JP2008097962A - Fuel cell system and its operation method - Google Patents

Fuel cell system and its operation method Download PDF

Info

Publication number
JP2008097962A
JP2008097962A JP2006277532A JP2006277532A JP2008097962A JP 2008097962 A JP2008097962 A JP 2008097962A JP 2006277532 A JP2006277532 A JP 2006277532A JP 2006277532 A JP2006277532 A JP 2006277532A JP 2008097962 A JP2008097962 A JP 2008097962A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
temperature
containing gas
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006277532A
Other languages
Japanese (ja)
Inventor
Seiji Fujiwara
誠二 藤原
Kunihiro Ukai
邦弘 鵜飼
Hidenobu Wakita
英延 脇田
Yukimune Kani
幸宗 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006277532A priority Critical patent/JP2008097962A/en
Publication of JP2008097962A publication Critical patent/JP2008097962A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of characteristics of transformation catalyst at start-up after abnormal stoppage of a hydrogen generating device. <P>SOLUTION: The fuel cell system is provided with a hydrogen generating device equipped with a reformer 1 having reforming catalyst generating hydrogen-containing gas from a raw material, a fuel cell generating power with the use of the hydrogen-containing gas supplied from the hydrogen generating device, and a transformer transformation temperature detecting controller 201. The above controller 201 allows starting of supply of the hydrogen-containing gas from the hydrogen generating device to the fuel cell when a temperature of the transformer 6 at least exceeds a first threshold value, and changes the first threshold value to a temperature higher than at normal times, when a temperature of the transformer exceeds a second threshold value in a start-up operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、改質反応により生成した水素含有ガス中の一酸化炭素を変成反応により低減する変成器を有する水素生成装置を備える燃料電池システム及びその運転方法に関する。   The present invention relates to a fuel cell system including a hydrogen generator having a transformer that reduces carbon monoxide in a hydrogen-containing gas generated by a reforming reaction by a shift reaction, and an operation method thereof.

エネルギーを有効に利用する分散型発電装置として、発電効率および総合効率の高い燃料電池コージェネレーションシステムが注目されている。   A fuel cell cogeneration system with high power generation efficiency and high overall efficiency has attracted attention as a distributed power generator that effectively uses energy.

燃料電池の多く、例えば、実用化されているリン酸型燃料電池や、現在、開発が進められている固体高分子型燃料電池は、水素を燃料として発電する。しかし、水素はインフラとして整備されていないため、システムの設置場所で生成させる必要がある。   Many fuel cells, for example, phosphoric acid fuel cells that have been put to practical use and solid polymer fuel cells that are currently under development, generate electricity using hydrogen as fuel. However, since hydrogen is not provided as infrastructure, it must be generated at the site where the system is installed.

水素生成方法の一つとして、水蒸気改質法がある。天然ガス、LPG、ナフサ、ガソリン、灯油等の炭化水素系、もしくはメタノール等のアルコール系の原料を水蒸気と混合して、改質触媒を設けた改質器で水蒸気改質反応させ、水素含有ガスを発生させる水素生成装置がある。   One of the hydrogen generation methods is a steam reforming method. Natural gas, LPG, naphtha, gasoline, kerosene and other hydrocarbon-based raw materials or alcohol-based raw materials such as methanol are mixed with steam and subjected to a steam reforming reaction in a reformer provided with a reforming catalyst, and a hydrogen-containing gas There are hydrogen generators that generate

上記従来の水素生成装置は、上記水蒸気改質反応を進行させるためのRu等の改質触媒を有する改質器を備える。この改質器で起こる水蒸気改質反応では一酸化炭素(CO)が副成分として生成し、改質器から送出される水素含有ガス中にはCOが約10〜15%含まれる。水素含有ガス中に含まれるCOは、固体高分子型燃料電池の電極触媒を被毒して発電能力を低下させるため、COを低減する手段を改質器の下流側に設ける必要がある。そのため、COと水蒸気が反応して水素と二酸化炭素を生成する水性ガスシフト反応を進行させる変成触媒を有する変成器と、変成器より送出される水素含有ガスに空気を供給して空気中の酸素とCOを酸化反応させる酸化触媒を有するCO除去器とを改質器下流に連結させて設置し、改質器後の水素含有ガスを流通させることにより、水素含有ガス中のCO濃度を10ppm以下に除去する。   The conventional hydrogen generator includes a reformer having a reforming catalyst such as Ru for advancing the steam reforming reaction. In the steam reforming reaction that occurs in this reformer, carbon monoxide (CO) is produced as a secondary component, and the hydrogen-containing gas delivered from the reformer contains about 10 to 15% of CO. Since CO contained in the hydrogen-containing gas poisons the electrode catalyst of the polymer electrolyte fuel cell and lowers the power generation capacity, it is necessary to provide means for reducing CO on the downstream side of the reformer. Therefore, a shifter having a shift catalyst that advances a water gas shift reaction in which CO and water vapor react to generate hydrogen and carbon dioxide, and air in the air by supplying air to the hydrogen-containing gas sent from the shifter A CO remover having an oxidation catalyst for oxidizing CO is installed downstream of the reformer, and the hydrogen-containing gas after the reformer is circulated to reduce the CO concentration in the hydrogen-containing gas to 10 ppm or less. Remove.

