WO2012091120A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2012091120A1
WO2012091120A1 PCT/JP2011/080469 JP2011080469W WO2012091120A1 WO 2012091120 A1 WO2012091120 A1 WO 2012091120A1 JP 2011080469 W JP2011080469 W JP 2011080469W WO 2012091120 A1 WO2012091120 A1 WO 2012091120A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel cell
damper
flow direction
cell system
Prior art date
Application number
PCT/JP2011/080469
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 水野
修平 咲間
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012551053A priority Critical patent/JPWO2012091120A1/en
Publication of WO2012091120A1 publication Critical patent/WO2012091120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • Patent Document 1 As a technology in this type of field, for example, there is a fuel cell system described in Patent Document 1.
  • This conventional fuel cell system includes an exhaust port for exhausting the exhaust gas after heat exchange with the heat exchanger to the outside of the case.
  • a separate member for collecting impurities is provided in front of the exhaust port to prevent impurities from entering the heat exchanger side from the exhaust port.
  • the installation mode of the fuel cell system there is a case where the fuel cell system is installed indoors and the exhaust port is connected to the chimney.
  • the chimney is shared with other devices, the external exhaust gas that fills the chimney may contain components that are undesirable for the fuel cell system and dust in the chimney stack.
  • the external exhaust gas in the chimney may flow into the fuel cell system.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell system capable of suppressing the inflow of external exhaust gas to the fuel cell system side.
  • a fuel cell system includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, an exhaust port that discharges at least exhaust gas discharged from the power generation unit to the outside of the system, and power generation Disposed in the exhaust path between the exhaust section and the exhaust port, and a flow direction detecting section for detecting the flow direction of the circulating gas in the exhaust path, and disposed downstream of the flow direction detecting section in the exhaust path, A damper that switches between opening and closing; and a control unit that closes the damper and stops the system when a backflow of the flowing gas is detected by the flow direction detection unit.
  • a damper for controlling the flow of the circulating gas in the exhaust path is provided in the exhaust path for exhausting the exhaust gas. Then, when the backflow of the circulating gas flowing in the exhaust path is detected by the flow direction detection unit, it is determined that there is an inflow of external exhaust gas or there is a risk, and the damper is closed to stop the system. Therefore, in this fuel cell system, it is possible to suppress the shortening of the service life of the cell stack, various catalysts or adsorbents, various auxiliary machines and the like due to the flow of external exhaust gas to the system side.
  • the fuel cell system according to the present invention can suppress the flow of external exhaust gas to the fuel cell system side.
  • FIG. 1 is a diagram showing an embodiment of a fuel cell system according to the present invention. It is a figure which shows the exhaust route of the fuel cell system shown in FIG. It is a figure which shows an example of a flow direction detection part. It is a figure which shows the other example of a flow direction detection part. It is a flowchart which shows the 1st form of operation
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7,
  • the water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, the control part 11, and the heat exchange part 15 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • a fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the heat exchange unit 15 moves the heat from the combustion gas to the water by circulating the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water (heat medium). Heat the water.
  • This water is stored, for example, in a hot water storage tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water storage tank to the heat exchanging unit 15.
  • FIG. 2 is a diagram showing an exhaust path of the fuel cell system 1.
  • the exhaust path of the fuel cell system 1 includes a power generation unit 21, the heat exchange unit 15 described above, a damper 22, a flow direction detection unit 23, and a control unit 24. Housed in the housing 25.
  • the casing 25 is provided with a circulation gas passage 27 and an exhaust port 26 through which exhaust gas (FC exhaust gas) discharged from at least the power generation unit 21 side flows.
  • the circulation gas path 27 including the damper 22 and the flow direction detection unit 23 is airtight to the outside air.
  • the airtightness means airtightness with respect to outside air other than the gas scheduled to be discharged from the housing 25. Specifically, it means a structure in which gas is discharged from the housing 25 only from a dedicated gas discharge path.
  • the power generation unit 21 includes the cell stack 5 described above.
  • the power generation unit 21 includes at least the cell stack 5, and may further include an off-gas combustion unit 6, a hydrogen generation unit 4, or the like, or may not include the off-gas combustion unit 6, the hydrogen generation unit 4, or the like.
  • the heat exchanging unit 15 has, as a heat recovery water system, for example, a water channel for circulating water supplied from a hot water tank into the heat exchanging unit 15 and a water channel for discharging the water from the heat exchanging unit 15. Etc. are connected through. From the heat exchange unit 15, the exhaust gas after heat exchange is discharged toward the exhaust port 26 of the housing 25.
  • the damper 22 is for controlling the flow of the circulating gas (FC exhaust gas, external exhaust gas, or mixed gas thereof) in the exhaust path.
  • the circulating gas FC exhaust gas, external exhaust gas, or mixed gas thereof
  • an impeller in which blades are attached around a rotating shaft, or a guillotine damper in which a valve body crosses at right angles to a flow path.
  • the damper 22 is provided at a position in front of the exhaust port 26 on the downstream side of the heat exchanging unit 15 and the flow direction detecting unit 23 described later in the circulation gas flow path 27, and switches between opening and closing of the exhaust port 26.
  • a valve can be used instead of the damper.
  • the flow direction detection unit 23 is a part that detects the flow direction of the flow gas flowing in the flow gas channel 27.
  • the flow direction detection unit 23 is configured by a fan 28 provided in a circulation gas flow path 27 toward the exhaust port 26. Since the rotation direction of the fan 28 changes depending on the flow direction of the flow gas flowing in the flow gas flow path 27, the flow direction of the flow gas can be determined from the rotation direction of the fan 28. Then, the fan 28 outputs a signal indicating the rotation direction to the control unit 24.
  • the flow direction detection unit 23 may be a flap 29 provided in a circulation gas flow path 27 toward the exhaust port 26, for example, as shown in FIG.
