WO2012089147A1 - 针对核酸样本构建测序文库的方法及其用途 - Google Patents

针对核酸样本构建测序文库的方法及其用途 Download PDF

Info

Publication number
WO2012089147A1
WO2012089147A1 PCT/CN2011/084958 CN2011084958W WO2012089147A1 WO 2012089147 A1 WO2012089147 A1 WO 2012089147A1 CN 2011084958 W CN2011084958 W CN 2011084958W WO 2012089147 A1 WO2012089147 A1 WO 2012089147A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequencing
nucleic acid
protein
dna fragment
acid sample
Prior art date
Application number
PCT/CN2011/084958
Other languages
English (en)
French (fr)
Inventor
叶明芝
郜赵伟
卓著
韩旭
汪建
Original Assignee
深圳华大基因科技有限公司
深圳华大基因研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大基因科技有限公司, 深圳华大基因研究院 filed Critical 深圳华大基因科技有限公司
Publication of WO2012089147A1 publication Critical patent/WO2012089147A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups

Definitions

  • the present invention relates to the field of molecular biology, particularly to the field of histone modification and DNA methylation interaction research.
  • the present invention relates to methods for constructing sequencing libraries for nucleic acid samples and uses thereof. More specifically, the present invention provides a method of constructing a sequencing library for a nucleic acid sample, a sequencing library, and a method of determining predetermined sequence information in a nucleic acid sample. Background technique
  • Epigenetics is based on changes in gene expression levels caused by non-gene sequence changes, while Histone modification and DNA methylation are the two main forms of epigenetics.
  • histone is the basic structural unit of chromosome, and various modifications can occur at the end to cause changes in chromosome structure and regulate the expression of related genes.
  • DNA thiolation causes the silencing or expression of related genes by changes in the spatial structure of DNA mediated by modified bases without changing the DNA sequence.
  • histone modifications and DNA thiolation are linked to each other in a variety of ways, such as antagonism or synergy, to form an epigenetic network that plays a regulatory role in embryonic development, ontogeny, and disease development. Therefore, it is of great significance to study the effects of histone modification, DNA thiolation, and the interaction between the two, and to construct an epigenetic regulatory network of organisms at the genomic level.
  • ChIP chromatin immunoprecipitation
  • bisulfite treatment have become the classic methods for studying histone modification and DNA methylation, respectively.
  • ChIP technology alone can only understand the binding region of modified histones and DNA in the study body, and the bisulfite treatment technology alone can only understand the status of genome-wide DNA thiolation of the research object. None of them can be directly and effectively used for the study of the interaction between histone modification and DNA methylation.
  • the amount of product obtained by chromatin immunoprecipitation is small (many times less than 10 ng, for some precious materials, due to the limited amount of cell samples, the amount of ChIP product obtained is less), In the subsequent high-throughput sequencing, the quality of the sequencing data cannot be guaranteed, which will seriously affect the accuracy of the research results.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the inventors have provided a method for constructing a sequencing library for nucleic acid samples and its use through arduous creative labor and optimized work.
  • the invention provides a method of constructing a sequencing library for a nucleic acid sample.
  • the nucleic acid sample comprises a DNA fragment derived from chromatin binding to a protein of interest.
  • the method for constructing a sequencing library for a nucleic acid sample of the present invention comprises: performing a chromatin immunoprecipitation treatment on a nucleic acid sample to obtain a DNA fragment that binds to a protein of interest; and binding the target protein with bisulfite
  • the DNA fragment is treated to convert unmethylated cytosine to uracil to obtain a transformation product; and the transformation product is subjected to PCR amplification to obtain an amplification product, and the amplification product constitutes a sequencing library.
  • a method for constructing a sequencing library for a nucleic acid sample skillfully combining chromatin immunoprecipitation technology with direct bisulfite treatment sequencing technology, and optimizing steps of chromatin immunoprecipitation (ChIP) technology, whereby, the amount of the product of the chromatin immunoprecipitation treatment can be increased, so that the amount of the product can reach the minimum starting amount (100 ng) of the bisulfite treatment experiment, so that the bisulfite treatment can be smoothly carried out, and then the sulfurous acid can be smoothly carried out.
  • Hydrogen salt treatment products can be effectively used in high-throughput sequencing platforms to ensure the quality of sequencing data.
  • the inventors have surprisingly found that the use of the method for constructing a sequencing library for nucleic acid samples of the present invention to construct a sequencing library is reproducible, low in cost, less time-consuming, efficient, and the library quality is very good, and can be effectively applied.
  • Subsequent high-throughput sequencing platforms such as the Solexa sequencing platform, based on sequencing results, can accurately and efficiently determine the methylation information of the DNA bound to the target histone, thereby effectively extracting the target protein and its methylation. The interaction of DNA.
  • the invention provides a sequencing library.
  • the sequencing library is constructed by the method of the invention for constructing a sequencing library for a nucleic acid sample.
  • the sequencing library according to the embodiment of the present invention has high purity and good quality, and can be effectively applied to a subsequent high-throughput sequencing platform such as the Solexa sequencing platform, and can accurately and efficiently determine the target histone based on the sequencing result.
  • the invention provides a method of determining predetermined sequence sequence information in a nucleic acid sample.
  • the predetermined site binds to the protein of interest and at least one cytosine of the predetermined site is methylated.
  • the method of determining predetermined site sequence information in a nucleic acid sample of the present invention comprises: constructing a sequencing library using a method for constructing a sequencing library for a nucleic acid sample according to an embodiment of the present invention; sequencing the sequencing library, In order to obtain the sequencing result; and based on the sequencing result, determine the sequence information of the predetermined site.
  • DNA sequence information and methylation of a predetermined site in a nucleic acid sample binding to a target protein can be conveniently, accurately and efficiently determined.
  • the condition, based on this information, can be effectively used for the study of the interaction relationship between the protein of interest and the DNA binding to the protein of interest.
  • Figure 1 shows a schematic flow diagram of a method for constructing a sequencing library for a nucleic acid sample according to one embodiment of the present invention
  • Figure 2 shows an electrophoretic detection pattern of chromatin disruption effect in accordance with one embodiment of the present invention. Detailed description of the invention
  • the invention provides a method of constructing a sequencing library for a nucleic acid sample.
  • the nucleic acid sample comprises a DNA fragment derived from chromatin binding to a protein of interest.
  • the method of the present invention for constructing a sequencing library for a nucleic acid sample may include:
  • the nucleic acid sample is subjected to chromatin immunoprecipitation treatment to obtain a DNA fragment that binds to the protein of interest.
  • the source of the nucleic acid sample is not particularly limited, and may be directly provided by other technicians or companies, or may be prepared by itself, as long as the nucleic acid sample contains a DNA fragment derived from chromatin and binds to the protein of interest. Can be used to build a sequencing library.
  • a nucleic acid sample can be obtained by the following steps: crosslinking a cell to crosslink the chromatin of the fixed cell; placing the cross-linked cell in a lysis buffer to release the cross-linking Fixed chromatin; Fragmentation of cross-linked immobilized chromatin to obtain a nucleic acid sample.
  • the above cells are living cells.
  • the number of cells is at least 10 6 .
  • the crosslinking reaction may employ furfural as a crosslinking agent, and the crosslinking time is 5 to 20 minutes.
  • the concentration of furfural may be from 0.8 to 1.2%.
  • the crosslinking time is 10 minutes.
  • the crosslinked fixed chromatin can be fragmented by a non-contact sonicator.
  • the ultrasonic frequency of the non-contact ultrasonic breaker is 200w-320w.
  • the fragmentation condition of the non-contact sonicator may be ultrasonic 25-35 seconds on / 0.5-3 minutes off for a total of 6-8 cycles.
  • the segmentation condition of the non-contact sonicator is ultrasonic 30 seconds on/2 minutes off for a total of 7 cycles.
  • an immunomagnetic bead may be used for chromatin immunoprecipitation, and an antibody that specifically recognizes a protein of interest is attached to the immunomagnetic beads.
  • a method of constructing a sequencing library for a nucleic acid sample of the present invention may further comprise mixing an antibody that specifically recognizes the protein of interest with an immunomagnetic bead to link the antibody to the immunomagnetic beads.
  • the immunomagnetic beads are coated with at least one of Protein A and Protein G.
  • the antibody is H3K4me3.
  • ProteinA and ProteinG are respectively formed on different immunomagnetic beads, wherein the amount of the antibody is 3-4.5 ⁇ g, coated with ProteinA
  • the total amount of immunomagnetic beads and immunomagnetic beads coated with ProteinG is 300-600 micrograms. According to a specific example of the present invention, the total amount of immunomagnetic beads coated with ProteinA and immunomagnetic beads coated with ProteinG is 600 micrograms. According to some embodiments of the invention, the amount of immunomagnetic beads coated with ProteinA and the immunomagnetic beads coated with ProteinG are the same.
  • the DNA fragment bound to the protein of interest may be subjected to a reverse cross-linking treatment.
  • the anti-crosslinking treatment is carried out using a reverse crosslinking buffer comprising 1% SDS and 0.1 M NaHC0 3 .
  • the reverse crosslinking treatment can be carried out for 2-16 hours.
  • a reverse cross-linking treatment can be performed for 3 hours.
  • the DNA fragment bound to the protein of interest is treated with bisulfite to convert the unbranched cytosine to uracil to obtain a transformation product.
  • the treatment of the DNA fragment bound to the protein of interest by using bisulfite may further comprise: acidifying the cytosine term with soluble bisulfite; deamination of the sulfonated cytosine with hydroquinone; And under alkaline conditions, the traces are removed to convert the cytosine to uracil.
  • PCR amplification can be performed using primers that match the methylation sequencing linker.
  • the method of constructing a sequencing library for a nucleic acid sample of the present invention is to construct a library that can be used for high-throughput sequencing, it is necessary in the method to include a sequencing linker on the nucleic acid sample.
  • the time sequence for connecting the sequencing link is not particularly limited.
  • the sequencing linker may be ligated after obtaining the DNA fragment that binds to the protein of interest, and before the DNA fragment that binds the protein of interest is treated with bisulfite, specifically, using a bisulfite pair
  • the method further comprises: performing end repair of the DNA fragment to obtain a DNA fragment which has been repaired at the end; adding a base A at the 3' end of the end-repaired DNA fragment to obtain 3 ' A DNA fragment having a base A at the end; a DNA fragment having a base A at the 3' end is ligated to a methylation sequencing linker to obtain a ligation product.
  • the sequencing linker can also be ligated when the transform product is subjected to PCR amplification. Specifically, the sequencing linker and the reagent required for ligation of the sequencing linker can be added to the PCR amplification system, and The experiment requires that the reaction conditions of the PCR amplification be appropriately adjusted. In addition, the sequencing linker can be directly ligated to the nucleic acid sample, followed by other subsequent steps, and the like, as long as the sequencing library containing the sequencing linker for the nucleic acid sample can be successfully obtained. Additionally, it should be noted that the sequencing adaptors used in the present invention are all methylated sequencing linkers (sometimes referred to herein as "methylated junctions").
  • methylated sequencing linker refers to a sequencing link in which all C sites are methylated. This methylation sequencing linker was obtained by thiolation of a conventional sequencing linker for a high throughput sequencing platform. Thereby, it is possible to avoid interference of the sequencing linker with the operation of the bisulfite treatment or the like in the method for constructing a sequencing library of the nucleic acid sample of the present invention. It will be understood by those skilled in the art that the method of thiolation of the sequencing linker is not particularly limited, and the sequencing linker can be methylated by any method known in the art.
  • a method for constructing a sequencing library for a nucleic acid sample according to an embodiment of the present invention subtly immunoprecipitating chromatin
  • the combination of technology and bisulfite treatment direct sequencing technology, and optimization of the chromatin immunoprecipitation (ChIP) technology step can significantly increase the amount of chromatin immunoprecipitation treatment products, in order to be able to effectively carry out subsequent Bisulfite treatment, and thus the resulting sequencing library, can be effectively used in high-throughput sequencing platforms and can obtain high-quality sequencing data.
  • the inventors have surprisingly found that the use of the method for constructing a sequencing library for nucleic acid samples of the present invention to construct a sequencing library is reproducible, low in cost, less time-consuming, efficient, and the library quality is very good, and can be effectively applied.
  • Subsequent high-throughput sequencing platforms such as the Solexa sequencing platform, based on sequencing data, can accurately and efficiently determine the methylation information of DNA bound to the protein of interest, so that the analysis of the acquired data and information can effectively yield specific
  • the interaction between histone modification and DNA methylation can further study the network function of histone modification and DNA methylation in vivo to successfully construct epigenetic regulation maps.
  • the method for constructing a sequencing library for a nucleic acid sample of the present invention may include: sequentially performing chromatin immunoprecipitation treatment and bisulfite treatment on the same cell sample, and expanding the treated product.
  • the cell DNA library is obtained.
  • the method may comprise the following steps:
  • the isolated DNA fragment is treated with bisulfite to convert unmethylated cytosine to uracil.
  • step c+1 may be further included after step c and before step d: the isolated DNA fragment is end-repaired to be blunt-ended, and added to the 3' end of the DNA fragment.
  • Base A such that it forms a sticky end "TA", and then joins a methylation sequencing linker;
  • step d+1 may be further included after step d, and the sequencing library is obtained by PCR amplification using a primer matched with a methylation sequencing linker.
  • the initial amount of the living cells subjected to the crosslinking reaction is not less than 10 6
  • the crosslinking reaction is a furfural crosslinking reaction
  • the final concentration of furfural used for the crosslinking reaction It is 0.8-1.2%, preferably 1%
  • the formaldehyde crosslinking time is 5-20 min, preferably 10 min.
  • the chromosome break in step b, can be ultrasonically interrupted by a non-contact ultrasonic crusher, and the ultrasonic frequency is 200w ⁇ 320w, and the interrupting condition can be ultrasonic 25-35 seconds on/0.5- 3 min off, a total of 6-8 cycles, preferably 30 seconds on/2 min off, for a total of 7 cycles.
  • the chromatin immunoprecipitation method may select a specific antibody of the target protein and an immunomagnetic beads to separate the DNA fragment.
  • step c may comprise: mixing the immunomagnetic beads with a specific antibody to prepare a magnetic bead-antibody reaction, and then mixing the chromatin interrupted in step b with the magnetic bead-antibody reaction for immunoprecipitation Then, a reverse crosslinking reaction is carried out, and the DNA isolated from the protein is purified.
  • the specific antibody is H3K4me3, and the immunomagnetic beads are separately coated. Protein A magnetic beads and protein G magnetic beads with protein A and protein G.
  • the antibody H3K4me3 may be used in an amount of 3 to 4.5 g, preferably 4 g, and the protein A magnetic beads and the protein G magnetic beads may be used in an amount of 300 to 600 ⁇ s, preferably 600 ⁇ , and the ratio of the two is 1: 1.
  • the time of the reverse crosslinking reaction is 2 to 16 h, preferably 3 h.
  • the bisulfite treatment of step d may comprise sulfonating the cytosine with a soluble bisulfite, then deamination with hydroquinone, and then, under an alkaline environment, the sulfo group disappears, Become uracil.
  • the method for constructing a sequencing library for a nucleic acid sample of the present invention may further comprise the following steps:
  • the principle is: under the action of formaldehyde, amino or imino groups on DNA bases and ⁇ -amino groups and lysine and arginine on proteins
  • the side chain amino group of histidine or tryptophan is cross-linked with another amino acid or an amino group on the protein to form a protein-DNA complex (Merk 0 and Speit G. Significance of formaldehyde-induced DNA-protein crosslinks) 1998. 32: 260-268, which is incorporated herein by reference in its entirety, to prevent the redistribution of intracellular protein components, thereby facilitating the immunoprecipitation reaction.
  • the formaldehyde cross-linking reaction is reversible, which facilitates the analysis of DNA and protein separately in subsequent steps.
  • the final concentration of formaldehyde used in the crosslinking reaction is 1%, and the crosslinking time needs to be determined by analysis. If the cross-linking time is too long, the cross-linked DNA-protein complex is difficult to be interrupted by the sonicator, and may cause loss of antigenic epitopes, affecting subsequent immunoprecipitation results; if the cross-linking time is too short, protein and DNA cannot form. The more stable binding, the amount of DNA that is likely to precipitate in the ChIP reaction is not sufficient to construct a library, resulting in a false negative.
  • the optimized formaldehyde crosslinking time is 10 min.
  • the chromosome is interrupted using an ultrasound method.
  • the ultrasonic interrupting process a large amount of heat will be generated to cause the temperature of the sample solution to rise, which tends to cause protein denaturation to be detrimental to the subsequent co-immunoprecipitation operation. Therefore, in order to ensure the active state of the protein, the entire ultrasonic interrupting process sample needs to be in a water bath state. And the method of intermittent ultrasound, that is, ultrasonic interruption and stop cooling are repeated.