水素含有ガス中のCO濃度が低減できているか否かの判断は、変成触媒の温度によって判断されることが多い。触媒量、原料および水の供給量にもよるが、一般的に変成触媒は約150℃未満ではCO低減能力は低いが、約150℃〜約250℃ではCOを0.5%以下に低減することができる。変成器においてCOを0.5%以下に低減することが可能であれば、CO除去器によってCOを10ppm以下に低減できることが多い。よって、変成触媒の温度が約150℃〜約250℃になったときに、水素生成装置出口の水素含有ガス中のCO濃度が10ppm以下であると判断して、燃料電池に供給し始める。   The determination as to whether or not the CO concentration in the hydrogen-containing gas can be reduced is often determined by the temperature of the shift catalyst. Although it depends on the amount of catalyst, the amount of feedstock and the amount of water supplied, in general, the shift catalyst has low CO reduction ability at less than about 150 ° C, but CO is reduced to 0.5% or less at about 150 ° C to about 250 ° C be able to. If CO can be reduced to 0.5% or less in the transformer, CO can often be reduced to 10 ppm or less by the CO remover. Therefore, when the temperature of the shift catalyst becomes about 150 ° C. to about 250 ° C., it is determined that the CO concentration in the hydrogen-containing gas at the outlet of the hydrogen generator is 10 ppm or less, and supply to the fuel cell is started.

また、上記変成触媒としては銅−亜鉛触媒が広く使われる。銅−亜鉛触媒の触媒特性を発揮するためには、銅は還元された状態に保持する必要がある。運転時においては水素リッチな水素含有ガスが供給されるため銅は還元された状態に保持されるが、停止中においては外気からの空気が水素生成装置内に侵入する可能性があり、この空気侵入が変成器内にまで及ぶと変成触媒中の銅が酸化されてしまうため、空気を侵入させない停止方法を行う必要がある。そこで、この水素生成装置の運転停止方法として、水素生成装置内を原料ガスで満たして密閉し、さらに、密閉後の水素生成装置内の温度低下に伴って生じる改質器の負圧を防止するために都市ガスを所定時間後に供給し、再度水素生成装置内を外気から遮断して正圧に維持する水素生成装置が提案されている(例えば、特許文献1及び特許文献2参照)。
特開2003−229156号公報 特開2003−288930号公報
In addition, a copper-zinc catalyst is widely used as the shift catalyst. In order to exhibit the catalytic properties of the copper-zinc catalyst, it is necessary to keep the copper in a reduced state. During operation, the hydrogen-rich hydrogen-containing gas is supplied, so that the copper is kept in a reduced state. However, during stoppage, air from the outside air may enter the hydrogen generator. Since the copper in the shift catalyst is oxidized when the intrusion reaches the shift converter, it is necessary to perform a stop method that does not allow air to enter. Therefore, as a method for stopping the operation of the hydrogen generator, the hydrogen generator is filled with the raw material gas and sealed, and further, the negative pressure of the reformer caused by the temperature drop in the hydrogen generator after sealing is prevented. Therefore, hydrogen generators have been proposed in which city gas is supplied after a predetermined time, and the interior of the hydrogen generator is again shut off from the outside air and maintained at a positive pressure (see, for example, Patent Document 1 and Patent Document 2).
JP 2003-229156 A JP 2003-288930 A

しかしながら、上記特許文献に記載のように温度低下後に原料ガスを供給して、正圧にし、外気から遮断した水素生成装置を長期間に亘ってこの停止状態のまま放置した後、通常通り起動動作を行い変成器の温度が、変成器において燃料電池に供給可能なレベルにまでCOが低減されると想定される所定温度以上になったことを確認してから水素含有ガスを燃料電池に供給すると、水素含有ガス中のCO濃度が高く燃料電池のアノード電極が被毒して燃料電池が著しく劣化する場合があるというが分かった。   However, as described in the above-mentioned patent document, after the temperature is lowered, the raw material gas is supplied, brought to a positive pressure, and after leaving the hydrogen generation device cut off from the outside air in this stopped state for a long period of time, it is started up normally. And after confirming that the temperature of the transformer is equal to or higher than a predetermined temperature at which the CO is expected to be reduced to a level that can be supplied to the fuel cell in the transformer, the hydrogen-containing gas is supplied to the fuel cell. It has been found that the concentration of CO in the hydrogen-containing gas is high, and the anode of the fuel cell is poisoned and the fuel cell may deteriorate significantly.

本発明は、前記従来の課題を解決するもので、長期間に亘って停止状態のまま放置した後の起動においても確実にCOを十分に低減し、燃料電池のアノード電極をCOで被毒させることのない燃料電池システムを提供することを目的とする。   The present invention solves the above-described conventional problems, and reliably reduces CO even during startup after being left in a stopped state for a long period of time, and poisons the anode electrode of the fuel cell with CO. It is an object of the present invention to provide a fuel cell system that does not cause problems.