  • the flap 29 is inclined toward the exhaust port 26 when the circulating gas is flowing toward the exhaust port 26, and is inclined toward the opposite side of the exhaust port 26 when the circulating gas is flowing backward.
  • the inclination of the flap 29 may be determined by, for example, ON / OFF of a switch provided at the base of the flap 29, or laser detection or the like may be used.
  • image detection by a camera or the like may be performed, and detection by a strain gauge may be performed in a state where the base of the flap 29 is fixed.
  • the control unit 24 is a part that performs diagnosis processing of the flow direction of the circulating gas in the discharge path.
  • the control unit 24 is disposed in the housing 25, but may be configured such that the function of the control unit 24 is added to the control unit 11 of the fuel cell system 1.
  • the diagnosis process by the control unit 24 is repeatedly performed at predetermined intervals, for example, during operation of the fuel cell system 1.
  • FIG. 5 is a flowchart showing a first mode of operation of the control unit 24.
  • a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24.
  • the control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S101), and if the backflow of the flowing gas is not detected, step S101 is repeatedly executed.
  • step S101 determines whether or not a backflow of the flowing gas has been detected
  • step S101 determines whether or not a backflow of the flowing gas has been detected
  • step S101 determines whether or not a backflow of the flowing gas has been detected
  • step S101 determines whether or not a backflow of the flowing gas has been detected
  • step S101 determines whether or not a backflow of the flowing gas has been detected (step S101), and if the backflow of the flowing gas is not detected, step S101 is repeatedly executed.
  • step S102 determines whether or not a backflow of the flowing gas has
  • FIG. 6 is a flowchart showing a second mode of operation of the control unit 24.
  • a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24.
  • the control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S201). If the backflow of the circulating gas is not detected, step S201 is repeatedly executed.
  • step S201 when the backflow of the circulating gas is detected, the damper 22 is closed (step S202). After the damper 22 is closed, it is determined whether or not the backflow of the circulating gas is still detected (step S203). When the backflow of the circulating gas is detected, it is determined that there is an abnormality in the flow direction detection unit 23 or there is an abnormality in the damper 22 and the flowing gas flowing back is not completely closed, and the damper 22 is opened. After that (step S204), the fuel cell system 1 is stopped through a predetermined first stop step (step S205). Note that the first stop step here refers to the fuel cell system 1 that has been subjected to predetermined procedures such as stopping the supply of hydrogen-containing fuel, purging the gas filling the power generation unit, and cooling the cell stack 5. It means stopping.
  • step S203 If the backflow of the circulating gas is not detected in step S203, the damper 22 is kept closed (step S206). In this case, it is determined that external exhaust gas is inflow or inflow, and the fuel cell system 1 is stopped through a second stop process in which at least a part of the first stop process is omitted (step S207). .
  • the damper 22 when the backflow of the circulating gas is detected by the flow direction detector 23 in the exhaust path for exhausting the FC exhaust gas, the damper 22 is closed and the system is stopped. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can. Further, in this embodiment, after the first backflow gas flow detection is performed, the exhaust path abnormality is determined by the second backflow gas flow detection with the damper 22 closed as a provisional measure. Thereby, the stop process of the fuel cell system 1 can be selected according to the presence or absence of abnormality in the exhaust path.
  • step S303 when an abnormality is detected in step S303, a failure in one or both of the flow direction detection unit 23 and the damper 22 is suspected.
  • the damper 22 is opened and the first stop process is executed.
  • the damper 22 or both the flow direction detection unit 23 and the damper 22 are out of order, even if a closing signal is sent to the damper 22, the backflow of the circulating gas cannot be blocked.
  • the stop process is executed.
  • the first stopping step includes a purge process of gas filling the reactor inside the power generation unit 21 or various catalysts, an air cooling process of each part of the fuel cell system 1, and the like. Thereby, the backflow of the circulation gas can be reduced by the FC exhaust gas discharged from the fuel cell system 1 during the stop process.
  • FIG. 7 is a flowchart showing a third mode of operation of the control unit 24.
  • a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24.
  • the control unit 24 that has received the signal determines whether or not a backflow of the flow gas has been detected (step S301). If the backflow of the circulating gas is not detected, step S301 is repeatedly executed.
  • step S301 when the backflow of the circulating gas is detected, the damper 22 is closed (step S302). After the damper 22 is closed, it is determined whether or not the backflow of the circulating gas is still detected (step S303). When the backflow of the circulating gas is detected, it is determined that there is an abnormality in the flow direction detection unit 23 or that the damper 22 is abnormal and the flowing gas flowing backward is not completely closed, and the damper 22 is opened. After that (step S304), the fuel cell system 1 is stopped through the first stop process (step S305).
  • step S306 when the backflow of the circulating gas is not detected in step S303, the damper 22 is once opened (step S306). Then, it is determined again whether the backflow of the flowing gas is detected (step S307). When the backflow of the circulating gas is detected, after closing the damper 22 (step S308), the fuel cell system 1 is stopped through the second stop process (step S309). If no backflow of the circulating gas is detected in step S307, it is determined that the backflow of the circulating gas has not occurred, and the operation of the fuel cell system 1 is continued (step S310).
  • the damper 22 when the backflow of the circulating gas is detected by the flow direction detector 23 in the exhaust path for exhausting the FC exhaust gas, the damper 22 is closed and the system is stopped. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can. Further, after the first flow gas backflow detection is performed, an abnormality in the exhaust path is determined by the second flow gas backflow detection with the damper 22 closed as a provisional measure. Thereby, the stop process of the fuel cell system 1 can be selected according to the presence or absence of abnormality in the exhaust path.
  • the presence or absence of the backflow of the circulating gas is detected again with the damper 22 opened again.

