WO2012090819A1 - 微結晶シリコン膜の製造方法、微結晶シリコン膜、電気素子および表示装置 - Google Patents

微結晶シリコン膜の製造方法、微結晶シリコン膜、電気素子および表示装置 Download PDF

Info

Publication number
WO2012090819A1
WO2012090819A1 PCT/JP2011/079642 JP2011079642W WO2012090819A1 WO 2012090819 A1 WO2012090819 A1 WO 2012090819A1 JP 2011079642 W JP2011079642 W JP 2011079642W WO 2012090819 A1 WO2012090819 A1 WO 2012090819A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
sih
silicon film
plasma treatment
Prior art date
Application number
PCT/JP2011/079642
Other languages
English (en)
French (fr)
Inventor
篤 宮崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012090819A1 publication Critical patent/WO2012090819A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method for manufacturing a microcrystalline silicon film, a microcrystalline silicon film, an electric element, and a display device.
  • microcrystalline silicon films such as nanosilicon films have attracted attention in various fields such as electronic memory LSIs, optical interconnection LSIs, light emitting elements, and light-weight large-screen display panels.
  • Japanese Patent Application Laid-Open No. 2005-236080 describes a method for producing a silicon nanocrystal structure.
  • this method for producing a silicon nanocrystal structure first, Ar ions are irradiated onto a substrate surface, A step of forming a nucleation reaction site of the nanocrystal (first step). Furthermore, a process of growing silicon nanocrystal grains having a particle size of 10 nm or less at a nucleation reaction site by a thermal decomposition reaction of a source gas containing silicon element (second process), and oxygen or oxygen radical, nitrogen radical or hydrogen radical And a step (third step) of terminating silicon nanocrystal grains with oxygen termination, nitrogen termination, or hydrogen termination.
  • the said 1st process to a 3rd process is performed repeatedly as needed.
  • a silicon nanocrystal structure formed by combining a large number of silicon single crystal grains having a grain size of 10 nm or less is formed on the substrate.
  • Japanese Unexamined Patent Application Publication No. 2009-88383 describes a method for forming a nanosilicon thin film in which a nanosilicon thin film is formed on a substrate.
  • This method for producing a nanosilicon thin film includes a step of forming silicon growth nuclei on a substrate surface with high-frequency plasma of hydrogen gas, and a step of depositing silicon crystal grains having a particle size of 10 nm or less by thermal reaction of a gas containing silicon element And a step of terminating the surface of the silicon crystal grains with oxygen.
  • a thin film made of oxygen-terminated nanosilicon grains having a diameter of about 7 nm can be formed on a substrate.
  • the method for producing a silicon nanocrystal structure or nanosilicon thin film described in Japanese Patent Application Laid-Open No. 2005-236080, Japanese Patent Application Laid-Open No. 2009-88383, etc. forms a silicon nanocrystal structure on a silicon wafer.
  • the film forming temperature is high, and a glass substrate cannot be adopted as the substrate.
  • amorphous silicon has been mainly used so far in thin film transistors mounted on display panels, but in order to improve the performance of thin film transistors, polysilicon is used instead of amorphous silicon.
  • polysilicon is used instead of amorphous silicon.
  • the fabrication of polysilicon requires a crystallization step, which increases the number of steps and makes it difficult to increase the size.
  • microcrystalline silicon containing nano-silicon having a thickness of several nanometers or less which is easy to increase in size and does not require crystallization in a subsequent process, has been developed.
  • a thin film transistor employs a glass substrate as a substrate, and each process is performed at a low temperature of 400 ° C. or lower.
  • the thin film transistor has a high temperature as disclosed in JP 2005-236080 A and JP 2009-88383 A. It is difficult to apply the method for producing crystalline silicon.
  • crystalline silicon is formed, for example, when a base insulating film such as a silicon nitride film or a silicon oxide film is formed on a transparent substrate and formed on the base insulating film or on a gate insulating film. There are also.
  • a nanocrystalline silicon or microcrystalline silicon film on an amorphous thin film such as a silicon oxide film or a silicon nitride film, for example, silicon is deposited on the amorphous thin film using a plasma CVD apparatus, and the crystalline silicon There is a method of forming a film.
  • the aggregate having regularity loses its regularity so as to maintain consistency with the amorphous thin film.
  • the formed silicon film has lower crystallinity, becomes an incubation layer, makes it difficult to form crystal nuclei, and it is difficult to form a crystalline silicon film.
  • the present invention has been made in view of the above-described problems, and a first object thereof is a crystalline silicon film capable of forming a microcrystalline silicon film located on an amorphous thin film at a low temperature. It is to provide a method for producing a microcrystalline silicon film containing nanosilicon. A second object is to provide a microcrystalline silicon film containing nanosilicon which is a crystalline silicon film formed on an amorphous film, an electric element including the microcrystalline silicon film, and a display device.
  • the method for producing a microcrystalline silicon film containing nanosilicon includes a step of preparing a substrate having a main surface, a step of forming an amorphous film on the main surface, and an atmosphere in which no electric field is formed. And a step of exposing the substrate on which the amorphous film is formed to a gas atmosphere of a first silicon compound containing silicon element and hydrogen element as main components.
  • the amorphous film is a silicon nitride film.
  • the first silicon compound is SiH 4 (monosilane).
  • the method further includes the step of performing plasma treatment for generating hydrogen radicals after exposing the substrate to a gas atmosphere of the first silicon compound.
  • plasma treatment is performed on the substrate in a mixed gas atmosphere of a gas of a second silicon compound containing hydrogen element and silicon element as main components and hydrogen gas.
  • the substrate is placed in an SiH 4 (monosilane) gas atmosphere in an atmosphere in which no electric field is formed.
  • the method further includes the step of exposing to.
  • the method further includes a step of performing termination treatment on the silicon film formed by repeating the step of performing plasma treatment in the mixed gas atmosphere and the step of performing plasma treatment of generating hydrogen radicals.
  • the method further includes the step of introducing impurities into the silicon film formed by repeating the step of performing plasma treatment in the mixed gas atmosphere and the step of performing plasma treatment for generating hydrogen radicals.
  • the method for producing a microcrystalline silicon film containing nanosilicon according to the present invention includes a step of preparing a substrate having a main surface, and a silicon element and a nitrogen element as main components on the main surface.
  • the microcrystalline silicon film containing nanosilicon according to the present invention is a microcrystalline silicon film formed on the upper surface of an insulating amorphous film formed on a transparent substrate, and has a Raman measurement peak of 518 cm ⁇ 1 or less. It occurs in.
  • the void content is 10% or less.
  • the electric element according to the present invention is an electric element formed on a transparent substrate having a main surface.
  • the electrical element includes a gate electrode formed on the main surface of the transparent substrate, a gate insulating film formed on the gate electrode, a semiconductor layer formed on the gate insulating film, and formed on the semiconductor layer.
  • the semiconductor layer includes a microcrystalline silicon film, and the Raman measurement peak of the microcrystalline silicon film is 518 cm ⁇ 1 or less. Arise.
  • a display device includes the above-described electric element and a transparent substrate, a switching element substrate in which the electric element functions as a switching element, a counter substrate disposed so as to face the switching element substrate, a switching element substrate, And a display medium layer sealed between opposing substrates.
  • a microcrystalline silicon film containing nanosilicon which is a crystalline silicon film can be formed on an amorphous film.
  • the microcrystalline silicon film containing nanosilicon according to the present invention can be applied to various elements such as various switching elements and memory elements, so that the driving voltage and power consumption of each element can be reduced. According to the electric element and the display device of the present invention, it is possible to reduce the driving voltage and the power consumption.
  • the transparent substrate 1 amorphous film 2 is formed is a schematic diagram showing the initial state when exposed in SiH 4 (silane) gas atmosphere. It is a schematic diagram which shows a mode when predetermined time passes from the state shown in the said FIG. It is a schematic diagram which shows the initial state when performing a plasma process in hydrogen gas atmosphere. It is a schematic diagram which shows a mode when predetermined time passes from the state shown in the said FIG. 5 is a graph showing Raman peaks of the measurement curves LA to LD shown in FIG. It is a graph which shows the Raman measurement result when changing into a film-forming condition of the microcrystal silicon film
  • the transparent substrate 1 microcrystalline silicon film 13 is formed which is a crystalline silicon film is a schematic diagram showing the initial state when exposed in SiH 4 (silane) gas atmosphere. It is a schematic diagram which shows a mode when predetermined time passes from the state shown in the said FIG. It is a graph which shows the Raman measurement result when changing into a film-forming condition of the microcrystal silicon film
  • membrane formed on an amorphous film. 17 is a graph showing Raman peaks of the measurement curves LO to LR shown in FIG. 3 is a graph showing Raman characteristics of a microcrystalline silicon film according to Example 1.
  • FIG. 1 is a disassembled perspective view which shows the liquid crystal display device 102 with which the thin-film transistor concerning this Embodiment 2 is mounted.
  • 3 is a cross-sectional view of a display panel 107.
  • a method for manufacturing a microcrystalline silicon film containing nanosilicon according to the present invention will be described.
  • the present invention is not limited to being applied to a liquid crystal display device.
  • various display devices such as a plasma display device, an organic EL display device, and electronic paper can be applied.
  • the present invention is not limited to such a display device, and can be applied to a flash memory element of a semiconductor device such as an electronic memory LSI, a switching element such as a MOS transistor, or the like.
  • the present invention can be applied to a solar panel.
  • Nanosilicon means a silicon film having a Raman shift (cm ⁇ 2 ) of 518 (cm ⁇ 2 ) or less, which will be described later, and the microcrystalline silicon film includes this nanosilicon and has few voids. It means a silicon film.
  • a transparent substrate 1 having a main surface is prepared.
  • a transparent insulating substrate such as a glass substrate can be employed.
  • an amorphous film 2 such as a silicon nitride film (SiN x ) is formed on the main surface of the transparent substrate 1.
  • the transparent substrate 1 on which the amorphous film 2 is formed is carried into the processing chamber 4 of the film forming apparatus 3.
  • the film forming apparatus 3 includes a processing chamber 4 that can store the transparent substrate 1, a gas supply pipe 5 and a gas supply pipe 6 that can supply various gases into the processing chamber 4, and a transparent that is stored in the processing chamber 4.
  • a mounting table 7 on which the substrate 1 can be placed, a high-frequency electrode 8 to which high-frequency power is supplied, and a high-frequency power source 9 that supplies high-frequency power to the high-frequency electrode 8 are provided.
  • the film forming apparatus 3 includes a valve gate 10 for carrying the transparent substrate 1 into the processing chamber 4, an exhaust device 11 for exhausting the gas in the processing chamber 4, and the transparent substrate 1 placed on the mounting table 7. And a heater 12 for heating the heater.
  • the gas supply pipe 5 can supply a gas mainly composed of hydrogen element into the processing chamber 4. Typically, hydrogen gas is supplied from the gas supply pipe 5 into the processing chamber 4.
  • the gas supply pipe 6 can supply a gas containing hydrogen and silicon elements as main components into the processing chamber 4.
  • the gas supply pipe 6 supplies SiH 4 (silane) gas to the processing chamber. 4 is supplied.
  • the gas supplied from the gas supply pipe 6 is not limited to SiH 4 , and a gas such as Si 2 H 4 (disilane) can also be employed.
  • the transparent substrate 1 on which the amorphous film 2 is formed is carried into the processing chamber 4 of the film forming apparatus 3.
  • SiH 4 (silane) gas is supplied from the gas supply pipe 6 into the processing chamber 4.
  • FIG. 4 is a graph showing the Raman measurement results when the microcrystalline silicon film formed on the amorphous film is formed under different film forming conditions.
  • the vertical axis of the graph shown in FIG. 4 indicates the Raman intensity (au).
  • the horizontal axis shows the Raman shift (cm ⁇ 1 ).
  • This Raman measurement is a result of measurement using a micro Raman spectroscopic analyzer manufactured by Joban Yvon.
  • measurement curves LA to LD are obtained by forming 200 ⁇ m of silicon film 13 on amorphous film 2 under various film formation conditions for a microcrystalline silicon film and measuring silicon film 13 as shown in FIG. The results are shown.
  • the deposition conditions for the silicon film 13 indicated by the measurement curve LA are as follows. First, after the amorphous film 2 such as a silicon nitride film is formed, the H 2 gas and the SiH 4 gas are supplied to the gas supply pipe 5 and the gas supply pipe so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784. 6 is supplied into the processing chamber 4, and plasma processing is performed on the transparent substrate 1 for 30 (sec) with an applied high frequency power of 175 (W) under 1300 (Pa).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec).
  • the Raman measurement result of the silicon film 13 is a measurement curve LA shown in FIG.
  • the deposition conditions for the silicon film 13 indicated by the measurement curve LB are as follows. First, after an amorphous film 2 such as a silicon nitrogen film is formed, H 2 gas is supplied into the processing chamber 4 and high frequency power is supplied to the high frequency electrode 8. As described above, the transparent substrate 1 on which the amorphous film 2 is formed is subjected to plasma treatment for 10 (sec) with an applied high-frequency power 175 (W) under a hydrogen atmosphere at 1300 (Pa).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784, and 1300 (Pa)
  • the transparent substrate 1 is subjected to plasma treatment for 30 (sec) with an applied high frequency power of 175 (W).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa). ) For 67 (sec).
  • a 200-cm silicon film 13 is formed, and the Raman measurement result of the silicon film 13 is a measurement curve LB.
  • the measurement curve LB a crystal peak not present in the measurement curve LA can be observed.
  • the fact that the crystal peak can be observed indicates that the crystallinity of the silicon film 13 shown in the measurement curve LB is strong.
  • the Raman peak of the polycrystalline silicon film and the single crystal silicon film is 520 (cm ⁇ 1 ) or less.
  • the Raman peak is 518 (cm ⁇ 1 ) or less. That is, a silicon film having a crystal peak of 518 (cm ⁇ 2 ) or less is a microcrystalline silicon film (nanosilicon film) having a fine crystal.
  • the crystal peak of the measurement curve LB is 518 (cm ⁇ 2 ) or less, and it can be seen that the formed silicon film 13 is a nanosilicon film.
  • the film forming conditions of the silicon film 13 indicated by the measurement curve LC are as follows. First, an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min).
  • high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG. That is, no electric field is formed in the processing chamber 4 of the film forming apparatus 3.
  • plasma treatment is performed for 10 (sec) in a hydrogen atmosphere.
  • this plasma processing was performed as applied high frequency electric power 175 (W) under 1300 (Pa).
  • H 2 gas and SiH 4 gas are gasses so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784.
  • the transparent substrate 1 is supplied from the supply pipe 5 and the gas supply pipe 6 into the processing chamber 4 and is subjected to plasma treatment with applied high-frequency power 175 (W) under 1300 (Pa) for 30 (sec).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec).
  • the silicon film 13 having the Raman characteristic of the measurement curve LC is formed. It can be seen that this measurement curve LC has a clearer peak of Raman characteristics than the measurement curves LA and LB. That is, it can be seen that the silicon film 13 having the characteristics of the measurement curve LC has higher crystallinity than the silicon film 13 having the characteristics of the measurement curves LA and LB.