上記従来の課題を解決するために、本発明者は鋭意検討した結果、長期間に亘って停止状態のまま放置すると外気温または大気圧の変動により水素生成装置内ひいては変成器内に空気が侵入し、変成器内の変成触媒が酸化劣化することがあることが分かった。ここで、起動動作を実行すると酸化劣化した変成触媒は、改質器にて生成した水素含有ガスにより還元され、通常の起動動作時よりも還元反応の発熱により変成触媒が高温になる場合があり、このような場合は、変成器の温度を通常起動時よりも高い温度に制御すると、水素含有ガス中のCOを燃料電池に供給可能なレベルにまで低減可能であるという知見を得た。   In order to solve the above-mentioned conventional problems, the present inventor has intensively studied, and as a result, when left standing for a long period of time, air enters the hydrogen generator and thus the transformer due to fluctuations in the outside air temperature or atmospheric pressure. As a result, it has been found that the shift catalyst in the shift converter may be oxidized and deteriorated. Here, when the start-up operation is performed, the shift catalyst that has been oxidized and deteriorated is reduced by the hydrogen-containing gas generated in the reformer, and the shift catalyst may become hotter due to the heat generated by the reduction reaction than during the normal start-up operation. In such a case, it was found that CO in the hydrogen-containing gas can be reduced to a level that can be supplied to the fuel cell by controlling the temperature of the transformer to a temperature higher than that at normal startup.

第1の本発明の燃料電池システムは、原料から水素含有ガスを生成する改質触媒を有する改質器、水素含有ガス中の一酸化炭素をシフト反応により低減させる変成触媒を有する変成器、及び前記変成器の温度を検出する温度検出器を備える水素生成装置と、前記水素生成装置から供給される水素含有ガスを用いて発電する燃料電池と、制御器とを備え、少なくとも前記温度検出器の検出温度が第1の閾値以上でなければ、前記制御器が、前記水素生成装置から前記燃料電池への水素含有ガスの供給開始を許可しない燃料電池システムであって、前記制御器は、起動動作において前記温度検出器の検出温度が前記第1の閾値より大きい第2の閾値以上になると、前記第1の閾値をより高い温度に変更することを特徴とする。   A fuel cell system according to a first aspect of the present invention includes a reformer having a reforming catalyst that generates a hydrogen-containing gas from a raw material, a shifter having a shift catalyst that reduces carbon monoxide in the hydrogen-containing gas by a shift reaction, and A hydrogen generator comprising a temperature detector for detecting the temperature of the transformer; a fuel cell for generating electricity using a hydrogen-containing gas supplied from the hydrogen generator; and a controller, wherein at least the temperature detector If the detected temperature is not equal to or higher than the first threshold value, the controller is a fuel cell system that does not allow the supply of hydrogen-containing gas from the hydrogen generator to the fuel cell to start, and the controller performs a startup operation When the temperature detected by the temperature detector is equal to or higher than a second threshold value greater than the first threshold value, the first threshold value is changed to a higher temperature.

また、第2の本発明の燃料電池システムは、前記変成触媒が、銅及び亜鉛を含むことを特徴とする。   The fuel cell system according to the second aspect of the present invention is characterized in that the shift catalyst contains copper and zinc.

また、第3の本発明の燃料電池システムの運転方法は、原料から水素含有ガスを生成する改質触媒を有する改質器、水素含有ガス中の一酸化炭素をシフト反応により低減させる変成触媒を有する変成器、及び前記変成器の温度を検出する温度検出器を備える水素生成装置と、前記水素生成装置から供給される水素含有ガスを用いて発電する燃料電池とを備え、少なくとも前記温度検出器の検出温度が第1の閾値以上でなければ、前記水素生成装置から前記燃料電池への水素含有ガスの供給開始を許可しない燃料電池システムの運転方法であって、起動動作において前記温度検出器の検出温度が前記第1の閾値より大きい第2の閾値以上になると、前記第1の閾値をより高い温度に変更することを特徴とする。   The fuel cell system operating method of the third aspect of the present invention includes a reformer having a reforming catalyst that generates a hydrogen-containing gas from a raw material, and a shift catalyst that reduces carbon monoxide in the hydrogen-containing gas by a shift reaction. A hydrogen generator comprising a transformer having a temperature detector for detecting the temperature of the transformer, and a fuel cell for generating power using a hydrogen-containing gas supplied from the hydrogen generator, and at least the temperature detector If the detected temperature of the fuel cell system is not equal to or higher than the first threshold value, the operation method of the fuel cell system that does not permit the start of the supply of the hydrogen-containing gas from the hydrogen generator to the fuel cell, When the detected temperature is equal to or higher than a second threshold value that is greater than the first threshold value, the first threshold value is changed to a higher temperature.

本発明の燃料電池システムによれば、長期停止中に水素生成装置内に空気が侵入し、変成触媒が酸化劣化した後の起動においてもCOを十分に低減した状態で、燃料電池に水素含有ガスが供給され、安定した発電運転が可能になる。   According to the fuel cell system of the present invention, the hydrogen-containing gas is supplied to the fuel cell in a state in which CO is sufficiently reduced even at the start after the air enters the hydrogen generator during the long-term shutdown and the shift catalyst is oxidized and deteriorated. Is supplied and stable power generation operation becomes possible.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池システムの構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention.

図1に示す様に、本実施の形態1の燃料電池システムは、炭化水素系の原料と水とから水素リッチな水素含有ガスを生成する改質触媒(図示せず)を有する改質器1と、改質器1への原料の供給量を制御する原料供給器2と、改質器1への水の供給量を制御する水供給器3とを備えている。具体的には、原料供給器2は、ニードル弁、可変オリフィス等で構成され、水供給器3は、プランジャーポンプ等で構成される。   As shown in FIG. 1, the fuel cell system of Embodiment 1 includes a reformer 1 having a reforming catalyst (not shown) that generates a hydrogen-rich hydrogen-containing gas from a hydrocarbon-based raw material and water. A raw material supplier 2 that controls the amount of raw material supplied to the reformer 1, and a water supplier 3 that controls the amount of water supplied to the reformer 1. Specifically, the raw material supply device 2 is configured with a needle valve, a variable orifice, and the like, and the water supply device 3 is configured with a plunger pump and the like.