Abstract

A fuel cell system (1) has a damper (22) that opens and closes an exhaust opening (26), and is provided in an exhaust channel for discharging FC gas emitted from a power generation unit (21). In the case that a current direction detection unit (23) detects that circulating gas flowing toward an exhaust opening (26) is flowing backward, the damper (22) is closed and the system stopped. Therefore, it is possible to minimize life-shortening, caused by the backward flow of exhaust gas to the power generation unit (21) side, for a fuel cell stack (5), various catalysts, absorbing agents, ion-exchange resins, various auxiliaries, or the like.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 この種の分野の技術として、例えば特許文献1に記載の燃料電池システムがある。この従来の燃料電池システムは、熱交換器で熱交換された後の排ガスをケース外部に排気する排気口を備えている。排気口の手前には、不純物を収集するためのセパレート部材が設けられており、排気口から熱交換器側に不純物が入り込むことを防止している。 As a technology in this type of field, for example, there is a fuel cell system described in Patent Document 1. This conventional fuel cell system includes an exhaust port for exhausting the exhaust gas after heat exchange with the heat exchanger to the outside of the case. A separate member for collecting impurities is provided in front of the exhaust port to prevent impurities from entering the heat exchanger side from the exhaust port.
特開2009-181701号公報JP 2009-181701 A
 燃料電池システムの設置態様の一例として、燃料電池システムを屋内に設置し、排気口を煙突に接続する場合がある。その煙突を他の機器と共有している場合、煙突内に充満する外部排ガスには、燃料電池システムにとっては好ましくない成分や、集合煙突内の粉塵が含有されている可能性がある。このとき、他の機器からの排気圧力上昇や煙突自体に閉塞が生じた場合に、煙突内の外部排ガスが燃料電池システム側に流入してくる恐れがある。 As an example of the installation mode of the fuel cell system, there is a case where the fuel cell system is installed indoors and the exhaust port is connected to the chimney. When the chimney is shared with other devices, the external exhaust gas that fills the chimney may contain components that are undesirable for the fuel cell system and dust in the chimney stack. At this time, if exhaust pressure rises from other devices or the chimney itself becomes blocked, the external exhaust gas in the chimney may flow into the fuel cell system.
 上述したような従来の燃料電池システムでは、熱交換器に対して単独の排気口が設けられている。しかしながら、他の機器からの排ガス(外部排ガス)が燃料電池システム側に流入することを十分に抑制することは困難である。燃料電池システムにとって好ましくない成分や、粉塵を含む外部排ガスが燃料電池システム内に流入してくると、燃料電池システムの構成要素であるセルスタックや各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等が短寿命化するおそれがある。したがって、燃料電池システム側への外部排ガスの流入を抑制する技術が必要となっている。 In the conventional fuel cell system as described above, a single exhaust port is provided for the heat exchanger. However, it is difficult to sufficiently suppress exhaust gas (external exhaust gas) from other devices from flowing into the fuel cell system. When a component undesirable for the fuel cell system or external exhaust gas containing dust flows into the fuel cell system, the cell stack, various catalysts or adsorbents, ion exchange resins, various supplements, which are components of the fuel cell system. There is a risk that the machinery and the like will have a short life. Therefore, a technique for suppressing the inflow of external exhaust gas to the fuel cell system side is required.
 本発明は、上記課題の解決のためになされたものであり、燃料電池システム側への外部排ガスの流入を抑制できる燃料電池システムを提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel cell system capable of suppressing the inflow of external exhaust gas to the fuel cell system side.
 本発明の一側面に係る燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、少なくとも発電部から排出される排出ガスをシステムの外部に排出させる排気口と、発電部と排気口との間の排気経路に配置され、当該排気経路中の流通ガスの流動方向を検出する流動方向検出部と、排気経路において流動方向検出部の下流側に配置され、排気口の開閉を切り替えるダンパと、流動方向検出部によって流通ガスの逆流が検出された場合に、ダンパを閉鎖してシステムを停止させる制御部と、を備える。 A fuel cell system according to one aspect of the present invention includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, an exhaust port that discharges at least exhaust gas discharged from the power generation unit to the outside of the system, and power generation Disposed in the exhaust path between the exhaust section and the exhaust port, and a flow direction detecting section for detecting the flow direction of the circulating gas in the exhaust path, and disposed downstream of the flow direction detecting section in the exhaust path, A damper that switches between opening and closing; and a control unit that closes the damper and stops the system when a backflow of the flowing gas is detected by the flow direction detection unit.
 この燃料電池システムでは、排出ガスを排気する排気経路において、排気経路内の流通ガスの流れを制御するダンパが設けられている。そして、流動方向検出部によって排気経路に流れる流通ガスの逆流が検出された場合に、外部排ガスの流入或いはその恐れがあると判断し、ダンパを閉鎖してシステムを停止させる。したがって、この燃料電池システムでは、システム側に外部排ガスが流入することによるセルスタック、各種触媒もしくは吸着剤、各種補機類等の短寿命化を抑制できる。 In this fuel cell system, a damper for controlling the flow of the circulating gas in the exhaust path is provided in the exhaust path for exhausting the exhaust gas. Then, when the backflow of the circulating gas flowing in the exhaust path is detected by the flow direction detection unit, it is determined that there is an inflow of external exhaust gas or there is a risk, and the damper is closed to stop the system. Therefore, in this fuel cell system, it is possible to suppress the shortening of the service life of the cell stack, various catalysts or adsorbents, various auxiliary machines and the like due to the flow of external exhaust gas to the system side.
 本発明に係る燃料電池システムによれば、燃料電池システム側への外部排ガスの流入を抑制できる。 The fuel cell system according to the present invention can suppress the flow of external exhaust gas to the fuel cell system side.