  • the time of ultrasonic interruption needs to be determined according to the parameters and research purposes of different ultrasonic breakers. If the interruption time is too short, the DNA fragments will be too large, making the protein epitopes bound to DNA difficult to be exposed, which is not conducive to antibody recognition and does not conform to Sequencing library requirements; and the long interruption time will result in a small DNA fragment, and the loose binding to protein is not conducive to immunoprecipitation. In addition, excessively long ultrasound time may also result in denaturation of the protein and inability to bind to the antibody used, resulting in the inability of the DNA to be precipitated.
  • chromosome fragmentation was performed using a Biomptor sonicator with a power output set to "H" and a breaking condition set to 30 s on / 2 min off for a total of 7 cycles.
  • the cell chromosome is interrupted without centrifugation (to avoid chromosomal loss), it is directly diluted with a dilution buffer to obtain a nucleic acid sample, and the subsequent ChIP reaction can obtain more products.
  • Co-immunoprecipitation is a DNA fragment that is bound to a protein of interest by specific binding of an antigen-antibody.
  • select the appropriate histone antibody according to the study, and select the appropriate magnetic bead and dosage ratio according to the affinity of the antibody for Protein A and Protein G.
  • the amount of antibody in the ChIP reaction system is also critical. The amount of antibody in the ChIP reaction system needs to be determined in advance. If the antibody is insufficient in the system, the DNA will not be completely precipitated, resulting in false negative results or the amount of precipitated DNA that does not meet the requirements for database construction. Conversely, if the amount of antibody in the system is too large, the excess antibody will interact with some non-target proteins.
  • a single ChIP reaction system uses 4 g of mouse-derived H3K4me3 (abl012) antibody, and the magnetic bead is 20 ⁇ M each of protein A and protein G (concentration of coated magnetic beads 30 ⁇ / ⁇ 1). mixing.
  • abl012 mouse-derived H3K4me3
  • the magnetic bead is 20 ⁇ M each of protein A and protein G (concentration of coated magnetic beads 30 ⁇ / ⁇ 1). mixing.
  • Positive and negative antibody controls are the most basic experimental controls.
  • a positive antibody usually selects an antibody that is a relatively conserved protein that binds to a known sequence
  • a negative antibody usually selects an IgG antibody of a target protein antibody host.
  • the effect of the ChIP experiment can be tested by setting the positive and negative controls to ensure the effectiveness of the entire experimental procedure.
  • a pair of negative primers that is, a DNA sequence that the protein of interest is definitely not bound, is usually selected as a negative control for the antibody.
  • a portion of the fragmented chromatin is taken as an Input control prior to immunoprecipitation. Input is the genomic DNA after cleavage and needs to be reversed cross-linked with the ChIP product, DNA purified, and finally PCR or other methods.
  • the Input control can not only verify the effect of chromatin cleavage, but also the enrichment efficiency of ChIP reaction based on the content of the target sequence in Input and the content of the target sequence in the chromatin precipitate.
  • 1/50 of the disrupted product is taken as an Input control, and the ChIP product is subjected to reverse cross-linking treatment, DNA fragment purification, and then the purified Input and ChIP products are diluted to the same concentration, and the same is obtained.
  • the amount is used as a template for real-time PCR detection.
  • the enrichment efficiency of the ChIP reaction can be calculated by comparing the Ct values of the ChIP product and Input (see Schemittgen TD, Livak KJ.
  • ChIP product refers to a DNA fragment bound to a protein of interest obtained by a ChIP reaction, and those skilled in the art can understand the ChIP product mentioned herein. Different forms may be present under different reaction conditions, for example, the ChIP product will be in the form of a magnetic bead-antibody-DNA binding protein complex prior to reverse crosslinking.
  • the ChIP library only needs to be ligated with a conventional sequencing linker, but in the present invention, the obtained DNA fragment is subjected to bisulfite inversion treatment to study the methylation of the DNA, thereby sequencing all the cytosine sites of the linker. Methylation must be modified to prevent PCR amplification and library construction after bisulfite treatment. That is, the linked methylation linker can ensure that the DNA fragment is unchanged after the bisulfite treatment, but can still be matched with the sequencing primer, so that the chromatin immunoprecipitation is effectively combined with the bisulfite treatment.
  • Bisulfite inversion is the chemical modification of single-stranded DNA molecules with bisulfite, resulting in the conversion of unmethylated cytosine (C) to uracil (U) by bisulfite dehydrogenation, while 5mC Can not be modified, still kept at 5mC, during the PCR reaction, uracil is paired with adenine (A), and uracil is replaced by thymine (T).
  • C unmethylated cytosine
  • U uracil
  • A adenine
  • T thymine
  • bisulfite turnover is: first, sulfonating cytosine with sodium bisulfite; second step, deamination with hydroquinone; third step, causing the base to disappear under alkaline conditions Thus, cytosine becomes uracil.
  • bisulfite inversion can be performed using the EZ DNA thiolation kit - Gold (ZYMO D5006) to obtain a conversion product.
  • the obtained transformed product was subjected to PCR amplification in order to double-strand the single-stranded DNA fragment while amplifying the amount of DNA.
  • the primers used for PCR amplification are matched with the sequences of the linkers after the hydrogen hydride treatment, whereby an amplification product is obtained, which constitutes a sequencing library of nucleic acid samples.
  • the amplified product of the appropriate size is then recovered by gel electrophoresis for sequencing. According to an embodiment of the present invention, rubber recovery can be carried out using Qiagen's QIAquick Gel Recovery Kit.
  • the DNA thiolation status combined with the specific histone modification can be directly and effectively detected, thereby obtaining a specific group.
  • Protein modification and direct or indirect interaction with DNA methylation help to elucidate the mechanism of interaction between protein and DNA methylation and the regulatory relationship of gene expression inhibition. Therefore, it is possible to deeply study the network function of histone modification and DNA methylation in vivo, and to construct an epigenetic regulation map.
  • the invention provides a sequencing library.
  • the sequencing library is constructed by the method of the invention for constructing a sequencing library for a nucleic acid sample.
  • the sequencing library according to the embodiment of the present invention has high purity and good shield capacity, and can be effectively applied to subsequent high-throughput sequencing platforms such as the Solexa sequencing platform, and can be accurately and effectively based on the sequencing results and the analysis of the results. Determining the thiolation information of the DNA bound to the target histone, and based on the various information obtained Effectively determine the interaction between the target protein modification and DNA methylation, so as to be able to deeply study the network function of histone modification and DNA methylation in vivo, and then to construct an epigenetic regulation map.
  • the invention provides a method of determining predetermined sequence sequence information in a nucleic acid sample.
  • the predetermined site binds to the protein of interest and at least one cytosine of the predetermined site is methylated.
  • the term "predetermined site” as used herein is to be understood broadly and may refer to a sequence of nucleic acid samples whose length is not particularly limited and may be only one nucleotide or any number. A nucleic acid sequence consisting of consecutive or discontinuous nucleotides.
  • the method of determining predetermined sequence sequence information in a nucleic acid sample of the present invention may include:
  • a sequencing library is constructed using a method of constructing a sequencing library for a nucleic acid sample according to an embodiment of the present invention.
  • the sequencing library is sequenced to obtain the sequencing results.
  • sequence information of the predetermined site is determined.
  • the method for determining predetermined sequence sequence information in a nucleic acid sample of the present invention can accurately and efficiently determine DNA sequence information and methylation status of a predetermined site in a nucleic acid sample that binds to a target protein, Therefore, based on this information, it can be effectively used for the study of the interaction relationship between the target protein and the DNA binding to the target protein. Furthermore, the inventors have found that a method for determining predetermined sequence sequence information in a nucleic acid sample according to an embodiment of the present invention operates the cartridge, requires less time, is less costly, and obtains accurate results with good repeatability.
  • Healthy human peripheral blood cells were cultured in a cell culture incubator using a T-75 cell culture flask using RPMI1640 (C22400500BT, Invitrogen) medium (containing 10% FBS (10437010, Invitrogen)) and designated as YH cells.
  • RPMI1640 C22400500BT, Invitrogen
  • FBS 10437010, Invitrogen
  • a 1% formaldehyde solution was prepared using ⁇ 7.4 PBS buffer (10010-031, Invitrogen), and was used as needed, and then preheated in a 37 ° C water bath.
  • the collected cells placed in a centrifuge tube were centrifuged at 850 g for 5 min at 4 ° C, then the cell culture medium was discarded, and 25 ml of a preheated 1% freshly prepared formaldehyde solution was added, and the cells were homogenized, and then the cells were cultured at 37 ° C. Incubate for 10 minutes in a water bath; then, immediately centrifuge at 850 g for 5 min at 4 ° C, and discard the formaldehyde solution, then prepare with pre-cooled 10 ml PBS-BSA buffer (in PBS with a BSA concentration of 5 mg/ml). Wash the cells once with BSA No.
  • Histone H3 (tri methyl K4) antibody [mAbcaml 012] (ab 1012 , Abeam) was used as the antibody for subsequent chromatin immunoprecipitation, and DynalBeads protein A (100.01D, Invitrogen) and DynalB-eads protein G (100.03) were selected.
  • D Invitrogen
  • Concentration of coated magnetic beads of 30 ⁇ as magnetic beads for co-immunoprecipitation treatment. Place 20 ⁇ 1 of each magnetic bead into a new 1.5ml centrifuge tube; add 500 ⁇ l water pre-cooled PBS+BSA mixture, flick the tube wall, resuspend the magnetic beads, and mix by inversion; then centrifuge the tube Place on the magnetic stand for 2 min.
  • the Bioruptor sonicator was chosen as the instrument for chromatin disruption. Because the Bioruptor sonicator has good stability compared to other ultrasound systems, and it is interrupted by water wave oscillations, the conditions are relatively mild, which is more conducive to CMP experiments, and the Bioruptor is interrupted in a closed state compared with the probe type ultrasound system. It is carried out in a centrifuge tube to avoid contamination due to the probe being immersed in the sample.
  • lysis buffer complete solution lysis buffer complete solution: 1% SDS, 10 mM EDTA, pH 8.1 50 mM Tris-HCl, lxPIC
  • the disrupted product was diluted 6-9 times with dilution buffer (1% tnton, 2 mM EDTA, 150 mM NaCl, pH 8.1 20 mM Tris-HCl) to obtain a nucleic acid sample, which was then placed on ice. , spare.
  • dilution buffer 1% tnton, 2 mM EDTA, 150 mM NaCl, pH 8.1 20 mM Tris-HCl
  • step 2 Place the centrifuge tube containing the antibody-attached magnetic beads obtained in step 2 on a magnetic stand for 2 minutes, then discard the supernatant; then add 500 ⁇ l of ice-cold PBS-BSA mixture, flick the tube wall Resuspend the magnetic beads and mix them by inversion, then place the centrifuge tube on the magnetic stand for 2 min, and remove the supernatant on the magnetic stand, then repeat this step once (to remove the antibody not bound to the magnetic beads); Then, the nucleic acid sample obtained in the step 3 was added to the centrifuge tube, and the mixture was vortex-mixed at 4 ° C overnight to obtain a ChlP product.
  • the anti-crosslinking time was 3 h to obtain a reverse cross-linked sample.
  • the supernatant I and Input were respectively subjected to reverse crosslinking at 65 ° C, the reverse crosslinking time was 3 h, and then the reverse cross-linked products of the two and the above-mentioned anti-crosslinking products were used.
  • the cross-linked samples were subjected to electrophoresis detection, and the results are shown in Fig. 2.
  • M is a DNA Marker
  • YH is an electrophoresis band of the Input control, which can represent the electrophoresis result of the nucleic acid sample (chromatin disrupting product).
  • the main band of the nucleic acid sample obtained after the chromatin was broken was located between 250 and 500 bp, indicating that the chromatin breaking effect was good.
  • the reverse cross-linked sample obtained in step 5 was placed on a magnetic stand for 2 min, then the supernatant (ie, the sample) was transferred to a new centrifuge tube, and then the magnetic beads were washed with 200 ⁇ l of pure water, the magnetic beads were discarded, and the transfer was washed out.
  • the liquid was mixed with the obtained supernatant, and then an equal volume of phenol was added to the mixture: chloroform: isoamyl alcohol (25:24:1) was extracted, centrifuged at 14,000 rpm for 10 minutes; after centrifugation, the upper aqueous phase was taken up and added twice.
  • the purified product was extracted and purified by Qubit (Quant-itTM double-stranded DNA HS Assary kit).
  • the total purified product obtained in this example was 83 ng, and the purified product was a DNA fragment which binds to the target protein.
  • a terminal repair reaction system was prepared in a 1.5 ml centrifuge tube: 20 ⁇ of the DNA fragment bound to the protein of interest; 10 ⁇ polynucleotide kinase buffer ⁇ ; 10 mM dNTPs mixture 2 ⁇ l; ⁇ 4 DNA polymerase (P708L, Enzymatics) 1 ⁇ 1 Dilute 10 times Klenow fragment ⁇ ; ⁇ 4 polynucleotide kinase (Y904L, Enzymatics) ⁇ ; hydrated to the total volume of the reaction system is 100 ⁇ 1.
  • reaction system was subjected to a warm bath at 20 ° C for 30 min in a Thermo mixer, and then extracted with phenol:chloroform:isoamyl alcohol (25:4:1), and the DNA was precipitated with ethanol, and finally dissolved. 34 ⁇ ⁇ , in order to obtain the end repair product, spare.
  • reaction system was subjected to a warm bath at 37 ° C for 30 min in a Thermomixer, and then extracted with chloroform:isoamyl alcohol, ethanol was precipitated, and finally DNA was dissolved in 45 ⁇ l of hydrazine to obtain a terminally-twisted product. .
  • reaction system was placed in a 1.5 mL centrifuge tube: end-added product A 45 ⁇ ; 2xRapid ligation buffer 50 ⁇ l; diluted 10-fold thiolated linker ⁇ ; water 2 ⁇ ; ⁇ 4 DNA ligase (L603-HC-L , Enzymatics ) 4 ⁇ 1; The total volume of the reaction system is 100 ⁇ 1.
  • the obtained reaction system was subjected to a warm bath at 20 ° C for 15 min in a Thermomixer, and then extracted with chloroform:isoamyl alcohol, ethanol was precipitated, and finally DNA was dissolved in 45 ⁇ l of ultrapure water to obtain a ligation product, which was used.
  • the ZYMO EZ DNA methylation-Gold kit is used for bisulfite treatment.
  • the specific experimental steps are as follows:
  • step 4 Fill the sample (from step 2) into a Zymo-centrifuge column containing M-binding buffer, cover the column and invert the column several times to mix the sample.
  • PCR PE Primer 1.1 and PCR PE Primer 2.1 double-end DNA sample preparation kit, PE-102-1001), MgS0 4 (C11708-021, Invitrogen), 10 mM dNTP mixture from a cryopreserved cassette stored at -20 °C , 10xP & amplification buffer (C11708-021, Invitrogen), and placed on the water for thawing and mixing well.
  • the PCR reaction system was then prepared in a 0.2 mL PCR tube: transformation product 20 ⁇ l; lOxPf amplification buffer 5 ⁇ l; platinum Pfx DNA polymerase (CI 1708-021, Invitrogen) 0.5 ⁇ l; primer 1.1 (10 ⁇ 1/ ⁇ 1) 5 ⁇ 1 Primer 2.1 (10 ⁇ 1/ ⁇ 1) 5 ⁇ 1; hydrated to the total volume of the reaction system was 50 ⁇ 1.
  • the obtained reaction system was first reacted at 94 ° C for 2 min in a thermocycler, and then subjected to 18 PCR amplification cycles.
  • the amplification procedure was denaturation at 94 ° C for 15 s, annealing at 62 ° C for 30 s, and extension at 72 ° C for 30 s. Finally, it was kept at 72 ° C for 5 min to obtain an amplification product.
  • the amplified product is taken out and placed in a 4 V water tank for storage, and the instrument is withdrawn or turned off as required. Then, a 150 bp amplification product was selected and subjected to gel recovery purification by agarose gel electrophoresis to obtain a sequencing library of YH cells. Second, the results
  • the sequencing library obtained above was subjected to cloning treatment, and the Sanger method was used for small-scale sequencing detection.
  • the library test results are shown in Table 1 below. As can be seen from Table 1, 91% of reads can be compared to the genomic region, and its methylation rate is 45%; and 99% conversion indicates that the effect of bisulfite treatment is very significant, indicating that Antibody enrichment and bisulfite treatment provide efficient sequence information.
  • the obtained sequencing library of YH cells was subjected to a 50 cycle paired End lane sequencing using Hiseq sequencing technology.
  • the sequencing results in 6.98 Gb of data, and then the data was analyzed for advanced bioinformatics.
  • the results are shown in Tables 2 and 3.
  • the histone-bound DNA with lysine modified by lysine is mostly located in the active expression region, and the level of DNA thiolation in this region is lower than the normal level. It can be seen from Tables 2 and 3 that the H3K4me3 modification is consistent with the trend of positive correlation with gene expression.
  • the methylation rate of the whole CpG of the DNA fragment enriched by ChIP was 39.11%, which was lower than the average methylation level of the cell genome CpG, indicating that H3K4me2 modification is related to gene expression, and DNA methylation has Certain antagonism.
  • Table 3 by analyzing the thiolation level of 5-UTR and regulatory region, the methylation rates were 3.18% and 11.47%, respectively. The hypomethylation level in this region also indicated that the gene was Active expression.
  • the methylation levels of exons and intron regions were analyzed. The methylation rates were 50.25% and 44.44%, and the uniq-reads in the exon region were 102605, and the uniq in the intron region. -reads has 147092, accounting for 18.60% and 26.67% of mapped reads, respectively.
  • the method for constructing a sequencing library for a nucleic acid sample, a sequencing library, and a method for determining predetermined sequence information in a nucleic acid sample can be effectively applied to the construction and sequencing of a sequencing library of a nucleic acid sample containing a DNA fragment bound to a protein shield of interest. And the obtained library has good quality, accurate sequencing results, and can be applied to the study of the interaction between the target protein and the DNA to which it binds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了针对核酸样本构建测序文库的方法、测序文库以及确定核酸样本中预定位点序列信息的方法。其中,针对核酸样本构建测序文库的方法包括:将核酸样本进行染色质免疫共沉淀处理,以便获得结合目的蛋白的DNA片段;利用亚硫酸氢盐对结合目的蛋白的DNA片段进行处理,以便使未甲基化的胞嘧啶转变为尿嘧啶,获得转变产物;以及对转变产物进行PCR扩增,以便获得扩增产物,该扩增产物构成测序文库,并且该核酸样本包含来源于染色质的结合目的蛋白质的DNA片段。

Description

针对核酸样本构建测序文库的方法及其用途 优先权信息
本申请请求 2010 年 12 月 31 日向中国国家知识产权局提交的、 专利申请号为 201010619688.3的专利申请的优先权和权益, 并且通过参照将其全文并入此处。 技术领域
本发明涉及分子生物学领域,特别是组蛋白修饰及 DNA甲基化相互作用研究领域, 具体地, 本发明涉及针对核酸样本构建测序文库的方法及其用途。 更具体地, 本发明提 供了一种针对核酸样本构建测序文库的方法、 一种测序文库以及一种确定核酸样本中预定 位点序列信息的方法。 背景技术
表观遗传学是基于非基因序列改变所引起的基因表达水平的变化, 而组蛋白修饰 ( Histone modification ) 和 DNA曱基化 (DNA methylation) 是表观遗传的两种主要形 式。 其中, 组蛋白是染色体基本结构单位, 其末端可发生多种修饰作用从而引起染色体 结构的改变, 并调节相关基因的表达。 DNA曱基化则是在不改变 DNA序列的情况下, 通过被修饰碱基介导的 DNA空间结构的变化, 引起相关基因的沉默或表达。 在生物体 中, 组蛋白修饰与 DNA曱基化通过拮抗或协同等多种方式相互联系, 形成表观遗传作 用网络, 在胚胎发育、 个体发育以及疾病发生过程中共同发挥调节作用。 因此, 研究组 蛋白修饰、 DNA 曱基化以及两者之间的相互作用, 进而在基因组水平上构建生物的表 观遗传调控网络, 意义重大。
然而, 目前对组蛋白修饰及 DNA甲基化相互作用的研究方法仍有待改进。 发明内容
本发明是基于发明人的下列发现而完成的:
目前, 染色质免疫共沉淀技术( ChIP )和亚硫酸氢盐处理技术已经分别成为研究组 蛋白修饰和 DNA甲基化的经典方法。 但是, 单独使用 ChIP技术, 只能了解研究对象 体内修饰组蛋白与 DNA的结合区域, 而单独使用亚硫酸氢盐处理技术, 只能了解研究 对象的全基因组 DNA 曱基化的状况, 两种技术均不能直接有效地用于组蛋白修饰和 DNA 甲基化的相互作用的研究。 而且, 采用染色质免疫共沉淀技术所得到的产物量较 少 (很多时候都不到 10ng, 对于某些珍贵的材料来说, 由于细胞样品的量有限, 得到 的 ChIP产物量更少) , 用于后续的高通量测序时, 不能保证测序数据的质量, 从而会 严重影响研究结果的准确性。
本发明旨在至少解决现有技术中存在的技术问题之一。 由此,发明人经过艰苦的创 造性劳动和优化的工作, 提供了针对核酸样本构建测序文库的方法及其用途。 根据本发明的一个方面, 本发明提供了一种针对核酸样本构建测序文库的方法。 根 据本发明的实施例, 该核酸样本包含来源于染色质的结合目的蛋白质的 DNA片段。 根据本 发明的一些实施例, 本发明的针对核酸样本构建测序文库的方法包括: 将核酸样本进行染 色质免疫共沉淀处理, 以便获得结合目的蛋白的 DNA片段; 利用亚硫酸氢盐对结合目的蛋 白的 DNA片段进行处理, 以便使未甲基化的胞嘧啶转变为尿嘧啶, 获得转变产物; 以及对 转变产物进行 PCR扩增, 以便获得扩增产物, 该扩增产物构成测序文库。
根据本发明实施例的针对核酸样本构建测序文库的方法, 巧妙地将染色质免疫沉淀 技术和亚硫酸氢盐处理直接测序技术相结合, 并优化了染色质免疫共沉淀( ChIP )技术 的步驟,从而能够增加染色质免疫共沉淀处理的产物的量,使该产物量能够达到亚硫酸 氢盐处理实验的最低起始量 ( lOOng ) 的要求, 以便亚硫酸氢盐处理能够顺利进行, 进 而亚硫酸氢盐处理产物能够有效的地用于高通量测序平台,从而能够保证测序数据的质 量。 此外, 发明人惊奇地发现, 利用本发明的针对核酸样本构建测序文库的方法构建测 序文库, 可重复性好、 成本低、 需时少、 效率高、 所得文库质量非常好, 能够有效地应用 于后续的高通量测序平台例如 Solexa测序平台, 进而基于测序结果, 能够准确有效地确定 与目的组蛋白结合的 DNA的甲基化信息, 从而能够有效地得出目的蛋白和与其结合的 甲基化 DNA的相互作用关系。
根据本发明的另一方面, 本发明提供了一种测序文库。 根据本发明的实施例, 该测 序文库是由本发明的针对核酸样本构建测序文库的方法构建的。
发明人发现, 根据本发明实施例的测序文库纯度高, 质量非常好, 能够有效地应用于 后续的高通量测序平台例如 Solexa测序平台, 进而基于测序结果, 能够准确有效地确定与 目的组蛋白结合的 DNA的曱基化信息, 以及目的蛋白和与其结合的甲基化 DNA的相 互作用关系。
根据本发明的另一方面,本发明提供了一种确定核酸样本中预定位点序列信息的方 法。根据本发明的实施例,该预定位点结合目的蛋白质并且预定位点的至少一个胞嘧啶 被甲基化。根据本发明的一些具体示例, 本发明的确定核酸样本中预定位点序列信息的 方法包括:利用根据本发明实施例的针对核酸样本构建测序文库的方法,构建测序文库; 对测序文库进行测序, 以便获得的测序结果; 以及基于测序结果, 确定预定位点的序列 信息。
根据本发明的实施例, 利用本发明的确定核酸样本中预定位点序列信息的方法, 能 够方便、 准确、 有效地确定核酸样本中结合目的蛋白的预定位点的 DNA序列信息及其 甲基化状况, 从而基于这些信息能够有效地用于目的蛋白及结合目的蛋白的 DNA的相 互作用关系研究。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明 本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1 : 显示了 #居本发明一个实施例的针对核酸样本构建测序文库的方法的流程示 意图; 以及
图 2: 显示了根据本发明一个实施例的染色质打断效果的电泳检测图。 发明详细描述
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
需要说明的是, 在本发明的描述中, 除非另有说明, "多个" 的含义是两个或两个 以上。
测序 L^及其构建方法
根据本发明的一个方面, 本发明提供了一种针对核酸样本构建测序文库的方法。 根 据本发明的实施例, 该核酸样本包含来源于染色质的结合目的蛋白质的 DNA片段。 根据本 发明的一些实施例, 本发明的针对核酸样本构建测序文库的方法可以包括:
首先 , 将核酸样本进行染色质免疫共沉淀处理, 以便获得结合目的蛋白的 DNA片段。 本领域的技术人员可以理解, 核酸样本的来源并不受特别限制, 可以直接由其他技术人员 或公司提供,也可以自己制备,只要该核酸样本包含来源于染色质的结合目的蛋白质的 DNA 片段, 能够用于构建测序文库即可。 根据本发明的实施例, 可以通过下列步骤获得核酸样 本: 将细胞进行交联反应, 以便交联固定细胞的染色质; 将经过交联反应的细胞置于裂解 緩冲液中, 以便释放交联固定的染色质; 将交联固定的染色质进行片段化, 以便获得核酸 样本。 根据本发明的一些实施例, 上述细胞为活细胞。 才艮据本发明的具体示例, 细胞的数 量为至少 106个。 根据本发明的实施例, 交联反应可以采用曱醛作为交联剂, 交联时间为 5-20分钟。 根据本发明的具体示例, 曱醛的浓度可以为 0.8-1.2%。 根据本发明的一个实施 例, 交联时间为 10分钟。 根据本发明的实施例, 可以通过非接触式超声破碎仪将交联固定 的染色质进行片段化。 根据本发明的具体示例, 非接触式超声破碎仪的超声频率为 200w-320w。 根据本发明的实施例, 非接触式超声破碎仪的片段化条件可以为超声 25-35秒 on/0.5-3分钟 off,共 6-8个循环。根据本发明的一个具体示例, 非接触式超声破碎仪的段化 条件为超声 30秒 on/2分钟 off, 共 7个循环。
根据本发明的实施例, 染色质免疫共沉淀可以采用免疫磁珠, 且该免疫磁珠上连接有 特异性识别目的蛋白的抗体。 因此, 根据本发明的一些实施例, 本发明的针对核酸样本构 建测序文库的方法可以进一步包括将特异性识别目的蛋白的抗体与免疫磁珠混合, 以便使 得抗体与免疫磁珠连接。 根据本发明的具体示例, 免疫磁珠上包被有 ProteinA和 ProteinG 的至少一种。根据本发明的一个实施例, 抗体为 H3K4me3。根据本发明的实施例, ProteinA 和 ProteinG分别形成于不同的免疫磁珠上, 其中, 抗体的量为 3-4.5微克, 包被 ProteinA的 免疫磁珠和包被 ProteinG的免疫磁珠的总量为 300-600微克。根据本发明的具体示例 , 包被 ProteinA的免疫磁珠和包被 ProteinG的免疫磁珠的总量为 600微克。 根据本发明的一些实 施例, 包被 ProteinA的免疫磁珠和包被 ProteinG的免疫磁珠的量相同。
根据本发明的实施例, 在染色质免疫共沉淀处理之后 , 可以对结合目的蛋白的 DNA片 段进行反交联处理。 根据本发明的一些实施例, 反交联处理是采用包含 1%SDS 和 0.1M NaHC03的反交联緩冲液进行的。 根据本发明的具体示例, 可以进行反交联处理 2-16小时。 根据本发明的一些实施例, 可以进行反交联处理 3小时。
接着, 利用亚硫酸氢盐对结合目的蛋白的 DNA片段进行处理, 以便使未曱基化的胞嘧 啶转变为尿嘧啶, 获得转变产物。 根据本发明实施例, 利用亚硫酸氢盐对结合目的蛋白的 DNA片段进行处理可以进一步包括: 利用可溶性亚硫酸氢盐使胞嘧啶項酸化; 利用对苯二 酚对磺酸化的胞嘧啶进行脱氨基; 以及在碱性条件下, 去除蹟基, 以便使得胞嘧啶转变为 尿嘧啶。
然后, 对转变产物进行 PCR扩增, 以便获得扩增产物, 该扩增产物构成测序文库。 根 据本发明的实施例 , 可以利用与甲基化测序接头相匹配的引物进行 PCR扩增。
此外, 本领域的技术人员可以理解, 由于本发明的针对核酸样本构建测序文库的方法 是为了构建能够用于高通量测序的文库, 因此在该方法中必须包含在核酸样本上连接测序 接头的步驟, 由此, 通过所得的测序文库中测序接头的作用, 该测序文库才能够有效地应 用于高通量测序平台, 进行测序。 根据本发明的实施例, 连接测序接头的时间顺序不受特 别限制。 根据本发明的一些实施例, 可以在获得结合目的蛋白的 DNA片段之后, 以及利用 亚硫酸氢盐对结合目的蛋白的 DNA片段进行处理之前, 连接测序接头, 具体地, 在利用亚 硫酸氢盐对结合目的蛋白的 DNA片段进行处理之前, 可以进一步包括: 将 DNA片段进行 末端修复, 以便获得经过末端修复的 DNA片段; 在经过末端修复的 DNA片段的 3'末端添 加碱基 A, 以便获得 3 '末端具有碱基 A的 DNA片段;将 3 '末端具有碱基 A的 DNA片段与 甲基化测序接头相连, 以便获得连接产物。 当然, 本领域的技术人员可以理解, 还可以在 对转变产物进行 PCR扩增时连接测序接头, 具体地, 可以将测序接头以及连接测序接头所 需的试剂添加入 PCR扩增体系中 , 并根据实验要求适当地调整 PCR扩增的反应条件即可。 除此之外, 还可以将测序接头直接与核酸样本相连, 然后再进行后续的其他步骤, 等等, 只要能够成功地获得针对核酸样本的包含有测序接头的测序文库即可。 另外, 需要说明的 是, 在本发明中所使用的测序接头均为甲基化测序接头 (在本文中有时也称为 "甲基化接 头")。 在本文中所使用的术语 "甲基化测序接头" 是指这样一种测序接头, 在其核苷酸序 列中, 所有的 C位点均被甲基化修饰。 这种甲基化测序接头, 是通过将适用于高通量测序 平台的常规测序接头进行曱基化处理而获得的。 由此, 能够避免测序接头对本发明的针对 核酸样本构建测序文库的方法中亚硫酸氢盐处理等操作的干扰。 本领域的技术人员可以理 解, 对测序接头进行曱基化处理的方法不受特别限制, 可以利用本领域已知的任何方法对 测序接头进行甲基化。
根据本发明实施例的针对核酸样本构建测序文库的方法, 巧妙地将染色质免疫沉淀 技术和亚硫酸氢盐处理直接测序技术相结合, 并优化了染色质免疫共沉淀( ChIP )技术 的步驟,从而能够显著增加染色质免疫共沉淀处理的产物的量, 以便能够有效地进行后 续的亚硫酸氢盐处理,进而所得测序文库能够有效地用于高通量测序平台并能够获得高 质量的测序数据。 此外, 发明人惊奇地发现, 利用本发明的针对核酸样本构建测序文库 的方法构建测序文库, 可重复性好、 成本低、 需时少、 效率高、 所得文库质量非常好, 能 够有效地应用于后续的高通量测序平台例如 Solexa测序平台, 进而基于测序数据, 能够准 确有效地确定与目的蛋白结合的 DNA的甲基化信息, 从而基于对获得的数据及信息的 分析能够有效地得出特定组蛋白修饰与 DNA甲基化的相互作用关系, 进而能够深入研 究组蛋白修饰及 DNA甲基化在生物体内的网络作用,以便成功构建表观遗传调控图谱。
具体地,根据本发明的实施例, 本发明的针对核酸样本构建测序文库的方法可以包 括:对同一细胞样本依次进行染色质免疫共沉淀处理及亚硫酸氢盐处理, 并对处理后产 物进行扩增得到所述细胞 DNA文库。
根据本发明的具体示例, 优选地, 该方法可以包括下列步驟:
a、 在活体细胞状态下进行交联反应, 使染色质中 DNA与 DNA上结合的蛋白质交 联固定;
b、 将交联固定后的染色质打断至长度为 200~500bp的 DNA片段;
c、 采用染色质免疫共沉淀的方法从打断后的染色质中分离得到与目的蛋白质相结 合的 DNA片段;
d、 采用亚硫酸氢盐将分离的 DNA 片段进行处理, 以便使未甲基化的胞嘧啶转变 为尿嘧啶。
根据本发明的实施例,进一步地,在步骤 c之后及步骤 d之前还可以包括步骤 c+1 : 将分离的 DNA片段进行末端修复, 使其成为平末端, 并在 DNA片段 3 '末端加上碱基 A, 使其形成粘性末端" T-A", 然后连接甲基化测序接头;
根据本发明的一些实施例, 在步骤 d之后还可以包括步骤 d+1 , 使用与甲基化测序 接头相匹配的引物进行 PCR扩增得到所述测序文库。
根据本发明的具体示例,在步骤 a中,进行交联反应的活体细胞的起始量为不低于 106数量级,交联反应为曱醛交联反应,交联反应所用曱醛的终浓度为 0.8-1.2%优选 1%, 甲醛交联时间为 5-20min优选 10min。
根据本发明的实施例,在步驟 b中, 染色体打断可以采用非接触式超声破碎仪进行 超声波打断,且超声频率为 200w~320w,打断条件可以为超声 25-35秒 on/0.5-3min off, 共 6-8个循环, 优选 30秒 on/2min off, 共 7个循环。
根据本发明的一些实施例, 在步骤 c中, 染色质免疫共沉淀方法可以选用目的蛋白 的特异性抗体及免疫磁珠来分离 DNA片段。根据本发明的具体示例, 步驟 c可以包括: 将免疫磁珠与特异性抗体混合制备磁珠-抗体反应物, 然后将步骤 b打断的染色质与磁 珠-抗体反应物混合进行免疫沉淀反应, 之后进行反交联反应, 并纯化得到与蛋白质分 离的 DNA。 根据本发明的一个实施例, 特异性抗体为 H3K4me3, 免疫磁珠为分别包被 有 protein A和 protein G的 protein A磁珠和 protein G磁珠。 根据本发明的实施例, 抗 体 H3K4me3的用量可以为 3〜4.5 g优选 4 g, protein A磁珠和 protein G磁珠的用量可 以为 300~600μ§优选 600μ§且两者的用量比为 1 : 1。 根据本发明的具体示例, 反交联反 应的时间为 2~16h优选 3h。
根据本发明的实施例,步骤 d的亚硫酸氢盐处理可以包括使用可溶性亚硫酸氢盐使 胞嘧啶磺酸化, 然后利用对苯二酚脱氨基,再在碱性环境下,使磺基消失,成为尿嘧啶。
更具体地, 根据本发明的实施例, 参照图 1 , 本发明的针对核酸样本构建测序文库 的方法还可以包含如下步骤:
一、 染色质固定
根据免疫共沉淀实验的要求 (可以参见 Hoffman B and Jones S. Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. Journal of Endocrinology. 2009. 201 : 1 , 通过参照将其全文并入 本文) , 首先在活体细胞状态下将蛋白质与 DNA交联固定, 从而达到捕捉生理状态下 的蛋白质与 DNA作用情况的目的。 釆用曱醛处理细胞的方法可以使蛋白质与 DNA交 联, 其原理是: 在甲醛的作用下, DNA碱基上的氨基或亚氨基和蛋白质上的 α-氨基及 赖氨酸、 精氨酸、 组氨酸、 色氨酸的侧链氨基与另外的 DNA 和蛋白质上的氨基或亚氨 基交联在一起形成蛋白质 -DNA 复合体 ( Merk 0 and Speit G. Significance of formaldehyde-induced DNA-protein crosslinks for mutagenesis. Environmental and molecular mutagenesis. 1998. 32:260-268 , 通过参照将其全文并入本文), 防止细胞内蛋 白质组分的重新分布, 从而便于进行免疫沉淀反应。 甲醛交联反应是可逆的, 由此便于 在后续步骤中分别对 DNA 和蛋白质进行分析。 交联反应所用甲醛的终浓度为 1% , 而 交联时间需要分析确定。 交联时间如果太长, 交联后的 DNA-蛋白质复合体难以被超声 破碎仪打断, 并且可能造成抗原表位丢失, 影响后续免疫沉淀结果; 交联时间过短, 则 蛋白质与 DNA无法形成较稳定的结合, 容易导致 ChIP反应沉淀下来的 DNA量不足 以构建文库, 造成假阴性。 根据本发明的实施例, 优化的甲醛交联时间为 10min。
二、 染色质片段化
根据免疫共沉淀与高通量测序的要求, 需要将交联固定后的染色体(在本文中有时 也称为 "染色质" )打断到合适的片段长度以便于后续文库构建与测序。 根据本发明的 实施例, 采用超声方法打断染色体。超声打断过程中会产生大量的热引起样品溶液温度 升高, 容易造成蛋白质变性不利于后续的免疫共沉淀操作, 因此, 为了保证蛋白质的活 性状态, 整个超声打断过程样品均需处于水浴状态, 且采用间断超声的方式, 即超声打 断与停止冷却反复进行。超声打断的时间需要根据不同超声破碎仪的参数与研究目的来 确定, 打断时间太短会造成 DNA片段太大, 使得与 DNA结合的蛋白质抗原表位难以 暴露, 不利于抗体识别且不符合测序文库要求; 而打断时间太长则会导致 DNA片段偏 小, 与蛋白廣的结合过于松散不利于免疫沉淀反应。 除此之外, 超声时间过长还可能导 致蛋白质的变性失活, 无法与采用的抗体结合, 导致 DNA无法被沉淀下来。 根据本发 明的一个实施例, 使用 Biomptor超声破碎仪进行染色体片段化, 且其功率输出设置为 "H" , 打断条件设定为 30s on/2min off, 共 7个循环。 将细胞的染色体打断后不进行 离心 (以避免染色体损失) , 直接用稀释緩冲液( dilution buffer )稀释, 以便获得核酸 样本, 并能够使后续的 ChIP反应得到更多产物。
三、 染色质免疫共沉淀( ChIP )
免疫共沉淀,是通过抗原抗体的特异性结合富集与目的蛋白质相结合的 DNA片段。 获得核酸样本后,根据研究选择合适的组蛋白抗体,并根据抗体对 Protein A与 Protein G 的亲和力选择合适的磁珠与用量比例。 除了选择合适的磁珠外, ChIP 反应体系中抗体 的量也是至关重要的。 ChIP 反应体系中抗体的量需要提前确定。 若体系中抗体不足, 会造成 DNA不能完全沉淀,从而导致结果的假阴性或者沉淀 DNA量达不到建库要求; 反之, 若体系中抗体量过大, 则过量的抗体会与部分非目标蛋白发生非特异性结合, 导 致假阳性的产生。 根据本发明的具体示例, 单个 ChIP 反应体系采用 4 g 鼠来源的 H3K4me3(abl012)抗体, 磁珠釆用 protein A与 protein G各 20 μΐ (包被好的磁珠的浓度 30μ§/μ1 )进行混合。 在进行 ChIP反应时, 一定要做好实验对照, 因为没有对照, 很难 对实验结果的可靠性进行评估。 阳性抗体和阴性抗体对照是最基本的实验对照。 阳性抗 体通常选择与已知序列相结合的比较保守的蛋白的抗体,阴性抗体通常选择目的蛋白抗 体宿主的 IgG抗体。 通过阳性对照和阴性对照的设置可以检测 ChIP实验的效果, 从而 保证整个实验流程的有效性。 另外, 还应考虑目的蛋白抗体与 DNA的非特异性结合的 可能, 所以通常还会选择一对阴性引物, 即目的蛋白肯定不会结合的 DNA序列, 作为 该抗体的阴性对照。 除了设置阳性和阴性对照外, 在进行免疫沉淀前, 需要取一部分断 裂后的染色质(核酸样本, 有时也称为打断产物)做 Input对照。 Input是断裂后的基因 组 DNA, 需要与 ChIP产物一起经过逆转交联、 DNA纯化, 以及最后的 PCR或其他方 法检测。 Input对照不仅可以验证染色质断裂的效果,还可以根据 Input中的靶序列的含 量以及染色质沉淀中的靶序列的含量, 检测 ChIP反应的富集效率。 根据本发明的实施 例, 取 1/50的打断产物作为 Input对照, 与 ChIP产物一起进行反交联处理、 DNA片段 纯化, 然后将纯化后的 Input与 ChIP产物稀释成相同浓度, 取相同的量作为模板进行 荧光定量 PCR检测, 通过比较 ChIP产物和 Input的 Ct值可以计算出 ChIP反应的富集 效率 (可以参见 Schemittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative Ct method. Nature protocol. 2008. 13: 1101-1108. , 通过参照将其全文并入本 文) , 计算方法为: 富集效率 =2A(Ct_Input-Ct_ChIP产物) 。
需要说明的是, 在本文中所使用的术语 " ChIP产物"指的是通过 ChIP反应所得到 的与目的蛋白质结合的 DNA片段,本领域技术人员可以理解的,在本文中所提到的 ChIP 产物在不同的反应条件下可以呈现不同的形式, 例如在进行反交联之前, ChIP 产物会 呈现磁珠 -抗体 -DNA结合蛋白复合物形式。
四、 ChIP产物末端处理与曱基化接头连接
由于 ChIP 沉淀下来的结合目的蛋白的 DNA片段是通过超声的方法打断的,因此需 要对 DNA片段的末端进行修复, 使其成为平末端。 末端修复的目的是将双链 DNA片 段损伤的 5 '端进行磷酸化, 损伤的 3 '端进行羟基化。 末端修复完成后, 通过向 DNA片 段 3,末端添加一个碱基 A, 使其形成 "T-A" 的粘性末端, 以便进行后续的甲基化接头 连接。根据 PCR扩增和测序的要求需要对 DNA 片段加上合适的接头。一般情况下 ChIP 文库只需要连接常规的测序接头, 但在本发明中要对得到的 DNA片段进行亚硫酸氢盐 翻转处理, 以便研究 DNA的甲基化情况, 因此测序接头的所有胞嘧啶位点必须都经过 甲基化修饰以防止亚硫酸氢盐处理后无法进行 PCR扩增与文库构建。 即连接的甲基化 接头可以保证 DNA片段经亚硫酸氢盐处理后接头序列不变, 但仍可与测序引物匹配, 从而使染色质免疫共沉淀与亚硫酸氢盐处理有效的结合。
五、 亚硫酸氢盐翻转处理
亚硫酸氢盐翻转是采用亚硫酸氢盐对单链 DNA分子进行化学修饰, 导致未曱基化 胞嘧啶 (C)可被亚硫酸氢盐脱去氨基而转变成尿嘧啶 (U), 而 5mC 不能被修饰, 仍保持 为 5mC, 在 PCR反应过程中, 尿嘧啶与腺嘌呤 (A ) 配对, 尿嘧啶则被胸腺嘧啶 (T ) 取代。(可参见关于这一化学过程的首次报道的文献: Frommer等. A genomic sequencing protocol that yields a positive dis lay of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89. 1992. 1827-31. , 通过参照将其全文并入本文)。 亚 硫酸氢盐翻转的具体过程为: 第一步, 利用亚硫酸氢钠使胞嘧啶磺酸化; 第二步, 利用 对苯二酚脱氨基; 第三步, 在碱性环境下, 使 基消失, 从而胞嘧啶成为尿嘧啶。 根据 本发明的实施例, 可利用 EZ DNA曱基化试剂盒 -Gold (ZYMO D5006)进行亚硫酸氢盐 翻转, 以便获得转变产物。
PCR扩增
将获得的转变产物进行 PCR扩增, 目的是将单链的 DNA片段变成双链, 同时扩增 DNA的量。 PCR扩增所用的引物和亚克酸氢盐处理之后的接头的序列相匹配, 由此, 获得扩增产物, 该扩增产物构成核酸样本的测序文库。 然后通过凝胶电泳回收的方式回 收合适大小的扩增产物, 以便用于测序。 根据本发明的实施例, 可以采用 Qiagen公司 的 QIAquick凝胶回收试剂盒进行胶回收。
通过对上述步骤获得的测序文库进行高通量测序,基于测序结果及对各项数据的分 析, 能够直接有效的检测出与特定组蛋白修饰相结合的 DNA曱基化状况, 从而得出特 定组蛋白修饰和与 DNA甲基化直接或间接地相互关系, 有助于阐明蛋白质与 DNA甲 基化之间相互作用的机制以及基因表达抑制的调控关系。从而能够深入研究组蛋白修饰 及 DNA甲基化在生物体内的网络作用, 进而能够构建表观遗传调控图谱。
根据本发明的另一方面, 本发明提供了一种测序文库。 根据本发明的实施例, 该测 序文库是由本发明的针对核酸样本构建测序文库的方法构建的。
发明人发现, 根据本发明实施例的测序文库纯度高, 盾量非常好, 能够有效地应用于 后续的高通量测序平台例如 Solexa测序平台, 进而基于测序结果及对结果的分析, 能够准 确有效地确定与目的组蛋白结合的 DNA的曱基化信息, 进而基于获得的各种信息能够 有效地确定目的蛋白修饰与 DNA甲基化的相互作用关系, 从而能够深入研究组蛋白修 饰及 DNA甲基化在生物体内的网络作用, 进而能够构建表观遗传调控图谱。
确定核酸样本中预定位点序列信息的方法
根据本发明的另一方面,本发明提供了一种确定核酸样本中预定位点序列信息的方 法。根据本发明的实施例,该预定位点结合目的蛋白质并且预定位点的至少一个胞嘧啶 被甲基化。 在本文中所使用的术语 "预定位点"应作广义理解, 其可以是指核酸样本中 的一段序列, 该序列的长度不受特别限制, 可以是仅一个核苷酸, 也可以由任意数目的 连续或不连续核苷酸构成的核酸序列。
根据本发明的一些具体示例,本发明的确定核酸样本中预定位点序列信息的方法可 以包括:
首先,利用根据本发明实施例的针对核酸样本构建测序文库的方法,构建测序文库。 接着, 对测序文库进行测序, 以便获得的测序结果。
然后, 基于测序结果, 确定预定位点的序列信息。
根据本发明的实施例, 利用本发明的确定核酸样本中预定位点序列信息的方法, 能 够准确、 有效地确定核酸样本中结合目的蛋白的预定位点的 DNA序列信息及其甲基化 状况, 从而基于这些信息能够有效地用于目的蛋白及结合目的蛋白的 DNA的相互作用 关系研究。 此外, 发明人发现, 根据本发明实施例的确定核酸样本中预定位点序列信息 的方法, 操作筒单, 需时少, 成本低, 且获得的结果准确, 可重复性好。
需要说明的是, 根据本发明实施例的针对核酸样本构建测序文库的方法及其用途, 是 本申请的发明人经过艰苦的创造性劳动和优化工作才完成的。 下面将结合实施例对本发明的方案进行解释。 本领域技术人员将会理解, 下面的实施 例仅用于说明本发明, 而不应视为限定本发明的范围。 实施例中未注明具体技术或条件的, 按照本领域内的文献所描述的技术或条件 (例如参考 J.萨姆布鲁克等著, 黄培堂等译的《分 子克隆实验指南》, 第三版, 科学出版社)或者按照产品说明书进行。 所用试剂或仪器未注 明生产厂商者, 均为可以通过市购获得的常规产品, 例如可以釆购自 Illumina公司。
实施例 1:
一、 材料和方法
采用 T-75细胞培养瓶, 利用 RPMI1640 (C22400500BT, Invitrogen)培养基(含 10%FBS ( 10437010, Invitrogen ) ), 于细胞培养箱中培养健康人外周血细胞, 并将其命名为 YH细 胞。 在细胞培养过程中, 利用倒置显微镜观察细胞状态, 并根据细胞培养基颜色变化, 按 照以下步骤进行传代: 当培养基颜色变为偏黄时, 将细胞培养瓶从细胞培养箱中取出并旋 紧培养瓶盖, 然后于生物安全拒中, 用巴斯德吸管将培养瓶壁上的细胞吹匀, 并直接补充 等体积的培养基, 然后再转入 37°C , 5%C02的细胞培养箱中继续培养, 进行传代, 以便获 得所需的 YH细胞。
然后按照图 1 所示的流程, 进行细胞处理、 文库构建及相应的测序, 详细操作步骤如 下:
1. 细 ϋ 处理与交联反应
利用 ρΗ7.4的 PBS緩冲液( 10010-031 , Invitrogen )配制浓度为 1%的甲醛溶液, 随配 随用, 然后于 37°C水浴锅预热待用。
将细胞培养瓶从细胞培养箱中取出, 并旋紧培养瓶盖, 然后在生物安全拒中进行以下 操作: 用巴斯德吸管将培养瓶壁上的细胞吹匀, 并将细胞收集到新的 50ml离心管中, 然后 用血球计数板进行细胞计数。 当细胞量达到 106数量级时, 即可开始进行实验。
将置于离心管中的收集的细胞于 4°C下 850g离心 5min, 然后弃除细胞培养液, 加入预 热的 1%新鲜配制的甲醛溶液 25ml,吹匀细胞,然后于 37°C的细胞水浴锅进行孵育 10分钟; 接着, 立即在 4°C下 850g离心 5min, 并弃除甲醛溶液, 然后分别用预冷的 10ml PBS-BSA 緩冲液(用 PBS配制, 其中 BSA浓度为 5mg/ml, BSA货号为 0332-lOOg, AMRESCO )及 预冷的 PBS緩冲液清洗细胞各一次; 然后,加入 2ml水预冷的 PBS完全液(即含有蛋白酶 抑制剂的 PBS緩冲液 PBS-PIC, 其中 PIC即 protease inhibitor cocktail, Roche ), 并将细胞 收集至 2ml离心管中; 然后, 将 2ml离心管于离心机上 850g离心 1 min; 接着, 移除上清, 轻弹离心管管壁使收集的细胞重悬于残余的 PBS 中,备用(可以在此步骤将处理好的细胞 于 -80°C下冻存)。
2. 抗体准备
采用 Histone H3(tri methyl K4) antibody[mAbcaml 012] (ab 1012 , Abeam)作为后续的染 色质免疫共沉淀处理的抗体, 并选择 DynalBeads protein A(100.01D, Invitrogen)和 DynalB- eads protein G ( 100.03D, Invitrogen ) (包被好的磁珠的浓度 30μ^μΙ )作为免疫共沉淀处理 的磁珠。将两种磁珠各取 20μ1置于新的 1.5ml离心管中; 加入 500μ1水预冷的 PBS+BSA混 合液, 轻弹管壁, 使磁珠重悬, 并颠倒混匀; 然后将离心管置于磁力架上 2min, 待磁珠吸 附到磁力架上、 上清变得澄清后, 在磁力架上移除上清液。 然后, 按上述步骤处理磁珠两 次, 最后于 500μΙ水预冷的 PBS+BSA混合液中重悬磁珠, 并加入 4 g Histone H3(tri meth -yl K4)[H3K4me3]抗体 (ab8580, Abeam), 于 4 °C垂直混合器上进行孵育反应 5h, 以便获得 连接有抗体的磁珠, 备用。
3. 染色质打断
选择 Bioruptor超声破碎仪作为染色质打断的仪器。 因为与其它超声仪相比, Bioruptor 超声破碎仪的稳定性好,且其利用水波振荡进行打断,条件相对温和, 更加利于 CMP实验, 并且与探头式超声仪相比, Bioruptor打断在封闭的离心管中进行, 可以避免由于探头浸入 样品中而造成的污染。
提前半小时向 Bioruptor超声破碎仪操作室中加入超纯水, 然后将冷循环仪打开, 使其 降温。新鲜制备裂解緩冲液完全液(裂解緩冲液完全液: 1% SDS, 10mM EDTA, pH8.1 50mM Tris-HCl, lxPIC ), 然后向步驟 1中处理好的细胞中加入 200μ1裂解緩冲液完全液, 轻弹管 壁, 使细胞重悬, 然后冰置 10-15min使细胞裂解; 然后将其安装到 Bioruptor超声破碎仪 的适配器上( Bioruptor™ UCD-200 ), 利用 Biorupter超声破碎仪进行打断, 其中打断条件 为: 将功率输出设置为 "H" (该档位功率为 320w ), 在控制旋钮上将 "On" 的时间设置为 30s, "Off' 的时间设置为 2min, 共 7个循环。 此打断条件可以使获得的打断产物的片段长 度分布于 200-500bp之间。然后,取出 1/50的打断产物作为 Input对照,用于在后续与 ChlP 反应后的上清 DNA进行比较, 以检测打断的效果。利用稀释緩冲液 (l%tnton, 2mM EDTA, 150mM NaCl, pH8.1的 20mM Tris-HCl)将打断产物稀释 6-9倍, 以便获得核酸样本, 然后 置于冰上, 备用。
4. 免疫共沉淀反应
将装有步骤 2中获得的连接有抗体的磁珠的离心管, 置于磁力架上 2分钟, 然后弃除 上清液; 然后加入 500μ1冰预冷的 PBS-BSA混合液, 轻弹管壁重悬磁珠, 并颠倒混匀, 然 后将离心管置于磁力架上 2min, 并在磁力架上移除上清液, 然后再重复此步驟一次(以便 除去未与磁珠结合的抗体); 然后, 向离心管中添加步骤 3获得的核酸样本, 并于 4°C下旋 转混合进行反应过夜, 以便获得 ChlP产物。
5.反交联