この改質器1には、改質器1を加熱する加熱器4と、改質触媒の温度を検出する改質温度検出器5が設置されている。供給された原料と水が改質器1にて、加熱器4で加熱されることによって水蒸気改質反応により水素含有ガスが生成される。また、加熱器4による加熱量は、改質温度検出器5で検出される改質触媒の温度によって決定される。   The reformer 1 is provided with a heater 4 for heating the reformer 1 and a reforming temperature detector 5 for detecting the temperature of the reforming catalyst. The supplied raw material and water are heated by the heater 4 in the reformer 1, whereby a hydrogen-containing gas is generated by a steam reforming reaction. Further, the heating amount by the heater 4 is determined by the temperature of the reforming catalyst detected by the reforming temperature detector 5.

改質器1によって生成した水素含有ガスは、変成器6に供給される。変成器6には変成触媒として銅―亜鉛触媒(図示せず)がおさめられている。また変成器6には、変成器6の温度を検出する本発明の温度検出器である変成温度検出器7を設置している。この変成温度検出器7は、変成触媒の温度または変成触媒を通過するガスの温度に近い温度を検出可能な位置に配置されていれば、いずれの箇所に設置されてもよく。例えば、変成部6の外壁であっても構わない。   The hydrogen-containing gas generated by the reformer 1 is supplied to the transformer 6. The shifter 6 contains a copper-zinc catalyst (not shown) as a shift catalyst. The transformer 6 is provided with a transformation temperature detector 7 which is a temperature detector of the present invention for detecting the temperature of the transformer 6. The shift temperature detector 7 may be installed at any location as long as the shift temperature detector 7 is disposed at a position where the temperature of the shift catalyst or the temperature of the gas passing through the shift catalyst can be detected. For example, the outer wall of the metamorphic part 6 may be used.

変成器6を通過した水素含有ガスはさらにCOを低減するために、CO除去器8に供給されて、酸化ガス供給器9で供給される空気中の酸素によって酸化反応を進行させ、水素含有ガス中のCO濃度を10ppm以下まで低減する。   The hydrogen-containing gas that has passed through the transformer 6 is supplied to the CO remover 8 in order to further reduce CO, and the oxidation reaction proceeds with oxygen in the air supplied by the oxidizing gas supply device 9, and the hydrogen-containing gas. Reduce the concentration of CO to 10 ppm or less.

CO除去器8の下流にはCO除去器8より送出される水素含有ガスが燃料ガスとして燃料電池11に供給されるための燃料ガス供給路14と、燃料電池11から送出されたオフ燃料ガスを加熱器4に供給するためのオフガス流路15と、燃料ガス供給路14の途中で分岐して燃料電池11をバイパスし、オフガス流路15と接続するバイパス流路12と、CO除去器8より送出された水素含有ガスの流れる経路を燃料電池11またはバイパス流路12のいずれかに切替えるための切替器10と、燃料電池システムの停止時において外気からシステム内を遮断するための弁16とを備える。なお、切替器10は、3方弁等が用いられる。   Downstream of the CO remover 8, a fuel gas supply path 14 for supplying a hydrogen-containing gas sent from the CO remover 8 as a fuel gas to the fuel cell 11, and an off-fuel gas sent from the fuel cell 11. From an off-gas passage 15 for supplying to the heater 4, a bypass passage 12 that branches off in the middle of the fuel gas supply passage 14, bypasses the fuel cell 11, and is connected to the off-gas passage 15, and a CO remover 8. A switch 10 for switching the flow path of the delivered hydrogen-containing gas to either the fuel cell 11 or the bypass flow path 12, and a valve 16 for shutting off the system from outside air when the fuel cell system is stopped. Prepare. Note that the switch 10 is a three-way valve or the like.

制御器13は、少なくとも変成温度検出器7で検出された温度に基づいて切替器10を制御する制御器であり、本実施の形態においてはさらに原料供給器2、水供給器3、加熱器4及び酸化ガス供給器9、弁16を制御する。   The controller 13 is a controller that controls the switch 10 based on at least the temperature detected by the transformation temperature detector 7. In the present embodiment, the controller 13 further includes the raw material supplier 2, the water supplier 3, and the heater 4. And the oxidizing gas supply device 9 and the valve 16 are controlled.

次に、本実施の形態の燃料電池システムの起動方法の一例について説明する。   Next, an example of a method for starting the fuel cell system according to the present embodiment will be described.

