07-28 2005-02-24 Nissan Motor Co Ltd Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922714A (en) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd Off-gas recycle system of fuel cell power generating device
JP2001066074A (en) * 1999-08-26 2001-03-16 Hitachi Ltd Method and device for recovering heat of exhaust gas
JP2006156169A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Fuel cell system, method for controlling the same, and method for detecting fault thereof
JP2007059212A (en) * 2005-08-24 2007-03-08 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system and heat exchanger built-in type catalyst combustion device
JP2008135267A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656215B2 (en) 2011-07-07 2017-05-23 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US8961627B2 (en) 2011-07-07 2015-02-24 David J Edlund Hydrogen generation assemblies and hydrogen purification devices
US11364473B2 (en) 2011-07-07 2022-06-21 Element 1 Corp Hydrogen generation assemblies and hydrogen purification devices
US10391458B2 (en) 2011-07-07 2019-08-27 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US9914641B2 (en) 2012-08-30 2018-03-13 Element 1 Corp. Hydrogen generation assemblies
US10702827B2 (en) 2012-08-30 2020-07-07 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
TWI596059B (en) * 2012-08-30 2017-08-21 1號組件公司 Hydrogen generation assemblies
CN107697885A (en) * 2012-08-30 2018-02-16 埃利门特第公司 Device for producing hydrogen
WO2014036036A1 (en) * 2012-08-30 2014-03-06 Edlund David J Hydrogen generation assemblies
US10166506B2 (en) 2012-08-30 2019-01-01 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US9187324B2 (en) 2012-08-30 2015-11-17 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US9616389B2 (en) 2012-08-30 2017-04-11 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US10710022B2 (en) 2012-08-30 2020-07-14 Element 1 Corp. Hydrogen generation assemblies
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
US11141692B2 (en) 2012-08-30 2021-10-12 Element 1 Corp Hydrogen generation assemblies and hydrogen purification devices
CN104736474A (en) * 2012-08-30 2015-06-24 埃利门特第一公司 Hydrogen generation assemblies
US11590449B2 (en) 2012-08-30 2023-02-28 Element 1 Corp Hydrogen purification devices
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices

Also Published As

Publication number Publication date
JPWO2012091121A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5138324B2 (en) Reformer and fuel cell system
WO2012091096A1 (en) Fuel cell system
JP5852011B2 (en) Fuel cell system
WO2012091121A1 (en) Fuel cell system
JP5536636B2 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
WO2012161217A1 (en) Fuel cell system
JP5536635B2 (en) Fuel cell system
WO2012091120A1 (en) Fuel cell system
JP5782458B2 (en) Fuel cell system
WO2012090875A1 (en) Fuel cell system and desulfurization device
JP5728497B2 (en) Fuel cell system
WO2012091037A1 (en) Fuel cell system
JP2016119151A (en) Fuel cell system and operation method of fuel cell system
JP2009107881A (en) Reformer, fuel cell system, and starting method for reformer
WO2012091131A1 (en) Fuel cell system
JP2017016816A (en) Fuel cell system, stop method for fuel cell system, and power production method
WO2012091132A1 (en) Fuel cell system
WO2012090964A1 (en) Fuel cell system
KR101358132B1 (en) Fuel exhausting system for ship
JP5390887B2 (en) Hydrogen production apparatus and fuel cell system
JP5400425B2 (en) Hydrogen production apparatus and fuel cell system
JP2007115523A (en) Fuel cell system
JP2016021282A (en) Desulfurization system and desulfurization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853494

Country of ref document: EP

Kind code of ref document: A1