将装有步骤 4获得的 ChlP产物的离心管, 置于磁力架上 2分钟, 转移上清将其命名为 上清 I (染色质打断后获得的未结合目的蛋白质的 DNA片段), 并搁置备用; 然后向 ChlP 产物中加入 500μ1 RIPA 緩冲液 ( 50mM HEPES ( H4034-25G , Sigma ) , ImM EDTA(EBO185-500g , BBI) , 0.7% Na Deoxycholate ( D6750-100G , Sigma ) , 1% NP-40 ( NDB0385 -100ml, BBI ), 0.5M LiCl(LDB0307-250g,BBI) ), 轻弹管壁重悬磁珠, 并颠倒混 匀; 然后, 将离心管置于磁力架上 2min, 并弃除上清液; 再加入 500μ1 ΚΙΡΑ緩冲液, 轻弹 管壁重悬磁珠, 并在 4°C下进行旋转混合 20min; 然后将其置于磁力架上 2min, 并弃除上 清液, 并重复此步骤两次; 然后加入 500μ1 ΤΕ ( AM9858,Ambion ), 轻弹管壁重悬磁珠, 并 颠倒混匀; 置于磁力架上 2min, 并弃除上清液; 再向离心管中加入 500μ1 ΤΕ ( pH 8.0 ), 轻 弹管壁重悬磁珠, 并在 4°C下进行旋转混合 20min; 置于磁力架上 2min, 并将上清液弃除干 净; 然后将磁珠重悬于 200μ1的反交联緩冲液(1%SDS, 0.1M NaHC03 ) 中, 于 65 °C下进 行反交联, 反交联时间为 3h, 以便获得反交联样品。 此外, 利用 200μ1上述的反交联緩冲 液,分别将上清 I和 Input对照于 65 °C下进行反交联,反交联时间为 3h, 然后将两者的反交 联产物以及上述反交联样品进行电泳检测, 结果见图 2。 如图 2所示, M为 DNA Marker; YH为 Input对照的电泳条带, 其可以表示核酸样本(染色质打断产物) 的电泳结果。 由图 2可知, 将染色质打断后获得的核酸样本的主带位于 250-500bp之间, 表明染色质打断效果 良好。
6. 純化
将步骤 5获得的反交联样品置于磁力架上 2min, 然后转移上清(即为样品)至一个新 的离心管中, 然后用 200μ1的纯水洗潦磁珠, 弃磁珠, 转移出洗液并将其与所得上清混合, 然后向混合物中加入等体积的酚: 氯仿: 异戊醇(25:24:1 )抽提, 14000rpm离心 lOmin; 离心后吸取上屋水相, 加入 2倍体积的无水乙醇、 1/10体积的 3M NaAc, 1μ1 20μ8/μ1的糖 原, 然后于 -80°C的超低温水箱中放置 20min, 然后于 14000rpm下离心 lOmin, 弃上清液; 70%乙醇清洗沉淀一次,于 14000rpm下离心 5min; 弃除上清, 晾干沉淀,然后溶于 25μΙ ΕΒ 溶液中, 以便获得纯化产物, 备用。 抽取 ΙμΙ纯化产物, 利用 Qubit ( Quant-it™双链 DNA HS Assary试剂盒)检测其浓度, 本实施例得到的纯化产物总量为 83ng, 该纯化产物即为 结合目的蛋白的 DNA片段。
7. 末端修复
预先从 -20 °C保存的冻存盒中取出 lOx多聚核苷酸激酶緩冲液 (B904 , Enzymatics) 和 lOmM dNTPs混合物(N201L, Enzymatics ), 将其置于冰上融解并将 10x多聚核苷酸激酶緩 冲液充分混匀。 取出 Klenow片段( P706L, Enzymatics ), 用一个新的 PCR管取 Ιμΐ Klenow 片段并按 1 : 10的比例稀释成浓度为 lU /μΙ的工作液。 然后,在 1.5ml的离心管中配制末端 修复反应体系: 结合目的蛋白质的 DNA片段 20μΙ; 10x多聚核苷酸激酶緩冲液 ΙΟμΙ; 10mM dNTPs混合物 2μ1; Τ4 DNA聚合酶( P708L, Enzymatics ) 1μ1;稀释 10倍的 Klenow片段 Ιμΐ; Τ4多聚核苷酸激酶( Y904L, Enzymatics ) Ιμΐ; 补水至反应体系总体积为 100μ1。 然后将获 得的反应体系在 Thermo mixer中于 20 °C下进行温浴 30 min后,利用酚:氯仿:异戊醇( 25:4:1 ) 抽提一次, 并用乙醇沉淀 DNA, 最后将其溶于 34μΙ ΕΒ中, 以便获得末端修复产物, 备用。
8. 末端加 A
预先从 - 20°C保存的冻存盒中取出 lOx blue緩冲液(B011 , Enzymatics )和 ImM dATP, 将其置于冰盒上溶解并充分混匀。 然后, 在 1.5mL的离心管中配制加 A反应体系: 末端修 复产物 32μ1, lOxblue緩冲液(B011 , Enzymatics ) 5μ1, dATP ( 28406501,Sigma ) ΙΟμΙ和 3μ1 Klenow (3 '-5' exo-) ( P701-LC-L, Enzymatics ), 反应体系总体积为 50μ1。 然后将获得的反应 体系在 Thermomixer中于 37°C下进行温浴 30min后,利用氯仿:异戊醇抽提,乙醇沉淀 DNA, 最后将 DNA溶于 45μ1的 ΕΒ中, 以便获得末端加 Α产物, 备用。
9. 连接甲基化接头
预先从 -20°C保存的冻存盒中取出 2xRapid连接緩冲液(B101 , Enzymatics )和 PE甲基 化接头(Illumina甲基化接头, ME-100-0010 ), 将其置于水上融解并将 2xRapid连接緩冲液 充分混匀。 取出 PE甲基化接头, 用一新的 PCR管取 ΙμΙ^接头寡核苷酸混合物, 按 1 : 10 的比例稀释成工作液。 然后, 在 1.5mL离心管中配置如下反应体系: 末端加 A产物 45μ ; 2xRapid连接緩冲液 50μ1;稀释 10倍 ΡΕ曱基化接头 Ιμΐ;水 2μΙ^; Τ4 DNA连接酶( L603-HC-L, Enzymatics ) 4μ1; 反应体系总体积为 100μ1。 然后将获得的反应体系在 Thermomixer中于 20 °C下进行温浴 15min后, 利用氯仿: 异戊醇抽提, 乙醇沉淀 DNA, 最后 DNA溶于 45μ1的 超纯水中, 以便获得连接产物, 备用。
10. 亚 酸氢盐处理
本实施例利用 ZYMO EZ DNA甲基化 -Gold试剂盒进行亚硫酸氢盐处理, 具体实验步 骤如下:
1) 将获得的连接产物置于 PCR管中,然后添加 130μ1 CT转化试剂(其中每 20μ1连接 产物添加 130μΐ σΓ转化试剂, 如果连接产物的体积小于 20μ1, 则用水来弥补差量)。 然后通 过轻弹试管或移液器操作来混合样品。 2 )将样品管放到循环变温器并按以下步骤操作: 98°C放置 10分钟 , 64 °C放置 2.5小 时, 立刻进行下述操作或者在 4°C下存储 (最多 20小时)。
3 )添加 600μ1 Μ-结合緩冲液到 Zymo-离心柱中, 并将柱放如试剂盒所提供的收集管中 .
4 )装填样品 (从步骤 2)至含有 M-结合緩冲液的 Zymo-离心柱中,盖上盖将柱颠倒数次 以混合样品。
5 )全速(; >10, OOOxg)离心 30秒, 然后去除流出液。
6 )添加 200μ1的 Μ-洗涂緩冲液到柱中 , 并全速离心 30秒。
7 )添加 200μ1的 M-Desulphonatkm緩冲液到柱中并且于室温( 20°C- 30°C )下放置 15-20 分钟, 然后全速离心 30秒。
8 )添加 200μ1 Μ-洗涤緩冲液到柱中, 并全速离心 30秒, 再添加 200μΙ的 Μ-洗潦緩冲 液并且离心 30秒。
9 )直接添加 20μ1的 Μ-洗脱緩冲液到柱基盾中, 并将柱放置在 1.5ml的管中, 然后全 速离心以洗脱 DNA, 以便获得转变产物。
11. PCR扩增
从 -20°C保存的冻存盒中取出 PCR PE Primer 1.1和 PCR PE Primer 2.1 (双末端 DNA样 品准备试剂盒, PE- 102-1001 )、 MgS04 ( C11708-021 , Invitrogen )、 10mM dNTP 混合物、 10xP&扩增緩冲液(C11708-021 , Invitrogen ), 并将其置于水上化冻和充分混匀。 然后在 0.2 mL的 PCR管中配制 PCR反应体系: 转变产物 20μ1; lOxPf 扩增緩冲液 5μ1; platinum Pfx DNA聚合酶(CI 1708-021, Invitrogen ) 0.5μ1; primer 1.1 (10 ρηιο1/μ1)5μ1; primer 2.1(10 ριηο1/μ1)5μ1; 补水至反应体系总体积为 50μ1。 将获得的反应体系, 首先在热循环仪中 94 °C 下反应 2min, 然后进行 18个 PCR扩增循环, 扩增程序为 94 °C变性 15s, 62°C退火 30s, 72 °C延伸 30s, 最后在 72°C保持 5min, 以便获得扩增产物。 PCR扩增反应结束后, 及时将扩 增产物取出放入 4 V水箱中保存, 并按要求退出或关闭仪器。 然后 , 通过琼脂糖凝胶电泳, 选取 150bp的扩增产物进行胶回收纯化, 以便获得 YH细胞的测序文库。 二、 结果
1. Sanger法测序库检
对上述获得的测序文库进行克隆处理, 并利用 Sanger法进行小范围的测序检测。 文库 检测结果如下表 1所示。 由表 1可知, 91%的 reads能比对回基因组区, 且其甲基化化率为 45%; 而 99%的转化率说明亚硫酸氢盐(磺酸化)处理的效果非常显著, 表明通过抗体富集 与亚硫酸氢盐处理可得到有效的序列信息。
表 1. YH细胞 H3K4me3抗体 ChIP文库 Sanger法测序结果
Figure imgf000014_0001
2. 文库 Hiseq高通量测序
将获得的 YH细胞的测序文库, 利用 Hiseq测序技术进行一个 50 cycles Paired End lane 测序。 测序结果产生 6.98Gb数据, 然后对数据进行高级生物信息分析, 结果如表 2和表 3 所示。 因赖氨酸具有二甲基化修饰的组蛋白结合的 DNA大部分位于活性表达区域, 该区域 内 DNA曱基化水平低于正常水平。 由表 2和表 3可知 H3K4me3修饰与基因表达呈正相关 的趋势相吻合。
如表 2所示,经过 ChIP富集的 DNA片段整体 CpG的甲基化率为 39.11%,低于细胞基 因组 CpG的平均甲基化水平, 表明 H3K4me2修饰与基因表达相关, 与 DNA甲基化有一定 的拮抗作用。 如表 3所示, 通过对 5-UTR和调控区域( regulatory )的曱基化水平进行分析, 其甲基化率分别为 3.18%和 11.47%, 此区域的低甲基化水平也表明基因为活性表达。 对外 显子与内含子区域的甲基化水平进行分析, 其甲基化率分别为: 50.25%与 44.44%, 落在外 显子区的 uniq-reads有 102605 , 落在内含子区的 uniq-reads有 147092 , 分别占 mapped reads 的 18.60%和 26.67%。
表 2. YH细胞的测序文库的 Hiseq测序结果
Figure imgf000015_0001
表 3. YH细胞的测序文库中 DNA基因原件的甲基化水平
Figure imgf000015_0002
以上的结果表明, 巧妙地结合了染色质免疫共沉淀方法和亚硫酸氢盐处理方法的本发 明的针对核酸样本构建测序文库的方法, 能够通过特异性的抗体从全基因组中特异性的分 离出与相关蛋白质结合的 DNA片段; DNA片段经亚硫酸氢盐处理与测序后, 其碱基序列 可被比对、 定位, 以及甲基化相关分析, 有助于阐明蛋白质与 DNA甲基化之间相互作用的 机制以及基因表达抑制的调控关系。 工业实用性
本发明的针对核酸样本构建测序文库的方法、 测序文库以及确定核酸样本中预定位点 序列信息的方法,能够有效地应用于含有结合目的蛋白盾的 DNA片段的核酸样本的测序文 库的构建以及测序, 并且获得的文库质量好, 测序结果准确, 能够应用于目的蛋白质及与 其结合的 DNA的相互作用的研究。
尽管本发明的具体实施方式已经得到详细的描述, 本领域技术人员将会理解。 根据已 经公开的所有教导, 可以对那些细节进行各种修改和替换, 这些改变均在本发明的保护范 围之内。 本发明的全部范围由所附权利要求及其任何等同物给出。 在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims

权利要求书
1、 一种针对核酸样本构建测序文库的方法, 所述核酸样本包含来源于染色质的结合目 的蛋白质的 DNA片段, 所述方法包括:
将所述核酸样本进行染色质免疫共沉淀处理,以便获得所述结合目的蛋白的 DNA片段; 利用亚硫酸氢盐对所述结合目的蛋白的 DNA片段进行处理,以便使未甲基化的胞嘧啶 转变为尿嘧啶, 获得转变产物; 以及
对所述转变产物进行 PCR扩增,以便获得扩增产物,所述扩增产物构成所述测序文库。
2、 根据权利要求 1所述的方法, 其特征在于, 所述核酸样本是通过下列步驟获得的: 将细胞进行交联反应, 以便交联固定所述细胞的染色质;
将经过交联反应的细胞置于裂解緩冲液中, 以便释放交联固定的染色质; 以及 将所述交联固定的染色质进行片段化, 以便获得所述核酸样本。
3、 根据权利要求 2所述的方法, 其特征在于, 所述细胞为活细胞。
4、 根据权利要求 2所述的方法, 其特征在于, 所述细胞的数量为至少 106个。
5、 根据权利要求 2所述的方法, 其特征在于, 所述交联反应采用甲醛作为交联剂, 交 联时间为 5-20分钟。
6、 根据权利要求 5所述的方法, 其特征在于, 所述甲醛的浓度为 0.8-1.2%。
7、 根据权利要求 5所述的方法, 其特征在于, 所述甲醛的浓度为 1%。
8、 根据权利要求 5所述的方法, 其特征在于, 所述交联时间为 10分钟。
9、 根据权利要求 2所述的方法, 其特征在于, 将所述交联固定的染色质进行片段化是 通过非接触式超声破碎仪进行的。
10、 根据权利要求 9所述的方法, 其特征在于, 所述非接触式超声破碎仪的超声频率 为 200w-320w。
11、 根据权利要求 10所述的方法, 其特征在于, 所述非接触式超声破碎仪的片段化条 件为超声 25-35秒 on/0.5-3分钟 off, 共 6-8个循环。
12、 根据权利要求 11所述的方法, 其特征在于, 所述非接触式超声破碎仪的段化条件 为超声 30秒 on/2分钟 off, 共 7个循环。
13、 根据权利要求 1所述的方法, 其特征在于, 所述染色质免疫共沉淀釆用免疫磁珠, 所述免疫磁珠上连接有特异性识别目的蛋白的抗体。
14、 根据权利要求 13所述的方法, 其特征在于, 进一步包括将所述特异性识别目的蛋 白的抗体与所述免疫磁珠混合, 以便使得所述抗体与所述免疫磁珠连接。
15、 根据权利要求 14所述的方法, 其特征在于, 所述免疫磁珠上包被有 ProteinA和 ProteinG的至少一种。
16、 根据权利要求 14所述的方法, 其特征在于, 所述抗体为 H3K4me3。
17、 根据权利要求 15所述的方法, 其特征在于, ProteinA和 ProteinG分别形成于不同 的免疫磁珠上,其中,所述抗体的量为 3-4.5微克,包被 ProteinA的免疫磁珠和包被 ProteinG 的免疫磁珠的总量为 300-600微克。
18、根据权利要求 17所述的方法,其特征在于,包被 ProteinA的免疫磁珠和包被 ProteinG 的免疫磁珠的总量为 600微克。
19、根据权利要求 18所述的方法,其特征在于,包被 ProteinA的免疫磁珠和包被 ProtemG 的免疫磁珠的量相同。
20、 根据权利要求 1 所述的方法, 其特征在于, 在所述染色质免疫共沉淀处理之后, 对所述结合目的蛋白的 DNA片段进行反交联处理。
21、根据权利要求 20所述的方法,所述反交联处理是采用包含 1%SDS和 0.1M NaHCO3 的反交联緩冲液进行的。
22、 根据权利要求 21所述的方法, 进行所述反交联处理 2-16小时。
23、 根据权利要求 22所述的方法, 进行所述反交联处理 3小时。
24、 根据权利要求 1 所述的方法, 其特征在于, 在利用亚硫酸氢盐对所述结合目的蛋 白的 DNA片段进行处理之前, 进一步包括:
将所述 DNA片段进行末端修复, 以便获得经过末端修复的 DNA片段;
在所述经过末端修复的 DNA片段的 3'末端添加碱基 A, 以便获得 3 '末端具有碱基 A 的 DNA片段; 以及
将所述 3'末端具有碱基 A的 DNA片段与曱基化测序接头相连, 以便获得连接产物。
25、 根据权利要求 1 所述的方法, 其特征在于, 利用亚硫酸氢盐对所述结合目的蛋白 的 DNA片段进行处理进一步包括:
利用可溶性亚硫酸氢盐使胞嘧啶確酸化;
利用对苯二酚对磺酸化的胞嘧啶进行脱氨基; 以及
在碱性条件下, 去除磺基, 以便使得胞嘧啶转变为尿嘧啶。
26、 一种测序文库, 其特征在于, 是由权利要求 1-25任一项所述的方法构建的。
27、 一种确定核酸样本中预定位点序列信息的方法, 所述预定位点结合目的蛋白质并 且所述预定位点的至少一个胞嘧啶被甲基化, 所述方法包括:
根据权利要求 1-25所示的方法, 构建测序文库;
对所述测序文库进行测序, 以便获得的测序结果; 以及
基于所述测序结果, 确定预定位点的序列信息。
PCT/CN2011/084958 2010-12-31 2011-12-29 针对核酸样本构建测序文库的方法及其用途 WO2012089147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106196883A CN102534812A (zh) 2010-12-31 2010-12-31 一种细胞dna文库及其构建方法
CN201010619688.3 2010-12-31