通常の起動方法としては、制御器13は、まず、切替器10によりCO除去器8より送出されるガスがバイパス流路12を流れるように切り替えるとともに弁16を開放した状態で、原料供給器2により原料として天然ガス2.0NL/minを改質器1に供給するとともに、改質器1に供給される原料中の炭素のモル数と改質器1に供給される水分子のモル数との比であるスチーム/カーボン比(S/C)=3.0となるように水供給器3により水を改質器1に供給する。改質器1を通過後、変成器6及びCO除去器8を通過した原料を含む可燃性ガスは、バイパス流路12及びオフガス流路15を流れ最終的に加熱器4に供給され、燃焼することで改質器1が加熱される。制御器13は、さらに原料供給器2により原料供給量を制御して改質温度検出器5で検出する温度が650℃となるように加熱器4で加熱を行い、改質器1において水蒸気改質反応を進行させる。改質器1から送出される水素含有ガス中のCO濃度は約10〜15%であり、COを低減するために変成器6へ、そしてCO除去器8へ供給する。   As a normal starting method, the controller 13 first switches the raw material supplier 2 while switching the gas sent from the CO remover 8 so as to flow through the bypass flow path 12 and opening the valve 16 by the switch 10. As a raw material, natural gas 2.0 NL / min is supplied to the reformer 1 as well as the number of moles of carbon in the raw material supplied to the reformer 1 and the number of moles of water molecules supplied to the reformer 1. Water is supplied to the reformer 1 by the water supplier 3 so that the steam / carbon ratio (S / C) = 3.0. After passing through the reformer 1, the combustible gas containing the raw material that has passed through the transformer 6 and the CO remover 8 flows through the bypass flow path 12 and the off-gas flow path 15 and is finally supplied to the heater 4 for combustion. Thus, the reformer 1 is heated. The controller 13 further controls the amount of raw material supplied by the raw material supplier 2 and heats the heater 4 so that the temperature detected by the reforming temperature detector 5 becomes 650 ° C. The quality reaction proceeds. The CO concentration in the hydrogen-containing gas delivered from the reformer 1 is about 10 to 15%, and is supplied to the transformer 6 and the CO remover 8 in order to reduce CO.

燃料電池11で安定して発電するためには、改質器1、変成器6及びCO除去器8を備える水素生成装置出口の水素含有ガス中のCO濃度を10ppm以下に低減する必要がある。本実施の形態の燃料電池システムにおいては変成器6から送出される水素含有ガス中のCO濃度を0.5%以下に低減されるとともに、CO除去器8が最適な反応温度に達していればCO除去器8から送出される水素含有ガス中のCO濃度を10ppm以下に低減することができる。   In order to generate electricity stably with the fuel cell 11, it is necessary to reduce the CO concentration in the hydrogen-containing gas at the outlet of the hydrogen generator equipped with the reformer 1, the transformer 6 and the CO remover 8 to 10 ppm or less. In the fuel cell system of the present embodiment, the CO concentration in the hydrogen-containing gas delivered from the transformer 6 can be reduced to 0.5% or less, and the CO remover 8 reaches the optimum reaction temperature. The CO concentration in the hydrogen-containing gas delivered from the CO remover 8 can be reduced to 10 ppm or less.

変成器6から送出される水素含有ガス中のCO濃度が0.5%以下に低減できているか否かの判断は、変成温度検出器7で検出される温度によって判断できる。   Whether or not the CO concentration in the hydrogen-containing gas sent from the transformer 6 can be reduced to 0.5% or less can be determined by the temperature detected by the transformation temperature detector 7.

図2の黒丸を外挿した曲線aは通常の変成触媒の特性として変成温度検出器7で検出される触媒温度と、変成器6後の水素含有ガス中のCO濃度との関係を示す。   A curve a obtained by extrapolating the black circle in FIG. 2 shows the relationship between the catalyst temperature detected by the shift temperature detector 7 as a characteristic of the normal shift catalyst and the CO concentration in the hydrogen-containing gas after the shifter 6.

曲線aに示されるように、水素含有ガス中に含まれるCO濃度は変成温度検出器7で検出される温度が150℃以上に達しないと、変成器6から送出される水素含有ガス中のCO濃度が0.5%以下に低減できない。従って、通常の起動動作においては、制御器13は、変成温度検出器7で検出される温度が本発明の第1の閾値である150℃を超えると変成器6から送出される水素含有ガス中のCO濃度が約0.5%以下になると判断し、燃料電池11へ水素含有ガスを供給を許可するための1条件が満たされ、さらにCO除去器8の温度を検出するCO除去温度検出器17の検出温度がCO除去器8の最適な反応温度(例えば、120℃)以上になると、確実に水素含有ガス中のCO濃度が10ppm以下に低減されると判断して、燃料電池11へ水素含有ガスを供給を許可するためのもう1条件が満たされ、燃料電池11への水素含有ガスの供給を許可可能と判断し、CO除去器8から燃料電池11への水素含有ガスを供給を開始して発電させる。なお、上記において燃料電池11への水素含有ガスの供給の可否判断を変成器6の温度だけでなく、CO除去器8の温度も考慮し、それぞれが所定の閾値以上になることを可否判断の基準条件としたが、さらに、水素生成装置が各反応器の温度が熱的関連性の高い装置構成であれば、変成器6の温度を代表温度として変成器6の温度が所定に閾値以上になることで制御器13がCO除去器8から送出される水素含有ガスを燃料電池11に供給可能であると判断しても構わない。   As shown by the curve a, the CO concentration contained in the hydrogen-containing gas is such that the temperature in the hydrogen-containing gas delivered from the transformer 6 is not increased until the temperature detected by the transformation temperature detector 7 reaches 150 ° C. or higher. The concentration cannot be reduced below 0.5%. Therefore, in a normal start-up operation, the controller 13 detects that the hydrogen-containing gas delivered from the transformer 6 when the temperature detected by the transformation temperature detector 7 exceeds 150 ° C., which is the first threshold value of the present invention. CO removal temperature detector that determines that the CO concentration of the fuel cell is about 0.5% or less, satisfies one condition for permitting the supply of the hydrogen-containing gas to the fuel cell 11, and further detects the temperature of the CO remover 8 When the detected temperature of 17 is equal to or higher than the optimum reaction temperature (for example, 120 ° C.) of the CO remover 8, it is determined that the CO concentration in the hydrogen-containing gas is surely reduced to 10 ppm or less, and the hydrogen is supplied to the fuel cell 11. Another condition for permitting the supply of the contained gas is satisfied, it is determined that the supply of the hydrogen-containing gas to the fuel cell 11 can be permitted, and the supply of the hydrogen-containing gas from the CO remover 8 to the fuel cell 11 is started. To generate electricity. In the above description, whether or not the supply of the hydrogen-containing gas to the fuel cell 11 is determined takes into consideration not only the temperature of the transformer 6 but also the temperature of the CO remover 8, and it is determined whether or not each of them exceeds a predetermined threshold value. If the hydrogen generator is a device configuration in which the temperature of each reactor is highly thermally related, the temperature of the transformer 6 is set as a representative temperature and the temperature of the transformer 6 exceeds a predetermined threshold. Thus, the controller 13 may determine that the hydrogen-containing gas sent from the CO remover 8 can be supplied to the fuel cell 11.

いずれにしろ、本発明の燃料電池システムの起動動作においては、制御器13は、少なくとも変成器6の温度が第1の閾値以上にならないと水素含有ガスを燃料電池11に供給することを許可しない。   In any case, in the start-up operation of the fuel cell system of the present invention, the controller 13 does not allow the hydrogen-containing gas to be supplied to the fuel cell 11 unless at least the temperature of the transformer 6 becomes equal to or higher than the first threshold value. .

次に、ここで本実施の形態の燃料電池システムの停止方法の一例について説明する。まず、制御器13は、停止動作が開始されると、原料供給器2および水供給器3からの原料及び水の供給を停止し、加熱器4による加熱も停止する。そして、切替器10をバイパス流路12側に切替えるとともに、弁16を封止して燃料電池システム内に空気が侵入しないようにする。   Next, an example of a method for stopping the fuel cell system of the present embodiment will be described here. First, when the stop operation is started, the controller 13 stops the supply of the raw material and water from the raw material supply device 2 and the water supply device 3, and also stops the heating by the heater 4. Then, the switcher 10 is switched to the bypass flow path 12 side, and the valve 16 is sealed to prevent air from entering the fuel cell system.

しかし、長期間停止状態のまま放置されると、上述のように外気温の変化もしくは大気圧の変動により水素生成装置内のガス流路が大気圧以下になり、弁16より空気が侵入し、ひいては変成器6にまで空気が侵入する場合がある。このような場合には、変成器6内の変成触媒として使用している銅―亜鉛触媒の銅が酸化銅へ酸化されるため次回起動時に改質触媒上で生成される水素含有ガスによって、酸化された銅が再び還元され、変成触媒が通常起動時よりも高温になる場合がある。   However, when left standing for a long period of time, the gas flow path in the hydrogen generator becomes below the atmospheric pressure due to the change of the outside air temperature or the fluctuation of the atmospheric pressure as described above, and air enters from the valve 16, As a result, air may penetrate into the transformer 6. In such a case, since the copper of the copper-zinc catalyst used as the shift catalyst in the shift converter 6 is oxidized to copper oxide, it is oxidized by the hydrogen-containing gas generated on the reforming catalyst at the next start-up. The reduced copper may be reduced again, and the shift catalyst may become hotter than during normal startup.

図2の白四角を外挿した曲線bは、上述のように高温になり変成温度検出器7で検出される温度が本発明の第2の閾値である350℃を超えた後の変成触媒の特性として触媒温度と変成器6から送出された水素含有ガス中のCO濃度との関係を示す。   The curve b obtained by extrapolating the white squares in FIG. 2 indicates the temperature of the shift catalyst after the temperature becomes high as described above and the temperature detected by the shift temperature detector 7 exceeds 350 ° C., which is the second threshold value of the present invention. As a characteristic, the relationship between the catalyst temperature and the CO concentration in the hydrogen-containing gas sent from the transformer 6 is shown.

曲線bに示すように、変成温度検出器7で検出される温度が350℃を超えた後では、変成触媒の温度が150℃になっても変成器6から送出される水素含有ガス中のCO濃度が0.5%以下に低減できず160℃以上で0.5%以下に低減できることがわかる。   As shown by the curve b, after the temperature detected by the shift temperature detector 7 exceeds 350 ° C., the CO in the hydrogen-containing gas delivered from the shift converter 6 even when the temperature of the shift catalyst reaches 150 ° C. It can be seen that the concentration cannot be reduced to 0.5% or less and can be reduced to 0.5% or less at 160 ° C. or higher.

