WO2012089002A1 - 一种大视场投影光刻物镜 - Google Patents

一种大视场投影光刻物镜 Download PDF

Info

Publication number
WO2012089002A1
WO2012089002A1 PCT/CN2011/083616 CN2011083616W WO2012089002A1 WO 2012089002 A1 WO2012089002 A1 WO 2012089002A1 CN 2011083616 W CN2011083616 W CN 2011083616W WO 2012089002 A1 WO2012089002 A1 WO 2012089002A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
positive
lenses
refractive index
Prior art date
Application number
PCT/CN2011/083616
Other languages
English (en)
French (fr)
Inventor
武珩
黄玲
刘国淦
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to JP2013546574A priority Critical patent/JP2014506341A/ja
Priority to KR1020137018676A priority patent/KR101685655B1/ko
Priority to US13/976,353 priority patent/US20130293859A1/en
Priority to EP11852300.0A priority patent/EP2660638B1/en
Publication of WO2012089002A1 publication Critical patent/WO2012089002A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to the field of semiconductor processing technology, and in particular to a large field of view projection objective lens in a projection optical system of a lithography machine. Background technique
  • step lithography equipment usually uses a large exposure field of view, and in order to match the mask size, some optical systems use 1.25 or 1.6 times magnification.
  • Japanese Patent JP2000199850 discloses a lithographic projection objective lens of 1.6x magnification.
  • the exposure wavelength uses the G line and the H line, the field of view of the silicon wafer is 117.6 mm, and the numerical aperture of the silicon surface is 0.1.
  • This objective lens has a multi-lens structure of 38 pieces and contains an aspherical surface.
  • Japanese Patent JP2006267383 discloses a 1.25x magnification lithographic projection objective.
  • the exposure wavelength is I line
  • the bandwidth is + I - 3nm
  • the half field of view is 93.5mm.
  • Japanese Patent JP2007079015 discloses another 1.25x magnification projection objective lens which also uses an exposure wavelength of I line, a bandwidth of +/- 1.5 nm, and a half field of view of 93.5 mm.
  • the invention provides a projection lithography objective lens for focusing an image of a mask onto a silicon wafer.
  • the optical lens comprises, in order from the optical axis, a first lens group G31 having positive refractive power, and a first optical lens having positive refractive power.
  • each lens group satisfies the following relationship:
  • f G31 focal length of the first lens group G31
  • f G32 focal length of the second lens group G32
  • f G33 focal length of the third lens group G33
  • f G34 the fourth lens group G34 The focal length.
  • the first lens group G31 is composed of at least four lenses; the second lens group G32 is composed of at least six lenses; and the second lens group G32 includes at least two pairs of adjacent positive and negative lens combinations.
  • the third lens group G33 is composed of at least four lenses; the third lens group G33 includes a sub-lens group G33-ln, and the sub-lens group G33-ln is positive in power, including the third lens group a lens in which at least two of the lens groups G33 are adjacent and having a positive power; the fourth lens group G34 is composed of at least six lenses; and the fourth lens group G34 includes a sub-lens group G34-ln.
  • the sub-lens group G34-ln is positive in power, and includes a lens in which at least three positions of the fourth lens group G34 are adjacent and the power is positive;
  • the second lens group G32 includes at least one positive lens and a negative lens adjacent thereto, and the Abbe number ratio satisfies the following relationship:
  • V G32 is an Abbe number of a positive lens in the second lens group G32;
  • V G32 is an Abbe number of a negative lens adjacent to the positive lens in the second lens group G32.
  • the Abbe number ratio of at least one positive lens and one adjacent negative lens in the second lens group G32 satisfies the following relationship:
  • V G32 is an Abbe number of a positive lens in the second lens group G32;
  • V G32 is an Abbe number of a negative lens adjacent to the positive lens in the second lens group G32.
  • the focal lengths of two adjacent positive lenses in the sub-lens group G33-ln of the third lens group G33 are f 41 and f 42 in order from the mask to the silicon wafer.
  • the focal length satisfies the following relationship: 0.75 ⁇ f 41 ⁇ f 4 2 ⁇ l.
  • the projection objective is composed of at least two high refractive index materials and at least two low refractive index materials.
  • the high refractive index material refers to a material having an I-line refractive index greater than 1.55, including a first material having an I-line refractive index greater than 1.55 and an Abbe number less than 45, and an I-line refractive index greater than 1.55 and an Abbe number greater than The second material of 50;
  • the low refractive index material refers to a material having an I-line refractive index of less than 1.55, including a third material having an I-line refractive index of less than 1.55 and an Abbe number of less than 55, and an I-line refractive index of less than 1.55.
  • the fourth material with an Abbe number greater than 60.
  • the first lens of the first lens group G31 and the last lens of the fourth lens group G34 are each composed of the first material.
  • the first, second, third, and fourth lens groups each include at least one lens composed of a first or second material.
  • the first, second, and fourth lens groups comprise at least one lens constructed from a first material to make.
  • the third lens group comprises at least one lens composed of a second material.
  • the second lens group includes at least one pair of concave opposing lenses; the third lens group includes at least one meniscus lens, and the concave surface faces the image surface; and the fourth lens group includes at least one piece A meniscus lens with a concave surface facing the object surface.
  • the large field of view projection lithography objective lens of the present invention uses a less lens to complete the 2 ⁇ magnification design, the half field of view is not less than 100 mm, and the I line bandwidth of ⁇ 5 nm ensures sufficient exposure light intensity.
  • the present invention achieves the required micron pole resolution with a relatively simple structure, and is capable of correcting distortion, field curvature, astigmatism, and chromatic aberration in a large field of view.
  • FIG. 1 is a schematic view showing the optical structure of an embodiment of a lithography objective lens of the present invention
  • FIG. 2 is a graph showing an imaging distortion curve according to an embodiment of the present invention.
  • FIG. 3 is a telecentric diagram of an object side and an image side according to an embodiment of the present invention.
  • Fig. 4 is a diagram showing aberration curves of an embodiment of the present invention. detailed description
  • the number of lenses of the projection objective lens 30 of the embodiment of the present invention is 20, and the parameters of each parameter are as shown in Table 1:
  • Projection objective lens 30 consists of 20 lenses, all 20 lenses are spherical. Divided into four lens groups G31, G32, G33, G34, the power is positive.
  • the first lens group G31 is composed of four lenses, and the refractive powers are negative, positive, positive, and positive, respectively.
  • the second lens group G32 is composed of six lenses, and the power is sequentially positive, negative, negative, positive, positive, and negative.
  • the second lens group G32 includes at least two pairs of adjacent positive and negative lens combinations.
  • the second lens group G32 includes at least one pair of 1HJ surface opposing lenses.
  • the third lens group G33 is composed of four lenses, and the power is sequentially positive, positive, negative, and negative.
  • the third lens group G33 includes a sub-lens group G33-ln, and the sub-lens group G33-ln has a positive power, and includes at least two lenses of the third lens group G33 adjacent to each other and having a positive power;
  • the three lens group G33 includes at least one meniscus lens, and the concave surface faces the image plane.
  • the fourth lens group G34 is composed of six lenses, and the refractive power is negative, positive, positive, positive, positive, and negative in order.
  • the fourth lens group G34 includes a sub-lens group G34-ln, and the sub-lens group G34-ln has a positive power, and includes at least three lenses of the fourth lens group G34 adjacent to each other and having a positive power;
  • the four lens group G34 includes at least one meniscus lens, and the concave surface faces the object surface.
  • the projection objective 30 of the present invention is constructed of at least two high refractive index materials and at least two low refractive index materials.
  • the high refractive index material refers to a material having an I-line refractive index greater than 1.55, including a first material having an I-line refractive index greater than 1.55 and an Abbe number less than 45, and a second material having an I-line refractive index greater than 1.55 and an Abbe number greater than 50.
  • the low refractive index material refers to a material having an I-line refractive index of less than 1.55, including a third material having an I-line refractive index of less than 1.55 and an Abbe number of less than 55, and a fourth refractive index of less than 1.55 and an Abbe number greater than 60. Materials.
  • the design optimization scheme consists of at least one lens in the first, second, third, and fourth groups by the first or the first Two materials are formed.
  • the first, second, and fourth lens groups include at least one lens composed of a first material.
  • the third lens group comprises at least one lens consisting of a second material. Further, the first lens group G33 and the last lens of the fourth lens group are optimally composed of the first material.
  • the first lens group G31 is composed of four lenses 31, 32, 33, and 34.
  • the lens 31 is a double concave negative lens
  • the lens 32 is a meniscus positive lens having a 1HJ surface facing the mask surface R
  • the lenses 33 and 34 are front lenses.
  • the lenses 31, 32, 34 are composed of a first or third material
  • the lens 33 is composed of a second or fourth material.
  • the second lens group G32 is composed of six lenses 35, 36, 37, 38, 39, 40.
  • the lens 35 is a biconvex positive lens
  • the lenses 36, 37 are negative lenses
  • the concave surface 362 of the lens 36 and the concave surface 371 of the lens 37 are opposed.
  • the lenses 38, 39 are positive lenses and the lens 40 is a negative lens.
  • the lenses 35, 36, 38, 39 are all composed of a second or fourth material
  • the lenses 37, 40 are composed of a first or third material.
  • the third lens group G33 is composed of four lenses 41, 42, 43, and 44, the lenses 41 and 42 are positive powers, and the lenses 43 and 44 are negative power.
  • the lens 43 is a meniscus lens having a 1HJ face 432 bent toward the silicon wafer face.
  • the lenses 41, 42, 43, 44 are all second or fourth materials.
  • the fourth lens group G34 is composed of six lenses 45, 46, 47, 48, 49, 50, and the refractive powers are negative, positive, positive, positive, positive, and negative, respectively.
  • the rear surface of the lens 45 is a flat surface, and its concave surface 451 faces the mask surface.
  • the lenses 45, 47 are constructed of a second or fourth material, and the lenses 46, 48, 49, 50 are constructed of a first or third material.
  • lens groups G33, G32, G33, G34, and their sub-lens lenses further establishes the basis for object image quality optimization.
  • the focal lengths of the two lenses 41 and 42 in the sub-lens group G33-In of the third lens group G33 of the present embodiment are f 41 and f 42 in order from the mask to the silicon wafer, and the focal lengths of the two positive lenses are satisfied.
  • the two positive lens functions are to gradually compress the light emitted from the second lens group, thereby benefiting the field curvature correction.
  • the relational expressions (1) - (9) define the structural relationship of the lens groups G33, G32, G33, G34 and their sub-lens groups, and lens correction aberrations.
  • Table 2 shows the specific design values of the projection objective of this example.
  • a positive radius value indicates that the center of curvature is on the right side of the surface, and a negative radius value indicates that the center of curvature is on the left side of the surface.
  • the thickness of the optical element or the spacing between the two optical elements is the on-axis distance to the next surface. All dimensions are in millimeters.
  • Example 30 is well-distorted.
  • Fig. 3 shows that the object side correction of the embodiment 30 is about 3 mrad, and the image center telecentricity is corrected at about 10 mrad.
  • the ray aberration curve in Fig. 4 shows that the image quality correction in the present embodiment 30 is good, and a good image quality in the i line +/- 5 nm is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

一种大视场投影光刻物镜 技术领域
本发明涉及半导体加工技术领域, 特别涉及光刻机投影光学系统中的一 种大视场投影物镜。 背景技术
目前在半导体加工技术领域, 微米级分辨率, 高产率的投影光学系统需求 曰益增加。 步进式光刻设备为了获得高产率, 通常采用大的曝光视场, 同时 为了配合掩模尺寸, 部分光学系统采用了 1.25或 1.6倍放大倍率。
日本专利 JP2000199850公开了一种 1.6x放大倍率的光刻投影物镜。 曝光 波长使用 G线、 H线波段,硅片面视场大小 117.6mm,硅片面数值孔径为 0.1。 此物镜为 38片的多透镜结构, 且包含一片非球面。
日本专利 JP2006267383公开了一种 1.25x放大倍率光刻投影物镜。 使用 曝光波长为 I线, 带宽为 + I - 3nm, 半视场为 93.5mm。
日本专利 JP2007079015公开了另一种 1.25x放大倍率投影物镜, 该物镜 使用曝光波长也为 I线, 带宽为 + / - 1.5nm, 半视场也为 93.5mm。
在 LCD光刻机领域大曝光视场设计通常占有优势, 同时为了配合掩模尺 寸, 很多光学系统采用大于 1倍甚至接近 2倍放大倍率的投影物镜。 综合上 述背景技术, 及实际使用需求需要设计一种 2倍投影光刻物镜。 发明内容
本发明的目的在于提供一种大曝光视场投影物镜, 能校正多种像差, 特别 是畸变、 场曲、 像散、 轴向色差、 倍率色差, 并实现物像空间的双远心。
本发明一种投影光刻物镜, 把掩模的图像聚焦成像在硅片上, 从掩模开始 沿光轴依次包括: 一具有正光焦度的第一透镜组 G31 ; —具有正光焦度的第 二透镜组 G32; —具有正光焦度的第三透镜组 G33; 以及一具有正光焦度的 第四透镜组 G34;
其中, 所述各透镜组满足以下关系:
1.8< |fG32/ fG31|<5.4
0.57< |fG33/ fG34|<0.97
0.19< |W fG32|<0.5
其巾:
fG31 : 所述第一透镜组 G31的焦距; fG32 : 所述第二透镜组 G32的焦距; fG33 : 所述第三透镜组 G33的焦距; 以及 fG34 : 所述第四透镜组 G34的焦距。
较佳地,所述第一透镜组 G31由至少四片透镜构成; 所述第二透镜组 G32 由至少六片透镜构成; 所述第二透镜组 G32至少包含两对相邻的正负透镜组 合; 所述第三透镜组 G33由至少四片透镜构成; 所述第三透镜组 G33包含一 子透镜组 G33-ln, 所述子透镜组 G33-ln光焦度为正, 包含所述第三透镜组 G33中至少两个位置相邻且光焦度为正的透镜; 所述第四透镜组 G34由至少 六片透镜构成; 所述第四透镜组 G34包含一子透镜组 G34-ln, 所述子透镜组 G34-ln光焦度为正, 包含所述第四透镜组 G34中至少三个位置相邻且光焦度 为正的透镜;
所述各透镜组与子透镜组之间满足以下关系式:
1.03< |fel x/ fG31|<1.95
0.34<|fG33-ln/ fG33|<0.87
0.21< |fG34-ln/ fG34|< 0.47
其巾:
feLmax: 第一透镜组 G31 内光焦度最大的透镜的焦距; fG3Wn : 第三透镜 组 G33 的子透镜组 G33-ln 的焦距; fG34-ln : 第四透镜组 G34 的子透镜组 G34-ln的焦巨。 较佳地, 所述第二透镜组 G32内至少包含一正透镜和其相邻的一负透镜, 其阿贝数比满足以下关系:
1.23< VG32正 / VG32负 <1.85
其中: VG32 为所述第二透镜组 G32 内一正透镜的阿贝数; VG32 为所述 第二透镜组 G32内与所述正透镜相邻的一负透镜的阿贝数。
较佳地, 所述第二透镜组 G32 内至少包含一正透镜和其相邻的一负透镜 的阿贝数比满足以下关系:
1.59< VG32正 /VG32负 <2.65
其中: VG32 为所述第二透镜组 G32 内一正透镜的阿贝数; VG32 为所述 第二透镜组 G32内与所述正透镜相邻的一负透镜的阿贝数。
较佳地, 所述第三透镜组 G33的子透镜组 G33-ln内相邻两片正透镜的焦 距, 按照从掩模到硅片的顺序焦距依次为 f41、 f42, 这两片透镜的焦距满足以 下关系: 0.75 <f41<f42<l。
较佳地 ,所述投影物镜由至少两种高折射率材料与至少两种低折射率材料 构成。
其中, 所述高折射率材料是指 I 线折射率大于 1.55的材料, 包括 I 线折 射率大于 1.55且阿贝数小于 45的第一种材料, 以及 I 线折射率大于 1.55且 阿贝数大于 50 的第二种材料; 所述低折射率材料是指 I 线折射率小于 1.55 的材料, 包括 I 线折射率小于 1.55且阿贝数小于 55的第三种材料, 以及 I 线 折射率小于 1.55且阿贝数大于 60的第四种材料。
较佳地, 所述第一透镜组 G31的第一透镜及所述第四透镜组 G34的最后 一片透镜, 均由所述第一种材料构成。
较佳地, 所述第一、 第二、 第三、 第四透镜组都包含至少一片透镜由第一 或第二种材料构成。
较佳地, 所述第一、 第二、 第四透镜组包含至少一片透镜由第一种材料构 成。
较佳地, 所述第三透镜组包含至少一片透镜由第二种材料构成。
较佳地, 所述第二透镜组内至少包含一对凹面相对透镜; 所述第三透镜组 内至少包含一片弯月式透镜, 且凹面面向像面; 所述第四透镜组内至少包含 一片弯月式透镜, 且凹面面向物面。
本发明的大视场投影光刻物镜使用较少的镜片完成 2χ放大倍率设计, 半 视场不小于 100mm, ± 5nm的 I线带宽保证了足够的曝光光强。 同时, 本发 明以相对简单的结构实现所需的微米极的分辨率, 还能够校正大视场范围内 畸变、 场曲、 像散、 色差。 附图说明
关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一 步的了解。
图 1所示为本发明光刻物镜一实施例的光学结构示意图;
图 2所示为本发明一实施例成像畸变曲线图;
图 3所示为本发明一实施例物方及像方远心曲线图;
图 4所示为本发明一实施例像差曲线图。 具体实施方式
下面结合附图详细说明本发明的具体实施例。
如图 1所示, 本发明的实施例投影物镜 30的镜片数量为 20片, 各参数 要求如表 1所示:
表 1
Figure imgf000006_0001
放大倍率 -2
像方视场 (直径) 200mm
物像距离 1500mm 投影物镜 30由 20片透镜组成, 20片透镜全部为球面。 分为四个透镜组 G31、 G32、 G33、 G34, 光焦度均为正。
第一透镜组 G31由四片透镜构成, 光焦度分别为负、 正、 正、 正。
第二透镜组 G32由六片透镜构成, 光焦度依次为正、 负、 负、 正、 正、 负。 第二透镜组 G32至少包含两对相邻的正负透镜组合。 且第二透镜组 G32 内至少包含一对 1HJ面相对透镜。
第三透镜组 G33 由四片透镜构成, 光焦度依次为正、 正、 负、 负。 第三 透镜组 G33包含一子透镜组 G33-ln, 子透镜组 G33-ln光焦度为正, 包含第 三透镜组 G33中至少两个位置相邻且光焦度为正的透镜; 且第三透镜组 G33 内至少包含一片弯月式透镜, 凹面面向像面。
第四透镜组 G34由六片透镜构成, 光焦度依次为负、 正、 正、 正、 正、 负。 第四透镜组 G34包含一子透镜组 G34-ln, 子透镜组 G34-ln光焦度为正, 包含第四透镜组 G34中至少三个位置相邻且光焦度为正的透镜; 且第四透镜 组 G34内至少包含一片弯月式透镜, 凹面面向物面。
本发明投影物镜 30由至少两种高折射率材料与至少两种低折射率材料构 成。 其中高折射率材料指 I 线折射率大于 1.55的材料, 包括 I 线折射率大于 1.55且阿贝数小于 45的第一种材料, 及 I 线折射率大于 1.55且阿贝数大于 50的第二种材料。其中低折射率材料指 I 线折射率小于 1.55的材料,包括 I 线 折射率小于 1.55且阿贝数小于 55的第三种材料, 及 I 线折射率小于 1.55且 阿贝数大于 60的第四种材料。
设计优化方案为在第一、 二、 三、 四组都包含至少一片镜片由第一或第 二种材料构成。 第一、 二、 四透镜组包含至少一片镜片由第一种材料构成。 第三透镜组包含至少一片镜片由第二种材料构成。 更进一步第一透镜组 G33 第一片透镜及第四透镜组最后一片透镜, 最优化由第一种材料构成。
第一透镜组 G31由四片透镜 31、 32、 33、 34构成。 透镜 31为双凹式负 透镜, 透镜 32为 1HJ面面向掩模面 R的弯月式的正透镜, 透镜 33、 34为正透 镜。 透镜 31、 32、 34由第一或第三种材料构成, 透镜 33 由第二或第四种材 料构成。
第二透镜组 G32由六片透镜 35、 36、 37、 38、 39、 40构成。 透镜 35为 双凸式正透镜, 透镜 36、 37为负透镜, 透镜 36凹面 362及透镜 37凹面 371 相对。 透镜 38、 39为正透镜, 透镜 40为负透镜。 透镜 35、 36、 38、 39全部 由第二或第四种材料构成, 透镜 37、 40由第一或第三种材料构成。
第三透镜组 G33由四片透镜 41、 42、 43、 44构成, 透镜 41、 42为正光 焦度, 透镜 43、 44为负光焦度。 透镜 43为弯月式透镜, 其 1HJ面 432弯向硅 片面。 透镜 41、 42、 43、 44全部为第二或第四种材料。
第四透镜组 G34由六片透镜 45、 46、 47、 48、 49、 50构成, 光焦度分别 为负、 正、 正、 正、 正、 负。 透镜 45后表面为平面, 其凹面 451面向掩模面。 透镜 45、 47由第二或第四种材料构成, 透镜 46、 48、 49、 50由第一或第三 种材料构成。
以下透镜组 G33、 G32、 G33、 G34、 及其子透镜组透镜间的关系式进一 步确立了物镜像质优化的基础。
1.8< |fG32/ fG31|<5.4 (1)
0.57<| fG33/ fG34|<0. 97 (2)
0.19<| fG33/ fG32|<0.5 (3)
1.03< I fel max ! f。31 |<1.95 (4)
0.34< |fG33-ln/ fG33|<0.87 (5) 0.21<|fG34-ln/ fG34|< 0.47 (6)
0.75<f41 /f42<l ( 7 )
1.23< VG32正 / VG32负 <1.85 (8)
1.59< VG32正 / VG32负 <2.65 (9)
其巾:
fG33 : 透镜组 G33的焦距; fG32 : 透镜组 G32的焦距; fG33 : 透镜组 G33 的焦距; fG34 : 透镜组 G34的焦距; felmax : 透镜组 G31 内光焦度最大的透 镜的焦距; fG33_ln : 透镜组 G33的子透镜组 G33-ln的焦距; fG34-in : 透镜组 G34的子透镜组 G34-ln的焦距; f41和 f42: 透镜组 G33的子透镜组 G33-ln 内相邻 2片透镜 41和 42的焦距, 按照从掩模到硅片的顺序; VG32正和 VG32负: 透镜组 G32内部相邻的一个正透镜和负透镜的阿贝数。
本实施例第三透镜组 G33的子透镜组 G33- In内两片透镜 41和 42的焦距 , 按照从掩模到硅片的顺序依次为 f41 、 f42,这两片正透镜的焦距满足以下关系: f41 <f42, 这两片正透镜作用是将从第二透镜组出射的光线逐步压缩, 从而对 场曲校正有益。
关系式 (1) - (9)定义了透镜组 G33、 G32、 G33、 G34及其子透镜组、 透镜 校正像差的结构关系。
表 2给出了本实例的投影物镜的具体设计值, 正的半径值表示曲率中心 在表面的右边, 负的半径值代表曲率中心在表面的左边。 光学元件厚度或两 个光学元件之间的间隔是到下一个表面的轴上距离。 所有尺寸单位都是毫米。
表 2 中, "S#" 表示表面编号, "STOP" 表示孔径光阑 AS, 半径项中, "INF" 表示无穷大。
表 2
Figure imgf000009_0001
Figure imgf000010_0001
9T9C80/llOZN3/X3d Z00680 Z OAV 23 -680.652 2.530852
24 186.3488 28.49718 BSL7Y L12
25 3221.473 1.000735
26 161.8902 29.67068 BSM51Y L13
27 105.8729 64.02459
28 -238.698 48.93309 BSM51Y L14
29 389.3077 38.0038
30 -117.901 23 BSM51Y L15
31 INF 20.13205
32 -320.124 46.94477 PBM18Y L16
33 -226.249 4.830725
34 317.7772 49.397 BSL7Y L17
35 5543.824 32.52187
36 345.6422 49.34704 PBM18Y L18
37 -1234.86 1
38 330.8498 49.41093 PBM18Y L19
39 INF 27.72791
40 -434.844 37.4797 PBM18Y L20
41 -12935.3 100.8894 像方工作距离
IMG INF 0 图 2表明实施例 30畸变良好。
图 3表明实施例 30的物方校正在 3mrad左右, 像方远心校正在 lOmrad 左右。 图 4中的光线像差曲线表明本实施例 30的像质校正情况较好, 实现了 i 线 + / - 5nm内的良好像质。
本说明书中所述的只是本发明的较佳具体实施例, 以上实施例仅用以说 明本发明的技术方案而非对本发明的限制。 凡本领域技术人员依本发明的构 思通过逻辑分析、 推理或者有限的实验可以得到的技术方案, 皆应在本发明 的范围之内。

Claims

权利要求
1. 一种投影光刻物镜, 把掩模的图像聚焦成像在硅片上, 从掩模开始沿 光轴依次包括:
一具有正光焦度的第一透镜组 G31 ;
一具有正光焦度的第二透镜组 G32;
一具有正光焦度的第三透镜组 G33; 以及
一具有正光焦度的第四透镜组 G34;
其中, 所述各透镜组满足以下关系:
1.8< |fG32/ fG31|<5.4
0.57< |fG33/ fG34|<0.97
0.19< |fG33/ fG32|<0.5
其巾:
fG31 : 所述第一透镜组 G31的焦距; fG32 : 所述第二透镜组 G32的焦距; fG33 : 所述第三透镜组 G33的焦距; 以及 fG34 : 所述第四透镜组 G34的焦距。
2. 如权利要求 1所述的投影光刻物镜, 其特征在于:
所述第一透镜组 G31由至少四片透镜构成;
所述第二透镜组 G32由至少六片透镜构成; 所述第二透镜组 G32至少包 含两对相邻的正负透镜组合;
所述第三透镜组 G33由至少四片透镜构成; 所述第三透镜组 G33包含一 子透镜组 G33-ln, 所述子透镜组 G33-ln光焦度为正, 包含所述第三透镜组 G33中至少两个位置相邻且光焦度为正的透镜;
所述第四透镜组 G34由至少六片透镜构成; 所述第四透镜组 G34包含一 子透镜组 G34-ln, 所述子透镜组 G34-ln光焦度为正, 包含所述第四透镜组 G34中至少三个位置相邻且光焦度为正的透镜;
所述各透镜组与子透镜组之间满足以下关系式:
1.03< |fel max/ fG31|<1.95
0.34<|fG33-ln/ fG33|<0.87
0.21< |fG34-ln/ fG34|< 0.47
其巾:
feLmax: 第一透镜组 G31内光焦度最大的透镜的焦距; fG3wn : 第三透镜 组 G33 的子透镜组 G33-ln 的焦距; fG34-ln : 第四透镜组 G34 的子透镜组 G34-ln的焦巨。
3. 如权利要求 2 所述的投影光刻物镜, 其特征在于, 所述第二透镜组 G32内至少包含一正透镜和其相邻的一负透镜, 其阿贝数比满足以下关系:
1.23< VG32正 / VG32负 <1.85
其中: VG32正为所述第二透镜组 G32内一正透镜的阿贝数; VG32负为所述 第二透镜组 G32内与所述正透镜相邻的一负透镜的阿贝数。
4. 如权利要求 2 所述的投影光刻物镜, 其特征在于, 所述第二透镜组 G32内至少包含一正透镜和其相邻的一负透镜的阿贝数比满足以下关系:
1.59< VG32正 /VG32负 <2.65
其中: VG32正为所述第二透镜组 G32内一正透镜的阿贝数; VG32负为所述 第二透镜组 G32内与所述正透镜相邻的一负透镜的阿贝数。
5. 如权利要求 1 所述的投影光刻物镜, 其特征在于, 所述第三透镜组 G33的子透镜组 G33-ln内相邻两片正透镜, 按照从掩模到硅片的顺序其焦距 从小到大, 且这两片透镜的焦距大于 0.75且小于 1。
6. 如权利要求 2所述的投影光刻物镜, 其特征在于, 所述投影物镜由至 少两种高折射率材料与至少两种低折射率材料构成。
7. 如权利要求 6所述的投影光刻物镜, 其特征在于, 所述高折射率材料 是指 I 线折射率大于 1.55的材料, 包括 I 线折射率大于 1.55且阿贝数小于 45的第一种材料, 以及 I 线折射率大于 1.55且阿贝数大于 50的第二种材料; 所述低折射率材料是指 I 线折射率小于 1.55的材料,包括 I 线折射率小于 1.55 且阿贝数小于 55的第三种材料, 以及 I 线折射率小于 1.55且阿贝数大于 60 的第四种材料。
8. 如权利要求 7所述的投影光刻物镜, 其特征在于, 所述第一、 第二、 第三、 第四透镜组都包含至少一片透镜由第一或第二种材料构成。
9. 如权利要求 7所述的投影光刻物镜, 其特征在于, 所述第一、 第二、 第四透镜组包含至少一片透镜由第一种材料构成。
10. 如权利要求 9所述的投影光刻物镜, 其特征在于, 所述第一透镜组 G31的第一透镜及所述第四透镜组 G34的最后一片透镜, 均由所述第一种材 料构成。
11. 如权利要求 7 所述的投影光刻物镜, 其特征在于, 所述第三透镜组 包含至少一片透镜由第二种材料构成。
12. 如权利要求 7 所述的投影光刻物镜, 其特征在于, 所述第二透镜组 内至少包含一对 1HJ面相对透镜; 所述第三透镜组内至少包含一片弯月式透镜, 且凹面面向像面; 所述第四透镜组内至少包含一片弯月式透镜, 且凹面面向 物面。
PCT/CN2011/083616 2010-12-31 2011-12-07 一种大视场投影光刻物镜 WO2012089002A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013546574A JP2014506341A (ja) 2010-12-31 2011-12-07 リソグラフィーのための広範囲露光対物レンズ
KR1020137018676A KR101685655B1 (ko) 2010-12-31 2011-12-07 리소그래피용 대형 필드 투사대물렌즈
US13/976,353 US20130293859A1 (en) 2010-12-31 2011-12-07 Large field projection objective for lithography
EP11852300.0A EP2660638B1 (en) 2010-12-31 2011-12-07 Large view field projection lithography objective

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010619283.XA CN102540419B (zh) 2010-12-31 2010-12-31 一种大视场投影光刻物镜
CN201010619283.X 2010-12-31

Publications (1)

Publication Number Publication Date
WO2012089002A1 true WO2012089002A1 (zh) 2012-07-05

Family

ID=46347698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083616 WO2012089002A1 (zh) 2010-12-31 2011-12-07 一种大视场投影光刻物镜

Country Status (7)

Country Link
US (1) US20130293859A1 (zh)
EP (1) EP2660638B1 (zh)
JP (1) JP2014506341A (zh)
KR (1) KR101685655B1 (zh)
CN (1) CN102540419B (zh)
TW (1) TW201235729A (zh)
WO (1) WO2012089002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138124A (ja) * 2014-01-22 2015-07-30 リソテック株式会社 投影光学系、投影露光装置、及びデバイス製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371869B2 (ja) 2014-06-23 2018-08-08 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置を修正する方法
CN105527701B (zh) * 2014-09-28 2018-06-29 上海微电子装备(集团)股份有限公司 大视场投影光刻物镜
CN113900227B (zh) * 2021-10-09 2022-07-05 中国科学院苏州生物医学工程技术研究所 一种大视场高分辨宽波段的物镜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808814A (en) * 1996-07-18 1998-09-15 Nikon Corporation Short wavelength projection optical system
US5969803A (en) * 1998-06-30 1999-10-19 Nikon Corporation Large NA projection lens for excimer laser lithographic systems
JP2000199850A (ja) 1999-01-07 2000-07-18 Nikon Corp 投影光学系及び投影露光装置並びにデバイスの製造方法
JP2000356741A (ja) * 1999-06-14 2000-12-26 Canon Inc 投影光学系
JP2006147809A (ja) * 2004-11-18 2006-06-08 Canon Inc 露光装置の投影光学系、露光装置およびデバイスの製造方法
JP2006267383A (ja) 2005-03-23 2006-10-05 Nikon Corp 投影光学系、露光装置、および露光方法
JP2007079015A (ja) 2005-09-13 2007-03-29 Nikon Corp 投影光学系、露光装置及びマイクロデバイスの製造方法
CN101107570A (zh) * 2004-12-30 2008-01-16 卡尔蔡司Smt股份有限公司 投影光学系统
CN101231378A (zh) * 2007-12-21 2008-07-30 上海微电子装备有限公司 一种全折射式投影光学系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262513A (ja) * 1988-04-13 1989-10-19 Ricoh Co Ltd 複写用可変焦点レンズ
JP3454390B2 (ja) * 1995-01-06 2003-10-06 株式会社ニコン 投影光学系、投影露光装置及び投影露光方法
US5986824A (en) * 1998-06-04 1999-11-16 Nikon Corporation Large NA projection lens system with aplanatic lens element for excimer laser lithography
DE19905203A1 (de) * 1999-02-09 2000-08-10 Zeiss Carl Fa Reduktions-Projektionsobjektiv der Mikrolithographie
JP3503631B2 (ja) * 2001-04-27 2004-03-08 セイコーエプソン株式会社 投映用ズームレンズ及びこれを備えたプロジェクター
JP2004012825A (ja) * 2002-06-07 2004-01-15 Fuji Photo Optical Co Ltd 投影光学系およびそれを用いた投影露光装置
JP2005109286A (ja) * 2003-10-01 2005-04-21 Nikon Corp 投影光学系、露光装置、および露光方法
JP4792779B2 (ja) * 2005-03-29 2011-10-12 株式会社ニコン ズームレンズ
EP2101209A1 (en) * 2006-05-05 2009-09-16 Carl Zeiss SMT AG Symmetrical objective having four lens groups for microlithography
EP2188673A1 (en) * 2007-08-03 2010-05-26 Carl Zeiss SMT AG Projection objective for microlithography, projection exposure apparatus, projection exposure method and optical correction plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808814A (en) * 1996-07-18 1998-09-15 Nikon Corporation Short wavelength projection optical system
US5969803A (en) * 1998-06-30 1999-10-19 Nikon Corporation Large NA projection lens for excimer laser lithographic systems
JP2000199850A (ja) 1999-01-07 2000-07-18 Nikon Corp 投影光学系及び投影露光装置並びにデバイスの製造方法
JP2000356741A (ja) * 1999-06-14 2000-12-26 Canon Inc 投影光学系
JP2006147809A (ja) * 2004-11-18 2006-06-08 Canon Inc 露光装置の投影光学系、露光装置およびデバイスの製造方法
CN101107570A (zh) * 2004-12-30 2008-01-16 卡尔蔡司Smt股份有限公司 投影光学系统
JP2006267383A (ja) 2005-03-23 2006-10-05 Nikon Corp 投影光学系、露光装置、および露光方法
JP2007079015A (ja) 2005-09-13 2007-03-29 Nikon Corp 投影光学系、露光装置及びマイクロデバイスの製造方法
CN101231378A (zh) * 2007-12-21 2008-07-30 上海微电子装备有限公司 一种全折射式投影光学系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660638A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138124A (ja) * 2014-01-22 2015-07-30 リソテック株式会社 投影光学系、投影露光装置、及びデバイス製造方法

Also Published As

Publication number Publication date
EP2660638A1 (en) 2013-11-06
KR20130141643A (ko) 2013-12-26
TW201235729A (en) 2012-09-01
JP2014506341A (ja) 2014-03-13
CN102540419A (zh) 2012-07-04
TWI477839B (zh) 2015-03-21
KR101685655B1 (ko) 2016-12-12
CN102540419B (zh) 2014-01-22
EP2660638B1 (en) 2015-12-02
EP2660638A4 (en) 2014-06-25
US20130293859A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
US8970964B2 (en) Projection objective lens system
CN110261999B (zh) 光学系统和成像镜头
JPH10282411A (ja) 投影光学系
CN105807410B (zh) 一种基于高数值孔径的折反射式投影物镜
CN104199173A (zh) 一种单倍率对称式投影曝光物镜
WO2012089002A1 (zh) 一种大视场投影光刻物镜
TW202121002A (zh) 大視場成像物鏡
CN103676096B (zh) 一种投影物镜光学系统
CN102707415A (zh) 光刻投影物镜
JP2002244036A (ja) 投影レンズ、及び微細構造化部品の製造方法
CN103105666A (zh) 一种曝光投影物镜
CN102298198B (zh) 一种大视场光刻投影物镜
CN102401980B (zh) 大曝光视场投影物镜
CN104950427B (zh) 一种大视场高数值孔径全球面光刻机投影物镜
CN109375480A (zh) 一种光刻投影物镜及光刻机
WO2002014924A1 (fr) Systeme optique d&#39;image a relais et dispositif optique d&#39;eclairage, et systeme d&#39;exposition dote de ce systeme optique
CN102540416B (zh) 大视场大工作距投影光刻物镜
CN108255023B (zh) 一种用于紫外光刻机的高分辨率投影光学成像方法及其系统
JP6511701B2 (ja) 投影光学系、投影露光装置、及びデバイス製造方法
CN102707414A (zh) 光刻投影物镜
CN102279459B (zh) 一种投影物镜
CN102540415B (zh) 一种投影光刻物镜
JP2000056219A (ja) 投影光学系
TWI682249B (zh) 投影物鏡光學系統及光刻機
CN218446189U (zh) 一种对称式双远心光刻投影物镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852300

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011852300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13976353

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013546574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137018676

Country of ref document: KR

Kind code of ref document: A