  • the peak value of the measurement curve LC is a crystal peak of 518 (cm ⁇ 1 ) or less, and it can be seen that the crystal is a microcrystalline silicon film including a nanosilicon film with a fine crystal.
  • the film formation conditions of the silicon film 13 indicated by the measurement curve LD are as follows. First, after an amorphous film 2 such as a silicon nitride film is formed, SiH 4 (silane) gas is supplied into the processing chamber 4 and the transparent substrate 1 on which the amorphous film 2 is formed is placed in a SiH 4 (silane) gas atmosphere. Expose to 3 min. At this time, high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG. That is, no electric field is formed between the mounting table 7 and the high-frequency electrode 8 in the processing chamber 4.
  • SiH 4 (silane) gas SiH 4 (silane) gas is supplied into the processing chamber 4 and the transparent substrate 1 on which the amorphous film 2 is formed is placed in a SiH 4 (silane) gas atmosphere. Expose to 3 min. At this time, high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG. That is, no electric field is formed between the mounting table 7 and the high-frequency electrode 8
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784, and 1300 (Pa ) Is applied to the transparent substrate 1 with an applied high-frequency power of 175 (W) for 30 (sec).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec).
  • the Raman characteristic of the silicon film 13 obtained through such a process is a measurement curve LD shown in FIG.
  • the peak of the measurement curve LD occurs when the Raman shift (cm ⁇ 1 ) is 518 (cm ⁇ 1 ), and the silicon film 13 exhibiting the characteristics of the measurement curve LD is also a microcrystalline silicon film including a nanosilicon film. It turns out that it is.
  • the measurement curve LB has a clear peak compared to the measurement curve LA. This indicates that it is effective to perform the hydrogen plasma treatment on the amorphous film 2 in a direction that does not destroy the crystal structure of the cluster.
  • the measurement curve LD has a clear peak compared to the measurement curve LA. This indicates that exposure to 3 (min) in a SiH 4 (silane) gas atmosphere is effective in a direction not destroying the crystal structure of the cluster.
  • the measurement curve LC has a clear peak and a lower peak position than the measurement curve LD. This is due to the fact that the crystal size is small, and it is effective to reduce the crystal size by exposing the SiH 4 (silane) gas atmosphere to 3 (min) and performing hydrogen plasma treatment. .
  • the reason why the peak of the measurement curve LB is clearer than that of the measurement curve LA is that a cluster having a nanostructure formed in the gas phase is matched with amorphous SiNx, so that it is prevented from collapsing by itself. is there. Specifically, this is because the SiH 4 gas prevents the monolayer-like gaseous Si atoms and, for example, N in SiNx, from being bonded by N—Si, and the clusters are broken. Details of the phenomenon will be described later with reference to FIGS.
  • the reason why the peak value of the measurement curve LC is smaller than the peak value of the measurement curve LD is as follows. Since the Si atoms of N—Si were originally gaseous, they have H bonds such as Si—H 3 or Si—H 2 . This is because Si having adjacent H bonds is eliminated by H 2 plasma to form Si—Si bonds and form a fine nano-Si structure.
  • the peak value of the measurement curve LC has a lower frequency than the peak value of the measurement curve LD. Details of the phenomenon will be described later with reference to FIGS. 9 and 10.
  • crystalline silicon with a small crystal size is nanosilicon, and the more nanosilicon, the more difficult the crystal system is to collapse, and there are few defects such as voids, resulting in microcrystalline silicon containing high-quality nanosilicon. .
  • FIG. 7 is a schematic view showing an initial state when the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere.
  • FIG. 8 is a schematic diagram showing a state when a predetermined time has elapsed from the state shown in FIG.
  • the amorphous film 2 contains a silicon element and a nitrogen element, and the silicon element and the nitrogen element are bonded.
  • SiH 4 (silane) gas contains a silicon element and a hydrogen element, and the silicon element and the hydrogen element are bonded.
  • a nitrogen element bonded to a hydrogen element of a silicon nitride film (SiN x ) and a silicon element bonded to a hydrogen element of SiH 4 (silane) gas each have a hydrogen bond. remove. Then, the nitrogen element and the silicon element are combined.
  • SiN x silicon nitride film
  • SiH 4 (silane) gas each have a hydrogen bond. remove.
  • the nitrogen element and the silicon element are combined.
  • the silicon element that is bonded to the hydrogen element of the SiH 4 (silane) gas is also bonded to the silicon element of the amorphous film 2.
  • the amorphous film 2 is exposed to the SiH 4 (silane) gas atmosphere in an atmosphere to which no electric field is applied, a new silicon element bond is formed as shown in FIG.
  • the silicon element of the crystalline cluster only needs to be bonded to the neighboring silicon element, and the crystallinity is not easily broken.
  • the N element of the silicon nitride film has been described as a representative example as the partner to which the Si element of the SiH 4 (silane) gas is bonded.
  • the Si element of the SiH 4 (silane) gas is The bonding partner includes the case of Si element in the silicon nitride film.
  • FIG. 9 is a schematic diagram showing a state where the transparent substrate 1 is subjected to plasma treatment in a hydrogen gas atmosphere after being exposed to a SiH 4 (silane) gas atmosphere.
  • FIG. 10 is a schematic diagram showing a state when a predetermined time has elapsed from the state shown in FIG.
  • the silicon element bonded to the nitrogen element of the silicon nitride film was originally in a gas state, so that three or two H elements are present. Elements are bonded.
  • the H-bond disappears and becomes a Si—Si bond, whereby a fine nano-Si structure is formed.
  • the peak is clear and the peak position becomes lower.
  • the measurement curve LC has a clear peak, and the reason why the peak position is lower than the measurement curve LD is as follows.
  • SiH 4 (silane) gas atmosphere for 3 (min) When the substrate is placed in a SiH 4 (silane) gas atmosphere for 3 (min), a new Si element bond is formed. Furthermore, this is because by performing hydrogen plasma treatment, Si—Si between adjacent Si is formed, and a fine nano-Si structure is formed. As a result, the crystal system becomes microcrystalline silicon containing high-quality nanosilicon that is less likely to collapse and has fewer void-like defects.
  • FIG. 11 is a graph showing the Raman peaks of the measurement curves LA to LD shown in FIG.
  • the measurement curve LC has a Raman shift (cm ⁇ 1 ) indicating a peak smaller than the measurement curve LD, and the peak is clear. This is because, as described above, in the measurement curve LD, H bonds are removed, Si—Si bonds are formed, and fine nano-Si structures are actively formed.
  • FIG. 12 is a graph showing the Raman measurement results when the microcrystalline silicon film formed on the amorphous film is formed under different film formation conditions.
  • Measurement curves LK to LN are graphs showing the Raman characteristics of the silicon film 13 formed in 200 cm under various film forming conditions.
  • the film formation conditions of the silicon film 13 showing the characteristics of the measurement curve LK shown in FIG. 12 are as follows. First, an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min).
  • SiH 4 (silane) gas atmosphere for 3 (min).
  • high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG. That is, no electric field is formed in the processing chamber 4.
  • the Si atoms of the SiH 4 gas and the N element of the silicon nitride film are N—Si bonded, and the nanoparticles are prevented from being broken.
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784. Is supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6, and plasma treatment is performed on the transparent substrate 1 for 15 (sec) with an applied high-frequency power 175 (W) under 1300 (Pa).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784, and 1300 (Pa ) Is applied to the transparent substrate 1 for 15 (sec) with an applied high-frequency power of 175 (W).
  • the supply of SiH 4 gas is stopped, only the H 2 gas is supplied, and the transparent substrate 1 is subjected to plasma treatment with an applied high frequency power of 175 (W) under 1300 (Pa) in a hydrogen gas atmosphere.
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784, and 1300 (Pa ) Is applied to the transparent substrate 1 for 15 (sec) with an applied high-frequency power of 175 (W).
  • plasma treatment is performed on the transparent substrate 1 in a hydrogen gas atmosphere at 1300 (Pa) and applied high frequency power 175 (W) for 10 (sec). Thereafter, H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa). The plasma treatment is performed on the transparent substrate 1 for 67 (sec). Through these steps, the silicon film 13 having the characteristics shown in the measurement curve LK is formed.
  • the measurement curve LK shown in FIG. 12 has weaker crystal peaks than the measurement curves LC and LD shown in FIG.
  • the film is continuously formed for 30 (sec) so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784.
  • the plasma treatment is performed for 15 (sec) so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784, and then the plasma treatment is performed in the H 2 gas atmosphere.
  • plasma treatment for generating hydrogen radicals for 10 (sec)
  • adjacent Si—Si bonds are formed as shown in FIGS. 9 and 10 to form a fine nano-Si structure.
  • a fine nano-Si structure is formed, while the weak Si—Si bond is removed, so that the peak is weak.
  • an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min). At this time, high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG.
  • the transparent substrate 1 is subjected to plasma treatment (applying hydrogen radicals) with an applied high-frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). Plasma treatment) is performed for 10 (sec).
  • the steps up to here are effective for forming a fine structure as in the case of the measurement curve LC shown in FIG. 4, thereby forming a basic fine structure.
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784. Is supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6, and plasma treatment is performed on the transparent substrate 1 for 15 (sec) with an applied high-frequency power 175 (W) under 1300 (Pa).
  • SiH 4 (silane) gas is supplied into the processing chamber 4 with the SiH 4 gas flow pressure set at 200 Pa, and the transparent substrate 1 is exposed to the SiH 4 (silane) gas atmosphere for 3 (min). .
  • no electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8. This is not done with the measurement curve LK.
  • the transparent substrate 1 is subjected to plasma treatment with an applied high frequency power of 175 (W) under 1300 (Pa) in a hydrogen gas atmosphere for 10 (sec). Do.
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec).
  • the silicon film 13 having the characteristics shown in the measurement curve LL can be formed.
  • the measurement curve LL has a clear crystal peak compared to the measurement curve LK.
  • FIG. 14 shows an initial state when the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere in the middle of the formation of the microcrystalline silicon film 13 containing nanosilicon which is a crystalline silicon film. It is a schematic diagram.
  • FIG. 15 is a schematic diagram showing a state when a predetermined time has elapsed from the state shown in FIG.
  • the microcrystalline silicon film 13 which is a crystalline silicon film
  • a part of the silicon element is bonded to the hydrogen element.
  • a SiH 4 (silane) gas atmosphere by exposing to a SiH 4 (silane) gas atmosphere, a new Si bond can be formed in the states of FIGS. 14 to 15 as in FIGS. Therefore, there are more Si—Si bonds than the measurement curve LK, and the crystal peak is clear. That is, it can be seen that it is effective to expose the transparent substrate 1 to a SiH 4 (silane) gas atmosphere in the middle of the formation of the microcrystalline silicon film 13 containing nanosilicon which is a crystalline silicon film.
  • An amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min).
  • high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG. That is, no electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • the transparent substrate 1 is subjected to plasma treatment (plasma that generates hydrogen radicals) with an applied high-frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). Process) is performed for 10 (sec).
  • plasma treatment plasma that generates hydrogen radicals
  • W high-frequency power of 175
  • Process is performed for 10 (sec).
  • the steps up to here are effective for forming a fine structure as in the case of the measurement curve LC shown in FIG. 4, thereby forming a basic fine structure.
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784.
  • W high frequency power 175
  • Pa 1300
  • the Si—Si bonds are increased by increasing the time.
  • the supply of SiH 4 gas is stopped, only H 2 gas is supplied, and the transparent substrate 1 is subjected to plasma treatment with applied high-frequency power 175 (W) under 1300 (Pa) in a hydrogen gas atmosphere at 10 ( sec).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784, and 1300 (Pa ) Is applied to the transparent substrate 1 with an applied high frequency power of 175 (W) for 25 (sec).
  • the plasma treatment in this state is 15 seconds in the measurement curve LK, and the Si—Si bond is increased by increasing the time in the measurement curve LM.
  • the supply of SiH 4 gas is stopped, only the H 2 gas is supplied, and the transparent substrate 1 is subjected to plasma treatment in an atmosphere of hydrogen gas at an applied high frequency power of 175 (W) under 1300 (Pa) (10 ( sec).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784, and 1300 (Pa ) Is applied to the transparent substrate 1 with an applied high frequency power of 175 (W) for 25 (sec).
  • the plasma treatment in this state is 15 seconds
  • the measurement curve LM the Si—Si bonds are increased by increasing the time.
  • the measurement curve LM has a clear crystal peak compared to the measurement curve LK. This is because, in the measurement curve LK, the plasma treatment in this state was 15 seconds, but the Si—Si bonds were increased by increasing the time to 25 seconds.
  • An amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min).
  • high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG. That is, no electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high-frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa).
  • the steps up to here are effective for forming a fine structure as in the case of the measurement curve LC shown in FIG. 4, thereby forming a basic fine structure.
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere (the flow pressure of the SiH 4 gas is 200 Pa) for 3 (min).
  • the flow pressure of the SiH 4 gas is 200 Pa
  • no electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8. This process was not performed in the silicon film manufacturing process indicated by the measurement curve LM.
  • plasma treatment is performed on the transparent substrate 1 in a hydrogen gas atmosphere at 1300 (Pa) with an applied high frequency power of 175 (W) for 10 (sec).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec).
  • the silicon film 13 having the characteristics indicated by the measurement curve LN can be formed.
  • the peak of the measurement curve LN appears more clearly than the measurement curve LM. This is because the measurement curve LN performs a process of exposing the transparent substrate 1 to a SiH 4 (silane) gas atmosphere (SiH 4 gas flow pressure of 200 Pa) for 3 (min), which was not performed in the measurement curve LM. is there.
  • the silicon film 13 having the characteristics indicated by the measurement curve LN can be formed.
  • the measurement curve LN has a clear crystal peak compared to the measurement curve LM. This is because the substrate is exposed to the SiH 4 gas atmosphere to combine the Si element on the substrate side with the Si element in the SiH 4 gas as described above with reference to FIGS. This is because Si—Si bonds could be formed.
  • FIG. 13 is a graph showing the Raman peak of each silicon film showing the characteristics of the measurement curves LK, LL, LM, LN shown in FIG.
  • the supply of SiH 4 (silane) gas is intermittently stopped, and only the H 2 gas discharge is performed to form adjacent Si—Si bonds.
  • FIG. 16 is a graph showing Raman measurement results when the microcrystalline silicon film formed on the amorphous film is formed under different film formation conditions. Note that the vertical axis of the graph shown in FIG. 16 indicates the Raman intensity (au). The horizontal axis shows the Raman shift (cm ⁇ 1 ). Measurement curves LO to LR are graphs showing Raman characteristics of the silicon film 13 formed under various film formation conditions. FIG. 17 is a graph showing Raman peaks of the silicon film 13 formed under various film forming conditions.
  • Each silicon film shown in the measurement curves LO to LR changes only the flow pressure of the SiH 4 gas among the respective film formation conditions. Therefore, the film formation conditions for the silicon films shown in the measurement curves LO to LR will be described.
