WO2012089856A1 - Aditivo antiveining para la preparación de moldes y machos de fundición - Google Patents

Aditivo antiveining para la preparación de moldes y machos de fundición Download PDF

Info

Publication number
WO2012089856A1
WO2012089856A1 PCT/ES2010/070876 ES2010070876W WO2012089856A1 WO 2012089856 A1 WO2012089856 A1 WO 2012089856A1 ES 2010070876 W ES2010070876 W ES 2010070876W WO 2012089856 A1 WO2012089856 A1 WO 2012089856A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
sand
male
mold
metal
Prior art date
Application number
PCT/ES2010/070876
Other languages
English (en)
French (fr)
Inventor
Santiago Prat Urreiztieta
Marco Antonio MENDIZÁBAL CASTELLANOS
María José PUERTOLLANO ABASCAL
Jesús REINA RIVERO
Original Assignee
Ask Chemicals España, S.A.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ask Chemicals España, S.A.U. filed Critical Ask Chemicals España, S.A.U.
Priority to BR112013016833A priority Critical patent/BR112013016833A2/pt
Priority to JP2013545444A priority patent/JP5801900B2/ja
Priority to CN2010800707883A priority patent/CN103384653A/zh
Priority to UAA201307766A priority patent/UA106559C2/uk
Priority to AU2010366563A priority patent/AU2010366563A1/en
Priority to US13/993,484 priority patent/US20130266476A1/en
Priority to RU2013127624/02A priority patent/RU2570680C2/ru
Priority to CA2822690A priority patent/CA2822690A1/en
Priority to PCT/ES2010/070876 priority patent/WO2012089856A1/es
Priority to MX2013006692A priority patent/MX352826B/es
Priority to EP10861393.6A priority patent/EP2660222A4/en
Publication of WO2012089856A1 publication Critical patent/WO2012089856A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00939Uses not provided for elsewhere in C04B2111/00 for the fabrication of moulds or cores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Definitions

  • the present invention belongs to the field of additives for molding sands for use in the manufacture of molds and cast iron mats. More specifically, the present invention relates to an additive to prevent veining in the manufacture of metal parts, a molding sand comprising said additive, a male or mold prepared from said molding sand and a metal part prepared by the use of one of said males or molds.
  • the castings obtained using males and molds manufactured with molding sands generally have a series of defects in their form that need to be machined later to obtain a dimensionally correct part. These defects occur because the male or mold, due to the effect of molten metal that is poured on it, undergoes a heating that causes its expansion and, as a consequence, the appearance of cracks on its surface. The molten metal penetrates into these cracks thus forming a kind of partitions or lamellae on the surface of the piece obtained. This unwanted effect is known by the name of veining or "rat tail".
  • males or molds are manufactured by mixing sands with hot or gas cured resins, or by self-binding resins, also using a series of additives intended to improve the characteristics of the final piece obtained.
  • sands with hot or gas cured resins
  • self-binding resins also using a series of additives intended to improve the characteristics of the final piece obtained.
  • several solutions are known.
  • Iron oxides are intended to minimize the problems created by the expansion of silica contained in the sands, using red, black, yellow iron oxides or iron oxides from Sierra Leone that are incorporated into the mixture in varying percentages between 1 and 3%. These oxides act as a fayalite formation factor, such that, during the formation of the crack in the male, the viscous fayalite fills the cracks thus minimizing veining.
  • WO 2009155242 discloses an antiveining additive based on the use of iron oxide to which a vitreous component is added. Said vitreous component forms a molten crystal between the grains of sand which increases the plasticity reducing the breakage of the males and, therefore, the appearance of veining. The problem again is the reduction of the mechanical resistance of the male.
  • wood flour and coal powders are added to the molding sand in proportions that vary between 1 and 3%. These flours are burned during the melting, leaving free holes distributed throughout the volume of the male that allow the expansion of the silica to occur in those holes without increasing its external size, consequently avoiding the appearance of the cracks that cause the veining.
  • the main disadvantage of this technique is that, when the flours are burned, a large amount of gas is produced which, when diffused, can give rise to dimensional problems in the pieces obtained. Also, with this type of additives there is a reduction in the mechanical strength of the males.
  • US Patent 4735973 describes the use of titanium oxide additives.
  • the additive is present in a percentage that varies between 0.5 and 5% of the total sand and this additive contains between 15 and 95% titanium oxide.
  • EP0891954 Another solution to combat veining in the preparation of metal parts is described in patent EP0891954 and in ES21 16245, closely related to the previous one.
  • the solution of these patents includes the use of hollow alumina silicate microspheres as an antiveining additive.
  • EP0891954 describes the use of hollow alumina silicate microspheres that are added to the sand in a weight percentage of 1 to 30%. The microspheres should contain between 20-35% alumina.
  • These hollow microspheres prevent the appearance of cracks in the males and molds thanks to their ability to contract and collapse as a result of the heat produced by the molten metal. By contracting and collapsing the gap they leave absorbs the expansion of silica avoiding or decreasing the appearance of cracks that lead to veining.
  • the authors of the invention have discovered that adding a small amount of a flux to the hollow microspheres achieves an additive that allows reduce the amount of microspheres in the sand mixture below 10%. This allows to obtain molds and males of appropriate mechanical characteristics but that surprisingly also allow the total disappearance of the veining in the final metal parts. Also, the use of the additive of the invention makes it possible to obtain metal parts with a smooth surface or skin.
  • Figure 1 image of a metal part where the defect of veining caused by the use of a male composed 100% by sand can be seen.
  • Figure 2 graph showing the percentage of contraction of the different microspheres as a function of temperature. The final shrinkage temperature of each type of microsphere is indicated.
  • Figure 3 graph showing the percentage of contraction of the different microspheres as a function of temperature and in the presence of 6% lithium carbonate and 6% strontium carbonate.
  • Figure 4 image of a metal part obtained by using a male prepared with the additive of the invention showing the absence of veining.
  • Figure 5 The graph represents the production of gas during the preparation of a metal part with different males prepared without additives, with different commercial additives and with the additive of the invention.
  • Figure 6 Graph showing the abrasion resistance of males with different percentages of the additive of the invention (sample 5 94% + 6% COLi 3 ) at the exit of the box, at 24 hours and at 24 hours with a relative humidity of 100%.
  • Figure 7 Graph showing the abrasion resistance of males with different percentages of the additive of the invention (sample 5 94% + 6% C0 3 Li) a the exit of the box, at 24 hours and at 24 hours with a relative humidity of 100%.
  • the main object of the present invention is an additive for molding sands comprising hollow alumina silicate microspheres between 90-99% of the total weight of the additive and a flux between 1 -10% of the total weight of the additive.
  • the additive comprises between 94-97% hollow alumina silicate microspheres and between 3-6% flux.
  • additive of the invention is used mixed with the sands to prepare molds and cast iron males.
  • the additive surprisingly reduces the appearance of cracks in the molds and males during the melting and molding of the metal part, in most cases preventing them from appearing. This avoids veining on the final metal parts.
  • the first component of the additive of the invention is the hollow alumina silicate microspheres.
  • the hollow alumina silicate microspheres As already mentioned above, you have the ability to absorb the expansion of silica when the male or mold is heated on contact with molten metal.
  • any type of hollow alumina silicate microsphere can be used, even those with high alumina content.
  • the microspheres of the additive of the invention may have an alumina content of between 15-45% by weight.
  • the preferred embodiment contemplates the use of microspheres with a content of between 18-40% alumina.
  • the hollow microspheres may contain other alumina silicate apart from other minor elements or components in their composition such as Fe 2 0 3 , CaO, MgO, Na 2 0, K 2 0 or Ti0 2 that may slightly vary the thermal behavior of the microspheres, but in any case the presence of these elements will not affect the antiveining ability of the additive of the invention.
  • the other component of the additive of the invention is the flux.
  • the inventors have observed that it has the ability to alter the thermal properties of microspheres
  • the flux has the effect of lowering the melting point of the microspheres causing them to soften and collapse (break) before. This allows to optimize the effect of absorption of sand expansion.
  • the inventors have also observed that the presence of the flux allows working with all types of hollow alumina silicate microspheres. While patent ES21 16245 advised against working with high alumina microspheres (35-45%) since they gave veining problems in the final pieces, the inventors have shown that the addition of the flux allows microspheres of all types to be used even those with high alumina content thereby expanding the range of microspheres with which the additive can be prepared.
  • the preferred embodiment of the invention contemplates the use of a carbonate of an alkaline or alkaline earth element as a flux. More preferably said carbonates may be lithium carbonate and / or strontium carbonate.
  • the use of the additive of the invention has shown that it not only allows to overcome the problem of veining in manufactured metal parts but also makes the surface or skin of said parts lack roughness.
  • the additive of the invention is used mixed with sands. These arenas called molding sands are used to prepare molds and cast iron males.
  • Another object of the present invention is, therefore, a molding sand comprising between 90% and 99% by weight of sand and between 1 -10% by weight of the additive of the invention.
  • the molding sand of the invention comprises between 94-97% sand and 3-6% of the additive of the invention.
  • any type of sand of common use can be used in the preparation of molds and dies for foundry.
  • sands can be used for the production of cast iron males and molds with a silica content greater than 95% and with different grain sizes from AFA 40 to AFA 120.
  • the molding sand of the invention may also contain other conventional components, such as foundry aggregates, binders and other optional components used in this sector of the art.
  • Another object of the invention is the use of the molding sand of the invention for the preparation of molds and cast iron males. More specifically, the object of the present invention is a process for preparing a cast iron or male comprising: a) mixing the molding sand of the invention with a binder resin,
  • Step a) comprises mixing and homogenizing the molding sand, which includes in its composition the sand and the additive of the invention, with a binder resin. Resins after curing favor agglutination and cohesion of particles and hardening of the mold or male.
  • any type of resin commonly used in the preparation of male and cast iron molds can be used in step a).
  • resin commonly used in the preparation of male and cast iron molds
  • step a any type of resin commonly used in the preparation of male and cast iron molds
  • phenolic urethane resins gassed with amine
  • epoxyacrylic resins gassed with S0 2 : phenolic alkaline resins, gassed with methyl formate or C0 2
  • a curing catalyst that accelerates the polymerization of the resin is applied in step c). Any catalyst commonly used in this technical field is suitable for the purposes of the invention, gaseous catalysts such as amines, S0 2 , methyl formate or C0 2 are normally used.
  • the sand mold or male is separated from the mold used to shape it and is ready for use in the manufacture of the metal part.
  • Another object of the present invention is a mold or male comprising a molding sand according to the invention, that is, a molding sand comprising the additive of the invention.
  • the males and molds of the invention have a mechanical behavior substantially identical to that of the males and molds produced only with sand but with the advantage that the veining is completely avoided.
  • Another advantage of the males and molds of the invention lies in the evolution of gas in the produced part. The amount of gas is not only significantly reduced (see figure
  • Another object of the invention is a process for preparing metal castings comprising: a) inserting a male or mold according to the invention into a casting device,
  • the males or molds of the invention allow obtaining parts of different metals and / or alloys such as ferrous metals such as gray iron, nodular and steel or non-ferrous metals such as copper, bronze and brass according to the method described herein.
  • a final object of the present invention is precisely a metal part obtained in accordance with the method described above.
  • the metal parts of the invention are free of veining and have a substantially smooth surface or skin, devoid of roughness.
  • Said metal parts can be made of ferrous metals such as gray iron, nodular and steel or non-ferrous metals such as copper, bronze and brass.
  • Table 1 composition of the microspheres in% by weight
  • the fusion test was carried out in a MISURA heating microscope.
  • the heating microscope is a device that allows the display of a sample when it is subjected to a heating cycle. At the same time it allows the recording of the silhouette of the sample in computer support throughout the fusion test. From the recorded images, the evolution of the contraction of the sample was determined as a function of the temperature, by means of an image analysis equipment.
  • the contraction-temperature curve was determined from the recorded images, as well as the following characteristic temperatures;
  • TFC - End of contraction
  • Table 2 and Figure 2 represent the results of the analyzes: Table 2: thermal analysis of the microspheres
  • Example 2 Effect of lithium carbonate and strontium carbonate on the thermal properties of microspheres.
  • Example 1 The thermal behavior of the same samples of Example 1 was analyzed with the addition of 6% lithium carbonate and 6% strontium carbonate respectively. The same analysis methodology as in claim 1 was used.
  • Example 3 Preparation of cast iron males with different additives and evaluation of the veining and the skin of the resulting pieces
  • the use of 6% lithium carbonate as a component of the antiveining additive provides metal parts without veining, regardless of the sample of microspheres used.
  • the pieces also have a skin without noticeable defects.
  • both the pieces obtained by molding from males without additive (100% sand) or only with microspheres as additive (100% sample 5) provided significant veining defects of 10 and 7 respectively (on a veining scale of 0-10).
  • a test was carried out to determine the abrasion resistance and tensile strength of a male obtained from sand and a variable amount of additive (94% microspheres shows 5+ 6% lithium carbonate).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

La presente invención pertenece al campo de los aditivos para arenas de moldeo de uso en la fabricación de moldes y machos para fundición. Más concretamente la presente invención se refiere a un aditivo para evitar el veining en la fabricación de piezas metálicas, a una arena de moldeo que comprende dicho aditivo, a un macho o molde preparado a partir de dicha arena de moldeo y a una pieza metálica preparada mediante el uso de uno de dichos machos o moldes.

Description

ADITIVO ANTIVEINING PARA LA PREPARACIÓN DE MOLDES Y MACHOS DE
FUNDICIÓN
CAMPO DE LA INVENCIÓN
La presente invención pertenece al campo de los aditivos para arenas de moldeo de uso en la fabricación de moldes y machos para fundición. Más concretamente la presente invención se refiere a un aditivo para evitar el veining en la fabricación de piezas metálicas, a una arena de moldeo que comprende dicho aditivo, a un macho o molde preparado a partir de dicha arena de moldeo y a una pieza metálica preparada mediante el uso de uno de dichos machos o moldes.
ANTECEDENTES DE LA INVENCIÓN
Las piezas de fundición obtenidas utilizando machos y moldes fabricados con arenas de moldeo presentan generalmente una serie de defectos en su forma que es necesario mecanizar posteriormente para obtener una pieza dimensionalmente correcta. Estos defectos se producen porque el macho o molde, por efecto del metal fundido que se vierte sobre él, sufre un calentamiento que provoca su expansión y, como consecuencia, la aparición de grietas en su superficie. El metal fundido penetra en el interior de estas grietas formándose así una especie de tabiques o laminillas en la superficie de la pieza obtenida. Este efecto no deseado se conoce con el nombre de veining o "cola de rata".
En la actualidad, los machos o moldes se fabrican mezclando arenas con resinas curadas por gas o en caliente, o por resinas autofraguantes, utilizándose además una serie de aditivos destinados a mejorar las características de la pieza final obtenida. Para combatir o reducir el veining, son conocidas varias soluciones.
Una de las soluciones consiste en el uso de óxidos de hierro como aditivo en la preparación de arenas de moldeo. Los óxidos de hierro están destinados a minimizar los problemas creados por la expansión del sílice contenido en las arenas, utilizándose para ello óxidos de hierro rojo, negro, amarillo u óxidos de hierro de Sierra Leona que se incorporan a la mezcla en porcentajes que varían entre el 1 y el 3%. Estos óxidos actúan como factor de formación de fayalita, de tal manera que, durante la formación de la grieta en el macho, la fayalita en estado viscoso rellena las grietas minimizando así el veining. No obstante, esta técnica además de no eliminar el veining en muchos casos, presenta como inconveniente que el óxido de hierro reduce la resistencia mecánica del macho y, además, la formación de fayalita aumenta la tendencia a la penetración que provoca que la superficie exterior de la pieza obtenida presente irregularidades que deben ser tratadas posteriormente.
La patente WO 2009155242 describe un aditivo antiveining basado en el uso de oxido de hierro al que se le añade un componente vitreo. Dicho componente vitreo forma un cristal fundido entre los granos de arena lo cual incrementa la plasticidad reduciendo la rotura de los machos y, por tanto, la aparición de veining. El problema de nuevo es la reducción de la resistencia mecánica del macho.
Otra de las soluciones existentes consiste en el uso de harinas de madera y polvo de carbón como aditivo. Los polvos de madera o hulla se añaden a la arena de moldeo en proporciones que varían entre 1 y 3%. Estas harinas se queman durante la fusión dejando así huecos libres distribuidos por todo el volumen del macho que permiten que la expansión del sílice se produzca en esos huecos sin necesidad de aumentar su tamaño externo, evitando, consecuentemente, la aparición de las grietas que provocan el veining. La principal desventaja de esta técnica es que, al quemarse las harinas, se produce una gran cantidad de gas que, al difundirse, puede dar lugar a problemas dimensionales en las piezas obtenidas. Asimismo, con este tipo de aditivos se produce una reducción en la resistencia mecánica de los machos.
La patente US 4735973 describe el uso de aditivos de oxido de titanio. El aditivo está presente en un porcentaje que varía entre el 0,5 y el 5% del total de la arena y conteniendo este aditivo entre 15 y 95% de óxido de titanio. Con esta técnica se produce la expansión térmica, evitándose, en consecuencia, el veining, se mantiene la resistencia mecánica de los machos y no se produce un aumento en la evolución de gas. El inconveniente de esta técnica es que los machos obtenidos presentan una cierta tendencia a la penetración, siendo necesaria la aplicación de pinturas u otros tratamientos sobre la superficie de los machos obtenidos antes de proceder a la fusión de la pieza.
Otros métodos para tratar el veining aparecen descritos en los documentos WO02087807, WO2009062074 y WO2009046128. Estos describen aditivos de diferentes composiciones cuya característica común es que comprenden materiales que contienen óxido de litio y óxidos de hierro.
Otra de las soluciones para combatir el veining en la preparación de piezas metálicas se describe en la patente EP0891954 y en la ES21 16245, íntimamente relacionada a la anterior. La solución de estas patentes comprende el uso de microesferas huecas de silicato de alúmina como aditivo antiveining. EP0891954 describe la utilización de microesferas huecas de silicato de alúmina que se añaden a la arena en un porcentaje en peso de 1 a 30%. Las microesferas deben contener entre 20-35% de alúmina. Estas microesferas huecas previenen la aparición de grietas en los machos y moldes gracias a su capacidad de contraerse y colapsarse como consecuencia del calor producido por el metal fundido. Al contraerse y colapsarse el hueco que dejan absorbe la expansión de la sílice evitando o disminuyendo la aparición de grietas que dan lugar al veining. El problema de estas microesferas huecas es que cuando se usan en cantidades inferiores al 10% en peso en la mezcla de arena no rinden resultados óptimos, es decir, no siempre evitan el veining en el grado que se requiere. Por otra parte, al utilizar un porcentaje alto de microesferas huecas (por encima del 10% normalmente entre 20-30%) se resuelve el problema del veining pero se obtienen machos y moldes de peores características mecánicas.
Por tanto, existe la necesidad de desarrollar un aditivo basado en microesferas huecas de silicato de aluminio que permita reducir por debajo del 10% el contenido de microesferas en la arena de moldeo para obtener machos y moldes de unas características mecánicas adecuadas pero sin que se reduzca o se vea afectado el efecto de prevención del veining en las piezas finales.
Los autores de la invención han descubierto que añadiendo una pequeña cantidad de un fundente a las microesferas huecas se consigue un aditivo que permite rebajar la cantidad de microesferas en la mezcla de arena por debajo del 10%. Esto permite obtener moldes y machos de características mecánicas apropiadas pero que sorprendentemente además permiten la desaparición total del veining en las piezas metálicas finales. Asimismo, el uso del aditivo de la invención permite obtener piezas metálicas con una superficie o piel lisa.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : imagen de una pieza metálica donde se aprecia el defecto de veining causado por el uso de un macho compuesto al 100% por arena.
Figura 2: gráfica donde se representa el porcentaje de contracción de las diferentes microesferas en función de la temperatura. Aparece señalada la temperatura final de contracción de cada tipo de microesfera.
Figura 3: gráfica donde se representa el porcentaje de contracción de las diferentes microesferas en función de la temperatura y en presencia de un 6% de carbonato de litio y un 6% de carbonato de estroncio.
Figura 4: imagen de una pieza metálica de obtenida mediante el uso de un macho preparado con el aditivo de la invención donde se muestra la ausencia de veining.
Figura 5: la gráfica representa la producción de gas durante la preparación de una pieza metálica con diferentes machos preparados sin aditivos, con diferentes aditivos comerciales y con el aditivo de la invención.
Figura 6: Gráfico donde se representa la resistencia a la abrasión de los machos con diferentes porcentajes del aditivo de la invención (muestra 5 94%+6% COLi3) a la salida de la caja, a las 24 horas y a las 24 horas con una humedad relativa del 100%.
Figura 7: Gráfico donde se representa la resistencia a la abrasión de los machos con diferentes porcentajes del aditivo de la invención (muestra 5 94%+6% C03Li) a la salida de la caja, a las 24 horas y a las 24 horas con una humedad relativa del 100%.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El objeto principal de la presente invención consiste en un aditivo para arenas de moldeo que comprende microesferas huecas de silicato de alúmina entre un 90- 99% del peso total del aditivo y un fundente entre un 1 -10% del peso total del aditivo. En una realización particular, el aditivo comprende entre un 94-97% de microesferas huecas de silicato de alúmina y entre un 3-6% de fundente.
El aditivo arriba descrito (en adelante aditivo de la invención) se usa mezclado con las arenas para preparar moldes y machos para fundición. El aditivo reduce sorprendentemente la aparición de grietas en los moldes y machos durante el fundido y moldeo de la pieza metálica, llegando en la mayoría de los casos a evitar la aparición de las mismas. De esta manera se evita el veining en las piezas metálicas finales.
El primer componente del aditivo de la invención son las microesferas huecas de silicato de alúmina. Como ya se ha comentado más arriba estás tienen la capacidad de absorber la expansión del sílice cuando el macho o molde se calienta al contacto con el metal fundido. En la preparación del aditivo de la invención se puede usar cualquier tipo de microesfera hueca de silicato de alúmina incluso aquellas con alto contenido en alúmina. Las microesferas del aditivo de la invención pueden tener un contenido de alúmina de entre un 15-45% en peso. La realización preferida contempla el uso de microesferas con un contenido de entre 18-40% de alúmina. Las microesferas huecas pueden contener aparte de silicato de alúmina otros elementos o componentes minoritarios en su composición tales como Fe203, CaO, MgO, Na20, K20 o Ti02 que pueden variar ligeramente el comportamiento térmico de la microesferas, pero en cualquier caso la presencia de estos elementos no afectará a la capacidad antiveining del aditivo de la invención.
El otro componente del aditivo de la invención es el fundente. Los inventores han observado que tiene la capacidad de alterar las propiedades térmicas de las microesferas. El fundente tiene el efecto de rebajar el punto de fusión de las microesferas haciendo que se reblandezcan y colapsen (rompan) antes. Esto permite optimizar el efecto de absorción de la expansión de la arena. Los inventores también han observado que la presencia del fundente permite trabajar con todo tipo de microesferas huecas de silicato de alúmina. Mientras que la patente ES21 16245 desaconsejaba trabajar con microesferas de alto contenido en alúmina (35-45%) ya que daban problemas de veining en las piezas finales, los inventores han demostrado que la adición del fundente permite usar microesferas de todo tipo incluso aquellas con alto contenido en alúmina ampliando de esta manera la gama de microesferas con las que se puede preparar el aditivo.
La realización preferida de la invención contempla el uso de un carbonato de un elemento alcalino o alcalinotérreo como fundente. De manera más preferida dichos carbonatos pueden ser el carbonato de litio y/o el carbonato de estroncio.
El uso del aditivo de la invención ha demostrado que no sólo permite superar el problema del veining en las piezas metálicas manufacturadas sino que consigue que la superficie o piel de dichas piezas carezca de rugosidad.
El aditivo de la invención se usa mezclado con arenas. Dichas arenas llamadas arenas de moldeo se usan para preparar moldes y machos para fundición. Otro objeto de la presente invención es, por tanto, una arena de moldeo que comprende entre un 90% y 99% en peso de arena y entre un 1 -10% en peso del aditivo de la invención. De manera preferida la arena de moldeo de la invención comprende entre 94-97% de arena y un 3-6% del aditivo de la invención.
En el contexto de la invención se puede usar cualquier tipo de arena de uso común en la preparación de moldes y machos para fundición. De manera particular se pueden usar arenas para la producción de machos y moldes de fundición con un contenido en sílice superior al 95% y con diferentes granulometrías desde AFA 40 a AFA 120. La arena de moldeo de la invención también puede contener otros componentes convencionales, tales como agregados de fundición, ligantes y otros componentes opcionales utilizados en este sector de la técnica.
Otro objeto de la invención es el uso de la arena de moldeo de la invención para la preparación de moldes y machos para fundición. Más concretamente, es objeto de la presente invención un procedimiento para preparar un molde o macho de fundición que comprende: a) mezclar la arena de moldeo de la invención con una resina aglutinante,
b) introducir la mezcla de a) en un molde para formar un macho o molde para fundición,
c) poner en contacto dicho macho o molde para fundición con un catalizador de curado,
d) separar el macho o molde una vez que este se ha endurecido.
La etapa a) comprende la mezcla y homogeneización de la arena de moldeo, que incluye en su composición la arena y el aditivo de la invención, con una resina aglutinante. Las resinas tras su curado favorecen la aglutinación y cohesión de las partículas y el endurecimiento del molde o macho.
Cualquier tipo de resina utilizada comúnmente en la preparación de machos y moldes para fundición puede ser usada en la etapa a). Se contempla por ejemplo, el uso de resinas fenólicas-uretano, gaseadas con amina; resinas epoxiacrílicas, gaseadas con S02: resinas fenólico-alcalinas, gaseadas con formiato de metilo o C02; resinas furánicas, resinas fenólicas, resinas de urea-formol de caja caliente o sus combinaciones; sistema inorgánico INOTEC de caja caliente o también arenas prerrevestidas con resinas Novolacas.
Una vez mezclada la arena de moldeo con la resina se introduce la mezcla en un molde para proporcionar al molde o macho de arena la forma definitiva que debe adoptar. La forma que adquiera determinara la forma de la pieza metálica final. Para que el molde o macho de arena quede compacto se aplica en la etapa c) un catalizador del curado que acelera la polimerización de la resina. Cualquier catalizador de uso común en este campo técnico es apropiado para los fines de la invención, normalmente se usan catalizadores gaseosos tales como aminas, S02, formiato de metilo o C02
Una vez compactado y curado el molde o macho de arena es separado del molde usado para darle la forma y está listo para su uso en la fabricación de la pieza metálica.
Otro objeto de la presente invención es un molde o macho que comprende una arena de moldeo de acuerdo con la invención, es decir, una arena de moldeo que comprende el aditivo de la invención.
Los machos y moldes de la invención poseen un comportamiento mecánico sustancialmente idéntico al de los machos y moldes producidos únicamente con arena pero con la ventaja de que el veining se evita por completo. Otra ventaja de los machos y moldes de la invención reside en la evolución de gas en la pieza producida. La cantidad de gas no solo se ve reducida significativamente (ver figura
5) sino que además la producción de gas se estabiliza a los 20 minutos de manera similar a otros aditivos antiveining comerciales.
Otro objeto de la invención es un procedimiento para preparar piezas metálicas de fundición que comprende: a) insertar un macho o molde de acuerdo con la invención en un dispositivo de fundición,
b) verter el metal en estado liquido en dicho dispositivo,
c) dejar enfriar y solidificar el metal vertido en el dispositivo de fundición,
d) separar la pieza de metal del dispositivo de fundición. Los machos o moldes de la invención permiten obtener de acuerdo con el método aquí descrito piezas de diferentes metales y/o aleaciones tales como metales férricos como hierro gris, nodular y acero o metales no férricos como cobre, bronce y latón.
Un último objeto de la presente invención es precisamente una pieza metálica obtenida de acuerdo con el método anteriormente descrito. Las piezas metálicas de la invención están exentas de veining y tienen una superficie o piel sustancialmente lisa, carente de rugosidades. Dichas piezas metálicas pueden ser de metales férricos como hierro gris, nodular y acero o metales no férricos como cobre, bronce y latón.
Los siguientes ejemplos tienen la finalidad de ilustrar la invención pero no deben considerarse limitativos de la misma:
Ejemplo 1 : Análisis térmico de diferentes tipos de microesferas
Se analizó el comportamiento térmico de diferentes tipos de microesferas huecas cuya composición se detalla en la siguiente tabla 1 :
Tabla 1 : composición de las microesferas en % en peso
Muestra 1 Muestra 2 Muestra 3 Muestra 4 Muestra 5
Si02 55,7 67.1 59,1 58,0 55,6
AI203 28,8 16,7 27,8 30,2 38,3
Fe203 6,4 4,09 4,66 3,76 1 ,91
CaO 0,75 2,02 1 ,85 2,41 0,96
MgO 1 ,55 1 ,51 0,97 1 ,29 0,4
Na20 0,43 0,9 0,58 0,21 0,35
K20 4,36 3,92 2,25 2,14 0,57
Ti02 1 ,39 0,79 1 ,04 1 ,99 1 ,07
PPC 0,62 2,97 1 ,75 0 0,84 El ensayo de fusión se llevó a cabo en un microscopio de calefacción MISURA. El microscopio de calefacción es un equipo que permite la visualización de una muestra cuando es sometida a un ciclo de calentamiento. Al mismo tiempo permite la grabación en soporte informático de la silueta de la muestra a lo largo del ensayo de fusión. A partir de las imágenes grabadas, se determinó la evolución de la contracción de la muestra en función de la temperatura, mediante un equipo de análisis de imagen.
Con cada muestra se conformó, por prensado, un botón cilindrico de 3 mm de diámetro y 3 mm de altura, el cual se colocó sobre un soporte. Este a su vez, se alojó en el portamuestras del microscopio de calefacción, donde se sometió a un ciclo de calentamiento con una velocidad de 25° C/min hasta la temperatura máxima de 15505 C.
A partir de las imágenes grabadas se determinó la curva contracción-temperatura, así como las siguientes temperaturas características;
- Inicio de contracción (TIC), considerando como tal cuando el área de la silueta de la probeta era un 99% del área inicial de la misma.
- Final de contracción (TFC), considerando como tal, cuando la probeta dejaba de contraer.
- Reblandecimiento (TR), considerando como tal, cuando los bordes de la probeta comenzaban a redondear.
- Esfera (TE), considerando como tal, cuando la probeta adoptaba la forma más próxima a una esfera.
- ½ Esfera (T1 /2), considerando como tal, cuando la probeta adoptaba la forma más próxima a una semiesfera.
- Fusión (TF), considerando como tal, cuando la probeta adoptbaa la forma más próxima a un casquete esférico, equivalente a 1/3 del volumen de una esfera.
La tabla 2 y la figura 2 representan los resultados de los análisis: Tabla 2: análisis térmico de las microesferas
Figure imgf000012_0002
Ejemplo 2: Efecto del carbonato de litio y del carbonato de estroncio en las propiedades térmicas de las microesferas.
Se analizó el comportamiento térmico de las mismas muestras del ejemplo 1 con la adición de un 6% de carbonato de litio y un 6% de carbonato de estroncio respectivamente. Se utilizó la misma metodología de análisis que en la reivindicación 1 .
Los resultados para las muestras a las que se añadió 6% de carbonato de litio se representan en la siguiente tabla 3:
Tabla 3: análisis térmico de las microesferas con carbonato de litio
Figure imgf000012_0001
Contracción
(TFC)
τβ 1 .240 1 ..350 1 .155 -
Reblandecim 1 .170
iento (TR)
ESFERA
(TE)
SEMI- 1 .270 1 .340 - 5 1 .210
ESFERA
(TE)
Ί- Fusión 1 .295 1 .350 1 .230
(TF)
Los datos relativos a la muestra 5 junto con un 6% de carbonato de litio y un 6% de carbonato de estroncio se representan tanto en la tabla 4 como en la figura 3.
Tabla 4
Figure imgf000013_0001
Ejemplo 3: Preparación de machos para fundición con diferentes aditivos y evaluación del veining y la piel de las piezas resultantes
Se prepararon unos machos a partir de arena Echave C-70 al 94%, la resina fenólica uretano ISOCURE FOCUS® 418/618 al 1 % , y el aditivo (94% de la muestra de microesferas+ 6% Co3Li) al 5%. Se mezclaron los 3 componentes en un molino y se introdujo la mezcla en la tolva de una maquina disparadora. La mezcla se disparó en la caja de machos para obtener la forma del macho y se gaseo con amina. Los machos se extrajeron ya curados y con su forma final. Se hizo un test de veining y también se observó la piel de las piezas metálicas obtenidas a partir del uso de diferentes aditivos de acuerdo con la invención. La siguiente tabla muestra los resultados:
Tabla 5
Figure imgf000014_0001
Como se puede observar el uso de carbonato de litio al 6% como componente del aditivo antiveining proporciona piezas metálicas sin veining, independientemente de la muestra de microesferas utilizadas. Asimismo las piezas poseen una piel sin defectos reseñables.
Por el contrario, tanto las piezas obtenidas por moldeo a partir de machos sin aditivo (100% arena) o solo con microesferas como aditivo (100% muestra 5) proporcionaban defectos de veining importantes de 10 y 7 respectivamente (en una escala de veining de 0-10).
Posteriormente se ensayó tanto el efecto de la dosis del carbonato de litio un aditivo a base de microesferas de la muestra 5, como de la cantidad de aditivo en la composición de la arena de moldeo. Los resultados se muestran en la siguiente tabla: Tabla 6
Figure imgf000015_0001
Ejemplo 4: Evaluación de las características mecánicas de los machos
Se llevo a cabo un ensayo para determinar la resistencia a la abrasión y la resistencia a la tracción de un macho obtenido a partir de arena y una cantidad variable de aditivo (94% microesferas muestra 5+ 6% de carbonato de litio).
Los resultados de estos ensayos se muestran en las figuras 6 y 7. Como se puede observar la presencia de aditivo no afecta significativamente a las características mecánicas de los machos obtenidos consiguiéndose para los diferentes porcentajes de aditivo ensayado unas características de resistencia tanto a la abrasión como a la tracción similares a los de la muestra control sin aditivo.

Claims

REIVINDICACIONES
1 . Un aditivo para arenas de moldeo que comprende microesferas huecas de silicato de alúmina entre un 90-99% del peso total del aditivo y un fundente entre un 1 -10% del peso total del aditivo.
2. Un aditivo de acuerdo con la reivindicación 1 donde las microesferas huecas de silicato de alúmina tienen un contenido de alúmina de entre un 15-45% en peso.
3. Un aditivo de acuerdo con la reivindicación 1 donde el fundente es un carbonato de un elemento alcalino o alcalinotérreo.
4. Un aditivo de acuerdo con la reivindicación 3 donde el carbonato de un elemento alcalino o alcalinotérreo es un carbonato de litio o un carbonato de estroncio.
5. Uso de un aditivo de acuerdo con cualquiera de las reivindicaciones 1 -4 en la preparación de arenas de moldeo.
6. Una arena de moldeo que comprende entre un 90% y 99% en peso de arena y entre un 1 -10% en peso de un aditivo de acuerdo con la cualquiera de las reivindicaciones 1 -4.
7. Una arena de moldeo de acuerdo con la reivindicación 6 donde la arena es una arena de sílice con un contenido en sílice superior al 95% en peso.
8. Uso de una arena de moldeo de acuerdo con cualquiera de las reivindicaciones 6-7 para la preparación de machos y moldes de fundición.
9. Procedimiento para preparar un molde o macho de fundición que comprende: a) mezclar una arena de moldeo de acuerdo con cualquiera de las reivindicaciones 6-7 con una resina aglutinante, b) introducir la mezcla de a) en un molde para formar un macho o molde,
c) poner en contacto dicho macho o molde con un catalizador de curado,
d) separar el macho o molde una vez que este se ha endurecido.
10. Macho o molde de fundición que comprende una arena de acuerdo con cualquiera de las reivindicaciones 1 -6.
1 1 . Procedimiento para preparar piezas metálicas de fundición que comprende: a) insertar un macho o molde de acuerdo con la reivindicación 10 en un dispositivo de fundición,
b) verter el metal en estado liquido en dicho dispositivo,
c) dejar enfriar y solidificar el metal vertido en el dispositivo de fundición,
d) separar la pieza de metal del dispositivo de fundición.
12. Un procedimiento de acuerdo con la reivindicación 1 1 porque la pieza metálica es de metales férricos o no férricos.
13. Un procedimiento de acuerdo con la reivindicación 12 donde el metal férrico es hierro gris, nodular o acero.
14. Un procedimiento de acuerdo con la reivindicación 12 donde el metal no férrico es cobre, bronce, latón.
15. Una pieza de metal obtenible por el procedimiento de la reivindicación 1 1 .
PCT/ES2010/070876 2010-12-30 2010-12-30 Aditivo antiveining para la preparación de moldes y machos de fundición WO2012089856A1 (es)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112013016833A BR112013016833A2 (pt) 2010-12-30 2010-12-30 aditivo anti-veining para a preparação de moldes e machos de fundição
JP2013545444A JP5801900B2 (ja) 2010-12-30 2010-12-30 鋳型及び鋳造コア製造用抗ベーニング添加剤
CN2010800707883A CN103384653A (zh) 2010-12-30 2010-12-30 用于制造浇铸模具和芯的防脉纹添加剂
UAA201307766A UA106559C2 (uk) 2010-12-30 2010-12-30 Протижилкувальна домішка для виготовлення ливарних форм або стержнів
AU2010366563A AU2010366563A1 (en) 2010-12-30 2010-12-30 Anti-veining additive for the production of casting molds and cores
US13/993,484 US20130266476A1 (en) 2010-12-30 2010-12-30 Anti-veining additive for the production of casting molds and cores
RU2013127624/02A RU2570680C2 (ru) 2010-12-30 2010-12-30 Добавка, предотвращающая возникновение ужимин, для изготовления литейных форм и стержней
CA2822690A CA2822690A1 (en) 2010-12-30 2010-12-30 Anti-veining additive for the production of casting molds and cores
PCT/ES2010/070876 WO2012089856A1 (es) 2010-12-30 2010-12-30 Aditivo antiveining para la preparación de moldes y machos de fundición
MX2013006692A MX352826B (es) 2010-12-30 2010-12-30 Aditivo antiveining para la preparacion de moldes y machos de fundicion.
EP10861393.6A EP2660222A4 (en) 2010-12-30 2010-12-30 Anti-veining additive for the production of casting molds and cores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070876 WO2012089856A1 (es) 2010-12-30 2010-12-30 Aditivo antiveining para la preparación de moldes y machos de fundición

Publications (1)

Publication Number Publication Date
WO2012089856A1 true WO2012089856A1 (es) 2012-07-05

Family

ID=46382336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070876 WO2012089856A1 (es) 2010-12-30 2010-12-30 Aditivo antiveining para la preparación de moldes y machos de fundición

Country Status (11)

Country Link
US (1) US20130266476A1 (es)
EP (1) EP2660222A4 (es)
JP (1) JP5801900B2 (es)
CN (1) CN103384653A (es)
AU (1) AU2010366563A1 (es)
BR (1) BR112013016833A2 (es)
CA (1) CA2822690A1 (es)
MX (1) MX352826B (es)
RU (1) RU2570680C2 (es)
UA (1) UA106559C2 (es)
WO (1) WO2012089856A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493075B (zh) * 2014-12-04 2016-05-11 宁夏共享化工有限公司 一种铸造专用无机防脉纹添加剂的制备方法
CN105195670B (zh) * 2015-10-09 2017-09-22 宁夏共享化工有限公司 一种防止脉纹缺陷的水基流涂涂料的生产方法
CN110000328A (zh) * 2019-03-05 2019-07-12 宁夏共享化工有限公司 一种铸造用防脉纹添加剂及其制备方法
CN110465621A (zh) * 2019-09-17 2019-11-19 马鞍山市三川机械制造有限公司 一种自剥落水基抗脉纹铸铁涂料的制备方法
CN110722093A (zh) * 2019-10-16 2020-01-24 沈阳大学 一种动物胶改性制备的铸造型砂添加剂

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1096706A (en) * 1965-08-11 1967-12-29 Foseco Int Production of steel ingots
US4735973A (en) 1985-11-15 1988-04-05 Brander John J Additive for sand based molding aggregates
ES2115563A1 (es) * 1996-12-27 1998-06-16 Iberica Ashalnd Chemical S A Arena de moldeo adecuada para fabricar machos y moldes de fundicion.
EP0891954A1 (en) 1996-12-27 1999-01-20 Iberia Ashland Chemical, S.A. Molding sand appropriate for the fabrication of cores and molds
WO2002087807A1 (en) 2001-05-01 2002-11-07 International Engine Intellectual Property Company, Llc. Casting sand cores and expansion control methods therefor
WO2009046128A1 (en) 2007-10-03 2009-04-09 Igc Technologies, Llc Material used to combat thermal expansion related defects in the metal casting process
WO2009062074A1 (en) 2007-11-07 2009-05-14 Igc Technologies, Llc Material used to combat thermal expansion related defects in high temperature casting processes
WO2009155242A1 (en) 2008-06-20 2009-12-23 Prince Minerals, Inc. Anti-veining agent for metal casting molds

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874726A (en) * 1987-11-18 1989-10-17 Dresser Industries, Inc. Lightweight fused silica refractory compositions
US5911269A (en) * 1992-11-16 1999-06-15 Industrial Gypsum Co., Inc. Method of making silica sand molds and cores for metal founding
GB9308363D0 (en) * 1993-04-22 1993-06-09 Foseco Int Refractory compositions for use in the casting of metals
DE102004042535B4 (de) * 2004-09-02 2019-05-29 Ask Chemicals Gmbh Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung
EP2104580B2 (de) * 2006-10-19 2022-02-23 ASK Chemicals GmbH Kohlenhydrathaltige formstoffmischung mit ein anteil eines teilchenförmigen metalloxids zum auf wasserglas basierendem bindemittel zugesetz

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1096706A (en) * 1965-08-11 1967-12-29 Foseco Int Production of steel ingots
US4735973A (en) 1985-11-15 1988-04-05 Brander John J Additive for sand based molding aggregates
ES2115563A1 (es) * 1996-12-27 1998-06-16 Iberica Ashalnd Chemical S A Arena de moldeo adecuada para fabricar machos y moldes de fundicion.
ES2116245A1 (es) 1996-12-27 1998-07-01 Iberia Ashland Chem Sa Mejoras introducidas en el objeto de la solicitud de patente de invencion española n- p9602752 por "arena de moldeo adecuada para fabricar machos y moldes de fundicion.
EP0891954A1 (en) 1996-12-27 1999-01-20 Iberia Ashland Chemical, S.A. Molding sand appropriate for the fabrication of cores and molds
WO2002087807A1 (en) 2001-05-01 2002-11-07 International Engine Intellectual Property Company, Llc. Casting sand cores and expansion control methods therefor
WO2009046128A1 (en) 2007-10-03 2009-04-09 Igc Technologies, Llc Material used to combat thermal expansion related defects in the metal casting process
WO2009062074A1 (en) 2007-11-07 2009-05-14 Igc Technologies, Llc Material used to combat thermal expansion related defects in high temperature casting processes
WO2009155242A1 (en) 2008-06-20 2009-12-23 Prince Minerals, Inc. Anti-veining agent for metal casting molds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660222A4

Also Published As

Publication number Publication date
JP2014500150A (ja) 2014-01-09
JP5801900B2 (ja) 2015-10-28
CN103384653A (zh) 2013-11-06
EP2660222A1 (en) 2013-11-06
CA2822690A1 (en) 2012-07-05
US20130266476A1 (en) 2013-10-10
AU2010366563A1 (en) 2013-07-11
BR112013016833A2 (pt) 2016-09-27
RU2570680C2 (ru) 2015-12-10
RU2013127624A (ru) 2015-02-10
MX352826B (es) 2017-12-11
MX2013006692A (es) 2013-12-02
UA106559C2 (uk) 2014-09-10
EP2660222A4 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
ES2741508T3 (es) Procedimiento para la construcción en capas de cuerpos que comprenden material base refractario a moldear y resoles
WO2012089856A1 (es) Aditivo antiveining para la preparación de moldes y machos de fundición
WO1998029353A1 (es) Arena de moldeo adecuada para fabricar machos y moldes de fundicion
ES2906237T3 (es) Mezclas de materiales para molde a base de ligantes inorgánicos y método para fabricar moldes y machos para fundición de metales
ES2731822T3 (es) Procedimiento para la preparación de mezclas de material de moldeo que contienen litio a base de un aglutinante inorgánico para la preparación de moldes y núcleos para la fundición de metal
ES2342734T3 (es) Material de moldeo, mezcla de materiales de moldeo para funderia y procedimiento para la fabricacion de un molde o de una pieza moldeada en bruto.
ES2719438T3 (es) Mezcla de material moldeable que contiene resoles y dióxido de silicio amorfo, moldes y núcleos fabricados a partir de ella y procedimiento para su fabricación
KR20120123049A (ko) 탄산염을 포함하는 주조 혼합물 및 그 사용 방법
WO2005113174A1 (ja) レジンコーテッドサンド
JP4448945B2 (ja) 鋳型砂とその製造方法
US20090032210A1 (en) Exothermic And Insulating Feeder Sleeves Having A High Gas Permeability
JP5567353B2 (ja) 球状耐火粒子及びそれからなる鋳物砂並びにそれを用いて得られた鋳型
JP6462347B2 (ja) 鋳型砂とその製造方法
JP5075902B2 (ja) 鋳型砂とその製造方法
JP5600472B2 (ja) 鋳物砂及び鋳物砂組成物並びにそれを用いて得られた鋳造用鋳型
KR20060052187A (ko) 세라믹스 입자
JPH05169184A (ja) 高珪酸質球状鋳物砂及びその製造方法
US20090114364A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
US9764377B2 (en) Method for the production of core sand and/or molding sand for casting purposes
EP3290130A1 (en) Anti-veining additive for silica sand mold
US8011419B2 (en) Material used to combat thermal expansion related defects in the metal casting process
ES2342733T3 (es) Molde o pieza moldeada en bruto, mezcla de materiales de moldeo para funderia y procedimiento para su fabricacion.
JP2011088186A (ja) 鋳物砂及び鋳造用鋳型
JP2001286977A (ja) 鋳型および鋳型の製造方法
JP2022117455A (ja) 無機コーテッドサンド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13993484

Country of ref document: US

Ref document number: MX/A/2013/006692

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010861393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2822690

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: A201307766

Country of ref document: UA

Ref document number: 2013/07364

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2013545444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010366563

Country of ref document: AU

Date of ref document: 20101230

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013127624

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013016833

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013016833

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130628