WO2012086567A1 - 液晶組成物、液晶表示パネル、液晶表示装置および液晶組成物の製造方法 - Google Patents

液晶組成物、液晶表示パネル、液晶表示装置および液晶組成物の製造方法 Download PDF

Info

Publication number
WO2012086567A1
WO2012086567A1 PCT/JP2011/079293 JP2011079293W WO2012086567A1 WO 2012086567 A1 WO2012086567 A1 WO 2012086567A1 JP 2011079293 W JP2011079293 W JP 2011079293W WO 2012086567 A1 WO2012086567 A1 WO 2012086567A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
fine particles
modifier
crystal composition
crystal display
Prior art date
Application number
PCT/JP2011/079293
Other languages
English (en)
French (fr)
Inventor
忠 大竹
安宏 那須
櫻井 猛久
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012086567A1 publication Critical patent/WO2012086567A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/40Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen or sulfur, e.g. silicon, metals
    • C09K19/406Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen or sulfur, e.g. silicon, metals containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a liquid crystal composition containing fine particles, a method for producing the same, a liquid crystal display panel including the liquid crystal composition as a liquid crystal layer, and a liquid crystal display device including the liquid crystal display panel.
  • liquid crystal display devices capable of displaying stereoscopic images, such as 3D TV, have been put into practical use.
  • liquid crystal display devices can realize energy-saving types, thin types, lightweight types, and the like, and have excellent productivity. Is generally used.
  • liquid crystal display devices capable of displaying stereoscopic images are being applied to portable devices such as smartphones and portable televisions, so that there is an increasing demand for development of liquid crystal modes that can be driven at high speed and can achieve low power consumption. ing.
  • liquid crystal mode capable of realizing high-speed driving characteristics and low power consumption, it is based on electronic polarization using a secondary electro-optic effect (a phenomenon in which the refractive index of a substance is proportional to the secondary of the external electric field: ⁇ n ⁇ E 2 ). Display methods are attracting attention.
  • the threshold voltage was 4 V when driven at 20 Hz.
  • Elastic constant K, dielectric constant anisotropy ⁇ , viscosity coefficient ⁇ , and the like which are general physical properties of liquid crystals, depend on the degree of order S of the liquid crystal molecules (K ⁇ S 2 , ⁇ S, ⁇ ).
  • S By adding the non-liquid crystal substance (fine particles), the degree of order S of the liquid crystal molecules is lowered, and the physical properties of the liquid crystals change accordingly. Therefore, the liquid crystal added with such fine particles was used as the liquid crystal layer. In some cases, it is considered that the contrast value decreases.
  • the amount of MgO particles modified with 5CB molecules in this case is only 0.02 wt%, and the amount of 5CB molecules adsorbed on the surface of the MgO particles was not large, so in the liquid crystal composed of 5CB molecules It is considered that the addition amount could not be increased in consideration of stable dispersion of MgO particles.
  • FIG. 20 is a diagram schematically showing a change in the liquid crystal alignment accompanying a temperature rise.
  • the liquid crystal having the secondary electro-optic effect described above is a liquid having a short-range order as shown in FIG. 20A at a low temperature. From the liquid crystal phase state having the short-range order shown in FIG. 20B, the orientation order is lowered as shown in FIG. 20B. Finally, random orientation at the molecular level as shown in FIG. It becomes.
  • a dotted line portion in FIG. 20B shows a region where the liquid crystal molecules are formed in a cluster shape, and when there are many regions formed in the cluster shape in the liquid crystal molecules as described above, It is known that the following electro-optic effect is large.
  • Patent Document 1 for example, an example in which palladium (Pd) fine particles having a particle size of 0.1 ⁇ m or less are added to a liquid crystal containing 5CB molecules. In this case, a cyano group in the 5CB molecules is given. Is coordinated toward the palladium side, and a cluster as shown in FIG. 20B can be formed.
  • Pd palladium
  • the cluster formed in this way is stable over a wide temperature range above the clearing point of the liquid crystal composed of 5CB molecules, so that the temperature range where the secondary electro-optic effect is large can be expanded.
  • Patent Document 2 describes an example in which an alkyl group is introduced into silica particles having a particle diameter of 20 nm.
  • a system in which silica particles having an alkyl group introduced therein are added to a liquid crystal composed of nematic liquid crystal molecules has good dispersibility, and a liquid crystal display device using such a liquid crystal as a liquid crystal layer has a contrast value. It is described that a high liquid crystal display device can be realized.
  • a nucleus 202 (a diameter ⁇ of the nucleus 202 is 5 to 100 nm) composed of a plurality of metal (for example, Pd) atoms 201 and its surroundings
  • a liquid crystal compatible particle 200 configured to include a protective layer 204 including a liquid crystal molecule 203 which is an organic molecule bonded to a nucleus 202 is described.
  • Patent Document 4 describes liquid crystal-compatible particles containing liquid crystal molecules that are organic molecules bonded to the periphery of silver metal nanoparticles made of silver.
  • Japanese Patent No. 3974093 (registered on June 22, 2007) JP 2006-267514 A (released on October 5, 2006) Japanese Patent No. 4104892 (registered on April 4, 2008) JP 2009-25485 A (published February 5, 2009) JP 2007-94442 A (published April 12, 2007)
  • the surface of the metal fine particle is modified with a liquid crystal molecule or an alkyl group which is an organic molecule.
  • the metal fine particle is modified. The dispersibility of the fine particles in the liquid crystal is ensured.
  • the modifier that modifies the surface of the metal fine particles is limited to liquid crystal molecules or alkyl groups. Therefore, the dispersibility of the metal fine particles in the liquid crystal is limited.
  • Patent Documents 1 to 4 as shown in FIG. 22, the surface of the silica particles 2 is modified with a modifier 100 (liquid crystal molecules or alkyl groups), and the liquid crystal 4 composed of 5CB molecules is included.
  • a modifier 100 liquid crystal molecules or alkyl groups
  • the liquid crystal 4 composed of 5CB molecules is included.
  • the type of the modifier 100 is selected in consideration of the magnitude of interaction with the 5CB molecule.
  • the present invention has been made in view of the above problems, and includes a liquid crystal composition containing fine particles having high dispersibility in a liquid crystal material and capable of exhibiting an unprecedented large secondary electro-optical effect, and a high contrast value.
  • An object of the present invention is to provide a liquid crystal display panel that can reduce the threshold voltage and realize low power consumption and high transmittance.
  • the liquid crystal composition of the present invention is a liquid crystal composition in which fine particles having a particle size smaller than the wavelength of visible light are added to a liquid crystal material, and the liquid crystal composition in the liquid crystal material
  • the modifying agent having a first functional group capable of interacting and a second functional group that forms a bond with the fine particle and having a permanent dipole moment of 4.2 debye or more is the surface of each fine particle.
  • Each fine particle is dispersed in the liquid crystal material in a state of being covered with the modifier.
  • the modifier having a permanent dipole moment of 4.2 debye or more since the modifier having a permanent dipole moment of 4.2 debye or more is used, the interaction with the liquid crystal molecules is large, and there is a region where the degree of order of the liquid crystal molecules is high in the vicinity of the fine particles. Will be formed.
  • the modifier is bonded to the fine particles, and the surface of the fine particles is dispersed in the liquid crystal material in a state of being covered with the modifier, so that even if the amount of the fine particles added is increased. In the liquid crystal material, it can be stably dispersed.
  • a liquid crystal display panel of the present invention includes the liquid crystal composition, and a first substrate and a second substrate that are arranged to face each other, and the liquid crystal composition includes It is sandwiched between the first substrate and the second substrate, and an electrode is formed on at least one side of the first substrate and the second substrate.
  • the liquid crystal display device of the present invention is characterized by including the liquid crystal display panel and a backlight for irradiating the liquid crystal display panel with light.
  • liquid crystal display device it is possible to reduce the threshold voltage and realize low power consumption and high transmittance.
  • a method for producing a liquid crystal composition of the present invention is a method for producing a liquid crystal composition in which fine particles having a particle size smaller than the wavelength of visible light are added to a liquid crystal material.
  • the fine particles modified with the modifier can be completely removed from the solvent and handled in a dry state, so that a liquid crystal composition with reduced residual solvent as an impurity in the liquid crystal material is produced. can do.
  • the liquid crystal composition has a first functional group capable of interacting with liquid crystal molecules in the liquid crystal material, and a second functional group that forms a bond with the fine particles.
  • a modifier having a permanent dipole moment of 4.2 debye or more is disposed on the surface of each of the fine particles, and each of the fine particles is dispersed in the liquid crystal material in a state of being covered with the modifier. .
  • the liquid crystal display panel of the present invention includes the liquid crystal composition, and a first substrate and a second substrate which are arranged to face each other, and the liquid crystal composition includes the first liquid crystal composition.
  • the substrate is sandwiched between the first substrate and the second substrate, and an electrode is formed on at least one side of the first substrate and the second substrate.
  • the liquid crystal display device of the present invention is configured to include the liquid crystal display panel and a backlight for irradiating the liquid crystal display panel with light.
  • the method for producing a liquid crystal composition of the present invention includes a first functional group that can interact with liquid crystal molecules in the liquid crystal material, and a second functional group that forms a bond with the fine particles.
  • the modifier having a permanent dipole moment of 4.2 debye or more is disposed on the surface of each of the fine particles, and the fine particles modified with the modifier are added to the liquid crystal material in a dry state. Is the method.
  • liquid crystal composition containing fine particles having high dispersibility in a liquid crystal material and capable of exhibiting an unprecedented large secondary electro-optical effect, a manufacturing method thereof, a liquid crystal display panel exhibiting a high contrast value, and a threshold voltage
  • a liquid crystal display device that can reduce power consumption and increase transmittance can be realized.
  • (A) is a diagram showing the size of a nematic domain formed by the interaction between fine particles surface-modified with a modifier having a permanent dipole moment of 4.2D or more and liquid crystal molecules;
  • (B) is a figure which shows the magnitude
  • FIG. 5 is a graph showing the relationship between the magnitude of permanent dipole moments of modifiers A to E and the amount of silica fine particles surface-modified with modifiers A to E. It is a figure which shows a part of liquid crystal display panel provided with the liquid crystal composition containing the silica fine particle modified with the modifier as a liquid crystal layer.
  • A is a figure which shows the case where a horizontal electric field has not arisen between the comb-shaped electrodes in the liquid crystal display panel shown in FIG.
  • (b) is the liquid crystal display shown in FIG.
  • a panel it is a figure which shows the case where a horizontal electric field has arisen between the comb-tooth shaped electrodes (ON state). It is a figure which shows the relationship between the magnitude
  • FIG. 1 It is a figure which shows the liquid crystal display panel provided with the liquid crystal composition with which the unmodified silica fine particle created as the comparative example 5 was added as a liquid crystal layer.
  • the result of having measured the threshold voltage using the liquid crystal composition with which the unmodified silica fine particle created as the comparative example 5 was added and the liquid crystal composition with which the silica fine particle modified with the modifier A was added is shown.
