WO2012090506A1 - 成膜装置および光電変換素子の製造方法 - Google Patents
成膜装置および光電変換素子の製造方法 Download PDFInfo
- Publication number
- WO2012090506A1 WO2012090506A1 PCT/JP2011/007362 JP2011007362W WO2012090506A1 WO 2012090506 A1 WO2012090506 A1 WO 2012090506A1 JP 2011007362 W JP2011007362 W JP 2011007362W WO 2012090506 A1 WO2012090506 A1 WO 2012090506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- vapor deposition
- film
- deposition source
- chamber
- Prior art date
Links
- 230000008021 deposition Effects 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 title claims description 77
- 239000000758 substrate Substances 0.000 claims abstract description 201
- 238000007740 vapor deposition Methods 0.000 claims abstract description 197
- 238000001704 evaporation Methods 0.000 claims abstract description 47
- 229910052738 indium Inorganic materials 0.000 claims abstract description 47
- 230000008020 evaporation Effects 0.000 claims abstract description 45
- 238000000151 deposition Methods 0.000 claims description 89
- 238000011144 upstream manufacturing Methods 0.000 claims description 59
- 229910052733 gallium Inorganic materials 0.000 claims description 52
- 238000001816 cooling Methods 0.000 claims description 51
- 230000015572 biosynthetic process Effects 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 23
- 229910052711 selenium Inorganic materials 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000007723 transport mechanism Effects 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 12
- 238000004804 winding Methods 0.000 claims description 11
- 239000012528 membrane Substances 0.000 claims description 2
- 238000002203 pretreatment Methods 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 abstract description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 abstract 1
- 239000010408 film Substances 0.000 description 174
- 239000010949 copper Substances 0.000 description 92
- 238000000034 method Methods 0.000 description 40
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000224 chemical solution deposition Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010549 co-Evaporation Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/20—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0623—Sulfides, selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02425—Conductive materials, e.g. metallic silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02485—Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/0251—Graded layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02568—Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0322—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03923—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0749—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a film forming apparatus for forming a CIGS compound semiconductor film used for a photoelectric conversion element such as a CIGS solar cell and a method for producing a photoelectric conversion element including a CIGS compound semiconductor film.
- a solar cell has a laminated structure in which a photoelectric conversion layer made of a semiconductor that generates an electromotive force (current) by light absorption is sandwiched between a back electrode and a front electrode (transparent electrode).
- a photoelectric conversion layer made of a semiconductor that generates an electromotive force (current) by light absorption
- Si-based solar cells using bulk single-crystal Si or polycrystalline Si, or thin-film amorphous Si have been mainstream.
- a chalcopyrite-based CuInSe 2 (CIS) is used for a photoelectric conversion layer.
- Cu (In, Ga) Se 2 hereinafter sometimes simply referred to as “CIGS”
- Solar cells using this CIGS for the photoelectric conversion layer are actively studied because they are relatively high in efficiency and can be thinned because of their high light absorption rate.
- a solar cell using CIGS as a photoelectric conversion layer forms a p-type CIGS layer as a photoelectric conversion layer on the back electrode, and forms an n-type CdS layer on the p-type CIGS layer, Furthermore, it has a laminated structure in which a transparent electrode is formed on the CdS layer. In such a solar cell structure, a pn junction is formed by the p-type CIGS layer and the n-type CdS layer.
- the multi-source deposition method is a method of forming a film by evaporating Cu, In, Ga, and Se raw materials from separate crucibles.
- the multi-source deposition method there are a bilayer method and a three-stage method.
- the three-stage method in the first stage, In, Ga and Se are supplied to form an (In, Ga) 2 Se 3 film, and in the second stage, only Cu and Se are supplied to form the composition of the entire film.
- film formation is performed until Cu is in excess of Cu, and In, Ga, and Se are supplied again in the third stage so that the final composition becomes (In, Ga) in excess.
- the by-layer method Cu (In, Ga) Se 2: Cu x lot of Cu content consisting of Se, generating a phase-separated compound mixture onto a substrate, Cu x Se in the mixture the (in, Ga) by exposure to and Se, or (in, Ga) y Se by exposure to z, Cu x Se to Cu w (in, Ga) y Se by the steps of converting the z Cu (an in , Ga) Se 2 thin film forming method (see Patent Document 1).
- the CIGS photoelectric conversion layer is graded as a composition gradient structure of group III elements (In, Ga). It is known that it is effective to create a band structure (see Patent Documents 2 and 3).
- the CIGS can control the band gap by the composition ratio of In and Ga.
- the efficiency of the thin film solar cell using the CIGS film can be increased.
- Ga / (In + Ga) which is an index of the composition ratio of Ga and In
- the band gap is the surface It is possible to form a single graded band gap that expands toward the back surface. It is considered that the conversion efficiency is improved because an electric field is generated inside the CIGS film due to the change in the band gap, and the photoexcited carriers are transported to the pn junction formed on the surface of the CIGS film.
- a high Ga concentration layer is formed on the surface of the CIGS film on the light incident side, thereby expanding the band gap at the pn junction interface and improving the open-circuit voltage.
- a double graded band gap can be formed. According to the double graded band gap, higher conversion efficiency can be achieved.
- Patent Documents 4, 5, etc. a film forming method and a film forming apparatus for forming a film while moving the substrate have been proposed.
- Patent Document 4 proposes a manufacturing apparatus for manufacturing CIGS solar cells by a roll-to-roll method.
- a CIGS film forming apparatus a roll-to-roll multi-component simultaneous vapor deposition film forming apparatus is used. Proposed.
- Patent Document 5 in order to improve the composition distribution in the film thickness direction of the CIGS film, particularly the composition distribution in the film thickness direction of the group III elements In and Ga, an In vapor deposition source and Ga vapor deposition are disclosed.
- a manufacturing apparatus in which the sources are arranged in a matrix has been proposed.
- an In and Ga vapor deposition source arranged in a matrix, a plurality of Cu vapor deposition sources arranged in a line, and a plurality of Se vapor deposition sources arranged in a line form one vapor deposition source group.
- a plurality of source groups are arranged in the transport direction, and the composition ratio of In and Ga can be made uniform in the film thickness direction.
- a roll-to-roll multi-source co-evaporation film forming apparatus such as Patent Document 4 is suitable for large-area film formation, but the amount of evaporation from each evaporation source is maximized at the opening of each evaporation source. Because of the distribution, in the configuration in which the evaporation sources of the respective elements are arranged in a line as in the apparatus of Patent Document 4, a uniform CIGS layer cannot be obtained in the plane, which is sufficient. The present inventors have revealed that there is a problem that the photoelectric conversion efficiency cannot be achieved.
- the present invention has been made in view of the above circumstances, and has a double-graded structure in the thickness direction and a film forming apparatus capable of efficiently producing a CIGS film having in-plane uniformity, and It aims at providing the manufacturing method of the photoelectric conversion element which manufactures the photoelectric conversion element which has a high photoelectric conversion rate efficiently.
- a film forming apparatus of the present invention is a film forming apparatus for forming a compound semiconductor film containing Cu, In, Ga, and Se on one surface of a film forming substrate, A deposition chamber, a substrate transport mechanism for transporting the film-forming substrate in one direction in the deposition chamber, and a plurality of Cu for depositing each of the Cu, In, Ga, and Se disposed in the deposition chamber
- a matrix-like In—Ga first vapor deposition source group in which the In vapor deposition source and the Ga vapor deposition source are alternately arranged is arranged in the uppermost stream along the transport direction of the film formation substrate,
- the control unit has a minimum Ga / (In + Ga) ratio between the most upstream and the most downstream in the transport direction, and the minimum Ga / (In
- the uppermost Ga / (In + Ga) ratio is the Ga / (In + Ga) ratio in the region where the first In—Ga deposition source group is disposed.
- the region where the Ga / (In + Ga) ratio existing between the most upstream and the most downstream is the minimum is a region existing between the most upstream vapor deposition source group and the most downstream vapor deposition source group.
- the plurality of Cu deposition sources, the plurality of In deposition sources, and the plurality of Ga deposition sources are sequentially from the upstream side along the transport direction of the film formation substrate.
- control unit controls an evaporation amount from each evaporation source so that the minimum Ga / (In + Ga) ratio becomes zero.
- control unit may supply the surface of the substrate with each element under the condition that the amount of Cu evaporation in the downstream region is relatively suppressed as compared with the amount of evaporation of Cu in the upstream region. It is preferable that the amount of evaporation from each of the vapor deposition sources is controlled.
- the upstream region is upstream in the transport direction and includes from the most upstream to the region where the Ga / (In + Ga) ratio is equal to or less than half of the most upstream or most downstream, and the downstream region continues to the upstream region.
- An area on the downstream side in the conveyance direction is assumed.
- the rows of the respective vapor deposition sources in the respective matrix sources of the respective vapor deposition source groups are arranged so as to intersect the transport direction of the film formation substrate, in particular, the respective vapor deposition source groups. It is desirable that the matrix of the vapor deposition sources be arranged so as to intersect substantially perpendicularly with the transport direction of the film formation substrate.
- the number of Cu deposition sources in the Cu—Ga second deposition source group may be less than the number of Cu deposition sources in the Cu—Ga first deposition source group.
- the Se deposition source is preferably a linear deposition source having a plurality of openings on a line extending along the row between the rows of the matrix-like deposition sources of the respective deposition source groups.
- the vapor deposition chamber is provided with a heating means for heating the deposition substrate.
- a cooling chamber for cooling the deposition substrate on which the compound semiconductor film is formed is connected to the deposition chamber on the downstream side of the deposition chamber, and an Se deposition source is provided in the cooling chamber. It is desirable.
- the cooling chamber is provided with a cooling means for cooling the deposition substrate.
- the apparatus of the present invention includes a pre-treatment substrate storage portion for storing the film formation substrate, which is connected to the vapor deposition chamber on the upstream side of the vapor deposition chamber, and a heating means for heating the film formation substrate.
- a substrate introduction chamber comprising: A substrate discharge chamber provided with a processed substrate storage portion that is disposed downstream of the cooling chamber and is connected to the cooling chamber and that stores the film-forming substrate on which the compound semiconductor film is formed; Prepared, The substrate introduction chamber, the vapor deposition chamber, the cooling chamber, and the substrate discharge chamber are arranged linearly, It is desirable that the substrate transport mechanism is configured to move the film formation substrate across the chambers in the one direction in-line.
- an unwinding roll for unwinding the film formation substrate which is connected to the vapor deposition chamber on the upstream side of the vapor deposition chamber, and the film formation substrate are provided.
- a substrate introduction chamber provided with a heating means for heating;
- a substrate discharge chamber provided on the downstream side of the cooling chamber and connected to the cooling chamber, the substrate discharge chamber including a winding roll for winding the film-forming substrate on which the compound semiconductor film is formed;
- the substrate introduction chamber, the vapor deposition chamber, the cooling chamber, and the substrate discharge chamber are arranged linearly, It is desirable that the moving means unwinds the film-forming substrate from the unwinding roll, and winds the film-forming substrate that has passed through the chambers with the winding roll.
- the method for producing a photoelectric conversion element of the present invention is a method for producing a photoelectric conversion element comprising a photoelectric conversion layer made of a Cu (In, Ga) Se 2 compound semiconductor, While transporting a substrate having a back electrode on one side in one direction, from a plurality of Cu deposition sources, a plurality of In deposition sources, a plurality of Ga deposition sources and a Se deposition source arranged along the transport direction, Supplying a vapor of each element to one surface side, and having a vapor deposition film forming step of forming the photoelectric conversion layer on the back electrode; In the vapor deposition film forming step, a matrix In-Ga first vapor deposition source group in which the Se vapor deposition source, the In vapor deposition source and the Ga vapor deposition source are alternately arranged in the uppermost stream in the transport direction of the substrate.
- Ga and Se are supplied to one side of the substrate, and the Ga / (In + Ga) ratio is minimum between the most upstream and the most downstream in the transport direction, and the minimum Ga / ( While controlling the amount of evaporation from each deposition source so that there is a region where the In + Ga) ratio is less than half of the Ga / (In + Ga) ratio at the most upstream or the most downstream, In the upstream region including the uppermost stream, a mixture of Cu (In, Ga) Se 2 and Cu x Se that are phase-separated from each other is generated on the back electrode, The photoelectric conversion layer is formed by converting the Cu x Se into Cu (In, Ga) Se 2 in the downstream area including the most downstream area following the upstream area.
- the minimum Ga / (In + Ga) ratio is preferably 0.
- the Cu evaporation amount in the downstream region is supplied to the one surface of the substrate under the condition that the Cu evaporation amount in the upstream region is relatively suppressed as compared with that in the upstream region.
- the film-forming apparatus of this invention can be used suitably for the said vapor deposition film-forming process in the manufacturing method of the photoelectric conversion element of this invention.