  • the film forming conditions of the silicon film 13 showing the characteristics of the measurement curve LO are as follows. First, an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min). At this time, high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG.
  • the transparent substrate 1 is subjected to plasma treatment (applying hydrogen radicals) with an applied high-frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). Plasma treatment) is performed for 10 (sec).
  • a fine nano-Si structure is formed in the same manner as the silicon film showing the characteristics of the measurement curve LC of FIG. Since the Si atoms of N—Si in the silicon nitride film were originally in the form of gas, they have H bonds such as Si—H 3 or Si—H 2 , and Si having these adjacent H bonds are caused by H 2 plasma. Since the H bond is eliminated and the Si—Si bond is formed, a fine nano-Si structure is obtained.
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784. Is supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6, and the plasma treatment is performed on the transparent substrate 1 for 45 (sec) with an applied high-frequency power 175 (W) under 1300 (Pa).
  • the supply of SiH 4 gas is stopped, only the H 2 gas is supplied, and the transparent substrate 1 is subjected to plasma treatment with an applied high frequency power of 175 (W) under 1300 (Pa) in a hydrogen gas atmosphere.
  • the H element is taken by the H radical between adjacent Si—Si bonds, so that a fine Si—Si bond is formed.
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) becomes 784, and 1300 (Pa ) Is applied to the transparent substrate 1 for 45 (sec) with an applied high frequency power of 175 (W).
  • the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere (the flow pressure of the SiH 4 gas is 0 Pa) for 3 (min). No electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). .
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec). Through these steps, the silicon film 13 having the characteristics indicated by the measurement curve LO can be formed.
  • the film formation conditions of the silicon film 13 showing the characteristics of the measurement curve LP are as follows. First, an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min).
  • SiH 4 (silane) gas atmosphere for 3 (min).
  • high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG. No electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • the transparent substrate 1 is subjected to plasma treatment (applying hydrogen radicals) with an applied high-frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). Plasma treatment) is performed for 10 (sec).
  • the silicon element in the silane gas is bonded to the nitrogen element or silicon element on the glass substrate by exposing the substrate to the silane gas. Then, by performing a subsequent plasma treatment for generating hydrogen radicals, the hydrogen element of the adjacent silicon element is removed, and the adjacent silicon elements are bonded together to form a basic microstructure.
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784. Is supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6, and the plasma treatment is performed on the transparent substrate 1 for 45 (sec) with an applied high-frequency power 175 (W) under 1300 (Pa).
  • the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere (the flow pressure of the SiH 4 gas is 100 Pa) for 3 (min). No electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). .
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec). Through these steps, the silicon film 13 having the characteristics indicated by the measurement curve LP can be formed.
  • the film formation conditions of the silicon film 13 showing the characteristics of the measurement curve LQ are as follows. First, an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min). At this time, high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). .
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784. Is supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6, and the plasma treatment is performed on the transparent substrate 1 for 45 (sec) with an applied high-frequency power 175 (W) under 1300 (Pa).
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere (the flow pressure of the SiH 4 gas is 200 Pa) for 3 (min). No electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • an applied high frequency power 175 (W) plasma treatment is performed for 10 (sec) under a hydrogen gas atmosphere on the transparent substrate 1 under 1300 (Pa).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec). Through these steps, the silicon film 13 having the characteristics indicated by the measurement curve LQ can be formed.
  • the film formation conditions of the silicon film 13 showing the characteristics of the measurement curve LR are as follows. First, an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min). At this time, high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). .
  • the H 2 gas and the SiH 4 gas are set so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784. Is supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6, and the plasma treatment is performed on the transparent substrate 1 for 45 (sec) with an applied high-frequency power 175 (W) under 1300 (Pa).
  • the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere (the flow pressure of the SiH 4 gas is 400 Pa) for 3 (min). No electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high-frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 67 (sec). Through such a process, the silicon film 13 having the characteristics shown in the measurement curve LR can be formed.
  • the peak values of the measurement curves LO to LR are different. This is because the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere (the flow pressure of SiH 4 gas is 0 to 400 Pa) for 3 (min) to form a new Si bond. It was found that the size of the nano-Si structure varies depending on the balance between the amount and the amount of migrating Si atoms.
  • SiH 4 silane
  • SiH 4 silane
  • the Si element to be migrated is NH 3 , N 2 O, PH 3 , B 2 H 6. It is thought that it binds to each element.
  • the microcrystalline silicon film is terminated by the N element by exposing the transparent substrate 1 on which the microcrystalline silicon film is formed in an atmosphere of NH 3 gas.
  • N 2 O gas through the transparent substrate 1 on which the microcrystalline silicon film is formed, the microcrystalline silicon film is terminated by the N element or the O element.
  • P can be introduced into the microcrystalline silicon film by exposing the transparent substrate 1 on which the microcrystalline silicon film is formed to PH 3 gas.
  • B can be introduced into the microcrystalline silicon film by exposing the transparent substrate 1 on which the microcrystalline silicon film is formed to an atmosphere of B 2 H 6 gas.
  • Example 1 A microcrystalline silicon film and a manufacturing method thereof according to the first embodiment will be described with reference to FIGS.
  • FIG. 18 is a graph showing the Raman characteristics of the microcrystalline silicon film according to the first embodiment.
  • the peak of the measurement curve showing the Raman characteristics shown in FIG. 18 shows a peak at 517 (cm ⁇ 1 ). That is, it is microcrystalline silicon containing nanosilicon.
  • the void which measured the microcrystal silicon film containing the nano silicon which shows the Raman characteristic shown in FIG. 18 by the ellipso measurement was 6.95%. This is because it contains nanosilicon, and by forming a microcrystalline silicon film having a void content of 10% or less, it is possible to suppress carriers from being trapped by voids, and an electric element such as a thin film transistor Even if applied to the carrier mobility, the carrier mobility can be increased.
  • the amorphous component was 23.23%
  • the portion other than the amorphous component was 69.82%
  • the void was 6.95%.
  • the manufacturing process of the microcrystalline silicon film shown in FIG. 18 is as follows. First, an amorphous film 2 such as a silicon nitride film is formed on the transparent substrate 1.
  • SiH 4 (silane) gas is supplied into the processing chamber 4, and the transparent substrate 1 on which the amorphous film 2 is formed is exposed to a SiH 4 (silane) gas atmosphere for 3 (min). At this time, high-frequency power is not supplied to the high-frequency electrode 8 shown in FIG.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). .
  • the H 2 gas and the H 2 gas are adjusted so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 784.
  • SiH 4 gas is supplied into the processing chamber 4 from the gas supply pipe 5 and the gas supply pipe 6, and plasma treatment is applied to the transparent substrate 1 with an applied high-frequency power of 175 (W) under 1300 (Pa) for 45 (sec). Apply.
  • the transparent substrate 1 is exposed to a SiH 4 (silane) gas atmosphere (the flow pressure of the SiH 4 gas is 200 Pa) for 3 (min). No electric field is formed in the processing chamber 4, and no electric field is formed between the mounting table 7 and the high-frequency electrode 8.
  • the transparent substrate 1 is subjected to a plasma treatment for 10 (sec) with an applied high frequency power of 175 (W) under a hydrogen gas atmosphere at 1300 (Pa). .
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 650, and the applied high frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 10 (sec).
  • H 2 gas and SiH 4 gas are supplied into the processing chamber 4 so that the ratio R value (H 2 flow rate / SiH 4 flow rate) is 328, and the applied high-frequency power 175 (W) under 1300 (Pa).
  • the plasma treatment is performed on the transparent substrate 1 for 30 (sec). Through such steps, the silicon film 13 having the characteristics shown in the measurement curve shown in FIG. 18 can be formed.
  • the film thickness of the silicon film 13 is about 200 mm.
  • the void was 6.95%
  • the amorphous component was 23.23%
  • the portion other than the amorphous component was 69.82%.
  • FIG. 19 is a graph of each component including the void content of the microcrystalline silicon film when the film is formed with different thicknesses without using the method of forming fine nanosilicon. That is, H 2 gas and SiH 4 gas are supplied into the processing chamber on the substrate on which the amorphous silicon film is formed, and the silicon film is formed by performing plasma processing in this state. Then, silicon films having various film thicknesses formed by changing the processing time are formed, and the void content of each silicon film is shown.
  • a% indicates an amorphous component
  • v% indicates a void content
  • c% indicates a content other than amorphous.
  • the void is 27% and the content other than amorphous (c%), specifically, the crystal component is 60%. is there.
  • the void is 6.95%, and the portion other than the amorphous component (specifically, the crystal component) is 69.82%.
  • the silicon obtained through the process of exposing the amorphous film 2 to the SiH 4 (silane) gas atmosphere and the process of performing the plasma treatment in the hydrogen atmosphere.
  • the film contains nanosilicon, has less voids and a higher crystal component.
  • the manufacturing process of the microcrystalline silicon film containing nanosilicon exhibiting the characteristics of the measurement curve measurement curves LB to LR taken up in the first embodiment is manufactured at a temperature of 300 ° C. or lower. For this reason, for example, when a microcrystalline silicon film is formed on a glass substrate as in a liquid crystal display device, it is preferable to employ the microcrystalline silicon film containing nanosilicon according to the first embodiment. .
  • FIG. 20 is an exploded perspective view showing the liquid crystal display device 102 on which the thin film transistor according to the present embodiment is mounted.
  • the liquid crystal display device 102 includes a front cover 104, a back cover 105, and a liquid crystal display module 106 accommodated in the front cover 104 and the back cover 105.
  • the liquid crystal display module 106 includes a display panel 107, a backlight module 108 that irradiates the display panel 107 with light, and a control unit 109 that controls driving of the display panel 107.
  • FIG. 21 shows a cross-sectional view of the display panel 107.
  • the display panel 107 includes an active matrix substrate 103, a counter substrate 111 disposed at a distance from the active matrix substrate 103, and a liquid crystal sealed between the active matrix substrate 103 and the counter substrate 111.
  • the counter substrate 111 includes a transparent substrate 20 such as a glass substrate, a color filter 21 formed on the lower surface of the transparent substrate 20, and a counter electrode 22 formed on the color filter 21.
  • the active matrix substrate 103 includes a transparent substrate 30 such as a glass substrate, a thin film transistor 31 formed on the main surface of the transparent substrate 30, an interlayer insulating film 34 formed so as to cover the thin film transistor 31, and an interlayer insulating film 34.
  • a pixel electrode 35 formed on the upper surface and an alignment film 36 formed on the pixel electrode 35 are provided.
  • FIG. 21 In the cross-sectional view shown in FIG. 21, only one thin film transistor 31 is shown. However, when the active matrix substrate 103 is viewed in plan, a plurality of thin film transistors 31 are arranged in an array on the main surface of the transparent substrate 30. ing.
  • the interlayer insulating film 34 covering the thin film transistor 31 includes a passivation film 32 and a planarizing film 33 formed on the passivation film 32.
  • the passivation film 32 is formed of an inorganic insulating film such as a silicon nitride film
  • the planarizing film 33 is formed of, for example, an acrylic resin-based organic insulating film.
  • the thin film transistor 31 includes a gate electrode 40 formed on the main surface of the transparent substrate 30, a gate insulating film 41 formed on the main surface of the transparent substrate 30 so as to cover the gate electrode 40, and the gate insulating film 41.
  • a semiconductor layer 42 formed thereon, a channel protective film 43, and a source electrode 44 and a drain electrode 45 formed on the upper surface of the semiconductor layer 42 are provided.
  • the gate electrode 40 is made of, for example, a metal material mainly composed of titanium.
  • the gate insulating film 41 is formed from, for example, a silicon nitride film or a silicon oxide film.
  • the semiconductor layer 42 includes an i-type microcrystalline silicon film 46 formed on the gate insulating film 41, an n-type amorphous silicon film 47 a formed on the i-type microcrystalline silicon film 46 and adjacent to the channel formation region 49. And an n-type amorphous silicon film 47b formed on the i-type microcrystalline silicon film 46 and located on the opposite side of the n-type amorphous silicon film 47a with respect to the channel formation region 49.
  • the i-type microcrystalline silicon film 46 includes a channel formation region 49 in which a channel is formed by applying a predetermined voltage to the gate electrode 40.
  • the measurement curves LB to LR of the first embodiment and the microcrystalline silicon film having the Raman characteristics shown in FIG. 18 are employed.
  • the electrical resistance of such an i-type microcrystalline silicon film is lower than that of the i-type amorphous silicon film and is equivalent to that of the i-type polycrystalline silicon film.
  • the electrical resistance of the channel is reduced.
  • the n-type amorphous silicon film 47a is formed so as to run from the upper surface of the i-type microcrystalline silicon film 46 to the upper surface of the channel protective film 43, and the n-type amorphous silicon film 47b is formed in the same manner as the n-type amorphous silicon film 47a.
  • the n-type amorphous silicon films 47 a and 47 b are arranged on the upper surface of the channel protective film 43 with a space therebetween.
  • the channel protective film 43 is formed on a portion of the upper surface of the i-type microcrystalline silicon film 46 located above the gate electrode 40.
  • the channel protective film 43 is also formed of, for example, a silicon nitride film.
  • the n-type amorphous silicon film 47a and the n-type amorphous silicon film 47b are spaced apart from each other.
  • the drain electrode 45 is formed on the upper surface of the n-type amorphous silicon film 47a, and the source electrode 44 is formed on the upper surface of the n-type amorphous silicon film 47b.
  • the source electrode 44 and the drain electrode 45 are made of, for example, a metal material mainly composed of Ti (titanium).
  • a pixel electrode 35 is connected to the drain electrode 45.
  • a predetermined voltage is applied to the gate electrode 40, whereby a channel is formed in a portion of the i-type microcrystalline silicon film 46 where the channel formation region 49 is located.
  • the channel moves between the source electrode 44 and the drain electrode 45, and a predetermined potential is also applied to the drain electrode 45.
  • the pixel electrode 35 is connected to the drain electrode 45, and a predetermined potential is also applied to the pixel electrode 35.
  • Embodiment Mode 2 an example in which the microcrystalline silicon film described in Embodiment Mode 1 is applied to a thin film transistor of a liquid crystal display device has been described.
  • the present invention can be applied to a MOS transistor mounted on a memory device or a floating gate of a nonvolatile memory element.