Publications (1)

Publication Number Publication Date
WO2012089147A1 true WO2012089147A1 (zh) 2012-07-05

Family

ID=46342788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084958 WO2012089147A1 (zh) 2010-12-31 2011-12-29 针对核酸样本构建测序文库的方法及其用途

Country Status (2)

Country Link
CN (1) CN102534812A (zh)
WO (1) WO2012089147A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012019320A1 (zh) * 2010-08-11 2012-02-16 中国科学院心理研究所 一种甲基化dna的高通量测序方法及其应用
CN102534813B (zh) * 2011-11-15 2013-09-04 杭州联川生物技术有限公司 构建中小片段rna测序文库的方法
CN104152437A (zh) * 2014-08-12 2014-11-19 上海派森诺生物科技有限公司 一种应用于甲基结合蛋白测序中的甲基化dna富集方法
CN106156536B (zh) * 2015-04-15 2018-11-13 深圳华大基因科技有限公司 对样本免疫组库测序数据进行处理的方法和系统
CN105463090A (zh) * 2015-12-21 2016-04-06 同济大学 应用于斑马鱼胚胎的先加标签的染色质免疫共沉淀高通量测序实验方法
CN105754995B (zh) * 2016-04-19 2019-03-29 清华大学 构建待测基因组的dna测序文库的方法及其应用
CN106987645A (zh) * 2017-05-05 2017-07-28 武汉爱基百客生物科技有限公司 一种表观组学技术
CN107841533B (zh) * 2017-11-13 2021-11-05 深圳先进技术研究院 一种染色质破碎方法及其应用
US20210317516A1 (en) * 2017-11-27 2021-10-14 Bgi Shenzhen Method for constructing library of cell-free dnas in body fluids and application thereof
CN109136363A (zh) * 2018-08-31 2019-01-04 领航基因科技(杭州)有限公司 一种检测胎儿染色体非整数倍的试剂盒和检测胎儿甲基化dna拷贝数的方法
CN109576800A (zh) * 2018-12-07 2019-04-05 北京安智因生物技术有限公司 一种遗传性扩张型心肌病的基因检测文库的构建方法及其试剂盒
CN116218953A (zh) * 2023-01-03 2023-06-06 南京诺唯赞生物科技股份有限公司 一种连接核酸片段与接头的方法
CN116287166A (zh) * 2023-04-19 2023-06-23 纳昂达(南京)生物科技有限公司 甲基化测序接头及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845500A (zh) * 2010-05-18 2010-09-29 苏州众信生物技术有限公司 一种利用dna序列条码矫正二代高通量测序的序列丰度偏差的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845500A (zh) * 2010-05-18 2010-09-29 苏州众信生物技术有限公司 一种利用dna序列条码矫正二代高通量测序的序列丰度偏差的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D BONOFIGLIO ET AL.: "Peroxisome proliferator-activated receptor y inhibits follicular and anaplastic thyroid carcinoma cells growth byupregulating p21Cip1/WAF1 gene in a Sp1-dependent manner.", ENDOCRINE-RELATED CANCER., vol. 15, no. 2, June 2008 (2008-06-01), pages 545 - 557 *
MARIA ROSARIA MATARAZZO ET AL.: "In vivo analysis of DNA methylation patterns recognized by specific proteins: coupling ChIP and bisulfite analysis.", BIOTECHNIQUES., vol. 37, no. 4, October 2004 (2004-10-01), pages 666 - 673 *
MICHAEL L. SIKES ET AL.: "A streamlined method for rapid and sensitive chromatin immunoprecipitation.", JOURNAL OF IMMUNOLOGICAL METHODS., vol. 344, no. 1, May 2009 (2009-05-01), pages 58 - 63 *
YUANYUAN LI ET AL.: "Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms.", INT J CANCER., vol. 125, no. 2, July 2009 (2009-07-01), pages 286 - 296 *

Also Published As

Publication number Publication date
CN102534812A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2012089147A1 (zh) 针对核酸样本构建测序文库的方法及其用途
KR102640255B1 (ko) 감소된 증폭 편향을 갖는 고속-대량 단일 세포 서열분석
US20230250476A1 (en) Deep Sequencing Profiling of Tumors
US9133513B2 (en) High throughput methylation detection method
WO2012037878A1 (zh) 核酸标签及其应用
WO2013064066A1 (zh) 全基因组甲基化高通量测序文库的构建方法及其应用
CN111356795A (zh) 核酸的多重末端标记扩增
WO2013056640A1 (zh) 核酸文库的制备方法及其应用以及试剂盒
US9540687B2 (en) DNA fragment detection method, DNA fragment detection kit and the use thereof
US20140228256A1 (en) Method and kit for constructing plasma dna sequencing library
US10227587B2 (en) Method for constructing a plasma DNA sequencing library
WO2012019320A1 (zh) 一种甲基化dna的高通量测序方法及其应用
WO2015189588A1 (en) Sample preparation for nucleic acid amplification
JP2023533418A (ja) シークエンシングライブラリーの収率を増加させるための方法
Silveira et al. DNA methylation profile at a satellite region is associated with aberrant placentation in cloned calves
WO2015089726A1 (zh) 一种染色体非整倍性检测方法及装置
KR20220118295A (ko) 고 처리량 단일 세포 라이브러리, 및 이의 제조 방법 및 사용 방법
WO2020135347A1 (zh) 一种dna甲基化检测的方法、试剂盒、装置和应用
WO2012109963A1 (zh) Rna断裂试剂及其用途
KR20200005658A (ko) 서열-기반의 유전 검사용 대조군을 제조하기 위한 조성물 및 방법
Cazottes et al. Extensive remodelling of XIST regulatory networks during primate evolution
WO2022094863A1 (zh) 一种全转录组水平rna结构检测方法及其应用
WO2023217214A1 (zh) 一种单细胞RNA m5C修饰的分析方法
WO2023237180A1 (en) Optimised set of oligonucleotides for bulk rna barcoding and sequencing
Marchioretto Development and validation of methods for genome-wide epigenetic analyses of human myogenic cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854334

Country of ref document: EP

Kind code of ref document: A1