- a matrix In-Ga first vapor deposition source group in which an In vapor deposition source and an a vapor deposition source are alternately arranged in the uppermost stream along the conveyance direction of the film formation substrate. Therefore, a film with high in-plane uniformity can be formed, and a film of In and Ga is mixed at the initial stage of film formation. Since it can be stably formed, film peeling does not occur, and production can be performed with a high yield.
- a control unit for controlling the evaporation amount from the evaporation source is provided, and the control unit has a minimum Ga / (In + Ga) ratio between the most upstream and the most downstream in the transport direction, and the minimum Ga / (In + Ga) ratio. Since the amount of evaporation from each evaporation source is controlled so that there is a region where the ratio is less than half of the Ga / (In + Ga) ratio at the most upstream or most downstream, a good double graded structure of Ga should be formed Can do.
- this film forming apparatus By using this film forming apparatus, it is possible to produce a CIGS film having a good Ga double graded structure and without causing film peeling, and thus producing a photoelectric conversion element having high photoelectric conversion efficiency with high efficiency. Can do.
- a CIGS film can be formed while transporting the substrate in one direction, and a CIGS film can be formed while transporting the substrate in one direction, efficient film formation can be performed. Can be improved.
- Sectional drawing which shows schematic structure of the film-forming apparatus which concerns on 1st Embodiment
- the top view which shows the example of arrangement
- Sectional drawing which shows schematic structure of the film-forming apparatus which concerns on 2nd Embodiment.
- Sectional drawing which shows schematic structure of a photoelectric conversion element (solar cell)
- the top view which shows arrangement
- the graph which shows the secondary ion mass spectrometry result in the photoelectric conversion element film thickness direction of the photoelectric conversion element produced by the method of the Example
- FIG. 1 is a diagram schematically showing a schematic configuration of a film forming apparatus according to the first embodiment of the present invention.
- the film forming apparatus 1 of the present embodiment is an in-line multi-source co-evaporation film forming apparatus for forming a CIGS semiconductor film (hereinafter simply referred to as “CIGS film”) on a film forming substrate S.
- CIGS film CIGS semiconductor film
- a substrate transport mechanism 16 that moves in a shape and a control unit 15 that controls vapor deposition conditions and the like are provided.
- the substrate introduction chamber 10 and the substrate discharge chamber 14 are a chamber for introducing the film-forming substrate S (S ′) and a chamber for discharging, respectively.
- the substrate introduction chamber 10 is provided with a substrate storage tray 17 that can store a plurality of substrates as a pre-processing substrate storage portion that stores the film-forming substrate S before CIGS film deposition
- the substrate discharge chamber 14 includes:
- a substrate storage tray 18 that can store a plurality of substrates is provided as a processed substrate storage unit that stores the deposition substrate S ′ on which a CIGS film has been formed.
- the substrate introduction chamber 10, the vapor deposition chamber 11, the cooling chamber 13, and the substrate discharge chamber 14 are evacuated to a substantially vacuum by an exhaust device (not shown) as necessary.
- the substrate introduction chamber 10 and the discharge chamber 14 are provided with a turbo molecular pump as an exhaust pump for evacuating the inside, and the vapor deposition chamber 11 and the cooling chamber 13 are provided with an oil diffusion pump as an exhaust pump for evacuating the inside. Is provided.
- the substrate transport mechanism 16 is a mechanism for linearly moving the substrate S from the substrate introduction chamber 10 on the upstream side in the transport direction A toward the substrate discharge chamber 14 on the downstream side, and includes a roller, for example. Can be configured.
- the substrate transport mechanism 16 includes a two-row conveyor arranged in two rows and along the substrate transport direction so as to support both ends of the substrate S in the width direction.
- Substrate heating heaters 19 a and 19 b are installed above the substrate transport mechanism 16 in the substrate introduction chamber 10 and the vapor deposition chamber 11, respectively.
- the heaters 19a and 19b for heating the substrate can change the temperature along the transport direction A of the substrate, and adjust the temperature of the substrate to a predetermined temperature corresponding to the movement position.
- vapor deposition source groups 31 to 35 each composed of In, Ga, and Cu vapor deposition sources 21 to 23 and an Se vapor deposition source 25 are arranged. Only the vapor deposition source 25 is arranged.
- a crucible for vapor deposition can be used.
- Each vapor deposition source may include two or more vapor ejection openings.
- the control unit 15 controls vapor deposition conditions in the vapor deposition chamber 11, the substrate conveyance speed by the substrate conveyance mechanism 16, and the like, and is specifically configured by a computer.
- the control unit 15 is configured such that the vapor deposition conditions in the vapor deposition chamber 11 are such that the Ga / (In + Ga) ratio is the smallest between the most upstream and the most downstream in the transport direction A, and the smallest Ga / (In + Ga) ratio is the most upstream or most
- the amount of evaporation from each of the vapor deposition sources 21 to 23 and 25 is controlled so that there is a region that is less than half of the downstream Ga / (In + Ga) ratio.
- the Ga / (In + Ga) ratio at the most upstream and the Ga / (In + Ga) ratio at the most downstream are substantially equal.
- the Ga / (In + Ga) ratio at the uppermost stream and the Ga / (In + Ga) ratio at the most downstream need not be equal.
- the minimum Ga / (In + Ga) ratio should be at most half of at least one of the most upstream and the most downstream Ga / (In + Ga), and the other is less than the above-mentioned minimum Ga / (In + Ga) ratio. It only needs to be large.
- the control unit 15 performs control related to the overall film forming conditions such as temperature control of the heaters 19a and 19b and control of the substrate transport speed.
- FIG. 2 is a plan view schematically showing the arrangement of vapor deposition sources in the film forming apparatus 1 shown in FIG.
- a matrix (matrix) In—Ga first vapor deposition source group 31 in which In vapor deposition sources 21 and Ga vapor deposition sources 22 are alternately arranged from the upstream side in the substrate transport direction, a Ga vapor deposition source.
- Matrix-like Ga—Cu first vapor deposition source group 32 in which 22 and Cu vapor deposition source 23 are alternately arranged, and matrix-like In—Cu in which In vapor deposition source 21 and Cu vapor deposition source 23 are alternately arranged.
- Deposition source group 33 Ga-Cu second deposition source group 34 in which Ga deposition source 22 and Cu deposition source 23 are arranged alternately, In deposition source 21 and Ga deposition source 22 are arranged alternately.
- In-Ga second vapor deposition source group 35 is sequentially arranged along the transport direction.
- the Ga / (In + Ga) ratio is almost equal in the most upstream and most downstream sides. It can be easily controlled to be equivalent.
- an In—Cu vapor deposition source group 33 is disposed between the uppermost stream and the most downstream as a region containing at least In, and Ga is not contained in the region of the In—Cu vapor deposition source group 33.
- the Ga / (In + Ga) ratio can be zero.
- the controller 15 causes the Ga / (In + Ga) ratio to be the smallest between the most upstream and the most downstream, and the smallest Ga / (In + Ga) ratio is the most upstream or most downstream ratio. Any arrangement can be used as long as it can be controlled so that there is a region that is half or less of the above. If there is a region where the Ga / (In + Ga) ratio is minimum between the upstream and downstream, a Ga double graded structure can be obtained, but in order to greatly change the Ga concentration in the film thickness direction of film formation. It is preferable to provide a region where the Ga / (In + Ga) ratio is 0 between the upstream and downstream as in this embodiment.
- each of the vapor deposition source groups 31, 32, 33 and 35 is a 4 ⁇ 2 matrix arrangement in which two types of vapor deposition sources are alternately arranged in the row direction and the column direction.
- 34 is arranged in a 4 ⁇ 1 matrix.
- the Se vapor deposition source 25 includes a line-shaped conduit 25a having a plurality of openings 25b for releasing Se vapor, and a Se storage tank 25c connected to the conduit 25a and supplying Se vapor.
- a plurality of Se vapor deposition sources 25 are arranged such that the line-shaped conduits 25a extend along the column direction between the columns of the vapor deposition source groups 31 to 35.
- the controller 15 causes the Ga / (In + Ga) ratio to be the smallest and the Ga / (In + Ga) ratio to be the smallest between the most upstream and the most downstream in the transport direction A.
- Ga / (A CIGS film having a double graded structure having a group III (Ga, In) composition distribution with a profile in which (In + Ga) gradually decreases and gradually increases toward the film-forming surface side again. can do.
- each vapor deposition source group the composition uniformity in the plane can be enhanced by arranging the vapor deposition sources of the respective elements in a matrix arrangement.
- an In—Ga first vapor deposition source group 31 in which an In vapor deposition source 21 and a Ga vapor deposition source 22 are alternately arranged in the uppermost stream is provided, and not only Ga and Se but also In are vapor deposited at the initial stage of film formation. Since a chalcopyrite structure with good crystallinity is stably produced, film peeling of the CIGS film from the film formation substrate does not occur. Since the peeling of the CIGS film can be suppressed, the yield improvement effect can be obtained.
- control unit 15 determines the amount of Cu evaporation in the downstream region 37 including the Ga—Cu second vapor deposition source group 34 and the In—Ga second vapor deposition source group 35, as the In—Ga first vapor deposition source group 31, Ga—Cu.
- Each element is supplied to one surface of the film-forming substrate S under a condition that is relatively suppressed as compared with the amount of Cu evaporation in the upstream region 36 including the first vapor deposition source group 32 and the In—Cu vapor deposition source group 33.
- the evaporation amount can be controlled by controlling the temperature of the vapor deposition source. Moreover, you may make it reduce Cu evaporation amount in a downstream area rather than an upstream area by making downstream the number of Cu vapor deposition sources to arrange
- this apparatus is an in-line film forming apparatus, it is possible to realize very efficient film formation.
- the film-forming substrate S is not particularly limited as long as it can be transported by the substrate transport mechanism 16.
- a CIGS film as a photoelectric conversion layer for a solar cell
- a rectangular glass substrate having a Mo film deposited on one main surface can be used as the film-forming substrate S.
- the film forming substrate S is transferred from the storage tray 17 to the lower side of the heater 19a by the substrate transfer mechanism 16, and the substrate S is heated by the heater 19a. .
- the heated substrate S is linearly transported in the direction of arrow A by the substrate transport mechanism 16.
- the substrate S is heated by the heater 19 b, and Cu, In, Ga, and Se are supplied from the vapor deposition source group to one surface facing the vapor deposition source of the substrate S.
- One surface of the substrate S is mainly supplied with In, Ga and Se on the uppermost In—Ga first vapor deposition source group 31 in the upstream region 36, and then on the Ga—Cu first vapor deposition source group 32.
- Ga, Cu, and Se are mainly supplied, and In, Cu, and Se are mainly supplied on the In—Cu vapor deposition source group 33.
- Cu, Ga and Se are mainly supplied on the Cu—Ga second evaporation source group 34, and then, on the In—Ga second evaporation source group 35.
- In, Ga, and Se are mainly supplied.
- the control unit 15 performs control so that the Ga / (In + Ga) ratio in the In—Ga second evaporation source group 35 and the In—Ga first evaporation source group 31 is substantially equal.
- the In—Cu vapor deposition source group 33 that does not include a Ga vapor deposition source is disposed in the intermediate region, and Ga / (In + Ga) is 0 in this region.
- the control unit 15 includes a mixture (hereinafter referred to as Cu) in which the compounds of Cu (In, Ga) Se 2 and Cu x Se are mixed in a state separated from each other on one surface of the substrate S in the upstream region 36.
- the temperature of each vapor deposition source is controlled so that a mixture with a high Cu content is generated.
- the amount of Cu evaporated from the upstream region is suppressed to be less than the amount of Cu evaporated in the upstream region, so that the amount of Cu deposited on the substrate S becomes very small.
- the Cu x Se previously deposited in the upstream region is Cu (In, Ga).
- the temperature of each vapor deposition source is controlled so as to convert to Se 2 .
- “high Cu content” means that the Cu content is high compared to the stoichiometric ratio of the target CIGS film.
- the temperature of the Se vapor deposition source is controlled so that Se is supplied in excess of the stoichiometric ratio of the desired CIGS film throughout the vapor deposition chamber 11.
- the film-formed substrate S ′ on which the CIGS film is formed is transferred to the cooling chamber 13.
- the substrate S ′ is radiatively cooled while Se is supplied from the Se vapor deposition source 25 to the CIGS film surface of the substrate S ′ on which the CIGS film is deposited through the vapor deposition chamber 11.
- the substrate temperature is cooled to about 350 ° C.
- the substrate S ′ is transferred to the substrate discharge chamber 14 and further cooled, and then stored in the film-formed substrate storage tray 18.
- a CIGS film can be formed on the film forming substrate as described above.
- the composition of the group III (Ga, In) in the film thickness direction depends on the arrangement configuration of the evaporation source in the film forming apparatus 1.
- a CIGS film having a distributed double graded structure and high in-plane composition uniformity can be formed.
- Cu content (Cu (In, Ga) Se 2: Cu x Se 2) to produce a, a Cu x Se 2 Cu (In, Ga) to Se 2
- a CIGS film with better quality can be formed.