Abstract

 結晶シリコン膜の製造方法は、主表面を有する基板(1)を準備する工程と、主表面上に、アモルファス膜(2)を形成する工程と、電界が加えられていない雰囲気中において、アモルファス膜(2)が形成された基板を、シリコン元素と水素元素とを主成分として含む第1シリコン化合物のガス雰囲気にさらす工程とを備える。

Description

微結晶シリコン膜の製造方法、微結晶シリコン膜、電気素子および表示装置
 本発明は、微結晶シリコン膜の製造方法、微結晶シリコン膜、電気素子および表示装置に関する。
 近年、電子メモリLSI、光インターコネクションLSI、発光素子、軽量大画面の表示パネル等の各種の分野において、ナノシリコン膜などの微結晶シリコン膜が着目されている。
 たとえば、特開2005-236080号公報には、シリコンナノ結晶構造体の製造方法が記載されており、このシリコンナノ結晶構造体の製造方法においては、まず、基板表面にArイオンを照射し、シリコンナノ結晶の核生成反応サイトを形成する工程を備える(第1工程)。さらに、シリコン元素を含む原料ガスの熱分解反応により、核生成反応サイトに粒径10nm以下のシリコンナノ結晶粒を成長させる工程(第2工程)と、酸素若しくは酸素ラジカル、窒素ラジカル又は水素ラジカルによりシリコンナノ結晶粒を酸素終端、窒素終端又は水素終端する工程(第3工程)とを備える。そして、必要に応じて上記第1工程から第3工程を繰り返し行う。このような工程を経ることで、粒径が10nm以下のシリコン単結晶粒が多数合体して形成されたシリコンナノ結晶構造体が基板上に形成される。
 特開2009-88383号公報には、ナノシリコン薄膜を基板上に形成するナノシリコン薄膜の形成方法が記載されている。このナノシリコン薄膜の製造方法は、水素ガスの、高周波プラズマで基板表面にシリコン成長核を形成する工程と、シリコン元素を含むガスの熱反応により、粒径10nm以下のシリコン結晶粒を堆積する工程と、シリコン結晶粒の表面を酸素終端する工程とを備える。このナノシリコン薄膜の形成方法によれば、基板上にたとえば、約7nm径の酸素終端ナノシリコン粒からなる薄膜を形成することができる。
特開2005-236080号公報 特開2009-88383号公報
 しかし、特開2005-236080号公報や特開2009-88383号公報などに記載されたシリコンナノ結晶構造体やナノシリコン薄膜の製造方法は、シリコンウエハ上にシリコンナノ結晶構造体などを形成するものであって、成膜温度が高く、基板としてガラス基板を採用することはできない。
 一方、表示パネルに搭載される薄膜トランジスタなどにおいて、これまで、アモルファスシリコンが主に採用されているが、薄膜トランジスタの性能向上をさせるために、アモルファスシリコンにかえてポリシリコンを採用されている。しかしながら、ポリシリコン作製には、結晶化の工程が必要であって、工数の増加することに加え、大型化が難しい。そのため、大型化が容易で、後工程による結晶化を必要としない、数nm以下のナノシリコンを含有する微結晶シリコンの開発が行われている。しかしながら、一般的に、薄膜トランジスタは、基板としてガラス基板を採用し、400℃以下の低温での各プロセスが行われるため、特開2005-236080号公報や特開2009-88383号のような高温となる結晶系シリコンの製造方法は、適用することは困難である。その一方で、結晶系シリコンは、たとえば、透明基板上にシリコン窒化膜やシリコン酸化膜などのベース絶縁膜を形成し、このベース絶縁膜上に形成する場合や、ゲート絶縁膜上に形成する場合などもある。
 このシリコン酸化膜やシリコン窒化膜などのアモルファス薄膜上にナノ結晶シリコンや微結晶シリコン膜を形成するには、たとえば、アモルファス薄膜上にプラズマCVD装置を用いて、シリコンを堆積して、結晶系シリコン膜を形成する方法がある。
 この結晶系シリコン膜をアモルファス薄膜上にプラズマCVD装置を用いて形成する際において、CVD装置のチャンバー内の気相中では、シリコン元素の集合体(クラスタ)が形成される。
 しかしながら、この集合体がアモルファス薄膜上に達すると、アモルファス薄膜との整合性を保つように規則性を有する集合体はその規則性を崩す。その結果、形成されるシリコン膜は結晶性が下がり、インキュベーション層となり、結晶核が形成され難くなり、結晶系シリコン膜を形成することは難しい。
 本発明は、上記のような課題に鑑みてなされたものであって、その第1の目的は、アモルファス薄膜上に位置する微結晶シリコン膜を低温で形成することができる結晶系シリコン膜であるナノシリコンを含有する微結晶シリコン膜の製造方法を提供することである。第2の目的は、アモルファス膜上に形成された結晶系シリコン膜であるナノシリコンを含有する微結晶シリコン膜、この微結晶シリコン膜を含む電気素子および表示装置を提供することである。
 本発明に係るナノシリコンを含有する微結晶シリコン膜の製造方法は、主表面を有する基板を準備する工程と、主表面上に、アモルファス膜を形成する工程と、電界が形成されていない雰囲気中において、アモルファス膜が形成された基板を、シリコン元素と水素元素とを主成分として含む第1シリコン化合物のガス雰囲気にさらす工程とを備える。好ましくは、上記アモルファス膜は、シリコン窒化膜である。好ましくは、上記第1シリコン化合物は、SiH(モノシラン)である。
 好ましくは、上記基板を第1シリコン化合物のガス雰囲気中にさらした後、水素ラジカルを発生させるプラズマ処理を施す工程をさらに備える。好ましくは、上記基板を第1シリコン化合物のガス雰囲気中にさらした後、水素元素およびシリコン元素を主成分として含む第2シリコン化合物のガスと水素ガスとの混合ガス雰囲気中でプラズマ処理を基板に施す工程と、水素ラジカルを発生させるプラズマ処理を基板に施す工程とを繰り返し行う工程をさらに備える。
 好ましくは、上記混合ガス雰囲気中でプラズマ処理を施す工程と、水素ラジカルを発生させるプラズマ処理を施す工程と繰り返した後、電界が形成されていない雰囲気中で基板をSiH(モノシラン)ガス雰囲気中にさらす工程をさらに備える。好ましくは、上記混合ガス雰囲気中でプラズマ処理を施す工程と、水素ラジカルを発生させるプラズマ処理を施す工程と繰り返すことで形成されたシリコン膜に終端処理を施す工程をさらに備える。
 好ましくは、上記混合ガス雰囲気中でプラズマ処理を施す工程と、水素ラジカルを発生させるプラズマ処理を施す工程とを繰り返すことで形成されたシリコン膜に不純物を導入する工程をさらに備える。
 本発明に係るナノシリコンを含有する微結晶シリコン膜の製造方法は、他の局面では、主表面を有する基板を準備する工程と、主表面上に、シリコン元素と窒素元素とを主成分とするアモルファス膜を形成する工程と、アモルファス膜が形成された基板を水素ガス雰囲気中でプラズマ処理を施す工程と、水素ガス雰囲気中でプラズマ処理が施された基板を、シリコン元素と水素元素とを主成分として含む第1シリコン化合物のガスと、水素ガスとの混合雰囲気ガス中でプラズマ処理を施す工程とを備える。
 本発明に係るナノシリコンを含有する微結晶シリコン膜は、透明基板に形成された絶縁性のアモルファス膜の上面上に形成される微結晶シリコン膜であって、ラマン測定のピークが518cm-1以下で生じる。好ましくは、ボイドの含有率が10%以下である。
 本発明に係る電気素子は、主表面を有する透明基板上に形成された電気素子である。そして、電気素子は、上記透明基板の主表面上に形成されたゲート電極と、ゲート電極上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成され半導体層と、半導体層上に形成された第1電極と、第1電極と間隔をあけて配置された第2電極とを備え、半導体層は、微結晶シリコン膜を含み、微結晶シリコン膜のラマン測定のピークが518cm-1以下で生じる。
 本発明に係る表示装置は、上記電気素子と透明基板とを含み、電気素子がスイッチング素子として機能するスイッチング素子基板と、スイッチング素子基板と対向するように配置された対向基板と、スイッチング素子基板および対向基板の間に封入された表示媒体層とを備える。
 本発明に係るナノシリコンを含有する微結晶シリコン膜の製造方法によれば、アモルファス膜上に結晶系シリコン膜であるナノシリコンを含有する微結晶シリコン膜を形成することができる。本発明に係るナノシリコンを含有する微結晶シリコン膜は、各種スイッチング素子やメモリ素子等の各種素子に適用することで、各素子の駆動電圧や消費電力量の低減を図ることができる。本発明に係る電気素子および表示装置によれば、駆動電圧の低減や消費電力量の低減を図ることができる。
微結晶シリコン膜を形成する工程の第1工程を示す断面図である。 微結晶シリコン膜を形成する工程の第2工程を示す断面図である。 微結晶シリコン膜を形成するプラズマCVD装置を示す模式図である。 アモルファス膜上に形成する微結晶シリコン膜の成膜条件をかえて成膜したときのラマン測定結果を示すグラフである。 微結晶シリコン膜を形成する工程の第3工程を示す断面図である。 アモルファス膜上にプラズマCVD装置を用いて、シリコンを堆積したときの様子を模式的に示す模式図である。 アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中にさらしたときの初期状態の様子を示す模式図である。 上記図7に示す状態から所定時間経過した時の様子を示す模式図である。 水素ガス雰囲気中においてプラズマ処理を施すときの初期状態を示す模式図である。 上記図9に示す状態から所定時間経過した時の様子を示す模式図である。 上記図4に示す測定曲線LA~LDのラマンピークを示すグラフである。 アモルファス膜上に形成する微結晶シリコン膜の成膜条件をかえて成膜したときのラマン測定結果を示すグラフである。 図12に示す測定曲線LK~LNのラマンピークを示すグラフである。 結晶系シリコン膜である微結晶シリコン膜13が形成された透明基板1をSiH(シラン)ガス雰囲気中にさらしたときの初期状態の様子を示す模式図である。 上記図14に示す状態から所定時間経過した時の様子を示す模式図である。 アモルファス膜上に形成する微結晶シリコン膜の成膜条件をかえて成膜したときのラマン測定結果を示すグラフである。 上記図16に示す測定曲線LO~LRのラマンピークを示すグラフである。 本実施例1に係る微結晶シリコン膜のラマン特性を示すグラフである。 本提案の方法を行わなかった場合の、微結晶シリコン膜の膜厚を異ならせて形成したときのボイドの含有率等を示すグラフである。 本実施の形態2に係る薄膜トランジスタが搭載された液晶表示装置102を示す分解斜視図である。 表示パネル107の断面図である。
 図1から図21を用いて、本発明に係るナノシリコンを含有する微結晶シリコン膜の製造方法などについて説明する。なお、本実施の形態において、ナノシリコンを含有する微結晶シリコン膜を液晶表示装置の製造方法に適用した例についても説明するが、本願発明は、液晶表示装置に適用する場合に限られない。たとえば、プラズマ表示装置や有機EL表示装置、および電子ペーパなどの各種表示装置も適用することができる。さらには、このような表示装置に限られず、電子メモリLSIなどの半導体装置のフラッシュメモリ素子やMOSトランジスタなどのスイッチング素子などにも適用することができる。さらには、太陽光パネルなどにも適用することができる。
 (実施の形態1)
 図1から図19を用いて、本実施の形態1に係るナノシリコンを含有する微結晶シリコン膜の製造方法について説明する。本明細書において、ナノシリコンとは、後述するラマンシフト(cm-2)が518(cm-2)以下のシリコン膜を意味し、微結晶シリコン膜とは、このナノシリコンを含み、ボイドが少ないシリコン膜を意味する。
 図1に示すように、主表面を有する透明基板1を準備する。透明基板1としては、たとえば、ガラス基板などの透明な絶縁基板を採用することができる。
 次に、図2に示すように、透明基板1の主表面上にシリコン窒化膜(SiN)などのアモルファス膜2を形成する。
 次に、図3に示すように、アモルファス膜2が形成された透明基板1を成膜装置3の処理室4内に搬入する。
 成膜装置3は、透明基板1を収容可能な処理室4と、この処理室4内に各種ガスを供給可能なガス供給管5およびガス供給管6と、処理室4内に収容された透明基板1を載置可能な載置台7と、高周波電力が供給される高周波電極8と、この高周波電極8に高周波電力を供給する高周波電源9とを備える。
 さらに、成膜装置3は、処理室4内に透明基板1を搬入するためのバルブゲート10と、処理室4内のガスを排気する排気装置11と、載置台7に載せられた透明基板1を加熱するためのヒータ12とを備える。
 ガス供給管5は、水素元素を主成分とするガスを処理室4内に供給可能とされており、典型的にはガス供給管5からは水素ガスが処理室4内に供給される。
 ガス供給管6は、水素元素およびシリコン元素を主成分とするガスを処理室4内に供給可能とされており、典型的には、ガス供給管6は、SiH(シラン)ガスを処理室4内に供給する。なお、ガス供給管6から供給されるガスとしては、SiHに限られず、Si(ジシラン)などのガスを採用することもできる。
 このような成膜装置3の処理室4内に、アモルファス膜2が形成された透明基板1を搬入する。
 その後、ガス供給管6から、たとえば、SiH(シラン)ガスを処理室4内に供給する。
 図4は、アモルファス膜上に形成する微結晶シリコン膜の成膜条件をかえて成膜したときのラマン測定結果を示すグラフである。
 この図4に示すグラフの縦軸はラマン強度(a.u.)を示す。横軸は、ラマンシフト(cm-1)を示す。なお、このラマン測定は、ジョバンイボン社製の顕微ラマン分光分析装置を用いて測定した結果である。
 図4において、測定曲線LA~LDは、微結晶シリコン膜の各種の成膜条件の下、図5に示すように、アモルファス膜2上にシリコン膜13を200Å形成し、このシリコン膜13を測定した結果を示す。
 そこで、各測定曲線LA~LDにおける成膜条件について説明する。
 測定曲線LAによって示されるシリコン膜13の成膜条件は次のとおりある。まず、シリコン窒化膜などのアモルファス膜2を形成したのち、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を30(sec)間、透明基板1に施す。その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。