  • FIG. It is a figure which shows the result of having measured the response speed using the liquid crystal display panel provided with the liquid crystal composition to which the silica fine particle modified with the modifier A was added as a liquid crystal layer.
  • FIG. 1 shows schematic structure of the liquid crystal display device provided with the backlight driven by a field sequential (Field Sequential) system.
  • FIG. 3 is a diagram illustrating a schematic configuration of a liquid crystal display panel in which a pixel substrate and a counter substrate are modified with a modifier A. It is a figure which shows schematic structure of the liquid crystal display device provided with the liquid crystal display panel shown in FIG. 18, and the backlight driven by a field sequential system. It is a figure which shows typically the change of the liquid crystal arrangement accompanying the temperature rise described in patent document 1. FIG. It is a figure which shows schematic structure of the liquid crystal compatibility particle
  • FIG. 2 is a diagram for explaining the modifier 3 for modifying fine particles.
  • the modifier 3 includes a functional group 3a (second functional group) for binding to fine particles and a functional group 3b (first functional group) for interacting with liquid crystal molecules in the liquid crystal material. Group).
  • size of the permanent dipole moment of the modifier 3 is 4.2D (Debye) or more, and the direction of the permanent dipole moment of the modifier 3 is the right direction in the figure (functional group 3a to functional group 3b). Or the left direction (direction from the functional group 3b to the functional group 3a).
  • the functional group 3a for bonding to the fine particles described later is not particularly limited as long as it is a functional group capable of forming a bond with the surface of the fine particles.
  • the fine particles are metal fine particles.
  • a functional group having coordination ability capable of binding to the metal atom of the metal fine particle may be used.
  • the coordination bond is not generally a strong bond.
  • a thiol compound adsorbed on gold is 70 ° C. It is known that it becomes very unstable at some degree, and some peel off.
  • the fine particles are non-metallic particles, particularly those having an oxide layer at least on the surface, the durability after the functional group 3a is fixed on the surface of the fine particles (difficult to peel off) and various functional groups 3a.
  • a modifier 3 having a functional group 3a as shown below.
  • A is Si, Ti or Sn
  • X is a halogen group or an alkoxy group.
  • the modified layer formed on the surface of the fine particle is stable even at about 200 ° C. It is.
  • the magnitude of the permanent dipole moment of the modifier 3 is 4.2D or more. The upper limit is not provided.
  • the substance that interacts with the liquid crystal molecule is a low-molecule with a high degree of freedom, even if the permanent dipole moment of this low molecule is large, the dipole interaction between this low molecule and the liquid crystal molecule does not increase.
  • the modifier 3 since the modifier 3 is bonded and fixed to the solid surface of fine particles and functions, the dipolar interaction between the modifier 3 and the liquid crystal molecules is The larger the child moment, the larger the child moment.
  • a group in which the magnitude of the permanent dipole moment of the modifier 3 is 4.2D or more may be appropriately selected.
  • the modifier 3 has a molecular skeleton that is difficult to bend so that the permanent dipole moment is not reduced by bending due to the molecular skeleton motion while having a large permanent dipole moment.
  • the modifier 3 preferably contains a group having a molecular skeleton that is difficult to bend, such as a cyclohexane ring or a benzene ring, rather than a flexible group composed of a single bond such as an alkane.
  • FIG. 3 is a view showing the fine particles 2 whose surface is modified with the modifying agent 3.
  • the modifying agent 3 is bonded and fixed to the surface of the fine particle 2. More specifically, the functional group 3 a of the modifying agent 3 is bonded and fixed to the surface of the fine particle 2. The surface is modified by the functional group 3 b of the modifier 3.
  • any of organic fine particles, inorganic fine particles, and organic-inorganic hybrid fine particles can be used as long as it has a functional group capable of interacting with the functional group 3 a of the modifier 3 on the surface.
  • metal-based inorganic fine particles considering that the types of functional groups 3a of the modifier 3 capable of interacting (coordinating bonds) with the surface of the metal fine particles are considerably limited, non-metallic particularly It is preferable to use fine particles having an oxide layer on at least the surface.
  • the surface of the metal fine particles is colored due to significant absorption of light at a specific wavelength due to the surface plasmon effect, frequency characteristics are generated, and display is inconvenient. Therefore, the occurrence of these phenomena can be prevented by using non-metallic fine particles, for example, fine particles made of ceramics.
  • non-metallic fine particles are generally much cheaper than metallic fine particles.
  • the particle size of the fine particles 2 induces a light scattering phenomenon when the particle size is increased, it has a particle size smaller than the visible light wavelength, and considering Rayleigh scattering of a particle size smaller than the visible light wavelength, When the particle size is about 50 nm or less, the Rayleigh scattering intensity becomes almost 0. Therefore, the particle size is preferably 50 nm or less.
  • the shape of the fine particles 2 is not particularly limited. For example, a spherical shape, an ellipsoidal shape, a lump shape, a columnar shape, a conical shape, a shape having protrusions in these shapes, or a hole in these shapes.
  • the spherical fine particles 2 are preferably used because spherical ones are easily available at low cost.
  • FIG. 1 is a diagram showing a state in which fine particles 2 whose surfaces are modified with a modifier 3 are added and dispersed in liquid crystal molecules 4.
  • the captured liquid crystal molecules 4 form a small nematic domain R1.
  • the order S (order parameter) of the liquid crystal molecules 4 is lowered as a whole of the liquid crystal composition 1. Isotropic and colorless and transparent.
  • the nematic domain R1 is basically a region formed around the fine particles 2, but in a portion where the distance between the fine particles 2 is narrow, the two particles 2 interact with each other in a bridged state. In some cases, a nematic domain R1 is formed (nematic domain R1 formed in the central portion of FIG. 1).
  • liquid crystal composition 1 macroscopically has an isotropic phase and microscopically has a nematic domain R1
  • a liquid crystal is formed in the vicinity of the fine particles 2 surface-modified with the modifier 3. It is necessary to create a state in which the molecule 4 is strongly trapped.
  • the magnitude of the permanent dipole moment that has the functional group 3b that increases the interaction with the liquid crystal molecules 4 and that can strongly capture the liquid crystal molecules 4 is 4.2D or more. Modifier 3 is used.
  • 5CB (abbreviation: 4-cyano-4′-pentylbiphenyl), which is a nematic liquid crystal represented by the above structural formula (4), is used as the liquid crystal molecule 4, but it is a molecule exhibiting liquid crystallinity. If there is no particular limitation.
  • the dielectric anisotropy ⁇ of the liquid crystal layer composed of liquid crystal molecules may be positive or negative, but satisfies the required refractive index anisotropy ⁇ n which is a physical property value of the liquid crystal. the, it is preferable to use a liquid crystal molecule dielectric anisotropy ⁇ is greater from Ipushiron'arufaenu 2 relationship for. In practice, the dielectric anisotropy ⁇ is preferably 4 or more.
  • FIG. 4 is a graph showing the relationship between the magnitude of the permanent dipole moment of the modifying agent 3 and the amount of fine particles 2 that are surface-modified with the modifying agent 3 can be added.
  • the amount of liquid crystal molecules 4 that interact with the fine particles 2 that are surface-modified with the modifier 3 increases and is trapped in the vicinity of the fine particles 2. Since the amount of the liquid crystal molecules 4 increases, a larger amount of the fine particles 2 whose surface is modified with the modifier 3 can be added to the liquid crystal molecules 4 and stably dispersed.
  • FIG. 5 (a) shows the size of the nematic domain R1 formed by the interaction between the liquid crystal molecules 4 and the fine particles 2 surface-modified with the modifying agent 3 whose permanent dipole moment is 4.2D or more.
  • (B) of FIG. 5 is formed by the interaction between the liquid crystal molecules 4 and the fine particles 2 surface-modified with a conventional modifier having a relatively small permanent dipole moment. It is a figure which shows the magnitude
  • the size of the nematic domain R1 in FIG. 5 (a) is larger than the size of the nematic domain R1 in FIG. 5 (b).
  • FIG. 6 shows the magnitude of the permanent dipole moment of the modifier 3 and the contrast value when a liquid crystal display device is manufactured using the liquid crystal composition 1 to which a predetermined amount of fine particles 2 surface-modified with the modifier 3 are added. It is a figure which shows a relationship.
  • the magnitude of the permanent dipole moment of the modifier 3 can be determined so that the contrast value is 1500 or more from FIG. preferable.
  • FIG. 7 is a diagram showing the relationship between the magnitude of the permanent dipole moment of the modifier 3 and the threshold voltage.
  • a normal driving circuit (driver) is designed to withstand a driving voltage of about 5V, and there is a driving circuit that can withstand high voltage driving exceeding 15V. Since it is expensive, it is preferable to determine the magnitude of the permanent dipole moment of the modifier 3 so that the threshold voltage is 15 V or less from FIG.
  • the modifier 3 having a permanent dipole moment that has a contrast of 1500 or more and a threshold voltage of 15 V or less.
  • the value of the dipole moment (D) in Table 1 is a value derived by AM1 calculation using molecular orbital calculation software Scigress MO Compact (Fujitsu).
  • D dipole moment
  • Example 1 Preparation of fine particles surface-modified with modifier A
  • silica sol manufactured by Fuso Chemical Co., Ltd.
  • silica fine particles having a particle diameter of 15 nm were dispersed in methanol at about 12 wt% was used as the fine particles 2.
  • the reason why the silica fine particles are used as the fine particles 2 is that the surface of the silica fine particles is covered with a silanol (Si—OH) group, which is the silanol group and the functional group 3a of the modifier A. It is known that the reactivity with the ethoxy group is excellent and the silanol group strongly interacts with 5CB liquid crystal molecules, and the silanol group not modified with the modifier A remains on the surface of the silica fine particles. This is because the silanol group can strongly interact with the 5CB liquid crystal molecules.
  • Si—OH silanol
  • silica fine particles whose surface was modified with the modifier A could be produced in methanol.
  • UV / VIS analysis (measured in a methanol solution) confirmed broad absorption at 240 to 340 nm with a peak at 270 nm.
  • the above mixed solution was heated to about 70 ° C. with stirring to evaporate and remove methanol. And methanol was able to be removed completely by stirring and heating for 4 hours.
  • TG-DTA analysis (TG-DTA analyzer: ThermoPlus TG8120 (manufactured by Rigaku Corporation) was performed on the liquid crystal composition containing silica fine particles whose surface was modified with the modifier A thus obtained.
  • This addition amount is about four times as much as the addition amount of 0.75 wt% of unmodified silica fine particles described later (in the case of unmodified silica, precipitation occurred and the supernatant was analyzed).
  • the silica fine particles surface-modified with the modifier A can stably disperse about 4 times the amount of unmodified silica fine particles in the liquid crystal composed of 5CB liquid crystal molecules.
  • Example 2 4-cyanobiphenyl-4 ′-(2-triethoxy) propane (Modifier B) having a permanent dipole moment of 4.20D shown in the structural formula (6) is used as the modifier 3. Except for this, it is the same as that of the first embodiment, and a description thereof will be omitted.
  • Comparative Example 2 is the same as Example 1 except that nitroethyltriethoxysilane (Modifier D) having a permanent dipole moment of 3.150 D is used as the modifier, and thus the description thereof is omitted. To do.
  • Comparative Example 3 is the same as Example 1 except that nitropropyltriethoxysilane (Modifier E) having a permanent dipole moment of 2.730D is used as the modifier, and thus the description thereof is omitted. To do.
  • FIG. 8 is a diagram showing the relationship between the magnitude of the permanent dipole moment of the modifiers A to E and the amount of silica fine particles surface-modified with the modifiers A to E.
  • FIG. 9 is a view showing a part of a liquid crystal display panel 10 provided with a liquid crystal composition 1 containing silica fine particles 2 modified with a modifier 3 as a liquid crystal layer.