本発明に係る燃料電池システムの一実施形態を示す図である。1 is a diagram showing an embodiment of a fuel cell system according to the present invention. 図1に示した燃料電池システムの排気経路を示す図である。It is a figure which shows the exhaust route of the fuel cell system shown in FIG. 流動方向検出部の一例を示す図である。It is a figure which shows an example of a flow direction detection part. 流動方向検出部の他の例を示す図である。It is a figure which shows the other example of a flow direction detection part. 制御部の動作の第1形態を示すフローチャートである。It is a flowchart which shows the 1st form of operation | movement of a control part. 制御部の動作の第2形態を示すフローチャートである。It is a flowchart which shows the 2nd form of operation | movement of a control part. 制御部の動作の第3形態を示すフローチャートである。It is a flowchart which shows the 3rd form of operation | movement of a control part.
 以下、図面を参照しながら、本発明に係る燃料電池システムの好適な実施形態について詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of a fuel cell system according to the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、熱交換部15とを備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。 As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, the control part 11, and the heat exchange part 15 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガスを発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
 なお、例えば純水素ガスや水素富化ガスなど、改質処理を必要としない水素含有燃料を用いる場合は、脱硫器2、水供給部8、水気化部3、および水素発生部4のうちの一つまたは複数を省略することができる。 In the case of using a hydrogen-containing fuel that does not require a reforming process, such as pure hydrogen gas or hydrogen-enriched gas, for example, among the desulfurizer 2, the water supply unit 8, the water vaporization unit 3, and the hydrogen generation unit 4 One or more can be omitted.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 熱交換部15は、セルスタック5から排出されるオフガスの燃焼ガス(すなわち、オフガス燃焼部6からの排ガス)、及び水(熱媒体)を流通させることで、燃焼ガスから水に熱を移動させて水を加熱する。この水は、例えば燃料電池システム1が設置された施設に湯を供給するための貯湯槽に貯留され、その貯湯槽から熱交換部15に循環供給されるものである。 The heat exchange unit 15 moves the heat from the combustion gas to the water by circulating the off-gas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the off-gas combustion unit 6) and water (heat medium). Heat the water. This water is stored, for example, in a hot water storage tank for supplying hot water to a facility where the fuel cell system 1 is installed, and is circulated and supplied from the hot water storage tank to the heat exchanging unit 15.
 続いて、上述した燃料電池システム1の排気経路について説明する。図2は、燃料電池システム1の排気経路を示す図である。 Subsequently, the exhaust path of the fuel cell system 1 will be described. FIG. 2 is a diagram showing an exhaust path of the fuel cell system 1.
 図2に示すように、燃料電池システム1の排気経路は、発電部21と、上述の熱交換部15と、ダンパ22と、流動方向検出部23と、制御部24とを含んで構成され、筐体25内に収容されている。筐体25には、少なくとも発電部21側から排出される排出ガス(FC排ガス)が流れる流通ガス流路27及び排気口26が設けられている。詳細は図示しないが、ダンパ22及び流動方向検出部23を含む流通ガス経路27は外部の空気に対して気密性を有している。なお、ここでの気密性とは、筐体25からの排出が予定されている気体以外の外気に対して気密であることを意味する。具体的には、筐体25内からの気体の排出は専用の気体排出路からのみ行われる構造を意味する。 As shown in FIG. 2, the exhaust path of the fuel cell system 1 includes a power generation unit 21, the heat exchange unit 15 described above, a damper 22, a flow direction detection unit 23, and a control unit 24. Housed in the housing 25. The casing 25 is provided with a circulation gas passage 27 and an exhaust port 26 through which exhaust gas (FC exhaust gas) discharged from at least the power generation unit 21 side flows. Although details are not shown, the circulation gas path 27 including the damper 22 and the flow direction detection unit 23 is airtight to the outside air. Here, the airtightness means airtightness with respect to outside air other than the gas scheduled to be discharged from the housing 25. Specifically, it means a structure in which gas is discharged from the housing 25 only from a dedicated gas discharge path.
 発電部21は、上述したセルスタック5を含んで構成されたものである。発電部21は、少なくともセルスタック5を含むものであって、さらにオフガス燃焼部6や水素発生部4等を含む場合もあれば、オフガス燃焼部6や水素発生部4等を含まない場合もある。また、熱交換部15には、熱回収水系として、例えば貯湯槽から循環供給された水を熱交換部15に流入させる水流路、及びその水を熱交換部15から流出させる水流路がそれぞれポンプ等を介して接続されている。熱交換部15からは、熱交換後の排ガスが筐体25の排気口26に向かって排出される。 The power generation unit 21 includes the cell stack 5 described above. The power generation unit 21 includes at least the cell stack 5, and may further include an off-gas combustion unit 6, a hydrogen generation unit 4, or the like, or may not include the off-gas combustion unit 6, the hydrogen generation unit 4, or the like. . In addition, the heat exchanging unit 15 has, as a heat recovery water system, for example, a water channel for circulating water supplied from a hot water tank into the heat exchanging unit 15 and a water channel for discharging the water from the heat exchanging unit 15. Etc. are connected through. From the heat exchange unit 15, the exhaust gas after heat exchange is discharged toward the exhaust port 26 of the housing 25.
 ダンパ22は、排気経路内の流通ガス(FC排ガス、外部排ガス、またはそれらの混合ガス)の流れを制御するためのものである。例えば回転軸の周囲に羽根が取り付けられてなる羽根車や、弁体が流路に対して直角に横切るギロチンダンパなどである。ダンパ22は、流通ガス流路27において、熱交換部15及び後述の流動方向検出部23の下流側で排気口26の手前となる位置に設けられ、排気口26の開閉を切り替える。なお、ダンパの代わりにバルブを用いることもできる。 The damper 22 is for controlling the flow of the circulating gas (FC exhaust gas, external exhaust gas, or mixed gas thereof) in the exhaust path. For example, an impeller in which blades are attached around a rotating shaft, or a guillotine damper in which a valve body crosses at right angles to a flow path. The damper 22 is provided at a position in front of the exhaust port 26 on the downstream side of the heat exchanging unit 15 and the flow direction detecting unit 23 described later in the circulation gas flow path 27, and switches between opening and closing of the exhaust port 26. A valve can be used instead of the damper.
 流動方向検出部23は、流通ガス流路27に流れる流通ガスの流動方向を検出する部分である。流動方向検出部23は、例えば図3に示すように、排気口26に向かう流通ガス流路27内に設けられたファン28によって構成されている。ファン28は、流通ガス流路27内に流れる流通ガスの流動方向によって回転方向が変化するため、ファン28の回転方向から流通ガスの流動方向を判断することができる。そして、ファン28は、回転方向を示す信号を制御部24に出力する。 The flow direction detection unit 23 is a part that detects the flow direction of the flow gas flowing in the flow gas channel 27. For example, as shown in FIG. 3, the flow direction detection unit 23 is configured by a fan 28 provided in a circulation gas flow path 27 toward the exhaust port 26. Since the rotation direction of the fan 28 changes depending on the flow direction of the flow gas flowing in the flow gas flow path 27, the flow direction of the flow gas can be determined from the rotation direction of the fan 28. Then, the fan 28 outputs a signal indicating the rotation direction to the control unit 24.
 なお、流動方向検出部23は、例えば図4に示すように、排気口26に向かう流通ガス流路27内に設けられたフラップ29であってもよい。フラップ29は、流通ガスが排気口26に向かって流れている場合には排気口26側に傾き、流通ガスが逆流している場合には排気口26と反対側に傾く。フラップ29の傾きは、例えばフラップ29の根元に設けたスイッチのON/OFFによって判断してもよく、レーザ検出等を用いてもよい。また、カメラ等による画像検出であってもよく、フラップ29の根元を固定した状態で歪みゲージによる検出を行ってもよい。 Note that the flow direction detection unit 23 may be a flap 29 provided in a circulation gas flow path 27 toward the exhaust port 26, for example, as shown in FIG. The flap 29 is inclined toward the exhaust port 26 when the circulating gas is flowing toward the exhaust port 26, and is inclined toward the opposite side of the exhaust port 26 when the circulating gas is flowing backward. The inclination of the flap 29 may be determined by, for example, ON / OFF of a switch provided at the base of the flap 29, or laser detection or the like may be used. Alternatively, image detection by a camera or the like may be performed, and detection by a strain gauge may be performed in a state where the base of the flap 29 is fixed.
 制御部24は、排出経路における流通ガスの流動方向の診断処理を行う部分である。図2において、制御部24は、筐体25内に配置されているが、燃料電池システム1の制御部11に制御部24の機能を付与した形態であってもよい。この制御部24による診断処理は、例えば燃料電池システム1の運転中、所定の間隔で繰り返し実施される。 The control unit 24 is a part that performs diagnosis processing of the flow direction of the circulating gas in the discharge path. In FIG. 2, the control unit 24 is disposed in the housing 25, but may be configured such that the function of the control unit 24 is added to the control unit 11 of the fuel cell system 1. The diagnosis process by the control unit 24 is repeatedly performed at predetermined intervals, for example, during operation of the fuel cell system 1.
 図5は、制御部24の動作の第1形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断され(ステップS101)、流通ガスの逆流が検出されない場合には、ステップS101が繰り返し実行される。一方、ステップS101において、流通ガスの逆流が検出された場合には、ダンパ22が閉鎖される(ステップS102)。そして、ダンパ22の閉鎖の後、燃料電池システムの停止工程が実行される(ステップS103)。 FIG. 5 is a flowchart showing a first mode of operation of the control unit 24. In the example of the figure, when the diagnostic process is started, a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24. The control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S101), and if the backflow of the flowing gas is not detected, step S101 is repeatedly executed. On the other hand, when the backflow of the circulating gas is detected in step S101, the damper 22 is closed (step S102). Then, after the damper 22 is closed, a stop process of the fuel cell system is executed (step S103).
 この実施形態では、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、ダンパ22を閉じてシステムが停止するようになっている。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。 In this embodiment, in the exhaust path for exhausting the FC exhaust gas, when the backflow of the circulating gas is detected by the flow direction detector 23, the damper 22 is closed and the system is stopped. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can.
 また、図6は、制御部24の動作の第2形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断される(ステップS201)。流通ガスの逆流が検出されない場合には、ステップS201が繰り返し実行される。 FIG. 6 is a flowchart showing a second mode of operation of the control unit 24. In the example of the figure, when the diagnostic process is started, a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24. The control unit 24 that has received the signal determines whether or not a backflow of the flowing gas has been detected (step S201). If the backflow of the circulating gas is not detected, step S201 is repeatedly executed.
 ステップS201において、流通ガスの逆流が検出された場合には、ダンパ22が閉鎖される(ステップS202)。ダンパ22の閉鎖後、依然として流通ガスの逆流が検出されるか否かが判断される(ステップS203)。流通ガスの逆流が検出される場合には、流動方向検出部23に異常がある、またはダンパ22に異常があり、逆流している流動ガスが閉鎖しきれていないと判断され、ダンパ22が開放された後(ステップS204)、燃料電池システム1が予め定めた第1停止工程を経て停止される(ステップS205)。なお、ここでいう第1停止工程とは、例えば水素含有燃料の供給停止、発電部内に充満するガスのパージ処理、セルスタック5の冷却工程など、予め定められた手順を経て燃料電池システム1を停止させることをいう。 In step S201, when the backflow of the circulating gas is detected, the damper 22 is closed (step S202). After the damper 22 is closed, it is determined whether or not the backflow of the circulating gas is still detected (step S203). When the backflow of the circulating gas is detected, it is determined that there is an abnormality in the flow direction detection unit 23 or there is an abnormality in the damper 22 and the flowing gas flowing back is not completely closed, and the damper 22 is opened. After that (step S204), the fuel cell system 1 is stopped through a predetermined first stop step (step S205). Note that the first stop step here refers to the fuel cell system 1 that has been subjected to predetermined procedures such as stopping the supply of hydrogen-containing fuel, purging the gas filling the power generation unit, and cooling the cell stack 5. It means stopping.
 ステップS203において流通ガスの逆流が検出されない場合には、ダンパ22の閉鎖が継続される(ステップS206)。この場合、外部排ガスが流入している、または流入する恐れがあると判断され、燃料電池システム1が第1停止工程の少なくとも一部を省略した第2停止工程を経て停止される(ステップS207)。 If the backflow of the circulating gas is not detected in step S203, the damper 22 is kept closed (step S206). In this case, it is determined that external exhaust gas is inflow or inflow, and the fuel cell system 1 is stopped through a second stop process in which at least a part of the first stop process is omitted (step S207). .
 この実施形態においても、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、ダンパ22を閉じてシステムが停止するようになっている。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。また、この実施形態では、1回目の流通ガスの逆流検出を行った後、暫定的措置としてダンパ22を閉鎖した状態で2回目の流通ガスの逆流検出により排気経路の異常を判定する。これにより、排気経路における異常の有無に応じて燃料電池システム1の停止工程を選択することができる。 Also in this embodiment, when the backflow of the circulating gas is detected by the flow direction detector 23 in the exhaust path for exhausting the FC exhaust gas, the damper 22 is closed and the system is stopped. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can. Further, in this embodiment, after the first backflow gas flow detection is performed, the exhaust path abnormality is determined by the second backflow gas flow detection with the damper 22 closed as a provisional measure. Thereby, the stop process of the fuel cell system 1 can be selected according to the presence or absence of abnormality in the exhaust path.
 具体的には、ステップS303で異常が検出された場合、流動方向検出部23及びダンパ22のいずれか一方または両方の故障が疑われる。流動方向検出部23のみが故障している場合、流通ガスの逆流が発生しないことから、ダンパ22を開放して第1停止工程を実行する。また、ダンパ22のみ、または、流動方向検出部23とダンパ22の両方が故障している場合は、ダンパ22に閉鎖の信号を送っても流通ガスの逆流を遮断することができないため、第1停止工程を実行する。燃料電池システム1の運転を停止して、不具合箇所の修理をする機会を早期に確保することにより、将来発生する恐れがある流通ガスの逆流を抑制することができる。このとき、第1停止工程は、発電部21内または各種触媒が充填されたリアクターに充満するガスのパージ処理や、燃料電池システム1の各部の空気冷却処理等を含むことが好ましい。これにより、停止工程中に燃料電池システム1から排出されるFC排ガスによって、流通ガスの逆流を軽減することができる。 Specifically, when an abnormality is detected in step S303, a failure in one or both of the flow direction detection unit 23 and the damper 22 is suspected. When only the flow direction detection unit 23 has failed, the backflow of the flowing gas does not occur, so the damper 22 is opened and the first stop process is executed. In addition, when only the damper 22 or both the flow direction detection unit 23 and the damper 22 are out of order, even if a closing signal is sent to the damper 22, the backflow of the circulating gas cannot be blocked. The stop process is executed. By stopping the operation of the fuel cell system 1 and securing an opportunity to repair the defective part at an early stage, it is possible to suppress the backflow of the flowing gas that may occur in the future. At this time, it is preferable that the first stopping step includes a purge process of gas filling the reactor inside the power generation unit 21 or various catalysts, an air cooling process of each part of the fuel cell system 1, and the like. Thereby, the backflow of the circulation gas can be reduced by the FC exhaust gas discharged from the fuel cell system 1 during the stop process.
 また、図7は、制御部24の動作の第3形態を示すフローチャートである。同図の例では、診断処理が開始されると、流動方向検出部23から制御部24に対して流通ガスの流動方向を示す信号が出力される。信号を受け取った制御部24では、流通ガスの逆流が検出されたか否かが判断される(ステップS301)。流通ガスの逆流が検出されない場合には、ステップS301が繰り返し実行される。 FIG. 7 is a flowchart showing a third mode of operation of the control unit 24. In the example of the figure, when the diagnostic process is started, a signal indicating the flow direction of the flowing gas is output from the flow direction detection unit 23 to the control unit 24. The control unit 24 that has received the signal determines whether or not a backflow of the flow gas has been detected (step S301). If the backflow of the circulating gas is not detected, step S301 is repeatedly executed.
 ステップS301において、流通ガスの逆流が検出された場合には、ダンパ22が閉鎖される(ステップS302)。ダンパ22の閉鎖後、依然として流通ガスの逆流が検出されるか否かが判断される(ステップS303)。流通ガスの逆流が検出された場合には、流動方向検出部23に異常がある、またはダンパ22に異常があり、逆流している流動ガスが閉鎖しきれていないと判断され、ダンパ22が開放された後(ステップS304)、燃料電池システム1が第1停止工程を経て停止される(ステップS305)。 In step S301, when the backflow of the circulating gas is detected, the damper 22 is closed (step S302). After the damper 22 is closed, it is determined whether or not the backflow of the circulating gas is still detected (step S303). When the backflow of the circulating gas is detected, it is determined that there is an abnormality in the flow direction detection unit 23 or that the damper 22 is abnormal and the flowing gas flowing backward is not completely closed, and the damper 22 is opened. After that (step S304), the fuel cell system 1 is stopped through the first stop process (step S305).
 一方、ステップS303において流通ガスの逆流が検出されない場合には、ダンパ22が一旦開放される(ステップS306)。そして、再び流通ガスの逆流が検出されるか否かが判断される(ステップS307)。流通ガスの逆流が検出された場合には、ダンパ22を閉鎖した後(ステップS308)、燃料電池システム1が第2停止工程を経て停止される(ステップS309)。また、ステップS307で流通ガスの逆流が検出されない場合には、流通ガスの逆流が生じなくなったと判断し、燃料電池システム1の運転が継続される(ステップS310)。 On the other hand, when the backflow of the circulating gas is not detected in step S303, the damper 22 is once opened (step S306). Then, it is determined again whether the backflow of the flowing gas is detected (step S307). When the backflow of the circulating gas is detected, after closing the damper 22 (step S308), the fuel cell system 1 is stopped through the second stop process (step S309). If no backflow of the circulating gas is detected in step S307, it is determined that the backflow of the circulating gas has not occurred, and the operation of the fuel cell system 1 is continued (step S310).
 この実施形態においても、FC排ガスを排気する排気経路において、流動方向検出部23によって流通ガスの逆流が検出された場合に、ダンパ22を閉じてシステムが停止するようになっている。したがって、燃料電池システム1側に流通ガスが逆流することによるセルスタック5や燃料電池システム1に搭載されている各種触媒もしくは吸着剤、あるいはイオン交換樹脂、各種補機類等の短寿命化を抑制できる。また、1回目の流通ガスの逆流検出を行った後、暫定的措置としてダンパ22を閉鎖した状態で2回目の流通ガスの逆流検出により排気経路の異常を判定する。これにより、排気経路における異常の有無に応じて燃料電池システム1の停止工程を選択することができる。 Also in this embodiment, when the backflow of the circulating gas is detected by the flow direction detector 23 in the exhaust path for exhausting the FC exhaust gas, the damper 22 is closed and the system is stopped. Accordingly, it is possible to suppress the shortening of the service life of various catalysts or adsorbents, ion exchange resins, various auxiliary machines and the like mounted on the cell stack 5 and the fuel cell system 1 due to the backflow of the flowing gas to the fuel cell system 1 side. it can. Further, after the first flow gas backflow detection is performed, an abnormality in the exhaust path is determined by the second flow gas backflow detection with the damper 22 closed as a provisional measure. Thereby, the stop process of the fuel cell system 1 can be selected according to the presence or absence of abnormality in the exhaust path.
 さらに、この実施形態では、2回目の流通ガスの逆流検出によって排気経路の異常を判定した後、再びダンパ22を開放した状態で流通ガスの逆流の有無を再度検出する。これにより、瞬時的な流通ガスの逆流が発生する度に燃料電池システム1の停止工程を実行することを回避でき、燃料電池システム1の停止頻度を低減できる。したがって、燃料電池システム1の長寿命化が図られると共に、安定的な発電を行うことができる。 Furthermore, in this embodiment, after the abnormality of the exhaust path is determined by the second detection of the backflow of the circulating gas, the presence or absence of the backflow of the circulating gas is detected again with the damper 22 opened again. As a result, it is possible to avoid the stop process of the fuel cell system 1 every time an instantaneous backflow of the flowing gas occurs, and to reduce the frequency of stop of the fuel cell system 1. Therefore, the life of the fuel cell system 1 can be extended and stable power generation can be performed.
 1…燃料電池システム、5…セルスタック、21…発電部、22…ダンパ、23…流動方向検出部、24…制御部、26…排気口、27…排ガス流路、28…ファン、29…フラップ。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 5 ... Cell stack, 21 ... Electric power generation part, 22 ... Damper, 23 ... Flow direction detection part, 24 ... Control part, 26 ... Exhaust port, 27 ... Exhaust gas flow path, 28 ... Fan, 29 ... Flap .

Claims (8)

  1.  水素含有ガスを用いて発電を行うセルスタックを含む発電部と、
     少なくとも前記発電部から排出される排出ガスをシステムの外部に排出させる排気口と、
     前記発電部と前記排気口との間の排気経路に配置され、当該排気経路中の流通ガスの流動方向を検出する流動方向検出部と、
     前記排気経路において前記流動方向検出部の下流側に配置され、前記排気口の開閉を切り替えるダンパと、
     前記流動方向検出部によって前記流通ガスの逆流が検出された場合に、前記ダンパを閉鎖してシステムを停止させる制御部と、を備える燃料電池システム。
    A power generation unit including a cell stack that generates power using a hydrogen-containing gas;
    An exhaust port for discharging exhaust gas discharged from at least the power generation unit to the outside of the system;
    A flow direction detection unit that is disposed in an exhaust path between the power generation unit and the exhaust port and detects a flow direction of the flow gas in the exhaust path;
    A damper that is arranged on the downstream side of the flow direction detection unit in the exhaust path, and switches the opening and closing of the exhaust port;
    A fuel cell system comprising: a control unit that closes the damper and stops the system when a backflow of the circulation gas is detected by the flow direction detection unit.
  2.  前記制御部は、前記流動方向検出部によって前記流通ガスの逆流が検出された場合に、前記流動方向検出部または前記ダンパの異常の有無を判断し、予め定める第1停止工程、または前記第1停止工程の少なくとも一部を省略した第2停止工程のいずれかを実行する請求項1記載の燃料電池システム。 The control unit determines whether the flow direction detection unit or the damper is abnormal when the flow direction detection unit detects a backflow of the flow gas, and determines the first stop step or the first step, 2. The fuel cell system according to claim 1, wherein one of the second stop processes in which at least a part of the stop process is omitted is executed.
  3.  前記制御部は、前記流動方向検出部または前記ダンパに異常があると判断した場合に、前記ダンパを開放して前記第1停止工程を実行する請求項2記載の燃料電池システム。 3. The fuel cell system according to claim 2, wherein when the control unit determines that the flow direction detection unit or the damper is abnormal, the control unit opens the damper and executes the first stop step.
  4.  前記制御部は、前記流動方向検出部及び前記ダンパに異常がないと判断した場合に、前記ダンパの閉鎖を継続して前記第2停止工程を実行する請求項2又は3記載の燃料電池システム。 4. The fuel cell system according to claim 2, wherein, when it is determined that the flow direction detection unit and the damper are not abnormal, the control unit continuously closes the damper and executes the second stop step. 5.
  5.  前記制御部は、前記流動方向検出部または前記ダンパに異常があると判断した場合に、前記ダンパを一旦開放した状態で前記流動方向検出部によって前記流通ガスの逆流が検出されるか否かを判断し、前記流通ガスの逆流が検出された場合に、前記ダンパを再度閉鎖して前記第2停止工程を実行する請求項2又は3記載の燃料電池システム。 When the control unit determines that the flow direction detection unit or the damper is abnormal, the control unit determines whether the flow direction detection unit detects a backflow of the flow gas in a state where the damper is once opened. 4. The fuel cell system according to claim 2, wherein when the determination is made and the backflow of the flow gas is detected, the damper is closed again and the second stop step is executed. 5.
  6.  前記制御部は、前記流通ガスの逆流が検出されなかった場合に、前記ダンパの開放を継続してシステムの運転を継続させる請求項5記載の燃料電池システム。 6. The fuel cell system according to claim 5, wherein when the backflow of the circulation gas is not detected, the control unit continues the operation of the system by continuously opening the damper.
  7.  前記流動方向検出部は、前記排気口に向かう前記燃料ガスの流路内に設けられたファンを有しており、前記ファンの回転方向によって前記燃焼ガスの流動方向を検出する請求項1~6のいずれか一項記載の燃料電池システム。 The flow direction detection unit includes a fan provided in the flow path of the fuel gas toward the exhaust port, and detects the flow direction of the combustion gas based on the rotation direction of the fan. The fuel cell system according to claim 1.
  8.  前記流動方向検出部は、前記排気口に向かう前記燃料ガスの流路内に設けられたフラップを有しており、前記フラップの傾きによって前記燃焼ガスの流動方向を検出する請求項1~6のいずれか一項記載の燃料電池システム。
     
    The flow direction detection unit has a flap provided in the flow path of the fuel gas toward the exhaust port, and detects the flow direction of the combustion gas based on the inclination of the flap. The fuel cell system according to any one of claims.
PCT/JP2011/080469 2010-12-28 2011-12-28 Fuel cell system WO2012091120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551053A JPWO2012091120A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292344 2010-12-28
JP2010-292344 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091120A1 true WO2012091120A1 (en) 2012-07-05

Family

ID=46383207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080469 WO2012091120A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Country Status (2)

Country Link
JP (1) JPWO2012091120A1 (en)
WO (1) WO2012091120A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220016667A (en) * 2020-08-03 2022-02-10 주식회사 두산 Operation system of fuel cell
KR20230012327A (en) * 2021-07-15 2023-01-26 주식회사 두산 Fuel cell system and operating method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727781A (en) * 1993-07-14 1995-01-31 Sony Corp Detector of flow velocity and flow direction of fluid
JPH0922714A (en) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd Off-gas recycle system of fuel cell power generating device
JPH10227455A (en) * 1998-03-23 1998-08-25 Takagi Ind Co Ltd Combusting apparatus
JPH11325550A (en) * 1998-05-08 1999-11-26 Hitachi Ltd Air-conditioning equipment
JP2005127905A (en) * 2003-10-24 2005-05-19 Deicy Corp Fluid stream current meter
JP2008135267A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922711A (en) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd Fuel cell and trouble diagnosing method for it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727781A (en) * 1993-07-14 1995-01-31 Sony Corp Detector of flow velocity and flow direction of fluid
JPH0922714A (en) * 1995-07-07 1997-01-21 Fuji Electric Co Ltd Off-gas recycle system of fuel cell power generating device
JPH10227455A (en) * 1998-03-23 1998-08-25 Takagi Ind Co Ltd Combusting apparatus
JPH11325550A (en) * 1998-05-08 1999-11-26 Hitachi Ltd Air-conditioning equipment
JP2005127905A (en) * 2003-10-24 2005-05-19 Deicy Corp Fluid stream current meter
JP2008135267A (en) * 2006-11-28 2008-06-12 Kyocera Corp Fuel cell device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220016667A (en) * 2020-08-03 2022-02-10 주식회사 두산 Operation system of fuel cell
KR102432357B1 (en) * 2020-08-03 2022-08-11 주식회사 두산 Operation system of fuel cell
KR20230012327A (en) * 2021-07-15 2023-01-26 주식회사 두산 Fuel cell system and operating method thereof
KR102611295B1 (en) 2021-07-15 2023-12-06 주식회사 두산 Fuel cell system and operating method thereof

Also Published As

Publication number Publication date
JPWO2012091120A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5852011B2 (en) Fuel cell system
JP2009004346A (en) Reformer, fuel cell system, and shut-down method for reformer
JP2009266541A (en) Method for operating indirect internal reforming solid oxide fuel cell system
JP5536636B2 (en) Fuel cell system
WO2012091121A1 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
WO2012161217A1 (en) Fuel cell system
WO2012091120A1 (en) Fuel cell system
JP5536635B2 (en) Fuel cell system
JP5728497B2 (en) Fuel cell system
JP5291915B2 (en) Indirect internal reforming type solid oxide fuel cell and operation method thereof
JP5782458B2 (en) Fuel cell system
WO2012090875A1 (en) Fuel cell system and desulfurization device
JP5738319B2 (en) Fuel cell system
JPWO2010134317A1 (en) Hydrogen generator and fuel cell system
WO2012091037A1 (en) Fuel cell system
JP2017016816A (en) Fuel cell system, stop method for fuel cell system, and power production method
KR101358132B1 (en) Fuel exhausting system for ship
WO2012091131A1 (en) Fuel cell system
JP5390887B2 (en) Hydrogen production apparatus and fuel cell system
JP5400425B2 (en) Hydrogen production apparatus and fuel cell system
WO2012090964A1 (en) Fuel cell system
JP2016021282A (en) Desulfurization system and desulfurization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551053

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854398

Country of ref document: EP

Kind code of ref document: A1