 この成膜条件において、HガスおよびSiHガスを処理室4内に供給する際には、図3に示す高周波電源9は駆動しており、高周波電極8には電力が供給されている。このため、図3に示す処理室4内には、載置台7と高周波電極8との間で電界が形成されている。なお、放電ガスとして、ArやHeを処理室4内に供給してもよい。
 この結果、図5に示すように、アモルファス膜2上にシリコン膜13が200Å程度形成される。そして、このシリコン膜13のラマン測定結果が、図4に示す測定曲線LAである。
 この測定曲線LAにおいては、結晶ピークが現れていないことが分かる。これは、当該成膜条件では、結晶性が弱いことに起因する。つまり、この測定曲線LAのシリコン膜13は、インキュベーション膜となっているためである。
 これは、図6に示すように、規則性を有するSi元素の集合体(クラスタ)が処理室4内の気相中に形成されるが、この集合体は、アモルファス膜2との整合をとろうとして、集合体の規則性が崩れることに起因する。その結果、インキュベーションと呼ばれる層となる。
 測定曲線LBによって示されるシリコン膜13の成膜条件は、次のとおりである。まず、シリコン窒素膜などのアモルファス膜2を形成した後、Hガスを処理室4内に供給して、高周波電極8に高周波電力を供給する。このように、アモルファス膜2が形成された透明基板1に水素雰囲気中で1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)間施す。
 水素ガス雰囲気中でプラズマ処理を施した後、比R値(H流量/SiH流量)が784となるようにHガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、透明基板1にプラズマ処理を30(sec)間施す。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を67(sec)間施す。
 このような成膜処理を施すことで、200Åのシリコン膜13が形成され、このシリコン膜13のラマン測定結果が測定曲線LBである。測定曲線LBには、測定曲線LAにはない結晶ピークを観察することができる。
 このように、結晶ピークを観察することができるのは、測定曲線LBに示されたシリコン膜13の結晶性が強いことを示す。
 ここで、一般に、多結晶シリコン膜および単結晶シリコン膜のラマンピークは520(cm-1)以下である。そして、微結晶シリコン膜、特に、ナノシリコン膜となると、ラマンピークは、518(cm-1)以下となる。すなわち、結晶ピークが518(cm-2)以下のシリコン膜は、結晶が微細な微結晶シリコン膜(ナノシリコン膜)である。ここで、図4において、測定曲線LBの結晶ピークは、518(cm-2)以下であり、形成されたシリコン膜13はナノシリコン膜であることが分かる。
 測定曲線LCによって示されるシリコン膜13の成膜条件は、次のとおりである。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。すなわち、成膜装置3の処理室4内には、電界が形成されていない。つぎに、水素雰囲気中でプラズマ処理を10(sec)間施す。なお、このプラズマ処理は、1300(Pa)の下、印加高周波電力175(W)として行った。
 図4に示す測定曲線LCにおいては、上記のような水素プラズマ処理を施した後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を30(sec)間、透明基板1に施す。その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。
 このような処理を施すことで、測定曲線LCのラマン特性を有するシリコン膜13が形成される。この測定曲線LCは、測定曲線LA,LBよりもラマン特性のピークが明確となっていることが分かる。すなわち、測定曲線LCの特性を有するシリコン膜13は、測定曲線LA,LBの特性を示すシリコン膜13よりも、結晶性が強いことが分かる。
 さらに、図4に示すように、測定曲線LCのピーク値は、結晶ピークが518(cm-1)以下であり、結晶が微細なナノシリコン膜を含む微結晶シリコン膜であることが分かる。
 測定曲線LDによって示されるシリコン膜13の成膜条件は次のとおりある。まず、シリコン窒化膜などのアモルファス膜2を形成したのち、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。すなわち、処理室4内には、載置台7と高周波電極8との間に電界が形成されていない。
 その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を30(sec)間、透明基板1に施す。その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。
 このような工程を経ることで得られたシリコン膜13のラマン特性が、図4に示す測定曲線LDである。
 この測定曲線LDのピークは、ラマンシフト(cm-1)が518(cm-1)のときに生じており、測定曲線LDの特性を示すシリコン膜13も、ナノシリコン膜を含む微結晶シリコン膜となっていることが分かる。
 図4において、測定曲線LBは、測定曲線LAと比べ、ピークがはっきりしている。これは、アモルファス膜2に水素プラズマ処理を施すことがクラスターの結晶構造を崩さない方向に有効であることを示す。また、測定曲線LDは、測定曲線LAと比べ、ピークがはっきりしている。これは、SiH(シラン)ガス雰囲気中に3(min)さらすことが、クラスターの結晶構造を崩さない方向に有効であることを示す。さらに、測定曲線LCは、ピークがはっきりしていて、かつピーク位置が測定曲線LDと比べ、より低い。これは、結晶サイズが小さいことによるもので、SiH(シラン)ガス雰囲気中に3(min)さらして、かつ水素プラズマ処理をおこなうことが、結晶サイズを小さくすることに有効であることを示す。
 ここで、測定曲線LBが測定曲線LAと比べてピークがはっきりしている理由は、気相中にできるナノ構造を有するクラスターがアモルファスSiNxと整合ととるために自ら崩れるのが抑制されるためである。具体的には、SiH4ガスによりモノレイヤー的ガス状のSi原子とたとえばSiNxのNとがN-Si結合して、クラスターがくずれることが抑制されたためである。なお、当該現象の詳細については、図7および図8を用いて後述する。
 また、測定曲線LCのピーク値が測定曲線LDのピーク値よりも小さくなる理由は次ぎのとおりである。N-SiのSi原子は元はガス状であったためSi-H3あるいはSi-H2のようにH結合を有する。そして、近接するH結合を有するSi同士がH2プラズマにより、H結合をなくしSi-Si結合を形成して、微細なナノSi構造となるためである。
 その結果、測定曲線LCのピーク値の方が、測定曲線LDのピーク値よりも低周波となる。なお、当該現象の詳細については、図9および図10を用いて後述する。
 このように、結晶サイズが小さい結晶系シリコンはナノシリコンであり、ナノシリコンが多いほど、結晶系は崩れにくく、ボイドのような欠陥が少ない、高品質のナノシリコンを含有する微結晶シリコンとなる。
 図7は、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中にさらしたときの初期状態の様子を示す模式図である。図8は、上記図7に示す状態から所定時間経過した時の様子を示す模式図である。
 この図7において、アモルファス膜2は、シリコン元素と、窒素元素とを含み、シリコン元素と窒素元素とが結合している。その一方で、SiH(シラン)ガスは、シリコン元素と水素元素とを含み、シリコン元素と水素元素とが結合している。そして、図8に示すように、たとえば、シリコン窒化膜(SiN)の水素元素と結合する窒素元素と、SiH(シラン)ガスの水素元素と結合するシリコン元素とは、おのおのの水素結合を外す。そして、窒素元素とシリコン元素が結合する。これは一例であって、SiH(シラン)ガスの水素元素と結合するシリコン元素は、アモルファス膜2のシリコン元素とも結合する。
 このように、電界が加えられていない雰囲気中において、SiH(シラン)ガス雰囲気中にアモルファス膜2をさらすことにより、図8に示すように、新しいシリコン元素の結合が形成される。これにより、結晶性のクラスターのシリコン元素は、近傍のシリコン元素と結合するのみでよくなり、結晶性が崩れにくくなる。なお、上記図7および図8においては、SiH(シラン)ガスのSi元素が結合する相手として、シリコン窒化膜のN元素を代表例として説明したが、SiH(シラン)ガスのSi元素が結合する相手としては、シリコン窒化膜のSi元素の場合などがある。
 次に、図8に示す状態からさらに、透明基板1に水素ガス雰囲気中においてプラズマ処理を10(sec)行うことについては、図9、図10をもとに説明する。
 図9は、SiH(シラン)ガス雰囲気中にさらした後に、透明基板1に水素ガス雰囲気中においてプラズマ処理を施した状態を示す模式図である。図10は、上記図9に示す状態から所定時間経過した時の様子を示す模式図である。
 図9に示すように、プラズマ処理を施し始めた状態においては、たとえば、シリコン窒化膜の窒素元素と結合するシリコン元素は、もとは、ガス状態であったことから、3つまたは2つのH元素が結合している。
 この状態で所定期間、水素プラズマ処理などのように水素ラジカルを発生するプラズマ処理を施すことで、図10に示すように、Si元素と結合するH元素がHラジカルにとられ、近接する、Si元素同士が結合する。
 このように、H結合がなくなり、Si-Si結合となることにより、微細なナノSi構造が形成される。このような、微細なナノSi構造を積極的に形成することにより、ピークがはっきりしていて、かつピーク位置がより低くなる。測定曲線LCが、ピークがはっきりしていて、かつピーク位置が、測定曲線LDと比べ、より低くなる理由は次ぎのとおりである。基板をSiH(シラン)ガス雰囲気中に3(min)されすことで、新しいSi元素の結合が形成される。さらに、水素プラズマ処理をおこなうことにより、近接するSi同士のSi-Siを形成して、微細なナノSi構造が形成されためである。これにより、結晶系は崩れにくく、ボイドのような欠陥が少ない、高品質のナノシリコンを含有する微結晶シリコンとなる。
 図11は、上記図4に示す測定曲線LA~LDのラマンピークを示すグラフである。この図11および上記図4からも明らかなように、測定曲線LCは、測定曲線LDよりもピークを示すラマンシフト(cm-1)が小さく、ピークがはっきりしている。これは、上述のように、測定曲線LDにおいては、H結合を除去して、Si-Si結合を形成し、微細なナノSi構造を積極的に形成することに起因する。
 図12は、アモルファス膜上に形成する微結晶シリコン膜の成膜条件をかえて成膜したときのラマン測定結果を示すグラフである。
 なお、図12に示すグラフの縦軸は、縦軸はラマン強度(a.u.)を示す。横軸は、ラマンシフト(cm-1)を示す。そして、測定曲線LK~LNは、各種の成膜条件の下、200Å形成されたシリコン膜13のラマン特性を示すグラフである。
 まず、図12に示す測定曲線LKの特性を示すシリコン膜13の成膜条件は、次のとおりである。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。すなわち、処理室4内には、電界が形成されていない。これにより、SiH4ガスのSi原子と、シリコン窒化膜のN元素とをN-Si結合させ、ナノ粒子がくずれることが抑制される。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理などのように水素ラジカルを発生するプラズマ処理を10(sec)行う。これにより、この近接するH結合を有するSi同士がH2プラズマにより、H結合がなくなりSi-Si結合になるため、微細なナノSi構造が形成される。ここまでの工程は、上記図4に示す測定曲線LCと同様に、微細構造を形成するのに有効であり、これにより基本的な微細構造を形成させる。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この測定曲線LKの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を15(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中においてプラズマ処理を1300(Pa)の下、印加高周波電力175(W)で10(sec)行う。
 その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を15(sec)間、透明基板1に施す。その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を15(sec)間、透明基板1に施す。
 さらに、透明基板1に水素ガス雰囲気中においてプラズマ処理を1300(Pa)の下、印加高周波電力175(W)で10(sec)行う。その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで測定曲線LKに示される特性を有するシリコン膜13が形成される。
 ここで、図12に示す測定曲線LKは、図4に示す測定曲線LC,LDと比べ、結晶のピークが弱い。測定曲線LC,LDでは、比R値(H流量/SiH流量)が784となるようにして、30(sec)連続で成膜している。これに対して、測定曲線LKでは、比R値(H流量/SiH流量)が784となるようにして、プラズマ処理を15(sec)行ったのち、H2ガス雰囲気中で、プラズマ処理(水素ラジカルを発生するプラズマ処理)を10(sec)行うことにより、図9および図10のように、近接するSi-Si結合を形成して、微細なナノSi構造を形成させている。このように、測定曲線LKでは、微細なナノSi構造が形成される一方で、弱いSi-Si結合が除去されるためにピークが弱くなっている。