従って、本実施の形態の燃料電池システムにおいては、起動動作時において変成温度検出器7で検出される温度が第2の閾値である350℃を超えた後の起動動作においては、変成器6から送出される水素含有ガス中のCOが十分に低減され、CO除去器8から送出される水素含有ガスを燃料電池11に供給可能と判断する第1の閾値を150℃からより高温の160℃へ変更し、変成温度検出器7で検出される温度が160℃になると制御器23は切替器10を燃料ガス供給路14側に切替え、CO除去器8より送出される水素含有ガスを燃料電池11に供給する。   Therefore, in the fuel cell system of the present embodiment, in the startup operation after the temperature detected by the transformation temperature detector 7 during the startup operation exceeds the second threshold of 350 ° C., the transformer 6 The first threshold for determining that the hydrogen-containing gas sent from the CO remover 8 can be supplied to the fuel cell 11 from 150 ° C. to a higher temperature of 160 ° C. is sufficiently reduced in the hydrogen-containing gas sent out. When the temperature detected by the modification temperature detector 7 reaches 160 ° C., the controller 23 switches the switch 10 to the fuel gas supply path 14 side, and converts the hydrogen-containing gas sent from the CO remover 8 into the fuel cell 11. To supply.

上記燃料電池システムの起動動作により、長期停止中に水素生成装置内に空気が侵入し、変成触媒が酸化劣化した後の起動においてもCOを十分に低減した状態で、燃料電池11に水素含有ガスがされ、安定した発電運転が可能になる。   By the start-up operation of the fuel cell system, air enters the hydrogen generator during a long-term stop, and the hydrogen-containing gas is supplied to the fuel cell 11 in a state in which CO is sufficiently reduced even after start-up after the shift catalyst is oxidized and deteriorated. And stable power generation operation becomes possible.

なお、上記第1の閾値を160℃に変更した起動時以降に変成温度検出器7で検出される温度が再び350℃を超えた場合には、曲線bよりも変成触媒の低温でのCO低減特性がさらに低下する可能性があるため、160℃から170℃というようにさらに本発明の第1の閾値の設定温度を高くすることによって、確実にCOを低減する必要がある。   Note that when the temperature detected by the shift temperature detector 7 again exceeds 350 ° C. after the start-up when the first threshold is changed to 160 ° C., the CO reduction at a lower temperature of the shift catalyst than the curve b. Since the characteristics may be further deteriorated, it is necessary to reliably reduce CO by further increasing the set temperature of the first threshold value of the present invention such as 160 ° C. to 170 ° C.

また、以上の実施形態において第1の閾値を150℃、第2の閾値を350℃、また第1の閾値の変更後の閾値を160℃としたがあくまで例示であり、変成触媒の種類や装置構成等において最適な値を選択すればよく上記値に限定されるものではない。   In the above embodiment, the first threshold value is 150 ° C., the second threshold value is 350 ° C., and the threshold value after changing the first threshold value is 160 ° C. What is necessary is just to select an optimal value in a structure etc., and it is not limited to the said value.

本発明にかかる燃料電池システムは、長期間に亘って停止状態のまま放置した後の起動においても確実にCOを十分に低減し、燃料電池のアノード電極をCOで被毒させることのなく、安定な発電運転が可能になるので、家庭用燃料電池コージェネシステム等として有用である。   The fuel cell system according to the present invention reliably reduces CO even during start-up after being left in a stopped state for a long period of time, and is stable without poisoning the anode electrode of the fuel cell with CO. Therefore, it is useful as a household fuel cell cogeneration system.

本発明の実施の形態1における燃料電池システムの構成図1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態1における燃料電池システムの変成温度検出器で検出される触媒温度と変成器から送出される水素含有ガス中のCO濃度との関係を示す図The figure which shows the relationship between the catalyst temperature detected by the transformation temperature detector of the fuel cell system in Embodiment 1 of this invention, and CO density | concentration in the hydrogen containing gas sent from a transformation device.

符号の説明Explanation of symbols

1 改質器
2 原料供給器
3 水供給器
4 加熱器
5 改質温度検出器
6 変成器
7 変成温度検出器
8 CO除去器
9 酸化ガス供給器
10 切替器
11 燃料電池
12 バイパス流路
13 制御器
14 燃料ガス供給路
15 オフガス流路
16 弁
17 CO除去温度検出器
DESCRIPTION OF SYMBOLS 1 Reformer 2 Raw material supply device 3 Water supply device 4 Heater 5 Reforming temperature detector 6 Transformer 7 Transformation temperature detector 8 CO remover 9 Oxidizing gas supply device 10 Switch 11 Fuel cell 12 Bypass flow path 13 Control 14 Fuel gas supply path 15 Off gas flow path 16 Valve 17 CO removal temperature detector

Claims (3)

原料から水素含有ガスを生成する改質触媒を有する改質器、水素含有ガス中の一酸化炭素をシフト反応により低減させる変成触媒を有する変成器、及び前記変成器の温度を検出する温度検出器を備える水素生成装置と、前記水素生成装置から供給される水素含有ガスを用いて発電する燃料電池と、制御器とを備え、少なくとも前記温度検出器の検出温度が第1の閾値以上でなければ、前記制御器が、前記水素生成装置から前記燃料電池への水素含有ガスの供給開始を許可しない燃料電池システムであって、前記制御器は、起動動作において前記温度検出器の検出温度が前記第1の閾値より大きい第2の閾値以上になると、前記第1の閾値をより高い温度に変更することを特徴とする燃料電池システム。 A reformer having a reforming catalyst for generating a hydrogen-containing gas from a raw material, a shifter having a shift catalyst for reducing carbon monoxide in the hydrogen-containing gas by a shift reaction, and a temperature detector for detecting the temperature of the shifter A hydrogen generator comprising: a fuel cell that generates electricity using a hydrogen-containing gas supplied from the hydrogen generator; and a controller, wherein at least the temperature detected by the temperature detector is not equal to or higher than a first threshold value The controller does not permit the start of the supply of the hydrogen-containing gas from the hydrogen generator to the fuel cell, and the controller detects the temperature detected by the temperature detector during the start-up operation. The fuel cell system is characterized in that the first threshold value is changed to a higher temperature when the second threshold value is greater than or equal to the second threshold value. 前記変成触媒が、銅及び亜鉛を含むことを特徴とする請求項1記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the shift catalyst contains copper and zinc. 原料から水素含有ガスを生成する改質触媒を有する改質器、水素含有ガス中の一酸化炭素をシフト反応により低減させる変成触媒を有する変成器、及び前記変成器の温度を検出する温度検出器を備える水素生成装置と、前記水素生成装置から供給される水素含有ガスを用いて発電する燃料電池とを備え、少なくとも前記温度検出器の検出温度が第1の閾値以上でなければ、前記水素生成装置から前記燃料電池への水素含有ガスの供給開始を許可しない燃料電池システムの運転方法であって、起動動作において前記温度検出器の検出温度が前記第1の閾値より大きい第2の閾値以上になると、前記第1の閾値をより高い温度に変更することを特徴とする燃料電池システムの運転方法。 A reformer having a reforming catalyst for generating a hydrogen-containing gas from a raw material, a shifter having a shift catalyst for reducing carbon monoxide in the hydrogen-containing gas by a shift reaction, and a temperature detector for detecting the temperature of the shifter And a fuel cell that generates electricity using the hydrogen-containing gas supplied from the hydrogen generator, and at least if the temperature detected by the temperature detector is not equal to or higher than a first threshold value, the hydrogen generator An operation method of a fuel cell system that does not permit the start of supply of a hydrogen-containing gas from an apparatus to the fuel cell, wherein a temperature detected by the temperature detector is greater than or equal to a second threshold value that is greater than the first threshold value in startup operation Then, the operation method of the fuel cell system, wherein the first threshold value is changed to a higher temperature.
JP2006277532A 2006-10-11 2006-10-11 Fuel cell system and its operation method Withdrawn JP2008097962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006277532A JP2008097962A (en) 2006-10-11 2006-10-11 Fuel cell system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277532A JP2008097962A (en) 2006-10-11 2006-10-11 Fuel cell system and its operation method

Publications (1)

Publication Number Publication Date
JP2008097962A true JP2008097962A (en) 2008-04-24

Family

ID=39380596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277532A Withdrawn JP2008097962A (en) 2006-10-11 2006-10-11 Fuel cell system and its operation method

Country Status (1)

Country Link
JP (1) JP2008097962A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217636A (en) * 2002-01-23 2003-07-31 Matsushita Electric Ind Co Ltd Modification catalyst degradation determining unit, and hydrogen generator
WO2006009153A1 (en) * 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus and method for operation thereof, and fuel cell system
JP2006056771A (en) * 2004-07-20 2006-03-02 Matsushita Electric Ind Co Ltd Hydrogen production apparatus, its operation method, and fuel cell system
JP2006169068A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system using the same
WO2007091632A1 (en) * 2006-02-08 2007-08-16 Matsushita Electric Industrial Co., Ltd. Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217636A (en) * 2002-01-23 2003-07-31 Matsushita Electric Ind Co Ltd Modification catalyst degradation determining unit, and hydrogen generator
WO2006009153A1 (en) * 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus and method for operation thereof, and fuel cell system
JP2006056771A (en) * 2004-07-20 2006-03-02 Matsushita Electric Ind Co Ltd Hydrogen production apparatus, its operation method, and fuel cell system
JP2006169068A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system using the same
WO2007091632A1 (en) * 2006-02-08 2007-08-16 Matsushita Electric Industrial Co., Ltd. Fuel cell system

Similar Documents

Publication Publication Date Title
KR100762685B1 (en) reformer and fuel cell system using the same
JP5138324B2 (en) Reformer and fuel cell system
JP2007254251A (en) Operation stopping method of reforming device
JP5852011B2 (en) Fuel cell system
JP2008010178A (en) Fuel cell system
US20070122666A1 (en) Method of operating fuel cell system and fuel cell system
JP4939114B2 (en) Fuel processing apparatus and fuel cell system
JP4827405B2 (en) Hydrogen generator and fuel cell system using the same
JP5002220B2 (en) Fuel cell system
JP2008218355A (en) Fuel cell power generation system
JP2009283278A (en) Fuel cell system
JP5353214B2 (en) Hydrogen generator and fuel cell power generation system including the same
JP2008097962A (en) Fuel cell system and its operation method
JP5166829B2 (en) Reformer and fuel cell system
JP2010275118A (en) Hydrogen production apparatus
JP2008214121A (en) Hydrogen generator and fuel cell system using it
JP2008081369A (en) Apparatus for producing hydrogen, its operating method and fuel cell system
JP2010267575A (en) Fuel cell system
JP2017016816A (en) Fuel cell system, stop method for fuel cell system, and power production method
JP5390887B2 (en) Hydrogen production apparatus and fuel cell system
JP5248068B2 (en) Fuel cell system
JP5314310B2 (en) Fuel cell system
JP2005093222A (en) Fuel cell system
JP5400425B2 (en) Hydrogen production apparatus and fuel cell system
JP5728497B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130107