  • the liquid crystal composition 1 containing the fine particles 2 modified with the modifier 3 is sandwiched between the pixel substrate 5 and the counter substrate 7, and the pixel substrate 5 and the counter substrate 7 are sealed. It is bonded together by a material (not shown).
  • a transparent glass substrate is used as each of the pixel substrate 5 and the counter substrate 7.
  • the present invention is not limited to this, and any one of the pixel substrate 5 and the counter substrate 7 is used. May be formed of a transparent substrate.
  • a plurality of comb-like electrodes 6a and 6b are provided on the surface of the pixel substrate 5 on the side in contact with the liquid crystal composition 1, and a horizontal electric field is generated between the electrodes 6a and 6b. It is like that.
  • a predetermined common voltage is applied to one of the electrode 6a and the electrode 6b, and a voltage corresponding to the gradation of the display image is applied to the other via a TFT element (not shown). It has become.
  • the comb-like electrodes 6a and 6b are made of ITO (Indium Tin Oxide), which is a transparent conductive film, and the width of the electrodes 6a and 6b and the distance between the electrodes are both 4 ⁇ m.
  • ITO Indium Tin Oxide
  • the present invention is not limited to this.
  • the cell gap was set to 3.25 ⁇ m.
  • liquid crystal display panel 10 since it is not always necessary to provide an alignment film as in the conventional liquid crystal display panel, it is possible to realize cost reduction and productivity improvement.
  • a polarizing plate 8 is provided on the surface of the pixel substrate 5 opposite to the surface in contact with the liquid crystal composition 1.
  • the polarizing plate 8 is in contact with the liquid crystal composition 1 on the counter substrate 7.
  • a polarizing plate 9 is provided on the surface facing the side surface, and the polarizing plate 8 and the polarizing plate 9 are arranged in crossed Nicols.
  • FIG. 10 shows a case where no horizontal electric field is generated between the comb-shaped electrodes 6a and 6b (OFF state) and a horizontal electric field between the comb-shaped electrodes 6a and 6b in the liquid crystal display panel 10 shown in FIG. It is a figure which shows the case where it has occurred (ON state).
  • FIG. 10 shows a case where a lateral electric field is not generated between the comb-like electrodes 6a and 6b (OFF state).
  • the liquid crystal molecules in the liquid crystal composition 1 are: Due to the absence of the alignment film and the influence of the addition of the fine particles 2 modified with the modifying agent 3, it is in a random state and is in an optically isotropic phase.
  • FIG. 10B shows a case where a lateral electric field is generated between the comb-shaped electrodes 6a and 6b (ON state).
  • the lateral electric field causes the substrate to move toward the substrate. Since parallel birefringence occurs, transmitted light can be obtained when viewed through the polarizing plates 8 and 9 in the crossed Nicols state.
  • the horizontal electric field type liquid crystal display panel 10 is manufactured.
  • the present invention is not limited to this, and a vertical electric field type liquid crystal display panel may be manufactured.
  • FIG. 11 is a diagram showing the relationship between the magnitude of the permanent dipole moment of the modifiers A to E and the contrast value.
  • the contrast value increases as the magnitude of the permanent dipole moment of the modifiers A to E increases, and is 1145 when the permanent dipole moment is 4.1D.
  • the preferable contrast value of 1500 was exceeded and became 1580.
  • the permanent dipole moment of the modifier 3 needs to be 4.2D or more.
  • FIG. 12 is a diagram showing the relationship between the magnitude of the permanent dipole moment of modifiers A to E and the threshold voltage.
  • the threshold voltage decreases as the magnitude of the permanent dipole moment of the modifiers A to E increases, and was 20 V when the permanent dipole moment was 4.1D.
  • the threshold voltage was 14V, which is a preferable threshold voltage of 15V.
  • the permanent dipole moment of the modifier 3 needs to be 4.2D or more.
  • the modifier C, the modifier D and the modifier having a permanent dipole moment of less than 4.2D are used, the modifier C, the modifier D and the modifier having a permanent dipole moment of less than 4.2D.
  • the addition amount of the silica fine particles modified with the modifier 3 can be increased.
  • the threshold voltage is set to 15 V or less and the contrast value is set to 1500 or more. it can.
  • the amount added to the liquid crystal is small, which means that the dispersion stability is low.
  • the interaction between the modifier and the liquid crystal molecules is not sufficient, the amount of liquid crystal molecules strongly captured does not increase sufficiently, the number of liquid crystal molecules that can move freely increases, the threshold voltage increases, The contrast value is considered to have decreased.
  • Table 2 also shows the residual solvent content when modifiers A to E are used.
  • the residual solvent content was zero.
  • the residual solvent content was relatively large, and the residual solvent content tended to increase as the permanent dipole moment of the modifier was small.
  • the solvent when a modifier having a permanent dipole moment of 4.1D or more is used, after preparing silica fine particles modified with the modifier, the solvent can be completely removed and handled in a dry state. Residual solvent as an impurity can be reduced.
  • the modified silica fine particles when the permanent dipole moment is relatively small like the modifier D and the modifier E, once the modified silica fine particles are dried, the modified silica fine particles strongly aggregate. However, after being put in the liquid crystal, they have a drawback that they are difficult to redisperse.
  • the modified silica fine particles are added to the liquid crystal in a state where they are mixed in a solvent so as not to be dried, there is a disadvantage that the solvent remains in the liquid crystal even if the amount is very small.
  • FIG. 13 is a diagram showing a liquid crystal display panel 103 provided with a liquid crystal composition 102 to which silica fine particles, which are prepared as Comparative Example 4, are not added, as a liquid crystal layer.
  • FIG. 14 is a view showing a liquid crystal display panel 105 provided with a liquid crystal composition 104 to which unmodified silica fine particles prepared as Comparative Example 5 are added as a liquid crystal layer.
  • FIG. 15 shows the measurement of threshold voltage using a liquid crystal composition to which unmodified silica fine particles prepared as Comparative Example 5 were added and a liquid crystal composition to which silica fine particles modified with modifier A were added. It is a figure which shows the result.
  • the threshold voltage could be greatly reduced.
  • FIG. 16 is a diagram showing the results of response speed measurement using a liquid crystal display panel provided with a liquid crystal composition to which silica fine particles modified with a modifier A are added as a liquid crystal layer.
  • FIG. 17 is a diagram showing a schematic configuration of the liquid crystal display device 12 in which the liquid crystal display panel 10 is provided with the backlight 11 driven by the field sequential method.
  • a color filter is used to divide one pixel into three primary colors, red, green, and blue (RGB), and display all colors by combining the colors.
  • RGB red, green, and blue
  • one pixel is time-divided, and an image is displayed by switching, for example, a screen of three colors of red, green, and blue (RGB) every 1/180 second in the case of 60 Hz driving. .
  • the backlight 11 is driven in a field sequential manner, and the liquid crystal display panel 10 is also driven according to this timing. Therefore, it is necessary to use a liquid crystal display panel having high-speed response characteristics.
  • the field sequential method can be preferably used.
  • the liquid crystal display device 12 does not need a color filter, the transmittance is high and low power consumption can be realized.
  • red, green, and blue (RGB) LEDs are provided at each location of the backlight 11 corresponding to one pixel of the liquid crystal display panel 10.
  • FIG. 18 a second embodiment of the present invention will be described based on FIG. 18 and FIG.
  • the present embodiment is different from the first embodiment in that the pixel substrate 5a and the counter substrate 7a are modified with a modifier A having a relatively large permanent dipole moment, and other configurations are implemented. This is as described in the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 18 shows the liquid crystal display panel 10a, and shows a state in which the pixel substrate 5a and the counter substrate 7a are modified with the modifier A.
  • the modification method of the pixel substrate 5a and the counter substrate 7a is as follows.
  • modifier A was dissolved in 200 ml of methanol at a concentration of 1 wt%, and these were charged into a separable flask in which methanol can be refluxed.
  • the pixel substrate 5a and the counter substrate 7a that have been subjected to oxygen plasma cleaning are immersed in this solution and heated under reflux at about 70 ° C. for 4 hours with stirring to modify the modifier A to the pixel substrate 5a and the counter substrate 7a. It was.
  • FIG. 19 is a diagram showing a schematic configuration of a liquid crystal display device 12a including a pixel substrate 5a and a counter substrate 7a.
  • the threshold voltage can be lowered to 9V and the contrast value can be improved to 1840.
  • both the pixel substrate 5a and the counter substrate 7a are modified with the modifying agent 3 (modifying agent A).
  • the present invention is not limited to this, and depending on the performance to be given to the liquid crystal display panel. Only one of the substrates may be modified.
  • the pixel substrate 5a and the counter substrate 7a it is preferable that only the surface in contact with the liquid crystal molecules 4 is modified with the modifier 3 (modifier A).
  • the second functional group and the fine particles are covalently bonded.
  • the particle diameter of the fine particles is preferably 50 nm or less.
  • the scattering intensity of Rayleigh scattering occurring at a particle diameter smaller than the visible light wavelength is almost zero.
  • the surface of the fine particles is preferably formed of at least an oxide layer.
  • the surface of the metal fine particles is colored due to significant absorption of light at a specific wavelength due to the surface plasmon effect, frequency characteristics are generated, and display is inconvenient. This often occurs.
  • the second functional group having a coordination bondability capable of binding to the metal atom of the metal fine particles it is necessary to use the second functional group having a coordination bondability capable of binding to the metal atom of the metal fine particles, and the types of the second functional groups are limited.
  • the surface of the fine particles is formed of at least an oxide layer, various second functional groups can be used.
  • the fine particles are preferably silica.
  • the fine particles are silica and a silanol group is present on the surface thereof, even if a part of the surface of the fine particles is not modified by the modifying agent, A region having a high degree of order of liquid crystal molecules can be formed by the interaction between the silanol group and the liquid crystal molecules.
  • liquid crystal display panel of the present invention it is preferable that at least one of the first substrate and the second substrate is modified with the modifying agent.
  • a region having a high degree of order of liquid crystal molecules is also provided on the surface of the first substrate in contact with the liquid crystal composition and / or the surface of the second substrate in contact with the liquid crystal composition. Since it can be formed, a liquid crystal display panel showing a higher contrast value can be realized.
  • the backlight irradiates light of a plurality of different colors in a time division manner.
  • liquid crystal display device it is possible to reduce the threshold voltage and realize low power consumption and high transmittance.
  • the present invention can be applied to a liquid crystal display panel and a liquid crystal display device.
  • Liquid crystal composition Silica fine particles (fine particles) 3 Modifier 3a Functional group for binding to fine particles (second functional group) 3b Functional group for interacting with liquid crystal molecules (first functional group) 4 Liquid crystal molecules 5 Pixel substrate (first substrate) 5a Pixel substrate treated with modifier 6a, 6b, 6c, 6d Comb-like electrodes (electrodes) 7 Counter substrate (second substrate) 7a Counter substrate treated with modifier 8 Polarizing plate 9 Polarizing plate 10 ⁇ 10a Liquid crystal display panel 11 Backlight that irradiates light of different colors in time division 12 ⁇ 12a Liquid crystal display device R1 Nematic domain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 液晶材料中の液晶分子(4)に、粒径が可視光の波長より小さい微粒子(2)が添加された液晶組成物(1)であって、微粒子(2)は、微粒子(2)と結合するための官能基(3a)と、液晶分子(4)と相互作用するための官能基(3b)とを有し且つ永久双極子モーメントが4.2デバイ以上である修飾剤(3)によって、覆われた状態で液晶材料中に分散されている。