- the CIGS film formed by this film forming apparatus is suitable as a photoelectric conversion layer of a photoelectric conversion element such as a solar cell.
- a photoelectric conversion element having such a double grade dead structure a high in-plane composition uniformity, and a CIGS film with good quality, a high photoelectric conversion rate can be achieved. Therefore, this film-forming apparatus can be used suitably for the manufacturing method of a photoelectric conversion element provided with a CIGS film
- the vapor deposition chamber 11 and the cooling chamber 13 include the Se vapor deposition source 25 configured such that Se is supplied from the Se storage tank 25c to the line-shaped conduit 25a having a plurality of openings. Part or all of Se supplied to the substrate surface may be supplied from an atmospheric gas during vapor deposition.
- the atmospheric gas supply means corresponds to the Se vapor deposition source.
- Cu, In, Ga, and Se vapor deposition source are provided, other elements other than Cu, In, Ga, and Se may be further supplied on a base
- a vapor deposition source of the element may be provided.
- a part of Se can be replaced with S to form a Cu (In, Ga) SeS film.
- each vapor deposition source group is arranged in a matrix of 4 ⁇ 2 or 4 ⁇ 1 in each vapor deposition source, but in each vapor deposition source group, the number of rows of the matrix formed by each vapor deposition source, The number of columns is arbitrary, and the design can be changed as necessary. In order to deal with film formation on a wide substrate, the number of rows may be further increased. In order to improve the in-plane uniformity, each vapor deposition source group is desirably arranged in a matrix with the vapor deposition sources having three or more rows and two or more columns.
- the supply amount from the deposition source can be controlled by controlling the temperature of the deposition source.
- FIG. 3 is a diagram schematically showing a schematic configuration of a film forming apparatus according to the second embodiment of the present invention.
- the film forming apparatus 2 of the present embodiment is a roll-to-roll type multi-source co-evaporation film forming apparatus for forming a CIGS film on a flexible substrate, and is linearly connected in sequence.
- Four chambers including a substrate introduction chamber 10, a vapor deposition chamber 11, a cooling chamber 13, and a substrate discharge chamber 14, and a substrate transport mechanism 50 that linearly moves the film formation substrate S from the introduction chamber 10 to the discharge chamber 14.
- I have.
- Constituent elements equivalent to those of the film forming apparatus 1 of the first embodiment are denoted by the same reference numerals, detailed description thereof is omitted, and differences from the apparatus of the first embodiment are mainly described.
- an unwinding roll 56 around which a long flexible substrate S is wound is installed in the substrate introduction chamber 10, and is unwound from the unwinding roll 56.
- a winding roll 57 for winding the film-formed substrate S ′ on which the compound semiconductor film is formed is installed in the substrate discharge chamber 14.
- the substrate introduction chamber 10 and the substrate discharge chamber 14 are provided with guide rolls 58 and 59 for guiding the substrate S, respectively.
- the substrate transport mechanism 50 is configured by the unwinding roll 56, the winding roll 57, the driving means (not shown) for driving these, and the guide rolls 58 and 59.
- a cooling roll 55 is provided in the cooling chamber 13 as a cooling means for cooling the substrate.
- the cooling chamber 13 it is desirable to cool the substrate temperature to about 350 ° C., and it takes 20-30 minutes to cool by radiative cooling alone.
- this cooling time can be shortened. It becomes possible and throughput can be improved.
- one cooling roll is provided in the cooling chamber 13, but a plurality of cooling rolls may be provided in the cooling chamber.
- the guide roll 59 provided in the substrate discharge chamber 14 in which the winding roll 57 is disposed may also serve as a cooling roll.
- the in-line film forming apparatus 1 as in the first embodiment described above can also be configured to include a cooling means in the cooling chamber 13.
- a base material for example, a glass base material
- it is not suitable to cool by a cooling means.
- the film forming apparatus 2 according to the present embodiment is a film forming substrate according to the first embodiment, except that the film forming substrate to be processed has flexibility, and the substrate is conveyed by roll-to-roll.
- the CIGS film can be formed by the same method as in the apparatus 1.
- the method of arranging the vapor deposition sources can be the same as that of the first embodiment, and the same effect as the film forming apparatus 1 of the first embodiment can be obtained.
- the present apparatus 2 can form a CIGS film on a flexible substrate by a roll-to-roll method, it is possible to realize a very efficient film formation.
- FIG. 4 is a cross-sectional view schematically showing a layer configuration of one embodiment of the photoelectric conversion element.
- the photoelectric conversion element 40 is formed by laminating a back electrode 42, a photoelectric conversion layer 43, a buffer layer 44, a window layer 45, and a transparent electrode 46 in this order on a substrate 41, and includes a CIGS film as the photoelectric conversion layer 43. Yes.
- current collecting electrodes 47 and 48 are formed on a partial surface of the back electrode 42 and a partial surface of the transparent electrode 46.
- Embodiment of the manufacturing method of the photoelectric conversion element 40 of this invention is described.
- the back electrode 42 is formed on one surface of the substrate 41 by sputtering or the like.
- a plurality of Cu vapor deposition sources, a plurality of In vapor deposition sources, a plurality of Ga vapor deposition sources, and a Se vapor deposition source arranged along the conveyance direction while conveying the substrate 41 having the back electrode 42 on one surface in one direction. Then, vapor of each element is supplied to one surface side of the substrate 41 to form a photoelectric conversion layer 43 on the back electrode 42.
- the photoelectric conversion layer (CIGS film) 43 can be formed according to the above-described method using the substrate 41 provided with the back electrode 42 in the film forming apparatus 1 (or 2) described above.
- a buffer layer 44 is formed on the photoelectric conversion layer 43 by a CBD method (chemical bath deposition method), a sputtering method or the like, and the window layer 45, the transparent electrode 46 and the collecting electrodes 47 and 48 are sequentially formed by sputtering or the like.
- the photoelectric conversion element 40 can be manufactured by forming.
- a glass substrate such as soda glass, high strain point glass, non-alkali glass, a metal substrate, a metal substrate with an insulating film, a resin substrate (polyimide), or the like can be used.
- a flexible metal substrate with an insulating film is preferable, and a metal substrate with an insulating oxide film in which a plurality of fine holes are formed on the metal substrate by anodization is preferable.
- a metal substrate having high insulating properties and flexibility due to the anodized film can easily realize element formation and integration in a large area.
- the above-described metal substrate with an insulating film can be easily obtained by anodizing the surface. It can.
- Specific examples of such materials include aluminum (Al), zirconium (Zr), titanium (Ti), magnesium (Mg), copper (Cu), niobium (Nb), tantalum (Ta), and the like. These alloys are mentioned. Aluminum is most preferable from the viewpoint of cost and characteristics required for a solar cell.
- the main component of the back electrode 42 is not particularly limited, and Mo, Cr, W, and combinations thereof are preferable, and Mo or the like is particularly preferable.
- the film thickness of the back electrode 42 is not limited and is preferably about 200 to 1000 nm.
- the main component of the photoelectric conversion layer 43 is a chalcopyrite type compound semiconductor made of Cu (In, Ga) Se 2 . Se may be partially substituted with S.
- the film thickness of the photoelectric conversion layer 43 is not particularly limited and is preferably 1.0 to 3.0 ⁇ m, particularly preferably 1.5 to 2.5 ⁇ m.
- the buffer layer 44 is composed of a layer mainly composed of CdS, In (S, OH), ZnS, Zn (S, O), or Zn (S, O, OH).
- the film thickness of the buffer layer 44 is not particularly limited, and is preferably 10 to 500 nm, more preferably 15 to 200 nm.
- the window layer 45 is an intermediate layer that captures light.
- the composition of the window layer 45 is not particularly limited, and i-ZnO or the like is preferable.
- the film thickness of the window layer 45 is preferably 15 to 200 nm. Note that the window layer is an arbitrary layer, and may be a photoelectric conversion element without the window layer 45.
- the transparent electrode 46 is a layer that takes in light and functions as an electrode through which a current generated in the photoelectric conversion layer 43 flows, paired with the back electrode 42.
- the composition of the transparent electrode 46 is not particularly limited, and n-ZnO such as ZnO: Al is preferable.
- the film thickness of the transparent electrode 46 is not particularly limited, and is preferably 50 nm to 2 ⁇ m.
- the collector electrodes 47 and 48 are electrodes for efficiently taking out the electric power generated between the back electrode 42 and the transparent electrode 46 to the outside.
- the main components of the current collecting electrodes 47 and 48 are not particularly limited, and examples thereof include Al.
- the film thickness is not particularly limited and is preferably 0.1 to 3 ⁇ m.
- the photoelectric conversion element 40 can be preferably used as a solar cell.
- a large number of the photoelectric conversion elements 1 can be integrated, and a cover glass, a protective film, or the like can be attached as necessary to form a solar cell.
- An integrated solar cell includes, for example, a process of forming each layer on a substrate by a roll-to-roll method using a flexible long substrate, and a patterning (scribing) process for integration. It is formed through an element forming process, a process of cutting the element-formed substrate into one module, and the like.
- the photoelectric conversion element of the present invention having high adhesion between the conductive layer and the photoelectric conversion layer is very effective.
- the photoelectric conversion element manufactured by the manufacturing method of the present invention can be applied not only to solar cells but also to other uses such as a CCD.
- the solar cell of the structure shown in FIG. 4 was produced through the process of forming a CIGS layer by the method of the example and the comparative example, respectively, and the photoelectric conversion rate for each cell was measured and compared.
- a soda glass substrate was used as the substrate 41, and Mo was formed as the back electrode 42 by sputtering.
- the film thickness of the Mo electrode 42 at this time was 0.8 ⁇ m.
- a CIGS film (2 ⁇ m) was formed as a photoelectric conversion layer 43 on the Mo electrode 42 under the conditions of Examples and Comparative Examples described later.
- CdS 50 nm
- CdS 50 nm
- CdS 50 nm
- a ZnO (10 nm) as the window layer 45 and a ZnO: Al film (film thickness: 0.3 ⁇ m) as the transparent electrode 46 were continuously formed by sputtering.
- current collecting electrodes 47 and 48 made of aluminum were formed on the surfaces of the Mo electrode 42 and the transparent electrode 46 by a sputtering method to produce the solar cell shown in FIG.
- a CIGS film 43 having a chalcopyrite structure was formed as a p-type semiconductor layer on the Mo electrode 42 by a film forming apparatus having the vapor deposition source array configuration shown in FIG.
- the substrate temperature is heated to 550 ° C.
- the temperature of each vapor deposition source in the vapor deposition chamber 11 is Cu vapor deposition source: 1360 ° C. in the vapor deposition source groups 31 to 33 in the upstream region 36, Ga vapor deposition.
- Source 1090 ° C.
- temperatures of vapor deposition sources 34 and 35 in the downstream region 37 are Cu vapor deposition source: 1220 ° C.
- the temperature of each Se vapor deposition source in the vapor deposition chamber 11 and the cooling chamber 13 was 280 degreeC.
- a CIGS film 43 having a chalcopyrite structure was formed as a p-type semiconductor layer on the Mo electrode 42 by a film forming apparatus having the vapor deposition source arrangement shown in FIG. Other conditions were the same as in the example.
- the vapor deposition source arrangement shown in FIG. 5 is a Cu vapor deposition source row 61, a Ga vapor deposition source row 62, a Cu vapor deposition source row 61, an In vapor deposition source row 63, and a Cu vapor deposition source row, each of which is formed by arranging the same vapor deposition source in one row.
- an In vapor deposition source row 63, a Cu vapor deposition source row 61, and a Ga vapor deposition source row 62 are arranged in this order from the upstream side in the transport direction.
- the conversion efficiency was 13%, whereas in the example, the conversion efficiency was 14.5%, and the conversion efficiency was about 1.5% higher. . This is presumably because the in-plane composition uniformity of the photoelectric conversion layer formed in the example is better than that of the comparative example.
- FIG. 6 shows the result of secondary ion mass spectrometry in the film thickness direction for the sample in which the CIGS layer was formed on the film formation substrate by the method of the example.
- FIG. 6 is quantified by the CIGS standard sample. Moreover, it is effective only in the quantitative value CIGS layer.
- the Ga concentration varied in the film thickness direction of the CIGS layer.
- the bottom concentration in the central region in the film thickness direction was about 70% of the peak concentration in the upper and lower regions.
- the concentration of In was almost uniform over the entire region in the film thickness direction.
- the Ga—Cu first vapor deposition source group 32 and the Ga—Cu second vapor deposition source group 34 do not contain an In vapor deposition source, but since In has a high diffusion rate, its concentration is the film thickness. It seems that it became almost uniform in the direction.
- Ga has a slower diffusion rate than In, and by providing a region that does not include a Ga vapor deposition source, such as the In—Cu vapor deposition source group 33, the concentration of Ga in the film thickness direction so as to have a double graded structure. It is thought that distribution could be established.