 次に、測定曲線LLに示す特性を有するシリコン膜13の成膜条件について説明する。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理(水素ラジカルを発生するプラズマ処理)を10(sec)行う。ここまでの工程は、上記図4に示す測定曲線LCと同様に、微細構造を形成するのに有効であり、これにより基本的な微細構造を形成させる。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この測定曲線LLの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を15(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を15(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を15(sec)間、透明基板1に施す。ここまでは、測定曲線LKと同じである。
 その後、SiH(シラン)ガスのみをSiHガスのフロー圧力を200Paに設定した状態で処理室4内に供給して、透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。これは、測定曲線LKでは行っていない。
 さらに、SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで、測定曲線LLに示される特性を有するシリコン膜13を形成することができる。ここで、測定曲線LLは、測定曲線LKと比べ、結晶ピークがはっきりしている。
 これは、測定曲線LKでは行わなかった、SiH(シラン)ガス雰囲気中(SiHガスのフロー圧力を200Pa)に3(min)さらすことが有効であることが分かる。この当該現象ついて、図14および図15を用いて説明する。
 図14は、結晶系シリコン膜であるナノシリコンを含有する微結晶シリコン膜13が形成された途中において、透明基板1をSiH(シラン)ガス雰囲気中にさらしたときの初期状態の様子を示す模式図である。図15は、図14に示す状態から所定時間経過した時の様子を示す模式図である。
 結晶系シリコン膜である微結晶シリコン膜13が形成された途中においては、シリコン元素の一部は、水素元素と結合をしている。このとき、SiH(シラン)ガス雰囲気中にさらすことにより、図7および図8と同様に、図14から図15の状態において、新しくSi結合を形成させることができる。そのため、測定曲線LKよりもSi-Si結合が多くなり、結晶ピークがはっきりとする。つまり、結晶系シリコン膜であるナノシリコンを含有する微結晶シリコン膜13が形成された途中において、透明基板1をSiH(シラン)ガス雰囲気中にさらすことが有効であることが分かる。
 次に、測定曲線LMに示す特性を有するシリコン膜13の成膜条件について説明する。シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。すなわち、処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において1300(Pa)の下、印加高周波電力175(W)でプラズマ処理(水素ラジカルを発生するプラズマ処理)を10(sec)行う。ここまでの工程は、上記図4に示す測定曲線LCと同様に、微細構造を形成するのに有効であり、これにより基本的な微細構造を形成させる。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この測定曲線LMの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を25(sec)間、透明基板1に施す。測定曲線LKではこの状態のプラズマ処理が15secとされており、測定曲線LMでは時間を長くすることで、Si-Si結合を多くしている。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を25(sec)間、透明基板1に施す。同様に、測定曲線LKではこの状態のプラズマ処理が15secとされており、測定曲線LMでは時間を長くすることで、Si-Si結合を多くしている。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、1300(Pa)の下、印加高周波電力175(W)で透明基板1を水素ガス雰囲気中においてプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を25(sec)間、透明基板1に施す。測定曲線LKではこの状態のプラズマ処理が15secとされており、測定曲線LMでは時間を長くすることで、Si-Si結合を多くしている。
 その後、透明基板1に水素ガス雰囲気中においてプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで、測定曲線LMに示される特性を有するシリコン膜13を形成することができる。
 ここで、測定曲線LMは、測定曲線LKに比べ、結晶ピークがはっきりしている。これは、測定曲線LKではこの状態のプラズマ処理が15secであったものを、25secと時間を長くすることで、Si-Si結合を多くしたためである。
 つぎに、測定曲線LNの特性を有するシリコン膜13の成膜条件について説明する。シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。すなわち、処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。ここまでの工程は、上記図4に示す測定曲線LCと同様に、微細構造を形成するのに有効であり、これにより基本的な微細構造を形成させる。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この測定曲線LNの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を25(sec)間、透明基板1に施す。これは、測定曲線LMと同じである。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を25(sec)間、透明基板1に施す。これは、測定曲線LMと同じである。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を25(sec)間、透明基板1に施す。これは、測定曲線LMと同じである。その後、SiH(シラン)ガスのみを処理室4内に供給して、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を200Pa)に3(min)さらす。この際、処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。当該工程は、測定曲線LMに示すシリコン膜の製造工程では行わなかった。
 その後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで、測定曲線LNに示される特性を有するシリコン膜13を形成することができる。ここで、測定曲線LNは、測定曲線LMよりもピークが鮮明に現れていることが分かる。これは、測定曲線LMでは行わなかった、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を200Pa)に3(min)さらす処理を、測定曲線LNは行っているためである。
 このような工程を経ることで、測定曲線LNに示される特性を有するシリコン膜13を形成することができる。ここで、測定曲線LNは、測定曲線LMと比べ、結晶ピークがはっきりしている。これは、SiHガス雰囲気中に基板をさらすことで、上記図14および図15を用いて上述したように、基板側のSi元素とSiHガス中のSi元素とを結合させて、新たなSi-Si結合を形成することができたためである。
 図13は、上記図12に示す測定曲線LK,LL,LM,LNの特性を示す各シリコン膜のラマンピークを示すグラフである。この図13および上記図12からも明らかなように測定曲線LK~LMの結晶ピークは、518(cm-2)以下であり、特に、測定曲線LN,LMは、安定的に、518(cm-2)以下であり、シリコン膜13を作製する過程において、間歇的にSiH(シラン)ガスの供給を停止し、Hガス放電のみにして、近接するSi-Si結合を形成して、微細なナノSi構造を形成させること、および、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を200Pa)に3(min)さらして、新しくSi結合を形成させることが、微細なナノシリコン作製に有効であることが分かる。
 図16は、アモルファス膜上に形成する微結晶シリコン膜の成膜条件をかえて成膜したときのラマン測定結果を示すグラフである。なお、図16に示すグラフの縦軸は、縦軸はラマン強度(a.u.)を示す。横軸は、ラマンシフト(cm-1)を示す。そして、測定曲線LO~LRは、各種の成膜条件の下形成されたシリコン膜13のラマン特性を示すグラフである。図17は、各種の成膜条件によって形成されたシリコン膜13のラマンピークを示すグラフである。
 なお、測定曲線LO~LRに示す各シリコン膜は、各成膜条件のうち、SiHガスのフロー圧力のみを変えている。そこで、測定曲線LO~LRに示す各シリコン膜の成膜条件について説明する。
 測定曲線LOの特性を示すシリコン膜13の成膜条件は、下記のとおりである。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理(水素ラジカルを発生するプラズマ処理)を10(sec)行う。
 ここでまでの工程により、上記図4の測定曲線LCの特性を示すシリコン膜と同様に微細なナノSi構造が形成される。シリコン窒化膜のN-SiのSi原子は元はガス状であったためSi-H3あるいはSi-H2のようにH結合をもち、この近接するH結合を有するSi同士がH2プラズマにより、H結合がなくなりSi-Si結合になるため、微細なナノSi構造となる。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。なお、図16に示す測定曲線LO~LRの特性を示すシリコン膜を形成する場合には、当該繰り返し工程のうち、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程は、45(sec)行うようにしている。その一方で、上記図12に示す測定曲線LNの特性を示すシリコン膜を形成するときには、上記繰り返し工程のうち、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程を25(sec)間行うようにしている。
 この測定曲線LOの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。この工程により、隣接するSi-Si結合同士において、H元素がHラジカルに取られることで、微細なSi-Si結合が形成される。
 その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiH(シラン)ガスのみを処理室4内に供給して、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を0Pa)に3(min)さらす。処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで、測定曲線LOに示される特性を有するシリコン膜13を形成することができる。
 測定曲線LPの特性を示すシリコン膜13の成膜条件は、下記のとおりである。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理(水素ラジカルを発生するプラズマ処理)を10(sec)行う。
 ここまでは、上記図4に示す測定曲線LCにおいて説明したように、シランガス中に基板をさらすことで、シランガス中のシリコン元素をガラス基板上の窒素元素またはシリコン元素と結合させる。そして、その後の水素ラジカルを発生するプラズマ処理を施すことで、隣接するシリコン元素の水素元素を取りはずし、隣接するシリコン元素同士を結合させることで、基本的な微細構造を形成する。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この測定曲線LPの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiH(シラン)ガスのみを処理室4内に供給して、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を100Pa)に3(min)さらす。処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで、測定曲線LPに示される特性を有するシリコン膜13を形成することができる。
 測定曲線LQの特性を示すシリコン膜13の成膜条件は、下記のとおりである。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 ここまでは、図4測定曲線LCで説明したように、近接するH結合を有するSi同士がH2プラズマにより、H結合がなくなりSi-Si結合になるため、微細なナノSi構造が形成される。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この測定曲線LQの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiH(シラン)ガスのみを処理室4内に供給して、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を200Pa)に3(min)さらす。処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)プラズマ処理を10(sec)行う。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで、測定曲線LQに示される特性を有するシリコン膜13を形成することができる。
 測定曲線LRの特性を示すシリコン膜13の成膜条件は、下記のとおりである。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 ここまでの工程は、上記図4に示す測定曲線LCで説明したように、近接するH結合を有するSi同士がH2プラズマにより、H結合がなくなりSi-Si結合になるため、微細なナノSi構造が形成される。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この測定曲線LRの特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiH(シラン)ガスのみを処理室4内に供給して、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を400Pa)に3(min)さらす。処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に67(sec)間施す。このような工程を経ることで、測定曲線LRに示される特性を有するシリコン膜13を形成することができる。
 そして、図16に示すように、測定曲線LO~LRのピーク値は異なることが分かる。これは、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力は、0~400Pa)に3(min)さらして、新しくSi結合を形成させることにより、形成されるSi結合の量と、マイグレーションするSi原子の量とのバランスにより、ナノSi構造の大きさが異なることが分かった。
 すなわち、SiH(シラン)ガスのフローと、マイグレーションするSi元素との間には、相互作用があることが確認することができ、ガス状に供給されるSi元素は、静止したSi元素とではなく、マイグレーションするSi元素と、Si-Si結合を形成している。
 なお、SiHガス以外にも、NH、NO、PH、Bガスを用いた場合は、マイグレーションするSi元素は、NH、NO、PH、Bとの各元素と結合するものと考えられる。
 たとえば、微結晶シリコン膜が形成された透明基板1にNHガスの雰囲気中にさらすことで、微結晶シリコン膜がN元素によって終端される。また、微結晶シリコン膜が形成された透明基板1にNOガスをフローすることで、微結晶シリコン膜がN元素またはO元素によって終端される。また、微結晶シリコン膜が形成された透明基板1をPHガスにさらすことで、微結晶シリコン膜にPを導入することができる。また、微結晶シリコン膜が形成された透明基板1をBガスの雰囲気中にさらすことで、微結晶シリコン膜内にBを導入することができる。
(実施例1)
 図18および図19を用いて、実施例1に係る微結晶シリコン膜およびその製造方法について説明する。
 図18は、本実施例1に係る微結晶シリコン膜のラマン特性を示すグラフである。この図18に示すラマン特性を示す測定曲線のピークは、517(cm-1)でピークを示す。つまり、ナノシリコンを含有する微結晶シリコンである。そして、図18に示すラマン特性を示すナノシリコンを含有する微結晶シリコン膜をエリプソ測定で測定したボイドは、6.95%であった。これは、ナノシリコンを含有するためであり、ボイドの含有率が10%以下の微結晶シリコン膜を形成することで、キャリアがボイドに捕らえられることを抑制することができ、薄膜トランジスタなどの電気素子に適用したとしても、キャリアの移動度を高くすることができる。
 より詳細には、アモルファス成分は、23.23%、アモルファス成分以外の部分は、69.82%、ボイドが6.95%であった。
 この図18に示す微結晶シリコン膜の製造工程は、下記のとおりである。まず、シリコン窒化膜などのアモルファス膜2を透明基板1上に形成する。
 その後、SiH(シラン)ガスを処理室4内に供給して、アモルファス膜2が形成された透明基板1をSiH(シラン)ガス雰囲気中に3(min)さらす。この際、図3に示す高周波電極8には、高周波電力は供給されておらず、非プラズマ処理である。
 SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 次に、HガスとSiHガスとを供給し、透明基板1にプラズマ処理施す工程と、Hガスのみを供給して、透明基板1にプラズマ処理を施す工程とを繰り返す。
 この図18に示す測定曲線の特性を示すシリコン膜13を成膜する際には、具体的には、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiHガスの供給を停止して、Hガスのみを供給して、透明基板1を水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)プラズマ処理を10(sec)行う。その後、比R値(H流量/SiH流量)が784となるように、HガスおよびSiHガスをガス供給管5およびガス供給管6から処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を45(sec)間、透明基板1に施す。
 その後、SiH(シラン)ガスのみを処理室4内に供給して、透明基板1をSiH(シラン)ガス雰囲気中(SiH4ガスのフロー圧力を200Pa)に3(min)さらす。処理室4内には、電界が形成されておらず、載置台7および高周波電極8間には、電界が形成されていない。SiH(シラン)ガス雰囲気中にアモルファス膜2をさらした後、透明基板1に水素ガス雰囲気中において、1300(Pa)の下、印加高周波電力175(W)でプラズマ処理を10(sec)行う。
 その後、比R値(H流量/SiH流量)が650となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に10(sec)間施す。
 その後、比R値(H流量/SiH流量)が328となるように、HガスおよびSiHガスを処理室4内に供給し、1300(Pa)の下、印加高周波電力175(W)で、プラズマ処理を透明基板1に30(sec)間施す。このような工程を経ることで、図18に示す測定曲線に示される特性を有するシリコン膜13を形成することができる。
 このシリコン膜13の膜厚は200Å程度である。このシリコン膜の、ボイドが6.95%、アモルファス成分は、23.23%、アモルファス成分以外の部分(具体的には結晶成分は)は、69.82%であった。
 図19は、微細なナノシリコンを形成する方法をとらずに、膜厚を異ならせて形成したときの微結晶シリコン膜のボイドの含有率を含む各成分のグラフである。すなわち、アモルファスシリコン膜が形成された基板にHガスおよびSiHガスを処理室内に供給し、この状態でプラズマ処理を施すことでシリコン膜を形成する。そして、処理時間を異ならせることで形成された各種の膜厚のシリコン膜を形成し、各シリコン膜のボイドの含有率等を示している。
 この図19に示すグラフにおいて、a%は、アモルファス成分を示し、v%はボイドの含有率を示し、c%は、アモルファス以外の含有量を示す。図19において、微細なナノシリコンを形成する方法をとらない場合において、膜厚が200Åでは、ボイドは27%で、アモルファス以外の含有量(c%)具体的には結晶成分は、60%である。
 その一方で、たとえば、上記図18に示すシリコン膜では、ボイドが6.95%、アモルファス成分以外の部分(具体的には結晶成分は)が、69.82%である。このように、上記図18に示すシリコン膜のように、SiH(シラン)ガス雰囲気中にアモルファス膜2をさらす工程と、水素雰囲気中でプラズマ処理を施す工程とを経ることで得られたシリコン膜は、ナノシリコンを含有するようになり、ボイドが少なく、結晶成分が高くなる。
 なお、本実施の形態1で取り上げた測定曲線測定曲線LB~LRの特性を示すナノシリコンを含有する微結晶シリコン膜の製造工程は、300℃以下の温度で作製されている。このため、たとえば、液晶表示装置などのように、ガラス基板上に微結晶シリコン膜を形成する場合には、本実施の形態1に係るナノシリコンを含有する微結晶シリコン膜を採用するのが好ましい。
 (実施の形態2)
 図20および図21を用いて、本実施の形態2に係る微結晶シリコン膜が採用された薄膜トランジスタおよび当該薄膜トランジスタが採用された液晶表示装置について説明する。
 図20は、本実施の形態に係る薄膜トランジスタが搭載された液晶表示装置102を示す分解斜視図である。この図20に示すように、液晶表示装置102は、前面カバー104と、背面カバー105と、この前面カバー104および背面カバー105内に収容される液晶表示モジュール106とを含む。液晶表示モジュール106は、表示パネル107と、表示パネル107に光を照射するバックライトモジュール108と、表示パネル107の駆動を制御する制御部109とを備える。
 図21は、表示パネル107の断面図を示す。図21に示すように、表示パネル107は、アクティブマトリックス基板103と、アクティブマトリックス基板103と間隔をあけて配置された対向基板111と、アクティブマトリックス基板103および対向基板111の間に封入された液晶層112とを備える。
 対向基板111は、ガラス基板などの透明基板20と、透明基板20の下面に形成されたカラーフィルタ21と、このカラーフィルタ21に形成された対向電極22とを備える。
 アクティブマトリックス基板103は、ガラス基板などの透明基板30と、透明基板30の主表面上に形成された薄膜トランジスタ31と、薄膜トランジスタ31を覆うように形成された層間絶縁膜34と、層間絶縁膜34の上面に形成された画素電極35と、画素電極35上に形成された配向膜36とを備える。
 この図21に示す断面図においては、薄膜トランジスタ31は、1つしか示されていないが、アクティブマトリックス基板103を平面視すると、薄膜トランジスタ31は、透明基板30の主表面上にアレイ状に複数配列している。
 薄膜トランジスタ31を覆う層間絶縁膜34は、パッシベーション膜32と、このパッシベーション膜32上に形成された平坦化膜33とを備える。パッシベーション膜32は、たとえば、シリコン窒化膜などの無機絶縁膜から形成されており、平坦化膜33は、たとえば、アクリル樹脂ベースの有機絶縁膜から形成されている。
 薄膜トランジスタ31は、透明基板30の主表面上に形成されたゲート電極40と、このゲート電極40を覆うように透明基板30の主表面上に形成されたゲート絶縁膜41と、このゲート絶縁膜41上に形成された半導体層42と、チャネル保護膜43と、半導体層42の上面上に形成されたソース電極44およびドレイン電極45とを備える。
 ゲート電極40は、たとえば、チタンを主成分とする金属材料によって形成されている。ゲート絶縁膜41は、たとえば、シリコン窒化膜やシリコン酸化膜などから形成されてる。
 半導体層42は、ゲート絶縁膜41上に形成されたi型微結晶シリコン膜46と、このi型微結晶シリコン膜46上に形成され、チャネル形成領域49と隣り合うn型アモルファスシリコン膜47aと、i型微結晶シリコン膜46上に形成され、チャネル形成領域49に対してn型アモルファスシリコン膜47aと反対側に位置するn型アモルファスシリコン膜47bとを含む。
 i型微結晶シリコン膜46は、ゲート電極40に所定の電圧が印加されることでチャネルが形成されるチャネル形成領域49を含む。
 i型微結晶シリコン膜46は、上記実施の形態1の測定曲線LB~LRおよび図18に示すラマン特性を有する微結晶シリコン膜が採用されている。
 このようなi型微結晶シリコン膜の電気的抵抗は、i型アモルファスシリコン膜よりも低く、i型多結晶シリコン膜と同等の電気的抵抗を示す。
 このように、チャネルが形成されるシリコン膜として、i型微結晶シリコン膜46を採用することで、チャネルの電気的抵抗の低減が図られている。
 n型アモルファスシリコン膜47aは、i型微結晶シリコン膜46の上面からチャネル保護膜43の上面に乗り上げるように形成されており、n型アモルファスシリコン膜47bもn型アモルファスシリコン膜47aと同様に形成されている。n型アモルファスシリコン膜47aと47bとは、互いにチャネル保護膜43の上面上で間隔をあけて配置されている。チャネル保護膜43は、i型微結晶シリコン膜46の上面のうち、ゲート電極40の上方に位置する部分に形成されている。チャネル保護膜43もたとえば、シリコン窒化膜などから形成されている。
 n型アモルファスシリコン膜47aとn型アモルファスシリコン膜47bは互いに間隔をあけて配置されている。
 ドレイン電極45は、n型アモルファスシリコン膜47aの上面に形成されており、ソース電極44は、n型アモルファスシリコン膜47bの上面に形成されている。
 このソース電極44およびドレイン電極45は、たとえば、Ti(チタン)を主成分とする金属材料によって形成されている。ドレイン電極45には、画素電極35が接続されている。
 このように構成された薄膜トランジスタ31においては、ゲート電極40に所定電圧が印加されることで、i型微結晶シリコン膜46のうち、チャネル形成領域49が位置する部分にチャネルが形成される。
 そして、ソース電極44に所定の電圧を印加することで、ソース電極44およびドレイン電極45間でチャネルが移動し、ドレイン電極45にも所定の電位が印加される。画素電極35は、ドレイン電極45に接続されており、画素電極35にも所定の電位が印加される。
 その一方で、対向電極22にも所定の電位が印加されることで、対向電極22および画素電極35の間に位置する液晶層112内の液晶分子の配列を切り替える。このように液晶分子の配列を切り替えることで、バックライトからの光が偏光板で遮断されたり、偏光板を通過したりする。
 このように、実施の形態2においては、実施の形態1に示す微結晶シリコン膜を液晶表示装置の薄膜トランジスタに適用した例について説明したが、微結晶シリコン膜の適用例としは、他に、半導体記憶装置に搭載されたMOSトランジスタや不揮発性記憶素子のフローティングゲートなどに適用することができる。以上のように本発明の実施の形態および実施例について説明を行なったが、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 透明基板、2 アモルファス膜、3 成膜装置、4 処理室、5,6 ガス供給管、7 載置台、8 高周波電極、9 高周波電源、10 バルブゲート、10nm 粒径、11 排気装置、12 ヒータ、13 シリコン膜、14 集合体、20,30 透明基板、21 カラーフィルタ、22 対向電極、31 薄膜トランジスタ、32 パッシベーション膜、33 平坦化膜、34 層間絶縁膜、35 画素電極、36 配向膜、40 ゲート電極、41 ゲート絶縁膜、42 半導体層、43 チャネル保護膜、44 ソース電極、45 ドレイン電極、46 i型微結晶シリコン膜、47a,47b アモルファスシリコン膜、49 チャネル形成領域、102 液晶表示装置、103 アクティブマトリックス基板、104 前面カバー、105 背面カバー、106 液晶表示モジュール、107 表示パネル、108 バックライトモジュール、109 制御部、111 対向基板、112 液晶層。

Claims (13)

  1.  主表面を有する基板(1)を準備する工程と、
     前記主表面上に、アモルファス膜(2)を形成する工程と、
     電界が形成されていない雰囲気中において、前記アモルファス膜(2)が形成された前記基板(1)を、シリコン元素と水素元素とを主成分として含む第1シリコン化合物のガス雰囲気にさらす工程と、
     を備えた、微結晶シリコン膜の製造方法。
  2.  前記アモルファス膜(2)は、シリコン窒化膜である、請求項1に記載の微結晶シリコン膜の製造方法。
  3.  第1シリコン化合物は、SiH(モノシラン)である、請求項1または請求項2に記載の微結晶シリコン膜の製造方法。
  4.  基板(1)を前記第1シリコン化合物のガス雰囲気中にさらした後、水素ラジカルを発生させるプラズマ処理を施す工程をさらに備えた、請求項1から請求項3のいずれかに記載の微結晶シリコン膜の製造方法。
  5.  基板(1)を前記第1シリコン化合物のガス雰囲気中にさらした後、水素元素およびシリコン元素を主成分として含む第2シリコン化合物のガスと水素ガスとの混合ガス雰囲気中でプラズマ処理を前記基板(1)に施す工程と、水素ラジカルを発生させるプラズマ処理を前記基板(1)に施す工程とを繰り返し行う工程をさらに備える、請求項1から請求項4のいずれかに記載の微結晶シリコン膜の製造方法。
  6.  前記混合ガス雰囲気中でプラズマ処理を施す工程と、水素ラジカルを発生させるプラズマ処理を施す工程と繰り返した後、電界が形成されていない雰囲気中において、前記基板(1)をSiH(モノシラン)ガス雰囲気中にさらす工程をさらに備えた、請求項5に記載の微結晶シリコン膜の製造方法。
  7.  前記混合ガス雰囲気中でプラズマ処理を施す工程と、水素ラジカルを発生させるプラズマ処理を施す工程とを繰り返すことで形成されたシリコン膜に終端処理を施す工程をさらに備えた、請求項6に記載の微結晶シリコン膜の製造方法。
  8.  前記混合ガス雰囲気中でプラズマ処理を施す工程と、水素ラジカルを発生させるプラズマ処理を施す工程と繰り返すことで形成されたシリコン膜に不純物を導入する工程をさらに備えた、請求項5または請求項6に記載の微結晶シリコン膜の製造方法。
  9.  主表面を有する基板(1)を準備する工程と、
     前記主表面上に、シリコン元素と窒素元素とを主成分とするアモルファス膜(2)を形成する工程と、
     前記アモルファス膜(2)が形成された前記基板(1)に水素ガス雰囲気中でプラズマ処理を施す工程と、
     前記水素ガス雰囲気中でプラズマ処理が施された前記基板(1)に、シリコン元素と水素元素とを主成分として含む第1シリコン化合物のガスと、水素ガスとの混合雰囲気ガス中でプラズマ処理を施す工程と、
     を備えた、微結晶シリコン膜の製造方法。
  10.  透明基板(1)に形成された絶縁性のアモルファス膜(2)の上面上に形成される微結晶シリコン膜であって、ラマン測定のピークが518cm-1以下で生じる、微結晶シリコン膜。
  11.  ボイドの含有率が10%以下である、請求項10に記載の微結晶シリコン膜。
  12.  主表面を有する透明基板(30)上に形成された電気素子であって、
     前記透明基板(30)の主表面上に形成されたゲート電極と、
     前記ゲート電極上に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に形成され半導体層と、
     前記半導体層上に形成された第1電極と、
     前記第1電極と間隔をあけて配置された第2電極とを備え、
     前記半導体層は、微結晶シリコン膜を含み、前記微結晶シリコン膜のラマン測定のピークが518cm-1以下で生じる、電気素子。
  13.  請求項12に記載の電気素子と前記透明基板(30)とを含み、前記電気素子がスイッチング素子として機能するスイッチング素子基板と、
     前記スイッチング素子基板と対向するように配置された対向基板と、
     前記スイッチング素子基板および前記対向基板の間に封入された表示媒体層と、
     を備えた表示装置。
PCT/JP2011/079642 2010-12-28 2011-12-21 微結晶シリコン膜の製造方法、微結晶シリコン膜、電気素子および表示装置 WO2012090819A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292780 2010-12-28
JP2010-292780 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090819A1 true WO2012090819A1 (ja) 2012-07-05

Family

ID=46382928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079642 WO2012090819A1 (ja) 2010-12-28 2011-12-21 微結晶シリコン膜の製造方法、微結晶シリコン膜、電気素子および表示装置

Country Status (1)

Country Link
WO (1) WO2012090819A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266019A (ja) * 1991-02-20 1992-09-22 Canon Inc 成膜方法
JP2005236080A (ja) * 2004-02-20 2005-09-02 Nokodai Tlo Kk シリコンナノ結晶構造体の作製方法及び作製装置
JP2005537660A (ja) * 2002-08-30 2005-12-08 フリースケール セミコンダクター インコーポレイテッド ナノ結晶を形成する方法
WO2007077917A1 (ja) * 2005-12-28 2007-07-12 Hitachi Kokusai Electric Inc. 半導体装置の製造方法および基板処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266019A (ja) * 1991-02-20 1992-09-22 Canon Inc 成膜方法
JP2005537660A (ja) * 2002-08-30 2005-12-08 フリースケール セミコンダクター インコーポレイテッド ナノ結晶を形成する方法
JP2005236080A (ja) * 2004-02-20 2005-09-02 Nokodai Tlo Kk シリコンナノ結晶構造体の作製方法及び作製装置
WO2007077917A1 (ja) * 2005-12-28 2007-07-12 Hitachi Kokusai Electric Inc. 半導体装置の製造方法および基板処理装置

Similar Documents

Publication Publication Date Title
US8940625B2 (en) Low temperature polysilicon thin film and manufacturing method thereof
TWI291235B (en) Low temperature process for TFT fabrication
US8147614B2 (en) Multi-gas flow diffuser
US8114484B2 (en) Plasma enhanced chemical vapor deposition technology for large-size processing
CN101960563B (zh) 微晶硅薄膜晶体管
JP6154547B2 (ja) エキシマレーザアニーリング後にポリシリコン品質を向上させる方法
JP2009158946A5 (ja)
JP2008172244A (ja) 電子素子用ZnO半導体膜の形成方法及び前記半導体膜を含む薄膜トランジスタ
JP2008500745A (ja) 基板上の結晶質材料の製造
US7521341B2 (en) Method of direct deposition of polycrystalline silicon
JP2009521797A (ja) 透明基板を用いる多結晶シリコン薄膜の製造方法及び製造装置
TW201518561A (zh) 一種平坦化多晶矽薄膜的製造方法
US20050202653A1 (en) High density plasma process for silicon thin films
JP2006518935A (ja) アクティブ・マトリックス・ディスプレー用トランジスタとその製造方法
TW201712805A (zh) 多晶矽薄膜電晶體元件及其製作方法
US8076222B2 (en) Microcrystalline silicon thin film transistor
US20090155988A1 (en) Element of low temperature poly-silicon thin film and method of making poly-silicon thin film by direct deposition at low temperature and inductively-coupled plasma chemical vapor deposition equipment therefor
WO2021040860A1 (en) Nitrogen-rich silicon nitride films for thin film transistors
WO2012090819A1 (ja) 微結晶シリコン膜の製造方法、微結晶シリコン膜、電気素子および表示装置
WO2014173146A1 (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
KR20080000299A (ko) 폴리실리콘 박막트랜지스터 액정표시장치 및 그 제조방법
JP2008177419A (ja) シリコン薄膜形成方法
KR101564331B1 (ko) 전계제어장치를 구비한 열선 화학기상 증착장치 및 그를 이용한 박막 제조방법
KR20090010757A (ko) 다결정 실리콘 박막 및 이를 적용하는 박막 트랜지스터의제조방법
Lin et al. The effect of post-hydrogen annealing and multilayer channel structure on nano-crystalline silicon thin film transistor performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP