WO2012089736A1 - Sirna gegen cbl-b und optional il2 und il12 zur verwendung in der behandlung von krebs - Google Patents

Sirna gegen cbl-b und optional il2 und il12 zur verwendung in der behandlung von krebs Download PDF

Info

Publication number
WO2012089736A1
WO2012089736A1 PCT/EP2011/074099 EP2011074099W WO2012089736A1 WO 2012089736 A1 WO2012089736 A1 WO 2012089736A1 EP 2011074099 W EP2011074099 W EP 2011074099W WO 2012089736 A1 WO2012089736 A1 WO 2012089736A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbl
cells
inhibitor
cell
ifn
Prior art date
Application number
PCT/EP2011/074099
Other languages
English (en)
French (fr)
Inventor
Günther LAMETSCHWANDTNER
Hans Loibner
Manfred Schuster
Isabella Haslinger
Sandra Seidl
Original Assignee
Apeiron Biologics Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apeiron Biologics Ag filed Critical Apeiron Biologics Ag
Priority to US13/977,453 priority Critical patent/US9186373B2/en
Priority to EP11805055.8A priority patent/EP2658566B1/de
Priority to ES11805055.8T priority patent/ES2622958T3/es
Priority to CA2822114A priority patent/CA2822114C/en
Priority to AU2011351445A priority patent/AU2011351445B2/en
Publication of WO2012089736A1 publication Critical patent/WO2012089736A1/de
Priority to US14/801,366 priority patent/US20150313931A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2013IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/208IL-12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/212IFN-alpha
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/215IFN-beta
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to therapeutic methods for activating the innate immune system, in particular NK cells.
  • NK cells naturally killer cells belong to the lymphocytes (subgroup of white blood cells or leukocytes). They are able to recognize and kill abnormal cells such as tumor cells and virus-infected cells. NK cells have no antigen-specific receptors and belong to the innate immune system. Among other things, NK cells recognize the MHC-I complex, which is found on almost all healthy body cells. If a cell becomes infected by viruses or transforms into a tumor cell, the MHC-I complex may be lost on the surface. NK cells develop like the other lymphocytes from lymphoid progenitor cells in the bone marrow and circulate later in the bloodstream.
  • Cbl-b is a negative regulator responsible for T cells'"immunoreactivity.
  • Cbl-b suppresses activation of T cells and is In the absence of Cbl-b, administered but barely immunogenic substances can induce a strong immune response, Cbl-b deficient mice (homozygous gene knock-out) are viable, and their immune system is capable of efficiently autologous know -induced tumors to it ⁇ and the other hand to build a mainly CD8 + T cell-based lytic immune response.
  • be ⁇ signed, utter disconnection of the enzyme also led to increased autoimmunity after immunization with superantigens.
  • WO 2008/033403 A describes the increase in reactivity of CD8 + T cells by reducing Cbl-b activity.
  • Inhibitory RNA sequences, especially of siRNA, against Cbl-b are disclosed.
  • WO 2009/073905 A2 describes an ex vivo treatment of cells of the immune system by means of Cbl-b inhibitors.
  • WO 2010/119061 A1 relates to methods for the intracellular determination of Cbl-b expression.
  • Wigginton et al. (Expert Opinion on Biological Therapy 2002; 2 (5): 513-524) describes the infiltration of tumor tissue by CD8 + T cells with the administration of IL-12 and IL-2.
  • T cells ie cells of the adaptive immune system
  • Cbl-b inhibition in order to promote an immune response.
  • Such promotion of munantwort in ⁇ is especially severe chronic diseases of therapeutic interest, in which insufficient Ak ⁇ tivity of the immune system is causal for the course of the disease.
  • diseases are, for example, chronic infectious ⁇ tions or tumors.
  • just effective immune responses in these diseases require an efficient interaction of the adaptive and the innate immune system where ⁇ no adequate treatment approaches are clinically available at particular for the activation of NK cells.
  • the invention in a first aspect relates to a method of immunoactivating NK cells comprising the step of reducing or inhibiting Cbl-b function in the NK cells. Inhibition can be achieved by administration of a Cbl-b inhibitor. Such an inhibitor can be administered directly to a patient in vivo.
  • the invention relates to a Cbl-b inhibitor for use in a method of therapeutically treating a patient, comprising introducing the Cbl-b inhibitor into NK cells in the patient. Through this treatment, the NK cells can be activated.
  • administering a Cbl-b inhibitor or "Cbl-b Inhibie ⁇ rung” are terms which are used herein, in particular in the descrip ⁇ bung specific embodiments interchangeable.
  • Cbl-b can be used for Immunthe ⁇ Rapien in a patient, in particular for activating the immune system or the innate immune system, specifically mediated by NK cells.
  • the method according to the invention for the treatment of cancer a viral infection, a bacterial infection, in particular a chronic infection, in particular a chronic infection with intracellularly persistent bacteria, or a parasitic infection, in particular a mycosis, can be used in the patient.
  • the therapy can immunotherapy a chroni ⁇ 's disease, including chronic infections to be.
  • the infection can affect one or more organs, such as the liver.
  • the infection is a viral infection.
  • chronic hepatitis for example, triggered by a Vi ⁇ rusinfetation.
  • Particularly preferred is the treatment of He patitis ⁇ B or hepatitis C.
  • the NK cell activation by means of the present invention is Cbl-b inhibition is particularly effective for such diseases.
  • the patient is preferably a kla ⁇ creatures, especially human.
  • NK cell activation can be combine erfindungsge ⁇ Permitted NK cell activation with conventional therapies.
  • Many cancer treatments such as radiation therapy, chemotherapy ⁇ therapy or surgical removal of tumors are established for years and are constantly being refined and improved.
  • New therapies include immunotherapies and therapies based on specific fish markers of tumor cells, in particular using monoclonal antibodies. The very effect of the latter also depends essentially on the activity of the NK cells, which recognize the tumor cell-bound antibodies via general antibody determinants and subsequently kill the tumor cell.
  • NK cells By activating the innate immune system via the action of NK cells, another strategy is available that can complement and complete previous approaches to promote immune responses as widely as possible, in particular to combat cancer cells.
  • therapies which have a direct cell-damaging effect on the tumor cells eg chemotherapies or radiation therapies, induce the expression of molecules of the MHC class and other immuno-activating receptors, for example of NKG2D ligands.
  • MHC class and other immuno-activating receptors for example of NKG2D ligands.
  • the present invention is to be treated Krebserkran ⁇ effect is preferably selected from cancers of the reproductive tract, in particular, ovarian cancer, testicular cancer, or breast cancer Prosta ⁇ takrebs; Digestive tract cancers, especially stomach cancer, colon cancer, rectal carcinoma, pancreatic cancer, esophageal cancer and liver cancer; Kidney cancer, skin ⁇ cancer, in particular melanoma, basal cell carcinoma and squamous cell carcinoma; Neuroblastoma and glioblastoma, lung cancer, thyroid cancer, sarcomas, head / neck carcinoma, Plat ⁇ tenepithelkarzinomen, lymphomas and leukemias (where the terms "cancer", “tumor”, “cancer”, etc. are always used interchangeably herein and to malignant diseases Respectively.
  • cancers of the reproductive tract in particular, ovarian cancer, testicular cancer, or breast cancer Prosta ⁇ takrebs
  • Digestive tract cancers especially stomach cancer, colon
  • Cbl-b sequences are eg in the GenBank database under the Acc. No. NM_008279 and NP_009112.
  • Anti-Cbl-b antibodies, siRNAs and antisense inhibitors are commercially available.
  • Certain siRNAs suitable for reducing or inhibiting Cbl-b expression and thus also the Cbl-b function are disclosed, for example, in US 2007/0054355 with mixed RNA / DNA nucleotides and a length of about 20 bases.
  • Cbl-b inhibitors are well known in the art. Any Cbl-b inhibitors can be used according to the present invention.
  • the Cbl-b inhi bitor ⁇ is selected from inhibitory nucleic acids, particularly antisense oligonucleotides, particularly RNA, siRNA antisense (small interfering RNA) or shRNA (short hairpin RNA).
  • Nucleic acid inhibitors can be used as such or in the form of vectors which encode and express the inhibition.
  • Suitable Cbl-b inhibitors are, for example, antagonists, aptamers or intramers, preferably Cbl-b siRNA is used. siRNA technology for attenuating specific gene expression has already been described for Cbl-b.
  • Cbl-b inhibitors in the sense of the present invention are substances which reduce or inhibit the expression and / or the function of Cbl-b and can, as known in the art (Loeser et al. (JEM (2007) doi: 10.1084 / iam .20061699; Chiang et al. (Journal of Clinical Investigation 117 (4) (2007): 1033-1034);
  • US 2007/0087988 relates to a method of regulating HPK1 whose expression can be increased by increasing Cbl-b expression and vice versa (e.g., by Cbl-b siRNA inhibition).
  • the Cbl-b function is reduced or inhibited by reducing or inhibiting the expression of Cbl-b.
  • reduction or inhibition refer to lowering the function (or expression) of Cbl-b compared to the unaltered, natural function until complete inhibition of function.
  • the function (or expression) is reduced by at least 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95%.
  • Cbl-b function occurs preferentially in preferred embodiments. That is, the function is only provisionally reduced where indicated and can subsequently recover, for example, by consumption or degradation of inhibitors, such as Cbl-b siRNA, or by neoplasm or non-Cbl-b impaired cells in vivo.
  • inhibitors such as Cbl-b siRNA
  • the transient reduction of Cbl-b in immune cells can also be petitive, for example, until a therapeutic success was achieved.
  • the expression of Cbl-b is reduced or inhibited by using Cbl-b antisense RNA or siRNA.
  • short DNA and / or RNA sequences are used complementary to one of the parts of the target (Cbl-b) mRNA sequence, so that they hybridize with and inactivate.
  • the length of these sequences is preferably at least 15, 18, 20, 22, 25, 28, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180 or 200 bases to to the complete target sequence, preferably up to 2500, 2000, 1500, 1000, 500 or 300 bases.
  • the sequences of SEQ ID Nos. 1, 2, 3, 4, 5, 6, 7 and / or 8 are used.
  • Cbl-b can be reduced or inhibited by a variety of other known components, such as by using Cbl-b antagonists, inhibitors, especially aptamers or intramers.
  • Any antagonists or inhibitors which suppress the action or function of Cbl-b can be used according to the invention to increase the immunoreactivity of NK cells.
  • For the inhibition of Cbl-b also substances can be used, either specifically inhibit the enzymatic E3 ligase activity or inhibit the intracellular assembly of Cbl-b with its Interakti ⁇ onspartner or inhibit the expression of Cbl-b.
  • Antagonists or inhibitors are preferably used for the preparation of a pharmaceutical agent for increasing the immunoreactivity of the NK cells according to the invention.
  • ⁇ made light are treatments of diseases with a suppressed immune system or inefficient, especially cancer or chronic infections.
  • NK cell activators NK cell activators
  • the Verab ⁇ submission of Cbl-b inhibitor or the Cbl-b Inhibition is preferably carried out together with another NK cell stimulie ⁇ leaders substance (NK-cell activator).
  • NK-cell activator NK cell stimulating substance
  • NK cell activating substance NK cell activating substance
  • NK cell activator NK cell activator
  • an NK cell-stimulating substance is a substance which causes activation or stimulation of NK cells in one or more suitable in-vitro assays.
  • the NK cell-stimulating substance causes Pro ⁇ production of IFN-gamma and / or TNF-alpha, and / or the CD107a surface expression by which NK cells, independent of a Cbl-b inhibition.
  • Such production of IFN-gamma, and / or TNF-alpha, and / or CD107a surface expression may be accomplished by methods known in the art (Fauriat Blood.
  • NK cell-stimulating substances can be tested by the direct determination of the cytotoxicity or "killing activity" of the NK cells (as described in Example 4, further corresponding methods are known in the prior art (Ano et al. , J Transl Med 2008 May 16; 6:25; Claus et al, J ⁇ In munol Methods 2009 Feb. 28; 341 (1-2):à 154-64; Fujisaki et al, Cancer Res 2009 May 1 ; 69 (9): 4010-7; Cho et al., Clin Cancer Res.
  • the cytotoxicity of the NK cells or PBMCs is limited to certain target or responder Target cells (in the example 4 SKBR3 tumor cells) are determined, for example by measuring the release of the enzyme LDH from the tumor cell cytosol as a measure of the cell lysis.
  • Target cells in the example 4 SKBR3 tumor cells
  • the NK cells are preferably activated resp ., in order to be able to measure an effect of Cbl-b inhibition, for example by contact with tumor cells (eg K562), and / or by an NK cell-stimulating substance (for example, one or more cytokines, such as. B. IL-2 and / or IL-12), and / or an antibody (eg. As trastuzumab (Herceptin ®)).
  • tumor cells eg K562
  • an NK cell-stimulating substance for example, one or more cytokines, such as. B. IL-2 and / or IL-12
  • an antibody eg. As trastu
  • the present invention relates to the co-administration of the Cbl-b inhibitor with an NK cell activator, in particular selected from an immune cell-stimulating cytokine, for example from a cytokine of common-gamma-chain cytokines, in particular IL -2, IL-15, IL-21; Cytokines that stimulate both adaptive and innate immune cells, particularly IL-12, IL-23, IL-27; Efector cell cytokines such as IL-1, IL-17, IL-18; an interferon, in particular interferon-alpha; or an interferon stimulant; an antibody, in particular an antibody which recognizes tumor cell surface molecules, and / or an antibody whose constant region can bind to the corresponding Fc receptor on NK cells; or a TLR or PAMP receptor ligands, particularly agonists, preferably TLR-1, TLR-2, TLR-3, TLR-7, TLR-8 or TLR-9, as well as combinations of the above NK cell activators
  • the administration of at least one Cbl-b inhibitor and min ⁇ least one NK-cell activator is in defines a patient in the form of one (containing at least one Cbl-b inhibitor and at least one NK cell activator) or several different pharmaceutical compositions (one containing at least one Cbl-b inhibitor, another at least one NK cell can be carried out activator, and optionally other pharmaceutical composition ⁇ subsidence).
  • the administration of at least one Cbl-b inhibitor and min ⁇ least one NK-cell activator is in defines a patient in the form of one (containing at least one Cbl-b inhibitor and at least one NK cell activator) or several different pharmaceutical compositions (one containing at least one Cbl-b inhibitor, another at least one NK cell can be carried out activator, and optionally other pharmaceutical composition ⁇ subsidence).
  • a patient in the form of one (containing at least one Cbl-b inhibitor and at least one NK cell activator) or several different pharmaceutical compositions (one containing at least one Cbl-b inhibitor
  • NK-cell activator in particular IL-2, IL-15 , IL-12, IL-23, interferon, an interferon stimulant, imiquimod and other TLR7 / 8 agonists, such as
  • NK cell activators that can be combined with the administration of the Cbl-b inhibitor include e.g. a cytokine of the common-gamma-chain cytokines with another of the above NK cell activators; or an adaptive as well as innate immune system cytokine with another of the above NK cell activators.
  • Particularly preferred combinations are those with a cytokine of the common-gamma chain cytokines and a cytokine of the adaptive as well as innate immune system, in particular IL-2 and IL-12.
  • a cytokine of the common gamma-chain cytokines in the context of the present invention is selected from the family of cyto ⁇ kinen that the so-called common cytokine receptor gamma-chain or "common-cytokine receptor gamma-chain” (y c or CD132) in their receptor complexes, and consists of different members with a similar structure with four alpha helices bundles. This family includes z.
  • Interleukin (IL) -2, IL-4, IL-7, IL-9, IL-15, IL-21 and thymic stromal derived lymphopoietin (TSLP), an immune cell-stimulating cytokine, a cytokine of the adaptive as well as the innate immune system, an effector cell cytokine, or an interferon stimulant according to the present invention are preferably selected from the group comprising IL-1, IL-2, IL-3, IL-4, IL-5, IL -6, IL-7, IL-8, IL-9, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17a, IL-17f, IL-18 , IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL -31, IL-32, IL-
  • a particularly preferred embodiment of the invention consists in the administration of a Cbl-b inhibitor together with IL-2, optionally with one or more further NK cell activators, in particular IL-12, IL-23, IFN-alpha and / or IFN-beta.
  • a further particularly preferred disclosed embodiment of the He ⁇ invention consists in the administration of a Cbl-b inhibitor to ⁇ together with IFN-alpha, optionally with one or more other NK cell activators, especially IL-15 and / or IL-21 ,
  • a further particularly preferred disclosed embodiment of the invention be ⁇ is on the administration of a Cbl-b inhibitor together with IL-12, optionally with one or more other NK-cell activators, in particular IL-15 and / or IL-7th
  • the NK cell-stimulating substances used in NK cells cause IFN-gamma production and / or TNF-alpha production, and / or increased CD107a surface expression, and / or increased cytotoxicity on target - cells.
  • IFN-alpha, IL-12 or IL-23 for example, cause particularly strong IFN-gamma responses in NK cells.
  • the activation of NK cells by inhibiting Cbl-b with IFN gamma production-causing NK cell-stimulating substances produce particularly strong synergistic effects, which goes far beyond the expected effect of the individual substances.
  • the Cbl-b inhibitor can be used together with an antibody z. B. against tumor cell determinants, optionally combined with one or more of the above-mentioned im- mungentatoren or one or more of the above-mentioned NK cell-stimulating substances.
  • the inhibition of Cbl-b in NK cells as well as the administration of the additional NK cell activator or the antibody directed against tumor cells can be carried out in vivo, for example by direct administration to the patient.
  • the Cbl-b inhibitor is coupled to a ligand of an NK cell recognition molecule, eg, an NK cell surface molecule.
  • a ligand may be, for example, a naturally occurring protein or other biomolecule or a functional derivative thereof which can bind NK cells.
  • a ligand may be an antibody to an NK cell recognition molecule.
  • the invention preferably specifically activated before ⁇ the NK cells by Cbl-b-inhibition, for example by coupling to a ligand of such NK cell recognition molecule in vivo.
  • NK-cell Akti ⁇ vation should be understood as increased effect on NK cells in comparison to non-specific, eg uncontrolled or uncoupled Cbl-b-inhibitor administrations, which may also have an effect in other cells
  • NK cell activation is understood to be an effect, particularly on NK cells, compared to administrations of a Cbl-b inhibitor alone (without administration with an NK cell activator) or compared to administration of a Cbl-b Inhibitor which is not coupled to a ligand of an NK cell recognition molecule.
  • Nonspecific Verab ⁇ submission for example, by simple administration of the inhibitor without additional administration of NK-cell stimulants or NK-cell-specific modifications of the inhibitor by coupling to an NK cell recognition molecule.
  • the specific NK cell activation makes it possible to specifically control the NK cell-mediated immune response (innate immune system) according to the invention, with fewer or undesired side effects, for example due to the adaptive immune system.
  • antibody is understood as IgG, IgD, IgA, IgE, IgM antibodies, and their functional derivatives, which ⁇ example as Fab, Fab ', F (ab) 2- / F (ab ') 2 _ fragments, single an ⁇ ti emotions (scAb or scFv), or a fragment of an antibody variable domain, and which comprise an antigen, here par- a specific NK cell recognition molecule, or the corresponding Fc receptor to NK cells specifically bind or are directed against it.
  • Antibodies of the invention preferably have a constant region, particularly an Fc domain, which can bind to the ent ⁇ speaking Fc receptor on NK cells.
  • the antibody may be monoclonal or polyclonal.
  • Antibodies, which are to be administered on a regimen in combination with the inventive Cbl-b inhibitor as described before to ⁇ are directed against an epitope of a pathogen or a Tu ⁇ morepitop, and preferably have an Fc domain.
  • the preferred NK cell recognition molecules include, in particular, those which either occur specifically only on NK cells or which are expressed particularly frequently on NK cells and optionally additionally on other immune cells whose activity can be increased as desired by Cbl-b inhibition, for example CD2, CD8a, CD16, CD25, CD27, CD156, CD160, CD161, CD205, CD206, CD205, CD314, CD335, CD336, CD337.
  • Cbl-b inhibitor allows the Cbl-b inhibitor to be selectively targeted to and taken up by cells either specifically to NK cells or to NK cells and other relevant subtypes of immune cells in a patient. This can be used to ensure that only specifically in the desired target cells, the Cbl-b inhibitor is therapeutically effective.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a Cbl-b InHi ⁇ bitor and an additional NK cell activator as described above, in particular, an immune cell-stimulating cytokine, an interferon or interferon-stimulant, an antibody, or a TLR - or PAMP receptor ligands.
  • a pharmaceutical composition can be used for the above purposes to inhibit Cbl-b either alone or in combination with other NK cell activators.
  • the composition comprises a pharmaceutically acceptable carrier ⁇ table, preferably suitable for intrazellu ⁇ lar administration in a patient, in particular vehicles such as liposomes or microsomes formulations which are particularly preferred for administration of nucleic acids.
  • Pharmaceutical compositions may include pharmaceutically acceptable salts, in addition to buffers, tonicity components or pharmaceutically acceptable carriers.
  • inhibitory nucleic acid Such as antisense nucleic acids, siRNA, shRNA, can be provided in suitable therapeutic vector systems.
  • Pharmaceutical carrier substances serve to improve the compatibility of the composition and allow better solubility and better bioavailability of the active substances. Examples of these are emulsifiers, thickeners, redox components, starch, alcohol solutions, polyethylene glycol or lipids.
  • the selection ei ⁇ nes suitable pharmaceutical carrier is strongly dependent on the type of administration. Liquid or solid carriers can be used for oral administration, liquid end compositions are advantageous for injections.
  • the medicament to be used according to the invention preferably comprises buffer substances or tonic substances.
  • buffer By means of buffer the pH value of the medicament can be adjusted to physiological conditions and furthermore pH fluctuations can be attenuated or buffered.
  • An example of this is a phosphate buffer.
  • Tonic substances are used to adjust the osmolarity and may include ionic substances such as organic salts such as NaCl or non-ionic substances such as glycerol or carbohydrates.
  • the composition to be used according to the invention is suitably prepared for systemic, topical, oral or intranasal administration.
  • These administration forms of the medicament of the present invention allow rapid and uncomplicated uptake.
  • solid or liquid medications ⁇ di rectly or dissolved or can be taken diluted.
  • the medicament according to the invention to be used is preferential ⁇ example suitable prepared for intravenous, intraarterial, intramuscular, intravascular, intraperitoneal or subcutaneous administration.
  • injections or transfusions are suitable for this purpose.
  • Administration into the bloodstream have the advantage that the active ingredients of the drug will be distributed throughout the body and reach the target tissues quickly it ⁇ directly.
  • topical administrations are planned.
  • administration directly into or near the site at which an immune response is to be triggered or amplified, for example the location of an infection or a tumor has the advantage that the NK-cell activation occurs ostensibly at the target site.
  • ex vivo treatments of NK cells are possible.
  • NK cells are isolated from a patient ex vivo treated according to the invention and acti ⁇ fourth and then returned to the patient.
  • Such an ex vivo method of treating cells of the immune system is described, for example, in WO 2009/073905 (incorporated herein by reference), and may be applied to NK cells in accordance with the invention.
  • NK-cell activators such as immune cell stimulatory cytokines, in particular IL-2 and / or IL-12, an interferon or interferon-stimulant, an antibody, or a TLR or PAMP receptor ligand, preferably TLR-2, TLR-7 or TLR-8, as well as combinations thereof.
  • the Cbl-b inhibition or the additional NK cell activators are administered ex vivo to the NK cells and further activation occurs in vivo, eg, ex vivo Cbl-b inhibition and in vivo administration of the additional NK Cell activator, or vice versa.
  • NK cell activation can be carried out ex vivo.
  • Isolated and activated NK cells can be targeted to the target site.
  • the NK cells can be isolated ex vivo.
  • ex vivo NK cells can be excised or isolated from them in a cell isotope, eg PBMCs.
  • Ex vivo treatment of NK cells may also include expanding, preferably as in US 7,435,596 B2 or WO
  • NK cells can be contacted with NK cell-activating cells which express the MHC-I complex only in a reduced manner and express membrane-bound IL-15.
  • NK cells can be contacted with IL-15 or an IL-15 receptor antibody and a CD137 ligand or a CD137 antibody. This expansion is optionally done in combination with the said additional NK cell activators such as immune cell stimulating cytokines.
  • FIG. 1 PBMCs or cell fractions isolated therefrom were inhibited by means of Cbl-b siRNA and then stimulated with IL-2 and IL-12 and the IFN-gamma production was measured after 24 h.
  • FIG. 2 PBMCs or cell fractions isolated therefrom were inhibited by Cbl-b siRNA, stimulated by co-incubation with the K562 tumor cell line and the IFN-gamma production was measured after 24 h.
  • FIG. 3 Isolated NK cells were inhibited by Cbl-b siRNA and stimulated by K562 or IL-2 and IL-12 and TNF-alpha production measured after 24 h.
  • PBMCs were inhibited with Cbl-b siRNA and incubated for 4h with the tumor cell line SKBR3 and as indicated additionally with the addition of Herceptin or cytokine. Cytotoxicity was then ⁇ be true due to the released cellular LDH enzyme, which was measured by enzymatic assay.
  • Fig. 5 Cbl-b silencing in NK cells, the Reeducationt2011 ge ⁇ genüber increased IFN-alpha stimulation: NK cells were inhibited by Cbl-b siRNA and stimulated by IFN-alpha and IFN-gamma production after 24h was measured.
  • Fig. 6 Cbl-b silencing in NK cells, the Reeducationt2011 increased ge ⁇ genüber combinations of interleukins and IFN-alpha: NK cells were inhibited by Cbl-b siRNA, and by IL-2, IL-7, IL-15 or IL-21 either alone or together with IL-12, IL-23 or IFN-alpha stimulated and measured TNF-alpha production after 24 h.
  • Fig. 7 Cbl-b silencing in NK cells increases the reactivity ge ⁇ genüber combinations of IL-12 with various common cytoki- ne receptor gamma-chain cytokines: NK cells were inhibited by Cbl b siRNA, and by IL- 2, IL-7 and IL-15 and entwe ⁇ alone or together with IL-12 stimulated and the IFN-gamma Production measured after 24h.
  • FIG. 8 Cbl-b silencing in NK cells not only increases the reactivity to combinations of IL-2 with IL-12, IL-23 and IFN-alpha or IFN-beta: NK cells were inhibited by Cbl-b siRNA , and stimulated by IL-23, IFN-alpha or IFN-beta either alone or in the presence of IL-2, and IFN-gamma production measured after 24 hours.
  • NK cells WUR ⁇ inhibits by Cbl-b siRNA, and by IL-2 and stimulated either IFN-alpha or IL-12 and determined CD69 expression after 48 h.
  • siRNA sequences were used to inhibit Cbl-b:
  • PBMCs whole blood was taken from a donor and PBMCs separated therefrom by centrifugation. From PBMCs, NK cells (including the CD8 + CD3 ⁇ fraction) and then the CD8 and CD4 T cells were isolated by magnetic selection. By FACS, it was verified that the pure ⁇ integral of the respective cell populations was at least 90%. Both the PBMCs and the cell fractions isolated therefrom were transfected with siRNA Cbl-b using an Amaxa transfection device and with recombinant human IL-2
  • Example 3 Cbl-b inhibition in NK cells and costimulation
  • NK cells are via tumor cell lines whose aberrant surface marker expression can no longer maintain the appropriate balance between inhibitory and activating NK receptors and thus cause activation of NK cells, for example, the K562 tumor cell line.
  • PBMCs as well as CD8 and NK cells WUR ⁇ isolated as described above and fied with Cbl-b siRNA trans ⁇ . 1 ⁇ 10 ⁇ 5 of these transfected cells were then either alone (unstim), or each 6 ⁇ 10 ⁇ 4 K562 tumor cells in medium XVIVO incubated overnight and the IFN-gamma secretion determined as above.
  • PBMCs One of the major functions of NK cells in the context of tumorigenesis is the direct destruction of tumor cells. It was therefore tested whether Cbl-b inhibited PBMCs are better able to destroy tumor cells. Touch or target cell line while the Her2-positive SKBR3 breast carcinoma line was USAGE ⁇ det, as can be tested in this context also be ⁇ sat in tumor therapy antibodies against Her2 (trastuzumab or Herceptin). PBMCs were isolated again as described above and transfected with Cbl-b siRNA and incubated either alone or with 4 ⁇ 10 ⁇ 4 SKBR3 cells in XVIVO medium for 4h.
  • Herceptin 1 ⁇ g / ml of Herceptin antibody was added as well as stimulated in the conditions designated IL-2 and IL-12 as described above.
  • the cytotoxicity of the PBMCs on the SKBR3 tumor cells was then determined by the colorimetric measurement of the release of the enzyme LDH from the tumor cell cytosol.
  • Example 5 Cbl-b silencing in NK cells increases the reactivity to IFN-alpha stimulation
  • NK cells contained in PBMCs were isolated as in Example 2 and silenced by siRNA.
  • the anti-Cbl-b siRNA sequences used were:
  • Cbl-b siRNA 2 5 - GUGAGA AUGAGUACUUUAAA - 3 '(SEQ ID NO: 7)
  • the cells were then stimulated either without cytokine or with IFN-alpha overnight (5 and 50 ng / ml, respectively, as indicated in Figure 5) and the IFN-gamma secretion of the cells thus treated was then measured by ELISA.
  • the result clearly shows that inhibition of Cbl-b in NK cells results in greatly increased IFN-gamma production ( Figure 5).
  • the IFN-gamma production by T and NK cells in the liver has been defined as one of causal factors of the effectiveness of IFN-alpha therapy in the treatment of chronic hepatitis Be ⁇ infections. This is a rational for a combination therapy of Cbl-b silencing with systemic IFN-alpha therapy, especially in those cases where the standard therapy with IFN-alpha alone is not sufficient for complete healing.
  • the liver is in principle an ideal target organ for siRNA Thera ⁇ pien because the gene expression in the liver is good altered by systemic administration of siRNA.
  • siRNA Thera ⁇ pien because the gene expression in the liver is good altered by systemic administration of siRNA.
  • both a Cbl-b inhibition in NK cells by direct systemic administration of Cbl-b specific siRNA is possible as well as a cell therapy by transfer of ex vivo gesilenceden NK cells, since it can be assumed that these after intravenous Refundie migrate sufficiently to the area of the diseased liver.
  • Example 6 Cbl-b Silencing in NK Cells Increases Reactivity to Combinations of IL-2 with IFN-alpha or IL-12 / IL-23.
  • IL-2 is a member of the so-called "common cytokine receptor gamma-chain" family, and other members of this family include IL-7, IL-15, and IL-21, while IL-23 is structurally structural in several respects and functionally similar, and so as IFN-alpha and IL-12 produced by activated DEND ⁇ ritischen cells inter alia by also have an essential role in the activation of NK cells.
  • the NK cells were stimulated with the common cytokine receptor gamma-chain cytokines IL-2, IL-7, IL-15 and IL-21 either alone or together with IL-12, IL-23 or IFN-alpha.
  • the DC cytokines IL-12, IL-23 and IFN-alpha were also added without common cytokine receptor gamma-chain cytokines.
  • the NK cells contained in PBMCs were isolated as in Example 5 and directly compared with siRNA gesilenced (with Cbl-b siRNA 2) and the control-treated or Cbl-b gesilenceden NK cells.
  • the NK cells were stimulated overnight with the cytokines as indicated (all common cytokine receptor gamma-chain cytokines 50 ng / ml, the DC cytokines IL-12, IL-23 and IFN-alpha 10 ng / ml).
  • cytokines all common cytokine receptor gamma-chain cytokines 50 ng / ml, the DC cytokines IL-12, IL-23 and IFN-alpha 10 ng / ml.
  • WUR ⁇ de TNF-alpha is selected (determined by ELISA) as TNF alpha is a BlackBerryzytokin in immune reactions and its production as IL-12 does not depend as IFN-gamma.
  • the results in Figure 6 show that Cbl-b inhibition of NK cells results in much greater activation and thus higher production of TNF-alpha.
  • TNF-alpha production was particularly strong when the Cbl-b-silenced NK cells were co-stimulated with combinations of IL-2 and a DC cytokine such as IL-12, IL-23 and IFN-alpha.
  • a DC cytokine such as IL-12, IL-23 and IFN-alpha.
  • other common cytokine receptor gamma-chain cytokines, especially IL-15 in the presence of IFN-alpha led to a much stronger response of Cbl-b-sifted NK cells.
  • the additional stimulus by means of common cytokine receptor gamma-chain cytokines IL-2 or IL-15 in vivo can be achieved, for example, by immunization with anti-tumor vaccines leading to production of IL-2 and IL-15 by activated antigen-specific T cells. cells nect ⁇ reindeer, or provided through direct therapeutic administration to the patient.
  • Example 7 Cbl-b silencing in NK cells increases the reactivity towards combinations of IL-12 with different common cytokines kine receptor gamma-chain cytokines.
  • NK cells contained in PBMCs were isolated as in Examples 5 and 6, silenced and with the cytokines IL-2 (50 ng / ml), IL-7 and IL-15 (20ng / ml each) either alone or in the presence of IL-12
  • Cbl-b are gesilencede yaw NK cells capable of substantially greater responsive to the simultaneous presence of IL-12 and IL-7 or IL-15 to rea ⁇ .
  • Example 8 Cbl-b silencing in NK cells increases the reactivity not only to combinations of IL-2 with IL-12, IL-23 and IFN-alpha but also with IFN-beta.
  • Example 6 Since it was shown in Example 6 that Cbl-b in inhibition of NK cells leads to an increased stimulability by IL-2 and IFN-alpha, was also tested whether IFN-beta is capable of gleichar ⁇ term effect.
  • the NK cells contained in PBMCs were isolated as in Example 6, silenced and with the cytokines ⁇ kines IL-23, IFN-alpha or IFN-beta and either alone or in the presence of IL-2 (50 ng / ml) as indicated overnight. IFN-gamma production was determined by ELISA.
  • the results in Figure 8 show that the Cbl-b-silenced NK cells are capable of a much greater response in the form of IFN-gamma production to all 3 cytokines tested in the presence of IL-2.
  • Example 9 The increased reactivity of NK cells after Cbl-b silencing to cytokine stimulation leads to an increase of the activation marker CD69 on the cell surface
  • the expression of the activation marker CD69 on the cell surface was further investigated by means of FACS.
  • the NK cells contained in PBMCs were isolated as in Example 6, silenced and stimulated with the cytokines IL-2 and either IFN-alpha or IL-12. After 2 days, cells were harvested and surface expression of CD69 was assayed by FACS on an FC500 cytometer.
  • Figure 9A shows as an example the increased CD69 expression of Cbl-b-seriated NK cells as compared to control-treated ones both treated with IFN-alpha and IL-2 in the overlay histogram.
  • Figure 9B summarizes the quantitative evaluation of CD69 expression for stimulation with IL-2 and either IFN-alpha or IL-12.
  • Cbl-b-silenced NK cells are hyperreactive to stimulation with these cytokines, and this increased reactivity is directly cellular in the increased upregulation of the activation marker CD69.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Immunaktivierung von NK-Zellen durch Reduzierung oder Inhibierung der Cb1-b Funktion in den NK-Zellen. Dadurch wird das angeborene Immunsystem stimuliert wodurch die Therapie geeigneter Krankheiten ermöglicht wird.

Description

SIRNA GEGEN CBL-B UND OPTIONAL IL2 UND IL12 ZUR VERWENDUNG IN DER BEHANDLUNG VON
KREBS
Die vorliegende Erfindung betrifft therapeutische Verfahren zur Aktivierung des angeborenen Immunsystems, insbesondere von NK-Zellen.
NK-Zellen (natürliche Killerzellen) gehören zu den Lymphozyten (Untergruppe der weißen Blutzellen oder Leukozyten) . Sie sind in der Lage abnormale Zellen, wie Tumorzellen und virusinfizierte Zellen, zu erkennen und abzutöten. NK-Zellen besitzen keine Antigen-spezifischen Rezeptoren und gehören zum angeborenen Immunsystem. NK-Zellen erkennen unter anderem den MHC-I- Komplex, der auf nahezu allen gesunden Körperzellen vorkommt. Wird eine Zelle durch Viren infiziert oder wandelt sie sich in eine Tumorzelle um, so geht unter Umständen der MHC-I-Komplex auf der Oberfläche verloren. NK-Zellen entwickeln sich wie die anderen Lymphozyten aus lymphatischen Vorläuferzellen im Knochenmark und zirkulieren später im Blutkreislauf.
Loeser et al . (JEM (2007) doi : 10.1084/iem.20061699) zeigten, dass Cbl-b ein negativer Regulator ist, der maßgeblich für die „Immunreaktivität" von T-Zellen verantwortlich ist. Cbl-b unterdrückt die Aktivierung von T-Zellen und ist in der Lage Autoimmunreaktion zu verhindern. In Abwesenheit von Cbl-b können verabreichte aber kaum immunogene Substanzen zur Induktion einer starken Immunantwort führen. Ferner sind Cbl-b defiziente Mäuse (homozygotischer Gen knock-out) lebensfähig und deren Immunsystem ist in der Lage effizient autolog-induzierte Tumore zu er¬ kennen und dagegen eine vor allem auf CD8+ T-Zellen-beruhende lytische Immunantwort aufzubauen. Allerdings führte die be¬ schriebene, gänzliche Abschaltung des Enzyms ebenfalls zu einer erhöhten Autoimmunität nach Immunisierung mit Superantigenen.
Chiang et al . (Journal of Clinical Investigation 117 (4) (2007) : 1033-1034) schreiben, dass Cbl-b~/~ CD8+ T-Zellen verwen¬ det werden können, um die anti-Tumor-Reaktivität in E.G7-Mäusen zu erhöhen.
Kojo et al. (PNAS 2009; 106(42) : 17847-17851) beschreibt ei¬ nen Cbl-b beinflussten Mechanismus in einer künstlich ausgelösten Anergie von NKT-Zellen.
Die WO 2008/033403 A beschreibt die Erhöhung der Reaktivität von CD8+ T-Zellen durch Reduzierung der Cbl-b Aktivität. Inhibitorische RNA Sequenzen, insbesondere von siRNA, gegen Cbl-b wird offenbart .
WO 2009/073905 A2 beschreibt eine ex vivo Behandlung von Zellen des Immunsystems mittels Cbl-b Inhibitoren.
WO 2010/119061 AI betrifft Verfahren zur intrazellulären Bestimmung der Cbl-b Expression.
Lametschwandtner et al . (Journal of Immunotherapy 31 (9) (2008) : 943) beschreiben Immuntherapien, welche auf der Unterdrückung von Cbl-b in T-Zellen beruhen.
Wigginton et al . (Expert Opinion on Biological Therapy 2002; 2(5) : 513-524) beschreibt die Infiltration von Tumorgewebe durch CD8+ T-Zellen bei Gabe von IL-12 und IL-2.
Weiss et al . (Expert Opinion on Biological Therapy, 2007; 7(11) : 1705-1721) beschreibt verschiedene Kombinationen von IL- 12 mit weiteren Zytokinen als Wirkstoffe gegen Krebs.
Lametschwandtner et al . (J. of Immunotherapy 2010; 33(8) : 899) beschreibt immunsteigernde Effekte von IL-7.
Stromnes et al . (J. of Clinical Investigation 2010; 120(10) : 3722-3734) zeigt, dass die Verabreichung von ex vivo expandierten Cbl-b_ ~ CD8 T-Zellen bei adoptiver Immuntherapie in Mäusen eine Antitumor-Reaktion in vivo auslöst.
Somit war bekannt, dass T-Zellen, also Zellen des adaptiven Immunsystems, mittels Cbl-b Inhibition aktiviert werden können um eine Immunantwort zu fördern. Eine solche Förderung der Im¬ munantwort ist besonders für schwere chronische Krankheiten von therapeutischem Interesse, bei denen die nicht ausreichende Ak¬ tivität des Immunsystems kausal für den Verlauf der Erkrankung ist. Solche Erkrankungen sind beispielsweise chronische Infekti¬ onen oder Tumorerkrankungen. Allerdings bedürfen gerade effektive Immunantworten in diesen Erkrankungen eines effizienten Zusammenspiels des adaptiven und des angeborenen Immunsystems, wo¬ bei insbesondere zur Aktivierung von NK-Zellen noch keine ausreichenden Behandlungsansätze klinisch verfügbar sind.
Es ist daher ein vorrangiges Ziel neue Verfahren zu finden, welche durch die Aktivierung des angeborenen Immunsystems unter besonderer Bezugnahme auf NK-Zellen somit zu einer stark verbesserten Effektivität von Immunantworten führen können.
Erfindungsgemäß wurde dieses Ziel durch die Inhibition von Cbl-b in NK-Zellen gelöst. Die Erfindung betrifft in einem ersten Aspekt ein Verfahren zur Immunaktivierung von NK-Zellen umfassend den Schritt der Reduzierung oder Inhibierung der Cbl-b Funktion in den NK-Zellen. Die Inhibierung kann durch Verabreichung eines Cbl-b Inhibitors erzielt werden. Ein solcher Inhibitior kann direkt in vivo an einen Patienten verabreicht werden.
In einem gleichwertigen damit verbundenen Aspekt betrifft die Erfindung einen Cbl-b Inhibitor zur Verwendung in einem Verfahren zur therapeutischen Behandlung eines Patienten umfassend die Einbringung des Cbl-b Inhibitors in NK-Zellen im Patienten. Durch diese Behandlung können die NK-Zellen aktiviert werden.
„Verabreichung eines Cbl-b Inhibitors" oder „Cbl-b Inhibie¬ rung" sind Begriffe, die hierin, insbesondere bei der Beschrei¬ bung spezieller Ausführungsformen, austauschbar verwendet werden .
Die erfindungsgemäße Inhibition von Cbl-b kann für Immunthe¬ rapien in einem Patienten verwendet werden, insbesondere zur Aktivierung des Immunsystems bzw. des angeborenen Immunsystems, speziell vermittelt durch NK-Zellen. Insbesondere kann das er¬ findungsgemäße Verfahren zur Behandlung von Krebs, einer Virusinfektion, einer bakteriellen Infektion, insbesondere einer chronischen Infektion, im Besonderen einer chronische Infektion mit intrazellulär persistenten Bakterien, oder einer Parasiteninfektion, insbesondere einer Mykose, in dem Patienten eingesetzt werden. Die Therapie kann eine Immuntherapie einer chroni¬ schen Krankheit, inklusive chronischer Infektionen, sein. Die Infektion kann eines oder mehrere Organe betreffen, z.B. die Leber. Vorzugsweise ist die Infektion eine virale Infektion. Ein Beispiel ist chronische Hepatitis, z.B. ausgelöst durch eine Vi¬ rusinfektion. Insbesonders bevorzugt ist die Behandlung von He¬ patitis B oder Hepatitis C. Die erfindungsgemäße NK-Zell- Aktivierung mittels Cbl-b Inhibierung ist bei derartigen Krankheiten besonders effektiv. Der Patient ist vorzugsweise ein Säu¬ getier, im speziellen ein Mensch.
Insbesondere im Fall von Krebs lässt sich die erfindungsge¬ mäße NK-Zell-Aktivierung mit herkömmlichen Therapien kombinieren. Viele Tumortherapien, wie z.B. Strahlungstherapie, Chemo¬ therapie oder operative Tumorentfernungen, sind seit Jahren etabliert und werden ständig verfeinert und verbessert. Neue Therapien umfassen Immuntherapien und Therapien, die auf spezi- fische Marker von Tumorzellen abzielen, insbesondere unter Verwendung von monoklonalen Antikörpern. Gerade die Wirkung letzterer hängt auch wesentlich von der Aktivität der NK-Zellen ab, die die tumorzellgebundenen Antikörper über generelle Antikörper-Determinanten erkennen und in weiterer Folge die Tumorzelle abtöten. Durch die Aktivierung des angeborenen Immunsystems über die Wirkung der NK-Zellen steht somit eine weitere Strategie zur Verfügung, die bisherige Ansätze ergänzen und vervollständigen kann um möglichst breit Immunreaktionen zu fördern, im Speziellen zur Bekämpfung von Krebszellen. Insbesondere Therapien, welche einen direkten zellschädigenden Einfluss auf die Tumorzellen haben, z.B. Chemotherapien oder Strahlentherapien, induzieren die Expression von Molekülen der MHC-Klasse und anderen immunaktivierenden Rezeptoren, bspw. von NKG2D-Liganden . Diese zellulären Veränderungen werden von Zellen des angeborenen Immunsystems, insbesondere NK-Zellen, erkannt und führen zu deren Akti¬ vierung, welche durch die Synergie mit der erfindungsgemäßen NK- Zell-Aktivierung eine wesentlich höhere therapeutische Wirkung erzielen kann.
Demgemäß ist die erfindungsgemäß zu behandelnde Krebserkran¬ kung vorzugsweise ausgewählt aus Krebserkrankungen des reproduktiven Traktes, insbesondere Eierstockkrebs, Hodenkrebs, Prosta¬ takrebs oder Brustkrebs; Krebserkrankungen des Verdauungstraktes, insbesondere Magenkrebs, Darmkrebs, Rektalkarzinom, Pan- kreaskrebs, Speiseröhrenkrebs und Leberkrebs; Nierenkrebs, Haut¬ krebs, insbesondere Melanomen, Basalzellkarzinomen und Plattenepithelkarzinomen; Neuroblastomen und Glioblastomen, Lungenkrebs, Schilddrüsenkrebs, Sarkomen, Kopf-/Halskarzinom, Plat¬ tenepithelkarzinomen, Lymphomen und Leukämien (wobei hierin die Ausdrücke „Krebs", „Tumor", „Karzinom", etc. immer synonym verwendet werden und sich auf bösartige Erkrankungen beziehen.
Das Cbl-b Gen sowie dessen Genprodukte sind im Stand der Technik ausführlich beschrieben (UniGene Id. Hs.3144 und
Hs.381921) . Cbl-b Sequenzen sind z.B. in der GenBank Datenbank unter den Acc. Nr. NM_008279 und NP_009112 veröffentlicht. Anti- Cbl-b Antikörper, siRNAs und Antisense-Inhibitoren sind kommerziell erhältlich. Bestimmte siRNAs geeignet zur Reduzierung oder Inhibierung der Cbl-b Expression und damit auch der Cbl-b Funktion sind beispielsweise in der US 2007/0054355 mit gemischten RNA/DNA Nukleotiden und einer Länge von ca. 20 Basen offenbart. Cbl-b Inhibitoren sind im Stand der Technik hinlänglich bekannt. Beliebige Cbl-b Inhibitoren können gemäß der vorliegenden Erfindung eingesetzt werden. Vorzugsweise ist der Cbl-b Inhi¬ bitor ausgewählt aus inhibierenden Nukleinsäuren, insbesondere antisense Oligonukleotiden, insbesondere antisense RNA, siRNA (small interfering RNA) oder shRNA (short hairpin RNA) . Nukleinsäure Inhibitoren können als solche verwendet werden oder in Form von Vektoren, welche die Inhibierung kodieren und exprimie- ren. Geeignete Cbl-b Inhibitoren sind z.B. Antagonisten, Aptame- re oder Intramere, vorzugsweise wird Cbl-b siRNA eingesetzt. siRNA Technologie zur Attenuierung der spezifischen Gen- Expression ist für Cbl-b bereits beschrieben. Cbl-b Inhibitoren in Sinne der vorliegenden Erfindung sind Substanzen, die die Expression und/oder die Funktion von Cbl-b reduzieren oder inhibieren und können, wie im Stand der Technik bekannt (Loeser et al. (JEM (2007) doi : 10.1084 / iem .20061699 ; Chiang et al . (Journal of Clinical Investigation 117 (4) (2007) : 1033-1034);
Lametschwandtner et al . (Journal of Immunotherapy 31 (9) (2008) : 943); Paolini et al . (J Immuno1. 2011 Feb 15; 186 ( 4 ) : 2138-47 ) , oder wie in den vorliegenden Beispielen beschrieben, ermittelt werden .
Die US 2007/0087988 betrifft ein Verfahren zur Regulierung der HPK1, dessen Expression durch die Erhöhung der Cbl-b Expression erhöht werden kann und vice versa (z.B. durch Cbl-b siRNA Inhibition) .
Vorzugsweise wird die Cbl-b Funktion durch Reduzierung oder Inhibierung der Expression von Cbl-b reduziert oder inhibiert. Die Begriffe Reduzierung oder Inhibierung betreffen die Absenkung der Funktion (bzw. der Expression) von Cbl-b im Vergleich zur unveränderten, natürlichen Funktion bis zur kompletten Inhibierung der Funktion. Vorzugsweise wird die Funktion (bzw. Expression) um mindestens 30%, 40%, 50%, 60%, 70%, 80%, 90% oder 95% reduziert.
Die Reduzierung oder Inhibierung der Funktion von Cbl-b erfolgt in vorzugsweisen Aus führungs formen transient. D.h. die Funktion wird nur vorläufig w.o. angegeben reduziert und kann sich in Folge dessen wieder erholen, z.B. durch Verbrauch oder Abbau von Inhibitoren, wie z.B. Cbl-b siRNA, oder durch Neubildung oder nicht Cbl-b beeinträchtigter Zellen in vivo. Die tran- siente Reduzierung von Cbl-b in Immunzellen kann dabei auch re- petitiv erfolgen, z.B. bis ein therapeutischer Erfolg erzielt wurde .
Vorzugsweise wird die Expression von Cbl-b durch Verwendung von Cbl-b antisense RNA oder siRNA reduziert oder inhibiert.
Hierzu werden kurze DNA und/oder RNA Sequenzen komplementär zu einem der Teile der Ziel (Cbl-b) mRNA Sequenz eingesetzt, so dass diese damit hybridisieren und inaktivieren. Die Länge die¬ ser Sequenzen ist vorzugsweise mindestens 15, 18, 20, 22, 25, 28, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180 oder 200 Basen bis zur kompletten Ziel Sequenz, vorzugsweise bis zu 2500, 2000, 1500, 1000, 500 oder 300 Basen. Vorzugsweise werden die Sequenzen der SEQ ID Nr. 1, 2, 3, 4, 5, 6, 7 und/oder 8 verwendet .
Ebenfalls kann die Funktion von Cbl-b durch eine Vielzahl weiterer bekannter Komponenten reduziert oder inhibiert werden, wie beispielsweise durch Verwendung von Cbl-b Antagonisten, Inhibitoren, insbesondere Aptameren oder Intrameren. Jegliche Antagonisten oder Inhibitoren, die die Wirkung bzw. die Funktion von Cbl-b unterdrücken können erfindungsgemäß verwendet werden um die Immunreaktivität der NK-Zellen zu erhöhen. Zur Inhibition von Cbl-b können auch Substanzen verwendet werden, die entweder spezifisch die enzymatische E3-Ligase-Aktivität inhibieren oder die intrazelluläre Assoziation von Cbl-b mit seinen Interakti¬ onspartner inhibieren oder die die Expression von Cbl-b inhibieren. Vorzugsweise werden Antagonisten oder Inhibitoren zur Herstellung eines pharmazeutischen Mittels zur erfindungsgemäßen Erhöhung der Immunreaktivität der NK-Zellen verwendet. Ermög¬ licht werden Behandlungen von Krankheiten mit supprimiertem oder ineffizientem Immunsystem, insbesondere Krebs oder chronische Infektionen .
Erfindungsgemäß wurde festgestellt, dass die Inhibierung von Cbl-b zusammen mit anderen NK-Zell-stimulierenden Substanzen (NK-Zell-Aktivatoren) einen synergistischen Effekt bewirkt, der über die zu erwartenden Effekte der additiven Effekte der Inhibition von Cbl-b und NK-Zell-Aktivierung hinausgeht. Die Verab¬ reichung des Cbl-b Inhibitors bzw. die Cbl-b Inhibition erfolgt daher vorzugsweise zusammen mit einer weiteren NK-Zell stimulie¬ renden Substanz (NK-Zell-Aktivator ) . Im folgenden werden die Begriffe „NK-Zell stimulierende Substanz", „NK-Zell aktivierende Substanz", und „NK-Zell-Aktivator" gleichbedeutend verwendet. Eine solche NK-Zell-stimulierende Substanz ist eine andere Sub¬ stanz als der erfindungsgemäße Cbl-b Inhibitor. Eine NK-Zell stimulierende Substanz im Sinne der vorliegenden Erfindung ist eine Substanz, die in einem oder mehreren geeigneten in-vitro Assays eine Aktivierung bzw. Stimulierung von NK-Zellen bewirkt. Vorzugsweise bewirkt die NK-Zell-stimulierende Substanz die Pro¬ duktion von IFN-gamma, und/oder TNF-alpha, und/oder die CD107a Oberflächen-Expression, durch die NK-Zellen, unabhängig von einer Cbl-b Inhibierung. Eine solche Produktion von IFN-gamma, und/oder TNF-alpha, und/oder die CD107a Oberflächen-Expression, kann mit im Stand der Technik bekannten Methoden (Fauriat Blood.
2010 Mar 18 ; 115 ( 11 ) : 2167-76; Dons'koi et al . , J Immunol Methods .
2011 Sep 30 ; 372 ( 1-2 ) : 187-95.) , oder wie in den Beispielen der vorliegenden Erfindung beschrieben, gemessen werden. Ebenso kann die Wirkung der NK-Zell stimulierenden Substanzen durch die direkte Bestimmung der Zytotoxizität oder „killing activity" der NK-Zellen getestet werden (wie im Beispiel 4 beschrieben, weitere entsprechende Methoden sind im Stand der Technik bekannt (Be- ano et al . , J Transl Med. 2008 May 16; 6:25; Claus et al . , J Im¬ munol Methods. 2009 Feb 28 ; 341 ( 1-2 ) : 154-64 ; Fujisaki et al . , Cancer Res. 2009 May 1 ; 69 ( 9) : 4010-7 ; Cho et al . , Clin Cancer Res. 2010 Aug 1 ; 16 ( 15 ) : 3901-9 ) , d.h. es wird die Zytotoxizität der NK-Zellen bzw. PBMCs auf bestimmte Ziel- bzw. Target-Zellen (im Beispiel 4 SKBR3-Tumorzellen) bestimmt, z. B. durch die Messung der Freisetzung des Enzyms LDH aus dem Tumorzellzytosol als Maß für die Zelllyse. Bei einer entsprechenden Messung in-vitro werden die NK-Zellen vorzugsweise aktiviert bzw. stimuliert, um einen Effekt der Cbl-b Inhibierung messen zu können, beispielsweise durch Kontakt mit Tumorzellen (z. B. K562), und/oder durch eine NK-Zell-stimulierende Substanz (beispielsweise ein oder mehrere Zytokine, wie z. B. IL-2 und/oder IL-12), und/oder einem Antikörper (z. B. Trastuzumab (Herceptin®) ) .
In einer speziellen Aus führungs form betrifft die vorliegende Erfindung die gemeinsame Verabreichung des Cbl-b Inhibitors mit einem NK-Zell-Aktivator, insbesondere ausgewählt aus einem Immunzell-stimulierenden Zytokin, bspw. aus einem Zytokin der common-gamma-chain Zytokine, insbesondere IL-2, IL-15, IL-21; Zytokinen, die sowohl Zellen des adaptiven als auch angeborenen Immunsystems stimulieren, insbesondere IL-12, IL-23, IL-27; Ef- fektor-Zellzytokinen wie IL-1, IL-17, IL-18; einem Interferon, insbesondere Interferon-alpha; oder einem Interferon-Stimulans; einem Antikörper, insbesondere einem Antikörper, der Tumorzel- loberflächenmoleküle erkennt, und/oder einem Antikörper dessen konstante Region an den entsprechenden Fc-Rezeptor an NK-Zellen binden kann; oder einem TLR- oder PAMP-Rezeptor Liganden, insbesondere Agonisten, vorzugsweise von TLR-1, TLR-2, TLR-3, TLR-7, TLR-8 oder TLR-9, sowie Kombinationen der oben genannten NK- Zell-Aktivatoren . Mit den Begriffen „gemeinsam" oder „zusammen mit" oder „in Kombination mit" oder „kombiniert mit" im Zusammenhang mit der Verabreichung der erfindungsgemäßen Substanzen ist die Verabreichung mindestens eines Cbl-b Inhibitors und min¬ destens eines NK-Zell-Aktivators in einen Patienten definiert, die in Form von einer (enthält mindestens einen Cbl-b Inhibitor und mindestens einen NK-Zell-Aktivator ) oder mehreren verschiedenen pharmazeutischen Zusammensetzungen (die eine enthält mindestens einen Cbl-b Inhibitor, eine andere mindestens einen NK- Zell-Aktivator, und optional weitere pharmazeutische Zusammen¬ setzungen) erfolgen kann. Erfolgt die Verabreichung mittels mehrerer verschiedener pharmazeutischer Zusammensetzungen, kann die gemeinsame Verabreichung gleichzeitig oder zeitversetzt erfol¬ gen. Insbesondere bevorzugt ist die Verabreichung des Cbl-b In¬ hibitors zusammen mit mindestens einem NK-Zell-Aktivator, insbesondere IL-2, IL-15, IL-12, IL-23, Interferon, einem Interferon- Stimulans, Imiquimod und andere TLR7/8-Agonisten, wie z.B.
Resiquimod, ssPolyU-Nukleotide, Loxoribine, Gardiquimod, CL075, CL097, CL264, 3M002; poly(I:C) Oligonukleotide, CpG Oligonukleo- tide, CD205-Liganden oder CD206-Liganden, sowie Kombinationen hiervon. Bevorzugte Kombinationen von NK-Zell-Aktivatoren, die mit der Verabreichung des Cbl-b-Inhibitors kombiniert werden können, umfassen z.B. ein Zytokin der common-gamma-chain Zytokine mit einem anderen der obigen NK-Zell-Aktivatoren; oder ein Zytokin des adaptiven als auch angeborenen Immunsystems mit einem anderen der obigen NK-Zell-Aktivatoren. Besonders bevorzugte Kombinationen sind solche mit einem Zytokin der common-gamma- chain Zytokine und einem Zytokin des adaptiven als auch angeborenen Immunsystems, insbesondere IL-2 und IL-12.
Ein Zytokin der common-gamma-chain Zytokine im Sinne der vorliegenden Erfindung ist ausgewählt aus der Familie von Zyto¬ kinen, die die sogenannte gemeinsame Zytokin-Rezeptor gamma- Kette oder „common cytokine-receptor gamma-chain" ( yc oder CD132) in ihren Rezeptor-Komplexen teilen, und besteht aus verschiedenen Mitgliedern mit einer ähnlichen Struktur mit vier alpha- Helices-Bündeln . Diese Familie umfasst z. B. Interleukin (IL) -2, IL-4, IL-7, IL-9, IL-15, IL-21 und „thymic stromal derived lym- phopoietin" (TSLP) . Ein Immunzell-stimulierendes Zytokin, ein Zytokin des adaptiven als auch des angeborenen Immunsystems, ein Effektor-Zellzytokin, oder ein Interferon-Stimulans im Sinne der vorliegenden Erfindung sind vorzugsweise ausgewählt aus der Gruppe umfassend IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17a, IL-17f, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, IL-34, IL-35, IFN-alpha, IFN-beta, IFN-gamma, IFN-lambda, TNF-alpha, und TNF- beta .
Eine besonders bevorzugte Aus führungs form der Erfindung besteht in der Verabreichung eines Cbl-b Inhibitors zusammen mit IL-2, optional mit einem oder mehreren weiteren NK-Zell- Aktivatoren, insbesondere IL-12, IL-23, IFN-alpha und/oder IFN- beta. Eine weitere besonders bevorzugte Aus führungs form der Er¬ findung besteht in der Verabreichung eines Cbl-b Inhibitors zu¬ sammen mit IFN-alpha, optional mit einem oder mehreren weiteren NK-Zell-Aktivatoren, insbesondere IL-15 und/oder IL-21. Eine weitere besonders bevorzugte Aus führungs form der Erfindung be¬ steht in der Verabreichung eines Cbl-b Inhibitors zusammen mit IL-12, optional mit einem oder mehreren weiteren NK-Zell- Aktivatoren, insbesondere IL-15 und /oder IL-7.
Vorzugsweise bewirken die eingesetzten NK-Zell- stimulierenden Substanzen in NK-Zellen eine IFN-gamma Produktion und/oder eine TNF-alpha Produktion, und/oder eine erhöhte CD107a Oberflächen-Expression, und/oder eine erhöhte Zytotoxizität auf Ziel- bzw. Target- Zellen. IFN-alpha, IL-12 oder IL-23 bewirken beispielsweise besonders starke IFN-gamma-Antworten in NK- Zellen. Überraschend wurde festgestellt, dass die Aktivierung von NK-Zellen durch Inhibierung von Cbl-b mit IFN-gamma- Produktion-verursachenden NK-Zell-stimulierenden Substanzen besonders starke synergistische Wirkungen hervorrufen, die weit über die zu erwartende Wirkung der Einzelsubstanzen hinausgeht.
Ebenso kann der Cbl-b Inhibitor zusammen mit einem Antikörper z. B. gegen Tumorzelldeterminanten verabreicht werden, optional kombiniert mit einem oder mehreren der oben angeführten Im- munaktivatoren bzw. einer oder mehreren der oben genannten NK- Zell-stimulierenden Substanzen. Die Inhibition von Cbl-b in NK- Zellen als auch die Verabreichung des zusätzlichen NK-Zell- Aktivators bzw. des gegen Tumorzellen gerichteten Antikörpers können in vivo z.B. durch direkte Verabreichung an den Patienten erfolgen .
Vorzugsweise ist der Cbl-b Inhibitor an einen Liganden eines NK-Zell-Erkennungsmoleküls , z.B. eines NK-Zell- Oberflächenmoleküls , gekoppelt. Ein solcher Ligand kann bspw. ein natürlich vorkommendes Protein oder anderes Biomolekül sein oder ein funktionelles Derivat davon, welches NK-Zellen binden kann. Insbesondere kann ein solcher Ligand ein Antikörper gegen ein NK-Zellerkennungsmolekül sein. Erfindungsgemäß werden vor¬ zugsweise spezifisch die NK-Zellen durch Cbl—b-Inhibierung aktiviert, z.B. durch Kopplung an einen Liganden eines solchen NK- Zell-Erkennungsmolekül , in vivo. Die „spezifische" NK-Zell Akti¬ vierung soll als erhöhte Wirkung auf NK-Zellen verstanden werden im Vergleich zu unspezifischen, z.B. ungesteuerten bzw. unge- kopppelten Cbl-b-Inhibitor Verabreichungen, welche auch in anderen Zellen Wirkung entfalten können. Insbesondere soll die „spezifische" NK-Zell Aktivierung als Wirkung insbesondere auf NK- Zellen verstanden werden im Vergleich zur Verabreichungen eines Cbl-b Inhibitors alleine (ohne die Verabreichung zusammen mit einem NK-Zell-Aktivator ) , oder im Vergleich zur Verabreichung eines Cbl-b-Inhibitors, der nicht an einen Liganden eines NK- Zell-Erkennungsmoleküls gekoppelt ist. Eine unspezifische Verab¬ reichung erfolgt z.B. durch einfache Verabreichung des Inhibitors ohne zusätzliche Verabreichung von NK-Zell-Stimulantien oder NK-zell-spezifische Modifikationen des Inhibitors durch Kopplung an ein NK-Zell-Erkennungsmolekül . Durch die spezifische NK-Zell Aktivierung lässt sich gezielt die erfindungsgemäße NK- Zell-vermittelte Immunantwort (angeborenes Immunsystem) steuern, mit geringeren oder ungewünschten Nebenwirkungen, z.B. durch das adaptive Immunsystem.
Unter dem Begriff „Antikörper" werden alle natürlich vorkommenden Antikörper verstanden, wie IgG-, IgD-, IgA-, IgE-, IgM- Antikörper, sowie deren funktionelle Derivate, welche beispiels¬ weise Fab-, Fab'-, F(ab)2-/ F (ab ' ) 2_Fragmente, einzelkettige An¬ tikörper (scAb oder scFv) , oder ein Fragment einer variablen Antikörperdomäne, umfassen und welche ein Antigen, hier insbeson- dere ein NK-Zell-Erkennungsmolekül , oder den entsprechenden Fc- Rezeptor an NK-Zellen spezifisch binden bzw. dagegen gerichtet sind. Erfindungsgemäße Antikörper besitzen vorzugsweise eine konstante Region, insbesondere eine Fc-Domäne, die an den ent¬ sprechenden Fc-Rezeptor an NK-Zellen binden kann. Der Antikörper kann monoklonal oder polyklonal sein. Antikörper, welche wie zu¬ vor beschrieben in einer Therapie in Kombination mit dem erfindungsgemäßen Cbl-b-Inhibitor verabreicht werden sollen, sind gegen ein Epitop eines Krankheitserregers gerichtet, oder ein Tu¬ morepitop, und weisen vorzugsweise eine Fc-Domäne auf.
Zu den bevorzugten NK-Zellerkennungsmolekülen gehören insbesondere solche die entweder spezifisch nur auf NK-Zellen vorkommen oder die besonders häufig auf NK-Zellen exprimiert sind und gegebenenfalls zusätzlich noch auf weiteren Immunzellen deren Aktivität wunschgemäß durch Cbl-b Inhibierung erhöht werden kann bspw. CD2, CD8a, CD16, CD25, CD27, CD56, CD71, CD158, CD159, CD160, CD161, CD205, CD206, CD205, CD314, CD335, CD336, CD337. Dadurch kann der Cbl-b Inhibitor entweder spezifisch an NK- Zellen oder an NK-Zellen und relevante weitere Subtypen von Immunzellen in einem Patienten gezielt herangebracht und durch die Zellen aufgenommen werden. Damit kann bewirkt werden, dass nur spezifisch in den gewünschten Ziel-Zellen der Cbl-b Inhibitor therapeutisch wirksam wird.
In einem weiteren Aspekt betrifft die vorliegende Erfindung eine pharmazeutische Zusammensetzung umfassend einen Cbl-b Inhi¬ bitor und einen zusätzlichen NK-Zell Aktivator wie oben beschrieben, insbesondere ein Immunzell-stimulierendes Zytokin, ein Interferon oder Interferon-Stimulans, einen Antikörper, oder einen TLR- oder PAMP-Rezeptor Liganden. Eine solche Zusammensetzung kann für die oben genannten Zwecke zur Inhibition von Cbl-b entweder alleine oder in Kombination mit weiteren NK-Zell- Aktivatoren eingesetzt werden.
Vorzugsweise umfasst die Zusammensetzung einen pharmazeu¬ tisch akzeptablen Träger, vorzugsweise geeignet zur intrazellu¬ lären Verabreichung in einem Patienten, insbesondere Vehikel wie Liposomen oder Mikrosomen Formulierungen, welche insbesondere zur Verabreichung von Nukleinsäuren bevorzugt werden. Pharmazeutische Zusammensetzungen können pharmazeutisch geeignete Salze, zusätzlich Puffer, Tonizitätskomponenten oder pharmazeutisch geeignete Träger umfassen. Insbesondere inhibitorische Nukleinsäu- ren, wie antisense Nukleinsäuren, siRNA, shRNA, können in geeig neten therapeutischen Vektorsystemen vorgesehen werden. Pharmazeutische Träger-Substanzen dienen der besseren Verträglichkeit der Zusammensetzung und ermöglichen bessere Löslichkeit sowie bessere Bioverfügbarkeit der Wirksubstanzen. Beispiele hierfür sind Emulgatoren, Verdickungsmittel, Redoxkomponenten, Stärke, Alkohollösungen, Polyethylenglycol oder Lipide. Die Auswahl ei¬ nes geeigneten pharmazeutischen Trägers hängt stark von der Art der Verabreichung ab. Für orale Verabreichungen können flüssige oder feste Träger verwendet werden, für Injektionen sind flüssi ge Endzusammensetzungen vorteilhaft.
Vorzugsweise umfasst das erfindungsgemäß zu verwendende Me dikament Puffersubstanzen oder tonische Substanzen. Mittels Puf fer kann der pH-Wert des Medikaments auf physiologische Konditi onen eingestellt werden und weiters können pH-Schwankungen abge schwächt bzw. gepuffert werden. Ein Beispiel hierfür ist ein Phosphatpuffer. Tonische Substanzen dienen zur Einstellung der Osmolarität und können ionische Substanzen, wie zum Beispiel an organische Salze, wie NaCl, oder auch nicht-ionische Substanzen wie zum Beispiel Glycerin oder Kohlenhydrate, umfassen.
Bevorzugterweise ist die erfindungsgemäß zu verwendende Zu sammensetzung zur systemischen, topischen, oralen oder intranasalen Verabreichung geeignet hergerichtet. Diese Verabreichungs formen des Medikaments der vorliegenden Erfindung ermöglichen eine schnelle und unkomplizierte Aufnahme. Zur oralen Verabrei¬ chung können beispielsweise feste bzw. flüssige Medikamente di¬ rekt oder aufgelöst bzw. verdünnt eingenommen werden.
Das erfindungsgemäß zu verwendende Medikament ist vorzugs¬ weise zur intravenösen, intraarteriellen, intramuskulären, intravaskulären, intraperitonealen oder subkutanen Verabreichung geeignet hergerichtet. Hierfür eignen sich beispielsweise Injek tionen oder Transfusionen. Verabreichungen direkt in die Blutbahn haben den Vorteil, dass die Wirkstoffe des Medikaments im gesamten Körper verteilt werden und die Zielgewebe schnell er¬ reichen. Weiters sind topische Verabreichungen vorgesehen. Insbesondere eine Verabreichung direkt in oder in die Nähe der Stelle, an der eine Immunantwort ausgelöst oder verstärkt werde soll, z.B. den Ort einer Infektion oder eines Tumors, hat den Vorteil, dass die NK-Zell-Aktivierung vordergründig am Zielort erfolgt . Neben einer in vivo Verabreichung sind auch ex vivo Behandlungen von NK-Zellen möglich. Hierzu werden NK-Zellen aus einem Patienten isoliert ex vivo erfindungsgemäß behandelt und akti¬ viert und anschließend wieder in den Patienten zurückgeführt. Ein derartiges ex vivo Verfahren zur Behandlung von Zellen des Immunsystems wird beispielsweise in der WO 2009/073905 (durch Bezugnahme hierin aufgenommen) beschrieben, und kann umgelegt auf NK-Zellen erfindungsgemäß verwendet werden. Vorzugsweise er¬ folgt die ex vivo Variante des erfindungsgemäßen Verfahrens in Kombination mit den oben genannten zusätzlichen NK-Zell- Aktivatoren wie Immunzell-stimulierenden Zytokinen, insbesondere IL-2 und/oder IL-12, einem Interferon oder Interferon-Stimulans, einem Antikörper, oder einem TLR- oder PAMP-Rezeptor Liganden, vorzugsweise von TLR-2, TLR-7 oder TLR-8, sowie Kombinationen hiervon. Es ist möglich, dass entweder die Cbl-b Inhibition oder die zusätzlichen NK-Zell-Aktivatoren ex vivo an die NK-Zellen verabreicht werden und die weitere Aktivierung in vivo erfolgt, z.B. ex vivo Cbl-b Inbibition und in vivo Verabreichung des zusätzlichen NK-Zell-Aktivators , oder umgekehrt. Vorzugsweise kön¬ nen beide Schritte, Cbl-b Inhibition und zusätzliche NK-Zell- Aktivierung, ex vivo vorgenommen werden. Isolierte und aktivierte NK-Zellen können gezielt an den Zielort verabreicht werden. Die NK-Zellen können ex vivo isoliert werden. Zur spezifischen NK-Zell Aktivierung können ex vivo NK-Zellen in einem Zelliso- lat, z.B. PBMCs, angereichter oder daraus isoliert werden.
Die ex vivo Behandlung der NK Zellen kann auch ein Expandieren umfassen, vorzugsweise wie in US 7,435,596 B2 oder WO
2006/52534 A2 (beide durch Bezugnahme hierin aufgenommen) beschrieben. Hierzu können beispielsweise NK Zellen mit NK-Zell aktivierenden Zellen, welche den MHC-I komplex nur reduziert ex- primieren und membrangebundenes IL-15 exprimieren, kontaktiert werden. Alternativ oder zusätzlich können NK Zellen mit IL-15 oder einem IL-15 Rezeptor Antikörper und einem CD137 Liganden oder einem CD137 Antikörper kontaktiert werden. Diese Expandierung wird optional in Kombination mit den genannten zusätzlichen NK-Zell-Aktivatoren wie Immunzell-stimulierenden Zytokinen vorgenommen .
Die vorliegende Erfindung wird weiters durch die folgenden Figuren und Beispiele dargestellt, ohne zwingend darauf be¬ schränkt zu sein. Figuren :
Fig 1: PBMCs bzw. daraus isolierte Zellfraktionen wurden mittels Cbl-b siRNA inhibiert und dann mit IL-2 und IL-12 stimuliert und die IFN-gamma Produktion nach 24h gemessen.
Fig. 2: PBMCs bzw. daraus isolierte Zellfraktionen wurden mittels Cbl-b siRNA inhibiert, mittels Koinkubation mit der K562 Tumorzelllinie stimuliert und die IFN-gamma Produktion nach 24h gemessen .
Fig. 3: Isolierte NK-Zellen wurden mittels Cbl-b siRNA inhibiert, und mittels K562 oder IL-2 und IL-12 stimuliert und die TNF-alpha Produktion nach 24h gemessen.
Fig. 4: PBMCs wurden mit Cbl-b siRNA inhibiert, und für 4h mit der Tumorzelllinie SKBR3 und wie angegeben zusätzlich unter Zugabe von Herceptin oder Zytokin inkubiert. Die Zytotoxizität wurde dann aufgrund des freigesetzten zellulären LDH-Enzyms be¬ stimmt, welche mittels enzymatischen Assays gemessen wurde.
Fig. 5: Cbl-b Silencing in NK-Zellen erhöht die Reaktivtät ge¬ genüber IFN-alpha Stimulation: NK-Zellen wurden mittels Cbl-b siRNA inhibiert, und mittels IFN- alpha stimuliert und die IFN- gamma Produktion nach 24h gemessen.
Fig. 6: Cbl-b Silencing in NK-Zellen erhöht die Reaktivtät ge¬ genüber Kombinationen von Interleukinen und IFN-alpha: NK-Zellen wurden mittels Cbl-b siRNA inhibiert, und mittels IL-2, IL-7, IL-15 bzw. IL-21 entweder alleine oder zusammen mit IL-12, IL-23 oder IFN-alpha stimuliert und die TNF-alpha Produktion nach 24h gemessen .
Fig. 7: Cbl-b Silencing in NK-Zellen erhöht die Reaktivität ge¬ genüber Kombinationen von IL-12 mit verschiedenen common cytoki- ne receptor gamma-chain Zytokinen: NK-Zellen wurden mittels Cbl- b siRNA inhibiert, und mittels IL-2, IL-7 bzw. IL-15 und entwe¬ der alleine oder zusammen mit IL-12 stimuliert und die IFN-gamma Produktion nach 24h gemessen.
Fig. 8: Cbl-b Silencing in NK-Zellen erhöht die Reaktivität nicht nur gegenüber Kombinationen von IL-2 mit IL-12, IL-23 und IFN-alpha oder IFN-beta: NK-Zellen wurden mittels Cbl-b siRNA inhibiert, und mittels IL-23, IFN- alpha oder IFN-beta entweder alleine oder in Gegenwart von IL-2 stimuliert und die IFN-gamma Produktion nach 24h gemessen.
Fig. 9: Die erhöhte Reaktivität von NK-Zellen nach Cbl-b Silencing gegenüber Zytokin-Stimulation führt zu einer Erhöhung des Aktivierungsmarkers CD69 auf der Zelloberfläche: NK-Zellen wur¬ den mittels Cbl-b siRNA inhibiert, und mittels IL-2 und entweder IFN- alpha oder IL-12 stimuliert und die CD69-Expression nach 48h bestimmt.
Beispiel 1: Sequenzen
Die folgenden siRNA-Sequenzen wurden zur Inhibierung von Cbl-b verwendet:
A. Sense Sequenz:
GUACUGGUCCGUUAGCAAAUU (SEQ ID Nr. 1)
Antisense Sequenz:
5 ' -PUUUGCUAACGGACCAGUACUU (SEQ ID Nr. 2)
B. Sense Sequenz:
GGUCGAAUUUUGGGUAUUAUU (SEQ ID Nr. 3)
Antisense Sequenz:
5 ' -PUAAUACCCAAAAUUCGACCUU (SEQ ID Nr. 4)
Beispiel 2: Cbl-b Inhibition in NK-Zellen
Mittels CPT Röhrchen (Vacutainer) wurde einem Spender Vollblut abgenommen und daraus PBMCs durch Zentrifugation abgetrennt. Aus PBMCs wurden NK-Zellen (inklusive der CD8+CD3~- Fraktion) und dann die CD8 und CD4 T-Zellen mittels magnetic se- lection isoliert. Mittels FACS wurde verifiziert, dass die Rein¬ heit der entsprechenden Zellpopulationen zumindest 90% betrug. Sowohl die PBMCs als auch die daraus isolierten Zellfraktionen wurden mit siRNA Cbl-b unter Verwendung eines Amaxa Transfekti- onsgeräts transfiziert und mit rekombinantem humanem IL-2
(50ng/ml) und IL-12 (10ng/ml) über Nacht in Xvivol5 Medium stimuliert (Fig. 1) . Die IFN-gamma Sekretion der so behandelten Zellen wurde dann mittels ELISA gemessen. Das Ergebnis zeigt klar, dass die stark erhöhte IFN-gamma Produktion von Cbl-b- inhibierten PBMCs nach IL-2 und IL-12 Stimulation eindeutig der Reaktion der NK-Zellen zugeordnet werden kann.
Beispiel 3: Cbl-b Inhibition in NK-Zellen und Kostimulation
Eine Möglichkeit NK-Zellen zu kostimulieren ist über Tumorzelllinien, deren aberrante Oberflächenmarkerexpression nicht mehr das entsprechende Gleichgewicht zwischen inhibitorischen und aktivatorischen NK-Rezeptoren aufrechterhalten kann und die damit eine Aktivierung der NK-Zellen verursachen, beispielsweise die Tumorzelllinie K562. PBMCs sowie die CD8 und NK-Zellen wur¬ den wie oben beschrieben isoliert und mit Cbl-b siRNA trans¬ fiziert. 1χ10Λ5 dieser transfizierten Zellen wurden dann entweder alleine (unstim) oder mit jeweils 6χ10Λ4 K562 Tumorzellen in Xvivo Medium über Nacht inkubiert und die IFN-gamma Sekretion wie oben bestimmt. Inkubation von Cbl-b inhibierten PBMCs mit dieser Tumorzellinie führte ebenfalls wieder zu einer starken IFN-gamma Produktion und wiederum konnte diese IFN-gamma Produk¬ tion klar auf den Beitrag der NK-Zellen zurückgeführt werden (Fig. 2) . Beide Stimulationsmethoden führten auch zu einem Anstieg der TNF-alpha Produktion von NK-Zellen nach Cbl-b Inhibierung (Fig. 3) .
Beispiel 4: Tumorzytotoxizität durch Cbl-b Inhibition in NK- Zellen
Eine der Hauptfunktionen von NK-Zellen im Kontext der Tumorentstehung ist die direkte Zerstörung von Tumorzellen. Es wurde daher getestet, ob Cbl-b inhibierte PBMCs besser in der Lage sind Tumorzellen zu zerstören. Als Ziel- bzw. Target- Zelllinie wurde dabei die Her2-positive SKBR3 Brustkarzinomlinie verwen¬ det, da in diesem Kontext auch der in der Tumortherapie einge¬ setzte Antikörper gegen Her2 getestet werden kann (Trastuzumab oder Herceptin) . PBMCs wurden wieder wie oben beschrieben isoliert und mit Cbl-b siRNA transfiziert und entweder alleine oder mit 4χ10Λ4 SKBR3-Zellen in Xvivo Medium für 4h inkubiert. Zusätzlich wurden in den mit Herceptin bezeichneten Konditionen lC^g/ml Herceptin-Antikörper zugegeben sowie in den mit IL-2 und IL-12 bezeichneten Konditionen wie oben beschrieben stimuliert. Die Zytotoxizität der PBMCs auf die SKBR3-Tumorzellen wurden dann durch die colorimetrische Messung der Freisetzung des Enzyms LDH aus dem Tumorzellzytosol bestimmt. Der spontane Release dieses Enzyms aus den PBMCs bzw. den Tumorzellen wurde, wie vom Colorimetrie-Messungskit Hersteller (Biovision) empfohlen, aus entsprechenden Einzelkontrollkonditionen bestimmt und abgezogen. Dabei zeigte sich, dass die Zelllyse durch Cbl-b-inhibierte Im¬ munzellen grundsätzlich höher war als durch die mit Kontroll siRNA behandelten Zellen, wobei insbesondere die gleichzeitige Stimulation mit IL-2 und IL-12 zu einer signifikanten Erhöhung der Tumorzelllyse führte (Fig. 4) .
Diese in vitro Ergebnisse zeigen daher, dass gleichzeitiges Inhibieren von Cbl-b in Zellen des adaptiven und des angeborenen Immunsystems ex vivo in unseparierten humanen PBMCs möglich ist, und führen weiters zur Schlussfolgerung, dass Cbl-b Inhibierung in NK-Zellen eine rationale Grundlage zur Kombination von Cbl-b Inhibierung mit Tumortherapien wie Gabe von rekombinantem IL-2 oder gegen Tumorantigene gerichteter therapeutischer Antikörper schafft .
Beispiel 5: Cbl-b Silencing in NK-Zellen erhöht die Reaktivtät gegenüber IFN-alpha Stimulation
In PBMCs enthaltene NK-Zellen wurden wie in Beispiel 2 isoliert und mittels siRNA gesilenced. Die dabei verwendeten gegen Cbl-b gerichteten siRNA-Sequenzen waren:
Cbl-b siRNA 1 :
5 - CUCUAUUUGCGGAAUUA - 3 (SEQ ID Nr. 5)
T - AAUUCCGCAAAAUAGAGC- 5' (SEQ ID Nr. 6)
Cbl-b siRNA 2: 5 - GUGAGAAUGAGUACUUUAAA - 3' (SEQ ID Nr. 7)
T - ACACUCUUACUCAUAAGAUU - 5 (SEQ ID Nr. 8)
Die Zellen wurden daraufhin entweder ohne Zytokin oder mit IFN- alpha über Nacht stimuliert (5 bzw. 50 ng/ml wie in Figur 5 angegeben) und die IFN-gamma Sekretion der so behandelten Zellen wurde dann mittels ELISA gemessen. Das Ergebnis zeigt klar, dass die Inhibition von Cbl-b in NK-Zellen zu einer stark erhöhten IFN-gamma Produktion führt (Figur 5) . Die IFN-gamma Produktion von T- und NK-Zellen in der Leber ist als einer der kausalen Faktoren für die Wirksamkeit der IFN-alpha Therapie in der Be¬ handlung chronischer Hepatitis-Infektionen definiert worden. Damit ist eine Rationale für eine Kombinationstherapie von Cbl-b Silencing mit systemischer IFN-alpha Therapie gegeben, insbesondere in den Fällen wo die Standardtherapie mit IFN-alpha alleine nicht zur vollständigen Heilung ausreicht.
Die Leber ist prinzipiell ein ideales Zielorgan für siRNA Thera¬ pien, da die Genexpression in der Leber durch systemische Gabe von siRNA gut veränderbar ist. Im gegenständlichen Fall ist daher sowohl eine Cbl-b Inhibition in NK-Zellen durch direkte systemische Gabe von Cbl-b spezifischer siRNA möglich als auch eine Zelltherapie durch Transfer von ex vivo gesilenceden NK-Zellen, da davon auszugehen ist, dass diese nach intravenöser Refundie- rung in ausreichendem Maße in den Bereich der erkrankten Leber migrieren .
Beispiel 6: Cbl-b Silencing in NK-Zellen erhöht die Reaktivität gegenüber Kombinationen von IL-2 mit IFN-alpha oder IL-12/IL-23.
Da in den Beispielen 2 und 5 gezeigt werden konnte, dass Cbl-b Inhibition in NK-Zellen zu einer erhöhten Stimulierbarkeit durch IFN-alpha bzw. IL-2 und IL-12 führte, wurde eine systematischere Analyse der Stimulierbarkeit von Cbl-b gesilenceden NK-Zellen durchgeführt. IL-2 ist ein Mitglied der sogenannten „common cy- tokine receptor gamma-chain" Familie. Weitere Mitglieder dieser Familie sind u. a. IL-7, IL-15 und IL-21. IL-23 wiederum ist IL- 12 in verschiedenen Hinsichten strukturell und funktionell ähnlich, und wird so wie IFN-alpha und IL-12 von aktivierten dend¬ ritischen Zellen produziert, die u. a. dadurch auch eine essentielle Rolle in der Aktivierung von NK-Zellen haben. Es wurden daher in diesem Experiment die NK-Zellen mit den common cytokine receptor gamma-chain Zytokinen IL-2, IL-7, IL-15 und IL-21 entweder alleine oder zusammen mit IL-12, IL-23 oder IFN-alpha stimuliert. Zum Vergleich wurden auch die DC-Zytokine IL-12, IL-23 und IFN-alpha ohne common cytokine receptor gamma-chain Zytokinen zugegeben. Dazu wurden die in PBMCs enthaltene NK-Zellen wie im Beispiel 5 isoliert und mittels siRNA gesilenced (mit Cbl-b siRNA 2) und die kontrollbehandelten bzw. Cbl-b gesilenceden NK- Zellen direkt miteinander verglichen. Die NK-Zellen wurden mit den Zytokinen wie angegeben über Nacht stimuliert (alle common cytokine receptor gamma-chain Zytokinen 50 ng/ml, die DC- Zytokine IL-12, IL-23 und IFN-alpha 10 ng/ml) . Als Read-out wur¬ de TNF- alpha gewählt (Bestimmung durch ELISA) , da TNF- alpha ein Schlüsselzytokin in Immunreaktionen ist und seine Produktion nicht so IL-12 abhängig ist wie IFN- gamma. Die Ergebnisse in Fig. 6 zeigen, dass Cbl-b Inhibition von NK-Zellen zu einer wesentlich stärkeren Aktivierung und damit höheren Produktion von TNF-alpha führt. Besonders stark war die TNF-alpha Produktion, wenn die Cbl-b gesilenceden NK-Zellen mit Kombinationen von IL-2 und einem DC-Zytokin wie IL-12, IL-23 und IFN-alpha costimuliert wurden. Allerdings zeigte sich, dass auch andere common cytokine receptor gamma-chain Zytokine, insbesonders IL-15 in Gegenwart von IFN-alpha, zu einer wesentlich stärkeren Reaktion von Cbl-b gesilenceden NK-Zellen führten. Da die Produktion von DC- Zytokinen wie IL-12, IL-23 und IFN-alpha in vivo vor allem durch Bestandteile von Pathogenen die als TLR-Liganden wirken stimuliert wird, ist daher ein therapeutisches Rationale gegeben, die Cbl-b Inhibition von NK-Zellen entweder in der Situation chronischer Infektionen einzusetzen oder in der Therapie von Tumorer- kankungen mit artifiziellen TLR-Liganden (bspw. TLR7/8-Liganden wie Imiquimod oder TLR9-Liganden wie CpG) einzusetzen. Den zusätzlichen Stimulus durch common cytokine receptor gamma-chain Zytokine IL-2 bzw. IL-15 in vivo kann man dabei bspw. durch Immunisierung mit Anti-Tumorvakzinen, die zu einer Produktion von IL-2 und IL-15 durch aktivierte antigenspezifische T-Zellen füh¬ ren, oder durch direkte therapeutische Verabreichung an den Patienten vermitteln.
Beispiel 7: Cbl-b Silencing in NK-Zellen erhöht die Reaktivität gegenüber Kombinationen von IL-12 mit verschiedenen common cyto- kine receptor gamma-chain Zytokinen.
Da im Beispiel 6 gezeigt werden konnte, dass Cbl-b Inhibition in NK-Zellen zu einer erhöhten Stimulierbarkeit durch verschiedene common cytokine receptor gamma-chain Zytokine führen kann, besonders wenn sie in Kombination mit üblicherweise DC- produzierten Zytokinen verwendet werden, wurde getestet, ob ne¬ ben IL-2 auch IL-7 bzw. IL-15 zusammen mit IL-12, dem Schlüsselfaktor für die Induktion von IFN-gamma, zu einer erhöhten Produktion dieses Zytokins führen können. Dazu wurden die in PBMCs enthaltene NK-Zellen wie in Beispiel 5 und 6 isoliert, ge- silenced und mit den Zytokinen IL-2 (50 ng/ml), IL-7 und IL-15 (je 20ng/ml) entweder alleine oder in Gegenwart von IL-12
(10ng/ml) wie angegeben über Nacht stimuliert. Die IFN-gamma Produktion wurde mittels ELISA bestimmt. Die Ergebnisse in Fig. 7 zeigen, dass die Cbl-b gesilenceden NK-Zellen zu einer wesentlich stärkeren Reaktion in Form von IFN-gamma Produktion auf alle 3 getesteten common cytokine receptor gamma-chain Zytokine in Gegenwart von IL-12 fähig sind. Ebenso zeigte sich, dass nur die Cbl-b gesilenceden NK-Zellen zu einer messbaren Produktion von IFN-gamma alleine aufgrund von IL-2 Stimulation in der Lage waren. IL-2 ist für die Therapie bestimmter maligner Tumorerkrankungen zugelassen, zeigt aber nur in einem geringen Teil der Patienten ausreichend Wirkung. Die Inhibition von Cbl-b in NK- Zellen ist demgemäß eine potentielle Strategie die Wirksamkeit von IL-2 in der Tumortherapie zu verbessern. Weiters sind Cbl-b gesilencede NK Zellen in der Lage wesentlich stärker auf die gleichzeitige Anwesenheit von IL12 und IL-7 bzw. IL-15 zu rea¬ gieren .
Beispiel 8: Cbl-b Silencing in NK-Zellen erhöht die Reaktivität nicht nur gegenüber Kombinationen von IL-2 mit IL-12, IL-23 und IFN-alpha sondern auch mit IFN-beta.
Da im Beispiel 6 gezeigt wurde, dass Cbl-b Inhibition in NK- Zellen zu einer erhöhten Stimulierbarkeit durch IL-2 und IFN- alpha führt, wurde auch getestet, ob IFN-beta zu einer gleichar¬ tigen Wirkung fähig ist. Dazu wurden die in PBMCs enthaltene NK- Zellen wie in Beispiel 6 isoliert, gesilenced und mit den Zyto¬ kinen IL-23, IFN- alpha oder IFN-beta und entweder alleine oder in Gegenwart von IL-2 (50 ng/ml) wie angegeben über Nacht stimuliert. Die IFN-gamma Produktion wurde mittels ELISA bestimmt. Die Ergebnisse in Fig. 8 zeigen, dass die Cbl-b gesilenceden NK- Zellen zu einer wesentlich stärkeren Reaktion in Form von IFN- gamma Produktion auf alle 3 getesteten Zytokine in Gegenwart von IL-2 in der Lage sind.
Beispiel 9: Die erhöhte Reaktivität von NK-Zellen nach Cbl-b Silencing gegenüber Zytokin-Stimulation führt zu einer Erhöhung des Aktivierungsmarkers CD69 auf der Zelloberfläche
Da in den Beispielen zuvor gezeigt wurde, dass Cbl-b gesilencede NK-Zellen durch erhöhte Zytokin-Produktion reagieren, wurde als weiterer Parameter die Expression des Aktivierungsmarkers CD69 auf der Zelloberfläche mittels FACS untersucht. Dazu wurden die in PBMCs enthaltenen NK-Zellen wie in Beispiel 6 isoliert, ge- silenced und mit den Zytokinen IL-2 und entweder IFN-alpha oder IL-12 stimuliert. Nach 2 Tagen wurden die Zellen geerntet und die Oberflächenexpression von CD69 mittels FACS auf einem FC500- Zytometer untersucht. Zum Nachweis der Spezifizität des Stai- nings wurden die Zellen mittels CD56-PE-Cy5 und CD3-FITC gegengefärbt und mit CD69-PE oder einer entsprechenden Isotypkontrolle gefärbt (die Antikörper wurden gemäß der empfohlenen Arbeitsvorschrift des Herstellers Beckman-Coulter standardgemäß durch¬ geführt) . Fig. 9A zeigt als Beispiel die erhöhte CD69-Expression von Cbl-b gesilenceden NK-Zellen im Vergleich zu kontrollbehan- delten, die beide mit IFN- alpha und IL-2 behandelt wurden im Overlay-Histogramm. Fig. 9B fasst die quantitative Auswertung der CD69 Expression für Stimulation mit IL-2 und entweder IFN- alpha oder IL-12 zusammen. Dabei zeigt sich übereinstimmend mit den Daten der vorigen Beispiele, dass Cbl-b gesilencede NK- Zellen hyperreaktiv gegenüber der Stimulation mit diesen Zytokinen sind, und diese erhöhte Reaktivität sich in der verstärkten Aufregulation des Aktivierungsmarkers CD69 direkt zellulär manifestiert .

Claims

Patentansprüche :
1. Cbl-b Inhibitor zur Verwendung in einem Verfahren zur therapeutischen Behandlung eines Patienten umfassend die Einbringung des Cbl-b Inhibitors in NK-Zellen im Patienten, wodurch die NK- Zellen immunaktiviert werden.
2. Verfahren zur Immunaktivierung von NK-Zellen umfassend den Schritt der Reduzierung oder Inhibierung der Cbl-b Funktion in den NK-Zellen, insbesondere durch Verabreichung eines Cbl-b Inhibitors .
3. Cbl-b Inhibitor nach Anspruch 1 oder Verfahren nach Anspruch 2 zur Behandlung von Krebs, einer Virusinfektion, einer bakteriellen Infektion, insbesondere einer chronischen Infektion mit intrazellulär persistenten Bakterien, oder einer Parasiteninfektion, insbesondere von intrazellulären Parasiten oder einer Mykose, in dem Patienten.
4. Cbl-b Inhibitor oder Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Cbl-b Inhibitor zusammen mit einer weiteren NK-Zell stimulierenden Substanz verabreicht wird, insbesondere mit einer Substanz, welche IFN-gamma- Produktion in NK-Zellen bewirkt.
5. Cbl-b Inhibitor oder Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Cbl-b Inhibitor zusammen mit einem Immunzell-stimulierenden Zytokin, insbesondere ein Zytokin der common-gamma-chain Zytokine, ein Zytokin des adaptiven als auch des angeborenen Immunsystems oder ein Effektor- Zellzytokin, einem Interferon oder Interferon-Stimulans, einem Antikörper mit einer Fc-Domäne, oder einem TLR- oder PAMP- Rezeptor Liganden, insbesondere TLR- oder PAMP-Rezeptor Agonis- ten, sowie Kombinationen hiervon verabreicht wird.
6. Cbl-b Inhibitor oder Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Cbl-b Inhibitor zusammen mit mindestens einem NK-Zell-Aktivator, insbesondere ausgewählt aus IL-2, IL- 15, IL-21, IL-12, IL-23, IL-27, IL-1, IL-17, IL-18, Imiquimod, Resiquimod, ssPolyU-Nukleotide, Loxoribine, Gardiquimod, CL075, CL097, CL264, 3M002, Interferon-alpha, einem Interferon-alpha- Stimulans, poly(I:C) Oligonukleotide, CpG Oligonukleotide,
CD205-Liganden oder CD206-Liganden, sowie Kombinationen hiervon, verabreicht wird.
7. Cbl-b Inhibitor oder Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Cbl-b Inhibitor zusammen mit mindestens einem NK-Zell-Aktivator, insbesondere zusammen mit IL-2, optional mit einem oder mehreren weiteren NK-Zell-Aktivatoren, insbesondere IL-12, IL-23, IFN-alpha und/oder IFN-beta; oder zusammen mit IFN-alpha, optional mit einem oder mehreren weiteren NK- Zell-Aktivatoren, insbesondere IL-15 und/oder IL-21; oder zusammen mit IL-12, optional mit einem oder mehreren weiteren NK- Zell-Aktivatoren, insbesondere IL-15 und /oder IL-7.
8. Cbl-b Inhibitor oder Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Cbl-b Inhibitor ausge¬ wählt ist aus inhibierenden Nukleinsäuren, insbesondere antisen- se Oligonukleotiden, siRNA oder shRNA.
9. Cbl-b Inhibitor oder Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Cbl-b Inhibitor spezi¬ fisch die enzymatische E3-Ligase-Aktivität , die intrazelluläre Assoziation von Cbl-b mit seinen Interaktionspartner inhibiert oder die Expression von Cbl-b inhibiert.
10. Cbl-b Inhibitor oder Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Cbl-b Inhibitor an ein¬ einen Liganden eines NK-Zell-Erkennungsmoleküls gekoppelt ist.
11. Cbl-b Inhibitor oder Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Patient ausgewählt ist aus einem Säugetier oder einem Menschen.
12. Pharmazeutische Zusammensetzung umfassend einen Cbl-b Inhi¬ bitor, vorzugsweise wie weiters in einem der Ansprüche 7 bis 9 definiert, und einen zusätzlichen NK-Zell Aktivator ausgewählt aus der Gruppe wie in einem der Ansprüche 4 bis 6 definiert.
13. Zusammensetzung nach Anspruch 11 umfassend einen pharmazeu- tisch akzeptablen Träger, vorzugsweise geeignet zur intrazellu¬ lären Verabreichung in einem Patienten, insbesondere Liposomen oder Mikrosomen Formulierungen.
PCT/EP2011/074099 2010-12-28 2011-12-27 Sirna gegen cbl-b und optional il2 und il12 zur verwendung in der behandlung von krebs WO2012089736A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/977,453 US9186373B2 (en) 2010-12-28 2011-12-27 SiRNA against Cbl-b and optionally IL-2 and IL-12 for use in the treatment of cancer
EP11805055.8A EP2658566B1 (de) 2010-12-28 2011-12-27 Sirna gegen cbl-b kombiniert mit zytokinen und interferonen in der behandlung von krebs
ES11805055.8T ES2622958T3 (es) 2010-12-28 2011-12-27 ARNip frente a Cbl-b combinado con citocinas e interferones en el tratamiento de cáncer
CA2822114A CA2822114C (en) 2010-12-28 2011-12-27 Sirna against cbl-b and optionally il-2 and il-12 for use in the treatment of cancer
AU2011351445A AU2011351445B2 (en) 2010-12-28 2011-12-27 SiRNA against Cbl-b and optionally IL2 und IL12 for use in the treatment of cancer
US14/801,366 US20150313931A1 (en) 2010-12-28 2015-07-16 Sirna against cbl-b and optionally il-2 and il-12 for use in the treatment of cancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10197146A EP2471548A1 (de) 2010-12-28 2010-12-28 siRNA gegen Cbl-b und optional IL2 und IL12 zur Verwendung in der Behandlung von Krebs
EP10197146.3 2010-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/977,453 A-371-Of-International US9186373B2 (en) 2010-12-28 2011-12-27 SiRNA against Cbl-b and optionally IL-2 and IL-12 for use in the treatment of cancer
US14/801,366 Continuation US20150313931A1 (en) 2010-12-28 2015-07-16 Sirna against cbl-b and optionally il-2 and il-12 for use in the treatment of cancer

Publications (1)

Publication Number Publication Date
WO2012089736A1 true WO2012089736A1 (de) 2012-07-05

Family

ID=43902675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/074099 WO2012089736A1 (de) 2010-12-28 2011-12-27 Sirna gegen cbl-b und optional il2 und il12 zur verwendung in der behandlung von krebs

Country Status (6)

Country Link
US (2) US9186373B2 (de)
EP (2) EP2471548A1 (de)
AU (1) AU2011351445B2 (de)
CA (1) CA2822114C (de)
ES (1) ES2622958T3 (de)
WO (1) WO2012089736A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600121081A1 (it) * 2016-11-29 2018-05-29 Fond Ri Med Immunoterapia NK-mediata e usi di essa
WO2021061853A1 (en) * 2019-09-24 2021-04-01 Nurix Therapeutics, Inc. Cbl inhibitors and compositions for use in adoptive cell therapy
CN114450271A (zh) * 2019-07-30 2022-05-06 纽力克斯治疗公司 用于Cbl-b抑制的脲类、氨基类和取代的杂芳基类化合物
US11479556B1 (en) 2018-10-15 2022-10-25 Nurix Therapeutics, Inc. Bifunctional compounds for degrading BTK via ubiquitin proteosome pathway
US11530229B2 (en) 2019-05-17 2022-12-20 Nurix Therapeutics, Inc. Cyano cyclobutyl compounds for CBL-B inhibition and uses thereof
US11820781B2 (en) 2019-12-04 2023-11-21 Nurix Therapeutics, Inc. Bifunctional compounds for degrading BTK via ubiquitin proteosome pathway
EP4289939A1 (de) 2022-06-10 2023-12-13 Apeiron Biologics AG Population transfizierter immunzellen und verfahren zu ihrer produktion
US11951133B2 (en) 2019-04-09 2024-04-09 Nurix Therapeutics, Inc. 3-substituted piperidine compounds for Cbl-b inhibition, and use thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516804A (ja) 2013-04-17 2016-06-09 ファイザー・インク 心血管疾患を治療するためのn−ピペリジン−3−イルベンズアミド誘導体
US20170258135A1 (en) * 2016-03-11 2017-09-14 Altria Client Services Llc Personal charging case for electronic vaping device
WO2017197243A1 (en) * 2016-05-13 2017-11-16 Ohio State Innovation Foundation Cblb inhibition for treating fungal infections
EP3254701A1 (de) 2016-06-09 2017-12-13 IMBA-Institut für Molekulare Biotechnologie GmbH Cbl-b-inhibitor mit einem cbl-b-bindenden peptid zur vorbeugung oder behandlung von pilzinfektionen
US20180273903A1 (en) * 2016-12-30 2018-09-27 Celularity, Inc. Genetically modified natural killer cells
US10327479B2 (en) * 2017-03-15 2019-06-25 Canopy Growth Corporation System and method for an improved personal vapourization device
EP3601538A4 (de) * 2017-03-27 2021-03-10 Nantcell, Inc. Ank- und il-12-zusammensetzungen und verfahren
US20220339152A1 (en) * 2021-04-08 2022-10-27 Nurix Therapeutics, Inc. Combination therapies with cbl-b inhibitor compounds
WO2023081486A1 (en) * 2021-11-08 2023-05-11 Nurix Therapeutics, Inc. Toll-like receptor therapy combinations with cbl-b inhibitor compounds

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052534A2 (en) 2004-11-04 2006-05-18 St. Jude Children's Research Hospital Expansion of nk cells and therapeutic uses thereof
US20070054355A1 (en) 2003-03-05 2007-03-08 Yuval Reiss Cbl-b polypeptides, complexes and related methods
US20070087988A1 (en) 2005-09-30 2007-04-19 New York University Hematopoietic progenitor kinase 1 for modulation of an immune response
WO2008033403A2 (en) 2006-09-13 2008-03-20 The Trustees Of Columbia University In The City Of New York Agents and methods to elicit anti-tumor immune response
WO2009073905A2 (de) 2007-12-10 2009-06-18 Medizinische Universität Innsbruck Verfahren zur erhöhung der immunreaktivität
WO2010119061A1 (de) 2009-04-14 2010-10-21 Apeiron Biologics Ag Verfahren zur bestimmung der cbl-b expression

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050037989A1 (en) 2001-08-27 2005-02-17 Lewis David L. Inhibition of gene function by delivery of polynucleotide-based gene expression inhibitors to mammalian cells in vivo
EP2377549A1 (de) * 2002-06-07 2011-10-19 ZymoGenetics, Inc. Verwendung von IL-21 zur Behandlung von Virusinfektionen
WO2004078130A2 (en) 2003-03-03 2004-09-16 Proteologics, Inc. Posh interacting proteins and related methods
WO2005044840A2 (en) * 2003-10-17 2005-05-19 The Cbr Institute For Biomedical Research, Inc. Modulation of anergy and methods for isolating anergy-modulating compounds
EP1740618A1 (de) * 2004-04-30 2007-01-10 Innate Pharma Zusammensetzungen und verfahren zur verstärkung der nk-zellaktivität
US7868159B2 (en) 2005-06-23 2011-01-11 Baylor College Of Medicine Modulation of negative immune regulators and applications for immunotherapy
TWI368637B (en) 2005-09-05 2012-07-21 Hon Hai Prec Ind Co Ltd High lustrous nano paint and methods for manufacturing and using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054355A1 (en) 2003-03-05 2007-03-08 Yuval Reiss Cbl-b polypeptides, complexes and related methods
WO2006052534A2 (en) 2004-11-04 2006-05-18 St. Jude Children's Research Hospital Expansion of nk cells and therapeutic uses thereof
US7435596B2 (en) 2004-11-04 2008-10-14 St. Jude Children's Research Hospital, Inc. Modified cell line and method for expansion of NK cell
US20070087988A1 (en) 2005-09-30 2007-04-19 New York University Hematopoietic progenitor kinase 1 for modulation of an immune response
WO2008033403A2 (en) 2006-09-13 2008-03-20 The Trustees Of Columbia University In The City Of New York Agents and methods to elicit anti-tumor immune response
WO2009073905A2 (de) 2007-12-10 2009-06-18 Medizinische Universität Innsbruck Verfahren zur erhöhung der immunreaktivität
WO2010119061A1 (de) 2009-04-14 2010-10-21 Apeiron Biologics Ag Verfahren zur bestimmung der cbl-b expression

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
***: "Abstracts for the 25th Annual Scientific Meeting of theInternational Society for Biological Therapy of Cancer", JOURNAL OF IMMUNOTHERAPY, vol. 33, no. 8, 1 October 2010 (2010-10-01), pages 859 - 920, XP055007199, ISSN: 1524-9557, DOI: 10.1097/CJI.0b013e3181f1e08d *
BEANO ET AL., J TRANSL MED., vol. 6, 16 May 2008 (2008-05-16), pages 25
CHIANG ET AL., JOURNAL OF CLINICAL INVESTIGATION, vol. 117, no. 4, 2007, pages 1033 - 1034
CHO ET AL., CLIN CANCER RES., vol. 16, no. 15, 1 August 2010 (2010-08-01), pages 3901 - 9
CLAUS ET AL., J IMMUNOL METHODS, vol. 341, no. 1-2, 28 February 2009 (2009-02-28), pages 154 - 64
DONS'KOI ET AL., J IMMUNOL METHODS, vol. 372, no. 1-2, 30 September 2011 (2011-09-30), pages 187 - 95
FAURIAT, BLOOD., vol. 115, no. 11, 18 March 2010 (2010-03-18), pages 2167 - 76
FUJISAKI ET AL., CANCER RES., vol. 69, no. 9, 1 May 2009 (2009-05-01), pages 4010 - 7
INGUNN M. STROMNES ET AL: "Abrogating Cbl-b in effector CD8+ T cells improves the efficacy of adoptive therapy of leukemia in mice", JOURNAL OF CLINICAL INVESTIGATION, vol. 120, no. 10, 1 October 2010 (2010-10-01), pages 3722 - 3734, XP055007208, ISSN: 0021-9738, DOI: 10.1172/JCI41991 *
JONATHAN M WEISS ET AL: "Immunotherapy of cancer by IL-12-based cytokine combinations", EXPERT OPINION ON BIOLOGICAL THERAPY, vol. 7, no. 11, 1 November 2007 (2007-11-01), pages 1705 - 1721, XP055007188, ISSN: 1471-2598, DOI: 10.1517/14712598.7.11.1705 *
KOJO ET AL., PNAS, vol. 106, no. 42, 2009, pages 17847 - 17851
KOJO SATOSHI ET AL: "Mechanisms of NKT cell anergy induction involve Cbl-b-promoted monoubiquitination of CARMA1.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 20 OCT 2009 LNKD- PUBMED:19815501, vol. 106, no. 42, 20 October 2009 (2009-10-20), pages 17847 - 17851, XP002635140, ISSN: 1091-6490 *
LAMETSCHWANDTNER ET AL., J. OF IMMUNOTHERAPY, vol. 33, no. 8, 2010, pages 899
LAMETSCHWANDTNER ET AL., JOURNAL OF IMMUNOTHERAPY, vol. 31, no. 9, 2008, pages 943
LAMETSCHWANDTNER GUENTHER ET AL: "Development of an Effective Cancer Immune Therapy by Cbl-b Silencing", JOURNAL OF IMMUNOTHERAPY, LIPPINCOTT WILLIAMS & WILKINS, HAGERSTOWN, MD, US, vol. 31, no. 9, 1 November 2008 (2008-11-01), pages 943, XP008106012, ISSN: 1524-9557, DOI: DOI:10.1097/CJI.0B013E31818B1DCE *
LOESER ET AL., JEM, 2007
PAOLINI ET AL., J IMMUNOL., vol. 186, no. 4, 15 February 2011 (2011-02-15), pages 2138 - 47
RICHARD ÅHLBERG ET AL: "Stimulation of T-cell cytokine production and NK-cell function by IL-2, IFN-[alpha] and histamine treatment during remission of non-Hodgkin's lymphoma", THE HEMATOLOGY JOURNAL, vol. 4, no. 5, 1 January 2003 (2003-01-01), pages 336 - 341, XP055027663, ISSN: 1466-4860, DOI: 10.1038/sj.thj.6200320 *
STROMNES ET AL., J. OF CLINICAL INVESTIGATION, vol. 120, no. 10, 2010, pages 3722 - 3734
VARIOUS: "International Society for Biological Therapy of Cancer 23rd Annual Meeting Abstracts", JOURNAL OF IMMUNOTHERAPY, vol. 31, no. 9, 1 November 2008 (2008-11-01), pages 921 - 971, XP055027649 *
WEISS ET AL., EXPERT OPINION ON BIOLOGICAL THERAPY, vol. 7, no. 11, 2007, pages 1705 - 1721
WIGGINTON ET AL., EXPERT OPINION ON BIOLOGICAL THERAPY, vol. 2, no. 5, 2002, pages 513 - 524
WIGGINTON JON M ET AL: "IL-12/IL-2 combination cytokine therapy for solid tumours: translation from bench to bedside.", EXPERT OPINION ON BIOLOGICAL THERAPY JUN 2002 LNKD- PUBMED:12079487, vol. 2, no. 5, June 2002 (2002-06-01), pages 513 - 524, XP009152161, ISSN: 1471-2598 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390849B2 (en) 2016-11-29 2022-07-19 Fondazione Ri.Med NK-mediated immunotherapy and uses thereof
WO2018099988A1 (en) * 2016-11-29 2018-06-07 Fondazione Ri.Med Nk-mediated immunotherapy and uses thereof
IT201600121081A1 (it) * 2016-11-29 2018-05-29 Fond Ri Med Immunoterapia NK-mediata e usi di essa
US11866442B2 (en) 2018-10-15 2024-01-09 Nurix Therapeutics, Inc. Bifunctional compounds for degrading BTK via ubiquitin proteosome pathway
US11479556B1 (en) 2018-10-15 2022-10-25 Nurix Therapeutics, Inc. Bifunctional compounds for degrading BTK via ubiquitin proteosome pathway
US11951133B2 (en) 2019-04-09 2024-04-09 Nurix Therapeutics, Inc. 3-substituted piperidine compounds for Cbl-b inhibition, and use thereof
US11530229B2 (en) 2019-05-17 2022-12-20 Nurix Therapeutics, Inc. Cyano cyclobutyl compounds for CBL-B inhibition and uses thereof
CN114450271A (zh) * 2019-07-30 2022-05-06 纽力克斯治疗公司 用于Cbl-b抑制的脲类、氨基类和取代的杂芳基类化合物
CN114786687A (zh) * 2019-09-24 2022-07-22 纽力克斯治疗公司 用于过继细胞疗法的Cbl抑制剂和组合物
CN114761027A (zh) * 2019-09-24 2022-07-15 纽力克斯治疗公司 用于免疫细胞扩增的Cbl抑制剂和组合物
WO2021061870A1 (en) * 2019-09-24 2021-04-01 Nurix Therapeutics, Inc. Cbl inhibitors and compositions for expansion of immune cells
WO2021061853A1 (en) * 2019-09-24 2021-04-01 Nurix Therapeutics, Inc. Cbl inhibitors and compositions for use in adoptive cell therapy
US11820781B2 (en) 2019-12-04 2023-11-21 Nurix Therapeutics, Inc. Bifunctional compounds for degrading BTK via ubiquitin proteosome pathway
EP4289939A1 (de) 2022-06-10 2023-12-13 Apeiron Biologics AG Population transfizierter immunzellen und verfahren zu ihrer produktion
WO2023237764A1 (en) 2022-06-10 2023-12-14 Apeiron Biologics Ag Population of transfected immune cells and method for their production

Also Published As

Publication number Publication date
CA2822114A1 (en) 2012-07-05
AU2011351445A1 (en) 2013-07-04
US9186373B2 (en) 2015-11-17
AU2011351445B2 (en) 2016-10-20
US20140010781A1 (en) 2014-01-09
EP2471548A1 (de) 2012-07-04
CA2822114C (en) 2019-09-10
EP2658566B1 (de) 2017-01-25
US20150313931A1 (en) 2015-11-05
EP2658566A1 (de) 2013-11-06
ES2622958T3 (es) 2017-07-10

Similar Documents

Publication Publication Date Title
EP2658566B1 (de) Sirna gegen cbl-b kombiniert mit zytokinen und interferonen in der behandlung von krebs
CN105008521B (zh) 调节干细胞的免疫调节作用的方法
KR101775262B1 (ko) 편도 유래 중간엽 줄기세포 또는 이의 조정 배지를 포함하는 피부 염증 질환 예방 또는 치료용 조성물
US20180200301A1 (en) Low-Oxygen-Treated Mesenchymal Stem Cell and Use Thereof
CN105934155A (zh) 在调节疼痛和/或纤维化中使用脂肪组织来源的细胞的方法
CN105079792A (zh) Il-17在提高间充质干细胞免疫抑制功能中的应用
EP1556411B1 (de) Adenovirale Vektoren die Einzelketten Interleukin-12 und 4-1BB Ligand exprimieren
KR102216710B1 (ko) Nk세포배양배지용 첨가조성물, 상기 첨가조성물을 이용한 nk세포배양방법 및 상기 배양방법으로 얻어진 피부트러블개선용 화장료조성물
US20170204151A1 (en) Mesenchymal Stem Cells Expressing Biomarkers that Predict the Effectiveness of Mesenchymal Stem Cells for Treating Diseases and Disorders
EP2633034B1 (de) NFkB-SIGNALWEG-MANIPULIERTE DENDRITISCHE ZELLEN
DE102011003478A1 (de) Antivirales Mittel enthaltend rekombinante Mistellektine
EP3331538B1 (de) Modulierende inflammasom-aktivierung von myeloid-abgeleiteten suppressor-zellen zur behandlung von gvhd oder tumoren
Kansy et al. Immuntherapie–Die neue Ära in der Onkologie
EP2773747B1 (de) Tsg-6 protein zur verwendung bei der vorbeugung und behandlung der abstossung einer hornhauttransplantation
Zakirova et al. Genetic Therapy in Veterinary Medicine
Kansy et al. Referateband: Immunotherapy–The New Era of Oncology
KR101673318B1 (ko) 은나노 물질로 처리된 중간엽 줄기세포 또는 그 배양액을 유효성분으로 포함하는 상처 치료용 세포치료제 조성물
CN115300507B (zh) I-brd9作为arih1激动剂的用途
EP1399168B1 (de) Xenogene oligo- oder/und polyribonukleotide als mittel zur behandlung von malignen tumoren
KR102526447B1 (ko) 편도 유래 중간엽 줄기세포의 조정 배지를 포함하는 간질환 예방 또는 치료용 조성물
WO2021141862A1 (en) Methods of modulating sting pathway activation
KR20130023797A (ko) 자연살해세포 억제제 및 간엽줄기세포를 유효성분으로 포함하는 이식편대숙주질환의 예방 또는 치료를 위한 세포치료제 조성물
KR20220153768A (ko) Il-10 과발현 인간 지방유래 중간엽줄기세포 및 그 용도
DE102022115364A1 (de) FATP2 in T-Zellen als Zielmolekül zur Behandlung von Autoimmunerkrankungen
KR101705378B1 (ko) 간엽줄기세포 및 ⅰl-21 차단제를 포함하는 이식편대숙주질환의 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11805055

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011805055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011805055

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2822114

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011351445

Country of ref document: AU

Date of ref document: 20111227

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13977453

Country of ref document: US