Description

液晶組成物、液晶表示パネル、液晶表示装置および液晶組成物の製造方法
 本発明は、微粒子を含む液晶組成物およびその製造方法と、上記液晶組成物を液晶層として備えた液晶表示パネルと、上記液晶表示パネルを備えた液晶表示装置とに関するものである。
 近年、3DTVなどの立体画像を表示できる表示装置が実用化されており、この分野においても、液晶表示装置は、省エネ型、薄型および軽量型等を実現できるとともに、その生産性も優れていることから一般的に用いられている。
 このような3DTV分野においては、両眼視差を有する左眼用画像と右眼用画像とを、例えば、1/2フレーム毎に交互に表示する必要があるため、液晶表示装置を通常の2倍速(2倍の周波数)以上で駆動できることが要求されている。
 また、立体画像を表示できる液晶表示装置は、スマートフォンや携帯型テレビなどの携帯機器にも適用されつつあるため、高速駆動が可能であり、低消費電力を実現できる液晶モードへの開発要求は高まっている。
 そこで、高速駆動特性および低消費電力化を実現できる液晶モードとして、二次の電気光学効果(物質の屈折率が外部電界の二次に比例する現象:Δn∝E)を利用した電子分極による表示方式が注目されている。
 このような二次の電気光学効果を利用した液晶モードにおいては、高速駆動特性および低消費電力化を実現できるように、以下に示すような多様な試みがなされている。
 例えば、山口東京理科大学の小林らによれば、5CB(略称、4-シアノ-4’-ペンチルビフェニル)分子からなる液晶に、微粒子として粒子径5nmのAg粒子を0.12wt%添加した液晶組成物を液晶層として用いることにより、2kHz駆動時においても閾値電圧(Vth)を1Vにすることができ、高速駆動時においても低消費電力化を実現できると報告している。
 なお、微粒子が添加されてない5CB分子からなる液晶を液晶層として用いた場合においては、20Hz駆動時において閾値電圧が4Vであった。
 また、5CB分子からなる液晶に、微粒子として粒子径10nmのMgO粒子を0.1wt%添加した液晶組成物を液晶層として用いた場合についても、小林らによって検討がなされており、この場合においては、応答特性(τ)が6%改善されることが報告されている。
 しかしながら、上述したように、単に液晶に微粒子を添加した液晶を液晶層として用いた場合においては、以下の理由からコントラスト値の低下が避けられないという問題が生じていた。
 液晶分子のオーダーパラメータ(S:液晶分子の秩序度)が高い5CB分子からなる液晶に、非液晶物質である微粒子を添加した場合、上記非液晶物質(微粒子)の存在により、微粒子が添加された液晶系全体における液晶分子のオーダーパラメータ(S:液晶分子の秩序度)は低下することとなる。すなわち、非液晶物質が液晶部分の秩序を乱すこととなる。
 一般的な液晶の物性値である弾性定数K、誘電率異方性Δεおよび粘性係数γなどは、液晶分子の秩序度Sに依存しているが(K∝S、Δε∝S、γ∝S)、上記非液晶物質(微粒子)の添加により、液晶分子の秩序度Sは低下され、液晶の物性値もこれに伴って変わるので、このような微粒子を添加した液晶を液晶層として用いた場合においては、コントラスト値の低下が生じるものと考えられる。
 そこで、微粒子を有機分子である液晶中により効率的に添加させるには、微粒子の表面を有機分子で被覆することが好ましいと考えられており、このような試みが多数なされている。
 小林らは、MgO粒子の表面を有機分子である5CB分子で修飾し、5CB分子からなる液晶中に、微粒子として添加し、26%の低電圧化を実現できたと報告している。
 しかしながら、この場合における5CB分子で修飾されたMgO粒子の添加量は0.02wt%に止まっており、MgO粒子の表面への5CB分子の吸着量が多くなかったため、5CB分子からなる液晶中でのMgO粒子の安定的な分散を考慮し、添加量を増加できなかったものと考えられる。
 図20は、温度上昇に伴う液晶配列の変化を模式的に示す図である。
 上述した二次の電気光学効果を有する液晶は、低温では、図20の(a)に示すように短距離秩序を持った液体であるが、温度の上昇に伴い、図20の(a)に示す短距離秩序を有する液晶相状態から、図20の(b)に示すように配向秩序度が低下した状態を経て、ついには、図20の(c)に示すように分子レベルでランダムな配向となる。
 図20の(b)における点線部分は、液晶分子がクラスター状に形成されている領域を示しており、このように液晶分子中にクラスター状に形成されている領域が多く存在すると、上述した二次の電気光学効果が大きいことが知られている。
 しかしながら、このような液晶分子がクラスター状に形成されている領域は、液晶材料の透明点近傍では、図20の(b)に示すように数多く存在するが、温度上昇に伴い、図20の(c)に示すように急激に少なくなるので、二次の電気光学効果が大きい温度領域が非常に狭いため問題となっていた。
 特許文献1においては、例えば、粒径が0.1μm以下のパラジウム(Pd)微粒子を、5CB分子を含む液晶中に添加する例が挙げられており、この場合においては、5CB分子中のシアノ基がパラジウム側に向けて配位し、図20の(b)に示すようなクラスターを形成することができると記載されている。
 このように形成されたクラスターは、5CB分子からなる液晶の透明点以上の幅広い温度範囲にわたって安定であるため、二次の電気光学効果が大きい温度領域を広げることができると記載されている。
 すなわち、上記構成によれば、5CB分子からなる液晶にパラジウム微粒子を添加し、5CB分子のシアノ基とパラジウム微粒子の表面とを相互作用させることにより、より高温まで安定的に存在し得るクラスターを形成しているので、二次の電気光学効果の温度依存性を改善することができる。
 また、特許文献2には、粒径20nmのシリカ粒子にアルキル基を導入した例について記載されている。
 ネマチック液晶分子からなる液晶中に、上記アルキル基が導入されたシリカ粒子を添加した系は、分散性が良好であり、このような液晶を液晶層として用いた液晶表示装置においては、コントラスト値が高い液晶表示装置を実現できると記載されている。
 また、特許文献3においては、図21に図示されているように、複数の金属(例えば、Pd)原子201からなる核202(核202の直径αは、5Å~100nmである)と、その周囲に、核202と結合する有機分子である液晶分子203からなる保護層204と、を含んで構成される液晶相溶性粒子200について記載されている。
 また、上記特許文献3と同様に、特許文献4には、銀からなる金属ナノ粒子を核として、その周囲に結合する有機分子である液晶分子を含む液晶相溶性粒子について記載されている。
特許第3974093号公報(2007年6月22日登録) 特開2006-267514号公報(2006年10月5日公開) 特許第4104892号公報(2008年4月4日登録) 特開2009-25485号公報(2009年2月5日公開) 特開2007-94442号公報(2007年4月12日公開)
 しかしながら、上記特許文献1~4においては、金属微粒子の表面は、有機分子である液晶分子またはアルキル基で修飾されており、金属微粒子の表面を液晶分子またはアルキル基で修飾することにより、上記金属微粒子の液晶中での分散性を確保するようになっている。
 しかし、上記修飾剤と上記金属微粒子を添加する液晶中の液晶分子との相互作用の大きさを特に考慮せず、金属微粒子の表面を修飾する修飾剤を、液晶分子またはアルキル基に限定しているため、上記金属微粒子の液晶中での分散性には限界があることとなる。
 また、上記特許文献1~4には、図22に図示されているように、シリカ粒子2の表面を修飾剤100(液晶分子または、アルキル基)で修飾し、5CB分子からなる液晶4中に分散させた液晶組成物101について記載されているが、上記特許文献1~4の何れにおいても、5CB分子との相互作用の大きさを考慮して修飾剤100の種類を選択するという記載はなく、修飾剤100で修飾されたシリカ粒子2を5CB分子からなる液晶4に添加すると、液晶分子の秩序度Sが高い5CB分子からなる液晶4における液晶分子のオーダーパラメータ(S:液晶分子の秩序度)は、図22に図示されているように、著しく低下し、このような液晶組成物101を液晶層として用いた液晶表示装置においては、本質的にコントラスト値の低下を回避することはできない。
 本発明は、上記の問題点に鑑みてなされたものであり、液晶材料中への分散性が高い微粒子を含み、従来にない大きな2次電気光学効果を発現できる液晶組成物と、高コントラスト値を示す液晶表示パネルと、閾値電圧を低減できるとともに低消費電力化および高透過率化を実現できる液晶表示装置と、を提供することを目的とする。
 本発明の液晶組成物は、上記の課題を解決するために、液晶材料に、粒径が可視光の波長より小さい微粒子が添加された液晶組成物であって、上記液晶材料中の液晶分子と相互作用し得る第1の官能基と、上記微粒子と結合を形成する第2の官能基とを有し且つ永久双極子モーメントが4.2デバイ以上である修飾剤は、各々の上記微粒子の表面に配置され、各々の上記微粒子は、上記修飾剤に覆われた状態で上記液晶材料中に分散されていることを特徴としている。
 上記構成によれば、永久双極子モーメントが4.2デバイ以上である修飾剤を用いているため、液晶分子との相互作用は大きく、上記微粒子の近傍には、液晶分子の秩序度が高い領域が形成されることとなる。
 また、上記修飾剤は、上記微粒子に結合されており、上記微粒子の表面が上記修飾剤によって、覆われた状態で上記液晶材料中に分散されるので、上記微粒子の添加量を増加させても、上記液晶材料中において、安定的に分散させることができる。
 したがって、上記液晶材料中への分散性が高い微粒子を含む液晶組成物を実現できるとともに、従来にない大きな2次電気光学効果を発現する液晶組成物を実現できる。
 本発明の液晶表示パネルは、上記の課題を解決するために、上記液晶組成物と、互いに対向するよう配置された第1の基板と第2の基板とを備え、上記液晶組成物は、上記第1の基板と上記第2の基板との間に挟持されており、上記第1の基板および上記第2の基板中、少なくとも一方側には、電極が形成されていることを特徴としている。
 上記構成によれば、高コントラスト値を示す液晶表示パネルを実現できる。
 本発明の液晶表示装置は、上記の課題を解決するために、上記液晶表示パネルと、上記液晶表示パネルに光を照射するバックライトと、を備えていることを特徴としている。
 上記液晶表示装置によれば、閾値電圧を低減できるとともに低消費電力化および高透過率化を実現できる。
 本発明の液晶組成物の製造方法は、上記の課題を解決するために、液晶材料に、粒径が可視光の波長より小さい微粒子を添加する液晶組成物の製造方法であって、上記液晶材料中の液晶分子と相互作用し得る第1の官能基と、上記微粒子と結合を形成する第2の官能基とを有し且つ永久双極子モーメントが4.2デバイ以上である修飾剤は、各々の上記微粒子の表面に配置され、上記修飾剤で修飾された微粒子を、乾燥状態で上記液晶材料中に添加することを特徴としている。
 上記製造方法によれば、上記修飾剤で修飾された微粒子を溶媒を完全除去し、乾燥状態で扱うことができるので、上記液晶材料中において不純物となる溶媒の残留を低減した液晶組成物を作製することができる。
 本発明の液晶組成物においては、以上のように、上記液晶材料中の液晶分子と相互作用し得る第1の官能基と、上記微粒子と結合を形成する第2の官能基とを有し且つ永久双極子モーメントが4.2デバイ以上である修飾剤は、各々の上記微粒子の表面に配置され、各々の上記微粒子は、上記修飾剤に覆われた状態で上記液晶材料中に分散されている。
 また、本発明の液晶表示パネルは、以上のように、上記液晶組成物と、互いに対向するよう配置された第1の基板と第2の基板とを備え、上記液晶組成物は、上記第1の基板と上記第2の基板との間に挟持されており、上記第1の基板および上記第2の基板中、少なくとも一方側には、電極が形成されている構成である。
 また、本発明の液晶表示装置は、以上のように、上記液晶表示パネルと、上記液晶表示パネルに光を照射するバックライトと、を備えている構成である。
 また、本発明の液晶組成物の製造方法は、以上のように、上記液晶材料中の液晶分子と相互作用し得る第1の官能基と、上記微粒子と結合を形成する第2の官能基とを有し且つ永久双極子モーメントが4.2デバイ以上である修飾剤は、各々の上記微粒子の表面に配置され、上記修飾剤で修飾された微粒子を、乾燥状態で上記液晶材料中に添加する方法である。
 それゆえ、液晶材料中への分散性が高い微粒子を含み、従来にない大きな2次電気光学効果を発現できる液晶組成物およびその製造方法と、高コントラスト値を示す液晶表示パネルと、閾値電圧を低減できるとともに低消費電力化および高透過率化を実現できる液晶表示装置と、を実現できる。
液晶組成物を示す図であり、修飾剤でその表面が修飾されたシリカ微粒子が、液晶分子中に添加され、分散されている様子を示す。 図1において用いられている修飾剤について説明するための図である。 図1において用いられている修飾剤で表面が修飾された微粒子を示す図である。 修飾剤の永久双極子モーメントの大きさと該修飾剤で表面修飾された微粒子の添加可能量との関係を示す図である。 (a)は、永久双極子モーメントの大きさが、4.2D以上である修飾剤で表面修飾された微粒子と液晶分子との相互作用により形成されるネマチックドメインの大きさを示す図であり、(b)は、永久双極子モーメントの大きさが相対的に小さい従来の修飾剤で表面修飾された微粒子と液晶分子との相互作用により形成されるネマチックドメインの大きさを示す図である。 修飾剤の永久双極子モーメントの大きさと、該修飾剤で表面修飾された微粒子を所定量添加した液晶組成物を用いて液晶表示装置を製作した場合におけるコントラスト値との関係を示す図である。 修飾剤の永久双極子モーメントの大きさと、該修飾剤で表面修飾された微粒子を所定量添加した液晶組成物を用いて液晶表示装置を製作した場合における閾値電圧との関係を示す図である。 修飾剤A~Eの永久双極子モーメントの大きさと修飾剤A~Eで表面修飾されたシリカ微粒子の添加可能量との関係を示す図である。 修飾剤で修飾されたシリカ微粒子を含む液晶組成物を液晶層として備えた液晶表示パネルの一部を示す図である。 (a)は、図9に示す液晶表示パネルにおいて、櫛歯状の電極間に横方向電界が生じてない場合(OFF状態)を示す図であり、(b)は、図9に示す液晶表示パネルにおいて、櫛歯状の電極間に横方向電界が生じている場合(ON状態)とを示す図である。 修飾剤A~Eの永久双極子モーメントの大きさとコントラスト値との関係を示す図である。 修飾剤A~Eの永久双極子モーメントの大きさと閾値電圧との関係を示す図である。 比較例4として作成されたシリカ微粒子が添加されてない液晶組成物を液晶層として備えた液晶表示パネルを示す図である。 比較例5として作成された未修飾シリカ微粒子が添加された液晶組成物を液晶層として備えた液晶表示パネルを示す図である。 比較例5として作成された未修飾シリカ微粒子が添加された液晶組成物と、修飾剤Aで修飾されたシリカ微粒子が添加された液晶組成物と、を用いて、閾値電圧を測定した結果を示す図である。 修飾剤Aで修飾されたシリカ微粒子が添加された液晶組成物を液晶層として備えた液晶表示パネルを用いて、応答速度測定を行った結果を示す図である。 フィールドシーケンシャル(Field Sequential)方式で駆動されるバックライトが備えられた液晶表示装置の概略構成を示す図である。 画素基板および対向基板が、修飾剤Aで修飾された液晶表示パネルの概略的な構成を示す図である。 図18に示す液晶表示パネルとフィールドシーケンシャル(Field Sequential)方式で駆動されるバックライトとが備えられた液晶表示装置の概略構成を示す図である。 特許文献1に記載されている温度上昇に伴う液晶配列の変化を模式的に示す図である。 特許文献1に記載されている液晶相溶性粒子の概略的な構成を示す図である。 従来の液晶組成物の概略的な構成を示す図である。
 以下、図面に基づいて本発明の実施の形態について詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などはあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるべきではない。
 〔実施の形態1〕
(修飾剤)
 図2は、微粒子を修飾する修飾剤3について説明するための図である。
 図示されているように、修飾剤3は、微粒子と結合するための官能基3a(第2の官能基)と、液晶材料中の液晶分子と相互作用するための官能基3b(第1の官能基)と、を有する。
 そして、修飾剤3の永久双極子モーメントの大きさは、4.2D(デバイ)以上であり、修飾剤3の永久双極子モーメントの向きは、図中の右方向(官能基3aから官能基3bへの方向)であっても、左方向(官能基3bから官能基3aへの方向)であってもよい。
 修飾剤3において、後述する微粒子と結合するための官能基3aとしては、微粒子の表面と結合を形成し得る官能基であれば、特に限定されることはなく、例えば、上記微粒子が金属微粒子である場合、上記金属微粒子の金属原子に結合できる配位結合能のある官能基でもよいが、配位結合は一般的に強い結合とは言えず、例えば、金に吸着したチオール化合物は、70℃程度で非常に不安定になり、一部は剥がれだすことが知られている。
 したがって、微粒子が非金属の特に酸化物層を少なくとも表面に有する微粒子である場合には、官能基3aが微粒子の表面に固定された後の耐久性(剥がれにくさ)や官能基3aの多様な微粒子への結合などを考慮すると、以下に示すような官能基3aを有する修飾剤3を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)、(2)および(3)において、Aは、Si、Ti若しくはSnであり、Xは、ハロゲン基若しくはアルコシキ基である。
 このような官能基3aと非金属の特に酸化物層を少なくとも表面に有する微粒子の表面との結合は、共有結合であるため、上記微粒子の表面に形成された修飾層は、200℃程度でも安定である。
 そして、修飾剤3と後述する液晶分子との双極子相互作用は、双方の永久双極子モーメントが大きければ大きいほど大きくなるので、修飾剤3の永久双極子モーメントの大きさは、4.2D以上としており、その上限は設けてない。
 液晶分子と相互作用する物質が、自由度の高い低分子である場合には、この低分子の永久双極子モーメントが大きくても、この低分子と液晶分子との双極子相互作用は大きくならないのが一般的であるが、修飾剤3の場合は、修飾剤3が微粒子という固体表面に結合固定されて機能発揮するので、修飾剤3と液晶分子との双極子相互作用は、双方の永久双極子モーメントが大きければ大きいほど大きくなる。
 さらに詳しく説明すると、永久双極子モーメントが大きな自由度の高い低分子の場合、低分子間同士での双極子相互作用が無視できなく、低分子同士間でのカップリングが無視できなくなり、低分子の有する大きな永久双極子モーメントの一部が機能しなくなってしまうのである。
 一方、微粒子の表面に結合固定されている修飾剤3は、自由に動けないので、修飾剤3同士のカップリングはほぼ不可能になり、微粒子の表面に結合固定された修飾剤3の永久双極子モーメントは、そのまま機能を発揮できるようになっている。
 したがって、液晶分子と相互作用するための官能基3bとしては、修飾剤3の永久双極子モーメントの大きさが、4.2D以上となるような基を適宜選択すればよい。
 なお、修飾剤3は、せっかく大きな永久双極子モーメントを持ちながらも、分子骨格運動によって屈曲して永久双極子モーメントが小さくなってしまわないように、屈曲しにくい分子骨格を有することが好ましい。
 すなわち、修飾剤3には、アルカンなどの単結合で構成されるフレキシブルな基より、シクロヘキサン環やベンゼン環などのように屈曲しにくい分子骨格を有する基が含まれていることが好ましい。
(修飾された微粒子)
 図3は、修飾剤3で表面が修飾された微粒子2を示す図である。
 図示されているように、微粒子2の表面には、修飾剤3が結合固定されており、さらに詳しくは、微粒子2の表面には、修飾剤3の官能基3aが結合固定され、微粒子2の表面は修飾剤3の官能基3bによって、改質されている。
 微粒子2としては、その表面に修飾剤3の官能基3aと相互作用し得る官能基を有するのであれば、有機系微粒子、無機系微粒子および有機無機ハイブリッド系微粒子の何れも用いることができるが、金属系の無機系微粒子を用いた場合には、金属微粒子の表面と相互作用(配位結合)できる修飾剤3の官能基3aの種類がかなり限定されることを考慮すると、非金属系の特に、酸化物層を少なくとも表面に有する微粒子を用いることが好ましい。
 また、金属微粒子を用いた場合には、金属微粒子の表面では、表面プラズモン効果により、特定波長の光吸収が顕著に起こることによる着色が起こったり、周波数特性が発生したり、表示においては不都合となる現象がよく生じるので、非金属系の微粒子、例えば、セラミックスなどからなる微粒子を用いることにより、これらの現象が生じるのを防止することができる。
 また、非金属系の微粒子は、一般的に、金属微粒子に比べて非常に安価である。
 そして、微粒子2の粒径は、粒径が大きくなると光の散乱現象を誘起してしまうため、可視光波長より小さな粒径を有し、可視光波長より小さな粒径のレイリー散乱を考慮すると、粒径が50nm程度以下になるとレイリー散乱強度がほぼ0になることから、粒径は50nm以下とすることが好ましい。
 また、微粒子2の形状は特に限定されることなく、例えば、球状、楕円体状、塊状、柱状、錐状のものや、これらの形状に突起を持った形態、これらの形状に穴があいている形態などを用いることができるが、球状のものが低コストにて入手しやすいことから、球状の微粒子2を用いることが好ましい。
 また、微粒子2の表面形態も特に限定されず、例えば、平滑でもよく、凹凸や孔、溝を有していてもよい。
(修飾された微粒子を含む液晶組成物)
 図1は、修飾剤3でその表面が修飾された微粒子2が、液晶分子4中に添加され、分散されている様子を示す図である。
 図示されているように、修飾剤3で表面修飾された微粒子2を液晶分子4に添加した場合、修飾剤3と液晶分子4との相互作用により、微粒子2の近傍には、液晶分子4を捕捉した状態が形成される。
 そして、この捕捉された液晶分子4は、小さなネマチックドメインR1を形成する。
 液晶分子4中に、修飾剤3で表面修飾された微粒子2が添加されると、液晶組成物1全体としては、液晶分子4の秩序度S(オーダーパラメータ)が低下し、巨視的には等方的で無色透明を示す。
 一方、微視的には、図示されているように、ネマチックドメインR1を有するため、ネマチック性を有する状態となる。
 ネマチックドメインR1は、基本的には微粒子2の周囲に形成される領域であるが、微粒子2間の間隔が狭い部分では、両方の微粒子2の相互作用によって、微粒子2の間にブリッジした状態でネマチックドメインR1が形成される場合もある(図1の中央部分に形成されたネマチックドメインR1)。
 このように、液晶組成物1が巨視的には等方相を示し、微視的にはネマチックドメインR1を有する状態を形成するには、修飾剤3で表面修飾された微粒子2の近傍に液晶分子4が強く捕捉された状態を作る必要がある。
 したがって、本実施の形態においては、液晶分子4との相互作用が大きくなるような官能基3bを有し、液晶分子4を強く捕捉できる永久双極子モーメントの大きさが、4.2D以上である修飾剤3を用いている。
Figure JPOXMLDOC01-appb-C000002
 なお、本実施の形態においては、液晶分子4として上記構造式(4)に示すネマチック液晶である5CB(略称、4-シアノ-4’-ペンチルビフェニル)を用いたが、液晶性を示す分子であれば特に限定されない。
 また、液晶分子により構成される液晶層の誘電率異方性Δεは、正であっても負であってもよいが、必要とされる液晶の物性値である屈折率異方性Δnを満たすためには、ε∝n関係から誘電率異方性Δεが大きい液晶分子を用いることが好ましい。実用上においては、誘電率異方性Δεが4以上であることが好ましい。
 図4は、修飾剤3の永久双極子モーメントの大きさと修飾剤3で表面修飾された微粒子2の添加可能量との関係を示す図である。
 図示されているように、修飾剤3の永久双極子モーメントが大きくなると、修飾剤3で表面修飾された微粒子2と相互作用する液晶分子4の量が増加し、微粒子2の近傍に捕捉される液晶分子4の量が増加することとなるので、修飾剤3で表面修飾された微粒子2をより多く、液晶分子4中に添加し、安定的に分散させることができる。
 図5の(a)は、永久双極子モーメントの大きさが、4.2D以上である修飾剤3で表面修飾された微粒子2と液晶分子4との相互作用により形成されるネマチックドメインR1の大きさを示す図であり、図5の(b)は、永久双極子モーメントの大きさが相対的に小さい従来の修飾剤で表面修飾された微粒子2と液晶分子4との相互作用により形成されるネマチックドメインR1の大きさを示す図である。
 図示されているように、図5の(a)におけるネマチックドメインR1の大きさが、図5の(b)におけるネマチックドメインR1の大きさより大きい。