- a Ga vapor deposition source such as the In—Cu vapor deposition source group 33
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Physical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
厚み方向にGa のダブルグレーデッド構造を有し、かつ面内均一性を有するCIGS 膜を効率的に製造するために、膜用基板を一方向に搬送する基板搬送機構(16)を備え、成膜用基板(S)の搬送方向(A)に沿って最上流に、In 蒸着源(21)とGa 蒸着源(22)とが交互に配置されてなる行列状のIn-Ga 第1蒸着源群(31)を配置し、制御部(15)により、搬送方向(A)の最上流と最下流との間にGa/(In+Ga)比が最小、かつその最小のGa/(In+Ga)比が最上流または最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、各蒸着源(21)~(23)、(25)からの蒸発量を制御する。
Description
本発明は、CIGS系太陽電池等の光電変換素子に用いられるCIGS系化合物半導体膜を成膜するための成膜装置およびCIGS系化合物半導体膜を備えた光電変換素子の製造方法に関するものである。
太陽電池は、光吸収により起電力(電流)を生じる半導体からなる光電変換層を裏面電極と表面電極(透明電極)とで挟んだ積層構造を有する。従来、バルクの単結晶Siまたは多結晶Si、あるいは薄膜のアモルファスSiを用いたSi系太陽電池が主流であったが、次世代の太陽電池として、光電変換層にカルコパイライト系のCuInSe2(CIS)、Cu(In,Ga)Se2(以下、単に「CIGS」ということがある。)を用いたものが検討されている。このCIGSを光電変換層に用いた太陽電池は、効率が比較的高く、光吸収率が高いため薄膜化できることから、盛んに研究されている。
CIGSを光電変換層に用いた太陽電池は、例えば、裏面電極上に、光電変換層として、p型のCIGS層を形成し、このp型のCIGS層上にn型のCdS層を形成し、さらにこのCdS層上に透明電極が形成された積層構造を有している。このような太陽電池構造においては、p型のCIGS層とn型のCdS層とによりp-n接合が構成されることとなる。
既に、光電変換層に用いられるCIGS層の形成方法や装置について種々提案されている。光電変換層の形成法の主な方法としては、多元蒸着法、セレン化法が知られている。
ここでは、多元蒸着法について検討する。多元蒸着法とは、Cu、In、Ga、Se原料をそれぞれ別々のルツボから蒸発させて成膜する手法である。
ここでは、多元蒸着法について検討する。多元蒸着法とは、Cu、In、Ga、Se原料をそれぞれ別々のルツボから蒸発させて成膜する手法である。
さらに、多元蒸着法としてはバイレイヤー法および3段階法という方法がある。3段階法とは、第1段階では、In、Ga、Seを供給して(In,Ga)2Se3膜を形成し、第2段階では、CuとSeのみを供給して膜全体の組成がCu過剰組成になるまで膜形成を行い、第3段階で再びIn、Ga、Seを供給して、最終的な組成が(In,Ga)過剰組成となるようにする方法である。
一方、バイレイヤー法とは、Cu(In,Ga)Se2:CuxSeからなるCu含量の多い、相分離された化合物混合物を基材上に生成する工程と、この混合物中のCuxSeを(In,Ga)およびSeに曝すことによって、あるいは(In,Ga)ySezに曝すことによって、CuxSeをCuw(In,Ga)ySezに転化する工程とによりCu(In,Ga)Se2薄膜を形成する方法である(特許文献1参照)。
また、CIGS系太陽電池において、光電変換率を向上させる研究も多々進められており、変換効率の向上には、CIGS光電変換層に、III族元素(In,Ga)の組成傾斜構造としてグレーデッドバンド構造を作り込むことが有効であることが知られている(特許文献2、3参照)。
CIGSは、InとGaの組成比によりバンドギャップを制御することができる。CIGS膜の深さ方向でInとGaの組成比を変化させてグレーデッドバンドギャップを形成することにより、CIGS膜を用いた薄膜太陽電池の高効率化を図ることができる。例えば、pn接合側の表面(光入射側の主面)から裏面に向けて、GaとInの組成比の指標であるGa/(In+Ga)が徐々に増加する分布とすれば、バンドギャップが表面から裏面に向けて拡大するシングルグレーデッドバンドギャップを形成することができる。バンドギャップの変化によって、CIGS膜内部に電界が生じ、その電界により、光励起されたキャリアがCIGS膜の表面に形成されるpn接合へと輸送されるため変換効率が向上すると考えられている。
また、上記のグレーデッドバンドギャップに加えて、CIGS膜の光入射側の表層部にGa濃度の高い層を形成することにより、pn接合界面でのバンドギャップを拡大し、開放端電圧を向上させるダブルグレーデッドバンドギャップを形成できる。ダブルグレーデッドバンドギャップによれば、より高い変換効率を達成することができる。
他方、CIGS層の成膜の効率化を図るため、基板を移動させつつ成膜する成膜方法および成膜装置などが提案されている(特許文献4、5等)。
例えば、特許文献4は、CIGS系太陽電池をロール・トゥ・ロール方式で製造する製造装置が提案されており、CIGS膜の成膜装置として、ロール・トゥ・ロール式多元同時蒸着成膜装置が提案されている。
特許文献4に記載の装置では、各元素の蒸着源が元素毎に基板の搬送方向に垂直なライン状に並べられているために、各元素が順番に基板上に堆積することとなり、その結果、各元素の濃度はその蒸着源位置で最大となる。
一方、特許文献5には、CIGS膜の膜厚方向の組成分布、特にIII族元素であるInとGaの膜厚方向の組成分布を良好なものとするために、In蒸着源と、Ga蒸着源とをマトリクス状に配置した製造装置が提案されている。この装置においては、マトリクス状に配列されたIn,Gaの蒸着源と、ライン状に複数配置されたCu蒸着源、ライン状に複数配置されたSe蒸着源を1つの蒸着源群とし、この蒸着源群が搬送方向に複数配置されており、InとGaとの組成比を膜厚方向に均一なものとすることができる。
特許文献4のようなロール・トゥ・ロール式多元同時蒸着成膜装置は、大面積の成膜に適しているが、各蒸発源からの蒸発量は、各蒸発源の開口部分で最大となる分布を有しているため、特許文献4の装置のように、各元素の蒸発源がそれぞれライン状に配置された構成においては、面内に均一なCIGS層を得ることができず、十分な光電変換効率を達成することができないという問題があることが本発明者らの検討により明らかになった。
また、特許文献5の成膜方法および装置では、マトリクス状に配置されたIn,Gaの蒸着源、Cu蒸着源およびSe蒸着源からなる蒸着源群を複数配置することにより膜厚方向におけるIn、Gaを均一なものとする効果が得られるが、逆に、III族元素(In,Ga)の組成傾斜構造の形成に対応することができず、CIGS膜にダブルグレーデッド構造を作り込めないために、変換効率を向上させることができないという欠点があった。
さらに、CIGS層の高速化に当たっては、特許文献1に記載のバイレイヤー法による成膜が好ましいと考えられるが、現状では、光電変換効率の高い良好なCIGS層を形成することが可能なバイレイヤー法に適する成膜装置が実現されていない。
本発明は、上記事情に鑑みてなされたものであって、厚み方向にダブルグレーデッド構造を有し、かつ面内均一性を有するCIGS膜を効率的に製造することができる成膜装置および、高い光電変換率を有する光電変換素子を効率的に製造する光電変換素子の製造方法を提供することを目的とするものである。
本発明の成膜装置は、Cu、In、Ga、Seを含む化合物半導体膜を成膜用基板の一面に成膜する成膜装置であって、
蒸着室と、該蒸着室内において、前記成膜用基板を一方向に搬送する基板搬送機構と、前記蒸着室内に配置された、前記Cu、In,Ga、Seそれぞれを蒸着させるための複数のCu蒸着源、複数のIn蒸着源、複数のGa蒸着源およびSe蒸着源と、前記各蒸着源からの各元素の蒸発量を制御する制御部とを備え、
前記成膜用基板の搬送方向に沿って最上流に、前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第1蒸着源群が配置されており、
前記制御部が、前記搬送方向の前記最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が前記最上流または前記最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、前記各蒸着源からの蒸発量を制御するものである。
蒸着室と、該蒸着室内において、前記成膜用基板を一方向に搬送する基板搬送機構と、前記蒸着室内に配置された、前記Cu、In,Ga、Seそれぞれを蒸着させるための複数のCu蒸着源、複数のIn蒸着源、複数のGa蒸着源およびSe蒸着源と、前記各蒸着源からの各元素の蒸発量を制御する制御部とを備え、
前記成膜用基板の搬送方向に沿って最上流に、前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第1蒸着源群が配置されており、
前記制御部が、前記搬送方向の前記最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が前記最上流または前記最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、前記各蒸着源からの蒸発量を制御するものである。
「前記最上流でのGa/(In+Ga)比」とは、前記In-Ga第1蒸着源群が配置された領域におけるGa/(In+Ga)比である。前記最上流と最下流との間に存在するGa/(In+Ga)比が最小となる領域とは、前記最上流の蒸着源群と前記最下流の蒸着源群の間に存在する領域である。
前記複数のCu蒸着源、前記複数のIn蒸着源および前記複数のGa蒸着源が、前記成膜用基板の搬送方向に沿って上流側から順に、
前記In-Ga第1蒸着源群、
前記Cu蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のCu-Ga第1蒸着源群、
前記Cu蒸着源と前記In蒸着源とが交互に配置されてなる行列状のCu-In蒸着源群、
前記Cu蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のCu-Ga第2蒸着源群、および
前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第2蒸着源群を構成するようにして配置されていることが望ましい。
前記In-Ga第1蒸着源群、
前記Cu蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のCu-Ga第1蒸着源群、
前記Cu蒸着源と前記In蒸着源とが交互に配置されてなる行列状のCu-In蒸着源群、
前記Cu蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のCu-Ga第2蒸着源群、および
前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第2蒸着源群を構成するようにして配置されていることが望ましい。
本発明の成膜装置においては、前記制御部が、前記最小のGa/(In+Ga)比が0となるように、前記各蒸着源からの蒸発量を制御するものであることが好ましい。
また、前記制御部が、下流域におけるCuの蒸発量を、上流域におけるCuの蒸発量と比較して相対的に抑制させた条件で、前記各元素の上記前記基板の一面に供給するように、前記各蒸着源からの蒸発量を制御するものであることが好ましい。
ここで、上流域は、搬送方向の上流側であり前記最上流からGa/(In+Ga)比が最上流または最下流の半分以下となる領域までを含むものとし、下流域は、該上流域に引き続く搬送方向下流側の領域をいうものとする。
前記各蒸着源群の前記各行列状の各蒸着源の列が前記成膜用基板の前記搬送方向と交差するように配置されていればよいが、特には、前記各蒸着源群の前記各行列状の各蒸着源の列が前記成膜用基板の前記搬送方向と略垂直に交わるように配置されていることが望ましい。
前記Cu-Ga第2蒸着源群におけるCu蒸着源数を、前記Cu-Ga第1蒸着源群におけるCu蒸着源数よりも少なく配置してもよい。
前記Se蒸着源は、前記各蒸着源群の前記行列状の各蒸着源の列間に、該列に沿って延びるライン上に複数の開口を有するライン状蒸着源であることが好ましい。
前記蒸着室に、前記成膜用基板を加熱する加熱手段を備えていることが望ましい。
前記蒸着室の下流側に、該蒸着室と連結された、前記化合物半導体膜が成膜された前記成膜用基板を冷却する冷却室を備え、該冷却室に、Se蒸着源を備えていることが望ましい。
前記冷却室に、前記成膜用基板を冷却する冷却手段を備えていることが望ましい。
本発明の装置としては、前記蒸着室の上流側に該蒸着室に連結して配置された、前記成膜用基板を収納する処理前基板収納部と、該成膜用基板を加熱する加熱手段とを備えた基板導入室と、
前記冷却室の下流側に該冷却室に連結して配置された、前記化合物半導体膜が成膜された前記成膜用基板が収納される処理済基板収納部を備えた基板排出室とをさらに備え、
前記基板導入室、前記蒸着室、前記冷却室および前記基板排出室が直線状に配置され、
前記基板搬送機構が、前記成膜用基板を前記各室に亘って前記一方向にインライン状に移動させるものであることが望ましい。
前記冷却室の下流側に該冷却室に連結して配置された、前記化合物半導体膜が成膜された前記成膜用基板が収納される処理済基板収納部を備えた基板排出室とをさらに備え、
前記基板導入室、前記蒸着室、前記冷却室および前記基板排出室が直線状に配置され、
前記基板搬送機構が、前記成膜用基板を前記各室に亘って前記一方向にインライン状に移動させるものであることが望ましい。
また、本発明の別の態様の装置としては、前記蒸着室の上流側に該蒸着室に連結して配置された、前記成膜用基板を巻き出す巻出ロールと、該成膜用基板を加熱する加熱手段とを備えた基板導入室と、
前記冷却室の下流側に該冷却室に連結して配置された、前記化合物半導体膜が成膜された前記成膜用基板を巻き取る巻取りロールを備えた基板排出室とをさらに備え、
前記基板導入室、前記蒸着室、前記冷却室および前記基板排出室が直線状に配置され、
前記移動手段が、前記巻出しロールから前記成膜用基板を巻き出させ、前記各室を経た前記成膜用基板を前記巻取りロールで巻き取らせるものであることが望ましい。
前記冷却室の下流側に該冷却室に連結して配置された、前記化合物半導体膜が成膜された前記成膜用基板を巻き取る巻取りロールを備えた基板排出室とをさらに備え、
前記基板導入室、前記蒸着室、前記冷却室および前記基板排出室が直線状に配置され、
前記移動手段が、前記巻出しロールから前記成膜用基板を巻き出させ、前記各室を経た前記成膜用基板を前記巻取りロールで巻き取らせるものであることが望ましい。
本発明の光電変換素子の製造方法は、Cu(In,Ga)Se2化合物半導体からなる光電変換層を備えた光電変換素子の製造方法であって、
一面に裏面電極を備えた基板を一方向に搬送させつつ、該搬送方向に沿って配置された複数のCu蒸着源、複数のIn蒸着源、複数のGa蒸着源およびSe蒸着源から前記基板の一面側に前記各元素の蒸気を供給して、前記裏面電極上に前記光電変換層を成膜する蒸着成膜工程を有し、
該蒸着成膜工程において、前記基板の搬送方向の最上流において、前記Se蒸着源および前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第1蒸着源群を用いて、In、GaおよびSeを前記基板の一面側に供給すると共に、前記搬送方向の前記最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が前記最上流または前記最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、前記各蒸着源からの蒸発量を制御しつつ、
前記最上流を含む上流域において、Cu(In,Ga)Se2、CuxSeの互いに相分離された化合物からなる混合物を前記裏面電極上に生成させ、
前記上流域に続く、前記最下流を含む下流域において、前記CuxSeをCu(In、Ga)Se2に転化させることにより、前記光電変換層を成膜することを特徴とする。
一面に裏面電極を備えた基板を一方向に搬送させつつ、該搬送方向に沿って配置された複数のCu蒸着源、複数のIn蒸着源、複数のGa蒸着源およびSe蒸着源から前記基板の一面側に前記各元素の蒸気を供給して、前記裏面電極上に前記光電変換層を成膜する蒸着成膜工程を有し、
該蒸着成膜工程において、前記基板の搬送方向の最上流において、前記Se蒸着源および前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第1蒸着源群を用いて、In、GaおよびSeを前記基板の一面側に供給すると共に、前記搬送方向の前記最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が前記最上流または前記最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、前記各蒸着源からの蒸発量を制御しつつ、
前記最上流を含む上流域において、Cu(In,Ga)Se2、CuxSeの互いに相分離された化合物からなる混合物を前記裏面電極上に生成させ、
前記上流域に続く、前記最下流を含む下流域において、前記CuxSeをCu(In、Ga)Se2に転化させることにより、前記光電変換層を成膜することを特徴とする。
前記最小のGa/(In+Ga)比を0とすることが好ましい。
前記下流域におけるCuの蒸発量を、前記上流域におけるCuの蒸発量と比較して相対的に抑制させた条件で、前記各元素の上記前記基板の一面に供給することが好ましい。
なお、本発明の光電変換素子の製造方法における上記蒸着成膜工程には、本発明の成膜装置を好適に用いることができる。
本発明の成膜装置によれば、成膜用基板の搬送方向に沿って最上流に、In蒸着源とa蒸着源とが交互に配置されてなる行列状のIn-Ga第1蒸着源群が配置されているので、面内均一性の高い膜を成膜することができると共に、成膜初期にInとGaとを混合した成膜がなされるために、良質な結晶のカルコパイライト構造の形成が安定的にできるため膜剥がれが生じず、高い歩留まりで生産できる。
また、蒸着源からの蒸発量を制御する制御部を備え、制御部が搬送方向の最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が最上流または最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、各蒸着源からの蒸発量を制御するので、Gaの良好なダブルグレーデッド構造を形成することができる。
本成膜装置を用いれば、良好なGaのダブルグレーデッド構造を備え、かつ膜剥がれを生じないCIGS膜を作製することができるので、光電変換効率の高い光電変換素子を高効率に作製することができる。
また、基板を一方向に搬送させる搬送機構を備え、基板を一方向に搬送させつつCIGS膜を成膜させることができるよう構成されているので、効率的な成膜を行うことができ、スループットの向上を図ることができる。
以下、本発明の実施形態について図面を参照して詳細に説明する。なお、視認しやすくするため、各図中、各構成要素の縮尺等は実際のものとは適宜異ならせてある。
「第1の実施形態の成膜装置」
図1は、本発明の第1の実施形態に係る成膜装置の概略構成を模式的に示す図である。
本実施形態の成膜装置1は、成膜用基板Sに対してCIGS系半導体膜(以下において単に「CIGS膜」と表記する。)を成膜するためのインライン式多元同時蒸着成膜装置であり、直線状に順に連結配置された、基板導入室10、蒸着室11、冷却室13および基板排出室14からなる4つのチャンバーと、成膜用基板Sを導入室10から排出室14に直線状に移動させる基板搬送機構16と、蒸着条件等を制御する制御部15とを備えている。
図1は、本発明の第1の実施形態に係る成膜装置の概略構成を模式的に示す図である。
本実施形態の成膜装置1は、成膜用基板Sに対してCIGS系半導体膜(以下において単に「CIGS膜」と表記する。)を成膜するためのインライン式多元同時蒸着成膜装置であり、直線状に順に連結配置された、基板導入室10、蒸着室11、冷却室13および基板排出室14からなる4つのチャンバーと、成膜用基板Sを導入室10から排出室14に直線状に移動させる基板搬送機構16と、蒸着条件等を制御する制御部15とを備えている。
基板導入室10および基板排出室14は、それぞれ成膜用基板S(S’)を導入するためのチャンバーおよび排出するためのチャンバーである。基板導入室10には、CIGS膜蒸着前の成膜用基板Sを収納する処理前基板収納部として、複数枚の基板を収納可能な基板収納トレイ17が備えられ、基板排出室14には、CIGS膜成膜済みの成膜用基板S’を収納する処理済基板収納部として、複数枚の基板を収納可能な基板収納トレイ18が備えられている。
基板導入室10、蒸着室11、冷却室13および基板排出室14は、必要に応じて排気装置(図示せず)によって略真空に排気される。例えば、基板導入室10および排出室14には内部を真空排気する排気ポンプとして、ターボ分子ポンプが備えられ、蒸着室11および冷却室13には内部を真空排気する排気ポンプとしての油拡散ポンプが備えられている。
基板搬送機構16は、搬送方向Aの上流側である基板導入室10から下流側である基板排出室14に向かって基板Sを直線的に移動させるための機構であり、たとえば、ローラなどを備えた構成とすることができる。本実施形態においては、基板搬送機構16は、基板Sの幅方向の両端を支えるべく2列に且つ基板搬送方向に沿って配列された2列式のコンベヤから構成されている。
基板導入室10、蒸着室11の基板搬送機構16の上方には基板加熱用のヒーター19a、19bがそれぞれ設置されている。この基板加熱用のヒーター19a、19bは、基板の搬送方向Aに沿って温度を変化させることができ、基板の温度をその移動位置に応じた所定温度に調整する。
蒸着室11の基板搬送機構16の下方には、In、Ga、Cuの各蒸着源21~23からなる蒸着源群31~35およびSe蒸着源25が配置されており、冷却室13にはSe蒸着源25のみが配置されている。各蒸着源には、たとえば、蒸着用の坩堝を用いることができる。各蒸着源は、蒸気噴出開口を2以上備えるものであってもよい。
制御部15は、蒸着室11における蒸着条件、基板搬送機構16による基板の搬送速度等を制御するものであり、具体的にはコンピュータにより構成されるものである。
制御部15は、蒸着室11における蒸着条件が、搬送方向Aの最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が最上流または最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、各蒸着源21~23および25からの蒸発量を制御する。なお、ここでは、最上流でのGa/(In+Ga)比と最下流でのGa/(In+Ga)比とがほぼ同等となるようにしている。ただし、最上流でのGa/(In+Ga)比、最下流でのGa/(In+Ga)比は同等である必要はない。最小のGa/(In+Ga)比は最上流と最下流の少なくともいずれかGa/(In+Ga)のいずれか一方の半分以下であればよく、他方は、上述の最小のGa/(In+Ga)比よりも大きければよい。
制御部15は、その他にヒーター19a、19bの温度制御、基板の搬送速度の制御など、成膜条件全般に関わる制御を行う。
制御部15は、蒸着室11における蒸着条件が、搬送方向Aの最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が最上流または最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、各蒸着源21~23および25からの蒸発量を制御する。なお、ここでは、最上流でのGa/(In+Ga)比と最下流でのGa/(In+Ga)比とがほぼ同等となるようにしている。ただし、最上流でのGa/(In+Ga)比、最下流でのGa/(In+Ga)比は同等である必要はない。最小のGa/(In+Ga)比は最上流と最下流の少なくともいずれかGa/(In+Ga)のいずれか一方の半分以下であればよく、他方は、上述の最小のGa/(In+Ga)比よりも大きければよい。
制御部15は、その他にヒーター19a、19bの温度制御、基板の搬送速度の制御など、成膜条件全般に関わる制御を行う。
図2は、図1に示す成膜装置1における、蒸着源の配置を模式的に示す平面図である。
蒸着室11には、基板搬送方向上流側から、In蒸着源21とGa蒸着源22とが交互に配置されてなる行列状(マトリックス状)のIn-Ga第1蒸着源群31、Ga蒸着源22とCu蒸着源23とが交互に配置されてなる行列状のGa-Cu第1蒸着源群32、In蒸着源21とCu蒸着源23とが交互に配置されてなる行列状のIn-Cu蒸着源群33、Ga蒸着源22とCu蒸着源23とが交互に配置されてなる行列状のGa-Cu第2蒸着源群34、In蒸着源21とGa蒸着源22とが交互に配置されてなる行列状のIn-Ga第2蒸着源群35が、搬送方向に沿って順次配置されている。
蒸着室11には、基板搬送方向上流側から、In蒸着源21とGa蒸着源22とが交互に配置されてなる行列状(マトリックス状)のIn-Ga第1蒸着源群31、Ga蒸着源22とCu蒸着源23とが交互に配置されてなる行列状のGa-Cu第1蒸着源群32、In蒸着源21とCu蒸着源23とが交互に配置されてなる行列状のIn-Cu蒸着源群33、Ga蒸着源22とCu蒸着源23とが交互に配置されてなる行列状のGa-Cu第2蒸着源群34、In蒸着源21とGa蒸着源22とが交互に配置されてなる行列状のIn-Ga第2蒸着源群35が、搬送方向に沿って順次配置されている。
搬送方向の最上流にIn-Ga第1蒸着源群31、最下流にIn-Ga第2蒸着源群35が配置されているので、この最上流および最下流においてGa/(In+Ga)比がほぼ同等となるように容易に制御することができる。また、最上流および最下流の間に、少なくともInを含む領域としてIn-Cu蒸着源群33が配置され、このIn-Cu蒸着源群33の領域においてはGaが含まれないため、この領域でのGa/(In+Ga)比を0とすることができる。上記の配置により、制御部15において各蒸着源の制御は非常に容易なものとなる。なお、上記配置でなくとも、制御部15により、この最上流と最下流との間にGa/(In+Ga)比が最小、かつその最小のGa/(In+Ga)比が最上流または最下流の比の半分以下となる領域が存在するように制御することが可能な配置であればよい。
なお、上下流間にGa/(In+Ga)比が最小となる領域があれば、Gaのダブルグレーデッド構造とすることができるが、成膜の膜厚方向にGaの濃度を大きく変化させるためには、本実施形態のように上下流間にGa/(In+Ga)比が0となる領域を設けることが好ましい。
なお、上下流間にGa/(In+Ga)比が最小となる領域があれば、Gaのダブルグレーデッド構造とすることができるが、成膜の膜厚方向にGaの濃度を大きく変化させるためには、本実施形態のように上下流間にGa/(In+Ga)比が0となる領域を設けることが好ましい。
図2に示すように、各蒸着源群31~35は、その列方向(行の並び方向)が基板搬送方向Aと垂直に交差するように配置されている。
また、蒸着源群31,32、33および35は、いずれもそれぞれ2種の蒸着源が行方向および列方向に交互に配置された4×2行列状配置されてなるものであり、蒸着源群34は、4×1行列状配置されてなるものである。
また、蒸着源群31,32、33および35は、いずれもそれぞれ2種の蒸着源が行方向および列方向に交互に配置された4×2行列状配置されてなるものであり、蒸着源群34は、4×1行列状配置されてなるものである。
一方、Se蒸着源25は、Se蒸気を放出する複数の開口25bを有するライン状の導管25aと、この導管25aに接続されSe蒸気を供給するSe貯留タンク25cとを備えてなる。本実施形態においては、複数のSe蒸着源25が、そのライン状の導管25aが蒸着源群31~35の各列間に列方向に沿うように配置されている。なお、各開口25bに対応する位置に個別にSe蒸着用坩堝などのSe蒸着源を備えるようにしてもよい。
このように、搬送方向上流側から、In-Ga第1蒸着源群31、Ga-Cu第1蒸着源群32、In-Cu蒸着源群33、Ga-Cu第2蒸着源群34、In-Ga第2蒸着源群35の順に配置し、制御部15により、搬送方向Aの最上流と最下流との間に、Ga/(In+Ga)比が最小、かつそのGa/(In+Ga)比が最上流または最下流でのGa/(In+Ga)比の半分以下となるように、各蒸着源21~23および25からの蒸発量を制御することによって、成膜下面側から膜厚方向にGa/(In+Ga)が徐々に小さくなり、再び成膜表面側に向けて徐々に大きくなるようなプロファイルのIII族(Ga,In)の組成分布を有するダブルグレーデッド構造を有するCIGS膜を容易に形成することができる。
また、各蒸着源群において、各元素の蒸着源が交互に配置された行列状配置とされていることにより、面内での組成均一性を高めることができる。
特に、最上流にIn蒸着源21とGa蒸着源22とを交互に配したIn-Ga第1蒸着源群31を備え、成膜初期段階でGa、SeのみではなくInを同時に蒸着させることにより結晶性の良いカルコパイライト構造が安定に作製されるため、CIGS膜の成膜用基板からの膜剥がれが生じない。CIGS膜の膜剥がれを抑制することができることから、歩留まりの向上効果を得ることができる。
特に、最上流にIn蒸着源21とGa蒸着源22とを交互に配したIn-Ga第1蒸着源群31を備え、成膜初期段階でGa、SeのみではなくInを同時に蒸着させることにより結晶性の良いカルコパイライト構造が安定に作製されるため、CIGS膜の成膜用基板からの膜剥がれが生じない。CIGS膜の膜剥がれを抑制することができることから、歩留まりの向上効果を得ることができる。
また、制御部15はGa-Cu第2蒸着源群34およびIn-Ga第2蒸着源群35を含む下流域37におけるCuの蒸発量を、In-Ga第1蒸着源群31、Ga-Cu第1蒸着源群32、In-Cu蒸着源群33を含む上流域36におけるCuの蒸発量と比較して相対的に抑制させた条件で、各元素を成膜用基板Sの一面に供給するように、各蒸着源からの蒸発量を制御するものであることが好ましく、これにより、バイレイヤー法によるCIGS膜の形成により適したものとなる。
なお蒸発量の制御は、蒸着源の温度制御により行うことができる。また、配置するCu蒸着源の数を上流域より下流域を少なくすることにより、下流域でのCu蒸発量を上流域よりも減ずるようにしてもよい。
なお蒸発量の制御は、蒸着源の温度制御により行うことができる。また、配置するCu蒸着源の数を上流域より下流域を少なくすることにより、下流域でのCu蒸発量を上流域よりも減ずるようにしてもよい。
また、本装置は、インライン方式の成膜装置であることから、非常に効率的な成膜を実現することができる。
以上の構成の成膜装置1において成膜用基板S上にCIGS膜を成膜する方法について説明する。
成膜用基板Sは、基板搬送機構16により搬送可能な基板であれば、特に制限されない。太陽電池用の光電変換層としてCIGS膜を成膜する場合には、例えば、一主面上にMo膜を堆積した矩形のガラス基板を成膜用基板Sとして用いることができる。
図1に示す成膜装置1においては、まず、基板導入室10において、収納トレイ17から成膜用基板Sが基板搬送機構16によりヒーター19a下に搬送され、ヒーター19aにより基板Sが加熱される。この加熱された基板Sは基板搬送機構16により矢印A方向に直線的に搬送される。
蒸着室11において、基板Sはヒーター19bで加熱されると共に、基板Sの蒸着源に対向する一面に蒸着源群からCu、In、GaおよびSeが供給される。基板Sの一面には、上流域36において最上流のIn-Ga第1蒸着源群31上でIn、GaおよびSeが主に供給され、その次にGa-Cu第1蒸着源群32上でGa、CuおよびSeが主に供給され、さらにIn-Cu蒸着源群33上でIn、CuおよびSeが主に供給されることとなる。
さらに、上記上流域36に引き続く下流域37において、まずCu-Ga第2蒸着源群34上においてCu、GaおよびSeが主に供給され、その次にIn-Ga第2蒸着源群35上においIn、GaおよびSeが主に供給されることとなる。
制御部15は、本実施例においては、In-Ga第1蒸着源群31とのIn-Ga第2蒸着源群35におけるGa/(In+Ga)比がほぼ同等となるように制御している。また、本実施形態においては、Ga蒸着源が含まれないIn-Cu蒸着源群33が中間領域に配置されており、この領域ではGa/(In+Ga)が0となる。
さらに制御部15は、上流域36で、基板Sの一面に、Cu(In,Ga)Se2、CuxSeの各化合物が互いに相分離された状態で混合されてなる混合物(以下において、Cu(In,Ga)Se2:CuxSeと表記する。)であって、Cu含有量の多い混合物が生成されるように、各蒸着源の温度を制御し、下流域37で、Cu蒸着源23からのCu蒸発量を上流域におけるCu蒸発量よりも抑制し、基板Sに堆積するCuが微量になるようにし、上流域で先に堆積されているCuxSeをCu(In,Ga)Se2に転化させるように、各蒸着源の温度を制御する。ここで、「Cu含有量の多い」とは、目的とするCIGS膜の化学量論比と比較してCuが多いものであることを意味する。
さらに制御部15は、上流域36で、基板Sの一面に、Cu(In,Ga)Se2、CuxSeの各化合物が互いに相分離された状態で混合されてなる混合物(以下において、Cu(In,Ga)Se2:CuxSeと表記する。)であって、Cu含有量の多い混合物が生成されるように、各蒸着源の温度を制御し、下流域37で、Cu蒸着源23からのCu蒸発量を上流域におけるCu蒸発量よりも抑制し、基板Sに堆積するCuが微量になるようにし、上流域で先に堆積されているCuxSeをCu(In,Ga)Se2に転化させるように、各蒸着源の温度を制御する。ここで、「Cu含有量の多い」とは、目的とするCIGS膜の化学量論比と比較してCuが多いものであることを意味する。
なお、CIGS膜においては、Seが抜けやすいため、蒸着室11の全域においてSeは所望のCIGS膜の化学量論比よりも過剰に供給されるように、Se蒸着源の温度を制御する。
CIGS膜が成膜された成膜済基板S’は、冷却室13に搬送される。
冷却室13においては、蒸着室11を経てCIGS膜が蒸着された基板S’のCIGS膜面に、Se蒸着源25によりSeを供給させつつ、基板S’を放射冷却させる。この冷却室13においては、基板温度を350℃程度まで冷却させる。冷却中にCIGS膜面にSeを供給することにより、CIGS膜からのSeの再蒸発を防止して、Se欠陥発生を抑制することができる。
冷却室13においては、蒸着室11を経てCIGS膜が蒸着された基板S’のCIGS膜面に、Se蒸着源25によりSeを供給させつつ、基板S’を放射冷却させる。この冷却室13においては、基板温度を350℃程度まで冷却させる。冷却中にCIGS膜面にSeを供給することにより、CIGS膜からのSeの再蒸発を防止して、Se欠陥発生を抑制することができる。
その後、基板S’は、基板排出室14に搬送されてさらに冷却された後、成膜済基板収納トレイ18に収納される。
本実施形態の成膜装置1においては、以上のようにして、成膜用基板上にCIGS膜を形成することができる。
本実施形態の成膜装置1を用いて、上記成膜方法によりCIGS膜を成膜すれば、成膜装置1における蒸着源の配置構成により、膜厚方向にIII族(Ga,In)の組成分布を有するダブルグレーデッド構造を有し、かつ面内での組成均一性の高いCIGS膜を形成することができる。また、このとき、蒸着室11において、Cu含有量の多い混合物(Cu(In,Ga)Se2:CuxSe2)を生成する工程、CuxSe2をCu(In,Ga)Se2に転化する工程の2段階の工程を経ることにより、より良好な品質のCIGS膜を形成することができる。
本成膜装置により成膜されるCIGS膜は、太陽電池等の光電変換素子の光電変換層として好適である。このようなダブルグレードデッド構造を有し、かつ面内組成均一性が高く、品質の良好なCIGS膜を備えた光電変換素子においては、高い光電変換率を達成することが可能となる。
したがって、本成膜装置は、CIGS膜を光電変換層として備える光電変換素子の製造方法に好適に用いることができる。
したがって、本成膜装置は、CIGS膜を光電変換層として備える光電変換素子の製造方法に好適に用いることができる。
なお、上記実施形態においては、蒸着室11および冷却室13において、複数の開口を有するライン状導管25aにSe貯留タンク25cからSeが供給される構成のSe蒸着源25を備えるものとしたが、基板表面に供給されるSeの一部または全部は、蒸着時の雰囲気ガスから供給されてもよい。なお、この場合には、雰囲気ガス供給手段がSe蒸着源に相当するものとなる。
また、上記実施形態においては、Cu、In、Ga、Se蒸着源のみ備えているが、必要に応じて、Cu、In、Ga、Se以外の他の元素をさらに基体上に供給するように他の元素の蒸着源を備えていてもよい。例えば、Seの一部をSに置換してCu(In,Ga)SeS膜を成膜する構成とすることができる。
上記実施形態においては、各蒸着源群は各蒸着源を4×2あるいは4×1の行列状配置したものとしたが、各蒸着源群において、各蒸着源により形成される行列の行数、列数は任意であり、必要に応じて設計変更可能である。幅広の基板への成膜に対応する場合には、行数をさらに増やせばよい。面内均一性を高めるためには、各蒸着源群は、蒸着源を3行以上、2列以上とした行列状配置であることが望ましい。
蒸着源からの供給量は、蒸着源の温度制御による制御することができる。光電変換層としては、膜全体としてのInとGaとが、Ga/(In+Ga)=0.33~0.45程度、特には、0.38前後であることが高光電変換効率を得ることができ好ましい。
「第2の実施形態の成膜装置」
図3は、本発明の第2の実施形態に係る成膜装置の概略構成を模式的に示す図である。
本実施形態の成膜装置2は、可撓性を有する基板に対してCIGS膜を成膜するためのロール・トゥ・ロール式多元同時蒸着成膜装置であり、直線状に順に連結配置された、基板導入室10、蒸着室11、冷却室13および基板排出室14からなる4つのチャンバーと、成膜用基板Sを導入室10から排出室14に直線状に移動させる基板搬送機構50とを備えている。第1の実施形態の成膜装置1と同等の構成要素には同一符号を付して詳細な説明は省略し、第1の実施形態の装置と異なる点について主として説明する。
図3は、本発明の第2の実施形態に係る成膜装置の概略構成を模式的に示す図である。
本実施形態の成膜装置2は、可撓性を有する基板に対してCIGS膜を成膜するためのロール・トゥ・ロール式多元同時蒸着成膜装置であり、直線状に順に連結配置された、基板導入室10、蒸着室11、冷却室13および基板排出室14からなる4つのチャンバーと、成膜用基板Sを導入室10から排出室14に直線状に移動させる基板搬送機構50とを備えている。第1の実施形態の成膜装置1と同等の構成要素には同一符号を付して詳細な説明は省略し、第1の実施形態の装置と異なる点について主として説明する。
本実施形態の成膜装置2は、長尺な可撓性基板Sを巻回した巻出しロール56が基板導入室10に設置されており、巻出しロール56から巻き出され、蒸着室11において化合物半導体膜が成膜された成膜済み基板S’を巻き取る巻取りロール57が基板排出室14に設置されている。
基板導入室10、基板排出室14には、それぞれ基板Sをガイドするためのガイドロール58、59が備えられている。
本構成の装置2においては、この巻出しロール56、巻取りロール57およびこれらを駆動する図示しない駆動手段、およびガイドロール58、59により基板搬送機構50が構成されている。
また、本成膜装置2においては、冷却室13に、基板を冷却する冷却手段として、冷却ロール55が備えられている。冷却室13では、基板温度を350℃程度まで冷却することが望ましく、放射冷却のみで冷却する場合20-30分要するが、このように冷却手段を備えることにより、この冷却時間を短縮することが可能となり、スループットを向上させることができる。
本実施形態においては、冷却室13において冷却ロールを1つ備えたものとしたが、冷却室内に複数の冷却ロールを備えていてもよい。
また、本実施形態の装置2においては、さらに、巻取りロール57が配置された基板排出室14に備えられているガイドロール59を、冷却ロールを兼ねるものとしてもよい。
また、本実施形態の装置2においては、さらに、巻取りロール57が配置された基板排出室14に備えられているガイドロール59を、冷却ロールを兼ねるものとしてもよい。
なお、上述の第1の実施形態のようなインライン式成膜装置1においても、冷却室13に冷却手段を備えた構成とすることもできる。しかしながら、急激な冷却により損傷が生じるような基材(例えば、ガラス基材)を成膜用基板として用いている場合には、冷却手段による冷却をするのは適さない。
本実施形態の成膜装置2は、処理対象となる成膜用基板が可撓性を有するものであり、基板がロール・トゥ・ロールで搬送されることを除き、第1実施形態の成膜装置1と同様であり、同様の方法でCIGS膜を成膜することができる。
本成膜装置2においては、蒸着源の配列方法は、第1実施形態のものと同様とすることができ、第1の実施形態の成膜装置1と同様の効果を得ることができる。
また、本装置2は、可撓性基板に対して、ロール・トゥ・ロール方式でCIGS膜を成膜することができるため、非常に効率的な成膜を実現することができる。
次に、本発明の成膜装置を用いてCIGS膜を成膜する工程を有する本発明の光電変換素子の製造方法の実施形態について説明する。
図4は、光電変換素子の一実施形態の層構成を模式的に示す断面図である。光電変換素子40は、基板41上に、裏面電極42、光電変換層43、バッファ層44、窓層45、透明電極46をこの順に積層してなり、光電変換層43として、CIGS膜を備えている。また、裏面電極42の一部表面および透明電極46の一部表面には集電電極47、48が形成されている。
本発明の光電変換素子40の製造方法の実施形態を説明する。
まず、基板41の一面にスパッタ法等により裏面電極42を形成する。この一面に裏面電極42を備えた基板41を、一方向に搬送させつつ、この搬送方向に沿って配置された複数のCu蒸着源、複数のIn蒸着源、複数のGa蒸着源およびSe蒸着源から基板41の一面側に各元素の蒸気を供給して、裏面電極42上に光電変換層43を成膜する。
光電変換層(CIGS膜)43は、上述の成膜装置1(または2)において、裏面電極42を備えた基板41を成膜用基板として、上述の方法にしたがって成膜することができる。
その後、光電変換層43上に、CBD法(化学浴析出法)、スパッタ法等によりバッファ層44を形成し、さらに、スパッタ等により窓層45、透明電極46および集電電極47、48を順次形成することにより、光電変換素子40を製造することができる。
以下、光電変換素子40の基板および各層について説明する。
(基板)
基板41としては、ソーダガラス、高歪点ガラス、無アルカリガラスなどのガラス基板、金属基板、絶縁膜付き金属基板、樹脂基板(ポリイミド)などを用いることができる。
基板41としては、ソーダガラス、高歪点ガラス、無アルカリガラスなどのガラス基板、金属基板、絶縁膜付き金属基板、樹脂基板(ポリイミド)などを用いることができる。
特には、可撓性を有する絶縁膜付き金属基板が好ましく、金属基板上に陽極酸化により複数の微細孔が形成されてなる絶縁性酸化膜付き金属基板が好適である。陽極酸化被膜により高い絶縁性を有し、かつ可撓性を有する金属基板であれば、大面積での素子形成および集積化の実現が容易となる。
金属基板として、陽極酸化により金属基板表面上に生成する金属酸化膜が絶縁体であるような材料を用いれば、表面を陽極酸化させることにより、上述の絶縁膜付き金属基板を容易に得ることができる。そのような材料としては、具体的には、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、マグネシウム(Mg)、銅(Cu)、ニオブ(Nb)及びタンタル(Ta)等、並びにそれらの合金が挙げられる。コストや太陽電池に要求される特性の観点から、アルミニウムが最も好ましい。
また、ステンレスや軟鋼にアルミニウム薄膜を圧接した構造のクラッド材を金属基板として用い、アルミニウムの表面に陽極酸化を行うことにより得られる絶縁膜付き金属基板を用いることもできる。
(裏面電極)
裏面電極42の主成分としては特に制限されず、Mo,Cr,W,およびこれらの組合せが好ましく、Mo等が特に好ましい。裏面電極42の膜厚は制限されず、200~1000nm程度が好ましい。
裏面電極42の主成分としては特に制限されず、Mo,Cr,W,およびこれらの組合せが好ましく、Mo等が特に好ましい。裏面電極42の膜厚は制限されず、200~1000nm程度が好ましい。
(光電変換層)
光電変換層43の主成分は、Cu(In、Ga)Se2からなるカルコパイライト型の化合物半導体である。Seを一部Sに置換したものであってもよい。
光電変換層43の膜厚は特に制限されず、1.0~3.0μmが好ましく、1.5~2.5μmが特に好ましい。
光電変換層43の主成分は、Cu(In、Ga)Se2からなるカルコパイライト型の化合物半導体である。Seを一部Sに置換したものであってもよい。
光電変換層43の膜厚は特に制限されず、1.0~3.0μmが好ましく、1.5~2.5μmが特に好ましい。
(バッファ層)
バッファ層44は、CdS、In(S,OH)、ZnS、Zn(S,O)、あるいはZn(S,O,OH)、を主成分とする層からなる。バッファ層44の膜厚は特に制限されず、10~500nmが好ましく、15~200nmがより好ましい。
バッファ層44は、CdS、In(S,OH)、ZnS、Zn(S,O)、あるいはZn(S,O,OH)、を主成分とする層からなる。バッファ層44の膜厚は特に制限されず、10~500nmが好ましく、15~200nmがより好ましい。
(窓層)
窓層45は、光を取り込む中間層である。窓層45の組成としては特に制限されず、i-ZnO等が好ましい。窓層45の膜厚は、15~200nmが好ましい。なお、窓層は任意の層であり、窓層45のない光電変換素子としてもよい。
窓層45は、光を取り込む中間層である。窓層45の組成としては特に制限されず、i-ZnO等が好ましい。窓層45の膜厚は、15~200nmが好ましい。なお、窓層は任意の層であり、窓層45のない光電変換素子としてもよい。
(透明電極)
透明電極46は、光を取り込むと共に、裏面電極42と対になって、光電変換層43で生成された電流が流れる電極として機能する層である。透明電極46の組成は、特に制限されず、ZnO:Al等のn-ZnO等が好ましい。また、透明電極46の膜厚は特に制限されず、50nm~2μmが好ましい。
透明電極46は、光を取り込むと共に、裏面電極42と対になって、光電変換層43で生成された電流が流れる電極として機能する層である。透明電極46の組成は、特に制限されず、ZnO:Al等のn-ZnO等が好ましい。また、透明電極46の膜厚は特に制限されず、50nm~2μmが好ましい。
(集電電極)
集電電極47、48は、裏面電極42および透明電極46間に生じる電力を効率的に外部に取り出すための電極である。集電電極47、48の主成分は特に制限されず、Al等が挙げられる。その膜厚は特に制限されず、0.1~3μmが好ましい。
集電電極47、48は、裏面電極42および透明電極46間に生じる電力を効率的に外部に取り出すための電極である。集電電極47、48の主成分は特に制限されず、Al等が挙げられる。その膜厚は特に制限されず、0.1~3μmが好ましい。
光電変換素子40は、太陽電池として好ましく使用することができる。
例えば、上記の光電変換素子1を多数集積化し、必要に応じて、カバーガラス、保護フィルム等を取り付けて、太陽電池とすることができる。
例えば、上記の光電変換素子1を多数集積化し、必要に応じて、カバーガラス、保護フィルム等を取り付けて、太陽電池とすることができる。
なお、多数の光電変換素子(セル)が集積化された太陽電池においては、セル毎に取出し電極を設ける必要はない。集積化太陽電池は、例えば、可撓性の長尺基板を用いてロール・トゥ・ロール方式にて、基板上に各層を形成する工程、集積化のためのパターニング(スクライブ)プロセスを含む光電変換素子形成工程、および素子形成された基板を1モジュールに切断する工程等を経て形成される。なお、ロール・トゥ・ロール方式による製造を行う場合には、スクライブ処理や、各処理工程での基板の巻き取り工程を伴うため、導電層と光電変換層との間の剥離の問題がより顕著となるので、導電層と光電変換層との高い密着性を有する本発明の光電変換素子が非常に有効である。
なお、本発明の製造方法で作製される光電変換素子は、太陽電池のみならずCCD等の他の用途にも適用可能である。
実施例および比較例の方法でそれぞれCIGS層を成膜する工程を経て、図4に示した構成の太陽電池セルを作製し、各セルについての光電変換率を測定して比較した。
(太陽電池セル形成)
基板41としてソーダガラス基板を用い、裏面電極42としてMoをスパッタ法により形成した。このときのMo電極42の膜厚は0.8μmとした。
Mo電極42上に光電変換層43として、後記実施例および比較例の各条件下でそれぞれCIGS膜(2μm)を成膜した。
基板41としてソーダガラス基板を用い、裏面電極42としてMoをスパッタ法により形成した。このときのMo電極42の膜厚は0.8μmとした。
Mo電極42上に光電変換層43として、後記実施例および比較例の各条件下でそれぞれCIGS膜(2μm)を成膜した。
上記CIGS膜成膜後、化学浴析出(CBD:Chemical Bath Deposition)法によりバッファ層44としてCdS(50nm)を成膜してpn接合を形成した。
引き続き、窓層45としてZnO(10nm)を、透明電極46としてZnO:Al膜(膜厚0.3μm)をスパッタリング法により連続成膜した。
最後に、Mo電極42および透明電極46の表面に、スパッタ法にて、アルミニウムからなる集電電極47、48を形成して図4に示す太陽電池を作製した。
引き続き、窓層45としてZnO(10nm)を、透明電極46としてZnO:Al膜(膜厚0.3μm)をスパッタリング法により連続成膜した。
最後に、Mo電極42および透明電極46の表面に、スパッタ法にて、アルミニウムからなる集電電極47、48を形成して図4に示す太陽電池を作製した。
(実施例)
図2に示す蒸着源配列構成を有する成膜装置により、Mo電極42上にp型半導体層としてカルコパイライト構造のCIGS膜43を成膜した。CIGS膜43成膜時には、基板温度を550℃に加熱するものとし、蒸着室11の各蒸着源の温度は、上流域36の蒸着源群31~33においてはCu蒸着源:1360℃、Ga蒸着源:1090℃、In蒸着源:1055℃とし、下流域37の蒸着源群34、35の蒸着源の温度は、Cu蒸着源:1220℃、Ga蒸着源:1075℃、In蒸着源:1030℃とした。なお、蒸着室11および冷却室13における各Se蒸着源の温度は280℃とした。
図2に示す蒸着源配列構成を有する成膜装置により、Mo電極42上にp型半導体層としてカルコパイライト構造のCIGS膜43を成膜した。CIGS膜43成膜時には、基板温度を550℃に加熱するものとし、蒸着室11の各蒸着源の温度は、上流域36の蒸着源群31~33においてはCu蒸着源:1360℃、Ga蒸着源:1090℃、In蒸着源:1055℃とし、下流域37の蒸着源群34、35の蒸着源の温度は、Cu蒸着源:1220℃、Ga蒸着源:1075℃、In蒸着源:1030℃とした。なお、蒸着室11および冷却室13における各Se蒸着源の温度は280℃とした。
(比較例)
図5に示す蒸着源配置構成を有する成膜装置により、Mo電極42上にp型半導体層としてカルコパイライト構造のCIGS膜43を成膜した。他の条件は実施例と同様とした。
図5に示す蒸着源配置は、同一の蒸着源がそれぞれ1列に配置されてなるCu蒸着源列61、Ga蒸着源列62、Cu蒸着源列61、In蒸着源列63、Cu蒸着源列61、In蒸着源列63、Cu蒸着源列61、Ga蒸着源列62が搬送方向上流側からこの順に配置されてなるものである。
図5に示す蒸着源配置構成を有する成膜装置により、Mo電極42上にp型半導体層としてカルコパイライト構造のCIGS膜43を成膜した。他の条件は実施例と同様とした。
図5に示す蒸着源配置は、同一の蒸着源がそれぞれ1列に配置されてなるCu蒸着源列61、Ga蒸着源列62、Cu蒸着源列61、In蒸着源列63、Cu蒸着源列61、In蒸着源列63、Cu蒸着源列61、Ga蒸着源列62が搬送方向上流側からこの順に配置されてなるものである。
<変換効率>
実施例および比較例の方法により成膜されたCIGS層を有する各太陽電池セルについて、ソーラーシミュレーターを用いて、Air Mass(AM)=1.5、100mW/cm2の擬似太陽光を用いた条件下で、エネルギー変換効率を測定した。
実施例および比較例の方法により成膜されたCIGS層を有する各太陽電池セルについて、ソーラーシミュレーターを用いて、Air Mass(AM)=1.5、100mW/cm2の擬似太陽光を用いた条件下で、エネルギー変換効率を測定した。
比較例の太陽電池セルでは、変換効率が13%であったのに対し、実施例のものは変換効率が14.5%であり、変換効率が1.5%程度高いという結果が得られた。これは、実施例により成膜された光電変換層の面内組成均一性が比較例のものに比して良好であるためと考えられる。
なお、比較例の方法で、8枚の成膜基板上にCIGS層を成膜したところ、成膜終了後に6枚でCIGS層の剥離が生じた。一方、実施例の方法で、8枚の成膜基板上にCIGS膜を成膜したところ、8枚すべてで剥離は生じなかった。
<二次イオン質量分析>
実施例の方法で成膜基板上にCIGS層を成膜した試料について、膜厚方向の二次イオン質量分析を行った結果を図6に示す。なお、図6は、CIGS標準試料により定量したものである。また、定量値CIGS層内のみ有効である。
実施例の方法で成膜基板上にCIGS層を成膜した試料について、膜厚方向の二次イオン質量分析を行った結果を図6に示す。なお、図6は、CIGS標準試料により定量したものである。また、定量値CIGS層内のみ有効である。
図6に示す通り、本実施例の方法によれば、CIGS層の膜厚方向にGaの濃度が大小大と変化するダブルグレーデッド構造を形成することができた。なお、Gaの濃度は、膜厚方向中央領域のボトム濃度は上下領域のピーク濃度に対して7割程度であった。一方、Inの濃度は、膜厚方向全域に亘ってほぼ均一となった。図2に示すように、Ga-Cu第1蒸着源群32、およびGa-Cu第2蒸着源群34にはIn蒸着源を含まないが、Inは拡散速度が速いためにその濃度は膜厚方向にほぼ均一なものとなったと考えられる。他方、GaはInと比較して拡散速度が遅く、In-Cu蒸着源群33のようにGa蒸着源を含まない領域を備えることにより、ダブルグレーデッド構造となるようにGaの膜厚方向濃度分布を設けることができたと考えられる。
Claims (15)
- Cu、In、Ga、Seを含む化合物半導体膜を成膜用基板の一面に成膜する成膜装置であって、
蒸着室と、該蒸着室内において、前記成膜用基板を一方向に搬送する基板搬送機構と、前記蒸着室内に配置された、前記Cu、In,Ga、Seそれぞれを蒸着させるための複数のCu蒸着源、複数のIn蒸着源、複数のGa蒸着源およびSe蒸着源と、前記各蒸着源からの各元素の蒸発量を制御する制御部とを備え、
前記成膜用基板の搬送方向に沿って最上流に、前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第1蒸着源群が配置されており、
前記制御部が、前記搬送方向の前記最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が前記最上流または前記最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、前記各蒸着源からの蒸発量を制御するものであることを特徴とする成膜装置。 - 前記複数のCu蒸着源、前記複数のIn蒸着源および前記複数のGa蒸着源が、前記成膜用基板の搬送方向に沿って上流側から順に、
前記In-Ga第1蒸着源群、
前記Cu蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のCu-Ga第1蒸着源群、
前記Cu蒸着源と前記In蒸着源とが交互に配置されてなる行列状のCu-In蒸着源群、
前記Cu蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のCu-Ga第2蒸着源群、および
前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第2蒸着源群を構成するようにして配置されていることを特徴とする請求項1記載の成膜装置。 - 前記制御部が、前記最小のGa/(In+Ga)比が0となるように、前記各蒸着源からの蒸発量を制御するものであることを特徴とする請求項1または2記載の成膜装置。
- 前記制御部が、下流域におけるCuの蒸発量を、上流域におけるCuの蒸発量と比較して相対的に抑制させた条件で、前記各元素を前記基板の一面に供給するように、前記各蒸着源からの蒸発量を制御するものであることを特徴とする請求項1から3いずれか1項記載の成膜装置。
- 前記各蒸着源群の前記各行列状の各蒸着源の列が前記成膜用基板の前記搬送方向と略垂直に交わるように配置されていることを特徴とする請求項1から4いずれか1項記載の成膜装置。
- 前記Cu-Ga第2蒸着源群におけるCu蒸着源数が、前記Cu-Ga第1蒸着源群におけるCu蒸着源数よりも少ないことを特徴とする請求項2から5いずれか1項記載の成膜装置。
- 前記Se蒸着源が、前記各蒸着源群の前記行列状の各蒸着源の列間に、該列に沿って延びるライン上に複数の開口を有するライン状蒸着源であることを特徴とする請求項1から6いずれか1項記載の成膜装置。
- 前記蒸着室に、前記成膜用基板を加熱する加熱手段を備えていることを特徴とする請求項1から7いずれか1項記載の成膜装置。
- 前記蒸着室の下流側に、該蒸着室と連結された、前記化合物半導体膜が成膜された前記成膜用基板を冷却する冷却室を備え、
該冷却室に、Se蒸着源を備えていることを特徴とする請求項1から8いずれか1項記載の成膜装置。 - 前記冷却室に、前記成膜用基板を冷却する冷却手段を備えていることを特徴とする請求項9記載の成膜装置。
- 前記蒸着室の上流側に該蒸着室に連結して配置された、前記成膜用基板を収納する処理前基板収納部と、該成膜用基板を加熱する加熱手段とを備えた基板導入室と、
前記冷却室の下流側に該冷却室に連結して配置された、前記化合物半導体膜が成膜された前記成膜用基板が収納される処理済基板収納部を備えた基板排出室とをさらに備え、
前記基板導入室、前記蒸着室、前記冷却室および前記基板排出室が直線状に配置され、
前記基板搬送機構が、前記成膜用基板を前記各室に亘って前記一方向にインライン状に移動させるものであることを特徴とする請求項9または10記載の成膜装置。 - 前記蒸着室の上流側に該蒸着室に連結して配置された、前記成膜用基板を巻き出す巻出ロールと、該成膜用基板を加熱する加熱手段とを備えた基板導入室と、
前記冷却室の下流側に該冷却室に連結して配置された、前記化合物半導体膜が成膜された前記成膜用基板を巻き取る巻取りロールを備えた基板排出室とをさらに備え、
前記基板導入室、前記蒸着室、前記冷却室および前記基板排出室が直線状に配置され、
前記移動手段が、前記巻出しロールから前記成膜用基板を巻き出させ、前記各室を経た前記成膜用基板を前記巻取りロールで巻き取らせるものであることを特徴とする請求項9または10記載の成膜装置。 - Cu(In,Ga)Se2化合物半導体からなる光電変換層を備えた光電変換素子の製造方法であって、
一面に裏面電極を備えた基板を一方向に搬送させつつ、該搬送方向に沿って配置された複数のCu蒸着源、複数のIn蒸着源、複数のGa蒸着源およびSe蒸着源から前記基板の一面側に前記各元素の蒸気を供給して、前記裏面電極上に前記光電変換層を成膜する蒸着成膜工程を有し、
該蒸着成膜工程において、前記基板の搬送方向の最上流において、前記In蒸着源と前記Ga蒸着源とが交互に配置されてなる行列状のIn-Ga第1蒸着源群および前記Se蒸着源を用いて、In、GaおよびSeを前記基板の一面側に供給すると共に、前記搬送方向の前記最上流と最下流との間にGa/(In+Ga)比が最小、かつ該最小のGa/(In+Ga)比が前記最上流または前記最下流でのGa/(In+Ga)比の半分以下となる領域が存在するように、前記各蒸着源からの蒸発量を制御しつつ、
前記最上流を含む上流域において、Cu(In,Ga)Se2、CuxSeの互いに相分離された化合物からなる混合物を前記裏面電極上に生成させ、
前記上流域に続く、前記最下流を含む下流域において、前記CuxSeをCu(In、Ga)Se2に転化させることにより、前記光電変換層を成膜することを特徴とする光電変換素子の製造方法。 - 前記最小のGa/(In+Ga)比を0とすることを特徴とする請求項13記載の光電変換素子の製造方法。
- 前記下流域におけるCuの蒸発量を、前記上流域におけるCuの蒸発量と比較して相対的に抑制させた条件で、前記各元素の上記前記基板の一面に供給することを特徴とする請求項13または14記載の光電変換素子の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-292260 | 2010-12-28 | ||
JP2010292260A JP2012142342A (ja) | 2010-12-28 | 2010-12-28 | 成膜装置および光電変換素子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090506A1 true WO2012090506A1 (ja) | 2012-07-05 |
Family
ID=46382635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/007362 WO2012090506A1 (ja) | 2010-12-28 | 2011-12-28 | 成膜装置および光電変換素子の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012142342A (ja) |
WO (1) | WO2012090506A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103866236A (zh) * | 2012-12-18 | 2014-06-18 | 北京汉能创昱科技有限公司 | 一种铜铟镓硒薄膜电池共蒸发线性源的布置方法 |
WO2014125902A1 (ja) * | 2013-02-12 | 2014-08-21 | 日東電工株式会社 | Cigs膜の製法およびその製法を用いるcigs太陽電池の製法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6317877B2 (ja) * | 2012-10-16 | 2018-04-25 | ローム株式会社 | 光電変換装置および光電変換装置の製造方法 |
KR101768788B1 (ko) * | 2012-12-20 | 2017-08-16 | 쌩-고벵 글래스 프랑스 | 화합물 반도체의 제조 방법 및 박막 태양 전지 |
JP2014216479A (ja) * | 2013-04-25 | 2014-11-17 | 富士フイルム株式会社 | 光電変換素子の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004031551A (ja) * | 2002-06-25 | 2004-01-29 | Matsushita Electric Ind Co Ltd | 化合物半導体薄膜の製造方法 |
JP2005116755A (ja) * | 2003-10-07 | 2005-04-28 | Matsushita Electric Ind Co Ltd | 太陽電池の製造装置 |
JP2012007194A (ja) * | 2010-06-22 | 2012-01-12 | Fujifilm Corp | 成膜装置および光電変換素子の製造方法 |
-
2010
- 2010-12-28 JP JP2010292260A patent/JP2012142342A/ja not_active Withdrawn
-
2011
- 2011-12-28 WO PCT/JP2011/007362 patent/WO2012090506A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004031551A (ja) * | 2002-06-25 | 2004-01-29 | Matsushita Electric Ind Co Ltd | 化合物半導体薄膜の製造方法 |
JP2005116755A (ja) * | 2003-10-07 | 2005-04-28 | Matsushita Electric Ind Co Ltd | 太陽電池の製造装置 |
JP2012007194A (ja) * | 2010-06-22 | 2012-01-12 | Fujifilm Corp | 成膜装置および光電変換素子の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103866236A (zh) * | 2012-12-18 | 2014-06-18 | 北京汉能创昱科技有限公司 | 一种铜铟镓硒薄膜电池共蒸发线性源的布置方法 |
WO2014125902A1 (ja) * | 2013-02-12 | 2014-08-21 | 日東電工株式会社 | Cigs膜の製法およびその製法を用いるcigs太陽電池の製法 |
Also Published As
Publication number | Publication date |
---|---|
JP2012142342A (ja) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8071421B2 (en) | Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates | |
US9601650B1 (en) | Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers | |
US9087954B2 (en) | Method for producing the pentanary compound semiconductor CZTSSe, and thin-film solar cell | |
JP2012007194A (ja) | 成膜装置および光電変換素子の製造方法 | |
US8021905B1 (en) | Machine and process for sequential multi-sublayer deposition of copper indium gallium diselenide compound semiconductors | |
WO2012090506A1 (ja) | 成膜装置および光電変換素子の製造方法 | |
US10211351B2 (en) | Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof | |
EP2319954A1 (en) | Method for producing CIS and/oder CIGS thin films on glass substrates | |
US20100210065A1 (en) | Method of manufacturing solar cell | |
WO2014125902A1 (ja) | Cigs膜の製法およびその製法を用いるcigs太陽電池の製法 | |
US20170236710A1 (en) | Machine and process for continuous, sequential, deposition of semiconductor solar absorbers having variable semiconductor composition deposited in multiple sublayers | |
KR20170050635A (ko) | Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법 | |
JP5378534B2 (ja) | カルコパイライト型化合物薄膜の製造方法およびそれを用いた薄膜太陽電池の製造方法 | |
WO2012091170A1 (en) | Solar cell and solar cell production method | |
JP2012015314A (ja) | Cis系膜の製造方法 | |
JP2012015328A (ja) | Cis系膜の製造方法 | |
JP6239645B2 (ja) | 化合物半導体を生成するための方法および薄膜太陽電池 | |
JP2012015323A (ja) | Cis系膜の製造方法 | |
TWM471360U (zh) | 一種cigs薄膜太陽電池前驅層結構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853970 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11853970 Country of ref document: EP Kind code of ref document: A1 |