 図6は、修飾剤3の永久双極子モーメントの大きさと、修飾剤3で表面修飾された微粒子2を所定量添加した液晶組成物1を用いて液晶表示装置を製作した場合におけるコントラスト値との関係を示す図である。
 修飾剤3の永久双極子モーメントの大きさが大きくなると、上述したようにネマチックドメインR1の形成領域も大きくなり、その分、電圧に対する屈折率変化量も増大することとなる。
 したがって、図6に図示されているように、永久双極子モーメントの大きさが大きい修飾剤を用いると、ネマチックドメインR1の形成領域が大きくなる分、電圧印加時に屈折率が大きくなり、透過率も大きくなるので、コントラスト値が向上されることとなる。
 一方、コントラスト値の設定については、低コントラスト値では視認性が悪化してしまうので、図6からコントラスト値が1500以上となるように、修飾剤3の永久双極子モーメントの大きさを決めることが好ましい。
 図7は、修飾剤3の永久双極子モーメントの大きさと閾値電圧との関係を示す図である。
 修飾剤3の永久双極子モーメントの大きさが大きくなると、上述したようにネマチックドメインR1の形成領域も大きくなり、その分、電圧に対する屈折率変化量も増大することとなる。
 したがって、図7に図示されているように、修飾剤3の永久双極子モーメントの大きさが大きい場合には、より小さい電圧で、同量の屈折率を変化させることができるので、閾値電圧(Vth)を低下させることができる。
 一方、閾値電圧の設定については、通常の駆動回路(ドライバー)は、5V程度の駆動電圧に耐えられるように設計されており、15Vを超える高電圧駆動に耐えられる駆動回路もあるが、非常に高価であるため、図7から閾値電圧が15V以下となるように、修飾剤3の永久双極子モーメントの大きさを決めることが好ましい。
 以上から、修飾剤3の永久双極子モーメントの大きさが大きくなると、修飾剤3で表面修飾された微粒子2の添加量を増加でき(図4参照)、コントラスト値を向上(図6参照)させるとともに、閾値電圧を低下(図7参照)させることができる。
 したがって、コントラストは1500以上、かつ閾値電圧が15V以下となるような永久双極子モーメントの大きさを有する修飾剤3を用いることが望ましい。
 以下では、下記表1に示すように、永久双極子モーメントの大きさがそれぞれ異なる各種の修飾剤A~Eを用いて、表面が修飾された微粒子を作成する方法と、この微粒子を液晶中に添加および分散させて液晶組成物を作成する方法について詳しく説明する。
Figure JPOXMLDOC01-appb-T000003
 なお、上記表1における双極子モーメント(D)の値は、分子軌道計算ソフトScigress MO Compact(富士通社)でのAM1計算により導出された値である。
[実施例1]
(修飾剤Aで表面修飾された微粒子の作製)
 本実施例においては、微粒子2として、メタノール中に粒径15nmのシリカ微粒子が約12wt%で分散されているシリカゾル(扶桑化学社製)を用いた。
 なお、本実施例において、微粒子2としてシリカ微粒子を用いた理由は、上記シリカ微粒子の表面はシラノール(Si-OH)基で覆われており、上記シラノール基と修飾剤Aの官能基3aであるエトキシ基との反応性が優れている点と、シラノール基は5CB液晶分子と強く相互作用することが知られており、上記シリカ微粒子の表面に修飾剤Aで修飾されてないシラノール基が残ったとしても、このシラノール基が5CB液晶分子と強く相互作用できる点と、を考慮したためである。
Figure JPOXMLDOC01-appb-C000004
 修飾剤3としては、上記構造式(5)に示す永久双極子モーメントが5.762Dであるアヅマックス社製の3-(トリエトキシシリルプロピル)-p-ニトロベンズアミド(修飾剤A)を用いた。
 そして、上記シリカゾル50mlと上記修飾剤A370mgとを、150mlのメタノールに入れ、撹拌しながら約65℃で還流させ、8時間反応させた。
 その後、メタノールを留去し、全容50mlまで濃縮した。
 続いて、10mlずつ遠心分離機にかけて、上澄み液をデカンテーションにより除去した。これにより、未反応修飾剤を除去した。
 そして、沈殿に対してメタノールを約5ml加え、振とう洗浄し、同様に遠心分離機にかけ、上澄みを除去した。これを3回繰り返した。
 以上により、表面を修飾剤Aで修飾したシリカ微粒子をメタノール中に作製できた。
 そして、FTIR分析(KBr結晶間にサンドウィッチして測定)により、アミドC=Oに該当する1700cm-1および1650cm-1の吸収と、ベンゼン骨格に該当する1600cm-1および1450cm-1の吸収と、ニトロ基に該当する1530cm-1および1350cm-1の吸収と、をそれぞれ確認できた。
 それから、UV/VIS分析(メタノール溶液のまま測定した)により、270nmをピークとし240~340nmにブロードな吸収が確認できた。
 以上により、修飾剤Aがシリカ表面に結合していることが確認できた。
(修飾剤Aで表面修飾された微粒子を含む液晶組成物の作製)
 以上のようにして得られた表面を修飾剤Aで修飾したシリカ微粒子を含むメタノール10mlを、5CB液晶分子からなる液晶10mlと混合した。
 上記混合溶液を、撹拌下、約70℃に加熱して、メタノールを蒸発除去した。そして、4時間撹拌加熱することで、メタノールを完全に除去できた。
 そして、得られた修飾剤Aで表面修飾されたシリカ微粒子を含む液晶組成物に対してTG-DTA分析(TG-DTA分析装置:ThermoPlus TG8120(リガク社製))を行った。
 DTA曲線において、メタノールの沸点である65℃近辺には全くピークが見られなかったことから、メタノール除去は完全に行えていたことが確認できた。
 また、TG曲線から、5CB液晶分子からなる液晶中への修飾剤Aで表面修飾されたシリカ微粒子の添加量が2.85wt%であることも確認できた。
 この添加量は、後述する未修飾シリカ微粒子の添加量0.75wt%(未修飾シリカの場合は、沈殿が発生し、上澄み部分について分析した)に比べ、約4倍多い量である。
 すなわち、修飾剤Aで表面修飾されたシリカ微粒子は、未修飾シリカ微粒子の約4倍の量を、5CB液晶分子からなる液晶中に安定的に分散させることができる。
[実施例2]
Figure JPOXMLDOC01-appb-C000005
 実施例2においては、修飾剤3として、上記構造式(6)に示す永久双極子モーメントが4.20Dである4-シアノビフェニル-4’-(2-トリエトキシ)プロパン(修飾剤B)を用いたこと以外は、実施例1と同様であるため、その説明は省略する。
 なお、TG曲線から、5CB液晶分子からなる液晶中への修飾剤Bで表面修飾されたシリカ微粒子の添加量が2.64wt%であることが確認できた。
[比較例1]
 比較例1においては、修飾剤として、永久双極子モーメントが4.10Dである4-シアノビフェニル-4’-(2-トリエトキシシリル)エタン(修飾剤C)を用いたこと以外は、実施例1と同様であるため、その説明は省略する。
 なお、TG曲線から、5CB液晶分子からなる液晶中への修飾剤Cで表面修飾されたシリカ微粒子の添加量が1.90wt%であることが確認できた。
[比較例2]
 比較例2においては、修飾剤として、永久双極子モーメントが3.150Dであるニトロエチルトリエトキシシラン(修飾剤D)を用いたこと以外は、実施例1と同様であるため、その説明は省略する。
 なお、TG曲線から、5CB液晶分子からなる液晶中への修飾剤Dで表面修飾されたシリカ微粒子の添加量が1.30wt%であることが確認できた。
[比較例3]
 比較例3においては、修飾剤として、永久双極子モーメントが2.730Dであるニトロプロピルトリエトキシシラン(修飾剤E)を用いたこと以外は、実施例1と同様であるため、その説明は省略する。
 なお、TG曲線から、5CB液晶分子からなる液晶中への修飾剤Eで表面修飾されたシリカ微粒子の添加量が0.90wt%であることが確認できた。
 図8は、修飾剤A~Eの永久双極子モーメントの大きさと修飾剤A~Eで表面修飾されたシリカ微粒子の添加可能量との関係を示す図である。
 図示されているように、シリカ微粒子の添加可能量は、修飾剤A~Eの永久双極子モーメントの大きさが大きくなる程、増加し、永久双極子モーメントが4.1Dの時には1.9wt%であったが、4.2Dの時には2.64wt%に、5.762Dの時には2.85wt%にまで増加した。
(液晶表示パネル)
 図9は、修飾剤3で修飾されたシリカ微粒子2を含む液晶組成物1を液晶層として備えた液晶表示パネル10の一部を示す図である。
 図示されているように、修飾剤3で修飾された微粒子2を含む液晶組成物1は、画素基板5と対向基板7との間に挟持されており、画素基板5と対向基板7とはシール材(未図示)によって、貼り合わせられている。
 なお、本実施の形態においては、画素基板5および対向基板7として、何れも透明なガラス基板を用いているが、これに限定されることなく、画素基板5および対向基板7中、何れか一方が透明基板で形成されていればよい。
 そして、画素基板5の液晶組成物1と接する側の面には、櫛歯状の電極6a・6bが複数個設けられており、電極6aと電極6bとの間には横方向の電界が生じるようになっている。
 また、電極6aおよび電極6b中の何れか一方には、所定の共通電圧が印加され、他方には、表示画像の階調に対応する電圧がTFT素子(未図示)を介して印加されるようになっている。
 本実施の形態においては、櫛歯状の電極6a・6bを透明導電膜であるITO(Indium Tin Oxide)で形成し、電極6a・6bの幅および電極間の間隔を何れも4μmで形成したが、これに限定されることはない。
 そして、液晶表示パネル10においては、セルギャップを3.25μmに設定した。
 また、液晶表示パネル10においては、従来の液晶表示パネルように、配向膜を必ずしも設けなくてもよいため、低コスト化や生産性の向上を実現できる。
 そして、図示されているように、画素基板5における液晶組成物1と接する側の面と対向する面には、偏光板8が設けられており、一方、対向基板7における液晶組成物1と接する側の面と対向する面には、偏光板9が設けられており、偏光板8と偏光板9とはクロスニコルに配置されている。
 図10は、図9に示す液晶表示パネル10において、櫛歯状の電極6a・6b間に横方向電界が生じてない場合(OFF状態)と櫛歯状の電極6a・6b間に横方向電界が生じている場合(ON状態)とを示す図である。
 図10の(a)は、櫛歯状の電極6a・6b間に横方向電界が生じてない場合(OFF状態)を示しており、この場合においては、液晶組成物1中の液晶分子は、配向膜が設けられてないことや修飾剤3で修飾された微粒子2の添加の影響があって、ランダム状態になっており、光学的に等方相になっている。
 一方、図10の(b)は、櫛歯状の電極6a・6b間に横方向電界が生じている場合(ON状態)を示しており、この場合においては、横方向電界により、基板方向に平行な複屈折が発生するので、クロスニコル状態の偏光板8・9を通して見ると、透過光が得られる。
 なお、本実施の形態においては、横電界方式の液晶表示パネル10を製作したが、これに限定されることはなく、上下電界方式の液晶表示パネルを製作してもよい。
 以上のように製作した液晶表示パネル10を用いて、各種の修飾剤A~Eを使って修飾したシリカ微粒子を5CB液晶分子からなる液晶に添加した液晶組成物を液晶層とする場合におけるコントラスト値と閾値電圧とを評価した。
 図11は、修飾剤A~Eの永久双極子モーメントの大きさとコントラスト値との関係を示す図である。
 図示されているように、コントラスト値は、修飾剤A~Eの永久双極子モーメントの大きさが大きくなる程、増加しており、永久双極子モーメントが4.1Dの時には1145であったが、永久双極子モーメントが4.2Dの時には、好ましいコントラスト値である1500を超え、1580となった。
 したがって、コントラスト値を考慮すると、修飾剤3の永久双極子モーメントは4.2D以上である必要がある。
 図12は、修飾剤A~Eの永久双極子モーメントの大きさと閾値電圧との関係を示す図である。
 図示されているように、閾値電圧は、修飾剤A~Eの永久双極子モーメントの大きさが大きくなる程、低下し、永久双極子モーメントが4.1Dの時には20Vであったが、永久双極子モーメントが4.2Dの時には、好ましい閾値電圧である15Vの以下の14Vとなった。
 したがって、閾値電圧の面から考慮しても、修飾剤3の永久双極子モーメントは4.2D以上である必要がある。
 以上のように、永久双極子モーメントが4.2D以上である修飾剤Aおよび修飾剤Bを用いた場合には、永久双極子モーメントが4.2D未満である修飾剤C、修飾剤Dおよび修飾剤Eを用いた場合と比較して、修飾剤3で修飾されたシリカ微粒子の添加量を増加させることができ、その結果として、閾値電圧を15V以下に、コントラスト値を1500以上にすることができる。
Figure JPOXMLDOC01-appb-T000006
 上記表2には、修飾剤A~Eを用いた場合において、各修飾剤で修飾されたシリカ微粒子の添加可能量と、各修飾剤で修飾されたシリカ微粒子を含む液晶組成物を液晶層として備えた液晶表示装置においての閾値電圧とコントラスト値が示されている。
 上記表2に示されているように、永久双極子モーメントが4.1D以下である修飾剤を使用した場合には、後述するシリカ未添加(比較例4)および未修飾シリカ添加(比較例5)時よりは、閾値電圧は少し低減したが、コントラスト値においては改善効果はほぼ得られなかった。
 また、永久双極子モーメントが4.1D以下である修飾剤を使用した場合には、液晶への添加量も少なく、このことは、分散安定性が低いことを意味している。
 そして、このような場合においては、修飾剤と液晶分子との相互作用が十分ではなく、強く捕捉された液晶分子量が十分に増えず、フリーに動き回れる液晶分子が増え、閾値電圧は増加し、コントラスト値は低下したと考えられる。
 また、上記表2には、修飾剤A~Eを用いた場合における残留溶媒の含有量についても示されている。
 永久双極子モーメントが4.1D以上である修飾剤A、修飾剤Bおよび修飾剤Cを用いた場合には、残留溶媒の含有量は0であった。
 一方、修飾剤Dおよび修飾剤Eにおいては、残留溶媒の含有量が比較的大きく、修飾剤の永久双極子モーメントが小さいほど残留溶媒の含有量は増加する傾向を見せた。
 このようになる理由は、永久双極子モーメントが4.1D以上である修飾剤を用いた場合には、溶媒分子(メタノール)よりも液晶分子のほうが、修飾されたシリカ微粒子とより強く相互作用しているため、溶媒分子のみを容易に除去することができるからである。
 溶媒の残留は、コントラスト低下等の悪影響を及ぼすので、このような観点からも、永久双極子モーメントが大きい修飾剤を用いることが好ましい。
 また、永久双極子モーメントが4.1D以上である修飾剤を用いる場合には、修飾剤で修飾されたシリカ微粒子を作製後、溶媒を完全除去し、乾燥状態で扱うことができ、液晶への不純物としての溶媒の残留を低減できる。
 以上のように、永久双極子モーメントが4.1D以上である修飾剤を用いる場合には、修飾されたシリカ微粒子を一旦乾燥状態にしても、修飾されたシリカ微粒子表面のZ電位が比較的高いため、液晶中での再分散が(大エネルギーを投入しての混合作業が不要で)比較的容易である。
 一方、修飾剤Dおよび修飾剤Eのように、永久双極子モーメントが比較的小さい場合には、修飾されたシリカ微粒子を一旦乾燥させてしまうと、修飾されたシリカ微粒子同士が強く凝集してしまい、液晶へ入れた後に、それらが再分散しにくいという欠点があった。
 したがって、このように永久双極子モーメントが比較的小さい場合には、修飾されたシリカ微粒子が乾燥しないように溶媒に混在した状態で扱う必要があった。
 しかし、修飾されたシリカ微粒子が乾燥しないように溶媒に混在した状態で液晶に添加を行うと、非常に微量ではあっても、液晶中に溶媒が残留してしまう欠点がある。
 なお、修飾剤Aで修飾された微粒子を作製後、溶媒を完全除去し、乾燥状態で液晶へ添加し、再分散させた液晶組成物について、TG-DAT分析を行ったところ、溶媒であるメタノール(沸点:64.7℃)に関するDTAピーク、重量変化が全く見られなかった。
 また、実施例1の方法で作製された液晶組成物と修飾剤Aで修飾されたシリカ微粒子を作製後、溶媒を完全除去し、乾燥状態で液晶へ添加し、再分散させた液晶組成物とを用いて、VT測定を行った結果、同様のVT曲線が得られた。
[比較例4および比較例5]
 図13は、比較例4として作製されたシリカ微粒子が添加されてない液晶組成物102を液晶層として備えた液晶表示パネル103を示す図である。
 一方、図14は、比較例5として作成された未修飾シリカ微粒子が添加された液晶組成物104を液晶層として備えた液晶表示パネル105を示す図である。
Figure JPOXMLDOC01-appb-T000007
 上記表3に示されているように、未修飾シリカを添加する場合は、その添加可能量が0.4wt%と少なく、分散安定性が低いことがわかる。
 なお、未修飾シリカを添加する場合におけるコントラスト値が、修飾剤Eで修飾されたシリカ微粒子を添加する場合(比較例3)におけるコントラスト値より大きい理由は、未修飾シリカの表面に形成されたシラノール基が液晶分子と比較的に強い相互作用をし、一部でネマチックドメインが形成されたためである。
 図15は、比較例5として作製された未修飾シリカ微粒子が添加された液晶組成物と、修飾剤Aで修飾されたシリカ微粒子が添加された液晶組成物と、を用いて、閾値電圧を測定した結果を示す図である。
 図示されているように、永久双極子モーメントが大きい修飾剤Aで修飾されたシリカ微粒子を添加することにより、閾値電圧を大きく低下させることができた。
 図16は、修飾剤Aで修飾されたシリカ微粒子が添加された液晶組成物を液晶層として備えた液晶表示パネルを用いて、応答速度測定を行った結果を示す図である。
 図示されているように、永久双極子モーメントが大きい修飾剤Aで修飾されたシリカ微粒子を添加することにより、応答速度を0.4msまで改善することができた。
(液晶表示装置)
 図17は、液晶表示パネル10にフィールドシーケンシャル(Field Sequential)方式で駆動されるバックライト11が備えられた液晶表示装置12の概略構成を示す図である。
 従来の液晶表示装置においては、カラフィルターを用いて、1画素を色の3原色である赤・緑・青(RGB)の3つに分割し、その色の合成で全ての色を表示させるが、フィールドシーケンシャル方式では、1画素を時分割して、例えば、60Hz駆動の場合1/180秒毎に、例えば、赤・緑・青(RGB)の3色の画面を切り替えることによって画像を表示させる。
 本実施の形態においては、バックライト11がフィールドシーケンシャル方式で駆動され、このタイミングに応じて、液晶表示パネル10も駆動されるので、高速応答特性を有する液晶表示パネルを用いる必要がある。
 上述したように、永久双極子モーメントが比較的に大きい修飾剤Aおよび修飾剤Bで修飾されたシリカ微粒子を添加することにより、二次の電気光学効果を利用した電子分極による高速応答特性を有する液晶表示パネルを実現できるので、上記フィールドシーケンシャル方式を好適に用いることができる。
 液晶表示装置12においては、カラフィルターが不要であるため、透過率が高く、低消費電力化を実現させることができる。
 なお、本実施の形態においては、液晶表示パネル10の1画素に対応するバックライト11の各箇所に赤・緑・青(RGB)のLEDをそれぞれ設けた。
 〔実施の形態2〕
 次に、図18および図19に基づいて、本発明の第2の実施形態について説明する。本実施の形態においては、画素基板5aおよび対向基板7aが永久双極子モーメントが比較的に大きい修飾剤Aで修飾されている点において実施の形態1とは異なっており、その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図18は、液晶表示パネル10aを示しており、画素基板5aおよび対向基板7aが、修飾剤Aで修飾された様子を示す図である。
 画素基板5aおよび対向基板7aの修飾方法は以下の通りである。
 先ず、修飾剤Aを200mlのメタノールに、1wt%の濃度で溶解させ、これらを、メタノールが還流できるセパラブルフラスコに仕込んだ。
 そして、この溶液へ、酸素プラズマ洗浄を施した画素基板5aおよび対向基板7aを浸漬し、撹拌下、約70℃で4時間還流加熱し、画素基板5aおよび対向基板7aに修飾剤Aを修飾させた。
 その後、画素基板5aおよび対向基板7aの液晶分子4と接する側の面と対向する面をメタノール、クロロホルム、アセトンにて洗浄した。
 図19は、画素基板5aおよび対向基板7aを備えた液晶表示装置12aの概略構成を示す図である。
 図示されているように、修飾剤3(修飾剤A)で修飾された画素基板5aおよび対向基板7aと修飾されたシリカ微粒子間にも、液晶分子4が新たに捕捉されるので、新たなネマチックドメインR1が形成される。
 したがって、修飾剤3(修飾剤A)で修飾された画素基板5aおよび対向基板7aを用いた場合には、閾値電圧を9Vまで低下させることができ、コントラスト値も1840まで向上させることができた。
 本実施の形態においては、画素基板5aおよび対向基板7aの両方を修飾剤3(修飾剤A)で修飾したが、これに限定されることはなく、液晶表示パネルに持たせるべき性能に応じて何れか一方の基板のみを修飾してもよい。
 なお、画素基板5aおよび対向基板7aの少なくとも一方の基板において、液晶分子4と接する側の面のみが修飾剤3(修飾剤A)で修飾されていることが好ましい。
 本発明の液晶組成物において、上記第2の官能基と上記微粒子とは、共有結合されていることが好ましい。
 上記構成によれば、比較的高温においても、上記修飾剤は上記微粒子から剥がれないため、より幅広い温度領域において、分散安定性を確保できる液晶組成物を実現できる。
 本発明の液晶組成物において、上記微粒子の粒径は、50nm以下であることが好ましい。
 上記微粒子の粒径が50nm以下であると、可視光波長より小さな粒径において生じるレイリー散乱の散乱強度がほぼ0となる。
 したがって、上記微粒子によって、生じ得る散乱を抑制できる液晶組成物を実現できる。
 本発明の液晶組成物において、上記微粒子の表面は、少なくとも酸化物層で形成されていることが好ましい。
 例えば、金属微粒子を用いた場合には、金属微粒子の表面では、表面プラズモン効果により、特定波長の光吸収が顕著に起こることによる着色が起こったり、周波数特性が発生したり、表示においては不都合となる現象がよく生じる。
 上記構成によれば、上記微粒子の表面が、少なくとも酸化物層で形成されているので、これらの現象が生じるのを防止することができる。
 また、金属微粒子を用いた場合には、上記金属微粒子の金属原子に結合できる配位結合能のある上記第2の官能基を用いる必要があり、上記第2の官能基の種類が限定されてしまうが、上記微粒子の表面が、少なくとも酸化物層で形成されている場合には、多様な第2の官能基を用いることができる。
 本発明の液晶組成物において、上記微粒子は、シリカであることが好ましい。
 上記構成によれば、上記微粒子は、シリカであり、その表面にはシラノール基が存在するため、たとえ、上記微粒子の表面の一部に上記修飾剤によって修飾されてない部分があっても、上記シラノール基と液晶分子との相互作用により、液晶分子の秩序度が高い領域が形成できる。
 本発明の液晶表示パネルは、上記第1の基板および上記第2の基板の少なくとも一方は、上記修飾剤によって、修飾されていることが好ましい。
 上記構成によれば、上記第1の基板における上記液晶組成物と接する側の面および/または上記第2の基板における上記液晶組成物と接する側の面にも液晶分子の秩序度が高い領域を形成できるので、さらに高コントラスト値を示す液晶表示パネルを実現できる。
 本発明の液晶表示装置において、上記バックライトは、時分割で異なる複数色の光を照射することが好ましい。
 上記液晶表示装置によれば、閾値電圧を低減できるとともに低消費電力化および高透過率化を実現できる。
 本発明は上記した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、液晶表示パネルおよび液晶表示装置に適用することができる。
 1      液晶組成物
 2      シリカ微粒子(微粒子)
 3      修飾剤
 3a     微粒子と結合するための官能基(第2の官能基)
 3b     液晶分子と相互作用するための官能基(第1の官能基)
 4      液晶分子
 5      画素基板(第1の基板)
 5a     修飾剤で処理された画素基板
 6a・6b・6c・6d 櫛歯状の電極(電極)
 7      対向基板(第2の基板)
 7a     修飾剤で処理された対向基板
 8      偏光板
 9      偏光板
 10・10a 液晶表示パネル
 11     時分割で異なる複数色の光を照射するバックライト
 12・12a 液晶表示装置
 R1     ネマチックドメイン

Claims (10)

  1.  液晶材料に、粒径が可視光の波長より小さい微粒子が添加された液晶組成物であって、
     上記液晶材料中の液晶分子と相互作用し得る第1の官能基と、上記微粒子と結合を形成する第2の官能基とを有し且つ永久双極子モーメントが4.2デバイ以上である修飾剤は、各々の上記微粒子の表面に配置され、
     各々の上記微粒子は、上記修飾剤に覆われた状態で上記液晶材料中に分散されていることを特徴とする液晶組成物。
  2.  上記第2の官能基と上記微粒子とは、共有結合されていることを特徴とする請求項1に記載の液晶組成物。
  3.  上記微粒子の粒径は、50nm以下であることを特徴とする請求項1または2に記載の液晶組成物。
  4.  上記微粒子の表面は、少なくとも酸化物層で形成されていることを特徴とする請求項1から3の何れか1項に記載の液晶組成物。
  5.  上記微粒子は、シリカであることを特徴とする請求項4に記載の液晶組成物。
  6.  請求項1から5の何れか1項に記載の液晶組成物と、
     互いに対向するよう配置された第1の基板と第2の基板とを備え、
     上記液晶組成物は、上記第1の基板と上記第2の基板との間に挟持されており、
     上記第1の基板および上記第2の基板中、少なくとも一方側には、電極が形成されていることを特徴とする液晶表示パネル。
  7.  上記第1の基板および上記第2の基板の少なくとも一方は、上記修飾剤によって、修飾されていることを特徴とする請求項6に記載の液晶表示パネル。
  8.  請求項6または7に記載の液晶表示パネルと、
     上記液晶表示パネルに光を照射するバックライトと、を備えていることを特徴とする液晶表示装置。
  9.  上記バックライトは、時分割で異なる複数色の光を照射することを特徴とする請求項8に記載の液晶表示装置。
  10.  液晶材料に、粒径が可視光の波長より小さい微粒子を添加する液晶組成物の製造方法であって、
     上記液晶材料中の液晶分子と相互作用し得る第1の官能基と、上記微粒子と結合を形成する第2の官能基とを有し且つ永久双極子モーメントが4.2デバイ以上である修飾剤は、各々の上記微粒子の表面に配置され、
     上記修飾剤で修飾された微粒子を、乾燥状態で上記液晶材料中に添加することを特徴とする液晶組成物の製造方法。
PCT/JP2011/079293 2010-12-23 2011-12-19 液晶組成物、液晶表示パネル、液晶表示装置および液晶組成物の製造方法 WO2012086567A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-286820 2010-12-23
JP2010286820 2010-12-23

Publications (1)

Publication Number Publication Date
WO2012086567A1 true WO2012086567A1 (ja) 2012-06-28

Family

ID=46313837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079293 WO2012086567A1 (ja) 2010-12-23 2011-12-19 液晶組成物、液晶表示パネル、液晶表示装置および液晶組成物の製造方法

Country Status (1)

Country Link
WO (1) WO2012086567A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180456A (ja) * 1992-10-14 1994-06-28 Sekisui Finechem Co Ltd 液晶表示素子用スペーサ及びそれを用いた液晶表示素子
JPH07175071A (ja) * 1993-10-25 1995-07-14 Sekisui Finechem Co Ltd 液晶表示素子用スペーサー及び液晶表示素子
JP2003215535A (ja) * 2001-03-30 2003-07-30 Matsushita Electric Ind Co Ltd 液晶表示装置
WO2004092302A1 (ja) * 2003-04-14 2004-10-28 Dai Nippon Printing Co. Ltd. 液晶相溶性粒子、その製造方法、および液晶素子
JP2007525580A (ja) * 2004-02-27 2007-09-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 液晶複合材
WO2007108154A1 (ja) * 2006-03-22 2007-09-27 Sharp Kabushiki Kaisha 微粒子および液晶組成物並びに液晶表示素子
JP2010132892A (ja) * 2008-10-28 2010-06-17 Fujifilm Corp 液晶組成物、液晶素子、反射型表示材料、及び調光材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180456A (ja) * 1992-10-14 1994-06-28 Sekisui Finechem Co Ltd 液晶表示素子用スペーサ及びそれを用いた液晶表示素子
JPH07175071A (ja) * 1993-10-25 1995-07-14 Sekisui Finechem Co Ltd 液晶表示素子用スペーサー及び液晶表示素子
JP2003215535A (ja) * 2001-03-30 2003-07-30 Matsushita Electric Ind Co Ltd 液晶表示装置
WO2004092302A1 (ja) * 2003-04-14 2004-10-28 Dai Nippon Printing Co. Ltd. 液晶相溶性粒子、その製造方法、および液晶素子
JP2007525580A (ja) * 2004-02-27 2007-09-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 液晶複合材
WO2007108154A1 (ja) * 2006-03-22 2007-09-27 Sharp Kabushiki Kaisha 微粒子および液晶組成物並びに液晶表示素子
JP2010132892A (ja) * 2008-10-28 2010-06-17 Fujifilm Corp 液晶組成物、液晶素子、反射型表示材料、及び調光材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN R. JEZOREK ET AL.: "Aspects of the synthesis, characterization and metal-lig and stoichiometry of aminopropyl, nitrobenzamide, and 8-quinolinol silica gels", ANALYTICA CHIMICA ACTA, vol. 290, no. 3, 30 May 1994 (1994-05-30), pages 303 - 315 *
VINCENT RACHET ET AL.: "Coupling of Liquid Crystals to Silica Nanoparticles", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 30, 11 July 2007 (2007-07-11), pages 9274 - 9275 *

Similar Documents

Publication Publication Date Title
TWI251110B (en) Display device
Nayek et al. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device
US8270064B2 (en) Electrophoretic particles, and processes for the production thereof
JP4246175B2 (ja) 表示素子及び表示装置
JPH07225388A (ja) アクティブマトリクス型液晶表示装置
JP2007086205A (ja) 表示パネルおよび表示装置
WO2014069675A1 (en) Electrochromic compound, electrochromic composition, and display element
US11505745B2 (en) Use of zwitterion dopant in preparation of dynamic-scattering-mode-based liquid crystal material
CN104178180A (zh) 一种具有大双折射率的向列相液晶材料及其应用
WO2013141051A1 (ja) 表示パネル及び表示装置
JP2018522260A (ja) 液晶セル
JP4147217B2 (ja) 表示素子および表示装置
JP4394317B2 (ja) 液晶混合物、液晶セル及び染料の使用方法
CN111694197B (zh) 一种彩色双稳态调光器件
US20130321754A1 (en) Fumed Metal-Oxide Gel-Dispersed Blue-Phase Liquid Crystals and Devices Thereof
JP5015274B2 (ja) 表示パネルおよび表示装置
WO2012086567A1 (ja) 液晶組成物、液晶表示パネル、液晶表示装置および液晶組成物の製造方法
TWI432561B (zh) 液晶複合材料及光電液晶顯示元件
JP4137803B2 (ja) 表示素子
JP2011145490A (ja) 非電気泳動粒子、電気泳動粒子分散液、および電気泳動表示媒体
JP5568858B2 (ja) エレクトロクロミック組成物及び表示素子
KR101957141B1 (ko) 전기영동 표시장치용 컬러 입자 및 이를 포함하는 전기영동 표시장치
CN202171711U (zh) 蓝相液晶显示装置
JP2012082082A (ja) 液晶分散シリカナノ粒子
CN109097065B (zh) 近晶相液晶组合物及其在液晶显示器件中应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP