WO2012086374A1 - Tissue paper and method for producing tissue paper - Google Patents

Tissue paper and method for producing tissue paper Download PDF

Info

Publication number
WO2012086374A1
WO2012086374A1 PCT/JP2011/077524 JP2011077524W WO2012086374A1 WO 2012086374 A1 WO2012086374 A1 WO 2012086374A1 JP 2011077524 W JP2011077524 W JP 2011077524W WO 2012086374 A1 WO2012086374 A1 WO 2012086374A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
pulp
dry
thin paper
strength
Prior art date
Application number
PCT/JP2011/077524
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 幸田
糸井 隆
舛木 哲也
和田 正
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011258846A external-priority patent/JP5833415B2/en
Priority claimed from JP2011258844A external-priority patent/JP5934497B2/en
Priority claimed from JP2011258845A external-priority patent/JP5074621B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to MYPI2013701034A priority Critical patent/MY184185A/en
Priority to RU2013133812/05A priority patent/RU2568218C2/en
Priority to CN201180060711.2A priority patent/CN103261520B/en
Publication of WO2012086374A1 publication Critical patent/WO2012086374A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/531Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad
    • A61F2013/5315Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having a homogeneous composition through the thickness of the pad with a tissue-wrapped core

Definitions

  • the present invention (first and second inventions described later) relates to a thin paper, and more particularly to a thin paper suitable as a core wrap sheet for covering an absorbent core in absorbent articles such as disposable diapers and sanitary napkins. Moreover, this invention (3rd invention mentioned later) is related with the manufacturing method of a low basic weight thin paper. Moreover, this invention (4th invention mentioned later) is related with absorbent articles, such as a disposable diaper, an absorption pad, and a sanitary napkin.
  • Thin paper is a thin paper with a relatively low basis weight, but requires paper strength (such as tensile strength) that does not tear when used.
  • a method for improving paper strength conventionally, a method of adding a paper strength enhancer has been employed.
  • Patent Document 1 includes a dry paper strength enhancer and a wet paper strength enhancer, and the tensile strength is specified. Household hygiene tissue paper in range is described.
  • the household sanitary thin paper described in Patent Document 1 is applied to uses such as roll paper, tissue paper, dust paper, etc. where sensory characteristics such as flexibility and touch feeling are important, and disclosed in Patent Document 1.
  • the main technology that is being used aims to achieve both of these sensory characteristics and paper strength.
  • Patent Document 2 mainly includes two types of fibers having different fiber roughness (bulky cellulose fibers and hydrophilic fine fibers), and the hydrophilic fine fibers are unevenly distributed on one surface side in the thickness direction.
  • Absorbent paper is described. According to the absorbent paper described in Patent Document 2, since it has a layer having excellent liquid permeability and a layer having excellent liquid diffusibility in the thickness direction, it is said that the liquid absorbability is excellent.
  • Patent Document 2 discloses an absorbent body in which an absorbent polymer is sandwiched between two sheets of absorbent paper as an example of use of the absorbent paper described in Patent Document 2.
  • low basis weight thin paper is used as a core wrap sheet covering the absorbent core.
  • the thin paper used for the core wrap sheet is required to have high permeability in order to smoothly transfer the body fluid to the absorbent core during use, and is torn during production and use of absorbent articles such as diapers. Paper strength (such as tensile strength) that does not occur is required.
  • a method of reducing the basis weight of the thin paper and reducing the density of the thin paper is effective. However, such a method can reduce the number of interfiber bonding points due to a decrease in the number of constituent fibers of the thin paper. This causes a decrease, and the paper strength decreases.
  • Patent Document 1 each disclose a technique of adding a cationic polymer wet paper strength agent or an anionic polymer dry paper strength agent to a raw pulp slurry.
  • this type of absorbent article comprises a liquid-permeable top sheet, a liquid-impermeable back sheet and a vertically long absorbent body disposed between both sheets, and the absorbent body is made of wood pulp or the like.
  • a structure including an absorbent core including a hydrophilic fiber and a water-absorbing polymer, and a core wrap sheet covering the absorbent core.
  • the core wrap sheet serves as a sheet for receiving an absorbent core-forming material such as a water-absorbing polymer at the time of manufacturing the absorbent body, and plays a role of wrapping and shaping the absorbent core after the manufacture.
  • water-permeable sheets such as thin paper and nonwoven fabric are used as the core wrap sheet.
  • a liquid permeable second sheet is provided between a surface sheet and an absorbent body as an absorbent article excellent in soft stool absorbability, and the core wrap sheet constituting the absorbent body is the second article.
  • a non-woven fabric located between the sheet and the absorbent core constituting the absorbent body and having a density in the range of 0.01 to 0.2 g / cm 3 , and a crepe paper covering the non-skin facing side of the absorbent core What is composed of is described.
  • Patent Document 5 discloses a predetermined range of pore sizes (pore diameters) and distributions of pores formed by entanglement of constituent fibers as a low-diffusibility transmission paper for absorbent articles obtained by a wet papermaking method. Are controlled.
  • the low-diffusibility transmission paper described in Patent Document 5 includes a hydrophilic fiber as a constituent fiber and is treated with a sizing agent so as to have a specific pore diameter distribution. It exhibits diffusibility and high permeability and is useful as a sub-layer sheet (second sheet) disposed between the top sheet and the absorber (core wrap sheet).
  • Patent Literature 1 includes a dry paper strength enhancer and a wet paper strength enhancer, and the tensile strength is specified. Household hygiene tissue paper in range is described.
  • the household sanitary thin paper described in Patent Document 1 is applied to uses such as roll paper, tissue paper, dust paper, etc. where sensory characteristics such as flexibility and touch feeling are important, and disclosed in Patent Document 1.
  • the main technology that is being used aims to achieve both of these sensory characteristics and sheet strength.
  • Some absorbent articles such as disposable diapers and sanitary napkins include a liquid-retaining absorbent, and the absorbent includes an absorbent core containing wood pulp, a superabsorbent resin, and the like.
  • covers the outer surface of a core is known.
  • the core wrap sheet serves as a sheet for receiving an absorber-forming material such as wood pulp or a highly water-absorbent resin during production of the absorbent body, and plays a role of wrapping and shaping the absorbent core after production.
  • water-permeable sheets such as thin paper and nonwoven fabric are used as the core wrap sheet.
  • the core wrap sheet has a sheet strength that can withstand the conveyance tension during manufacture, and high liquid permeability that allows liquid to quickly permeate during use and allows the absorbent core disposed under the core wrap sheet to absorb liquid quickly.
  • a method of reducing the basis weight of the constituent fibers of the sheet and reducing the density of the sheet is effective. However, such a method reduces the number of constituent fibers and the fibers of the constituent fibers resulting therefrom. Since the number of inter-bonding points is reduced, the sheet strength may be reduced.
  • the sheet strength and liquid permeability of the core wrap sheet are in a trade-off relationship, and it is difficult to achieve a good balance between the two.
  • the fibrillation of the raw pulp fibers of the thin paper can improve the paper strength (tensile strength, etc.), but also lowers the permeability.
  • the paper strength agent causes sticking of the raw material to the paper mesh and the dryer and contamination of the drainage in the production process, leading to a decrease in productivity. For this reason, the amount of the paper strength agent is limited, and it is difficult to sufficiently improve the paper strength (such as tensile strength) of the low basis weight thin paper.
  • Patent Document 1 does not describe anything about the order of adding the cationic polymer wet paper strength agent and the anionic polymer dry paper strength agent to the raw pulp slurry.
  • the technique described in Patent Document 3 relates to a papermaking molded body used for a heat-generating molded body, and Patent Document 3 does not describe anything about a technique relating to a method for producing a low basis weight thin paper.
  • part opposingly arranged by the skin opposing surface of an absorptive core is comprised with the nonwoven fabric which uses synthetic fiber as a constituent fiber, and constituent fibers are heat-seal
  • the absorbent core-forming material such as the water-absorbing polymer that has fallen off from the absorbent core may pass through the nonwoven fabric and leak to the outside.
  • the absorbent article described in Patent Document 1 has a multilayered absorbent body and prevents the absorbent polymer from falling off by forming a layer that does not contain the absorbent polymer in the upper layer.
  • the present inventors have found that, as a constituent fiber of paper, pulp having a relatively large fiber diameter (thick pulp) and relatively small pulp (thin pulp) As a result of further finding out that the liquid permeability can be improved while minimizing the decrease in strength, the fiber roughness as an index of the fiber diameter is in a specific range. It is effective for coexistence of strength characteristics and liquid permeability to use a kind of pulp (hydrophilic cellulose fiber) whose difference in fiber roughness between both pulps is in a specific range as a constituent fiber of paper. It was found (first finding).
  • the present invention (the first invention) is based on the first knowledge, and is a thin paper mainly composed of an aggregate of two kinds of hydrophilic cellulose fibers having different fiber roughnesses and to which a paper strength enhancer is added.
  • the two kinds of hydrophilic cellulose fibers include a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m.
  • a thin paper having a fiber roughness difference of 0.01 to 0.07 mg / m and a freeness of the aggregate of 400 to 550 ml. .
  • the present invention (second invention) was made on the basis of the second finding, mainly composed of softwood bleached kraft pulp having a freeness of 400 to 550 ml, and two or more kinds of paper strength enhancers added thereto,
  • the present invention relates to a thin paper having a basis weight of 10 to 14.5 g / m 2 , a density of 0.05 to 0.2 g / cm 3 and a crepe rate of 5 to 30%.
  • the present invention is a thin paper production method for producing a thin paper having a basis weight of 30 g / m 2 or less by papermaking and drying a raw material slurry prepared from a raw material containing softwood bleached kraft pulp, After adding the wet paper strength agent (a) made of a cationic polymer having a cationic group to the pulp slurry of the softwood bleached kraft pulp as a raw material slurry, the following low molecular dry paper strength agent (b) and polymer A thin paper using a raw material slurry prepared by adding a dry paper strength agent (c) at the same time or adding a low molecular weight dry strength agent (b) and then adding a polymer dry strength agent (c).
  • the present invention (fourth invention) comprises an absorbent core, the absorbent core comprising hydrophilic fibers and a water-absorbing polymer and having a shape that is long in one direction, and a core that covers the absorbent core
  • An absorbent article configured to include a wrap sheet, wherein the core wrap sheet includes high liquid permeability paper disposed to face a skin facing surface of the absorbent core, and the high liquid permeability
  • the paper has a basis weight of 8 to 20 g / m 2 , a density of 0.05 to 0.2 g / cm 3 , a liquid permeation time measured by the following method of 600 seconds or less, and in the transport direction during production.
  • the present invention relates to an absorbent article having a dry tensile strength of 600 cN / 25 mm or more.
  • a thin paper having good strength characteristics and excellent liquid permeability is provided.
  • a low basis weight thin paper having high permeability and having a paper strength (such as tensile strength) that does not cause tearing during the manufacture and use of absorbent articles such as diapers. Can be manufactured.
  • an absorbent article that is excellent in absorbability of high-viscosity liquids such as soft stool and in which leakage of the absorbent core-forming material is prevented.
  • FIG. 1 is an explanatory diagram of a method for measuring the liquid permeation time.
  • FIG. 2 is a schematic view showing a preferred production apparatus used for carrying out the production method of the present invention (third invention).
  • FIG. 3 is a schematic view showing another preferred production apparatus used for carrying out the production method of the present invention (third invention).
  • FIG. 4 is a schematic view showing another preferred production apparatus used for carrying out the production method of the present invention (third invention).
  • FIG. 5 is a schematic view showing another preferred production apparatus used for carrying out the production method of the present invention (third invention).
  • FIG. 6 is a view showing a disposable diaper that is an embodiment of the absorbent article of the present invention (fourth invention), and schematically illustrates a state in which the elastic member of each part is stretched and expanded in a planar shape.
  • FIG. 7 is a cross-sectional view schematically showing a cross section taken along the line II (cross section in the width direction) of FIG.
  • FIG. 8 is sectional drawing which shows typically the cross section of the width direction of the absorber in other embodiment of the absorbent article of this invention (4th invention).
  • the present invention (first and second inventions) relates to a thin paper having good strength characteristics and excellent liquid permeability.
  • the present invention (third invention) relates to a method for producing thin paper that can balance both the transparency and paper strength (tensile strength, etc.) in a trade-off relationship.
  • the present invention (fourth invention) relates to an absorbent article which is excellent in absorbability of a highly viscous liquid such as soft stool and in which leakage of the absorbent core-forming material is prevented.
  • the thin paper of the present invention contains an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness as an essential component. Fiber roughness is used as a measure of fiber thickness in fibers with uneven fiber thickness, such as wood pulp, and is measured using a commercially available fiber roughness meter as described later. Is done. That is, the thin paper of the present invention includes an aggregate of two types of hydrophilic cellulose fibers having different thicknesses, thereby achieving both strength characteristics and liquid permeability.
  • the thin paper of the present invention has a fiber roughness of 0.13 to 0.16 mg / m, preferably 0.135 to 0.155 mg / m, more preferably as the two types of hydrophilic cellulose fibers. Is 0.14 to 0.15 mg / m of the first pulp, and the fiber roughness is 0.17 to 0.20 mg / m, preferably 0.175 to 0.195 mg / m, more preferably 0.18 to 0.18 mg / m.
  • the second pulp is 0.19 mg / m, and the second pulp is thicker than the first pulp.
  • Pulp is obtained by converting plant fibers such as wood, kidneys and leaves into single fibers by a chemical or mechanical method.
  • the difference in fiber roughness between the first pulp and the second pulp contained in the thin paper is 0.01 to 0.07 mg / m, preferably 0.02 to 0.06 mg / m, and more preferably 0. 0.03 to 0.05 mg / m. If the difference in fiber roughness between the two pulps is less than 0.01 mg / m, the effect of improving the liquid permeability is poor, and if the difference in fiber roughness exceeds 0.07 mg / m, the strength of the paper may be significantly reduced. .
  • the average fiber length of each of the first pulp and the second pulp is preferably 2 to 3 mm, more preferably 2.2 to 2.8 mm.
  • the average fiber length of both pulps may be the same or different.
  • the fiber roughness and average fiber length are each measured as follows.
  • the fiber (pulp) to be measured shall be unbeaten.
  • the fiber is dried in a vacuum dryer at 100 ° C. for 1 hour to remove moisture present in the fiber. 1 g is accurately weighed from the fibers thus dried (error ⁇ 0.1 mg).
  • the weighed fibers are completely disaggregated in 150 ml of water with the mixer attached to the fiber roughness meter, and this is until the total amount reaches 5000 ml.
  • the content ratio of the first pulp to the second pulp is preferably 3/7 to 7/3, more preferably 4 from the viewpoint of the balance between strength characteristics and liquid permeability. / 6 to 6/4. If the second pulp having a relatively large fiber diameter is too small, sufficient liquid permeability may not be obtained. Conversely, if the second pulp is too large, the strength of the thin paper may be drastically reduced. .
  • the first pulp and the second pulp are fibers having a fiber roughness in the above-mentioned range and having a hydrophilic surface, and the fibers have a high degree of freedom between each other in the wet state. If it can form, it can use without a restriction
  • hydrophilic cellulose fibers examples include natural cellulose fibers such as wood pulp such as softwood bleached kraft pulp (NBKP) and hardwood bleached kraft pulp (LBKP), and non-wood pulp such as cotton pulp and straw pulp; rayon, cupra Recycled cellulose fibers such as: hydrophilic synthetic fibers such as polyvinyl alcohol fibers and polyacrylonitrile fibers; synthetic fibers such as polyethylene terephthalate (PET) fibers, polyethylene (PE) fibers, polypropylene (PP) fibers, and polyester fibers with surfactants The thing etc. which carried out the hydrophilization process are mentioned, These 1 type can be used individually or in mixture of 2 or more types.
  • NNKP softwood bleached kraft pulp
  • LKP hardwood bleached kraft pulp
  • non-wood pulp such as cotton pulp and straw pulp
  • rayon, cupra Recycled cellulose fibers such as: hydrophilic synthetic fibers such as polyvinyl alcohol fibers and polyacrylonitrile fibers; synthetic fibers
  • NBKP is particularly preferable, and the first pulp and the second pulp are each preferably NBKP.
  • NBKP used in the present invention (first invention)
  • NBKP that is usually used in this type of paper can be used without any particular limitation.
  • ECF elementary chlorin-free
  • TCF total chlorin-free
  • the thin paper of the present invention mainly comprises an aggregate of two types of hydrophilic cellulose fibers (first pulp and second pulp) having different fiber roughness.
  • first pulp and second pulp hydrophilic cellulose fibers
  • “mainly” means that the contents of the first pulp and the second pulp are 50% by mass or more.
  • the content is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of achieving both strength characteristics and liquid permeability.
  • the freeness of the aggregate of the two types of hydrophilic cellulose fibers is set to 400 to 550 ml. That is, the freeness of each of the first pulp and the second pulp is in the range of 400 to 550 ml.
  • Freeness is a value indicated by Canadian Standard Freeness (CSF) specified in JIS P8121, and is a value of pulp beating (a process of mechanically tapping and grinding pulp in the presence of water). It is a value indicating the degree. Usually, the smaller the freeness value, the stronger the degree of beating, the greater the damage of the fibers due to beating, and the more fibrillation proceeds.
  • Fibers having a freeness in the above range are easily entangled with each other because fibrillation has progressed. For this reason, for example, from the viewpoint of improving liquid permeability, the fibers are made by reducing the basis weight (reducing density) of the thin paper. Even if the number of interfiber bonding points is reduced, the strength of each interfiber bond is higher than that of fibers in which the freeness exceeds 550 ml and the fibrillation has not progressed relatively. Accordingly, a thin paper mainly composed of an aggregate of fibers having a freeness of 400 to 550 ml can have good strength characteristics.
  • the freeness of the aggregate of the two types of hydrophilic cellulose fibers used in the present invention is preferably 450 to 525 ml, more preferably 475 to 510 ml.
  • the beating of the fiber aggregate is a known method such as a beader or a disc refiner for a stock (slurry) in which each hydrophilic cellulose fiber (first pulp and second pulp) constituting the fiber aggregate is mixed and dispersed. This can be carried out according to a conventional method using a beating machine.
  • the thin paper of the present invention may contain fibers other than the first pulp and the second pulp, and the other fibers may not be hydrophilic cellulose fibers such as both pulps.
  • Other fibers include, for example, hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP) and other wood pulp; Non-wood pulp such as kenaf and hemp; synthetic fibers such as polyester fiber, rayon fiber, acrylic fiber, and the like.
  • the content of these other fibers is preferably 20% by mass or less.
  • the paper strength enhancer is added to the thin paper of the present invention (first invention) from the viewpoint of obtaining good strength properties (tensile strength).
  • the paper strength enhancer includes a dry paper strength enhancer that improves the dry paper strength and a wet paper strength enhancer that improves the wet paper strength, either of which may be used.
  • carboxymethyl cellulose (CMC) which is a kind of dry paper strength enhancer, and a salt thereof are preferably used in the present invention (first invention) because they have high versatility and a low aggregation effect between fibers. That is, in the present invention (first invention), it is preferable that at least CMC or a salt thereof is added as a paper strength enhancer.
  • dry paper strength enhancer conventionally known dry paper strength enhancers can be used, and examples thereof include CMC and salts thereof, polyacrylamide resins and salts thereof, cationized starch, polyvinyl alcohol (PVA) and the like. These 1 type can be used individually or in combination of 2 or more types.
  • salt of CMC or polyacrylamide resin sodium salt is mainly used.
  • polyacrylamide resin include cationic or anionic polyacrylamide (PAM).
  • PAM anionic polyacrylamide
  • wet paper strength enhancer a conventionally known wet paper strength enhancer can be used.
  • epoxidized polyamide polyamine resin PAE
  • urea-formalin resin urea-formalin resin
  • melamine-formalin resin dialdehyde starch
  • polyethyleneamine examples include methylolated polyamide, and one of these can be used alone or two or more of them can be used in combination.
  • PAE is particularly preferable.
  • a preferable combination thereof includes two dry paper strength enhancers and one wet paper strength enhancer.
  • CMC salts and anionic PAM salts are preferred as the two dry paper strength enhancers
  • PAE is preferred as the one wet strength agent.
  • the weight of the anionic PAM salt is as follows.
  • the average molecular weight is preferably 8 million or more, particularly 10 million or more, particularly preferably 15 million or more, and the upper limit of the weight average molecular weight of the anionic PAM salt is preferably 25 million.
  • the weight average molecular weight of the salt of anionic PAM which is one of them is in the above range (8 million to 25 million)
  • an anion In addition to the effect of improving the strength of the thin paper by developing the adhesiveness of the salt of the PAM, the strength improvement effect of the thin paper can be obtained by improving the yield of the salt of the CMC. Is obtained.
  • the weight average molecular weight of the anionic PAM salt is 25 million or less, the dispersibility and viscosity of the anionic PAM salt in water can be kept relatively low during the manufacture of the thin paper. Good results can be obtained in terms of prevention of dirt.
  • the addition amount of the paper strength enhancer in the thin paper of the present invention is preferably 0.01 to 1.5% by weight, more preferably 0.03 to 0.5% by weight based on the dry weight of all the constituent fibers of the thin paper. 1.2% by mass. If the added amount of the paper strength enhancer is too small, sufficient strength properties such as tensile strength cannot be obtained. If the added amount of the paper strength enhancer is excessive, the thin paper is hardened (decrease in texture) and the thin paper There is a possibility that the formation of the thin paper may be deteriorated due to the sticking of the paper to the Yankee dryer or the attachment of the paper strength enhancer to the mesh drum at the time of manufacture.
  • the total added mass of the dry paper strength enhancer and the wet paper strength enhancer is preferably 0.01 to 0.5, more preferably 0.03 to 0.35.
  • each paper strength enhancer added is preferably 0.05 to 0.5% by mass of CMC salt, more preferably 0.1 to 0.3% by mass, and preferably 0 to 0.3% of anionic PAM salt. 0.001 to 0.1% by mass, more preferably 0.02 to 0.05% by mass, and PAE is preferably 0.5 to 1.5% by mass, more preferably 0.6 to 1.2% by mass. It is.
  • the thin paper of the present invention may contain other components other than the fibers such as the first pulp and the second pulp (hydrophilic cellulose fiber) and the paper strength enhancer described above.
  • other components for example, fillers such as talc, dyes, color pigments, antibacterial agents, pH adjusters, yield improvers, water resistance agents, antifoaming agents and the like are generally used as raw materials for papermaking and additives. These can be used, and one of these can be used alone or in combination of two or more.
  • the thin paper of the present invention can be produced by a known wet papermaking method.
  • the wet papermaking method includes a stock preparation step for preparing a stock (slurry) made of an aqueous dispersion of fibers such as NBKP, and a paper making step for drying while transporting a fiber made from the stock into a fiber web. It is what has.
  • the paper making process is usually divided into a wire part, a press part, a dryer part, a size press, a calendar part, etc., and is carried out sequentially.
  • the above-mentioned dry paper strength enhancer and wet paper strength enhancer are usually added to the stock in the stock preparation step.
  • the wet paper strength enhancer and the dry paper strength enhancer are added in the order of the paper strength enhancer.
  • the order of addition of the paper strength enhancer in the present invention is not limited to this, and the order of addition is as follows. May be reversed, or both may be added simultaneously.
  • the wet papermaking method can be carried out according to a conventional method using a paper machine such as a long paper machine, a twin wire paper machine, an on-top paper machine, a hybrid paper machine, or a round paper machine.
  • the basis weight of the thin paper of the present invention is preferably set to be relatively low from the viewpoint of improving liquid permeability, specifically 10 to 20 g / m 2 , particularly 11 to 16 g / m 2 . m 2 , especially 12 to 14 g / m 2 is preferred. If the basis weight is low, there is a concern about a decrease in paper strength. However, in the present invention (first invention), as described above, as a part of the constituent fibers, the fiber roughness is relatively small (the fiber diameter is thin). By using 1 pulp and setting the freeness of the aggregate of two types of fibers (first pulp and second pulp) within a specific range, and further using a paper strength enhancer, such concerns are eliminated. .
  • the basis weight of the thin paper is less than 10 g / m 2 , the paper strength may be remarkably reduced, and if the basis weight of the thin paper exceeds 20 g / m 2 , the effect of improving the liquid permeability may be poor.
  • the density of the thin paper of the present invention is preferably 0.05 to 0.2 g / cm 3 , more preferably 0.1 to 0.2 g / cm 3 .
  • the basis weight of the thin paper is measured as follows. After conditioning the sample (thin paper) under the conditions of JIS P8111, a 10 cm square (area 100 cm 2 ) measurement piece was cut out from the sample, and the weight of the measurement piece was measured with a two-digit balance below the decimal point. The basis weight of the measurement piece is calculated by dividing the measured value by the area. About 10 measurement pieces cut out from the sample, the basis weight is calculated according to the above procedure, and the average value thereof is taken as the basis weight of the sample.
  • the density of thin paper is measured as follows. 10 sheets of 20 cm square samples (thin paper) are stacked to form a laminated body, and after cooling and solidifying the laminated body with liquid nitrogen, the vicinity of the center of the laminated body is cut with a cutter. Then, of the 10 samples, one having no shear applied to the cross section generated by cutting with the cutter is selected, and the thickness of the selected sample is measured with an optical microscope. In addition, the thickness of the sample is not the length (apparent thickness) from the bottom to the top of the concavo-convex part when the sample has concavo-convex parts such as crepes described later, but the part where the constituent fibers are deposited Length (substantial thickness).
  • the weight W of the 20 cm square sample whose thickness has been measured in this way is measured using a balance with two decimal places.
  • the target density is calculated by dividing the weight W of the sample by the volume V of the sample calculated by the following equation (that is, by W / V).
  • T is the thickness (cm) of the sample
  • A is the crepe rate (%) of the sample
  • B is the length of one side (20 cm) of the sample.
  • the crepe rate is measured by a measurement method described later.
  • A 0 in the following equation.
  • V ⁇ T ⁇ B ⁇ B ⁇ (100 + A) / 100 ⁇
  • the thin paper of the present invention may have crepes (crepe-like wrinkles).
  • crepes crepe-like wrinkles
  • the crepe is produced when the dried fiber web (thin paper) is peeled off from the Yankee dryer or the like in the dryer part with a doctor knife or the like. It is preferable that The crepe rate is measured as follows.
  • ⁇ Measurement method of crepe rate> A rectangular shape of 200 mm in the length direction (conveying direction when manufacturing the thin paper, MD) and 100 mm in the width direction (direction orthogonal to the MD, CD) is cut out from the thin paper to be measured.
  • Crepe rate of the thin paper calculated by the above formula is 10%.
  • the crepe rate of the thin paper is 5 to 30%, particularly 5 to 20%, especially 7 to 15 from the viewpoint of the balance between liquid permeability and strength characteristics. % Is preferable.
  • the dry tensile strength in the conveying direction (Machine Direction, MD for short) of the thin paper of the present invention (first invention) having the above-described configuration is 600 cN / 25 mm or more, preferably 600 to 1500 cN / 25 mm, more preferably 700 to 1200 cN / 25 mm, even more preferably 800 to 1200 cN / 25 mm, and still more preferably 900 to 1200 cN / 25 mm.
  • the dry tensile strength in the direction perpendicular to MD (Cross machine Direction, CD for short) is 150 cN / 25 mm or more, preferably 150 to 350 cN / 25 mm, and more preferably 180 to 300 cN / 25 mm.
  • a thin paper having a dry tensile strength of each of MD and CD in the above range has a practically sufficient strength.
  • the thin paper is used as a core wrap sheet for covering an absorbent core in an absorbent article such as a disposable diaper. When applied, it is difficult to cause inconveniences such as tearing of the core wrap sheet (thin paper) during manufacture of the absorbent article.
  • the dry tensile strength is measured as follows.
  • ⁇ Measurement method of dry tensile strength The sheet to be measured (thin paper) is allowed to stand for 12 hours in an environment of a room temperature of 23 ° C. ⁇ 2 ° C. and a relative humidity of 50% RH ⁇ 2%, and is conditioned to a constant state. A rectangular shape with dimensions of 150 mm for MD and 25 mm for CD is cut out from the humidity-adjusted sheet, and the cut out rectangular shape is used as a sample. This sample is attached to a chuck of a tensile tester (manufactured by Shimadzu Autograph AG-1kN) without tension so that its MD is in the tensile direction. The distance between chucks is 100 mm.
  • the sample is pulled at a pulling speed of 300 mm / min, and the maximum strength until the sample breaks is measured. The measurement is performed 5 times, and the average of these values is taken as the MD dry tensile strength. Further, the dry tensile strength of CD is obtained by cutting a rectangular shape having dimensions of 150 mm for CD and 25 mm for MD from the humidity-controlled sheet, and using this as a sample, and pulling this sample so that the CD is in the tensile direction. Attached to the chuck of the testing machine without tension, the dry tensile strength of the CD is determined by the same procedure as described above.
  • the liquid permeation time of the thin paper of the present invention (first invention) measured by the following method is 0.2 to 3 seconds, preferably 0.3 to 2.5 seconds, more preferably 0.5 to 2 seconds. It is. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation.
  • the thin paper whose liquid permeation time is in the above range is excellent in liquid permeability. For example, when the thin paper is applied to a core wrap sheet covering an absorbent core in an absorbent article such as a disposable diaper, urine or the like It is possible to quickly permeate the excreted liquid and allow the absorbent core to quickly absorb the excreted fluid, and to improve the leak-proof property of the absorbent article.
  • Reference numeral 94 denotes a rubber packing having a through hole having the same diameter and the same shape as the inner diameters of the cylinders 91 and 92.
  • the thin paper of the present invention (first invention) is also excellent in air permeability.
  • the reason is mainly because it mainly comprises an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness.
  • the present inventors prepared two types of thin paper (samples A and B) having different pulp compositions. The air permeability was measured.
  • Sample A includes the first pulp and the second pulp, and is Example 1 to be described later.
  • Sample B is the second pulp (NBKP having a fiber roughness of 0.18 mg / m) in Example 1 to be described later.
  • the air permeability is measured as follows.
  • the air permeability is measured according to JIS P8117. After preparing 32 sheets of 15 cm square measurement object sheets (thin paper) and drying them with hot air dryer for 30 minutes with hot air at 105 ° C., all 32 sheets are stacked to form one laminate, and the laminate is B Set on the air permeability meter. Then, in the B-type air permeability meter, the time required to reach 300 cc is measured with 0 cc of the marked line as a start. The above operation is performed 5 times, and the average value of the obtained five measurement times is defined as the air permeability of the measurement target sheet (thin paper).
  • the unit of air permeability is “s / 32P ⁇ 300 cc” and represents the time (seconds) required for 300 cc of air to escape through 32 sheets. It can be evaluated that the smaller the value of the air permeability, the easier the air can escape and the better the air permeability.
  • Sample B using only the first pulp as the fiber material had an air permeability in the range of 2.1 to 2.7 s / 32 P ⁇ 300 cc, whereas the fiber material had two kinds of fiber roughness different from each other.
  • Sample A using pulp has an air permeability in the range of 1.6 to 2.2 s / 32 P ⁇ 300 cc.
  • Sample A has a higher air permeability than sample B.
  • the thin paper of the present invention has good strength characteristics (tensile strength) and excellent liquid permeability and air permeability, and is suitable for various applications in which such features are utilized.
  • the thin paper of the present invention is suitable as a core wrap sheet for covering a liquid-retaining absorbent core in absorbent articles such as disposable diapers and sanitary napkins, and excretory liquid is urine or the like. Even in the case of relatively low viscosity, such as loose stool, even if it is relatively high viscosity, the excretory fluid can be quickly permeated and absorbed into the absorbent core, and the leak-proof property of the absorbent article Can contribute to improvement.
  • the absorbent article of the present invention using the thin paper of the present invention (first invention), an absorbent article comprising an absorbent core and a core wrap sheet covering the absorbent core, the core wrap sheet
  • the absorbent article of the present invention includes a liquid-permeable surface sheet that forms a skin-facing surface, a liquid-impermeable or water-repellent back sheet that forms a non-skin-facing surface, and a space between these two sheets.
  • the liquid-retaining absorbent is disposed on the surface, and the absorbent is configured to include the absorbent core and the core wrap sheet (thin paper of the first invention).
  • the core wrap sheet (thin paper of the first invention) preferably covers at least the skin facing surface and the non-skin facing surface of the absorbent core.
  • the skin facing surface is a surface of the absorbent article or a component thereof (for example, an absorbent core) that is directed to the skin side of the wearer when the absorbent article is worn
  • the non-skin facing surface is the absorbent article or It is the surface of the component that is directed to the side opposite to the skin side (clothing side) when the absorbent article is worn.
  • the top sheet, the back sheet and the absorbent core those usually used in this type of absorbent article can be used without any particular limitation.
  • the absorbent article of the present invention can be applied to unfolded or pants-type disposable diapers, sanitary napkins, incontinence pads, and the like.
  • the thin paper of the present invention contains softwood bleached kraft pulp (NBKP) having a freeness of 400 to 550 ml as an essential component.
  • Freeness is a value indicated by Canadian Standard Freeness (CSF) specified in JIS P8121, and is a value of pulp beating (a process of mechanically tapping and grinding pulp in the presence of water). It is a value indicating the degree.
  • CSF Canadian Standard Freeness
  • NBKP softwood bleached kraft pulp
  • the basis weight of the thin paper is reduced (reducing density). Even if the number of interfiber bonding points decreases, the strength of each interfiber bond is higher than that of NBKP in which the freeness exceeds 550 ml and the fibrillation has not progressed relatively. Therefore, a thin paper mainly composed of NBKP having a freeness of 400 to 550 ml can have good strength characteristics.
  • the freeness of NBKP used in the present invention (second invention) is preferably 475 to 525 ml, more preferably 490 to 510 ml. When the freeness is less than 400 ml, the strength improvement effect due to the entanglement of the fibers is saturated, and the fiber cutting is promoted, and the permeation time may be delayed.
  • NBKP beating can be carried out according to a conventional method using a known beating machine such as a beader or a disc refiner with respect to a stock (slurry) in which NBKP is dispersed. Further, as NBKP used in the present invention (second invention), NBKP that is usually used in this type of paper can be used without any particular limitation. As NBKP, ECF (elementary chlorin-free) bleached pulp or TCF (total chlorin-free) bleached pulp that does not use a chlorine compound for pulp bleaching may be used.
  • the thin paper of the present invention is mainly NBKP having a freeness of 400 to 550 ml.
  • “mainly” means that the content of NBKP having a freeness in such a range is 50% by mass or more.
  • the content is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of obtaining good strength characteristics.
  • the fiber roughness of NBKP used in the present invention is preferably 0.1 to 0.2 mg / m, more preferably 0.12 to 0.18 mg / m.
  • the fiber roughness is used as a scale representing the fiber thickness in a fiber having a nonuniform fiber thickness, such as wood pulp.
  • the average fiber length of NBKP used in the present invention is preferably 1 to 4 mm, and more preferably 2 to 3 mm. The fiber roughness and average fiber length are each measured by the above method.
  • the thin paper of the present invention may contain fibers other than NBKP, and the other fibers may not be hydrophilic cellulose fibers such as NBKP.
  • Other fibers include, for example, hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP) and other wood pulp; Non-wood pulp such as kenaf and hemp; synthetic fibers such as polyester fiber, rayon fiber, acrylic fiber, and the like.
  • the content of these other fibers is preferably 50% by mass or less.
  • two or more paper strength enhancers are added from the viewpoint of obtaining good strength characteristics (tensile strength).
  • Paper strength enhancers include dry paper strength enhancers that improve dry paper strength and wet paper strength enhancers that improve wet paper strength.
  • Two or more types of paper strength enhancers include dry paper strength enhancers. It is possible to select two or more types from either one of the agent and the wet paper strength enhancer, but from the viewpoint of obtaining particularly excellent strength characteristics, one or more of the dry paper strength enhancer and the wet paper strength enhancer It is preferable to use a combination with one or more.
  • dry paper strength enhancer conventionally known dry paper strength enhancers can be used.
  • CMC carboxymethyl cellulose
  • PVA polyvinyl alcohol
  • PAM polyvinyl alcohol
  • the salt of CMC or polyacrylamide resin sodium salt is mainly used.
  • the polyacrylamide resin include cationic or anionic polyacrylamide (PAM).
  • PAM anionic polyacrylamide
  • wet paper strength enhancer a conventionally known wet paper strength enhancer can be used.
  • epoxidized polyamide polyamine resin PAE
  • urea-formalin resin urea-formalin resin
  • melamine-formalin resin dialdehyde starch
  • polyethyleneamine examples include methylolated polyamide, and one of these can be used alone or two or more of them can be used in combination.
  • PAE is particularly preferable.
  • a particularly preferred combination of paper strength enhancers is two dry paper strength enhancers and one wet paper strength enhancer.
  • CMC salts and anionic PAM salts are preferred as the two dry paper strength enhancers
  • PAE is preferred as the one wet strength agent.
  • the weight average of the anionic PAM salt is used.
  • the molecular weight is preferably 8 million or more, particularly 10 million or more, especially 15 million or more, and the upper limit of the weight average molecular weight of the anionic PAM salt is preferably 25 million.
  • the weight average molecular weight of the salt of anionic PAM which is one of them is in the above range (8 million to 25 million)
  • an anion In addition to the effect of improving the strength of the thin paper by developing the adhesiveness of the salt of the PAM, the strength improvement effect of the thin paper can be obtained by improving the yield of the salt of the CMC. Is obtained.
  • the weight average molecular weight of the anionic PAM salt is 25 million or less, the dispersibility and viscosity of the anionic PAM salt in water can be kept relatively low during the manufacture of the thin paper. Good results can be obtained in terms of prevention of dirt.
  • the total amount of the two or more kinds of paper strength enhancing agents added to the thin paper of the present invention is preferably 0.01 to 1.5% by weight, more preferably based on the dry weight of all the constituent fibers of the thin paper. Is 0.03 to 1.2% by mass. If the total amount of the paper strength enhancer is too small, sufficient strength properties such as tensile strength cannot be obtained. If the total amount of the paper strength enhancer is too large, in addition to curing the thin paper (decrease in texture), There is a possibility that the formation of the thin paper may be deteriorated due to the sticking of the paper to the Yankee dryer or the adhesion of the paper strength enhancer to the mesh drum during the production of the thin paper.
  • the total added mass of the dry paper strength enhancer and the wet paper is preferably 0.01 to 0.5, more preferably 0.03 to 0.35.
  • each paper strength enhancer added is preferably 0.05 to 0.5% by mass of CMC salt, more preferably 0.1 to 0.3% by mass, and preferably 0 to 0.3% of anionic PAM salt. 0.001 to 0.1% by mass, more preferably 0.02 to 0.05% by mass, and PAE is preferably 0.5 to 1.5% by mass, more preferably 0.6 to 1.2% by mass. It is.
  • the thin paper of the present invention may contain components other than the above-described fibers such as NBKP and a paper strength enhancer.
  • NBKP a paper strength enhancer
  • fillers such as talc, dyes, color pigments, antibacterial agents, pH adjusters, yield improvers, water resistance agents, antifoaming agents and the like are generally used as raw materials for papermaking and additives. These can be used, and one of these can be used alone or in combination of two or more.
  • the thin paper of the present invention (second invention) can be produced by a known wet papermaking method.
  • the wet papermaking method includes a stock preparation step for preparing a stock (slurry) made of an aqueous dispersion of fibers such as NBKP, and a paper making step for drying while transporting a fiber made from the stock into a fiber web. It is what has.
  • the paper making process is usually divided into a wire part, a press part, a dryer part, a size press, a calendar part, etc., and is carried out sequentially.
  • the above-mentioned dry paper strength enhancer and wet paper strength enhancer are usually added to the stock in the stock preparation step.
  • the wet paper strength enhancer and the dry paper strength enhancer are added in the order of the paper strength enhancer.
  • the order of addition of the paper strength enhancer in the present invention is not limited to this, and the order of addition is as follows. May be reversed, or both may be added simultaneously.
  • the wet papermaking method can be carried out according to a conventional method using a paper machine such as a long paper machine, a twin wire paper machine, an on-top paper machine, a hybrid paper machine, or a round paper machine.
  • the thin paper of the present invention has a basis weight and density set relatively low from the viewpoint of improving liquid permeability.
  • the basis weight is 10 to 14.5 g / m 2
  • the density is preferably 11 to 14 g / m 2 and the density is 0.05 to 0.2 g / cm 3 , preferably 0.1 to 0.2 g / cm 3 .
  • NBKP having a freeness in a specific range is used and two or more paper strengths are used. By using the enhancer in combination, such concerns are eliminated.
  • the basis weight of the thin paper is less than 10 g / m 2 or the density is less than 0.05 g / cm 3 , the paper strength may be remarkably reduced, and the basis weight of the thin paper is more than 14.5 g / m 2 or the density is 0. If it exceeds 2 g / cm 3 , the effect of improving the liquid permeability may be poor.
  • the basis weight and density of the thin paper are each measured by the above method.
  • the thin paper of the present invention has a crepe (crepe-like wrinkles), and the crepe rate is set to 5 to 30%.
  • the crepe in the thin paper of the present invention (second invention) is preferably a dry crepe which is produced when a dry fiber web (thin paper) is peeled off from a Yankee dryer or the like in the dryer part with a doctor knife or the like. The crepe rate is measured by the above method.
  • the crepe rate of the thin paper is 5 to 30%, preferably 5 to 20%, more preferably 7 from the viewpoint of the balance between liquid permeability and strength characteristics. ⁇ 15%.
  • the dry tensile strength in the transport direction (Machine Direction, abbreviated MD) during the production of the thin paper of the present invention (second invention) having the above-described configuration is 600 cN / 25 mm or more, preferably 600 to 1500 cN / 25 mm, more preferably 700 to 1200 cN / 25 mm, even more preferably 800 to 1200 cN / 25 mm, and still more preferably 900 to 1200 cN / 25 mm.
  • the dry tensile strength in the direction perpendicular to MD is 150 cN / 25 mm or more, preferably 150 to 350 cN / 25 mm, and more preferably 180 to 300 cN / 25 mm.
  • a thin paper having a dry tensile strength of each of MD and CD in the above range has a practically sufficient strength.
  • the thin paper is used as a core wrap sheet for covering an absorbent core in an absorbent article such as a disposable diaper. When applied, it is difficult to cause inconveniences such as tearing of the core wrap sheet (thin paper) during manufacture of the absorbent article.
  • the dry tensile strength is measured by the above method.
  • the liquid permeation time of the thin paper of the present invention (second invention) measured by the above method is 0.2 to 3 seconds, preferably 0.3 to 2.5 seconds, more preferably 0.5 to 2 seconds. It is. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation.
  • the thin paper whose liquid permeation time is in the above range is excellent in liquid permeability. For example, when the thin paper is applied to a core wrap sheet covering an absorbent core in an absorbent article such as a disposable diaper, urine or the like It is possible to quickly permeate the excreted liquid and allow the absorbent core to quickly absorb the excreted fluid, and to improve the leak-proof property of the absorbent article.
  • the thin paper of the present invention has good strength characteristics (tensile strength) and excellent liquid permeability, and is suitable for various applications in which such features are utilized.
  • the thin paper of the present invention is suitable as a core wrap sheet for covering a liquid-retaining absorbent core in absorbent articles such as disposable diapers and sanitary napkins, and excretory fluid is urine or the like. Even in the case of relatively low viscosity, such as loose stool, even if it is relatively high viscosity, the excretory fluid can be quickly permeated and absorbed into the absorbent core, and the leak-proof property of the absorbent article Can contribute to improvement.
  • the absorbent article of the present invention using the thin paper of the present invention (second invention), an absorbent article comprising an absorbent core and a core wrap sheet covering the absorbent core, the core wrap sheet
  • the absorbent article of the present invention includes a liquid-permeable surface sheet that forms a skin-facing surface, a liquid-impermeable or water-repellent back sheet that forms a non-skin-facing surface, and a space between these two sheets.
  • the liquid-retaining absorbent is disposed on the surface, and the absorbent is configured to include the absorbent core and the core wrap sheet (thin paper of the second invention).
  • the core wrap sheet (thin paper of the second invention) preferably covers at least the skin facing surface and the non-skin facing surface of the absorbent core.
  • the skin facing surface is a surface of the absorbent article or a component thereof (for example, an absorbent core) that is directed to the skin side of the wearer when the absorbent article is worn
  • the non-skin facing surface is the absorbent article or It is the surface of the component that is directed to the side opposite to the skin side (clothing side) when the absorbent article is worn.
  • the top sheet, the back sheet and the absorbent core those usually used in this type of absorbent article can be used without any particular limitation.
  • the absorbent article of the present invention can be applied to unfolded or pants-type disposable diapers, sanitary napkins, incontinence pads, and the like.
  • the second invention may be an embodiment of the first invention. That is, the second invention is “a softwood bleached kraft pulp having a freeness of 400 to 550 ml, mainly containing two or more kinds of paper strength enhancers, a basis weight of 10 to 14.5 g / m 2 , a density May be 0.05 to 0.2 g / cm 3 and a crepe rate of 5 to 30% ”or“ an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness ”.
  • a thin paper to which a paper strength enhancer is added wherein the two kinds of hydrophilic cellulose fibers include a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a fiber roughness of 0.17. -0.20 mg / m of the second pulp, and the fiber roughness difference between the contained first pulp and the second pulp is 0.01-0.07 mg / m, Body freeness is 400-550ml Configuration requirements), and freeness is mainly composed of softwood bleached kraft pulp is 400 ⁇ 550 ml, are added two or more paper strength agent, basis weight of 10 ⁇ 14.5 g / m 2, density 0 0.05 to 0.2 g / cm 3 and a crepe rate of 5 to 30% (the above is a constituent requirement of the second invention).
  • first pulp and second pulp in the constituent elements of the first invention are respectively softwood bleached kraft pulp (NBKP). ).
  • FIG. 2 schematically shows an embodiment of a manufacturing apparatus (hereinafter also simply referred to as manufacturing apparatus 1A) used in the thin paper manufacturing method of the present invention (third invention).
  • the manufacturing apparatus 1A shown in FIG. 2 is roughly divided into a raw material slurry adjusting unit 2 and a paper making unit 7.
  • the raw material slurry adjusting unit 2 adjusts the raw material slurry obtained by adding the wet paper strength agent (a), the low molecular weight dry paper strength agent (b), and the polymer dry strength force agent (c) to the softwood bleached kraft pulp. It is used.
  • the papermaking unit 7 is used for papermaking and drying the raw slurry adjusted by the raw slurry adjusting unit 2 to obtain a desired thin paper.
  • the Y direction in FIGS. 2 to 5 is the conveyance direction (Machine Direction: MD for short) at the time of manufacturing the thin paper.
  • the raw material slurry adjusting unit 2 of the manufacturing apparatus 1 ⁇ / b> A includes a pulper 21 that sufficiently disaggregates the softwood bleached kraft pulp raw material from the upstream side toward the downstream side to form a water suspension, and a pipe line And a refiner 23 for beating the softwood bleached kraft pulp raw material in the water suspension. Further, a liquid feed pump 24 for sending the water suspension from the pulper 21 to the refiner 23 is attached to the pipe line 22.
  • the raw material slurry adjusting unit 2 of the manufacturing apparatus 1A has a wet paper strength agent (a) made of a cationic polymer having a cationic group on the downstream side of the refiner 23 via a conduit 31.
  • the first slurry storage tank 32 for storing the suspension added with the is added.
  • a wet paper strength agent adding portion 33 for adding the wet strength paper agent (a) is attached to the pipe line 31.
  • the suspension obtained by adding the wet paper strength agent (a) to the NBKP suspension is sufficiently stirred and mixed.
  • the raw material slurry adjusting unit 2 of the manufacturing apparatus 1 ⁇ / b> A has a wet paper strength made of a cationic polymer having a cationic group via a pipe line 41 on the downstream side of the first slurry storage tank 32.
  • the low molecular dry paper strength agent (b) comprising a low molecular anionic polymer having an anionic group having a weight average molecular weight (Mw) of 0.2 to 500,000 was further added to the suspension to which the agent (a) was added.
  • a second slurry storage tank 42 for storing the suspension is provided.
  • a low molecular dry paper strength agent adding section 43 for adding the low molecular weight dry paper strength agent (b) is attached to the pipe line 41, and the suspension is stored in the second slurry from the first slurry storage tank 32.
  • a liquid feed pump 44 for feeding to the tank 42 is attached.
  • the suspension to which the wet paper strength agent (a) and the low molecular weight dry strength agent (b) are added is sufficiently stirred and mixed.
  • the raw material slurry adjusting unit 2 of the manufacturing apparatus 1A changes the flow rate by changing the size of the discharge port on the downstream side of the second slurry storage tank 42 via the conduit 51.
  • a seed box 52 is provided. By changing the size of the discharge port of the seed box 52 and changing the flow rate, the basis weight of the thin paper finally produced can be changed. For example, by reducing the size of the discharge port of the seed box 52 and reducing the flow rate, the basis weight of the thin paper can be lowered.
  • a liquid feed pump 53 for sending the suspension from the second slurry storage tank 42 to the seed box 52 is attached to the pipe line 51.
  • the raw material slurry adjusting unit 2 of the manufacturing apparatus 1 ⁇ / b> A filters the fiber lump (floc) and the like from the raw material slurry uniformly through the pipe 61 on the downstream side of the seed box 52.
  • a filtration screen 62 is provided.
  • the pipe 61 is supplied with dilution water from the upstream side toward the downstream side, and a dilution water supply unit 63 for dilution, and causes turbulence when the liquid is fed through the pipe 61 to produce fibers from the raw slurry.
  • Polymer dry paper strength agent (c) comprising a fan pump 64 for crushing and uniforming a lump of floc and the like, and a polymer anionic polymer having an anionic group having a weight average molecular weight (Mw) of 500 to 30 million ) Is attached.
  • Mw weight average molecular weight
  • the manufacturing apparatus 1 ⁇ / b> A on the downstream side of the filter screen 62, papermaking and drying the raw material slurry adjusted by the raw material slurry adjusting unit 2 through a conduit 66 to obtain thin paper.
  • the paper making unit 7 can use a known paper making apparatus, and is usually configured to include a former, a wire part, a press part, a dry part, and a winder part.
  • the former adjusts the raw material slurry adjusted by the raw material slurry adjusting unit 2 to a predetermined concentration and supplies it to the wire part.
  • a wire part forms the raw material slurry supplied from the former as a paper layer on a papermaking net.
  • the press part squeezes and dehydrates the paper layer in a state where the paper layer formed in the wire part is sandwiched between felts of a press roll to form a wet paper.
  • the wet paper formed in the press part is dried by one or a plurality of dryers. In this case, what combines drying and dehydration is also included.
  • the winder part winds up the paper dried in the dry part as thin paper.
  • the method for producing a thin paper of the present invention is a method for producing a thin paper having a basis weight of 30 g / m 2 or less by making a paper slurry prepared from raw materials containing softwood bleached kraft pulp and drying it.
  • the wet paper strength agent (a) shown below consisting of a cationic polymer having a cationic group
  • the low molecular dry paper shown below The raw material slurry prepared by adding the force agent (b) and then further adding the polymer dry paper force agent (c) shown below is used. This will be specifically described below.
  • softwood bleached kraft pulp raw material is put into the pulper 21, and the pulp raw material is sufficiently disaggregated.
  • the softwood bleached kraft pulp (NBKP) to be input NBKP that is usually used in this type of paper can be used without particular limitation.
  • NBKP ECF (elementary chlorin-free) bleached pulp or TCF (total chlorin-free) bleached pulp that does not use a chlorine compound for pulp bleaching may be used.
  • the input amount of softwood bleached kraft pulp (NBKP) is preferably such that the concentration of the NBKP suspension is 0.5 to 5.0% by mass, and more preferably 1.0 to 4.0% by mass. preferable.
  • the fiber roughness of the softwood bleached kraft pulp (NBKP) used in this embodiment is preferably 0.1 to 0.3 mg / m, more preferably 0.12 to 0.25 mg / m.
  • the fiber roughness is used as a scale representing the fiber thickness in a fiber having a nonuniform fiber thickness, such as wood pulp.
  • the average fiber length of NBKP used in this embodiment is preferably 1 to 4 mm, more preferably 2 to 3 mm. The fiber roughness and average fiber length are each measured by the above method.
  • the NBKP suspension sufficiently disaggregated by the pulper 21 is supplied to the refiner 23 through the conduit 22 using the liquid feed pump 24.
  • the refiner 23 beats the softwood bleached kraft pulp raw material in the suspension.
  • the pulper 21 and refiner 23 are used to beat the softwood bleached kraft pulp (NBKP) so that the freeness is preferably 650 ml or less.
  • freeness is a value indicated by Canadian standard freeness (CSF) specified in JIS P811, and pulp beating (pulp is mechanically beaten in the presence of water and ground. This is a value indicating the degree of processing.
  • the smaller the freeness value the stronger the degree of beating, the greater the damage of the fibers due to beating, and the more fibrillation proceeds.
  • NBKP in which the freeness is in the above range is easily entangled with each other because fibrillation is progressing. Therefore, from the viewpoint of improving liquid permeability, the basis weight of the thin paper is reduced (reducing density). Even if the number of interfiber bonding points is decreased, the strength of each interfiber bond is higher than NBKP in which the freeness exceeds 650 ml and the fibrillation is not progressing relatively. Therefore, if the freeness is 650 ml or less, the thin paper mainly composed of NBKP can have good strength characteristics.
  • the freeness of NBKP used in the present embodiment is more preferably 300 to 650 ml, particularly preferably 450 to 550 ml, and still more preferably 480 to 530 ml.
  • the freeness is less than 300 ml, the effect of improving the strength due to the entanglement of the fibers is saturated, and the cutting of the fibers is promoted, and the permeation time may be delayed.
  • the thin paper produced in this embodiment is preferably mainly composed of NBKP having a freeness of 300 to 650 ml.
  • “mainly” means that the content of NBKP having a freeness in such a range is 50% by mass or more.
  • the content is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of obtaining good strength characteristics.
  • the raw material put into the pulper 21 may contain fibers other than softwood bleached kraft pulp (NBKP), and other fibers may not be hydrophilic cellulose fibers such as NBKP.
  • Other fibers include, for example, hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP) and other wood pulp; Non-wood pulp such as kenaf and hemp; synthetic fibers such as polyester fiber, rayon fiber, acrylic fiber, and the like.
  • the content of these other fibers is preferably 50% by mass or less in the thin paper produced in this embodiment.
  • the NBKP suspension thoroughly beaten by the pulper 21 and the refiner 23 is added to the first slurry storage tank 32 while adding the wet paper strength agent (a) using the wet paper strength agent addition unit 33. Transport. Then, in the first slurry storage tank 32, the wet paper strength agent (a) and the suspension of NBKP are sufficiently stirred and mixed.
  • wet paper strength agent (a) comprising a cationic polymer having a cationic group
  • examples of the wet paper strength agent (a) comprising a cationic polymer having a cationic group include polyamide polyamine epichlorohydrin resin (epoxidized polyamide polyamine resin (PAE)), urea-formalin resin, meamine-formalin resin, and dialdehyde starch. , Polyethyleneamine, methylolated polyamide, and the like, and these can be used alone or in combination of two or more.
  • epoxidized polyamide polyamine resin (PAE) is preferable from the viewpoint of a wide papermaking pH range that can be used and reduction of environmental load that does not contain formalin.
  • the addition amount of the wet paper strength agent (a) is 0.1-2. From the viewpoint of dirt in the process and wet strength of the paper with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment. It is preferable to add so that it may become 0 mass%, and it is still more preferable to add so that it may become 0.2-1.5 mass%.
  • PAE epoxidized polyamide polyamine resin
  • PAE is preferably 0 with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment. 0.5 to 1.5% by mass, more preferably 0.6 to 1.2% by mass.
  • the low molecular dry paper strength agent (b) shown below is added and then diluted, and after dilution, the polymer dry paper strength agent (c) shown below is added, and then the fan Uniform using a pump 64 and a filter screen 62. This will be specifically described below.
  • a suspension of softwood bleached kraft pulp (NBKP) added with wet paper strength agent (a) sufficiently stirred and mixed in the first slurry storage tank 32 is passed through the pipeline 41 by the liquid feed pump 44 to the second.
  • the low molecular dry paper strength agent adding unit 43 is used to transport the slurry into the second slurry storage tank 42 while adding the low molecular weight dry paper strength agent (b). Then, in the second slurry storage tank 42, the low molecular dry paper strength agent (b), the wet strength paper strength agent (a) and the suspension of NBKP are sufficiently stirred and mixed.
  • the low molecular weight dry paper strength agent (b) is a low molecular weight anionic polymer having an anionic group having a weight average molecular weight (Mw) of 0.2 to 500,000 from the viewpoint of sticking to a Yankee dryer and formation.
  • Examples of the low molecular weight dry paper strength agent (b) include salts of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the like, and one of these can be used alone or in combination of two or more.
  • CMC carboxymethyl cellulose
  • PVA polyvinyl alcohol
  • a salt of carboxymethyl cellulose (CMC) is preferable from the viewpoint of versatility and solubility.
  • the degree of substitution (etherification degree) of CMC can theoretically be up to 3, but is preferably in the range of 0.5 to 1.5 from the viewpoint of productivity and the like.
  • sodium salt is mainly used as the salt of CMC.
  • the addition amount of the low molecular weight dry strength agent (b) is 0.01 to 0 with respect to the dry weight of all the constituent fibers of the thin paper produced in this embodiment from the viewpoint of in-process dirt and dry strength. It is preferable to add it so that it may become 0.5 mass%, and it is still more preferable to add so that it may become 0.1-0.3 mass%.
  • CMC carboxymethylcellulose
  • the CMC salt is contained in the dry mass of all the constituent fibers of the thin paper produced in this embodiment.
  • the amount is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass.
  • the concentration of the low molecular weight dry paper strength agent (b) is from 0.1 to 0.3% by mass, the low molecular weight dry paper strength agent (b) falls off from the pulp during paper making in low basis weight paper such as thin paper. It is difficult to obtain sufficient paper strength.
  • increasing the concentration of the low-molecular dry paper strength agent (b) increases the paper strength, there is concern about dirt in the process, so the upper limit of the amount of the low-molecular dry strength material (b) is specified. It is preferable to add other dry paper strength agents. Therefore, in the thin paper manufacturing method of the present invention, as described later, the polymer dry paper strength agent (c) is added as another dry paper strength agent.
  • this embodiment will be specifically described.
  • NBKP wet paper strength agent
  • the flow volume is adjusted so that the size of the discharge port of the seed box 52 may be changed to obtain a thin paper having a target basis weight (30 g / m 2 or less).
  • a suspension of softwood bleached kraft pulp (NBKP) to which wet flow strength agent (a) and low molecular weight dry strength strength agent (b) are added, whose flow rate is adjusted, is passed through line 61 to a filtration screen 62.
  • the dilution water is supplied and diluted using the dilution water supply unit 63 in this embodiment.
  • the concentration of the NBKP suspension is preferably 0.01 to 1.0% by mass, and more preferably 0.05 to 0.5% by mass.
  • the diluted suspension of softwood bleached kraft pulp (NBKP) to which the wet paper strength agent (a) and the low molecular weight dry strength agent (b) are added is then added to the fan.
  • a pump 64 is used to convey to the filtration screen 62 while causing turbulence.
  • the suspension of softwood bleached kraft pulp (NBKP) to which the wet paper strength agent (a) and the low molecular weight dry strength agent (b) are added is then conveyed by turbulent flow.
  • the polymer dry paper strength agent (c) is added using the polymer dry paper strength agent addition unit 65 and conveyed to the filter screen 62. Due to the turbulent flow of the fan pump 64, in this embodiment, the anionic polymer dry paper strength agent (c) is added to the pulp fiber in the suspension to which the cationic wet strength material (a) is adhered.
  • the adhering materials attached while entangled the low molecular weight dry paper strength agent (b) are separated from the aggregates (floc) that are linked by the charge of the anionic polymer dry strength agent (c). It ’s hard to get worse. Moreover, in this embodiment, since the said block (floc) can be removed also by this filter screen 62, it is hard to worsen a texture further.
  • the weight average molecular weight (Mw) of the polymer dry paper strength agent (c) is a polymer having 500 to 30 million anionic groups, and the weight average molecular weight (Mw) of the polymer dry paper strength agent (c) is )
  • the acrylic polyacrylamide resin (PAM) having 8 to 25 million is preferably 0.1% mol to 80% mol, and the weight average molecular weight (Mw) is 6 to 20 million.
  • the ratio of sodium acrylate in the acrylic polyacrylamide resin (PAM) is preferably 1% mol to 50% mol.
  • the addition amount of the polymer dry paper strength agent (c) is 0.001 to 0.000 from the viewpoint of dry paper strength and formation with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment. It is preferable to add so that it may become 1 mass%, and it is still more preferable to add so that it may become 0.01-0.08 mass%.
  • the PAM is preferably 0.00 with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment.
  • the content is 001 to 0.1% by mass, more preferably 0.02 to 0.05% by mass.
  • the ratio of the added weight of one kind of wet strength paper (a) to the total added weight of the low molecular weight strength paper strength agent (b) and the high molecular weight strength strength paper strength agent (c) is preferably from 0.5 to 10, more preferably from 1 to 5.
  • the raw material slurry from which the block (floc) has been removed is conveyed to the paper making unit 7 in the next step through the pipe 66, and paper making and drying are performed in the paper making unit 7 to produce thin paper.
  • the raw material slurry adjusted by the raw material slurry adjusting unit 2 is adjusted to a predetermined concentration by the former of the paper making unit 7, and the raw material slurry supplied from the former is made by the wire part of the paper making unit 7. Form as a paper layer on the net.
  • the paper layer formed in the wire part is pressed and dehydrated in the press part of the paper making unit 7 to form wet paper, and the wet paper formed in the press part is used in the dry part of the paper making unit 7, for example Then, dry the paper using a Yankee dryer, air-through dryer, etc. to produce thin paper. In addition, the manufactured thin paper is wound up by the winder part of the papermaking unit 7, for example.
  • the method for producing a thin paper according to this embodiment is suitable for producing a thin paper having a basis weight of 30 g / m 2 or less.
  • the desired basis weight (30 g / m 2 or less) is obtained by adjusting the flow rate by the seed box 52 of the raw slurry adjusting unit 2 or by adjusting the flow rate to a predetermined concentration by the former of the paper making unit 7. Adjust to a thin paper.
  • the basis weight is preferably 10 to 14.5 g / m 2 , and more preferably 11 to 14 g / m 2 .
  • the density of the thin paper produced is preferably 0.05 to 0.2 g / cm 3 , and more preferably 0.1 to 0.2 g / cm 3 .
  • the thin paper produced in this embodiment has a cationic group in the pulp slurry of softwood bleached kraft pulp (NBKP).
  • NNKP softwood bleached kraft pulp
  • the basis weight of the thin paper is less than 10 g / m 2 or the density is less than 0.05 g / cm 3 , the paper strength may be remarkably reduced, and the basis weight of the thin paper is more than 30 g / m 2 or the density is 0. If it exceeds 2 g / cm 3 , the effect of improving the liquid permeability may be poor.
  • the basis weight and density of the thin paper are each measured by the above method.
  • the thin paper produced in this embodiment has crepes (crepe-like wrinkles), and the crepe rate is preferably set to 5% or more, and is preferably set to 5 to 30%. Further preferred.
  • the crepe in the thin paper produced in this embodiment is preferably a dry crepe that is produced when a dry fiber web (thin paper) is peeled off from a Yankee dryer or the like in the dryer part with a doctor knife or the like. The crepe rate is measured by the above method.
  • the crepe rate of the thin paper produced in the present embodiment is preferably 5 to 30% from the viewpoint of the balance between liquid permeability and strength characteristics. % Is more preferable, and 7 to 15% is particularly preferable.
  • the dry tensile strength in the MD direction of the thin paper produced in this embodiment is 60 cN / gsm or more, preferably 60 to 150 cN / gsm, more preferably 60 to 100 cN / gsm, and more preferably 60 to 90 cN. / Gsm is particularly preferable.
  • the dry tensile strength of the thin paper produced in this embodiment in the CD direction perpendicular to the MD direction is 13 cN / gsm or more, preferably 13 to 50 cN / gsm, and preferably 13 to 40 cN / gsm. More preferably, it is 13 to 30 cN / gsm.
  • a thin paper having a dry tensile strength in each of the MD direction and the CD direction within the above range has a practically sufficient strength.
  • the thin paper is coated with a core wrap that covers an absorbent core in an absorbent article such as a disposable diaper.
  • a core wrap sheet thin paper
  • the unit “cN / gsm” used for the third invention is the same as the unit “cN / 25 mm” used for the first invention described above.
  • the wet tensile strength in the MD direction of the thin paper produced in this embodiment is 13 cN / gsm or more, preferably 13 to 60 cN / gsm, more preferably 13 to 50 cN / gsm, and more preferably 13 to 30 cN. / Gsm is particularly preferable.
  • the dry tensile strength of the thin paper produced in the present embodiment in the CD direction perpendicular to the MD direction is 5 cN / gsm or more, preferably 5 to 20 cN / gsm, and 5 to 15 cN / gsm. Further preferred is 5 to 12 cN / gsm.
  • the thin paper having the wet tensile strength in the MD direction and the CD direction in the above ranges has a practically sufficient strength.
  • the thin paper is unlikely to cause inconvenience when using a diaper.
  • the dry tensile strength is measured by the above method, and the wet tensile strength is measured as follows.
  • ⁇ Measurement method of wet tensile strength> After immersing a sheet of the same size as the measurement target sheet (thin paper) used in ⁇ Method for measuring dry tensile strength> in a large amount of water for 5 seconds, and then draining the water for 10 seconds, ⁇ Measurement of dry tensile strength> The maximum strength until fracture is measured with the same tensile tester and measurement method as in Method>.
  • the liquid permeation time of the thin paper of this embodiment measured by the above method is 3 seconds or less, preferably 0.2 to 3 seconds, and more preferably 0.3 to 2.5 seconds. Preferably, it is 0.5 to 2 seconds.
  • the shorter the liquid permeation time the higher the liquid permeability and the higher the evaluation.
  • the thin paper whose liquid permeation time is in the above range is excellent in liquid permeability. For example, when the thin paper is applied to a core wrap sheet covering an absorbent core in an absorbent article such as a disposable diaper, urine or the like It is possible to quickly permeate the excreted liquid and allow the absorbent core to quickly absorb the excreted fluid, and to improve the leak-proof property of the absorbent article.
  • the thin paper produced in this embodiment has good strength characteristics (tensile strength) and excellent liquid permeability, and is suitable for various applications in which such features are utilized.
  • the thin paper produced in this embodiment is suitable as a core wrap sheet for covering a liquid-retaining absorbent core in absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads, Not only in the case of relatively low viscosity, such as urine, but also in the case of relatively high viscosity, such as loose stool, the excretory fluid can be quickly permeated and absorbed by the absorbent core. It can contribute to the improvement of sex.
  • the thin paper produced in this embodiment may contain other components other than the fibers such as NBKP and the paper strength enhancing agents (a), (b), and (c) described above.
  • other components for example, fillers such as calcium carbonate and talc, dyes, color pigments, deodorants, antibacterial agents, pH adjusters, yield improvers, water resistance agents, antifoaming agents, etc. What is used as a raw material or an additive is mentioned, These 1 type can be used individually or in combination of 2 or more types.
  • the thin paper manufacturing method of the present invention is not limited to the embodiment described above.
  • a wet paper strength agent (a) made of a cationic polymer having a cationic group to a pulp slurry of softwood bleached kraft pulp (NBKP), a low molecular weight dry strength material (b ), And then a raw material slurry prepared by further adding a polymer dry paper strength agent (c), but a cationic polymer having a cationic group in the pulp slurry of softwood bleached kraft pulp (NBKP)
  • a raw material slurry prepared by simultaneously adding the low molecular weight dry strength agent (b) and the high molecular weight dry strength agent (c) may be used.
  • the production line can be made compact by simplifying the
  • a manufacturing apparatus 1B shown in FIG. 3 can be used instead of the manufacturing apparatus 1A shown in FIG.
  • the manufacturing apparatus 1B shown in FIG. 3 differs from the manufacturing apparatus 1A shown in FIG. 2 in the position of the polymer dry paper strength agent adding section 65.
  • a polymer dry paper strength agent adding unit 65 is arranged in the pipe line 61 connecting the seed box 52 and the filtration screen 62 from the upstream side to the downstream side.
  • the dilution water supply unit 63 is arranged, and then the fan pump 64 is arranged.
  • the same effect as the embodiment using the manufacturing apparatus 1A shown in FIG. 2 can be expected.
  • a manufacturing apparatus 1C shown in FIG. 4 can be used instead of the manufacturing apparatus 1A shown in FIG.
  • the manufacturing apparatus 1C illustrated in FIG. 4 does not include the fan pump 64 and the position of the polymer dry paper strength agent adding unit 65 is different from that of the manufacturing apparatus 1A illustrated in FIG.
  • a polymer dry paper strength agent adding unit 65 is arranged in a pipe line 66 connecting the filtration screen 62 and the paper making unit 7.
  • the manufacturing apparatus 1C illustrated in FIG. 4 does not include the fan pump 64, but may include the fan pump 64 instead of the filtration screen 62.
  • a manufacturing apparatus 1D shown in FIG. 5 can be used instead of the manufacturing apparatus 1A shown in FIG.
  • the manufacturing apparatus 1D shown in FIG. 5 does not have the second slurry storage tank 42, the pipe line 51, and the liquid feed pump 53, and adds a low molecular dry paper strength agent.
  • the attachment position of the part 43 is different.
  • a low molecular dry paper strength agent adding section 43 is attached in the middle of the pipeline of the polymer dry paper strength agent adding section 65.
  • the suspension of the softwood bleached kraft pulp (NBKP) to which the wet paper strength agent (a) sufficiently stirred and mixed in the first slurry storage tank 32 is added is fed by the liquid feed pump 44. It is sent to the seed box 52 through the pipe 41. Then, when the suspension whose flow rate is adjusted in the seed box 52 is transported to the filtration screen 62 through the pipe 61, first, it is diluted using the dilution water supply unit 63, and then using the fan pump 64. , And transported to the filter screen 62 while causing turbulence.
  • NNKP softwood bleached kraft pulp
  • the polymer dry paper strength agent adding unit 65 is used to convey a suspension of softwood bleached kraft pulp (NBKP) to which the wet strength material (a) is added by turbulent flow.
  • NNKP softwood bleached kraft pulp
  • the low molecular dry paper strength agent (b) is added to the polymer dry paper strength agent (c) using the low molecular dry paper strength agent addition unit 43.
  • the same effect as the embodiment using the manufacturing apparatus 1A shown in FIG. 2 can be expected.
  • the diaper 1 of the present embodiment is a so-called unfolded disposable diaper, as shown in FIGS. 6 and 7, a liquid-permeable surface sheet 12 that forms a skin facing surface, and a liquid impermeable material that forms a non-skin facing surface. It has a back sheet 13 that is permeable or water repellent (hereinafter collectively referred to as “liquid impervious”), and an absorbent body 14 that is disposed between the two sheets 12 and 13 and is formed substantially vertically. Yes.
  • the top sheet 12, the back sheet 13, and the absorber 14 all have a vertically long shape in one direction X.
  • Each of the top sheet 12 and the back sheet 13 has a size larger than that of the absorber 14, and extends outward from the peripheral edge of the absorber 14. As shown in FIG. 7, the width of the top sheet 12 in the width direction Y is smaller than the width of the back sheet 13 in the width direction Y.
  • the diaper 1 has, in the longitudinal direction X, a dorsal side portion A that is arranged on the back side of the wearer when worn, and a ventral side portion B that is arranged on the ventral side of the wearer when wearing, And a crotch part C on which the wearer's crotch is arranged when worn.
  • the crotch portion C is located at the center of the diaper 1 in the longitudinal direction X.
  • the diaper 1 has an hourglass shape in which both side edges of the crotch part C are curved in an inward arc shape, and the center part in the longitudinal direction X is inwardly bounded in a plan view as shown in FIG. Yes.
  • the longitudinal direction is a direction along the long side of an absorbent article (disposable diaper) or a constituent member (for example, an absorbent core), and the width direction is a direction orthogonal to the longitudinal direction.
  • the direction indicated by the symbol X is the longitudinal direction of the diaper 1 (absorbent core 140)
  • the direction indicated by the symbol Y is the width direction of the diaper 1 (absorbent core 140).
  • the skin facing surface is a surface that is directed to the wearer's skin when the absorbent article (disposable diaper) is worn in the absorbent article (disposable diaper) or a component thereof, and the non-skin facing surface is absorbent. In the article (disposable diaper) or a component thereof, the surface is directed to the side opposite to the skin side (clothing side) when the absorbent article (disposable diaper) is worn.
  • each side part along the longitudinal direction X of the diaper 1 is provided with a side sheet 162 to which an elastic member 161 is fixed in an extended state on one side edge part.
  • a pair of three-dimensional gathers are formed in the crotch part C at the time.
  • elastic members 163 are arranged along the longitudinal direction X on the left and right leg portions arranged around the wearer's legs, and a pair of leg portions when worn is contracted by the elastic member 163. Leg gathers are formed.
  • the pair of side sheets 162, 162, the top sheet 12, the absorber 14, the elastic member 163, and the back sheet 13 are joined by a known joining means such as a hot melt adhesive.
  • the waist elastic member 164 is arrange
  • the waist elastic member 164 has a belt-like form, and is sandwiched and fixed between the top sheet 12 and the back sheet 13 over substantially the entire width of the diaper 1 along the width direction Y of the diaper 1.
  • a plurality of waistline gather forming elastic members 165 are disposed on the left and right sides of the waistline portion of the back side portion A to form a pair of left and right waistline gathers.
  • the waistline gather forming elastic member 165 is arranged substantially linearly along the width direction Y, and is sandwiched and fixed between the top sheet 12 and the back sheet 13.
  • a pair of fastening tapes 18 and 18 are provided on both side edges along the longitudinal direction X of the back side A of the diaper 1. More specifically, the both sides along the longitudinal direction X of each of the back side portion A and the ventral side portion B extend outward in the width direction Y from both side edge portions along the longitudinal direction X of the absorbent body 14. Side flaps 17 and 17 are formed, and a fastening tape 18 is attached to each side flap 17 so as to extend outward in the width direction Y. A fastening portion 181 made of a male member of a mechanical surface fastener is attached to the fastening tape 18.
  • a non-skin facing surface of the ventral side B of the diaper 1 is formed with a to-be-attached region 19 made of a female member of a mechanical surface fastener.
  • the to-be-bonded region 19 is formed by bonding and fixing a female member of a mechanical hook-and-loop fastener to the non-skin facing surface of the back sheet 13 with a known bonding means (for example, an adhesive or heat seal).
  • the fastening part 181 of the tape 18 can be detachably fastened.
  • the absorbent body 4 includes an absorbent core 140 and a core wrap sheet 15 that covers the absorbent core 140.
  • the absorbent core 140 has a shape that is long in one direction (longitudinal direction X of the diaper 1), and the longitudinal central portion is constricted.
  • the absorbent core 140 includes a hydrophilic fiber and a water-absorbing polymer.
  • the hydrophilic fiber can be used without particular limitation as long as it is a fiber having a hydrophilic surface and can form a sheet in which the fibers have a high degree of freedom in the wet state.
  • hydrophilic fibers examples include natural cellulose fibers such as wood pulp such as softwood kraft pulp and hardwood kraft pulp and non-wood pulp such as cotton pulp and straw pulp; regenerated cellulose fibers such as rayon and cupra; polyvinyl alcohol fiber , Hydrophilic synthetic fibers such as polyacrylonitrile fibers; synthetic fibers such as polyethylene terephthalate (PET) fibers, polyethylene (PE) fibers, polypropylene (PP) fibers, and polyester fibers that have been hydrophilized with a surfactant. These 1 type can be used individually or in mixture of 2 or more types.
  • water-absorbing polymer various polymers conventionally used in the technical field can be used without particular limitation.
  • polyacrylic acid soda (acrylic acid-vinyl alcohol) copolymer
  • polyacrylic acid Cross-linked soda (starch-acrylic acid) graft polymer
  • (isobutylene-maleic anhydride) copolymer and saponified product thereof potassium polyacrylate, cesium polyacrylate, and the like.
  • potassium polyacrylate cesium polyacrylate, and the like.
  • cesium polyacrylate and the like.
  • particles are usually used, but fibers may be used.
  • the particulate water-absorbing polymer includes an amorphous type, a block type, a bowl type, a spherical particle agglomeration type, a spherical type and the like due to the difference in shape, and any type can be used.
  • the total content of the hydrophilic fiber and the water-absorbing polymer in the absorbent core 140 is, for example, 70 to 100% by mass, preferably 85 to 100% by mass, more preferably 95 to 100% by mass with respect to the mass of the absorbent core 140. 100% by mass.
  • other components other than the hydrophilic fiber and the water-absorbing polymer for example, various additives such as pH buffer material, hydrophilic fine powder, deodorant, non-hydrophilic fiber, etc., if necessary May be included.
  • the basis weight of the absorbent core 140 is preferably 200 to 600 g / m 2 , particularly 300 to 600 g / m 2 , from the viewpoint of sufficiently holding and fixing urine, loose stool and the like. From the same viewpoint, the density of the absorbent core 140 is preferably 0.10 to 0.30 g / cm 3 , more preferably 0.15 to 0.30 g / cm 3 . Further, the thickness of the absorbent core 140 under no load is preferably 1.5 to 3.5 mm, more preferably 1.7 to 3.0 mm.
  • the core wrap sheet 15 is disposed so as to face the skin facing surface 140 a of the absorbent core 140 (located on the skin facing surface 140 a side of the absorbent core 140). And covering both side edges 140s, 140s along the longitudinal direction X of the absorbent core 140 (disposed on the non-skin facing surface 140b side of the absorbent core 140) And a low liquid permeability sheet 152. More specifically, the core wrap sheet 15 includes two sheets 151 and 152 having different dimensions in the width direction Y, one of which is the longitudinal direction X and width of the absorbent core 140.
  • One sheet is a low liquid permeability sheet 152 wider than the high liquid permeability paper 151.
  • the high liquid permeable paper 151 and the low liquid permeable sheet 152 have the same length in the longitudinal direction X.
  • the high liquid permeability paper 151 covers substantially the entire skin facing surface 140a of the absorbent core 140.
  • the low liquid permeable sheet 152 covers substantially the entire area of the non-skin facing surface 140b of the absorbent core 140, and extends outward in the width direction Y from both side edge portions 140s, 140s of the absorbent core 140.
  • the protruding portion is wound up on the highly liquid permeable paper 151 disposed opposite to the skin facing surface 140 a of the absorbent core 140 and covers both side edges along the longitudinal direction X of the highly liquid permeable paper 151.
  • the high liquid permeable paper 151 and the absorbent core 140 and the low liquid permeable sheet 152 and the absorbent core 140 may be joined by a known joining means such as a hot melt adhesive. .
  • the highly liquid-permeable paper 151 that is directly disposed on the skin facing surface 140a of the absorbent core 140 without any other member has good strength characteristics.
  • the point which is excellent in liquid permeability is mentioned.
  • the basis weight and density of the high liquid permeability paper 151 are set to be relatively low from the viewpoint of improving the liquid permeability.
  • the basis weight of the high liquid permeability paper 151 is 8 to 20 g. / M 2 , preferably 10 to 14.5 g / m 2 , more preferably 11 to 14 g / m 2
  • the density of the highly liquid-permeable paper 51 is 0.05 to 0.2 g / cm 3
  • the amount is preferably 0.07 to 0.20 g / cm 3 , more preferably 0.10 to 0.20 g / cm 3 .
  • the basis weight of the highly liquid permeable paper 151 is less than 8 g / m 2 or the density is less than 0.05 g / cm 3 , the paper strength may be remarkably reduced, and the basis weight of the highly liquid permeable paper 151 is 20 g. If the density exceeds / m 2 or the density exceeds 0.2 g / cm 3 , the effect of improving the liquid permeability may be poor.
  • the basis weight and density of the highly liquid-permeable paper 151 (core wrap sheet 15) are measured as follows.
  • ⁇ Measurement method of basis weight of core wrap sheet> After conditioning the sample (core wrap sheet) under the conditions of JIS P8111, a 10 cm square (100 cm 2 ) measurement piece was cut out from the sample, and the weight of the measurement piece was measured with a two-digit scale below the decimal point. The basis weight of the measurement piece is calculated by dividing the measured value by the area. About 10 measurement pieces cut out from the sample, the basis weight is calculated according to the above procedure, and the average value thereof is taken as the basis weight of the sample.
  • ⁇ Method of measuring the density of the core wrap sheet> Ten 20 cm square samples (core wrap sheets) are stacked to form a laminate, and the laminate is cooled and solidified with liquid nitrogen, and then the vicinity of the center of the laminate is cut with a cutter. Then, of the 10 samples, one having no shear applied to the cross section generated by cutting with the cutter is selected, and the thickness of the selected sample is measured with an optical microscope. In addition, the thickness of the sample is not the length (apparent thickness) from the bottom to the top of the concavo-convex part when the sample has concavo-convex parts such as crepes described later, but the part where the constituent fibers are deposited Length (substantial thickness).
  • the weight W of the 20 cm square sample whose thickness has been measured in this way is measured using a balance with two decimal places.
  • the target density is calculated by dividing the weight W of the sample by the volume V of the sample calculated by the following equation (that is, by W / V).
  • T is the thickness (cm) of the sample
  • A is the crepe rate (%) of the sample
  • B is the length of one side (20 cm) of the sample.
  • the crepe rate is measured by the measurement method.
  • A 0 in the following equation.
  • V ⁇ T ⁇ B ⁇ B ⁇ (100 + A) / 100 ⁇
  • Such a low basis weight, low density high liquid permeability paper 151 has a liquid permeation time (liquid permeation time of a highly viscous liquid) measured by the following method of 600 seconds or less, preferably 400 seconds or less. More preferably, it is 300 seconds or less. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation.
  • the high liquid permeability paper 151 having a liquid permeation time in the above range is excellent in liquid permeability and has a relatively low viscosity excretion such as loose stool and menstrual blood in addition to a relatively low viscosity excretion such as urine. Can be quickly permeated and absorbed quickly by the absorbent core 40, and the surface liquid residue is hardly generated.
  • Reference numeral 94 denotes a rubber packing having a through hole having the same diameter and the same shape as the inner diameters of the cylinders 91 and 92.
  • the supplied highly viscous liquid passes through the measurement target sheet S or is absorbed by the measurement target sheet S and disappears from the upper cylinder 91.
  • the time until the liquid level of the high-viscosity liquid reaches the same position as the surface of the sheet S to be measured (the surface on the upper cylinder 91 side) from the start of the supply of the high-viscosity liquid is measured.
  • the high liquid permeability paper 151 has a liquid permeation time of 600 seconds or less and excellent liquid permeability
  • the liquid sheet 152 has inferior liquid permeability because the liquid permeation time exceeds 600 seconds. That is, in the absorbent core 140 according to the present embodiment, the skin facing surface 140a that directly receives excretion fluid such as loose stool is covered with the highly liquid permeable paper 151 that is excellent in liquid permeability, and is located on the opposite side.
  • the skin facing surface 140b and the side edge portions 140s and 140s are covered with a low liquid permeability sheet 152 having poor liquid permeability.
  • the liquid excreted when the diaper 1 is worn and transmitted through the top sheet 12 is quickly drawn into the absorbent body 14 by the action of the highly liquid-permeable paper 151. And is absorbed and held by the absorbent core 140. Further, since the non-skin facing surface 140b and both side edges 140s, 140s of the absorbent core 140 are covered with the low liquid permeable sheet 152, the liquid once absorbed and held in the absorbent core 140 is absorbed by the absorbent core 140. Even if it leaks to the outside, it is prevented from leaking to the outside of the absorbent body 14 by the low liquid permeability sheet 152, and so-called side leakage is effectively prevented. From the viewpoint of ensuring the effect of preventing leakage by the low liquid permeable sheet 152, the liquid permeation time of the low liquid permeable sheet 152 is preferably 600 to 3000 seconds, more preferably 600 to 2000 seconds.
  • the low-liquid-permeable sheet 152 paper, non-woven fabric, or the like can be used.
  • crepe paper having crepe is preferably used.
  • the basis weight of the low liquid permeability sheet 152 is preferably 13 to 20 g / m 2 , more preferably 15 to 18 g / m 2 .
  • the density of the sheet 152 is preferably 0.10 to 0.30 g / cm 3 , more preferably 0.20 to 0.25 g / cm 3
  • the crepe rate of the low liquid permeability sheet 152 is preferably 5 to 20%, more preferably 7 to 15%.
  • the crepe can be applied by a conventionally known method, and the crepe rate is measured by the above method (in the measurement method, “thin paper” is read as “sheet”).
  • the high-liquid-permeable paper 151 will be further described.
  • the high-liquid-permeable paper 151 has the strength despite the fact that the basis weight and the density are set relatively low from the viewpoint of improving the liquid permeability as described above.
  • the dry tensile strength in the conveying direction (Machine ⁇ ⁇ Direction, abbreviated as MD) during production is 600 cN / 25 mm or more, preferably 600 to 1500 cN / 25 mm, more preferably 700 to 1200 cN / 25 mm. It is.
  • Highly liquid-permeable paper 151 having a dry tensile strength of MD in the above-mentioned range has a practically sufficient strength, and is unlikely to be broken during manufacture of diaper 1. It is hard to wake up.
  • the dry tensile strength in the direction perpendicular to the MD of the highly liquid-permeable paper 151 is preferably 150 cN / 25 mm or more, more preferably 150 to 350 cN / 25 mm, Particularly preferred is 170 to 300 cN / 25 mm.
  • the dry tensile strength is measured by the above method (in the measurement method, “thin paper” is read as “highly liquid permeable paper”).
  • the high liquid permeability paper 151 may have a crepe (crepe-like wrinkles).
  • the crepe is generated when a dry fiber web (highly liquid permeable paper 151) is peeled off from the Yankee dryer or the like in the dryer part with a doctor knife or the like.
  • a dry crepe is preferred.
  • Paper having a crepe has higher liquid permeability than paper having no crepe, and the liquid permeability increases as the crepe rate increases. However, as the crepe rate increases, the strength properties (tensile strength) tend to decrease.
  • the crepe rate of the high liquid permeability paper 151 is 5 to 30%, particularly 5 to 20%, especially 7 to 15%. % Is preferable.
  • the crepe rate is measured by the above method.
  • High liquid permeability paper 151 having good strength characteristics and excellent liquid permeability
  • the following high liquid permeability paper A is preferably used.
  • Highly liquid permeable paper A is a thin paper mainly composed of an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness, to which a paper strength enhancer is added, and as the two types of hydrophilic cellulose fibers, And a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m.
  • the difference in fiber roughness between the second pulp and the second pulp is 0.01 to 0.07 mg / m, and the freeness of the aggregate is 400 to 550 ml.
  • the high liquid permeability paper A is basically the same as the thin paper of the first invention described above.
  • components that are different from the thin paper of the first invention described above will be mainly described, and components that are not particularly described in the highly liquid-permeable paper A will be described with respect to the thin paper of the first invention. Applicable as appropriate.
  • the highly liquid-permeable paper A When two or more kinds of paper strength enhancers are used in the highly liquid-permeable paper A, as a preferred combination thereof, 1) a combination of one dry paper strength enhancer and one wet paper strength enhancer, and 2) A combination of two dry paper strength enhancers and one wet paper strength enhancer.
  • the one dry paper strength enhancer is preferably an anionic PAM salt, and the one wet paper strength enhancer is preferably PAE.
  • the two dry paper strength enhancers are preferably CMC salts and anionic PAM salts, and one wet paper strength enhancer is preferably PAE.
  • the high liquid permeability paper A is excellent in air permeability in addition to strength characteristics and liquid permeability. The reason is mainly because it mainly comprises an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness.
  • the present inventors prepared two types of thin paper (samples A and B) having different pulp compositions.
  • the air permeability was measured.
  • Sample A includes the first pulp and the second pulp as the fiber material, and is a high liquid permeability paper II described later.
  • Sample B includes only the first pulp as the fiber material, and the high liquid permeability described later. Paper I. Both samples A and B had a basis weight of 13 g / m 2 .
  • the air permeability is measured as follows.
  • the air permeability is measured according to JIS P8117. After preparing 32 sheets of 15 cm square measurement object sheets (thin paper) and drying them with hot air dryer for 30 minutes with hot air at 105 ° C., all 32 sheets are stacked to form one laminate, and the laminate is B Set on the air permeability meter. Then, in the B-type air permeability meter, the time required to reach 300 cc is measured with 0 cc of the marked line as a start. The above operation is performed 5 times, and the average value of the obtained five measurement times is defined as the air permeability of the measurement target sheet (thin paper).
  • the unit of air permeability is “s / 32P ⁇ 300 cc” and represents the time (seconds) required for 300 cc of air to escape through 32 sheets. It can be evaluated that the smaller the value of the air permeability, the easier the air can escape and the better the air permeability.
  • Sample B (highly liquid permeable paper I described later) using only the first pulp as the fiber material had an air permeability in the range of 2.1 to 2.7 s / 32 P ⁇ 300 cc
  • the fiber material Sample A (highly liquid permeable paper II described later) using two kinds of pulps (first and second pulps) having different fiber roughnesses as described above has an air permeability of 1.6 to 2.2 s / 32 P ⁇
  • the value of air permeability of sample A was smaller than that of sample B. From this, it can be seen that it is effective to improve the air permeability of the thin paper to make the thin paper mainly composed of an aggregate of two kinds of hydrophilic cellulose fibers having different fiber roughnesses. It is clear that the highly liquid-permeable paper A is excellent in air permeability.
  • the high liquid permeable paper 151 is not limited to the above-described high liquid permeable paper A, and may be any paper in which the basis weight, density, liquid permeation time, and MD dry tensile strength are within the above ranges.
  • the highly liquid-permeable paper 151 is mainly composed of NBKP (softwood bleached kraft pulp) having a freeness of 400 to 550 ml, preferably 475 to 525 ml, more preferably 490 to 510 ml. It may be a thin paper (crepe paper) that is added and has a crepe rate of 5 to 30%, preferably 5 to 20%, more preferably 7 to 15%.
  • mainly means that the content of NBKP having a freeness in such a range is 50% by mass or more.
  • the content is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of obtaining good strength characteristics.
  • the description of the highly liquid-permeable paper A is appropriately applied to points that are not particularly described, such as specific examples of the paper strength enhancer.
  • the surface sheet 12 and the back surface sheet 13 various things conventionally used in the said technical field can be used.
  • the top sheet 12 various liquid-permeable sheet materials such as a nonwoven fabric and an apertured film can be used.
  • the back sheet 13 various liquid impervious materials such as a resin film having no moisture permeability, a resin film having fine pores and moisture permeability, a nonwoven fabric such as a water-repellent nonwoven fabric, and a laminate of these and other sheets. Or water repellent materials can be used.
  • the side sheet 162 the same thing as the back surface sheet 13 can be used.
  • the diaper 1 of this embodiment is used in the same manner as a known unfolded disposable diaper.
  • the portion of the core wrap sheet 15 that is disposed on the skin facing surface 140a side of the absorbent core 140 is the highly liquid-permeable paper 151.
  • the absorbent article described in Patent Document 4 which is formed of a nonwoven fabric that is excellent in absorbability (repeated absorbability) of excretory liquids such as loose stool, the absorbent core-forming material such as a water-absorbing polymer Leakage hardly occurs and the manufacturing cost is reduced.
  • seat 15 of the diaper 1 of this embodiment is the low liquid permeability sheet
  • the core wrap sheet 15 in the above embodiment is composed of the high liquid permeable paper 151 and the low liquid permeable sheet 152, but may be composed of only the high liquid permeable paper 151.
  • the core wrap sheet 15 may be composed of two high liquid permeability papers 151.
  • the low liquid permeability sheet 152 may be replaced with the high liquid permeability paper 151. good.
  • the core wrap sheet 15 may be composed of a single sheet of high liquid permeability 151.
  • the core wrap sheet 15 one sheet of high liquid permeability paper 151 having a width that is two to three times the length of the absorbent core 140 in the width direction Y is used.
  • the absorbent body 14 shown in FIG. 8 has an absorbent core 140 placed at the center in the width direction Y of one sheet of high liquid permeability paper 51, and both sides of the high liquid permeability paper 151 in the width direction Y.
  • the absorbent article of the present invention is a deployable disposable diaper having a fastening tape, a pants-type disposable diaper, an absorbent pad, a sanitary napkin, etc., previously formed in a pants shape. Also good.
  • the present invention further discloses the following articles (thin paper, absorbent article, thin paper manufacturing method).
  • a thin paper mainly composed of an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness, and having a paper strength enhancer added thereto,
  • the two types of hydrophilic cellulose fibers have a fiber roughness of 0.13 to 0.16 mg / m, preferably 0.135 to 0.155 mg / m, more preferably 0.14 to 0.15 mg / m.
  • the difference in fiber roughness between the first pulp and the second pulp contained is 0.01 to 0.07 mg / m, preferably 0.02 to 0.06 mg / m, and more preferably 0.03 to 0.03 mg / m.
  • each of the first pulp and the second pulp has an average fiber length of 2 to 3 mm, preferably 2.2 to 2.8 mm.
  • the content mass ratio of the first pulp to the second pulp is 3/7 to 7/3, preferably 4/6 to 6/4 ⁇ 1> or ⁇ 2>
  • Thin paper according to ⁇ 4> The thin paper according to any one of ⁇ 1> to ⁇ 3>, wherein each of the first pulp and the second pulp is softwood bleached kraft pulp (NBKP).
  • ⁇ 5> The thin paper according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the first pulp and the second pulp is 70 to 100% by mass, preferably 80 to 100% by mass.
  • ⁇ 6> The thin paper according to any one of ⁇ 1> to ⁇ 5>, wherein the aggregate has a freeness of 450 to 525 ml, preferably 475 to 510 ml.
  • ⁇ 7> The thin paper according to any one of ⁇ 1> to ⁇ 6>, wherein at least carboxymethylcellulose or a salt thereof is added as the paper strength enhancer.
  • ⁇ 8> The thin paper according to any one of ⁇ 1> to ⁇ 7>, wherein the basis weight is 10 to 20 g / m 2 , preferably 11 to 16 g / m 2 , and more preferably 12 to 14 g / m 2 .
  • ⁇ 9> Mainly composed of softwood bleached kraft pulp with a freeness of 400 to 550 ml, preferably 475 to 525 ml, more preferably 490 to 510 ml, and two or more kinds of paper strength enhancers are added, and the basis weight is 10 to 14.5 g / m 2 , preferably 11-14 g / m 2 , density 0.05-0.2 g / cm 3 , preferably 0.1-0.2 g / cm 3 , crepe rate 5-30%, The thin paper according to any one of ⁇ 1> to ⁇ 7>, preferably 5 to 20%, more preferably 7 to 15%.
  • the thin paper according to ⁇ 9> wherein a dry paper strength enhancer and a wet paper strength enhancer are added as the two or more paper strength enhancers.
  • the total amount of the two or more kinds of paper strength enhancing agents is 0.01 to 1.5% by mass, preferably 0.03 to 1.2%, based on the dry mass of all the constituent fibers of the thin paper.
  • the thin paper according to ⁇ 9> or ⁇ 10> which is% by mass.
  • the total added mass of the dry paper strength enhancer Any one of ⁇ 9> to ⁇ 11>, wherein the ratio of the added weight of the wet paper strength enhancer (the former / the latter) is 0.01 to 0.5, preferably 0.03 to 0.35.
  • the dry paper strength enhancer is at least one selected from the group consisting of carboxymethylcellulose and salts thereof, polyacrylamide resins and salts thereof, cationized starch, and polyvinyl alcohol. ⁇ 10> to ⁇ 12> The thin paper according to any one of the above.
  • the wet paper strength enhancer is at least one selected from the group consisting of epoxidized polyamide polyamine resin, urea-formalin resin, melamine-formalin resin, dialdehyde starch, polyethyleneamine and methylolated polyamide ⁇
  • the dry tensile strength in the conveying direction during the production of the thin paper is 600 to 1500 cN / 25 mm, preferably 700 to 1200 cN / 25 mm, more preferably 800 to 1200 cN / 25 mm, and still more preferably 900 to 1200 cN / 25 mm.
  • the thin paper according to any one of ⁇ 1> to ⁇ 17>, wherein the dry tensile strength in the direction perpendicular to the direction is 150 to 350 cN / 25 mm, preferably 180 to 300 cN / 25 mm.
  • the liquid permeation time of the thin paper measured by the following method is 0.2 to 3 seconds, preferably 0.3 to 2.5 seconds, more preferably 0.5 to 2 seconds ⁇ 1> to ⁇ The thin paper according to any one of 18>.
  • ⁇ Measurement method of liquid permeation time> Two cylinders with an inner diameter of 35 mm that open at the top and bottom are arranged vertically with the axes of both cylinders aligned, and an 8 cm square measurement sample is sandwiched between the upper and lower cylinders. 40 g ⁇ 1 g of physiological saline is supplied. The supplied physiological saline passes through the measurement sample or is absorbed by the sample and disappears from the upper cylinder. The time from the start of the supply of the physiological saline to the time when the surface of the physiological saline reaches the same position as the surface of the measurement sample is measured, and the time is defined as the liquid permeation time.
  • ⁇ 20> An absorbent article using the thin paper according to any one of ⁇ 1> to ⁇ 19>.
  • ⁇ 21> The absorbent article according to ⁇ 20>, wherein the absorbent article includes an absorbent core and a core wrap sheet covering the absorbent core, and the core wrap sheet is the thin paper.
  • a method for producing a thin paper that produces a paper having a basis weight of 30 g / m 2 or less by paper-making and drying a raw material slurry prepared from a raw material containing softwood bleached kraft pulp, After adding the wet paper strength agent (a) made of a cationic polymer having a cationic group to the pulp slurry of the softwood bleached kraft pulp as the raw material slurry, the following low molecular dry paper strength agent (b) and high Thin paper using a raw material slurry prepared by adding a molecular dry paper strength agent (c) at the same time, or adding a low molecular weight dry strength agent (b) and then adding a polymer dry strength agent (c). Manufacturing method.
  • the amount of the low-molecular dry paper strength agent (b) added is 0.01 to 0.5% by mass, preferably 0.1 to 0.5% by mass with respect to the dry mass of all the constituent fibers of the thin paper as the production target.
  • the manufacturing method of the thin paper as described in ⁇ 22> which is 0.3 mass%.
  • the amount of the polymer dry paper strength agent (c) added is 0.001 to 0.1% by mass, preferably 0.01 to 0.1% by mass with respect to the dry mass of all the constituent fibers of the thin paper as the production target.
  • Ratio of the added mass of one kind of the wet paper strength agent (a) and the total added mass of the low molecular weight dry strength agent (b) and the high molecular weight dry strength agent (c) [(a) / (B) and (c)] is 0.5 to 10, preferably 1 to 5, The method for producing a thin paper according to any one of ⁇ 22> to ⁇ 24>.
  • the raw material slurry is obtained by adding the wet paper strength agent (a) to the pulp slurry of the softwood bleached kraft pulp, then adding the low molecular weight dry strength agent (b), and then further drying the polymer.
  • the step of adjusting the raw material is performed after the low-molecular dry paper strength agent (b) is added and diluted, and after the dilution, the polymer dry paper strength agent (c) is added, and then a fan pump and filtration
  • Example A1 NBKP having a fiber roughness of 0.15 mg / m is used as the first pulp (pulp having a relatively small fiber diameter), and the fiber roughness is 0.18 mg / in as the second pulp (a pulp having a relatively large fiber diameter).
  • m NBKP was used.
  • the first pulp and the second pulp are mixed so that the content ratio of the two pulps (first pulp / second pulp) is 5/5 to obtain an aggregate of fibers, and the aggregate is uniformly in water.
  • the slurry was dispersed to prepare a slurry having a fiber concentration of 2% by mass, and this slurry was passed through a beating machine to adjust the freeness of the aggregate to 500 ml.
  • CMC sodium salt dry paper strength enhancer, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name “Serogen WS-C”
  • PES wet paper strength enhancer, manufactured by Seiko PMC Co., Ltd., trade name “WS4030”
  • the slurry thus obtained was spread on a wire mesh paper wire having a wire opening diameter of 90 ⁇ m (166 mesh), a paper layer was formed on the wire mesh paper wire, and 6 ml / (cm 2 ⁇ sec) was formed using a suction box. After dewatering the paper layer at speed, the paper layer was dried with a dryer. The thin paper thus obtained was used as a sample of Example A1.
  • Examples A2 to A6 and Comparative Examples A1 to A5 A thin paper was produced in the same manner as in Example A1 except that the type of pulp (fiber roughness), freeness, usage form of the paper strength enhancer, and the like were appropriately changed, and were used as samples of the respective examples and comparative examples.
  • an anionic PAM sodium salt dry paper strength enhancer, manufactured by MT Aquapolymer, trade name “ Acofloc A95 ", weight average molecular weight 17 million was used.
  • NNKP pulp used in Examples A1 to A6 and Comparative Examples A1 to A5 are as follows (in the order of increasing fiber roughness). These pulps were obtained through Nippon Paper Pulp Trading or Itochu Corporation. ⁇ Fiber roughness 0.09mg / m (Brand name "Cenibra”, made by Cenibra) -Fiber roughness 0.13mg / m (trade name "Northwood”, manufactured by ConFor) -Fiber roughness 0.15mg / m (Brand name "Cariboo”, Cariboo Pulp and Paper Company) ⁇ Fiber roughness 0.16mg / m (trade name "Botnia”, manufactured by BOTNIA) -Fiber roughness 0.17mg / m (trade name "Alabama Pine”, manufactured by Alabama Pine, Inc) -Fiber roughness 0.18mg / m (trade name "ARAUCO", manufactured by ARAUCO) ⁇ Fiber roughness 0.2mg / m (trade name "Crofton
  • the aggregate is mainly composed of two types of hydrophilic cellulose fibers having different fiber roughness, and the freeness of the aggregate is in the specific range (within the range of the first invention).
  • the thin paper of each example has a dry tensile strength of MD of 600 cN / 25 mm or more, a dry tensile strength of CD of 150 cN / 25 mm or more, a liquid permeation time of 2 seconds or less, and has good strength characteristics and liquid permeation. It turns out that it is a thin paper with excellent properties.
  • Example A5 which is a form using two dry paper strength enhancers and one wet paper strength enhancer, has generally better strength characteristics and liquid permeability than the other examples. The effectiveness of the combination of the three kinds of paper strength enhancers is clear.
  • each comparative example has an MD dry tensile strength of less than 600 cN / 25 mm (Comparative Examples A1, A2, and A5) or a liquid permeation time of more than 3 seconds ( Comparative Examples A1, A3, and A4), which do not have both strength characteristics and liquid permeability at a high level.
  • the reason why each comparative example is inferior to each example in terms of strength characteristics and liquid permeability is that, in Comparative Example A1, the difference in fiber roughness between the first pulp and the second pulp exceeds 0.07 mg / m. Therefore, since Comparative Examples A2, A3, and A5 use only one kind of hydrophilic cellulose fiber, it is surmised that Comparative Example A4 is because the freeness of the aggregate is out of the specific range.
  • NBKP manufactured by Cariboo Pulp and Paper Company, trade name “Cariboo”, manufactured in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm
  • NBKP manufactured in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm
  • the slurry was passed through a beater to adjust the freeness of NBKP to 500 ml.
  • PAE trade name “WS4030”, manufactured by Seiko PMC Co., Ltd.
  • PAE trade name “WS4030”, manufactured by Seiko PMC Co., Ltd.
  • Example B1 After the paper layer was dehydrated at a speed, the paper layer was dried with a dryer, and the paper layer was peeled off from the dry surface with a doctor blade, and a crepe was applied at a speed ratio of the dryer and the winding.
  • the thin paper (crepe paper) thus obtained was used as the sample of Example B1.
  • Examples B2 to B7 and Comparative Examples B1 to B7 A thin paper (crepe paper) was produced in the same manner as in Example B1 except that the freeness of NBKP, the charged amounts of various raw materials, the crepe rate, and the like were changed as appropriate, and used as samples for each example and each comparative example.
  • dry paper strength enhancers 1 and 2 two types of dry paper strength enhancers (dry paper strength enhancers 1 and 2) and one wet paper strength enhancer were used.
  • Example B4 to B6 were manufactured by MT Aquapolymer, trade name “Acofloc A95”, weight average molecular weight 1700. Ten; Example B7 uses a product name “DA4119” manufactured by Seiko PMC Co., Ltd., with a weight average molecular weight of 2 million), and the same PAE as Example B1 was used as a wet paper strength enhancer.
  • NBKP having freeness in the specific range as a main component
  • two or more kinds of paper strength enhancers are added, and 3) basis weight, density, and crepe rate.
  • Each of the thin papers of each example in the specific range has an MD dry tensile strength of 600 cN / 25 mm or more, a CD dry tensile strength of 150 cN / 25 mm or more, and a liquid permeation time of 2 seconds or less. It can be seen that the thin paper has good characteristics and excellent liquid permeability.
  • the thin paper of each comparative example has an MD dry tensile strength of less than 600 cN / 25 mm (Comparative Examples B2 and B4) or a liquid permeation time of more than 3 seconds (Comparative Example). B1, B3, and B5 to B7), and the strength characteristics and liquid permeability are not compatible at a high level.
  • each comparative example is inferior to each example in terms of strength characteristics and liquid permeability is that the comparative example B1 does not satisfy all of the above 1) to 3), so the comparative example B2 satisfies the above 2) Since Comparative Example B3 does not satisfy 2) and 3), Comparative Examples B4 to B6 do not satisfy 3), and Comparative Example B7 does not satisfy 1) and 3). It is guessed.
  • Example C1 Using the manufacturing apparatus 1A shown in FIG. 2 (circular former type paper machine, paper making speed 400 m / min, width 2000 mm), the softwood bleached kraft pulp raw material was put into the pulper 21 and beaten by the refiner 23.
  • NBKP Cariboo Pulp
  • Paper Company trade name “Cariboo”, manufactured in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm
  • the freeness of the softwood bleached kraft pulp (NBKP) was adjusted by the pulper 21 and the refiner 23 to 500 ml.
  • the epoxidized polyamide polyamine resin (PAE) which is the wet paper strength agent (a) was added using the wet paper strength agent adding section 33 and sufficiently stirred and mixed in the first slurry storage tank 32.
  • the addition amount of PAE was 0.78 mass% with respect to the dry mass of all the constituent fibers of a thin paper.
  • a salt of carboxymethyl cellulose (CMC) having a weight average molecular weight (Mw) of 100,000, which is a low molecular dry paper strength agent (b) is added, 2 In the slurry storage tank 42, the mixture was sufficiently stirred and mixed.
  • the addition amount of the salt of CMC was 0.2 mass% with respect to the dry mass of all the constituent fibers of the thin paper.
  • dilution water was supplied using the dilution water supply part 63, and it diluted so that it might become 0.11 mass%.
  • the polymer dry paper strength agent adding section 65 is used, and the weight average molecular weight (Mw) of the polymer dry paper strength agent (c) is 1,
  • a 7 million acrylic polyacrylamide resin (PAM) was added and conveyed to the filter screen 62 to prepare a raw material slurry.
  • the amount of PAM added was 0.03% by mass relative to the dry mass of all the constituent fibers of the thin paper.
  • the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured.
  • a thin paper having a basis weight of 11.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
  • Example C2 Using the production apparatus 1A shown in FIG. 2, adjustment was made by using the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7 to produce a thin paper having a basis weight of 13.0 g / m 2 , as in Example C1. Thin paper.
  • Example C3 Using the manufacturing apparatus 1 ⁇ / b> C shown in FIG. 4, the softwood bleached kraft pulp raw material was put into the pulper 21 and beaten by the refiner 23.
  • Softwood bleached kraft pulp raw material is NBKP (Cariboo Pulp and Paper Company, trade name "Cariboo", North America, fiber roughness 0.15m g / m, average fiber length 2.44 mm).
  • the freeness of the softwood bleached kraft pulp (NBKP) was adjusted by the pulper 21 and the refiner 23 to 500 ml.
  • the epoxidized polyamide polyamine resin (PAE) which is the wet paper strength agent (a) was added using the wet paper strength agent adding section 33 and sufficiently stirred and mixed in the first slurry storage tank 32.
  • the addition amount of PAE was 0.78 mass% with respect to the dry mass of all the constituent fibers of a thin paper.
  • a salt of carboxymethyl cellulose (CMC) having a weight average molecular weight (Mw) of 100,000, which is a low molecular dry paper strength agent (b) is added, 2 In the slurry storage tank 42, the mixture was sufficiently stirred and mixed.
  • the addition amount of the salt of CMC was 0.2 mass% with respect to the dry mass of all the constituent fibers of the thin paper.
  • dilution water was supplied using the dilution water supply unit 63, diluted to 0.13 mass%, and conveyed to the filtration screen 62.
  • the raw material slurry was prepared by adding.
  • the amount of PAM added was 0.03% by mass relative to the dry mass of all the constituent fibers of the thin paper.
  • the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured.
  • a thin paper having a basis weight of 13.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
  • Example C4 Using the manufacturing apparatus 1 ⁇ / b> D shown in FIG. 5, the softwood bleached kraft pulp raw material was put into the pulper 21 and beaten by the refiner 23.
  • NBKP manufactured by Cariboo Pulp and Paper Company, trade name “Cariboo”, produced in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm
  • the freeness of the softwood bleached kraft pulp (NBKP) was adjusted by the pulper 21 and the refiner 23 to 500 ml.
  • PAE epoxidized polyamide polyamine resin
  • a wet paper strength agent
  • PAE epoxidized polyamide polyamine resin
  • dilution water was supplied using the dilution water supply part 63, and it diluted so that it might become 0.13 mass%.
  • CMC carboxymethyl cellulose
  • PAM acrylic polyacrylamide resin
  • the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured.
  • a thin paper having a basis weight of 13.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
  • Example C1 As in Example C1, the manufacturing apparatus 1A shown in FIG. 2 is used, but without adding the dry paper strength agent from the low molecular dry paper strength agent addition unit 43 and the polymer dry paper strength agent addition unit 65, the raw material slurry Adjusted. The raw material slurry thus adjusted was paper-made and dried at the paper-making unit 7 to produce thin paper. A thin paper having a basis weight of 11.5 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
  • Example C2 As in Example C1, the manufacturing apparatus 1A shown in FIG. 2 was used, but the raw material slurry was adjusted without adding the dry paper strength agent from the polymer dry paper strength agent addition unit 65. The raw material slurry thus adjusted was paper-made and dried at the paper-making unit 7 to produce thin paper. A thin paper having a basis weight of 11.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
  • PAE epoxidized polyamide polyamine resin
  • a wet paper strength agent
  • PAE epoxidized polyamide polyamine resin
  • PAM acrylic polyacrylamide resin
  • Mw weight average molecular weight
  • dilution water was supplied using the dilution water supply part 63, and it diluted so that it might become 0.13 mass%.
  • a low molecular weight dry paper strength agent (b) having a weight average molecular weight (Mw) of 100,000 is generated using the low molecular weight dry paper strength agent adding unit 65 while causing turbulence using the fan pump 64.
  • carboxymethyl cellulose was added and conveyed to the filter screen 62 to prepare a raw material slurry.
  • the amount of CMC added was 0.2% by mass relative to the dry mass of all the constituent fibers of the thin paper.
  • the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured.
  • a thin paper having a basis weight of 13.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
  • the thin paper produced by the production methods of Examples C1 to C4 is a thin paper having good strength characteristics and excellent liquid permeability.
  • the thin paper produced by the production method of Comparative Examples C1 to C3 was thin paper having inferior strength characteristics and poor liquid permeability as compared with the thin paper produced by the production methods of Examples C1 to C4. .
  • NBKP manufactured by Cariboo Pulp and Paper Company, trade name “Cariboo”, manufactured in North America
  • PAM sodium salt dry paper strength enhancer, manufactured by MT Aqua Polymer, trade name “Akofloc A95”
  • Akofloc A95 dry paper strength enhancer
  • the thin paper (crepe paper) thus obtained was designated as a high liquid permeability paper I.
  • a thin paper (crepe paper) was produced in the same manner as the high liquid permeability paper I except that the type of pulp (fiber roughness), freeness, and the like were appropriately changed, and designated as high liquid permeability papers II and III, respectively.
  • the high liquid permeability papers II and III are the above-described high liquid permeability paper A, respectively.
  • Nippon Paper Pulp Trading or Itochu Corporation The details of the pulp (NBKP) used in the high liquid permeability papers I to III are as follows (described in ascending order of fiber roughness). These pulps were obtained through Nippon Paper Pulp Trading or Itochu Corporation. -Fiber roughness 0.13mg / m (trade name "Northwood”, manufactured by ConFor) -Fiber roughness 0.15mg / m (Brand name "Cariboo”, Cariboo Pulp and Paper Company) -Fiber roughness 0.18mg / m (trade name "ARAUCO", manufactured by ARAUCO) ⁇ Fiber roughness 0.2mg / m (trade name "Crofton CK", Unifibra)
  • Example D1 An unfolded disposable diaper as shown in FIGS. 6 and 7 was produced and used as a sample of Example D1.
  • the core wrap sheet is composed of the two highly liquid permeable papers I, and the low liquid permeable sheet is not used.
  • As the surface sheet an air-through nonwoven fabric having a basis weight of 25 g / m 2 and comprising synthetic fibers as constituent fibers was used.
  • the air-through nonwoven fabric was composed of a core-sheath type composite fiber (thickness: 2.1 dtex, surface treatment with a surfactant, and liquid permeability) having a core made of polypropylene and a sheath made of linear polyethylene.
  • a composite film in which a porous film having a basis weight of 20 g / m 2 and a spun pond made of polypropylene having a basis weight of 20 g / m 2 are bonded with a 1.5 g / m 2 hot-melt adhesive is used. It was.
  • the porous film constituting the back sheet is obtained by uniformly mixing 100 parts by mass of a linear polyethylene resin having a density of 0.925 g / m 3 with 150 parts by mass of calcium carbonate and 4 parts by mass of an ester compound as a third component. After the inflation molding, the film was uniaxially stretched in the longitudinal direction.
  • NB416 manufactured by Wafer User is used as the hydrophilic fiber
  • Sunwet IM997 manufactured by Sundia is used as the water-absorbing polymer
  • a mixed fiber type absorbent core having a basis weight of 470 g / m 2 was used. The total length in the longitudinal direction of the absorbent core is 360 mm, the total length in the width direction (maximum length) is 110 mm, the basis weight is 470 g / m 2 , the density is 0.17 g / cm 3 , and the thickness under no load is 2.7 mm. Met.
  • Example D1 the core wrap sheet (one sheet disposed on the skin facing surface side of the absorbent core and another sheet disposed on the non-skin facing surface side of the absorbent core) is as shown in Table 6 below. Except for the construction, unfolded disposable diapers were produced in the same manner as in Example D1, and these were used as samples of Examples D2 to D4 and Comparative Example D1.
  • the low liquid permeability sheet I used in Examples and Comparative Examples was a crepe paper having a basis weight of 16 g / m 2 , a density of 0.23 g / cm 3 , and a crepe rate of 10%.
  • the components of the artificial soft stool were bentonite 28.0 g, glycerin 14.0 g, ion-exchanged water 114.1 g, emulgen 130K 0.03% by mass aqueous solution (Kao) 14.2 g, and the viscosity was 300 mPa ⁇ s (A & ⁇ Measured with a day vibration viscometer CJV 5000.
  • a disposable diaper is expanded in a flat shape, and the top sheet is fixed on a horizontal plane with the top sheet facing upward, while pressing with 2 kPa through the top sheet against the center of the absorbent body of the diaper, 40 g of physiological saline Was injected and absorbed, and after 10 minutes from the injection of physiological saline, 40 g of physiological saline was injected and absorbed. This operation is repeated until the total injection amount of the physiological saline reaches 160 g. After the physiological saline is injected, whether or not the physiological saline flows outward from the side along the longitudinal direction of the diaper in the width direction (i.e., side leakage occurs). Whether or not there was) was visually observed.
  • the disposable diaper of each example in which the core wrap sheet opposed to the skin-facing surface of the absorbent core is a specific highly liquid-permeable paper has the core wrap sheet
  • the disposable diaper of the comparative example which is a low liquid permeability sheet
  • the amount of loose stool attached to the skin is small
  • the amount of loose stool absorption is large and the stool absorbability is excellent
  • the side leakage prevention property is also excellent.
  • the disposable diaper of Examples D2 to D4 in which the core wrap sheet disposed opposite to the non-skin facing surface of the absorbent core is a low liquid permeable sheet
  • the entire core wrap sheet is a specific high liquid permeable paper.
  • it is superior in preventing side leakage, and the effectiveness of the combination of such a high liquid permeability paper and a low liquid permeability sheet is clear.

Abstract

This tissue paper is mainly composed of an assembly of two kinds of hydrophilic cellulose fibers that have different fiber coarsenesses, and a paper strengthening agent is added thereto. First pulp having a fiber coarseness of 0.13-0.16 mg/m and second pulp having a fiber coarseness of 0.17-0.20 mg/m are contained as the two kinds of hydrophilic cellulose fibers, and the fiber coarseness difference between the first pulp and the second pulp contained therein is 0.01-0.07 mg/m. The assembly has a freeness of 400-550 ml.

Description

薄葉紙及び薄葉紙の製造方法Thin paper and thin paper manufacturing method
 本発明(後述する第1発明及び第2発明)は薄葉紙に関し、特に、使い捨ておむつや生理用ナプキン等の吸収性物品において、吸収性コアを被覆するコアラップシートとして好適な薄葉紙に関する。また、本発明(後述する第3発明)は、低坪量の薄葉紙の製造方法に関する。また、本発明(後述する第4発明)は、使い捨ておむつや吸収パッド、生理用ナプキン等の吸収性物品に関する。 The present invention (first and second inventions described later) relates to a thin paper, and more particularly to a thin paper suitable as a core wrap sheet for covering an absorbent core in absorbent articles such as disposable diapers and sanitary napkins. Moreover, this invention (3rd invention mentioned later) is related with the manufacturing method of a low basic weight thin paper. Moreover, this invention (4th invention mentioned later) is related with absorbent articles, such as a disposable diaper, an absorption pad, and a sanitary napkin.
 薄葉紙は、比較的低坪量の薄い紙であるが、使用時には破れが生じない程度の紙強度(引張強度等)が要求される。紙強度を向上させる方法として、従来、紙力増強剤を添加する方法が採用されており、例えば特許文献1には、乾燥紙力増強剤及び湿潤紙力増強剤が添加され、引張強度が特定範囲にある家庭用衛生薄葉紙が記載されている。尚、特許文献1に記載の家庭用衛生薄葉紙は、ロールペーパー、ティッシュペーパー、ちり紙等、柔軟性や手触り感等の官能特性が重視される用途に適用されるものであり、特許文献1に開示されている主たる技術は、これらの官能特性と紙強度との両立を図ることを目的としている。 Thin paper is a thin paper with a relatively low basis weight, but requires paper strength (such as tensile strength) that does not tear when used. As a method for improving paper strength, conventionally, a method of adding a paper strength enhancer has been employed. For example, Patent Document 1 includes a dry paper strength enhancer and a wet paper strength enhancer, and the tensile strength is specified. Household hygiene tissue paper in range is described. The household sanitary thin paper described in Patent Document 1 is applied to uses such as roll paper, tissue paper, dust paper, etc. where sensory characteristics such as flexibility and touch feeling are important, and disclosed in Patent Document 1. The main technology that is being used aims to achieve both of these sensory characteristics and paper strength.
 また、紙の構成繊維として、繊維粗度の異なる複数種の親水性セルロース繊維を用いる技術が知られている。繊維粗度は、木材パルプのように、繊維の太さが不均一な繊維において、繊維の太さを表す尺度として用いられるものである。例えば特許文献2には、繊維粗度の異なる2種類の繊維(嵩高性のセルロース繊維、親水性の微細繊維)を主体とし、親水性の微細繊維を厚さ方向の一方の面側に偏在させた吸収紙が記載されている。特許文献2に記載の吸収紙によれば、液透過性に優れる層と液拡散性に優れる層とを厚さ方向に有しているため、液の吸収性に優れるとされている。特許文献2には、特許文献2に記載の吸収紙の使用例として、2枚の該吸収紙の間に吸収性ポリマーが挟持されてなる吸収体が挙げられている。 In addition, a technique using a plurality of types of hydrophilic cellulose fibers having different fiber roughness as a constituent fiber of paper is known. The fiber roughness is used as a scale representing the fiber thickness in a fiber having a nonuniform fiber thickness, such as wood pulp. For example, Patent Document 2 mainly includes two types of fibers having different fiber roughness (bulky cellulose fibers and hydrophilic fine fibers), and the hydrophilic fine fibers are unevenly distributed on one surface side in the thickness direction. Absorbent paper is described. According to the absorbent paper described in Patent Document 2, since it has a layer having excellent liquid permeability and a layer having excellent liquid diffusibility in the thickness direction, it is said that the liquid absorbability is excellent. Patent Document 2 discloses an absorbent body in which an absorbent polymer is sandwiched between two sheets of absorbent paper as an example of use of the absorbent paper described in Patent Document 2.
 また、例えば、使い捨ておむつや生理用ナプキン等の吸収性物品において、吸収性コアを被覆するコアラップシートとして、低坪量の薄葉紙が用いられている。このように、コアラップシートに用いられる薄葉紙には、使用時に体液を吸収性コアにスムーズに移行させるために高い透過性が要求されるとともに、おむつ等の吸収性物品製造時と使用時に破れが生じない程度の紙強度(引張強度等)が要求される。透過性を高めるためには、薄葉紙の坪量を減らし、薄葉紙の密度を低下させる方法が有効であるが、斯かる方法は、薄葉紙の構成繊維数の減少に起因する繊維間結合点の数の減少を招くため、紙強度が低下してしまう。 Also, for example, in absorbent articles such as disposable diapers and sanitary napkins, low basis weight thin paper is used as a core wrap sheet covering the absorbent core. Thus, the thin paper used for the core wrap sheet is required to have high permeability in order to smoothly transfer the body fluid to the absorbent core during use, and is torn during production and use of absorbent articles such as diapers. Paper strength (such as tensile strength) that does not occur is required. In order to increase the permeability, a method of reducing the basis weight of the thin paper and reducing the density of the thin paper is effective. However, such a method can reduce the number of interfiber bonding points due to a decrease in the number of constituent fibers of the thin paper. This causes a decrease, and the paper strength decreases.
 ここで、低坪量の薄葉紙の紙強度(引張強度等)を向上させる手段として、原料パルプをフィブリル化したり、紙力剤の添加量を増加したりすることが知られている。紙力剤の添加に関しては、例えば、特許文献1,特許文献3に記載の技術が知られている。特許文献1,3には、それぞれ、原料パルプのスラリーに、カチオン性ポリマーの湿潤紙力剤やアニオン性ポリマーの乾燥紙力剤を添加する技術が開示されている。 Here, as means for improving the paper strength (tensile strength, etc.) of thin paper with a low basis weight, it is known to fibrillate raw material pulp or increase the amount of paper strength agent added. Regarding the addition of a paper strength agent, for example, techniques described in Patent Document 1 and Patent Document 3 are known. Patent Documents 1 and 3 each disclose a technique of adding a cationic polymer wet paper strength agent or an anionic polymer dry paper strength agent to a raw pulp slurry.
 また、この種の吸収性物品として、液透過性の表面シート、液不透過性の裏面シート及びこれら両シート間に配置された縦長の吸収体を具備し、該吸収体が、木材パルプ等の親水性繊維及び吸水性ポリマーを含む吸収性コアと、該吸収性コアを被覆するコアラップシートとを含んで構成されているものが知られている。コアラップシートは、吸収体の製造時には吸水性ポリマー等の吸収性コア形成材料を受けるためのシートとして働き、製造後には吸収性コアを包んで形状化する役割などを果たす。コアラップシートとしては、従来、薄葉紙、不織布等の透水性シートが用いられている。 Further, as this type of absorbent article, it comprises a liquid-permeable top sheet, a liquid-impermeable back sheet and a vertically long absorbent body disposed between both sheets, and the absorbent body is made of wood pulp or the like. There is known a structure including an absorbent core including a hydrophilic fiber and a water-absorbing polymer, and a core wrap sheet covering the absorbent core. The core wrap sheet serves as a sheet for receiving an absorbent core-forming material such as a water-absorbing polymer at the time of manufacturing the absorbent body, and plays a role of wrapping and shaping the absorbent core after the manufacture. Conventionally, water-permeable sheets such as thin paper and nonwoven fabric are used as the core wrap sheet.
 また従来、吸収性物品においては、軟便の吸収保持性能が問題となっている。具体的には、軟便が表面シートを通過せずに表面シート上に残る、あるいは表面シートを透過した軟便が吸収体により保持されずに表面シート上に逆戻りするといった事態が発生し、肌のかぶれや、煩雑な肌の拭き取り作業をもたらしている。そこで、軟便を速やかに肌から遠ざけると共に、肌から遠い位置に収容保持する性能(軟便等の吸収性)を向上させることを目的として、種々の技術が提案されている。 Conventionally, in absorbent articles, the ability to absorb and retain soft stool has been a problem. Specifically, a situation occurs in which soft stool remains on the surface sheet without passing through the surface sheet, or soft stool that has permeated through the surface sheet returns to the surface sheet without being held by the absorber. And it brings about complicated skin wiping work. Therefore, various techniques have been proposed for the purpose of promptly moving the soft stool away from the skin and improving the performance of accommodating and holding the soft stool at a position far from the skin (absorbability such as soft stool).
 例えば特許文献4には、軟便の吸収性に優れる吸収性物品として、表面シートと吸収体との間に液透過性のセカンドシートを具備し、該吸収体を構成するコアラップシートが、該セカンドシートと該吸収体を構成する吸収性コアとの間に位置し密度が0.01~0.2g/cm3の範囲にある不織布と、該吸収性コアの非肌対向面側を覆うクレープ紙とで構成されているものが記載されている。 For example, in Patent Document 4, a liquid permeable second sheet is provided between a surface sheet and an absorbent body as an absorbent article excellent in soft stool absorbability, and the core wrap sheet constituting the absorbent body is the second article. A non-woven fabric located between the sheet and the absorbent core constituting the absorbent body and having a density in the range of 0.01 to 0.2 g / cm 3 , and a crepe paper covering the non-skin facing side of the absorbent core What is composed of is described.
 また特許文献5には、湿式抄紙法によって得られる吸収性物品用の低拡散性透過紙として、構成繊維どうしが絡み合うことによって作られる細孔の大きさ(細孔直径)やその分布を所定範囲に制御したものが記載されている。特許文献5に記載の低拡散性透過紙は、構成繊維として親水性繊維を含み且つサイズ剤で処理されることで、特定の細孔直径分布を有するようになされており、液体に対して低拡散性及び高透過性を示し、表面シートと吸収体(コアラップシート)との間に配されるサブレイヤーシート(セカンドシート)として有用であるとされている。 Patent Document 5 discloses a predetermined range of pore sizes (pore diameters) and distributions of pores formed by entanglement of constituent fibers as a low-diffusibility transmission paper for absorbent articles obtained by a wet papermaking method. Are controlled. The low-diffusibility transmission paper described in Patent Document 5 includes a hydrophilic fiber as a constituent fiber and is treated with a sizing agent so as to have a specific pore diameter distribution. It exhibits diffusibility and high permeability and is useful as a sub-layer sheet (second sheet) disposed between the top sheet and the absorber (core wrap sheet).
 また、コアラップシートのような比較的低坪量のシートには、高い液透過性を有することに加えて、製造時に破れが生じない程度のシート強度が要求される。シート強度を向上させる方法として、従来、紙力増強剤を添加する方法が採用されており、例えば特許文献1には、乾燥紙力増強剤及び湿潤紙力増強剤が添加され、引張強度が特定範囲にある家庭用衛生薄葉紙が記載されている。尚、特許文献1に記載の家庭用衛生薄葉紙は、ロールペーパー、ティッシュペーパー、ちり紙等、柔軟性や手触り感等の官能特性が重視される用途に適用されるものであり、特許文献1に開示されている主たる技術は、これらの官能特性とシート強度との両立を図ることを目的としている。 Also, a sheet having a relatively low basis weight such as a core wrap sheet is required to have a sheet strength that does not cause tearing during manufacturing in addition to having high liquid permeability. As a method for improving sheet strength, conventionally, a method of adding a paper strength enhancer has been adopted. For example, Patent Literature 1 includes a dry paper strength enhancer and a wet paper strength enhancer, and the tensile strength is specified. Household hygiene tissue paper in range is described. The household sanitary thin paper described in Patent Document 1 is applied to uses such as roll paper, tissue paper, dust paper, etc. where sensory characteristics such as flexibility and touch feeling are important, and disclosed in Patent Document 1. The main technology that is being used aims to achieve both of these sensory characteristics and sheet strength.
特開2005-124884号公報Japanese Patent Laid-Open No. 2005-124484 特開平8-291495号公報JP-A-8-291495 特開2005-344274号公報JP 2005-344274 A 特許4390747号公報Japanese Patent No. 4390747 特開2009-148322号公報JP 2009-148322 A
 使い捨ておむつや生理用ナプキン等の吸収性物品には、液保持性の吸収体を具備するものがあり、該吸収体として、木材パルプや高吸水性樹脂等を含む吸収性コアと、該吸収性コアの外面を被覆するコアラップシートとを含んで構成されているものが知られている。コアラップシートは、吸収体の製造時には木材パルプや高吸水性樹脂等の吸収体形成材料を受けるためのシートとして働き、製造後には吸収性コアを包んで形状化する役割などを果たす。コアラップシートとしては、従来、薄葉紙、不織布等の透水性シートが用いられている。 Some absorbent articles such as disposable diapers and sanitary napkins include a liquid-retaining absorbent, and the absorbent includes an absorbent core containing wood pulp, a superabsorbent resin, and the like. What is comprised including the core wrap sheet | seat which coat | covers the outer surface of a core is known. The core wrap sheet serves as a sheet for receiving an absorber-forming material such as wood pulp or a highly water-absorbent resin during production of the absorbent body, and plays a role of wrapping and shaping the absorbent core after production. Conventionally, water-permeable sheets such as thin paper and nonwoven fabric are used as the core wrap sheet.
 コアラップシートには、製造時の搬送テンションに耐えうるシート強度と、使用時には液を素早く透過させ、コアラップシートの下方に配置された吸収性コアに液を速やかに吸収させる高い液透過性が要求される。液透過性を高めるためには、シートの構成繊維の坪量を減らし、シートの密度を低下させる方法が有効であるが、斯かる方法は、構成繊維数の減少とそれに起因する構成繊維の繊維間結合点の数の減少を招くため、シート強度が低下するおそれがある。コアラップシートのシート強度と液透過性とは二律背反の関係にあり、両者をバランス良く両立させることは難しいのが現状である。 The core wrap sheet has a sheet strength that can withstand the conveyance tension during manufacture, and high liquid permeability that allows liquid to quickly permeate during use and allows the absorbent core disposed under the core wrap sheet to absorb liquid quickly. Required. In order to increase the liquid permeability, a method of reducing the basis weight of the constituent fibers of the sheet and reducing the density of the sheet is effective. However, such a method reduces the number of constituent fibers and the fibers of the constituent fibers resulting therefrom. Since the number of inter-bonding points is reduced, the sheet strength may be reduced. The sheet strength and liquid permeability of the core wrap sheet are in a trade-off relationship, and it is difficult to achieve a good balance between the two.
 また、薄葉紙の原料パルプ繊維のフィブリル化は、紙強度(引張強度等)を向上させることができる一方、透過性の低下を招いてしまう。 Also, the fibrillation of the raw pulp fibers of the thin paper can improve the paper strength (tensile strength, etc.), but also lowers the permeability.
 また、紙力剤の添加を増加させることは、製造工程において、抄紙のメッシュやドライヤーへの原料の張り付きや、排水の汚れを招いてしまい、生産性の低下を招いてしまう。その為、紙力剤の添加の量が限られ、低坪量の薄葉紙の紙強度(引張強度等)を十分に向上させることが難しい。 Further, increasing the addition of the paper strength agent causes sticking of the raw material to the paper mesh and the dryer and contamination of the drainage in the production process, leading to a decrease in productivity. For this reason, the amount of the paper strength agent is limited, and it is difficult to sufficiently improve the paper strength (such as tensile strength) of the low basis weight thin paper.
 また、特許文献1には、原料パルプのスラリーに、カチオン性ポリマーの湿潤紙力剤及びアニオン性ポリマーの乾燥紙力剤を添加する順番について何ら記載されていない。また、特許文献3に記載の技術は、発熱成形体に用いられる抄造成形体に関するものであり、特許文献3には、低坪量の薄葉紙の製造方法に関する技術に関して、何ら記載されていない。 Also, Patent Document 1 does not describe anything about the order of adding the cationic polymer wet paper strength agent and the anionic polymer dry paper strength agent to the raw pulp slurry. Further, the technique described in Patent Document 3 relates to a papermaking molded body used for a heat-generating molded body, and Patent Document 3 does not describe anything about a technique relating to a method for producing a low basis weight thin paper.
 また、特許文献4に記載のコアラップシートは、吸収性コアの肌対向面に対向配置される部位が、合成繊維を構成繊維とする不織布で構成されており、構成繊維どうしが熱融着で固定されている。そのため、合成繊維(構成繊維)が親水化処理されたものであっても、固形物を含む軟便がコアラップシートを透過するときに目詰まりが発生する等の不都合が生じるおそれがあり、繊維間距離を比較的長くする等して斯かる不都合を防止しないと、軟便の吸収性が低下するおそれがある。しかし、コアラップシートとしての不織布における繊維間距離を長くすると、吸収性コアから脱落した吸水性ポリマー等の吸収性コア形成材料が、不織布を透過して外部に漏れ出すおそれがあり、不織布製のコアラップシートは、軟便の吸収性の向上と吸収性コア形成材料の漏れ出し防止との両立が困難であった。特許文献1に記載の吸収性物品は、それを解決するために吸収体を多層化し、上層に吸収性ポリマーを含まない層とすることで、吸収性ポリマーの脱落を防止している。 Moreover, as for the core wrap sheet | seat of patent document 4, the site | part opposingly arranged by the skin opposing surface of an absorptive core is comprised with the nonwoven fabric which uses synthetic fiber as a constituent fiber, and constituent fibers are heat-seal | fused. It is fixed. Therefore, even if the synthetic fiber (constituent fiber) is hydrophilized, there is a possibility that inconveniences such as clogging occur when loose stool containing solid matter passes through the core wrap sheet, Unless such a disadvantage is prevented by making the distance relatively long, the absorbability of soft stool may be lowered. However, if the interfiber distance in the nonwoven fabric as the core wrap sheet is increased, the absorbent core-forming material such as the water-absorbing polymer that has fallen off from the absorbent core may pass through the nonwoven fabric and leak to the outside. In the core wrap sheet, it has been difficult to achieve both improvement of soft stool absorbability and prevention of leakage of the absorbent core forming material. In order to solve this problem, the absorbent article described in Patent Document 1 has a multilayered absorbent body and prevents the absorbent polymer from falling off by forming a layer that does not contain the absorbent polymer in the upper layer.
 また、コアラップシートの液透過性を高めるためには、シートの構成繊維の坪量を減らし、シートの密度を低下させる方法が有効であるが、斯かる方法は、構成繊維数の減少とそれに起因する構成繊維の繊維間結合点の数の減少を招くため、シート強度が低下するおそれがある。コアラップシートのシート強度が低下すると、製造時にコアラップシートが損傷を受け、使用時にその損傷部分から吸収性コア形成材料が漏れ出すおそれがある。コアラップシートのシート強度と液透過性とは二律背反の関係にあり、両者をバランス良く両立させることは難しいのが現状である。特許文献1、4及び5には、斯かる課題を解決する有効な手段は開示されていない。 In order to increase the liquid permeability of the core wrap sheet, a method of reducing the basis weight of the constituent fibers of the sheet and reducing the density of the sheet is effective. Since the number of inter-fiber bonding points of the constituent fibers is reduced, the sheet strength may be reduced. When the sheet strength of the core wrap sheet decreases, the core wrap sheet may be damaged during manufacture, and the absorbent core forming material may leak from the damaged portion during use. The sheet strength and liquid permeability of the core wrap sheet are in a trade-off relationship, and it is difficult to achieve a good balance between the two. Patent Documents 1, 4 and 5 do not disclose effective means for solving such problems.
 本発明者らは、紙における強度と液透過性との関係について種々検討した結果、紙の構成繊維として、繊維径が相対的に大きいパルプ(太いパルプ)と相対的に小さいパルプ(細いパルプ)とを用いることで、強度の低下を最小限に抑えつつ、液透過性を向上させることができることを知見し、更に検討した結果、繊維径の指標となる繊維粗度がそれぞれ特定範囲にある2種のパルプ(親水性セルロース繊維)で、両パルプの繊維粗度の差が特定範囲にあるものを紙の構成繊維として用いることが、強度特性と液透過性との両立に有効であることを知見した(第1の知見)。 As a result of various investigations on the relationship between strength and liquid permeability in paper, the present inventors have found that, as a constituent fiber of paper, pulp having a relatively large fiber diameter (thick pulp) and relatively small pulp (thin pulp) As a result of further finding out that the liquid permeability can be improved while minimizing the decrease in strength, the fiber roughness as an index of the fiber diameter is in a specific range. It is effective for coexistence of strength characteristics and liquid permeability to use a kind of pulp (hydrophilic cellulose fiber) whose difference in fiber roughness between both pulps is in a specific range as a constituent fiber of paper. It was found (first finding).
 本発明(第1発明)は、前記第1の知見に基づきなされたもので、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし、紙力増強剤が添加されている薄葉紙であって、前記2種の親水性セルロース繊維として、繊維粗度が0.13~0.16mg/mの第1パルプと繊維粗度が0.17~0.20mg/mの第2パルプとが含有されており、含有されている第1パルプと第2パルプとの繊維粗度の差が0.01~0.07mg/mであり、前記集合体のフリーネスが400~550mlである薄葉紙に関する。 The present invention (the first invention) is based on the first knowledge, and is a thin paper mainly composed of an aggregate of two kinds of hydrophilic cellulose fibers having different fiber roughnesses and to which a paper strength enhancer is added. The two kinds of hydrophilic cellulose fibers include a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m. A thin paper having a fiber roughness difference of 0.01 to 0.07 mg / m and a freeness of the aggregate of 400 to 550 ml. .
 また、本発明者らは、紙における強度と液透過性との関係について種々検討した結果、紙の低坪量化(低密度化)によって液透過性を向上させた場合、その低坪量化によって懸念される強度の低下は、構成繊維としてフィブリル化が進行した特定のパルプを用い且つ2種以上の紙力増強剤を併用することで防止し得ることを知見した(第2の知見)。 In addition, as a result of various investigations on the relationship between strength and liquid permeability in paper, the present inventors have found that when liquid permeability is improved by lowering paper basis weight (lower density), the lower basis weight is a concern. It was found that a decrease in strength can be prevented by using a specific pulp in which fibrillation has progressed as a constituent fiber and using two or more paper strength enhancers in combination (second finding).
 本発明(第2発明)は、前記第2の知見に基づきなされたもので、フリーネスが400~550mlである針葉樹晒クラフトパルプを主体とし、2種以上の紙力増強剤が添加されており、坪量が10~14.5g/m2、密度が0.05~0.2g/cm3、クレープ率が5~30%である薄葉紙に関する。 The present invention (second invention) was made on the basis of the second finding, mainly composed of softwood bleached kraft pulp having a freeness of 400 to 550 ml, and two or more kinds of paper strength enhancers added thereto, The present invention relates to a thin paper having a basis weight of 10 to 14.5 g / m 2 , a density of 0.05 to 0.2 g / cm 3 and a crepe rate of 5 to 30%.
 本発明(第3発明)は、針葉樹晒クラフトパルプを含む原料から調整された原料スラリーを抄紙し乾燥して30g/m2以下の坪量の薄葉紙を製造する薄葉紙の製造方法であって、前記原料スラリーとして、前記針葉樹晒クラフトパルプのパルプスラリーに、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した後、以下に示す低分子乾燥紙力剤(b)及び高分子乾燥紙力剤(c)を同時に添加して、又は低分子乾燥紙力剤(b)を添加した後に更に高分子乾燥紙力剤(c)を添加して調整された原料スラリーを用いる薄葉紙の製造方法に関する。
 (b)重量平均分子量(Mw)が0.2~50万のアニオン性基を有する低分子アニオンポリマー
 (c)重量平均分子量(Mw)が500~3,000万のアニオン性基を有する高分子アニオンポリマー
The present invention (third invention) is a thin paper production method for producing a thin paper having a basis weight of 30 g / m 2 or less by papermaking and drying a raw material slurry prepared from a raw material containing softwood bleached kraft pulp, After adding the wet paper strength agent (a) made of a cationic polymer having a cationic group to the pulp slurry of the softwood bleached kraft pulp as a raw material slurry, the following low molecular dry paper strength agent (b) and polymer A thin paper using a raw material slurry prepared by adding a dry paper strength agent (c) at the same time or adding a low molecular weight dry strength agent (b) and then adding a polymer dry strength agent (c). It relates to a manufacturing method.
(B) Low molecular weight anionic polymer having an anionic group having a weight average molecular weight (Mw) of 0.2 to 500,000 (c) Polymer having an anionic group having a weight average molecular weight (Mw) of 500 to 30 million Anionic polymer
 本発明(第4発明)は、吸収体を具備し、該吸収体が、親水性繊維及び吸水性ポリマーを含み且つ一方向に長い形状を有する吸収性コアと、該吸収性コアを被覆するコアラップシートとを含んで構成されている吸収性物品であって、前記コアラップシートは、前記吸収性コアの肌対向面に対向配置される高液透過性紙を含んでおり、前記高液透過性紙は、坪量が8~20g/m2、密度が0.05~0.2g/cm3、下記方法で測定される液透過時間が600秒以下であり、且つ製造時の搬送方向の乾燥引張強度が600cN/25mm以上である吸収性物品に関する。 The present invention (fourth invention) comprises an absorbent core, the absorbent core comprising hydrophilic fibers and a water-absorbing polymer and having a shape that is long in one direction, and a core that covers the absorbent core An absorbent article configured to include a wrap sheet, wherein the core wrap sheet includes high liquid permeability paper disposed to face a skin facing surface of the absorbent core, and the high liquid permeability The paper has a basis weight of 8 to 20 g / m 2 , a density of 0.05 to 0.2 g / cm 3 , a liquid permeation time measured by the following method of 600 seconds or less, and in the transport direction during production. The present invention relates to an absorbent article having a dry tensile strength of 600 cN / 25 mm or more.
<液透過時間の測定方法>
 上下端が開口している内径35mmの2本の円筒を、両円筒の軸を一致させて上下に配し、測定対象のシートを上下の円筒間に挟み込み、その状態で上側の円筒内に、グリセリンとイオン交換水とを、前者:後者=94:6の質量比で混合してなる高粘性液(粘度290mPa・s)を10g±1g供給する。供給された高粘性液は、測定対象のシートを透過するか又は測定対象のシートに吸収されて上側の円筒内からなくなる。高粘性液の供給開始時から、高粘性液の液面が測定対象のシートの表面と同位置になるまでの時間を測定し、その時間を液透過時間とする。
<Measurement method of liquid permeation time>
Two cylinders with an inner diameter of 35 mm that open at the top and bottom are arranged vertically with the axes of both cylinders aligned, the sheet to be measured is sandwiched between the upper and lower cylinders, and in that state, in the upper cylinder, 10 g ± 1 g of a highly viscous liquid (viscosity 290 mPa · s) obtained by mixing glycerin and ion-exchanged water at a mass ratio of the former: the latter = 94: 6 is supplied. The supplied highly viscous liquid passes through the measurement target sheet or is absorbed by the measurement target sheet and disappears from the upper cylinder. The time from when the supply of the high-viscosity liquid is started until the liquid surface of the high-viscosity liquid reaches the same position as the surface of the sheet to be measured is measured, and the time is defined as the liquid permeation time.
 本発明(第1発明及び第2発明)によれば、強度特性が良好で液透過性に優れた薄葉紙が提供される。 According to the present invention (the first and second inventions), a thin paper having good strength characteristics and excellent liquid permeability is provided.
 本発明(第3発明)の製造方法によれば、透過性が高く、おむつ等の吸収性物品製造時と使用時に破れが生じない程度の紙強度(引張強度等)を有する低坪量の薄葉紙を製造することができる。 According to the manufacturing method of the present invention (third invention), a low basis weight thin paper having high permeability and having a paper strength (such as tensile strength) that does not cause tearing during the manufacture and use of absorbent articles such as diapers. Can be manufactured.
 本発明(第4発明)によれば、軟便等の高粘性液の吸収性に優れ、吸収性コア形成材料の漏れ出しが防止された吸収性物品が提供される。 According to the present invention (fourth invention), there is provided an absorbent article that is excellent in absorbability of high-viscosity liquids such as soft stool and in which leakage of the absorbent core-forming material is prevented.
図1は、液透過時間の測定方法の説明図である。FIG. 1 is an explanatory diagram of a method for measuring the liquid permeation time. 図2は、本発明(第3発明)の製造方法を実施するために用いられる好ましい製造装置を示す概略図である。FIG. 2 is a schematic view showing a preferred production apparatus used for carrying out the production method of the present invention (third invention). 図3は、本発明(第3発明)の製造方法を実施するために用いられる好ましい他の製造装置を示す概略図である。FIG. 3 is a schematic view showing another preferred production apparatus used for carrying out the production method of the present invention (third invention). 図4は、本発明(第3発明)の製造方法を実施するために用いられる好ましい他の製造装置を示す概略図である。FIG. 4 is a schematic view showing another preferred production apparatus used for carrying out the production method of the present invention (third invention). 図5は、本発明(第3発明)の製造方法を実施するために用いられる好ましい他の製造装置を示す概略図である。FIG. 5 is a schematic view showing another preferred production apparatus used for carrying out the production method of the present invention (third invention). 図6は、本発明(第4発明)の吸収性物品の一実施形態である使い捨ておむつを示す図であり、各部の弾性部材を伸張させて平面状に拡げた状態を模式的に示す肌対向面側(表面シート側)の平面図である。FIG. 6 is a view showing a disposable diaper that is an embodiment of the absorbent article of the present invention (fourth invention), and schematically illustrates a state in which the elastic member of each part is stretched and expanded in a planar shape. It is a top view of the surface side (surface sheet side). 図7は、図6のI-I線断面(幅方向の断面)を模式的に示す断面図である。7 is a cross-sectional view schematically showing a cross section taken along the line II (cross section in the width direction) of FIG. 図8は、本発明(第4発明)の吸収性物品の他の実施形態における吸収体の幅方向の断面を模式的に示す断面図である。FIG. 8: is sectional drawing which shows typically the cross section of the width direction of the absorber in other embodiment of the absorbent article of this invention (4th invention).
 本発明(第1発明及び第2発明)は、強度特性が良好で液透過性に優れた薄葉紙に関する。 The present invention (first and second inventions) relates to a thin paper having good strength characteristics and excellent liquid permeability.
 本発明(第3発明)は、二律背反の関係にある透過性及び紙強度(引張強度等)の両者をバランス良く両立できる薄葉紙の製造方法に関する。 The present invention (third invention) relates to a method for producing thin paper that can balance both the transparency and paper strength (tensile strength, etc.) in a trade-off relationship.
 本発明(第4発明)は、軟便等の高粘性液の吸収性に優れ、吸収性コア形成材料の漏れ出しが防止された吸収性物品に関する。 The present invention (fourth invention) relates to an absorbent article which is excellent in absorbability of a highly viscous liquid such as soft stool and in which leakage of the absorbent core-forming material is prevented.
 以下、本発明(第1発明)の薄葉紙について詳細に説明する。本発明(第1発明)の薄葉紙は、繊維粗度の異なる2種の親水性セルロース繊維の集合体を必須成分として含有している。繊維粗度は、木材パルプのように、繊維の太さが不均一な繊維において、繊維の太さを表す尺度として用いられるものであり、後述するように市販の繊維粗度計を用いて測定される。即ち、本発明の薄葉紙は、太さの異なる2種の親水性セルロース繊維の集合体を含んでおり、これにより強度特性と液透過性との両立を図っている。 Hereinafter, the thin paper of the present invention (first invention) will be described in detail. The thin paper of the present invention (first invention) contains an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness as an essential component. Fiber roughness is used as a measure of fiber thickness in fibers with uneven fiber thickness, such as wood pulp, and is measured using a commercially available fiber roughness meter as described later. Is done. That is, the thin paper of the present invention includes an aggregate of two types of hydrophilic cellulose fibers having different thicknesses, thereby achieving both strength characteristics and liquid permeability.
 本発明(第1発明)の薄葉紙には、前記2種の親水性セルロース繊維として、繊維粗度が0.13~0.16mg/m、好ましくは0.135~0.155mg/m、更に好ましくは0.14~0.15mg/mである第1パルプと、繊維粗度が0.17~0.20mg/m、好ましくは0.175~0.195mg/m、更に好ましくは0.18~0.19mg/mである第2パルプとが含有されており、第2パルプの方が第1パルプよりも太い。このように、紙の構成繊維の一部として相対的に太いパルプを用いることで、紙の地合が粗くなり、液透過性が向上する。尚、パルプは、木材、じん皮、葉等の植物繊維を化学的あるいは機械的方法によって単繊維化したものである。 The thin paper of the present invention (first invention) has a fiber roughness of 0.13 to 0.16 mg / m, preferably 0.135 to 0.155 mg / m, more preferably as the two types of hydrophilic cellulose fibers. Is 0.14 to 0.15 mg / m of the first pulp, and the fiber roughness is 0.17 to 0.20 mg / m, preferably 0.175 to 0.195 mg / m, more preferably 0.18 to 0.18 mg / m. The second pulp is 0.19 mg / m, and the second pulp is thicker than the first pulp. Thus, by using a relatively thick pulp as a part of the constituent fibers of the paper, the paper becomes rough and the liquid permeability is improved. Pulp is obtained by converting plant fibers such as wood, kidneys and leaves into single fibers by a chemical or mechanical method.
 そして、薄葉紙に含有されている第1パルプと第2パルプとの繊維粗度の差が、0.01~0.07mg/m、好ましくは0.02~0.06mg/m、更に好ましくは0.03~0.05mg/mである。両パルプの繊維粗度の差が0.01mg/m未満では、液透過性の向上効果に乏しく、繊維粗度の差が0.07mg/m超では、紙の強度が著しく低下するおそれがある。 The difference in fiber roughness between the first pulp and the second pulp contained in the thin paper is 0.01 to 0.07 mg / m, preferably 0.02 to 0.06 mg / m, and more preferably 0. 0.03 to 0.05 mg / m. If the difference in fiber roughness between the two pulps is less than 0.01 mg / m, the effect of improving the liquid permeability is poor, and if the difference in fiber roughness exceeds 0.07 mg / m, the strength of the paper may be significantly reduced. .
 第1パルプ及び第2パルプそれぞれの平均繊維長は、好ましくは2~3mm、更に好ましくは2.2~2.8mmである。両パルプの平均繊維長がそれぞれ前記範囲にあることで、繊維どうしの交絡のバランスが良く、薄葉紙の地合も良いという効果が奏される。両パルプの平均繊維長は同じであっても良く、異なっていても良い。繊維粗度及び平均繊維長は、それぞれ、次のようにして測定される。 The average fiber length of each of the first pulp and the second pulp is preferably 2 to 3 mm, more preferably 2.2 to 2.8 mm. When the average fiber lengths of both pulps are in the above-mentioned ranges, the effects of good balance between fibers and good formation of thin paper are obtained. The average fiber length of both pulps may be the same or different. The fiber roughness and average fiber length are each measured as follows.
<繊維粗度及び平均繊維長の測定>
 繊維粗度計FS-200(KAJAANI ELECTRONICS LTD.製)を用いて測定する。測定対象の繊維(パルプ)は未叩解のものとする。先ず、測定対象の繊維の真の重量を求めるために、該繊維を真空乾燥機内にて100℃で1時間乾燥させ、繊維中に存在している水分を除去する。こうして乾燥させた繊維から1gを正確に量りとる(誤差±0.1mg)。次に、量り取った繊維を、該繊維に極力損傷を与えないように注意しつつ、前記繊維粗度計に付属のミキサーで150mlの水中に完全に離解させ、これを全量が5000mlになるまで水で薄めて希釈液を得た。得られた希釈液から50mlを正確に量りとってこれを繊維粗度測定溶液とし、前記繊維粗度計の操作手順に従って目的とする繊維粗度及び平均繊維長をそれぞれ算出する。尚、平均繊維長の算出には、前記操作手順に基づき下記式により計算された値を用いる。
<Measurement of fiber roughness and average fiber length>
It is measured using a fiber roughness meter FS-200 (manufactured by KAJAANI ELECTRONICS LTD.). The fiber (pulp) to be measured shall be unbeaten. First, in order to obtain the true weight of the fiber to be measured, the fiber is dried in a vacuum dryer at 100 ° C. for 1 hour to remove moisture present in the fiber. 1 g is accurately weighed from the fibers thus dried (error ± 0.1 mg). Next, while taking care not to damage the fibers as much as possible, the weighed fibers are completely disaggregated in 150 ml of water with the mixer attached to the fiber roughness meter, and this is until the total amount reaches 5000 ml. Diluted with water to obtain a diluted solution. 50 ml is accurately weighed from the diluted solution thus obtained to make a fiber roughness measurement solution, and the target fiber roughness and average fiber length are calculated according to the operation procedure of the fiber roughness meter. In addition, the value calculated by the following formula based on the said operation procedure is used for calculation of average fiber length.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1パルプと第2パルプとの含有質量比(第1パルプ/第2パルプ)は、強度特性と液透過性とのバランスの観点から、好ましくは3/7~7/3、更に好ましくは4/6~6/4である。相対的に繊維径の太い第2パルプが少なすぎると、十分な液透過性が得られないおそれがあり、逆に第2パルプが多すぎると、薄葉紙の強度の急激な低下が生じるおそれがある。 The content ratio of the first pulp to the second pulp (first pulp / second pulp) is preferably 3/7 to 7/3, more preferably 4 from the viewpoint of the balance between strength characteristics and liquid permeability. / 6 to 6/4. If the second pulp having a relatively large fiber diameter is too small, sufficient liquid permeability may not be obtained. Conversely, if the second pulp is too large, the strength of the thin paper may be drastically reduced. .
 第1パルプ及び第2パルプ(親水性セルロース繊維)としては、繊維粗度が前記範囲にあり且つ親水性表面を有する繊維であって、その湿潤状態において、繊維どうしが互いに高い自由度を有するシートを形成できるものであれば、特に制限無く用いることができる。そのような親水性セルロース繊維の例には、針葉樹晒クラフトパルプ(NBKP)、広葉樹晒クラフトパルプ(LBKP)等の木材パルプや木綿パルプ、ワラパルプ等の非木材パルプ等の天然セルロース繊維;レーヨン、キュプラ等の再生セルロース繊維;ポリビニルアルコール繊維、ポリアクリロニトリル繊維等の親水性合成繊維;ポリエチレンテレフタレート(PET)繊維、ポリエチレン(PE)繊維、ポリプロピレン(PP)繊維、ポリエステル繊維等の合成繊維を界面活性剤により親水化処理したもの等が挙げられ、これらの1種を単独で又は2種以上を混合して用いることができる。 The first pulp and the second pulp (hydrophilic cellulose fibers) are fibers having a fiber roughness in the above-mentioned range and having a hydrophilic surface, and the fibers have a high degree of freedom between each other in the wet state. If it can form, it can use without a restriction | limiting especially. Examples of such hydrophilic cellulose fibers include natural cellulose fibers such as wood pulp such as softwood bleached kraft pulp (NBKP) and hardwood bleached kraft pulp (LBKP), and non-wood pulp such as cotton pulp and straw pulp; rayon, cupra Recycled cellulose fibers such as: hydrophilic synthetic fibers such as polyvinyl alcohol fibers and polyacrylonitrile fibers; synthetic fibers such as polyethylene terephthalate (PET) fibers, polyethylene (PE) fibers, polypropylene (PP) fibers, and polyester fibers with surfactants The thing etc. which carried out the hydrophilization process are mentioned, These 1 type can be used individually or in mixture of 2 or more types.
 これらの親水性セルロース繊維の中でも、特にNBKPが好ましく、第1パルプ及び第2パルプは、それぞれ、NBKPが好ましい。また、本発明(第1発明)で用いるNBKPとしては、この種の紙において通常用いられるNBKPを特に制限無く用いることができる。NBKPとして、パルプの漂白に塩素化合物を使用しないECF(エレメンタリー・クロリンフリー)漂白パルプやTCF(トータル・クロリンフリー)漂白パルプを使用しても良い。 Among these hydrophilic cellulose fibers, NBKP is particularly preferable, and the first pulp and the second pulp are each preferably NBKP. In addition, as NBKP used in the present invention (first invention), NBKP that is usually used in this type of paper can be used without any particular limitation. As NBKP, ECF (elementary chlorin-free) bleached pulp or TCF (total chlorin-free) bleached pulp that does not use a chlorine compound for pulp bleaching may be used.
 本発明(第1発明)の薄葉紙は、繊維粗度の異なる2種の親水性セルロース繊維(第1パルプ及び第2パルプ)の集合体を主体としている。ここで、「主体としている」とは、第1パルプ及び第2パルプの含有率が50質量%以上であることを意味する。該含有率は、強度特性と液透過性との両立を図る観点から、好ましくは70~100質量%、更に好ましくは80~100質量%である。 The thin paper of the present invention (first invention) mainly comprises an aggregate of two types of hydrophilic cellulose fibers (first pulp and second pulp) having different fiber roughness. Here, “mainly” means that the contents of the first pulp and the second pulp are 50% by mass or more. The content is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of achieving both strength characteristics and liquid permeability.
 本発明(第1発明)においては、前記2種の親水性セルロース繊維(第1パルプ及び第2パルプ)の集合体のフリーネスを400~550mlに設定している。即ち、第1パルプ及び第2パルプそれぞれのフリーネスは400~550mlの範囲にある。フリーネスは、JIS P8121に規定するカナダ標準ろ水度(C.S.F.)で示される値であり、パルプの叩解(水の存在下でパルプを機械的に叩き、磨砕する処理)の度合いを示す値である。通常、フリーネスの値が小さいほど、叩解の度合いが強く、叩解による繊維の損傷が大きくてフィブリル化が進行している。フリーネスが前記範囲にある繊維は、フィブリル化が進行しているため繊維どうしが絡み合い易く、そのため、例えば液透過性の向上の観点から薄葉紙の低坪量化(低密度化)を図ることによって構成繊維の繊維間結合点の数が減少しても、各繊維間結合の強度は、フリーネスが550mlを超え相対的にフィブリル化が進行していない繊維に比して、高い。従って、フリーネスが400~550mlである繊維の集合体を主体とする薄葉紙は、良好な強度特性を有し得る。 In the present invention (first invention), the freeness of the aggregate of the two types of hydrophilic cellulose fibers (first pulp and second pulp) is set to 400 to 550 ml. That is, the freeness of each of the first pulp and the second pulp is in the range of 400 to 550 ml. Freeness is a value indicated by Canadian Standard Freeness (CSF) specified in JIS P8121, and is a value of pulp beating (a process of mechanically tapping and grinding pulp in the presence of water). It is a value indicating the degree. Usually, the smaller the freeness value, the stronger the degree of beating, the greater the damage of the fibers due to beating, and the more fibrillation proceeds. Fibers having a freeness in the above range are easily entangled with each other because fibrillation has progressed. For this reason, for example, from the viewpoint of improving liquid permeability, the fibers are made by reducing the basis weight (reducing density) of the thin paper. Even if the number of interfiber bonding points is reduced, the strength of each interfiber bond is higher than that of fibers in which the freeness exceeds 550 ml and the fibrillation has not progressed relatively. Accordingly, a thin paper mainly composed of an aggregate of fibers having a freeness of 400 to 550 ml can have good strength characteristics.
 本発明(第1発明)で用いる2種の親水性セルロース繊維の集合体のフリーネスは、好ましくは450~525ml、更に好ましくは475~510mlである。フリーネスが400ml未満の場合は、繊維の絡み合いによる強度改善効果は飽和しており、また、繊維の切断が促進され、透過時間が遅くなるおそれがある。繊維の集合体の叩解は、繊維の集合体を構成する各親水性セルロース繊維(第1パルプ及び第2パルプ)を混合分散させた紙料(スラリー)に対して、ビーダー、ディスクリファイナー等の公知の叩解機を用いて常法に従って実施することができる。 The freeness of the aggregate of the two types of hydrophilic cellulose fibers used in the present invention (first invention) is preferably 450 to 525 ml, more preferably 475 to 510 ml. When the freeness is less than 400 ml, the strength improvement effect due to the entanglement of the fibers is saturated, and the fiber cutting is promoted, and the permeation time may be delayed. The beating of the fiber aggregate is a known method such as a beader or a disc refiner for a stock (slurry) in which each hydrophilic cellulose fiber (first pulp and second pulp) constituting the fiber aggregate is mixed and dispersed. This can be carried out according to a conventional method using a beating machine.
 本発明(第1発明)の薄葉紙は、第1パルプ及び第2パルプ以外の他の繊維を含んでいても良く、他の繊維は、両パルプの如き親水性セルロース繊維でなくても良い。他の繊維としては、例えば、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)等の木材パルプ;楮、三椏、雁皮等の靱皮繊維;藁、竹、ケナフ、麻等の非木材パルプ;ポリエステル繊維、レーヨン繊維、アクリル繊維等の合成繊維等が挙げられる。これら他の繊維の含有率は、好ましくは20質量%以下である。 The thin paper of the present invention (first invention) may contain fibers other than the first pulp and the second pulp, and the other fibers may not be hydrophilic cellulose fibers such as both pulps. Other fibers include, for example, hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP) and other wood pulp; Non-wood pulp such as kenaf and hemp; synthetic fibers such as polyester fiber, rayon fiber, acrylic fiber, and the like. The content of these other fibers is preferably 20% by mass or less.
 本発明(第1発明)の薄葉紙には、良好な強度特性(引張強度)を得る観点から、紙力増強剤が添加されている。紙力増強剤には、乾燥紙力を向上させる乾燥紙力増強剤と、湿潤紙力を向上させる湿潤紙力増強剤とがあり、何れを用いても良い。特に、乾燥紙力増強剤の1種であるカルボキシメチルセルロース(CMC)及びその塩は、汎用性が高く、繊維どうしの凝集効果も低いため、本発明(第1発明)で好ましく用いられる。即ち、本発明(第1発明)においては、紙力増強剤として、少なくともCMC又はその塩が添加されていることが好ましい。 The paper strength enhancer is added to the thin paper of the present invention (first invention) from the viewpoint of obtaining good strength properties (tensile strength). The paper strength enhancer includes a dry paper strength enhancer that improves the dry paper strength and a wet paper strength enhancer that improves the wet paper strength, either of which may be used. In particular, carboxymethyl cellulose (CMC), which is a kind of dry paper strength enhancer, and a salt thereof are preferably used in the present invention (first invention) because they have high versatility and a low aggregation effect between fibers. That is, in the present invention (first invention), it is preferable that at least CMC or a salt thereof is added as a paper strength enhancer.
 乾燥紙力増強剤としては、従来公知の乾燥紙力増強剤を用いることができ、例えば、CMC及びその塩、ポリアクリルアミド系樹脂及びその塩、カチオン化デンプン、ポリビニルアルコール(PVA)等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。CMCあるいはポリアクリルアミド系樹脂の塩としては、それぞれ、ナトリウム塩が主に用いられる。ポリアクリルアミド系樹脂としては、例えば、カチオン性又はアニオン性ポリアクリルアミド(PAM)が挙げられる。これらの乾燥紙力増強剤の中でも、特にCMC及びその塩、アニオン性PAM及びその塩が好ましい。 As the dry paper strength enhancer, conventionally known dry paper strength enhancers can be used, and examples thereof include CMC and salts thereof, polyacrylamide resins and salts thereof, cationized starch, polyvinyl alcohol (PVA) and the like. These 1 type can be used individually or in combination of 2 or more types. As the salt of CMC or polyacrylamide resin, sodium salt is mainly used. Examples of the polyacrylamide resin include cationic or anionic polyacrylamide (PAM). Among these dry paper strength enhancers, CMC and salts thereof, anionic PAM and salts thereof are particularly preferable.
 湿潤紙力増強剤としては、従来公知の湿潤紙力増強剤を用いることができ、例えば、エポキシ化ポリアミドポリアミン樹脂(PAE)、尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂、ジアルデヒドデンプン、ポリエチレンアミン、メチロール化ポリアミド等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの湿潤紙力増強剤の中でも、特にPAEが好ましい。 As the wet paper strength enhancer, a conventionally known wet paper strength enhancer can be used. For example, epoxidized polyamide polyamine resin (PAE), urea-formalin resin, melamine-formalin resin, dialdehyde starch, polyethyleneamine, Examples include methylolated polyamide, and one of these can be used alone or two or more of them can be used in combination. Among these wet paper strength enhancers, PAE is particularly preferable.
 本発明(第1発明)において2種以上の紙力増強剤を用いる場合、それらの好ましい組み合わせとして、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤が挙げられる。これら計3種類の紙力増強剤のうち、2種の乾燥紙力増強剤としてはCMCの塩及びアニオン性PAMの塩が好ましく、1種の湿潤紙力増強剤としてはPAEが好ましい。 In the present invention (first invention), when two or more kinds of paper strength enhancers are used, a preferable combination thereof includes two dry paper strength enhancers and one wet paper strength enhancer. Of these three types of paper strength enhancers, CMC salts and anionic PAM salts are preferred as the two dry paper strength enhancers, and PAE is preferred as the one wet strength agent.
 また、前記のように、2種の乾燥紙力増強剤としてCMCの塩及びアニオン性PAMの塩を用い、1種の湿潤紙力増強剤としてPAEを用いた場合、アニオン性PAMの塩の重量平均分子量は、800万以上、特に1000万以上、とりわけ1500万以上が好ましく、また、アニオン性PAMの塩の重量平均分子量の上限は、2500万が好ましい。このように特定の3種類の紙力増強剤を用いる場合において、それらのうちの1種であるアニオン性PAMの塩の重量平均分子量が前記範囲(800万以上2500万以下)であれば、アニオン性PAMの塩自体の接着性の発現による薄葉紙の強度向上効果に加えて、CMCの塩の歩留まりの向上による薄葉紙の強度向上効果が得られるため、両強度向上効果によって薄葉紙のより良好な強度特性が得られる。また、アニオン性PAMの塩の重量平均分子量が2500万以下であると、薄葉紙の製造時においてアニオン性PAMの塩の水中での分散性や粘度が比較的低く抑えられるため、ハンドリング性や抄紙機の汚れ防止の点で良い結果が得られる。 In addition, as described above, when the CMC salt and the anionic PAM salt are used as the two dry paper strength enhancers, and the PAE is used as the one wet paper strength enhancer, the weight of the anionic PAM salt is as follows. The average molecular weight is preferably 8 million or more, particularly 10 million or more, particularly preferably 15 million or more, and the upper limit of the weight average molecular weight of the anionic PAM salt is preferably 25 million. Thus, in the case of using three kinds of specific paper strength enhancers, if the weight average molecular weight of the salt of anionic PAM which is one of them is in the above range (8 million to 25 million), an anion In addition to the effect of improving the strength of the thin paper by developing the adhesiveness of the salt of the PAM, the strength improvement effect of the thin paper can be obtained by improving the yield of the salt of the CMC. Is obtained. Also, when the weight average molecular weight of the anionic PAM salt is 25 million or less, the dispersibility and viscosity of the anionic PAM salt in water can be kept relatively low during the manufacture of the thin paper. Good results can be obtained in terms of prevention of dirt.
 本発明(第1発明)の薄葉紙における紙力増強剤の添加量は、薄葉紙の全構成繊維の乾燥質量に対して、好ましくは0.01~1.5質量%、更に好ましくは0.03~1.2質量%である。紙力増強剤の添加量が少なすぎると、引張強度等の強度特性が十分に得られず、紙力増強剤の添加量が多すぎると、薄葉紙の硬化(風合いの低下)の他、薄葉紙の製造時におけるヤンキードライヤーへの紙の張り付きやメッシュドラムへの紙力増強剤の付着等による、薄葉紙の地合の低下を招くおそれがある。 The addition amount of the paper strength enhancer in the thin paper of the present invention (first invention) is preferably 0.01 to 1.5% by weight, more preferably 0.03 to 0.5% by weight based on the dry weight of all the constituent fibers of the thin paper. 1.2% by mass. If the added amount of the paper strength enhancer is too small, sufficient strength properties such as tensile strength cannot be obtained. If the added amount of the paper strength enhancer is excessive, the thin paper is hardened (decrease in texture) and the thin paper There is a possibility that the formation of the thin paper may be deteriorated due to the sticking of the paper to the Yankee dryer or the attachment of the paper strength enhancer to the mesh drum at the time of manufacture.
 また、紙力増強剤として、乾燥紙力増強剤の1種以上と湿潤紙力増強剤の1種以上との組み合わせを用いる場合、乾燥紙力増強剤の総添加質量と湿潤紙力増強剤の総添加質量との比(前者/後者)は、好ましくは0.01~0.5、更に好ましくは0.03~0.35である。 When a combination of one or more dry paper strength enhancers and one or more wet paper strength enhancers is used as the paper strength enhancer, the total added mass of the dry paper strength enhancer and the wet paper strength enhancer The ratio to the total added mass (the former / the latter) is preferably 0.01 to 0.5, more preferably 0.03 to 0.35.
 また、前述したように、乾燥紙力増強剤としてCMCの塩及びアニオン性PAMの塩の2種を用い、湿潤紙力増強剤としてPAEの1種を用いる場合、薄葉紙の全構成繊維の乾燥質量に対する各紙力増強剤の添加量は、CMCの塩が好ましくは0.05~0.5質量%、更に好ましくは0.1~0.3質量%であり、アニオン性PAMの塩が好ましくは0.001~0.1質量%、更に好ましくは0.02~0.05質量%であり、PAEが好ましくは0.5~1.5質量%、更に好ましくは0.6~1.2質量%である。 In addition, as described above, when two kinds of CMC salt and anionic PAM salt are used as the dry paper strength enhancer and one type of PAE is used as the wet paper strength enhancer, the dry mass of all the constituent fibers of the thin paper The amount of each paper strength enhancer added is preferably 0.05 to 0.5% by mass of CMC salt, more preferably 0.1 to 0.3% by mass, and preferably 0 to 0.3% of anionic PAM salt. 0.001 to 0.1% by mass, more preferably 0.02 to 0.05% by mass, and PAE is preferably 0.5 to 1.5% by mass, more preferably 0.6 to 1.2% by mass. It is.
 本発明(第1発明)の薄葉紙は、前述した、第1パルプ及び第2パルプ(親水性セルロース繊維)等の繊維及び紙力増強剤以外の他の成分を含んでいても良い。他の成分としては、例えば、タルク等の填料、染料、色顔料、抗菌剤、pH調整剤、歩留り向上剤、耐水化剤、消泡剤等の一般的に抄紙用原材料や添加物として使用されているものが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。 The thin paper of the present invention (first invention) may contain other components other than the fibers such as the first pulp and the second pulp (hydrophilic cellulose fiber) and the paper strength enhancer described above. As other components, for example, fillers such as talc, dyes, color pigments, antibacterial agents, pH adjusters, yield improvers, water resistance agents, antifoaming agents and the like are generally used as raw materials for papermaking and additives. These can be used, and one of these can be used alone or in combination of two or more.
 本発明(第1発明)の薄葉紙は、公知の湿式抄紙法によって製造することができる。湿式抄紙法は、NBKP等の繊維の水分散液からなる紙料(スラリー)を調製する紙料調製工程と、紙料から繊維を抄いて繊維ウエブとしたものを搬送しながら乾燥する抄紙工程とを有するものである。抄紙工程は、通常、ワイヤーパート、プレスパート、ドライヤーパート、サイズプレス、カレンダパート等に分けられ、順次実施される。前述した乾燥紙力増強剤及び湿潤紙力増強剤は、通常、紙料調整工程において紙料に添加される。通常、湿潤紙力増強剤、乾燥紙力増強剤の順で紙料に添加するが、本発明(第1発明)における紙力増強剤の添加順序はこれに制限されず、添加順序をこれとは逆にしても良く、両者を同時に添加しても良い。湿式抄紙法は、例えば、長網抄紙機、ツインワイヤー抄紙機、オントップ抄紙機、ハイブリッド抄紙機又は丸網抄紙機等の抄紙機を用いて常法に従って実施することができる。 The thin paper of the present invention (first invention) can be produced by a known wet papermaking method. The wet papermaking method includes a stock preparation step for preparing a stock (slurry) made of an aqueous dispersion of fibers such as NBKP, and a paper making step for drying while transporting a fiber made from the stock into a fiber web. It is what has. The paper making process is usually divided into a wire part, a press part, a dryer part, a size press, a calendar part, etc., and is carried out sequentially. The above-mentioned dry paper strength enhancer and wet paper strength enhancer are usually added to the stock in the stock preparation step. Usually, the wet paper strength enhancer and the dry paper strength enhancer are added in the order of the paper strength enhancer. However, the order of addition of the paper strength enhancer in the present invention (first invention) is not limited to this, and the order of addition is as follows. May be reversed, or both may be added simultaneously. The wet papermaking method can be carried out according to a conventional method using a paper machine such as a long paper machine, a twin wire paper machine, an on-top paper machine, a hybrid paper machine, or a round paper machine.
 本発明(第1発明)の薄葉紙の坪量は、液透過性の向上の観点から、比較的低く設定されることが好ましく、具体的には、10~20g/m2、特に11~16g/m2、とりわけ12~14g/m2が好ましい。坪量が低いと紙力の低下が懸念されるが、本発明(第1発明)では、前述したように、構成繊維の一部として相対的に繊維粗度の小さい(繊維径の細い)第1パルプを用い、且つ2種の繊維(第1パルプと第2パルプ)の集合体のフリーネスを特定範囲に設定し、更に紙力増強剤を併用することで、斯かる懸念を払拭している。薄葉紙の坪量が10g/m2未満では、紙力が著しく低下するおそれがあり、また、薄葉紙の坪量が20g/m2超では、液透過性の向上効果に乏しいおそれがある。 The basis weight of the thin paper of the present invention (first invention) is preferably set to be relatively low from the viewpoint of improving liquid permeability, specifically 10 to 20 g / m 2 , particularly 11 to 16 g / m 2 . m 2 , especially 12 to 14 g / m 2 is preferred. If the basis weight is low, there is a concern about a decrease in paper strength. However, in the present invention (first invention), as described above, as a part of the constituent fibers, the fiber roughness is relatively small (the fiber diameter is thin). By using 1 pulp and setting the freeness of the aggregate of two types of fibers (first pulp and second pulp) within a specific range, and further using a paper strength enhancer, such concerns are eliminated. . If the basis weight of the thin paper is less than 10 g / m 2 , the paper strength may be remarkably reduced, and if the basis weight of the thin paper exceeds 20 g / m 2 , the effect of improving the liquid permeability may be poor.
 同様の観点から、本発明(第1発明)の薄葉紙の密度は、好ましくは0.05~0.2g/cm3、更に好ましくは0.1~0.2g/cm3である。 From the same viewpoint, the density of the thin paper of the present invention (first invention) is preferably 0.05 to 0.2 g / cm 3 , more preferably 0.1 to 0.2 g / cm 3 .
 薄葉紙の坪量は、次のようにして測定される。JIS P8111の条件にてサンプル(薄葉紙)の調湿を行った後、サンプルから10cm四方(面積100cm2)の測定片を切り出し、該測定片の重量を少数点以下2桁の天秤にて測定し、その測定値を面積で除して該測定片の坪量を算出する。サンプルから切り出した10枚の測定片について、前記手順に従って坪量を算出し、それらの平均値をサンプルの坪量とする。 The basis weight of the thin paper is measured as follows. After conditioning the sample (thin paper) under the conditions of JIS P8111, a 10 cm square (area 100 cm 2 ) measurement piece was cut out from the sample, and the weight of the measurement piece was measured with a two-digit balance below the decimal point. The basis weight of the measurement piece is calculated by dividing the measured value by the area. About 10 measurement pieces cut out from the sample, the basis weight is calculated according to the above procedure, and the average value thereof is taken as the basis weight of the sample.
 また、薄葉紙の密度は、次のようにして測定される。20cm四方のサンプル(薄葉紙)を10枚重ねて積層体とし、該積層体を液体窒素で冷却固化させた後、カッターで該積層体の真ん中付近を切断する。そして、10枚のサンプルのうち、カッターによる切断で生じた断面にせん断がかかっていないものを選択し、選択したサンプルの厚みを光学顕微鏡により測定する。尚、サンプルの厚みは、当該サンプルに後述するクレープ等の凹凸がある場合は、その凹凸部における最底部から最上部までの長さ(見掛け厚み)ではなく、構成繊維が堆積している部分の長さ(実質厚み)である。こうして厚みを測定した20cm四方のサンプルの重量Wを、小数点以下2桁の天秤を用い測定する。目的とする密度は、サンプルの重量Wを次式により算出したサンプルの体積Vで除して(即ちW/Vにより)算出する。次式中、Tはサンプルの厚み(cm)、Aはサンプルのクレープ率(%)、Bはサンプルの1辺の長さ(20cm)である。クレープ率は後述する測定方法によって測定される。測定対象の薄葉紙がクレープを有していない場合(クレープ率が0%の場合)、次式においてA=0とする。 V={T×B×B×(100+A)/100} Also, the density of thin paper is measured as follows. 10 sheets of 20 cm square samples (thin paper) are stacked to form a laminated body, and after cooling and solidifying the laminated body with liquid nitrogen, the vicinity of the center of the laminated body is cut with a cutter. Then, of the 10 samples, one having no shear applied to the cross section generated by cutting with the cutter is selected, and the thickness of the selected sample is measured with an optical microscope. In addition, the thickness of the sample is not the length (apparent thickness) from the bottom to the top of the concavo-convex part when the sample has concavo-convex parts such as crepes described later, but the part where the constituent fibers are deposited Length (substantial thickness). The weight W of the 20 cm square sample whose thickness has been measured in this way is measured using a balance with two decimal places. The target density is calculated by dividing the weight W of the sample by the volume V of the sample calculated by the following equation (that is, by W / V). In the following formula, T is the thickness (cm) of the sample, A is the crepe rate (%) of the sample, and B is the length of one side (20 cm) of the sample. The crepe rate is measured by a measurement method described later. When the thin paper to be measured does not have a crepe (when the crepe rate is 0%), A = 0 in the following equation. V = {T × B × B × (100 + A) / 100}
 本発明(第1発明)の薄葉紙は、クレープ(ちりめん状のシワ)を有していても良い。本発明(第1発明)の薄葉紙がクレープを有している場合、そのクレープは、ドライヤーパートにおけるヤンキードライヤー等から乾燥状態の繊維ウエブ(薄葉紙)をドクターナイフ等で剥離する際に生じる、ドライクレープであることが好ましい。クレープ率は、次のようにして測定される。 The thin paper of the present invention (first invention) may have crepes (crepe-like wrinkles). When the thin paper of the present invention (first invention) has a crepe, the crepe is produced when the dried fiber web (thin paper) is peeled off from the Yankee dryer or the like in the dryer part with a doctor knife or the like. It is preferable that The crepe rate is measured as follows.
<クレープ率の測定方法>
 測定対象の薄葉紙から長さ方向(薄葉紙の製造時の搬送方向、MD)に200mm、幅方向(MDに直交する方向、CD)に100mmの矩形形状を切り出してサンプルとする。この矩形形状のサンプルを10分間水中に浸漬した直後のMDの長さCを測定し、次式によりクレープ率を算出する。 クレープ率(%)={(C-200)/200}×100
 例えば、10分間浸漬後のMDの長さCが220mmであった場合、前記式により算出される当該薄葉紙のクレープ率は10%である。
<Measurement method of crepe rate>
A rectangular shape of 200 mm in the length direction (conveying direction when manufacturing the thin paper, MD) and 100 mm in the width direction (direction orthogonal to the MD, CD) is cut out from the thin paper to be measured. The length C of the MD immediately after the rectangular sample is immersed in water for 10 minutes is measured, and the crepe rate is calculated by the following equation. Crepe rate (%) = {(C−200) / 200} × 100
For example, when the length C of the MD after immersion for 10 minutes is 220 mm, the crepe rate of the thin paper calculated by the above formula is 10%.
 クレープを有する薄葉紙は、クレープを有しない薄葉紙に比して液透過性が高く、また、クレープ率が高くなるほど液透過性が高まる。但し、クレープ率が高くなると、強度特性(引張強度)は低下する傾向がある。本発明(第1発明)においては、斯かる知見に基づき、液透過性と強度特性とのバランスの観点から、薄葉紙のクレープ率は、5~30%、特に5~20%、とりわけ7~15%とすることが好ましい。 Thin paper with crepe has higher liquid permeability than thin paper without crepe, and the higher the crepe rate, the higher the liquid permeability. However, as the crepe rate increases, the strength properties (tensile strength) tend to decrease. In the present invention (first invention), based on such knowledge, the crepe rate of the thin paper is 5 to 30%, particularly 5 to 20%, especially 7 to 15 from the viewpoint of the balance between liquid permeability and strength characteristics. % Is preferable.
 前述した構成を有する本発明(第1発明)の薄葉紙の製造時の搬送方向(Machine Direction、略してMD)の乾燥引張強度は、600cN/25mm以上、好ましくは600~1500cN/25mm、更に好ましくは700~1200cN/25mmであり、更に一層好ましくは800~1200cN/25mmであり、ことさら好ましくは900~1200cN/25mmである。また、MDに直交する方向(Cross machine Direction、略してCD)の乾燥引張強度は、150cN/25mm以上、好ましくは150~350cN/25mm、更に好ましくは180~300cN/25mmである。MD及びCDそれぞれの乾燥引張強度が前記範囲にある薄葉紙は、実用上十分な強度を有しており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合には、吸収性物品の製造時にコアラップシート(薄葉紙)が破れる等の不都合を起こし難い。乾燥引張強度は次のようにして測定される。 The dry tensile strength in the conveying direction (Machine Direction, MD for short) of the thin paper of the present invention (first invention) having the above-described configuration is 600 cN / 25 mm or more, preferably 600 to 1500 cN / 25 mm, more preferably 700 to 1200 cN / 25 mm, even more preferably 800 to 1200 cN / 25 mm, and still more preferably 900 to 1200 cN / 25 mm. The dry tensile strength in the direction perpendicular to MD (Cross machine Direction, CD for short) is 150 cN / 25 mm or more, preferably 150 to 350 cN / 25 mm, and more preferably 180 to 300 cN / 25 mm. A thin paper having a dry tensile strength of each of MD and CD in the above range has a practically sufficient strength. For example, the thin paper is used as a core wrap sheet for covering an absorbent core in an absorbent article such as a disposable diaper. When applied, it is difficult to cause inconveniences such as tearing of the core wrap sheet (thin paper) during manufacture of the absorbent article. The dry tensile strength is measured as follows.
<乾燥引張強度の測定方法>
 測定対象のシート(薄葉紙)を室温23℃±2℃、相対湿度50%RH±2%の環境下で12時間放置して一定状態になるよう調湿する。調湿後のシートから、MDに150mm、CDに25mmの寸法の長方形形状を切り出し、この切り出された長方形形状をサンプルとする。このサンプルを、そのMDが引張方向となるように引張試験機(島津製作所製オートグラフAG-1kN)のチャックに無張力で取り付ける。チャック間距離は100mmとする。サンプルを300mm/分の引張速度で引っ張り、サンプルが破断するまでの最大強度を測定する。測定は5回行い、これらの平均値をMDの乾燥引張強度とする。また、CDの乾燥引張強度は、調湿後のシートから、CDに150mm、MDに25mmの寸法の長方形形状を切り出してこれをサンプルとし、このサンプルを、そのCDが引張方向となるように引張試験機のチャックに無張力で取り付け、前記と同様の手順により、CDの乾燥引張強度を求める。
<Measurement method of dry tensile strength>
The sheet to be measured (thin paper) is allowed to stand for 12 hours in an environment of a room temperature of 23 ° C. ± 2 ° C. and a relative humidity of 50% RH ± 2%, and is conditioned to a constant state. A rectangular shape with dimensions of 150 mm for MD and 25 mm for CD is cut out from the humidity-adjusted sheet, and the cut out rectangular shape is used as a sample. This sample is attached to a chuck of a tensile tester (manufactured by Shimadzu Autograph AG-1kN) without tension so that its MD is in the tensile direction. The distance between chucks is 100 mm. The sample is pulled at a pulling speed of 300 mm / min, and the maximum strength until the sample breaks is measured. The measurement is performed 5 times, and the average of these values is taken as the MD dry tensile strength. Further, the dry tensile strength of CD is obtained by cutting a rectangular shape having dimensions of 150 mm for CD and 25 mm for MD from the humidity-controlled sheet, and using this as a sample, and pulling this sample so that the CD is in the tensile direction. Attached to the chuck of the testing machine without tension, the dry tensile strength of the CD is determined by the same procedure as described above.
 また、下記方法で測定される本発明(第1発明)の薄葉紙の液透過時間は、0.2~3秒、好ましくは0.3~2.5秒、更に好ましくは0.5~2秒である。液透過時間が短いほど、液透過性が高く高評価となる。液透過時間が前記範囲にある薄葉紙は、液透過性に優れており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合には、尿等の排泄液を素早く透過させて吸収性コアに速やかに吸収させることが可能となり、吸収性物品の防漏性の向上が期待できる。 Further, the liquid permeation time of the thin paper of the present invention (first invention) measured by the following method is 0.2 to 3 seconds, preferably 0.3 to 2.5 seconds, more preferably 0.5 to 2 seconds. It is. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation. The thin paper whose liquid permeation time is in the above range is excellent in liquid permeability. For example, when the thin paper is applied to a core wrap sheet covering an absorbent core in an absorbent article such as a disposable diaper, urine or the like It is possible to quickly permeate the excreted liquid and allow the absorbent core to quickly absorb the excreted fluid, and to improve the leak-proof property of the absorbent article.
<液透過時間の測定方法>
 図1に示すように、上下端が開口している内径35mmの2本の円筒91,92を、両円筒91,92の軸を一致させて上下に配し、8cm四方の測定対象シートS(薄葉紙)を上下の円筒91,92間に挟み込む。このとき、上側の円筒91の下端及び下側の円筒92の上端に設けられた環状のフランジ部にクリップ93を嵌合させ、上下の円筒91,92を連結させることが好ましい。符号94は、円筒91,92の内径と同径同形状の貫通孔を有するゴム製等のパッキンである。このように、上下の円筒91,92で測定対象シートSを挟持固定した状態で、上側の円筒91内に、図1中符合Wで示す生理食塩水(塩化ナトリウム濃度0.9質量%の水溶液)を40g±1g供給する。供給された生理食塩水は、測定対象シートSを透過するか又は測定対象シートSに吸収されて上側の円筒91内からなくなる。生理食塩水の供給開始時から、生理食塩水の水面が測定対象シートSの表面(上側の円筒91側の面)と同位置になるまでの時間を測定し、その時間を液透過時間とする。
<Measurement method of liquid permeation time>
As shown in FIG. 1, two cylinders 91 and 92 having an inner diameter of 35 mm with upper and lower ends opened are arranged up and down with the axes of both cylinders 91 and 92 aligned, and an 8 cm square measurement target sheet S ( A thin paper) is sandwiched between the upper and lower cylinders 91 and 92. At this time, it is preferable that the upper and lower cylinders 91 and 92 are connected by fitting the clip 93 to an annular flange portion provided at the lower end of the upper cylinder 91 and the upper end of the lower cylinder 92. Reference numeral 94 denotes a rubber packing having a through hole having the same diameter and the same shape as the inner diameters of the cylinders 91 and 92. In this way, with the measurement sheet S sandwiched and fixed between the upper and lower cylinders 91 and 92, a physiological saline (an aqueous solution having a sodium chloride concentration of 0.9 mass%) indicated by the symbol W in FIG. ) Is supplied in an amount of 40 g ± 1 g. The supplied physiological saline passes through the measurement target sheet S or is absorbed by the measurement target sheet S and disappears from the upper cylinder 91. The time from the start of the physiological saline supply until the physiological saline water surface is at the same position as the surface of the measurement target sheet S (the surface on the upper cylinder 91 side) is measured, and this time is defined as the liquid permeation time. .
 また、本発明(第1発明)の薄葉紙は、通気性にも優れている。その理由は、主として、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体としているためである。本発明者らは、繊維粗度の異なる2種の親水性セルロース繊維を用いることと薄葉紙の通気性との関係を調べるべく、パルプ配合の異なる2種類の薄葉紙(サンプルA、B)を用意し、これらの透気度を測定した。サンプルAは、第1パルプ及び第2パルプを含むもので後述する実施例1であり、サンプルBは、後述する実施例1において、第2パルプ(繊維粗度0.18mg/mのNBKP)を用いずに第1パルプ(繊維粗度0.15mg/mのNBKP)のみを繊維材料として用いた以外は実施例1と同様の手順で製造した薄葉紙である。サンプルA及びB共に坪量は13g/m2であった。透気度は次のようにして測定される。 Further, the thin paper of the present invention (first invention) is also excellent in air permeability. The reason is mainly because it mainly comprises an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness. In order to investigate the relationship between the use of two types of hydrophilic cellulose fibers having different fiber roughness and the breathability of thin paper, the present inventors prepared two types of thin paper (samples A and B) having different pulp compositions. The air permeability was measured. Sample A includes the first pulp and the second pulp, and is Example 1 to be described later. Sample B is the second pulp (NBKP having a fiber roughness of 0.18 mg / m) in Example 1 to be described later. A thin paper manufactured in the same procedure as in Example 1 except that only the first pulp (NBKP with a fiber roughness of 0.15 mg / m) was used as the fiber material without using it. Both samples A and B had a basis weight of 13 g / m 2 . The air permeability is measured as follows.
<透気度の測定方法>
 透気度の測定はJIS P8117に準じて実施する。15cm四方の測定対象シート(薄葉紙)を32枚用意し、これらを熱風乾燥機により105℃の熱風で30分間乾燥させた後、32枚全てを重ねて1つの積層体とし、該積層体をB形透気度計にセットする。そして、B形透気度計において、標線の0ccをスタ-トとし300ccに達するまでに要する時間を測定する。以上の操作を5回実施し、得られた5つの測定時間の平均値を、当該測定対象シート(薄葉紙)の透気度とする。透気度の単位は、「s/32P・300cc」であり、32枚のシートを300ccの空気が抜けるのに要する時間(秒)を表す。透気度の値が小さいほど空気が抜け易く、通気性に優れると評価できる。
<Measurement method of air permeability>
The air permeability is measured according to JIS P8117. After preparing 32 sheets of 15 cm square measurement object sheets (thin paper) and drying them with hot air dryer for 30 minutes with hot air at 105 ° C., all 32 sheets are stacked to form one laminate, and the laminate is B Set on the air permeability meter. Then, in the B-type air permeability meter, the time required to reach 300 cc is measured with 0 cc of the marked line as a start. The above operation is performed 5 times, and the average value of the obtained five measurement times is defined as the air permeability of the measurement target sheet (thin paper). The unit of air permeability is “s / 32P · 300 cc” and represents the time (seconds) required for 300 cc of air to escape through 32 sheets. It can be evaluated that the smaller the value of the air permeability, the easier the air can escape and the better the air permeability.
 繊維材料として第1パルプのみを用いたサンプルBは、透気度が2.1~2.7s/32P・300ccの範囲であったのに対し、繊維材料として繊維粗度が互いに異なる2種のパルプ(第1及び第2パルプ)を用いたサンプルAは、透気度が1.6~2.2s/32P・300ccの範囲にあり、サンプルAの方がサンプルBよりも透気度の値が小さかった。このことから、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体として薄葉紙を構成することは、薄葉紙の通気性を向上させる上で有効であることがわかり、斯かる構成を具備する本発明(第1発明)の薄葉紙が通気性に優れることが明らかである。 Sample B using only the first pulp as the fiber material had an air permeability in the range of 2.1 to 2.7 s / 32 P · 300 cc, whereas the fiber material had two kinds of fiber roughness different from each other. Sample A using pulp (first and second pulp) has an air permeability in the range of 1.6 to 2.2 s / 32 P · 300 cc. Sample A has a higher air permeability than sample B. Was small. From this, it can be seen that it is effective to improve the air permeability of the thin paper to make the thin paper mainly composed of an aggregate of two kinds of hydrophilic cellulose fibers having different fiber roughnesses. It is apparent that the thin paper of the present invention (first invention) is excellent in air permeability.
 本発明(第1発明)の薄葉紙は、強度特性(引張強度)が良好で液透過性及び通気性に優れており、そのような特長が活かされる種々の用途に好適である。特に、本発明(第1発明)の薄葉紙は、使い捨ておむつや生理用ナプキン等の吸収性物品において、液保持性の吸収性コアを被覆するコアラップシートとして好適であり、排泄液が、尿等の比較的低粘性の場合のみならず、軟便等の比較的高粘性の場合であっても、排泄液を素早く透過させて吸収性コアに吸収させることができ、吸収性物品の防漏性の向上に寄与し得る。 The thin paper of the present invention (first invention) has good strength characteristics (tensile strength) and excellent liquid permeability and air permeability, and is suitable for various applications in which such features are utilized. In particular, the thin paper of the present invention (first invention) is suitable as a core wrap sheet for covering a liquid-retaining absorbent core in absorbent articles such as disposable diapers and sanitary napkins, and excretory liquid is urine or the like. Even in the case of relatively low viscosity, such as loose stool, even if it is relatively high viscosity, the excretory fluid can be quickly permeated and absorbed into the absorbent core, and the leak-proof property of the absorbent article Can contribute to improvement.
 本発明(第1発明)の薄葉紙を用いた本発明の吸収性物品の一例として、吸収性コア及びこれを被覆するコアラップシートを含んで構成される吸収性物品であって、該コアラップシートが、前述した本発明(第1発明)の薄葉紙であるものが挙げられる。より具体的には、本発明の吸収性物品は、肌対向面を形成する液透過性の表面シート、非肌対向面を形成する液不透過性ないし撥水性の裏面シート、及びこれら両シート間に配置された液保持性の吸収体を具備し、該吸収体が、前記吸収性コア及び前記コアラップシート(第1発明の薄葉紙)を含んで構成されている。前記コアラップシート(第1発明の薄葉紙)は、少なくとも前記吸収性コアの肌対向面及び非肌対向面を被覆することが好ましい。尚、肌対向面は、吸収性物品又はその構成部材(例えば吸収性コア)における、吸収性物品の着用時に着用者の肌側に向けられる面であり、非肌対向面は、吸収性物品又はその構成部材における、吸収性物品の着用時に肌側とは反対側(着衣側)に向けられる面である。前記表面シート、前記裏面シート及び前記吸収性コアとしては、それぞれ、この種の吸収性物品において通常用いられているものを特に制限無く用いることができる。本発明の吸収性物品は、展開型あるいはパンツ型の使い捨ておむつ、生理用ナプキン、失禁パッド等に適用できる。 As an example of the absorbent article of the present invention using the thin paper of the present invention (first invention), an absorbent article comprising an absorbent core and a core wrap sheet covering the absorbent core, the core wrap sheet However, what is the thin paper of this invention (1st invention) mentioned above is mentioned. More specifically, the absorbent article of the present invention includes a liquid-permeable surface sheet that forms a skin-facing surface, a liquid-impermeable or water-repellent back sheet that forms a non-skin-facing surface, and a space between these two sheets. The liquid-retaining absorbent is disposed on the surface, and the absorbent is configured to include the absorbent core and the core wrap sheet (thin paper of the first invention). The core wrap sheet (thin paper of the first invention) preferably covers at least the skin facing surface and the non-skin facing surface of the absorbent core. The skin facing surface is a surface of the absorbent article or a component thereof (for example, an absorbent core) that is directed to the skin side of the wearer when the absorbent article is worn, and the non-skin facing surface is the absorbent article or It is the surface of the component that is directed to the side opposite to the skin side (clothing side) when the absorbent article is worn. As the top sheet, the back sheet and the absorbent core, those usually used in this type of absorbent article can be used without any particular limitation. The absorbent article of the present invention can be applied to unfolded or pants-type disposable diapers, sanitary napkins, incontinence pads, and the like.
 以下、本発明(第2発明)の薄葉紙について詳細に説明する。本発明(第2発明)の薄葉紙は、フリーネスが400~550mlである針葉樹晒クラフトパルプ(NBKP)を必須成分として含有している。フリーネスは、JIS P8121に規定するカナダ標準ろ水度(C.S.F.)で示される値であり、パルプの叩解(水の存在下でパルプを機械的に叩き、磨砕する処理)の度合いを示す値である。通常、フリーネスの値が小さいほど、叩解の度合いが強く、叩解による繊維の損傷が大きくてフィブリル化が進行している。フリーネスが前記範囲にあるNBKPは、フィブリル化が進行しているため繊維どうしが絡み合い易く、そのため、液透過性の向上の観点から薄葉紙の低坪量化(低密度化)を図ることによって構成繊維の繊維間結合点の数が減少しても、各繊維間結合の強度は、フリーネスが550mlを超え相対的にフィブリル化が進行していないNBKPに比して、高い。従って、フリーネスが400~550mlであるNBKPを主体とする薄葉紙は、良好な強度特性を有し得る。 Hereinafter, the thin paper of the present invention (second invention) will be described in detail. The thin paper of the present invention (second invention) contains softwood bleached kraft pulp (NBKP) having a freeness of 400 to 550 ml as an essential component. Freeness is a value indicated by Canadian Standard Freeness (CSF) specified in JIS P8121, and is a value of pulp beating (a process of mechanically tapping and grinding pulp in the presence of water). It is a value indicating the degree. Usually, the smaller the freeness value, the stronger the degree of beating, the greater the damage of the fibers due to beating, and the more fibrillation proceeds. NBKP in which the freeness is in the above range is easily entangled with each other because fibrillation is progressing. Therefore, from the viewpoint of improving liquid permeability, the basis weight of the thin paper is reduced (reducing density). Even if the number of interfiber bonding points decreases, the strength of each interfiber bond is higher than that of NBKP in which the freeness exceeds 550 ml and the fibrillation has not progressed relatively. Therefore, a thin paper mainly composed of NBKP having a freeness of 400 to 550 ml can have good strength characteristics.
 本発明(第2発明)で用いるNBKPのフリーネスは、好ましくは475~525ml、更に好ましくは490~510mlである。フリーネスが400ml未満の場合は、繊維の絡み合いによる強度改善効果は飽和しており、また、繊維の切断が促進され、透過時間が遅くなるおそれがある。NBKPの叩解は、NBKPを分散させた紙料(スラリー)に対して、ビーダー、ディスクリファイナー等の公知の叩解機を用いて常法に従って実施することができる。また、本発明(第2発明)で用いるNBKPとしては、この種の紙において通常用いられるNBKPを特に制限無く用いることができる。NBKPとして、パルプの漂白に塩素化合物を使用しないECF(エレメンタリー・クロリンフリー)漂白パルプやTCF(トータル・クロリンフリー)漂白パルプを使用しても良い。 The freeness of NBKP used in the present invention (second invention) is preferably 475 to 525 ml, more preferably 490 to 510 ml. When the freeness is less than 400 ml, the strength improvement effect due to the entanglement of the fibers is saturated, and the fiber cutting is promoted, and the permeation time may be delayed. NBKP beating can be carried out according to a conventional method using a known beating machine such as a beader or a disc refiner with respect to a stock (slurry) in which NBKP is dispersed. Further, as NBKP used in the present invention (second invention), NBKP that is usually used in this type of paper can be used without any particular limitation. As NBKP, ECF (elementary chlorin-free) bleached pulp or TCF (total chlorin-free) bleached pulp that does not use a chlorine compound for pulp bleaching may be used.
 本発明(第2発明)の薄葉紙は、フリーネスが400~550mlであるNBKPを主体としている。ここで、「主体としている」とは、フリーネスが斯かる範囲にあるNBKPの含有率が50質量%以上であることを意味する。該含有率は、良好な強度特性を得る観点から、好ましくは50~100質量%、更に好ましくは80~100質量%である。 The thin paper of the present invention (second invention) is mainly NBKP having a freeness of 400 to 550 ml. Here, “mainly” means that the content of NBKP having a freeness in such a range is 50% by mass or more. The content is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of obtaining good strength characteristics.
 本発明(第2発明)で用いるNBKPの繊維粗度は、好ましくは0.1~0.2mg/m、更に好ましくは0.12~0.18mg/mである。繊維粗度は、木材パルプのように、繊維の太さが不均一な繊維において、繊維の太さを表す尺度として用いられるものである。また、本発明で用いるNBKPの平均繊維長は、好ましくは1~4mm、更に好ましくは2~3mmである。繊維粗度及び平均繊維長は、それぞれ、前記方法により測定される。 The fiber roughness of NBKP used in the present invention (second invention) is preferably 0.1 to 0.2 mg / m, more preferably 0.12 to 0.18 mg / m. The fiber roughness is used as a scale representing the fiber thickness in a fiber having a nonuniform fiber thickness, such as wood pulp. The average fiber length of NBKP used in the present invention is preferably 1 to 4 mm, and more preferably 2 to 3 mm. The fiber roughness and average fiber length are each measured by the above method.
 本発明(第2発明)の薄葉紙は、NBKP以外の他の繊維を含んでいても良く、他の繊維は、NBKPの如き親水性セルロース繊維でなくても良い。他の繊維としては、例えば、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)等の木材パルプ;楮、三椏、雁皮等の靱皮繊維;藁、竹、ケナフ、麻等の非木材パルプ;ポリエステル繊維、レーヨン繊維、アクリル繊維等の合成繊維等が挙げられる。これら他の繊維の含有率は、好ましくは50質量%以下である。 The thin paper of the present invention (second invention) may contain fibers other than NBKP, and the other fibers may not be hydrophilic cellulose fibers such as NBKP. Other fibers include, for example, hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP) and other wood pulp; Non-wood pulp such as kenaf and hemp; synthetic fibers such as polyester fiber, rayon fiber, acrylic fiber, and the like. The content of these other fibers is preferably 50% by mass or less.
 本発明(第2発明)の薄葉紙には、良好な強度特性(引張強度)を得る観点から、2種以上の紙力増強剤が添加されている。紙力増強剤には、乾燥紙力を向上させる乾燥紙力増強剤と、湿潤紙力を向上させる湿潤紙力増強剤とがあり、2種以上の紙力増強剤としては、乾燥紙力増強剤及び湿潤紙力増強剤の何れか一方から2種以上選択することも可能であるが、特に優れた強度特性を得る観点から、乾燥紙力増強剤の1種以上と湿潤紙力増強剤の1種以上との組み合わせを用いることが好ましい。 In the thin paper of the present invention (second invention), two or more paper strength enhancers are added from the viewpoint of obtaining good strength characteristics (tensile strength). Paper strength enhancers include dry paper strength enhancers that improve dry paper strength and wet paper strength enhancers that improve wet paper strength. Two or more types of paper strength enhancers include dry paper strength enhancers. It is possible to select two or more types from either one of the agent and the wet paper strength enhancer, but from the viewpoint of obtaining particularly excellent strength characteristics, one or more of the dry paper strength enhancer and the wet paper strength enhancer It is preferable to use a combination with one or more.
 乾燥紙力増強剤としては、従来公知の乾燥紙力増強剤を用いることができ、例えば、カルボキシメチルセルロース(CMC)及びその塩、ポリアクリルアミド系樹脂及びその塩、カチオン化デンプン、ポリビニルアルコール(PVA)等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。CMCあるいはポリアクリルアミド系樹脂の塩としては、それぞれ、ナトリウム塩が主に用いられる。ポリアクリルアミド系樹脂としては、例えば、カチオン性又はアニオン性ポリアクリルアミド(PAM)が挙げられる。これらの乾燥紙力増強剤の中でも、特にCMC及びその塩、アニオン性PAM及びその塩が好ましい。 As the dry paper strength enhancer, conventionally known dry paper strength enhancers can be used. For example, carboxymethyl cellulose (CMC) and salts thereof, polyacrylamide resins and salts thereof, cationized starch, polyvinyl alcohol (PVA). These can be used, and one of these can be used alone or in combination of two or more. As the salt of CMC or polyacrylamide resin, sodium salt is mainly used. Examples of the polyacrylamide resin include cationic or anionic polyacrylamide (PAM). Among these dry paper strength enhancers, CMC and salts thereof, anionic PAM and salts thereof are particularly preferable.
 湿潤紙力増強剤としては、従来公知の湿潤紙力増強剤を用いることができ、例えば、エポキシ化ポリアミドポリアミン樹脂(PAE)、尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂、ジアルデヒドデンプン、ポリエチレンアミン、メチロール化ポリアミド等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの湿潤紙力増強剤の中でも、特にPAEが好ましい。 As the wet paper strength enhancer, a conventionally known wet paper strength enhancer can be used. For example, epoxidized polyamide polyamine resin (PAE), urea-formalin resin, melamine-formalin resin, dialdehyde starch, polyethyleneamine, Examples include methylolated polyamide, and one of these can be used alone or two or more of them can be used in combination. Among these wet paper strength enhancers, PAE is particularly preferable.
 本発明(第2発明)において特に好ましい紙力増強剤の組み合わせは、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤である。これら計3種類の紙力増強剤のうち、2種の乾燥紙力増強剤としてはCMCの塩及びアニオン性PAMの塩が好ましく、1種の湿潤紙力増強剤としてはPAEが好ましい。 In the present invention (second invention), a particularly preferred combination of paper strength enhancers is two dry paper strength enhancers and one wet paper strength enhancer. Of these three types of paper strength enhancers, CMC salts and anionic PAM salts are preferred as the two dry paper strength enhancers, and PAE is preferred as the one wet strength agent.
 また、このように、2種の乾燥紙力増強剤としてCMCの塩及びアニオン性PAMの塩を用い、1種の湿潤紙力増強剤としてPAEを用いた場合、アニオン性PAMの塩の重量平均分子量は、800万以上、特に1000万以上、とりわけ1500万以上が好ましく、また、アニオン性PAMの塩の重量平均分子量の上限は、2500万が好ましい。このように特定の3種類の紙力増強剤を用いる場合において、それらのうちの1種であるアニオン性PAMの塩の重量平均分子量が前記範囲(800万以上2500万以下)であれば、アニオン性PAMの塩自体の接着性の発現による薄葉紙の強度向上効果に加えて、CMCの塩の歩留まりの向上による薄葉紙の強度向上効果が得られるため、両強度向上効果によって薄葉紙のより良好な強度特性が得られる。また、アニオン性PAMの塩の重量平均分子量が2500万以下であると、薄葉紙の製造時においてアニオン性PAMの塩の水中での分散性や粘度が比較的低く抑えられるため、ハンドリング性や抄紙機の汚れ防止の点で良い結果が得られる。 In addition, when the CMC salt and the anionic PAM salt are used as the two types of dry paper strength enhancers, and the PAE is used as the one wet paper strength enhancer, the weight average of the anionic PAM salt is used. The molecular weight is preferably 8 million or more, particularly 10 million or more, especially 15 million or more, and the upper limit of the weight average molecular weight of the anionic PAM salt is preferably 25 million. Thus, in the case of using three kinds of specific paper strength enhancers, if the weight average molecular weight of the salt of anionic PAM which is one of them is in the above range (8 million to 25 million), an anion In addition to the effect of improving the strength of the thin paper by developing the adhesiveness of the salt of the PAM, the strength improvement effect of the thin paper can be obtained by improving the yield of the salt of the CMC. Is obtained. Also, when the weight average molecular weight of the anionic PAM salt is 25 million or less, the dispersibility and viscosity of the anionic PAM salt in water can be kept relatively low during the manufacture of the thin paper. Good results can be obtained in terms of prevention of dirt.
 本発明(第2発明)の薄葉紙における2種以上の紙力増強剤の総添加量は、薄葉紙の全構成繊維の乾燥質量に対して、好ましくは0.01~1.5質量%、更に好ましくは0.03~1.2質量%である。紙力増強剤の総添加量が少なすぎると、引張強度等の強度特性が十分に得られず、紙力増強剤の総添加量が多すぎると、薄葉紙の硬化(風合いの低下)の他、薄葉紙の製造時におけるヤンキードライヤーへの紙の張り付きやメッシュドラムへの紙力増強剤の付着等による、薄葉紙の地合の低下を招くおそれがある。 The total amount of the two or more kinds of paper strength enhancing agents added to the thin paper of the present invention (second invention) is preferably 0.01 to 1.5% by weight, more preferably based on the dry weight of all the constituent fibers of the thin paper. Is 0.03 to 1.2% by mass. If the total amount of the paper strength enhancer is too small, sufficient strength properties such as tensile strength cannot be obtained. If the total amount of the paper strength enhancer is too large, in addition to curing the thin paper (decrease in texture), There is a possibility that the formation of the thin paper may be deteriorated due to the sticking of the paper to the Yankee dryer or the adhesion of the paper strength enhancer to the mesh drum during the production of the thin paper.
 また、2種以上の紙力増強剤として、乾燥紙力増強剤の1種以上と湿潤紙力増強剤の1種以上との組み合わせを用いる場合、乾燥紙力増強剤の総添加質量と湿潤紙力増強剤の総添加質量との比(前者/後者)は、好ましくは0.01~0.5、更に好ましくは0.03~0.35である。 In addition, when a combination of one or more dry paper strength enhancers and one or more wet paper strength enhancers is used as the two or more paper strength enhancers, the total added mass of the dry paper strength enhancer and the wet paper The ratio (the former / the latter) of the force enhancer to the total added mass is preferably 0.01 to 0.5, more preferably 0.03 to 0.35.
 また、前述したように、乾燥紙力増強剤としてCMCの塩及びアニオン性PAMの塩の2種を用い、湿潤紙力増強剤としてPAEの1種を用いる場合、薄葉紙の全構成繊維の乾燥質量に対する各紙力増強剤の添加量は、CMCの塩が好ましくは0.05~0.5質量%、更に好ましくは0.1~0.3質量%であり、アニオン性PAMの塩が好ましくは0.001~0.1質量%、更に好ましくは0.02~0.05質量%であり、PAEが好ましくは0.5~1.5質量%、更に好ましくは0.6~1.2質量%である。 In addition, as described above, when two kinds of CMC salt and anionic PAM salt are used as the dry paper strength enhancer and one type of PAE is used as the wet paper strength enhancer, the dry mass of all the constituent fibers of the thin paper The amount of each paper strength enhancer added is preferably 0.05 to 0.5% by mass of CMC salt, more preferably 0.1 to 0.3% by mass, and preferably 0 to 0.3% of anionic PAM salt. 0.001 to 0.1% by mass, more preferably 0.02 to 0.05% by mass, and PAE is preferably 0.5 to 1.5% by mass, more preferably 0.6 to 1.2% by mass. It is.
 本発明(第2発明)の薄葉紙は、前述した、NBKP等の繊維及び紙力増強剤以外の他の成分を含んでいても良い。他の成分としては、例えば、タルク等の填料、染料、色顔料、抗菌剤、pH調整剤、歩留り向上剤、耐水化剤、消泡剤等の一般的に抄紙用原材料や添加物として使用されているものが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。 The thin paper of the present invention (second invention) may contain components other than the above-described fibers such as NBKP and a paper strength enhancer. As other components, for example, fillers such as talc, dyes, color pigments, antibacterial agents, pH adjusters, yield improvers, water resistance agents, antifoaming agents and the like are generally used as raw materials for papermaking and additives. These can be used, and one of these can be used alone or in combination of two or more.
 本発明(第2発明)の薄葉紙は、公知の湿式抄紙法によって製造することができる。湿式抄紙法は、NBKP等の繊維の水分散液からなる紙料(スラリー)を調製する紙料調製工程と、紙料から繊維を抄いて繊維ウエブとしたものを搬送しながら乾燥する抄紙工程とを有するものである。抄紙工程は、通常、ワイヤーパート、プレスパート、ドライヤーパート、サイズプレス、カレンダパート等に分けられ、順次実施される。前述した乾燥紙力増強剤及び湿潤紙力増強剤は、通常、紙料調整工程において紙料に添加される。通常、湿潤紙力増強剤、乾燥紙力増強剤の順で紙料に添加するが、本発明(第2発明)における紙力増強剤の添加順序はこれに制限されず、添加順序をこれとは逆にしても良く、両者を同時に添加しても良い。湿式抄紙法は、例えば、長網抄紙機、ツインワイヤー抄紙機、オントップ抄紙機、ハイブリッド抄紙機又は丸網抄紙機等の抄紙機を用いて常法に従って実施することができる。 The thin paper of the present invention (second invention) can be produced by a known wet papermaking method. The wet papermaking method includes a stock preparation step for preparing a stock (slurry) made of an aqueous dispersion of fibers such as NBKP, and a paper making step for drying while transporting a fiber made from the stock into a fiber web. It is what has. The paper making process is usually divided into a wire part, a press part, a dryer part, a size press, a calendar part, etc., and is carried out sequentially. The above-mentioned dry paper strength enhancer and wet paper strength enhancer are usually added to the stock in the stock preparation step. Usually, the wet paper strength enhancer and the dry paper strength enhancer are added in the order of the paper strength enhancer. However, the order of addition of the paper strength enhancer in the present invention (second invention) is not limited to this, and the order of addition is as follows. May be reversed, or both may be added simultaneously. The wet papermaking method can be carried out according to a conventional method using a paper machine such as a long paper machine, a twin wire paper machine, an on-top paper machine, a hybrid paper machine, or a round paper machine.
 本発明(第2発明)の薄葉紙は、液透過性の向上の観点から、坪量及び密度を比較的低く設定しており、具体的には、坪量は10~14.5g/m2、好ましくは11~14g/m2、密度は0.05~0.2g/cm3、好ましくは0.1~0.2g/cm3である。坪量及び密度がこのように低いと紙力の低下が懸念されるが、本発明(第2発明)では、前述したように、フリーネスが特定範囲にあるNBKPを用い且つ2種以上の紙力増強剤を併用することで、斯かる懸念を払拭している。薄葉紙の坪量が10g/m2未満又は密度が0.05g/cm3未満では、紙力が著しく低下するおそれがあり、また、薄葉紙の坪量が14.5g/m2超又は密度が0.2g/cm3超では、液透過性の向上効果に乏しいおそれがある。薄葉紙の坪量及び密度は、それぞれ、前記方法により測定される。 The thin paper of the present invention (second invention) has a basis weight and density set relatively low from the viewpoint of improving liquid permeability. Specifically, the basis weight is 10 to 14.5 g / m 2 , The density is preferably 11 to 14 g / m 2 and the density is 0.05 to 0.2 g / cm 3 , preferably 0.1 to 0.2 g / cm 3 . When the basis weight and the density are so low, there is a concern about a decrease in paper strength. In the present invention (second invention), as described above, NBKP having a freeness in a specific range is used and two or more paper strengths are used. By using the enhancer in combination, such concerns are eliminated. When the basis weight of the thin paper is less than 10 g / m 2 or the density is less than 0.05 g / cm 3 , the paper strength may be remarkably reduced, and the basis weight of the thin paper is more than 14.5 g / m 2 or the density is 0. If it exceeds 2 g / cm 3 , the effect of improving the liquid permeability may be poor. The basis weight and density of the thin paper are each measured by the above method.
 本発明(第2発明)の薄葉紙は、クレープ(ちりめん状のシワ)を有しており、そのクレープ率が5~30%に設定されている。本発明(第2発明)の薄葉紙におけるクレープは、ドライヤーパートにおけるヤンキードライヤー等から乾燥状態の繊維ウエブ(薄葉紙)をドクターナイフ等で剥離する際に生じる、ドライクレープであることが好ましい。クレープ率は、前記方法により測定される。 The thin paper of the present invention (second invention) has a crepe (crepe-like wrinkles), and the crepe rate is set to 5 to 30%. The crepe in the thin paper of the present invention (second invention) is preferably a dry crepe which is produced when a dry fiber web (thin paper) is peeled off from a Yankee dryer or the like in the dryer part with a doctor knife or the like. The crepe rate is measured by the above method.
 クレープを有する薄葉紙は、クレープを有しない薄葉紙に比して液透過性が高く、また、クレープ率が高くなるほど液透過性が高まる。但し、クレープ率が高くなると、強度特性(引張強度)は低下する傾向がある。本発明(第2発明)においては、斯かる知見に基づき、液透過性と強度特性とのバランスの観点から、薄葉紙のクレープ率を5~30%、好ましくは5~20%、更に好ましくは7~15%としている。 Thin paper with crepe has higher liquid permeability than thin paper without crepe, and the higher the crepe rate, the higher the liquid permeability. However, as the crepe rate increases, the strength properties (tensile strength) tend to decrease. In the present invention (second invention), based on such findings, the crepe rate of the thin paper is 5 to 30%, preferably 5 to 20%, more preferably 7 from the viewpoint of the balance between liquid permeability and strength characteristics. ~ 15%.
 前述した構成を有する本発明(第2発明)の薄葉紙の製造時の搬送方向(Machine Direction、略してMD)の乾燥引張強度は、600cN/25mm以上、好ましくは600~1500cN/25mm、更に好ましくは700~1200cN/25mmであり、更に一層好ましくは800~1200cN/25mmであり、ことさら好ましくは900~1200cN/25mmである。また、MDに直交する方向(Cross machine Direction、略してCD)の乾燥引張強度は、150cN/25mm以上、好ましくは150~350cN/25mm、更に好ましくは180~300cN/25mmである。MD及びCDそれぞれの乾燥引張強度が前記範囲にある薄葉紙は、実用上十分な強度を有しており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合には、吸収性物品の製造時にコアラップシート(薄葉紙)が破れる等の不都合を起こし難い。乾燥引張強度は前記方法により測定される。 The dry tensile strength in the transport direction (Machine Direction, abbreviated MD) during the production of the thin paper of the present invention (second invention) having the above-described configuration is 600 cN / 25 mm or more, preferably 600 to 1500 cN / 25 mm, more preferably 700 to 1200 cN / 25 mm, even more preferably 800 to 1200 cN / 25 mm, and still more preferably 900 to 1200 cN / 25 mm. The dry tensile strength in the direction perpendicular to MD (Cross machine Direction, CD for short) is 150 cN / 25 mm or more, preferably 150 to 350 cN / 25 mm, and more preferably 180 to 300 cN / 25 mm. A thin paper having a dry tensile strength of each of MD and CD in the above range has a practically sufficient strength. For example, the thin paper is used as a core wrap sheet for covering an absorbent core in an absorbent article such as a disposable diaper. When applied, it is difficult to cause inconveniences such as tearing of the core wrap sheet (thin paper) during manufacture of the absorbent article. The dry tensile strength is measured by the above method.
 また、前記方法で測定される本発明(第2発明)の薄葉紙の液透過時間は、0.2~3秒、好ましくは0.3~2.5秒、更に好ましくは0.5~2秒である。液透過時間が短いほど、液透過性が高く高評価となる。液透過時間が前記範囲にある薄葉紙は、液透過性に優れており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合には、尿等の排泄液を素早く透過させて吸収性コアに速やかに吸収させることが可能となり、吸収性物品の防漏性の向上が期待できる。 The liquid permeation time of the thin paper of the present invention (second invention) measured by the above method is 0.2 to 3 seconds, preferably 0.3 to 2.5 seconds, more preferably 0.5 to 2 seconds. It is. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation. The thin paper whose liquid permeation time is in the above range is excellent in liquid permeability. For example, when the thin paper is applied to a core wrap sheet covering an absorbent core in an absorbent article such as a disposable diaper, urine or the like It is possible to quickly permeate the excreted liquid and allow the absorbent core to quickly absorb the excreted fluid, and to improve the leak-proof property of the absorbent article.
 本発明(第2発明)の薄葉紙は、強度特性(引張強度)が良好で液透過性に優れており、そのような特長が活かされる種々の用途に好適である。特に、本発明(第2発明)の薄葉紙は、使い捨ておむつや生理用ナプキン等の吸収性物品において、液保持性の吸収性コアを被覆するコアラップシートとして好適であり、排泄液が、尿等の比較的低粘性の場合のみならず、軟便等の比較的高粘性の場合であっても、排泄液を素早く透過させて吸収性コアに吸収させることができ、吸収性物品の防漏性の向上に寄与し得る。 The thin paper of the present invention (second invention) has good strength characteristics (tensile strength) and excellent liquid permeability, and is suitable for various applications in which such features are utilized. In particular, the thin paper of the present invention (second invention) is suitable as a core wrap sheet for covering a liquid-retaining absorbent core in absorbent articles such as disposable diapers and sanitary napkins, and excretory fluid is urine or the like. Even in the case of relatively low viscosity, such as loose stool, even if it is relatively high viscosity, the excretory fluid can be quickly permeated and absorbed into the absorbent core, and the leak-proof property of the absorbent article Can contribute to improvement.
 本発明(第2発明)の薄葉紙を用いた本発明の吸収性物品の一例として、吸収性コア及びこれを被覆するコアラップシートを含んで構成される吸収性物品であって、該コアラップシートが、前述した本発明(第2発明)の薄葉紙であるものが挙げられる。より具体的には、本発明の吸収性物品は、肌対向面を形成する液透過性の表面シート、非肌対向面を形成する液不透過性ないし撥水性の裏面シート、及びこれら両シート間に配置された液保持性の吸収体を具備し、該吸収体が、前記吸収性コア及び前記コアラップシート(第2発明の薄葉紙)を含んで構成されている。前記コアラップシート(第2発明の薄葉紙)は、少なくとも前記吸収性コアの肌対向面及び非肌対向面を被覆することが好ましい。尚、肌対向面は、吸収性物品又はその構成部材(例えば吸収性コア)における、吸収性物品の着用時に着用者の肌側に向けられる面であり、非肌対向面は、吸収性物品又はその構成部材における、吸収性物品の着用時に肌側とは反対側(着衣側)に向けられる面である。前記表面シート、前記裏面シート及び前記吸収性コアとしては、それぞれ、この種の吸収性物品において通常用いられているものを特に制限無く用いることができる。本発明の吸収性物品は、展開型あるいはパンツ型の使い捨ておむつ、生理用ナプキン、失禁パッド等に適用できる。 As an example of the absorbent article of the present invention using the thin paper of the present invention (second invention), an absorbent article comprising an absorbent core and a core wrap sheet covering the absorbent core, the core wrap sheet However, what is the thin paper of this invention (2nd invention) mentioned above is mentioned. More specifically, the absorbent article of the present invention includes a liquid-permeable surface sheet that forms a skin-facing surface, a liquid-impermeable or water-repellent back sheet that forms a non-skin-facing surface, and a space between these two sheets. The liquid-retaining absorbent is disposed on the surface, and the absorbent is configured to include the absorbent core and the core wrap sheet (thin paper of the second invention). The core wrap sheet (thin paper of the second invention) preferably covers at least the skin facing surface and the non-skin facing surface of the absorbent core. The skin facing surface is a surface of the absorbent article or a component thereof (for example, an absorbent core) that is directed to the skin side of the wearer when the absorbent article is worn, and the non-skin facing surface is the absorbent article or It is the surface of the component that is directed to the side opposite to the skin side (clothing side) when the absorbent article is worn. As the top sheet, the back sheet and the absorbent core, those usually used in this type of absorbent article can be used without any particular limitation. The absorbent article of the present invention can be applied to unfolded or pants-type disposable diapers, sanitary napkins, incontinence pads, and the like.
 以上、第2発明に関し、先に説明した第1発明とは別の1つの独立した発明として説明したが、第2発明は、第1発明の一実施形態であっても良い。即ち、第2発明は、「フリーネスが400~550mlである針葉樹晒クラフトパルプを主体とし、2種以上の紙力増強剤が添加されており、坪量が10~14.5g/m2、密度が0.05~0.2g/cm3、クレープ率が5~30%である薄葉紙」であっても良く、あるいは、「繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし、紙力増強剤が添加されている薄葉紙であって、前記2種の親水性セルロース繊維として、繊維粗度が0.13~0.16mg/mの第1パルプと繊維粗度が0.17~0.20mg/mの第2パルプとが含有されており、含有されている第1パルプと第2パルプとの繊維粗度の差が0.01~0.07mg/mであり、前記集合体のフリーネスが400~550mlであり(以上、第1発明の構成要件)、且つフリーネスが400~550mlである針葉樹晒クラフトパルプを主体とし、2種以上の紙力増強剤が添加されており、坪量が10~14.5g/m2、密度が0.05~0.2g/cm3、クレープ率が5~30%である(以上、第2発明の構成要件)薄葉紙」であっても良い。後者の場合、第1発明の構成要件における、「繊維粗度の異なる2種の親水性セルロース繊維の集合体」(フリーネス400~550mlの集合体)は、第2発明の構成要件における、「フリーネスが400~550mlである針葉樹晒クラフトパルプを主体とするもの」であり、換言すれば、第1発明の構成要件における、「第1パルプ及び第2パルプ」は、それぞれ、針葉樹晒クラフトパルプ(NBKP)である。 Although the second invention has been described as one independent invention different from the first invention described above, the second invention may be an embodiment of the first invention. That is, the second invention is “a softwood bleached kraft pulp having a freeness of 400 to 550 ml, mainly containing two or more kinds of paper strength enhancers, a basis weight of 10 to 14.5 g / m 2 , a density May be 0.05 to 0.2 g / cm 3 and a crepe rate of 5 to 30% ”or“ an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness ”. A thin paper to which a paper strength enhancer is added, wherein the two kinds of hydrophilic cellulose fibers include a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a fiber roughness of 0.17. -0.20 mg / m of the second pulp, and the fiber roughness difference between the contained first pulp and the second pulp is 0.01-0.07 mg / m, Body freeness is 400-550ml Configuration requirements), and freeness is mainly composed of softwood bleached kraft pulp is 400 ~ 550 ml, are added two or more paper strength agent, basis weight of 10 ~ 14.5 g / m 2, density 0 0.05 to 0.2 g / cm 3 and a crepe rate of 5 to 30% (the above is a constituent requirement of the second invention). In the latter case, the “aggregate of two kinds of hydrophilic cellulose fibers having different fiber roughness” (aggregate having a freeness of 400 to 550 ml) in the constituent requirements of the first invention is the same as “freeness in the constituent requirements of the second invention. In other words, “first pulp and second pulp” in the constituent elements of the first invention are respectively softwood bleached kraft pulp (NBKP). ).
 以下、本発明(第3発明)の薄葉紙の製造方法をその好ましい実施態様に基づき、図面を参照しながら説明する。
 図2は、本発明(第3発明)の薄葉紙の製造方法に用いられる製造装置(以下、単に製造装置1Aともいう。)の一実施形態を模式的に示したものである。図2に示す製造装置1Aは、原料スラリー調整部2及び抄紙部7に大別される。原料スラリー調整部2は、針葉樹晒クラフトパルプに、湿潤紙力剤(a)、低分子乾燥紙力剤(b)及び高分子乾燥紙力剤(c)を添加した原料スラリーを調整するために用いられるものである。抄紙部7は、原料スラリー調整部2で調整された原料スラリーを抄紙・乾燥し、目的とする薄葉紙を得るために用いられるものである。
 尚、図2~図5中のY方向は、薄葉紙の製造時の搬送方向(Machine Direction:略してMD)である。
Hereinafter, a method for producing a thin paper of the present invention (third invention) will be described based on its preferred embodiments with reference to the drawings.
FIG. 2 schematically shows an embodiment of a manufacturing apparatus (hereinafter also simply referred to as manufacturing apparatus 1A) used in the thin paper manufacturing method of the present invention (third invention). The manufacturing apparatus 1A shown in FIG. 2 is roughly divided into a raw material slurry adjusting unit 2 and a paper making unit 7. The raw material slurry adjusting unit 2 adjusts the raw material slurry obtained by adding the wet paper strength agent (a), the low molecular weight dry paper strength agent (b), and the polymer dry strength force agent (c) to the softwood bleached kraft pulp. It is used. The papermaking unit 7 is used for papermaking and drying the raw slurry adjusted by the raw slurry adjusting unit 2 to obtain a desired thin paper.
The Y direction in FIGS. 2 to 5 is the conveyance direction (Machine Direction: MD for short) at the time of manufacturing the thin paper.
 製造装置1Aの原料スラリー調整部2は、図2に示すように、上流側から下流側に向かって、針葉樹晒クラフトパルプ原料を十分に離解して水懸濁液にするパルパー21と、管路22を介して、水懸濁液中の針葉樹晒クラフトパルプ原料を叩解するリファイナー23とを備えている。また、管路22には、水懸濁液をパルパー21からリファイナー23へ送る送液ポンプ24が取り付けられている。 As shown in FIG. 2, the raw material slurry adjusting unit 2 of the manufacturing apparatus 1 </ b> A includes a pulper 21 that sufficiently disaggregates the softwood bleached kraft pulp raw material from the upstream side toward the downstream side to form a water suspension, and a pipe line And a refiner 23 for beating the softwood bleached kraft pulp raw material in the water suspension. Further, a liquid feed pump 24 for sending the water suspension from the pulper 21 to the refiner 23 is attached to the pipe line 22.
 また、製造装置1Aの原料スラリー調整部2は、図2に示すように、リファイナー23の下流側に、管路31を介して、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した懸濁液を貯蔵する第1スラリー貯蔵タンク32を備えている。また、管路31には、湿潤紙力剤(a)を添加する湿潤紙力剤添加部33が取り付けられている。第1スラリー貯蔵タンク32内では、NBKPの懸濁液に湿潤紙力剤(a)を添加した懸濁液が十分に攪拌混合されるようになっている。 Further, as shown in FIG. 2, the raw material slurry adjusting unit 2 of the manufacturing apparatus 1A has a wet paper strength agent (a) made of a cationic polymer having a cationic group on the downstream side of the refiner 23 via a conduit 31. The first slurry storage tank 32 for storing the suspension added with the is added. Further, a wet paper strength agent adding portion 33 for adding the wet strength paper agent (a) is attached to the pipe line 31. In the first slurry storage tank 32, the suspension obtained by adding the wet paper strength agent (a) to the NBKP suspension is sufficiently stirred and mixed.
 また、製造装置1Aの原料スラリー調整部2は、図2に示すように、第1スラリー貯蔵タンク32の下流側に、管路41を介して、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した懸濁液に、更に重量平均分子量(Mw)が0.2~50万のアニオン性基を有する低分子アニオンポリマーからなる低分子乾燥紙力剤(b)を添加した懸濁液を貯蔵する第2スラリー貯蔵タンク42を備えている。また、管路41には、低分子乾燥紙力剤(b)を添加する低分子乾燥紙力剤添加部43が取り付けられており、懸濁液を第1スラリー貯蔵タンク32から第2スラリー貯蔵タンク42へ送る送液ポンプ44が取り付けられている。第2スラリー貯蔵タンク42内では、湿潤紙力剤(a)及び低分子乾燥紙力剤(b)を添加した懸濁液が十分に攪拌混合されるようになっている。 Further, as shown in FIG. 2, the raw material slurry adjusting unit 2 of the manufacturing apparatus 1 </ b> A has a wet paper strength made of a cationic polymer having a cationic group via a pipe line 41 on the downstream side of the first slurry storage tank 32. The low molecular dry paper strength agent (b) comprising a low molecular anionic polymer having an anionic group having a weight average molecular weight (Mw) of 0.2 to 500,000 was further added to the suspension to which the agent (a) was added. A second slurry storage tank 42 for storing the suspension is provided. Further, a low molecular dry paper strength agent adding section 43 for adding the low molecular weight dry paper strength agent (b) is attached to the pipe line 41, and the suspension is stored in the second slurry from the first slurry storage tank 32. A liquid feed pump 44 for feeding to the tank 42 is attached. In the second slurry storage tank 42, the suspension to which the wet paper strength agent (a) and the low molecular weight dry strength agent (b) are added is sufficiently stirred and mixed.
 また、製造装置1Aの原料スラリー調整部2は、図2に示すように、第2スラリー貯蔵タンク42の下流側に、管路51を介して、吐出口の大きさを変更して流量を変更する種箱52を備えている。種箱52の吐出口の大きさを変更して流量を変えることにより、最終的に製造される薄葉紙の目付を変更することができる。例えば、種箱52の吐出口の大きさを小さくして流量を少なくすることにより、薄葉紙の目付を低くすることができる。また、管路51には、懸濁液を第2スラリー貯蔵タンク42から種箱52へ送る送液ポンプ53が取り付けられている。 Further, as shown in FIG. 2, the raw material slurry adjusting unit 2 of the manufacturing apparatus 1A changes the flow rate by changing the size of the discharge port on the downstream side of the second slurry storage tank 42 via the conduit 51. A seed box 52 is provided. By changing the size of the discharge port of the seed box 52 and changing the flow rate, the basis weight of the thin paper finally produced can be changed. For example, by reducing the size of the discharge port of the seed box 52 and reducing the flow rate, the basis weight of the thin paper can be lowered. In addition, a liquid feed pump 53 for sending the suspension from the second slurry storage tank 42 to the seed box 52 is attached to the pipe line 51.
 また、製造装置1Aの原料スラリー調整部2は、図2に示すように、種箱52の下流側に、管路61を介して、原料スラリーから繊維の塊(フロック)等を濾過して均一にする濾過スクリーン62を備えている。また、管路61には、上流側から下流側に向かって、希釈水を供給して希釈する希釈水供給部63と、管路61内を送液する際に乱流を引き起こし原料スラリーから繊維の塊(フロック)等を潰して均一にするファンポンプ64と、重量平均分子量(Mw)が500~3,000万のアニオン性基を有する高分子アニオンポリマーからなる高分子乾燥紙力剤(c)を添加する高分子乾燥紙力剤添加部65が取り付けられている。 Further, as shown in FIG. 2, the raw material slurry adjusting unit 2 of the manufacturing apparatus 1 </ b> A filters the fiber lump (floc) and the like from the raw material slurry uniformly through the pipe 61 on the downstream side of the seed box 52. A filtration screen 62 is provided. In addition, the pipe 61 is supplied with dilution water from the upstream side toward the downstream side, and a dilution water supply unit 63 for dilution, and causes turbulence when the liquid is fed through the pipe 61 to produce fibers from the raw slurry. Polymer dry paper strength agent (c) comprising a fan pump 64 for crushing and uniforming a lump of floc and the like, and a polymer anionic polymer having an anionic group having a weight average molecular weight (Mw) of 500 to 30 million ) Is attached.
 製造装置1Aは、図2に示すように、濾過スクリーン62の下流側に、管路66を介して、原料スラリー調整部2で調整された原料スラリーを抄紙・乾燥し、薄葉紙を得る抄紙部7を備えている。抄紙部7は、公知の抄紙装置を用いることができ、通常、フォーマーと、ワイヤーパートと、プレスパートと、ドライパートと、ワインダーパートとを備えて構成されている。フォーマーは、原料スラリー調整部2で調整された原料スラリーを所定の濃度に調節してワイヤーパートへ供給するものである。ワイヤーパートは、フォーマーから供給された原料スラリーを抄き網に紙層として形成するものである。プレスパートは、ワイヤーパートにおいて形成された紙層をプレスロールのフェルトに挟んだ状態で紙層を圧搾、脱水して湿紙を形成するものである。ドライパートは、プレスパートにおいて形成された湿紙を一台又は複数台の乾燥機によって乾燥させるものである。この場合、乾燥と脱水を兼ねるものも含まれる。ワインダーパートは、ドライパートにおいて乾燥された紙を薄葉紙として巻き取るものである。 As shown in FIG. 2, the manufacturing apparatus 1 </ b> A, on the downstream side of the filter screen 62, papermaking and drying the raw material slurry adjusted by the raw material slurry adjusting unit 2 through a conduit 66 to obtain thin paper. It has. The paper making unit 7 can use a known paper making apparatus, and is usually configured to include a former, a wire part, a press part, a dry part, and a winder part. The former adjusts the raw material slurry adjusted by the raw material slurry adjusting unit 2 to a predetermined concentration and supplies it to the wire part. A wire part forms the raw material slurry supplied from the former as a paper layer on a papermaking net. The press part squeezes and dehydrates the paper layer in a state where the paper layer formed in the wire part is sandwiched between felts of a press roll to form a wet paper. In the dry part, the wet paper formed in the press part is dried by one or a plurality of dryers. In this case, what combines drying and dehydration is also included. The winder part winds up the paper dried in the dry part as thin paper.
 次に、本発明(第3発明)の薄葉紙の製造方法の一実施態様を、前述した本実施形態の製造装置1Aを用いて、図2を参照しながら説明する。
 本発明(第3発明)の薄葉紙の製造方法は、針葉樹晒クラフトパルプを含む原料から調整された原料スラリーを抄紙し乾燥して30g/m2以下の坪量の薄葉紙を製造する方法である。
 本実施態様においては、原料スラリーとして、針葉樹晒クラフトパルプのパルプスラリーに、カチオン性基を有するカチオンポリマーからなる以下に示す湿潤紙力剤(a)を添加した後、以下に示す低分子乾燥紙力剤(b)を添加し、その後更に以下に示す高分子乾燥紙力剤(c)を添加して調整された原料スラリーを用いる。以下、具体的に説明する。
Next, an embodiment of the thin paper manufacturing method of the present invention (third invention) will be described using the manufacturing apparatus 1A of the present embodiment described above with reference to FIG.
The method for producing a thin paper of the present invention (third invention) is a method for producing a thin paper having a basis weight of 30 g / m 2 or less by making a paper slurry prepared from raw materials containing softwood bleached kraft pulp and drying it.
In this embodiment, after adding the wet paper strength agent (a) shown below consisting of a cationic polymer having a cationic group to the pulp slurry of softwood bleached kraft pulp as a raw material slurry, the low molecular dry paper shown below The raw material slurry prepared by adding the force agent (b) and then further adding the polymer dry paper force agent (c) shown below is used. This will be specifically described below.
 先ず、パルパー21に、針葉樹晒クラフトパルプ原料を投入し、パルプ原料を十分に離解する。投入される針葉樹晒クラフトパルプ(NBKP)としては、この種の紙において通常用いられるNBKPを特に制限無く用いることができる。NBKPとして、パルプの漂白に塩素化合物を使用しないECF(エレメンタリー・クロリンフリー)漂白パルプやTCF(トータル・クロリンフリー)漂白パルプを使用しても良い。針葉樹晒クラフトパルプ(NBKP)の投入量としては、NBKPの懸濁液の濃度が0.5~5.0質量%であることが好ましく、1.0~4.0質量%であることが更に好ましい。 First, softwood bleached kraft pulp raw material is put into the pulper 21, and the pulp raw material is sufficiently disaggregated. As the softwood bleached kraft pulp (NBKP) to be input, NBKP that is usually used in this type of paper can be used without particular limitation. As NBKP, ECF (elementary chlorin-free) bleached pulp or TCF (total chlorin-free) bleached pulp that does not use a chlorine compound for pulp bleaching may be used. The input amount of softwood bleached kraft pulp (NBKP) is preferably such that the concentration of the NBKP suspension is 0.5 to 5.0% by mass, and more preferably 1.0 to 4.0% by mass. preferable.
 本実施態様で用いる針葉樹晒クラフトパルプ(NBKP)の繊維粗度は、好ましくは0.1~0.3mg/m、更に好ましくは0.12~0.25mg/mである。繊維粗度は、木材パルプのように、繊維の太さが不均一な繊維において、繊維の太さを表す尺度として用いられるものである。また、本実施態様で用いるNBKPの平均繊維長は、好ましくは1~4mm、更に好ましくは2~3mmである。繊維粗度及び平均繊維長は、それぞれ、前記方法により測定される。 The fiber roughness of the softwood bleached kraft pulp (NBKP) used in this embodiment is preferably 0.1 to 0.3 mg / m, more preferably 0.12 to 0.25 mg / m. The fiber roughness is used as a scale representing the fiber thickness in a fiber having a nonuniform fiber thickness, such as wood pulp. Further, the average fiber length of NBKP used in this embodiment is preferably 1 to 4 mm, more preferably 2 to 3 mm. The fiber roughness and average fiber length are each measured by the above method.
 次に、パルパー21によって十分に離解されたNBKPの懸濁液を、送液ポンプ24を用いて管路22を通し、リファイナー23に供給する。そして、リファイナー23にて、懸濁液中の針葉樹晒クラフトパルプ原料を叩解する。パルパー21及びリファイナー23を用いて、針葉樹晒クラフトパルプ(NBKP)のフリーネスが、好ましくは650ml以下となるように叩解する。ここで、フリーネスは、JIS P8121に規定するカナダ標準ろ水度(C.S.F.)で示される値であり、パルプの叩解(水の存在下でパルプを機械的に叩き、磨砕する処理)の度合いを示す値である。通常、フリーネスの値が小さいほど、叩解の度合いが強く、叩解による繊維の損傷が大きくてフィブリル化が進行している。フリーネスが前記範囲にあるNBKPは、フィブリル化が進行しているため繊維どうしが絡み合い易く、そのため、液透過性の向上の観点から薄葉紙の低坪量化(低密度化)を図ることによって構成繊維の繊維間結合点の数が減少しても、各繊維間結合の強度は、フリーネスが650mlを超え相対的にフィブリル化が進行していないNBKPに比して、高い。従って、フリーネスが650ml以下であれば、NBKPを主体とする薄葉紙は、良好な強度特性を有し得る。 Next, the NBKP suspension sufficiently disaggregated by the pulper 21 is supplied to the refiner 23 through the conduit 22 using the liquid feed pump 24. Then, the refiner 23 beats the softwood bleached kraft pulp raw material in the suspension. The pulper 21 and refiner 23 are used to beat the softwood bleached kraft pulp (NBKP) so that the freeness is preferably 650 ml or less. Here, freeness is a value indicated by Canadian standard freeness (CSF) specified in JIS P811, and pulp beating (pulp is mechanically beaten in the presence of water and ground. This is a value indicating the degree of processing. Usually, the smaller the freeness value, the stronger the degree of beating, the greater the damage of the fibers due to beating, and the more fibrillation proceeds. NBKP in which the freeness is in the above range is easily entangled with each other because fibrillation is progressing. Therefore, from the viewpoint of improving liquid permeability, the basis weight of the thin paper is reduced (reducing density). Even if the number of interfiber bonding points is decreased, the strength of each interfiber bond is higher than NBKP in which the freeness exceeds 650 ml and the fibrillation is not progressing relatively. Therefore, if the freeness is 650 ml or less, the thin paper mainly composed of NBKP can have good strength characteristics.
 本実施態様で用いるNBKPのフリーネスは、300~650mlであることが更に好ましく、450~550mlであることが特に好ましく、480~530mlであることが特に更に好ましい。フリーネスが300ml未満の場合は、繊維の絡み合いによる強度改善効果は飽和しており、また、繊維の切断が促進され、透過時間が遅くなるおそれがある。 The freeness of NBKP used in the present embodiment is more preferably 300 to 650 ml, particularly preferably 450 to 550 ml, and still more preferably 480 to 530 ml. When the freeness is less than 300 ml, the effect of improving the strength due to the entanglement of the fibers is saturated, and the cutting of the fibers is promoted, and the permeation time may be delayed.
 本実施態様で製造される薄葉紙は、フリーネスが300~650mlであるNBKPを主体としていることが好ましい。ここで、「主体としている」とは、フリーネスが斯かる範囲にあるNBKPの含有率が50質量%以上であることを意味する。該含有率は、良好な強度特性を得る観点から、好ましくは50~100質量%、更に好ましくは80~100質量%である。 The thin paper produced in this embodiment is preferably mainly composed of NBKP having a freeness of 300 to 650 ml. Here, “mainly” means that the content of NBKP having a freeness in such a range is 50% by mass or more. The content is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of obtaining good strength characteristics.
 パルパー21に投入する原料は、針葉樹晒クラフトパルプ(NBKP)以外の他の繊維を含んでいても良く、他の繊維としては、NBKPの如き親水性セルロース繊維でなくても良い。他の繊維としては、例えば、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)等の木材パルプ;楮、三椏、雁皮等の靱皮繊維;藁、竹、ケナフ、麻等の非木材パルプ;ポリエステル繊維、レーヨン繊維、アクリル繊維等の合成繊維等が挙げられる。これら他の繊維の含有率は、本実施態様で製造される薄葉紙において、50質量%以下となるようにすることが好ましい。 The raw material put into the pulper 21 may contain fibers other than softwood bleached kraft pulp (NBKP), and other fibers may not be hydrophilic cellulose fibers such as NBKP. Other fibers include, for example, hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP) and other wood pulp; Non-wood pulp such as kenaf and hemp; synthetic fibers such as polyester fiber, rayon fiber, acrylic fiber, and the like. The content of these other fibers is preferably 50% by mass or less in the thin paper produced in this embodiment.
 次に、パルパー21及びリファイナー23によって十分に叩解されたNBKPの懸濁液に、湿潤紙力剤添加部33を用いて湿潤紙力剤(a)を添加しながら第1スラリー貯蔵タンク32内に搬送する。そして、第1スラリー貯蔵タンク32内において、湿潤紙力剤(a)及びNBKPの懸濁液を十分に攪拌混合する。 Next, the NBKP suspension thoroughly beaten by the pulper 21 and the refiner 23 is added to the first slurry storage tank 32 while adding the wet paper strength agent (a) using the wet paper strength agent addition unit 33. Transport. Then, in the first slurry storage tank 32, the wet paper strength agent (a) and the suspension of NBKP are sufficiently stirred and mixed.
 カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)としては、ポリアミドポリアミンエピクロロヒドリン樹脂(エポキシ化ポリアミドポリアミン樹脂(PAE))、尿素-ホルマリン樹脂、メアミン-ホルマリン樹脂、ジアルデヒドデンプン、ポリエチレンアミン、メチロール化ポリアミド等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの湿潤紙力剤の中でも、使用可能な抄紙pH域が広い、ホルマリンを含有していない環境負荷の低減等の観点から、エポキシ化ポリアミドポリアミン樹脂(PAE)が好ましい。 Examples of the wet paper strength agent (a) comprising a cationic polymer having a cationic group include polyamide polyamine epichlorohydrin resin (epoxidized polyamide polyamine resin (PAE)), urea-formalin resin, meamine-formalin resin, and dialdehyde starch. , Polyethyleneamine, methylolated polyamide, and the like, and these can be used alone or in combination of two or more. Among these wet paper strength agents, epoxidized polyamide polyamine resin (PAE) is preferable from the viewpoint of a wide papermaking pH range that can be used and reduction of environmental load that does not contain formalin.
 湿潤紙力剤(a)の添加量は、本実施態様で製造される薄葉紙の全構成繊維の乾燥質量に対して、工程内の汚れ及び湿潤紙力強度の観点から、0.1~2.0質量%となるように添加することが好ましく、0.2~1.5質量%となるように添加することが更に好ましい。湿潤紙力剤(a)として、エポキシ化ポリアミドポリアミン樹脂(PAE)の1種を用いる場合には、本実施態様で製造される薄葉紙の全構成繊維の乾燥質量に対して、PAEが好ましくは0.5~1.5質量%、更に好ましくは0.6~1.2質量%である。 The addition amount of the wet paper strength agent (a) is 0.1-2. From the viewpoint of dirt in the process and wet strength of the paper with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment. It is preferable to add so that it may become 0 mass%, and it is still more preferable to add so that it may become 0.2-1.5 mass%. When one kind of epoxidized polyamide polyamine resin (PAE) is used as the wet paper strength agent (a), PAE is preferably 0 with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment. 0.5 to 1.5% by mass, more preferably 0.6 to 1.2% by mass.
 次に、原料を調整する工程は、以下に示す低分子乾燥紙力剤(b)を添加した後に希釈し、希釈後に以下に示す高分子乾燥紙力剤(c)を添加し、その後、ファンポンプ64及び濾過スクリーン62を用いて均一化する。以下、具体的に説明する。 Next, in the step of adjusting the raw material, the low molecular dry paper strength agent (b) shown below is added and then diluted, and after dilution, the polymer dry paper strength agent (c) shown below is added, and then the fan Uniform using a pump 64 and a filter screen 62. This will be specifically described below.
 第1スラリー貯蔵タンク32内で十分に攪拌混合された湿潤紙力剤(a)の添加された針葉樹晒クラフトパルプ(NBKP)の懸濁液を、送液ポンプ44により管路41通して第2スラリー貯蔵タンク42へ送る際に、低分子乾燥紙力剤添加部43を用いて低分子乾燥紙力剤(b)を添加しながら第2スラリー貯蔵タンク42内に搬送する。そして、第2スラリー貯蔵タンク42内において、低分子乾燥紙力剤(b)、湿潤紙力剤(a)及びNBKPの懸濁液を十分に攪拌混合する。 A suspension of softwood bleached kraft pulp (NBKP) added with wet paper strength agent (a) sufficiently stirred and mixed in the first slurry storage tank 32 is passed through the pipeline 41 by the liquid feed pump 44 to the second. At the time of sending to the slurry storage tank 42, the low molecular dry paper strength agent adding unit 43 is used to transport the slurry into the second slurry storage tank 42 while adding the low molecular weight dry paper strength agent (b). Then, in the second slurry storage tank 42, the low molecular dry paper strength agent (b), the wet strength paper strength agent (a) and the suspension of NBKP are sufficiently stirred and mixed.
 低分子乾燥紙力剤(b)は、重量平均分子量(Mw)が0.2~50万のアニオン性基を有する低分子アニオンポリマーであり、ヤンキードライヤーへの貼り付き性及び地合の観点から、重量平均分子量(Mw)が0.5~45万のアニオン性基を有する低分子アニオンポリマーであることが好ましく、重量平均分子量(Mw)が1~40万のアニオン性基を有する低分子アニオンポリマーであることが更に好ましい。低分子乾燥紙力剤(b)としては、カルボキシメチルセルロース(CMC)の塩、ポリビニルアルコール(PVA)等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの低分子乾燥紙力剤の中でも、汎用性及び溶解性の観点から、カルボキシメチルセルロース(CMC)の塩が好ましい。CMCの置換度(エーテル化度)は理論的に3まで可能であるが生産性等の観点から0.5~1.5の範囲にあることが好ましい。尚、CMCの塩としては、ナトリウム塩が主に用いられる。 The low molecular weight dry paper strength agent (b) is a low molecular weight anionic polymer having an anionic group having a weight average molecular weight (Mw) of 0.2 to 500,000 from the viewpoint of sticking to a Yankee dryer and formation. A low molecular anion polymer having an anionic group having a weight average molecular weight (Mw) of 0.5 to 450,000, and a low molecular anion having an anionic group having a weight average molecular weight (Mw) of 1 to 400,000 More preferably, it is a polymer. Examples of the low molecular weight dry paper strength agent (b) include salts of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the like, and one of these can be used alone or in combination of two or more. Among these low molecular dry paper strength agents, a salt of carboxymethyl cellulose (CMC) is preferable from the viewpoint of versatility and solubility. The degree of substitution (etherification degree) of CMC can theoretically be up to 3, but is preferably in the range of 0.5 to 1.5 from the viewpoint of productivity and the like. In addition, sodium salt is mainly used as the salt of CMC.
 低分子乾燥紙力剤(b)の添加量は、本実施態様で製造される薄葉紙の全構成繊維の乾燥質量に対して、工程内汚れ、乾燥紙力強度の観点から、0.01~0.5質量%となるように添加することが好ましく、0.1~0.3質量%となるように添加することが更に好ましい。低分子乾燥紙力剤(b)として、カルボキシメチルセルロース(CMC)の塩の1種を用いる場合には、本実施態様で製造される薄葉紙の全構成繊維の乾燥質量に対して、CMCの塩が好ましくは0.05~0.5質量%、更に好ましくは0.1~0.3質量%である。
 ただし、低分子乾燥紙力剤(b)の濃度を0.1~0.3質量%では薄葉紙のような低坪量紙では、抄紙時に低分子乾燥紙力剤(b)がパルプから脱落して十分な紙力強度が得られ難い。低分子乾燥紙力剤(b)の添加濃度を増量すれば紙力強度は向上するものの工程内の汚れ等に懸念があるため、低分子乾燥紙力剤(b)の添加量の上限を規定する必要があり、他の乾燥紙力剤を添加することが好ましい。そこで、本発明の薄葉紙の製造方法においては、後述するように、他の乾燥紙力剤として、高分子乾燥紙力剤(c)を添加している。以下、本実施態様について具体的に説明する。
The addition amount of the low molecular weight dry strength agent (b) is 0.01 to 0 with respect to the dry weight of all the constituent fibers of the thin paper produced in this embodiment from the viewpoint of in-process dirt and dry strength. It is preferable to add it so that it may become 0.5 mass%, and it is still more preferable to add so that it may become 0.1-0.3 mass%. When one kind of carboxymethylcellulose (CMC) salt is used as the low molecular weight dry paper strength agent (b), the CMC salt is contained in the dry mass of all the constituent fibers of the thin paper produced in this embodiment. The amount is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.3% by mass.
However, when the concentration of the low molecular weight dry paper strength agent (b) is from 0.1 to 0.3% by mass, the low molecular weight dry paper strength agent (b) falls off from the pulp during paper making in low basis weight paper such as thin paper. It is difficult to obtain sufficient paper strength. Although increasing the concentration of the low-molecular dry paper strength agent (b) increases the paper strength, there is concern about dirt in the process, so the upper limit of the amount of the low-molecular dry strength material (b) is specified. It is preferable to add other dry paper strength agents. Therefore, in the thin paper manufacturing method of the present invention, as described later, the polymer dry paper strength agent (c) is added as another dry paper strength agent. Hereinafter, this embodiment will be specifically described.
 図2に示すように、次に、第2スラリー貯蔵タンク42内で十分に攪拌混合された湿潤紙力剤(a)及び低分子乾燥紙力剤(b)の添加された針葉樹晒クラフトパルプ(NBKP)の懸濁液を、送液ポンプ53により管路51を通して種箱52へ送る。そして、種箱52の吐出口の大きさを変更して、目的とする坪量(30g/m2以下)の薄葉紙となるように、流量を調整する。 Next, as shown in FIG. 2, the softwood bleached kraft pulp to which the wet paper strength agent (a) and the low molecular weight dry strength force agent (b) sufficiently stirred and mixed in the second slurry storage tank 42 was added. NBKP) is sent to the seed box 52 through the pipe 51 by the liquid feed pump 53. And the flow volume is adjusted so that the size of the discharge port of the seed box 52 may be changed to obtain a thin paper having a target basis weight (30 g / m 2 or less).
 次に、流量の調整された、湿潤紙力剤(a)及び低分子乾燥紙力剤(b)の添加された針葉樹晒クラフトパルプ(NBKP)の懸濁液を、管路61を通して濾過スクリーン62に搬送する際に、本実施態様においては、先ず、希釈水供給部63を用いて希釈水を供給して希釈する。希釈により、NBKPの懸濁液の濃度は、0.01~1.0質量%となることが好ましく、0.05~0.5質量%となることが更に好ましい。 Next, a suspension of softwood bleached kraft pulp (NBKP) to which wet flow strength agent (a) and low molecular weight dry strength strength agent (b) are added, whose flow rate is adjusted, is passed through line 61 to a filtration screen 62. In this embodiment, first, the dilution water is supplied and diluted using the dilution water supply unit 63 in this embodiment. By dilution, the concentration of the NBKP suspension is preferably 0.01 to 1.0% by mass, and more preferably 0.05 to 0.5% by mass.
 そして、本実施態様においては、次に、希釈された、湿潤紙力剤(a)及び低分子乾燥紙力剤(b)の添加された針葉樹晒クラフトパルプ(NBKP)の懸濁液を、ファンポンプ64を用いて、乱流を引き起こしながら濾過スクリーン62に搬送する。 In this embodiment, the diluted suspension of softwood bleached kraft pulp (NBKP) to which the wet paper strength agent (a) and the low molecular weight dry strength agent (b) are added is then added to the fan. A pump 64 is used to convey to the filtration screen 62 while causing turbulence.
 そして、本実施態様においては、次に、乱流によって、湿潤紙力剤(a)及び低分子乾燥紙力剤(b)の添加された針葉樹晒クラフトパルプ(NBKP)の懸濁液を搬送しながら、高分子乾燥紙力剤添加部65を用いて高分子乾燥紙力剤(c)を添加し、濾過スクリーン62に搬送する。ファンポンプ64の乱流により、本実施態様においては、カチオン性の湿潤紙力剤(a)の付着した懸濁液中のパルプ繊維に、アニオン性の高分子乾燥紙力剤(c)がアニオン性の低分子乾燥紙力剤(b)を絡めながら付着した付着物どうしが、アニオン性の高分子乾燥紙力剤(c)の電荷により結びついた塊状物(フロック)を、バラバラに引き離し、均一にすることができるので、地合いが悪くなり難い。また、本実施態様においては、この濾過スクリーン62によっても、前記塊状物(フロック)を、取り除くことができるので、更に地合いが悪くなり難い。 In this embodiment, the suspension of softwood bleached kraft pulp (NBKP) to which the wet paper strength agent (a) and the low molecular weight dry strength agent (b) are added is then conveyed by turbulent flow. However, the polymer dry paper strength agent (c) is added using the polymer dry paper strength agent addition unit 65 and conveyed to the filter screen 62. Due to the turbulent flow of the fan pump 64, in this embodiment, the anionic polymer dry paper strength agent (c) is added to the pulp fiber in the suspension to which the cationic wet strength material (a) is adhered. The adhering materials attached while entangled the low molecular weight dry paper strength agent (b) are separated from the aggregates (floc) that are linked by the charge of the anionic polymer dry strength agent (c). It ’s hard to get worse. Moreover, in this embodiment, since the said block (floc) can be removed also by this filter screen 62, it is hard to worsen a texture further.
 高分子乾燥紙力剤(c)は、前述した通り、パルプ、湿潤紙力剤(a)、低分子乾燥紙力剤(b)の歩留り向上の観点から添加が必要である。高分子乾燥紙力剤(c)の重量平均分子量(Mw)は500~3,000万のアニオン性基を有する高分子ポリマーであり、高分子乾燥紙力剤(c)の重量平均分子量(Mw)が800~2500万のアクリル系ポリアクリルアミド樹脂(PAM)中のアクリル酸ソーダの割合が0.1%mol~80%molであることが好ましく、重量平均分子量(Mw)が600~2000万のアクリル系ポリアクリルアミド樹脂(PAM)中のアクリル酸ソーダの割合が1%mol~50%molであることが好ましい。 As described above, the polymer dry paper strength agent (c) needs to be added from the viewpoint of improving the yield of pulp, wet paper strength agent (a), and low molecular weight dry strength agent (b). The weight average molecular weight (Mw) of the polymer dry paper strength agent (c) is a polymer having 500 to 30 million anionic groups, and the weight average molecular weight (Mw) of the polymer dry paper strength agent (c) is ) In the acrylic polyacrylamide resin (PAM) having 8 to 25 million is preferably 0.1% mol to 80% mol, and the weight average molecular weight (Mw) is 6 to 20 million. The ratio of sodium acrylate in the acrylic polyacrylamide resin (PAM) is preferably 1% mol to 50% mol.
 高分子乾燥紙力剤(c)の添加量は、本実施態様で製造される薄葉紙の全構成繊維の乾燥質量に対して、乾燥紙力強度及び地合の観点から、0.001~0.1質量%となるように添加することが好ましく、0.01~0.08質量%となるように添加することが更に好ましい。高分子乾燥紙力剤(c)として、アクリル系ポリアクリルアミド樹脂(PAM)を用いる場合には、本実施態様で製造される薄葉紙の全構成繊維の乾燥質量に対して、PAMが好ましくは0.001~0.1質量%、更に好ましくは0.02~0.05質量%である。 The addition amount of the polymer dry paper strength agent (c) is 0.001 to 0.000 from the viewpoint of dry paper strength and formation with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment. It is preferable to add so that it may become 1 mass%, and it is still more preferable to add so that it may become 0.01-0.08 mass%. When an acrylic polyacrylamide resin (PAM) is used as the polymer dry paper strength agent (c), the PAM is preferably 0.00 with respect to the dry mass of all the constituent fibers of the thin paper produced in this embodiment. The content is 001 to 0.1% by mass, more preferably 0.02 to 0.05% by mass.
 紙力増強剤として、1種の湿潤紙力剤(a)の添加質量と、低分子乾燥紙力剤(b)及び高分子乾燥紙力剤(c)の総添加質量との比(前者/後者)は、好ましくは0.5~10、更に好ましくは1~5である。 As a paper strength enhancer, the ratio of the added weight of one kind of wet strength paper (a) to the total added weight of the low molecular weight strength paper strength agent (b) and the high molecular weight strength strength paper strength agent (c) (the former / The latter is preferably from 0.5 to 10, more preferably from 1 to 5.
 次に、前記塊状物(フロック)の取り除かれた原料スラリーを、管路66を通して、次工程の抄紙部7に搬送し、抄紙部7にて、抄紙・乾燥し、薄葉紙を製造する。具体的には、原料スラリー調整部2で調整された原料スラリーを、抄紙部7のフォーマーで、所定の濃度に調節し、フォーマーから供給された原料スラリーを、抄紙部7のワイヤーパートで、抄き網に紙層として形成する。その後、ワイヤーパートにおいて形成された紙層を、抄紙部7のプレスパートで、圧搾、脱水して湿紙を形成し、プレスパートにおいて形成された湿紙を、抄紙部7のドライパートで、例えば、ヤンキードライヤーやエアースルードライヤー等を用いて乾燥させて薄葉紙を製造する。尚、製造された薄葉紙は、例えば、抄紙部7のワインダーパートで巻き取る。 Next, the raw material slurry from which the block (floc) has been removed is conveyed to the paper making unit 7 in the next step through the pipe 66, and paper making and drying are performed in the paper making unit 7 to produce thin paper. Specifically, the raw material slurry adjusted by the raw material slurry adjusting unit 2 is adjusted to a predetermined concentration by the former of the paper making unit 7, and the raw material slurry supplied from the former is made by the wire part of the paper making unit 7. Form as a paper layer on the net. Thereafter, the paper layer formed in the wire part is pressed and dehydrated in the press part of the paper making unit 7 to form wet paper, and the wet paper formed in the press part is used in the dry part of the paper making unit 7, for example Then, dry the paper using a Yankee dryer, air-through dryer, etc. to produce thin paper. In addition, the manufactured thin paper is wound up by the winder part of the papermaking unit 7, for example.
 本実施態様の薄葉紙の製造方法は、坪量が30g/m2以下の薄葉紙の製造に適している。本実施態様においては、原料スラリー調整部2の種箱52によって流量を調整したり、抄紙部7のフォーマーによって所定の濃度に調節したりして、目的とする坪量(30g/m2以下)の薄葉紙に調整する。液透過性の向上の観点から、坪量は10~14.5g/m2であることが好ましく、11~14g/m2であることが更に好ましい。また、同様の観点から、製造される薄葉紙の密度は0.05~0.2g/cm3であることが好ましく、0.1~0.2g/cm3であることが更に好ましい。坪量及び密度がこのように低いと紙力の低下が懸念されるが、本実施態様で製造される薄葉紙は、前述したように、針葉樹晒クラフトパルプ(NBKP)のパルプスラリーに、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した後、低分子乾燥紙力剤(b)を添加し、その後更に高分子乾燥紙力剤(c)を添加して調整された原料スラリーを用いることで、斯かる懸念を払拭している。尚、薄葉紙の坪量が10g/m2未満又は密度が0.05g/cm3未満では、紙力が著しく低下するおそれがあり、また、薄葉紙の坪量が30g/m2超又は密度が0.2g/cm3超では、液透過性の向上効果に乏しいおそれがある。薄葉紙の坪量及び密度は、それぞれ、前記方法により測定される。 The method for producing a thin paper according to this embodiment is suitable for producing a thin paper having a basis weight of 30 g / m 2 or less. In this embodiment, the desired basis weight (30 g / m 2 or less) is obtained by adjusting the flow rate by the seed box 52 of the raw slurry adjusting unit 2 or by adjusting the flow rate to a predetermined concentration by the former of the paper making unit 7. Adjust to a thin paper. From the viewpoint of improving liquid permeability, the basis weight is preferably 10 to 14.5 g / m 2 , and more preferably 11 to 14 g / m 2 . From the same viewpoint, the density of the thin paper produced is preferably 0.05 to 0.2 g / cm 3 , and more preferably 0.1 to 0.2 g / cm 3 . When the basis weight and the density are so low, there is a concern about a decrease in paper strength. However, as described above, the thin paper produced in this embodiment has a cationic group in the pulp slurry of softwood bleached kraft pulp (NBKP). A raw material prepared by adding a wet paper strength agent (a) made of a cationic polymer having a low molecular weight, then adding a low molecular weight dry strength agent (b), and then further adding a high molecular weight dry strength agent (c). By using slurry, such concerns are eliminated. If the basis weight of the thin paper is less than 10 g / m 2 or the density is less than 0.05 g / cm 3 , the paper strength may be remarkably reduced, and the basis weight of the thin paper is more than 30 g / m 2 or the density is 0. If it exceeds 2 g / cm 3 , the effect of improving the liquid permeability may be poor. The basis weight and density of the thin paper are each measured by the above method.
 本実施態様で製造される薄葉紙は、クレープ(ちりめん状のシワ)を有しており、そのクレープ率が5%以上に設定されていることが好ましく、5~30%に設定されていることが更に好ましい。本実施態様で製造される薄葉紙におけるクレープは、ドライヤーパートにおけるヤンキードライヤー等から乾燥状態の繊維ウエブ(薄葉紙)をドクターナイフ等で剥離する際に生じる、ドライクレープであることが好ましい。クレープ率は、前記方法により測定される。 The thin paper produced in this embodiment has crepes (crepe-like wrinkles), and the crepe rate is preferably set to 5% or more, and is preferably set to 5 to 30%. Further preferred. The crepe in the thin paper produced in this embodiment is preferably a dry crepe that is produced when a dry fiber web (thin paper) is peeled off from a Yankee dryer or the like in the dryer part with a doctor knife or the like. The crepe rate is measured by the above method.
 クレープを有する薄葉紙は、クレープを有しない薄葉紙に比して液透過性が高く、また、クレープ率が高くなるほど液透過性が高まる。但し、クレープ率が高くなると、強度特性(引張強度)は低下する傾向がある。本実施態様においては、斯かる知見に基づき、液透過性と強度特性とのバランスの観点から、本実施態様で製造される薄葉紙のクレープ率を5~30%とすることが好ましく、5~20%とすることが更に好ましく、7~15%とすることが特に好ましい。 Thin paper with crepe has higher liquid permeability than thin paper without crepe, and the higher the crepe rate, the higher the liquid permeability. However, as the crepe rate increases, the strength properties (tensile strength) tend to decrease. In the present embodiment, based on such knowledge, the crepe rate of the thin paper produced in the present embodiment is preferably 5 to 30% from the viewpoint of the balance between liquid permeability and strength characteristics. % Is more preferable, and 7 to 15% is particularly preferable.
 本実施態様で製造される薄葉紙のMD方向の乾燥引張強度は、60cN/gsm以上であり、60~150cN/gsmであることが好ましく、60~100cN/gsmであることが更に好ましく、60~90cN/gsmであることが特に好ましい。また、本実施態様で製造される薄葉紙の、MD方向に直交するCD方向の乾燥引張強度は、13cN/gsm以上であり、13~50cN/gsmであることが好ましく、13~40cN/gsmであることが更に好ましく、13~30cN/gsmであることが特に好ましい。MD方向及びCD方向それぞれの乾燥引張強度が前記範囲にある薄葉紙は、実用上十分な強度を有しており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合、吸収性物品の製造時にコアラップシート(薄葉紙)が破れる等の不都合を起こし難い。尚、引張強度の単位に関し、第3発明について使用している単位「cN/gsm」は、前述した第1発明について使用している単位「cN/25mm」と同じである。 The dry tensile strength in the MD direction of the thin paper produced in this embodiment is 60 cN / gsm or more, preferably 60 to 150 cN / gsm, more preferably 60 to 100 cN / gsm, and more preferably 60 to 90 cN. / Gsm is particularly preferable. Further, the dry tensile strength of the thin paper produced in this embodiment in the CD direction perpendicular to the MD direction is 13 cN / gsm or more, preferably 13 to 50 cN / gsm, and preferably 13 to 40 cN / gsm. More preferably, it is 13 to 30 cN / gsm. A thin paper having a dry tensile strength in each of the MD direction and the CD direction within the above range has a practically sufficient strength. For example, the thin paper is coated with a core wrap that covers an absorbent core in an absorbent article such as a disposable diaper. When applied to a sheet, it is difficult to cause inconveniences such as tearing of a core wrap sheet (thin paper) when manufacturing an absorbent article. Regarding the unit of tensile strength, the unit “cN / gsm” used for the third invention is the same as the unit “cN / 25 mm” used for the first invention described above.
 本実施態様で製造される薄葉紙のMD方向の湿潤引張強度は、13cN/gsm以上であり、13~60cN/gsmであることが好ましく、13~50cN/gsmであることが更に好ましく、13~30cN/gsmであることが特に好ましい。また、本実施態様で製造される薄葉紙の、MD方向に直交するCD方向の乾燥引張強度は、5cN/gsm以上であり、5~20cN/gsmであることが好ましく、5~15cN/gsmであることが更に好ましく、5~12cN/gsmであることが特に好ましい。
 MD方向及びCD方向それぞれの湿潤引張強度が前記範囲にある薄葉紙は、実用上十分な強度を有しており、例えば該薄葉紙を、おむつ使用等に不都合を起こし難い。乾燥引張強度は前記方法により測定され、湿潤引張強度は次のようにして測定される。
The wet tensile strength in the MD direction of the thin paper produced in this embodiment is 13 cN / gsm or more, preferably 13 to 60 cN / gsm, more preferably 13 to 50 cN / gsm, and more preferably 13 to 30 cN. / Gsm is particularly preferable. Further, the dry tensile strength of the thin paper produced in the present embodiment in the CD direction perpendicular to the MD direction is 5 cN / gsm or more, preferably 5 to 20 cN / gsm, and 5 to 15 cN / gsm. Further preferred is 5 to 12 cN / gsm.
The thin paper having the wet tensile strength in the MD direction and the CD direction in the above ranges has a practically sufficient strength. For example, the thin paper is unlikely to cause inconvenience when using a diaper. The dry tensile strength is measured by the above method, and the wet tensile strength is measured as follows.
<湿潤引張強度の測定方法>
 前記<乾燥引張強度の測定方法>で用いた測定対象シート(薄葉紙)と同寸のシートを、大量の水に5秒間浸した後、10秒間水を切ってから、前記<乾燥引張強度の測定方法>と同様の引張試験機及び測定方法で破断するまでの最大強度を測定する。
<Measurement method of wet tensile strength>
After immersing a sheet of the same size as the measurement target sheet (thin paper) used in <Method for measuring dry tensile strength> in a large amount of water for 5 seconds, and then draining the water for 10 seconds, <Measurement of dry tensile strength> The maximum strength until fracture is measured with the same tensile tester and measurement method as in Method>.
 また、前記方法で測定される本実施態様の薄葉紙の液透過時間は、3秒以下であり、0.2~3秒であることが好ましく、0.3~2.5秒であることが更に好ましく、0.5~2秒であることが特に好ましい。液透過時間が短いほど、液透過性が高く高評価となる。液透過時間が前記範囲にある薄葉紙は、液透過性に優れており、例えば該薄葉紙を、使い捨ておむつ等の吸収性物品における吸収性コアを被覆するコアラップシートに適用した場合には、尿等の排泄液を素早く透過させて吸収性コアに速やかに吸収させることが可能となり、吸収性物品の防漏性の向上が期待できる。 Further, the liquid permeation time of the thin paper of this embodiment measured by the above method is 3 seconds or less, preferably 0.2 to 3 seconds, and more preferably 0.3 to 2.5 seconds. Preferably, it is 0.5 to 2 seconds. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation. The thin paper whose liquid permeation time is in the above range is excellent in liquid permeability. For example, when the thin paper is applied to a core wrap sheet covering an absorbent core in an absorbent article such as a disposable diaper, urine or the like It is possible to quickly permeate the excreted liquid and allow the absorbent core to quickly absorb the excreted fluid, and to improve the leak-proof property of the absorbent article.
 本実施態様で製造される薄葉紙は、強度特性(引張強度)が良好で液透過性に優れており、そのような特長が活かされる種々の用途に好適である。特に、本実施態様で製造される薄葉紙は、使い捨ておむつや生理用ナプキンや失禁パッド等の吸収性物品において、液保持性の吸収性コアを被覆するコアラップシートとして好適であり、排泄液が、尿等の比較的低粘性の場合のみならず、軟便等の比較的高粘性の場合であっても、排泄液を素早く透過させて吸収性コアに吸収させることができ、吸収性物品の防漏性の向上に寄与し得る。 The thin paper produced in this embodiment has good strength characteristics (tensile strength) and excellent liquid permeability, and is suitable for various applications in which such features are utilized. In particular, the thin paper produced in this embodiment is suitable as a core wrap sheet for covering a liquid-retaining absorbent core in absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads, Not only in the case of relatively low viscosity, such as urine, but also in the case of relatively high viscosity, such as loose stool, the excretory fluid can be quickly permeated and absorbed by the absorbent core. It can contribute to the improvement of sex.
 本実施態様で製造される薄葉紙には、前述した、NBKP等の繊維及び紙力増強剤(a),(b),(c)以外の他の成分を含んでいても良い。他の成分としては、例えば、炭酸カルシウム、タルク等の填料、染料、色顔料、消臭剤、抗菌剤、pH調整剤、歩留り向上剤、耐水化剤、消泡剤等の一般的に抄紙用原材料や添加物として使用されているものが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。 The thin paper produced in this embodiment may contain other components other than the fibers such as NBKP and the paper strength enhancing agents (a), (b), and (c) described above. As other components, for example, fillers such as calcium carbonate and talc, dyes, color pigments, deodorants, antibacterial agents, pH adjusters, yield improvers, water resistance agents, antifoaming agents, etc. What is used as a raw material or an additive is mentioned, These 1 type can be used individually or in combination of 2 or more types.
 本発明(第3発明)の薄葉紙の製造方法は、前述した実施態様に制限されない。例えば、前述した実施態様においては、針葉樹晒クラフトパルプ(NBKP)のパルプスラリーに、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した後、低分子乾燥紙力剤(b)を添加し、その後更に高分子乾燥紙力剤(c)を添加して調整された原料スラリーを用いているが、針葉樹晒クラフトパルプ(NBKP)のパルプスラリーに、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した後、低分子乾燥紙力剤(b)及び高分子乾燥紙力剤(c)を同時に添加して調整された原料スラリーを用いてもよい。このように、低分子乾燥紙力剤(b)及び高分子乾燥紙力剤(c)を同時に添加することにより、薬剤添加工程を簡略化することで製造ラインをコンパクトにできる。 The thin paper manufacturing method of the present invention (third invention) is not limited to the embodiment described above. For example, in the above-described embodiment, after adding a wet paper strength agent (a) made of a cationic polymer having a cationic group to a pulp slurry of softwood bleached kraft pulp (NBKP), a low molecular weight dry strength material (b ), And then a raw material slurry prepared by further adding a polymer dry paper strength agent (c), but a cationic polymer having a cationic group in the pulp slurry of softwood bleached kraft pulp (NBKP) After adding the wet paper strength agent (a) consisting of the above, a raw material slurry prepared by simultaneously adding the low molecular weight dry strength agent (b) and the high molecular weight dry strength agent (c) may be used. Thus, by simultaneously adding the low-molecular dry paper strength agent (b) and the high-molecular dry paper strength agent (c), the production line can be made compact by simplifying the chemical addition step.
 また、本発明(第3発明)に用いられる製造装置として、図2に示す製造装置1Aに代えて図3に示す製造装置1Bを用いることもできる。図3に示す製造装置1Bは、図2に示す製造装置1Aと比較して、高分子乾燥紙力剤添加部65の位置が異なっている。具体的には、図3に示す製造装置1Bにおいては、種箱52と濾過スクリーン62とを結ぶ管路61に、上流側から下流側に向かって、高分子乾燥紙力剤添加部65が配され、希釈水供給部63が配され、次に、ファンポンプ64が配されている。図3に示す製造装置1Bを用いた実施態様においても、図2に示す製造装置1Aを用いた実施態様と同様の作用効果を期することができる。 Further, as a manufacturing apparatus used in the present invention (third invention), a manufacturing apparatus 1B shown in FIG. 3 can be used instead of the manufacturing apparatus 1A shown in FIG. The manufacturing apparatus 1B shown in FIG. 3 differs from the manufacturing apparatus 1A shown in FIG. 2 in the position of the polymer dry paper strength agent adding section 65. Specifically, in the manufacturing apparatus 1B shown in FIG. 3, a polymer dry paper strength agent adding unit 65 is arranged in the pipe line 61 connecting the seed box 52 and the filtration screen 62 from the upstream side to the downstream side. Then, the dilution water supply unit 63 is arranged, and then the fan pump 64 is arranged. Also in the embodiment using the manufacturing apparatus 1B shown in FIG. 3, the same effect as the embodiment using the manufacturing apparatus 1A shown in FIG. 2 can be expected.
 また、本発明(第3発明)に用いられる製造装置として、図2に示す製造装置1Aに代えて図4に示す製造装置1Cを用いることもできる。図4に示す製造装置1Cは、図2に示す製造装置1Aと比較して、ファンポンプ64を有しておらず、高分子乾燥紙力剤添加部65の位置が異なっている。具体的には、図4に示す製造装置1Cにおいては、濾過スクリーン62と抄紙部7とを結ぶ管路66に、高分子乾燥紙力剤添加部65が配されている。図4に示す製造装置1Cを用いた実施態様においても、図2に示す製造装置1Aを用いた実施態様と同様の作用効果を期することができる。尚、図4に示す製造装置1Cは、ファンポンプ64を有していないが、濾過スクリーン62の代わりに、ファンポンプ64を備えていてもよい。 Further, as a manufacturing apparatus used in the present invention (third invention), a manufacturing apparatus 1C shown in FIG. 4 can be used instead of the manufacturing apparatus 1A shown in FIG. The manufacturing apparatus 1C illustrated in FIG. 4 does not include the fan pump 64 and the position of the polymer dry paper strength agent adding unit 65 is different from that of the manufacturing apparatus 1A illustrated in FIG. Specifically, in the manufacturing apparatus 1 </ b> C shown in FIG. 4, a polymer dry paper strength agent adding unit 65 is arranged in a pipe line 66 connecting the filtration screen 62 and the paper making unit 7. In the embodiment using the manufacturing apparatus 1 </ b> C shown in FIG. 4, the same operational effects as those in the embodiment using the manufacturing apparatus 1 </ b> A shown in FIG. 2 can be expected. Note that the manufacturing apparatus 1C illustrated in FIG. 4 does not include the fan pump 64, but may include the fan pump 64 instead of the filtration screen 62.
 また、本発明(第3発明)に用いられる製造装置として、図2に示す製造装置1Aに代えて図5に示す製造装置1Dを用いることもできる。図5に示す製造装置1Dは、図2に示す製造装置1Aと比較して、第2スラリー貯蔵タンク42、管路51及び送液ポンプ53を有しておらず、低分子乾燥紙力剤添加部43の取り付け位置が異なっている。具体的には、図5に示す製造装置1Dにおいては、高分子乾燥紙力剤添加部65の管路の途中に、低分子乾燥紙力剤添加部43が取り付けられている。製造装置1Dによれば、第1スラリー貯蔵タンク32内で十分に攪拌混合された湿潤紙力剤(a)の添加された針葉樹晒クラフトパルプ(NBKP)の懸濁液を、送液ポンプ44により管路41通して種箱52へ送る。そして、種箱52で流量の調整された、前記懸濁液を、管路61を通して濾過スクリーン62に搬送する際に、先ず、希釈水供給部63を用いて希釈し、ファンポンプ64を用いて、乱流を引き起こしながら濾過スクリーン62に搬送する。製造装置1Dによれば、乱流によって、湿潤紙力剤(a)の添加された針葉樹晒クラフトパルプ(NBKP)の懸濁液を搬送しながら高分子乾燥紙力剤添加部65を用いて高分子乾燥紙力剤(c)を添加する際に、高分子乾燥紙力剤(c)に低分子乾燥紙力剤添加部43を用いて低分子乾燥紙力剤(b)を混在させながら添加する。図5に示す製造装置1Dを用いた実施態様においても、図2に示す製造装置1Aを用いた実施態様と同様の作用効果を期することができる。 Further, as a manufacturing apparatus used in the present invention (third invention), a manufacturing apparatus 1D shown in FIG. 5 can be used instead of the manufacturing apparatus 1A shown in FIG. Compared with the manufacturing apparatus 1A shown in FIG. 2, the manufacturing apparatus 1D shown in FIG. 5 does not have the second slurry storage tank 42, the pipe line 51, and the liquid feed pump 53, and adds a low molecular dry paper strength agent. The attachment position of the part 43 is different. Specifically, in the manufacturing apparatus 1 </ b> D shown in FIG. 5, a low molecular dry paper strength agent adding section 43 is attached in the middle of the pipeline of the polymer dry paper strength agent adding section 65. According to the manufacturing apparatus 1D, the suspension of the softwood bleached kraft pulp (NBKP) to which the wet paper strength agent (a) sufficiently stirred and mixed in the first slurry storage tank 32 is added is fed by the liquid feed pump 44. It is sent to the seed box 52 through the pipe 41. Then, when the suspension whose flow rate is adjusted in the seed box 52 is transported to the filtration screen 62 through the pipe 61, first, it is diluted using the dilution water supply unit 63, and then using the fan pump 64. , And transported to the filter screen 62 while causing turbulence. According to the manufacturing apparatus 1D, the polymer dry paper strength agent adding unit 65 is used to convey a suspension of softwood bleached kraft pulp (NBKP) to which the wet strength material (a) is added by turbulent flow. When adding the molecular dry paper strength agent (c), the low molecular dry paper strength agent (b) is added to the polymer dry paper strength agent (c) using the low molecular dry paper strength agent addition unit 43. To do. Also in the embodiment using the manufacturing apparatus 1D shown in FIG. 5, the same effect as the embodiment using the manufacturing apparatus 1A shown in FIG. 2 can be expected.
 以下、本発明(第4発明)の吸収性物品について、その好ましい一実施形態である使い捨ておむつに基づき図面を参照しながら説明する。本実施形態のおむつ1は、いわゆる展開型の使い捨ておむつであり、図6及び図7に示すように、肌対向面を形成する液透過性の表面シート12、非肌対向面を形成する液不透過性ないし撥水性(以下、これらを総称して液不透過性という)の裏面シート13、及び両シート12,13間に配置された吸収体14を有し、実質的に縦長に形成されている。表面シート12、裏面シート13及び吸収体14は、何れも、一方向Xに長い縦長の形状を有している。表面シート12及び裏面シート13は、それぞれ、吸収体14よりも大きな寸法を有し、吸収体14の周縁から外方に延出している。表面シート12は、図7に示すように、その幅方向Yの寸法が、裏面シート13の幅方向Yの寸法よりも小さくなっている。 Hereinafter, the absorbent article of the present invention (the fourth invention) will be described with reference to the drawings based on a disposable diaper which is a preferred embodiment thereof. The diaper 1 of the present embodiment is a so-called unfolded disposable diaper, as shown in FIGS. 6 and 7, a liquid-permeable surface sheet 12 that forms a skin facing surface, and a liquid impermeable material that forms a non-skin facing surface. It has a back sheet 13 that is permeable or water repellent (hereinafter collectively referred to as “liquid impervious”), and an absorbent body 14 that is disposed between the two sheets 12 and 13 and is formed substantially vertically. Yes. The top sheet 12, the back sheet 13, and the absorber 14 all have a vertically long shape in one direction X. Each of the top sheet 12 and the back sheet 13 has a size larger than that of the absorber 14, and extends outward from the peripheral edge of the absorber 14. As shown in FIG. 7, the width of the top sheet 12 in the width direction Y is smaller than the width of the back sheet 13 in the width direction Y.
 おむつ1は、図6に示すように、長手方向Xに、着用時に着用者の背側に配される背側部Aと、着用時に着用者の腹側に配される腹側部Bと、着用時に着用者の股下の配される股下部Cとを有している。股下部Cは、おむつ1の長手方向Xの中央部に位置している。おむつ1は、股下部Cの両側縁が内向きの円弧状に湾曲しており、図6に示す如き平面視において、長手方向Xの中央部が内方に括れた砂時計状の形状となっている。 As shown in FIG. 6, the diaper 1 has, in the longitudinal direction X, a dorsal side portion A that is arranged on the back side of the wearer when worn, and a ventral side portion B that is arranged on the ventral side of the wearer when wearing, And a crotch part C on which the wearer's crotch is arranged when worn. The crotch portion C is located at the center of the diaper 1 in the longitudinal direction X. The diaper 1 has an hourglass shape in which both side edges of the crotch part C are curved in an inward arc shape, and the center part in the longitudinal direction X is inwardly bounded in a plan view as shown in FIG. Yes.
 本明細書において、長手方向は、吸収性物品(使い捨ておむつ)又はその構成部材(例えば吸収性コア)の長辺に沿う方向であり、幅方向は、該長手方向と直交する方向である。図6~図8中、符号Xで示す方向は、おむつ1(吸収性コア140)の長手方向であり、符号Yで示す方向は、おむつ1(吸収性コア140)の幅方向である。また、肌対向面は、吸収性物品(使い捨ておむつ)又はその構成部材における、吸収性物品(使い捨ておむつ)の着用時に着用者の肌側に向けられる面であり、非肌対向面は、吸収性物品(使い捨ておむつ)又はその構成部材における、吸収性物品(使い捨ておむつ)の着用時に肌側とは反対側(衣類側)に向けられる面である。 In the present specification, the longitudinal direction is a direction along the long side of an absorbent article (disposable diaper) or a constituent member (for example, an absorbent core), and the width direction is a direction orthogonal to the longitudinal direction. 6 to 8, the direction indicated by the symbol X is the longitudinal direction of the diaper 1 (absorbent core 140), and the direction indicated by the symbol Y is the width direction of the diaper 1 (absorbent core 140). Further, the skin facing surface is a surface that is directed to the wearer's skin when the absorbent article (disposable diaper) is worn in the absorbent article (disposable diaper) or a component thereof, and the non-skin facing surface is absorbent. In the article (disposable diaper) or a component thereof, the surface is directed to the side opposite to the skin side (clothing side) when the absorbent article (disposable diaper) is worn.
 図6及び図7に示すように、おむつ1の長手方向Xに沿う両側部それぞれには、一側縁部に弾性部材161が伸長状態で固定されているサイドシート162が配されており、着用時における股下部Cには、一対の立体ギャザーが形成される。また、着用者の脚周りに配される左右のレッグ部には、弾性部材163が長手方向Xに沿って配されており、着用時におけるレッグ部には、弾性部材163の収縮により、一対のレッグギャザーが形成される。図7に示すように、一対のサイドシート162,162、表面シート12、吸収体14、弾性部材163及び裏面シート13は、ホットメルト型接着剤等の公知の接合手段により接合されている。 As shown in FIG.6 and FIG.7, each side part along the longitudinal direction X of the diaper 1 is provided with a side sheet 162 to which an elastic member 161 is fixed in an extended state on one side edge part. A pair of three-dimensional gathers are formed in the crotch part C at the time. In addition, elastic members 163 are arranged along the longitudinal direction X on the left and right leg portions arranged around the wearer's legs, and a pair of leg portions when worn is contracted by the elastic member 163. Leg gathers are formed. As shown in FIG. 7, the pair of side sheets 162, 162, the top sheet 12, the absorber 14, the elastic member 163, and the back sheet 13 are joined by a known joining means such as a hot melt adhesive.
 また、図6に示すように、背側部A及び腹側部Bそれぞれのウエスト開口端部には、ウエスト弾性部材164が配設されてウエストギャザーが形成されている。ウエスト弾性部材164は、帯状の形態を有し、おむつ1の幅方向Yに沿っておむつ1の略全幅に亘って、表面シート12と裏面シート13との間に挟持固定されている。また、背側部Aにおける胴回り部の左右両側部には、それぞれ複数本の胴回りギャザー形成用弾性部材165が配設されて左右一対の胴回りギャザーが形成されている。胴回りギャザー形成用弾性部材165は、幅方向Yに沿って略直線状に配され、表面シート12と裏面シート13との間に挟持固定されている。 Moreover, as shown in FIG. 6, the waist elastic member 164 is arrange | positioned in the waist opening end part of the back side part A and the abdominal side part B, and the waist gathers are formed. The waist elastic member 164 has a belt-like form, and is sandwiched and fixed between the top sheet 12 and the back sheet 13 over substantially the entire width of the diaper 1 along the width direction Y of the diaper 1. In addition, a plurality of waistline gather forming elastic members 165 are disposed on the left and right sides of the waistline portion of the back side portion A to form a pair of left and right waistline gathers. The waistline gather forming elastic member 165 is arranged substantially linearly along the width direction Y, and is sandwiched and fixed between the top sheet 12 and the back sheet 13.
 図6に示すように、おむつ1の背側部Aの長手方向Xに沿う両側縁部には、一対のファスニングテープ18,18が設けられている。より具体的には、背側部A及び腹側部Bそれぞれの長手方向Xに沿う両側部には、吸収体14の長手方向Xに沿う両側縁部から幅方向Yの外方に延出するサイドフラップ17,17が形成されており、各サイドフラップ17に、ファスニングテープ18が幅方向Yの外方に延出して取り付けられている。ファスニングテープ18には、機械的面ファスナーのオス部材からなる止着部181が取り付けられている。 As shown in FIG. 6, a pair of fastening tapes 18 and 18 are provided on both side edges along the longitudinal direction X of the back side A of the diaper 1. More specifically, the both sides along the longitudinal direction X of each of the back side portion A and the ventral side portion B extend outward in the width direction Y from both side edge portions along the longitudinal direction X of the absorbent body 14. Side flaps 17 and 17 are formed, and a fastening tape 18 is attached to each side flap 17 so as to extend outward in the width direction Y. A fastening portion 181 made of a male member of a mechanical surface fastener is attached to the fastening tape 18.
 また、おむつ1の腹側部Bの非肌対向面には、機械的面ファスナーのメス部材からなる被止着領域19が形成されている。被止着領域19は、裏面シート13の非肌対向面に、機械的面ファスナーのメス部材を公知の接合手段(例えば、接着剤やヒートシール等)で接合固定して形成されており、ファスニングテープ18の止着部181を着脱自在に止着可能である。 Also, a non-skin facing surface of the ventral side B of the diaper 1 is formed with a to-be-attached region 19 made of a female member of a mechanical surface fastener. The to-be-bonded region 19 is formed by bonding and fixing a female member of a mechanical hook-and-loop fastener to the non-skin facing surface of the back sheet 13 with a known bonding means (for example, an adhesive or heat seal). The fastening part 181 of the tape 18 can be detachably fastened.
 以下、吸収体14について詳細に説明する。吸収体4は、図6及び図7に示すように、吸収性コア140と該吸収性コア140を被覆するコアラップシート15とを含んで構成されている。吸収性コア140は、図6に示すように、一方向(おむつ1の長手方向X)に長い形状を有し、長手方向中央部が括れている。 Hereinafter, the absorber 14 will be described in detail. As shown in FIGS. 6 and 7, the absorbent body 4 includes an absorbent core 140 and a core wrap sheet 15 that covers the absorbent core 140. As shown in FIG. 6, the absorbent core 140 has a shape that is long in one direction (longitudinal direction X of the diaper 1), and the longitudinal central portion is constricted.
 吸収性コア140は、親水性繊維及び吸水性ポリマーを含んで構成されている。親水性繊維としては、親水性表面を有する繊維であって、その湿潤状態において、繊維どうしが互いに高い自由度を有するシートを形成できるものであれば、特に制限なく用いることができる。そのような親水性繊維の例には、針葉樹クラフトパルプ、広葉樹クラフトパルプ等の木材パルプや木綿パルプ、ワラパルプ等の非木材パルプ等の天然セルロース繊維;レーヨン、キュプラ等の再生セルロース繊維;ポリビニルアルコール繊維、ポリアクリロニトリル繊維等の親水性合成繊維;ポリエチレンテレフタレート(PET)繊維、ポリエチレン(PE)繊維、ポリプロピレン(PP)繊維、ポリエステル繊維等の合成繊維を界面活性剤により親水化処理したもの等が挙げられ、これらの1種を単独で又は2種以上を混合して用いることができる。 The absorbent core 140 includes a hydrophilic fiber and a water-absorbing polymer. The hydrophilic fiber can be used without particular limitation as long as it is a fiber having a hydrophilic surface and can form a sheet in which the fibers have a high degree of freedom in the wet state. Examples of such hydrophilic fibers include natural cellulose fibers such as wood pulp such as softwood kraft pulp and hardwood kraft pulp and non-wood pulp such as cotton pulp and straw pulp; regenerated cellulose fibers such as rayon and cupra; polyvinyl alcohol fiber , Hydrophilic synthetic fibers such as polyacrylonitrile fibers; synthetic fibers such as polyethylene terephthalate (PET) fibers, polyethylene (PE) fibers, polypropylene (PP) fibers, and polyester fibers that have been hydrophilized with a surfactant. These 1 type can be used individually or in mixture of 2 or more types.
 また、吸水性ポリマーとしては、当該技術分野において従来用いられている各種のものを特に制限無く用いることができ、例えば、ポリアクリル酸ソーダ、(アクリル酸-ビニルアルコール)共重合体、ポリアクリル酸ソーダ架橋体、(デンプン-アクリル酸)グラフト重合体、(イソブチレン-無水マレイン酸)共重合体及びそのケン化物、ポリアクリル酸カリウム、並びにポリアクリル酸セシウム等が挙げられ、これらの1種を単独で又は2種以上を混合して用いることができる。吸水性ポリマーとしては、通常は粒子状のものが用いられるが、繊維状のものでも良い。粒子状の吸水性ポリマーには、その形状の違いから、不定形タイプ、塊状タイプ、俵状タイプ、球粒凝集タイプ、球状タイプ等があるが、何れのタイプも用いることができる。 In addition, as the water-absorbing polymer, various polymers conventionally used in the technical field can be used without particular limitation. For example, polyacrylic acid soda, (acrylic acid-vinyl alcohol) copolymer, polyacrylic acid Cross-linked soda, (starch-acrylic acid) graft polymer, (isobutylene-maleic anhydride) copolymer and saponified product thereof, potassium polyacrylate, cesium polyacrylate, and the like. Or a mixture of two or more. As the water-absorbing polymer, particles are usually used, but fibers may be used. The particulate water-absorbing polymer includes an amorphous type, a block type, a bowl type, a spherical particle agglomeration type, a spherical type and the like due to the difference in shape, and any type can be used.
 吸収性コア140における親水性繊維及び吸水性ポリマーの合計含有量は、吸収性コア140の質量に対して、例えば70~100質量%であり、好ましくは85~100質量%、更に好ましくは95~100質量%である。親水性繊維と吸水性ポリマーとの含有質量比は、尿や軟便等を十分に保持固定し得るようにする観点から、親水性繊維:吸水性ポリマー=1/9~9/1が好ましく、3/7~7/3が更に好ましい。吸収性コア140には、必要に応じ、親水性繊維及び吸水性ポリマー以外の他の成分、例えば、pH緩衝材、親水性の微粉、消臭剤等の各種添加剤、及び非親水性繊維等を含有させても良い。 The total content of the hydrophilic fiber and the water-absorbing polymer in the absorbent core 140 is, for example, 70 to 100% by mass, preferably 85 to 100% by mass, more preferably 95 to 100% by mass with respect to the mass of the absorbent core 140. 100% by mass. The content ratio of the hydrophilic fiber to the water-absorbing polymer is preferably hydrophilic fiber: water-absorbing polymer = 1/9 to 9/1 from the viewpoint of sufficiently holding and fixing urine, loose stool, and the like. / 7 to 7/3 is more preferable. For the absorbent core 140, other components other than the hydrophilic fiber and the water-absorbing polymer, for example, various additives such as pH buffer material, hydrophilic fine powder, deodorant, non-hydrophilic fiber, etc., if necessary May be included.
 吸収性コア140の坪量は、200~600g/m2、特に300~600g/m2であることが、尿や軟便等を十分保持固定できる点から好ましい。同様の観点から、吸収性コア140の密度は、好ましくは0.10~0.30g/cm3、更に好ましくは0.15~0.30g/cm3である。また、吸収性コア140の無荷重下での厚みは、好ましくは1.5~3.5mm、更に好ましくは1.7~3.0mmである。 The basis weight of the absorbent core 140 is preferably 200 to 600 g / m 2 , particularly 300 to 600 g / m 2 , from the viewpoint of sufficiently holding and fixing urine, loose stool and the like. From the same viewpoint, the density of the absorbent core 140 is preferably 0.10 to 0.30 g / cm 3 , more preferably 0.15 to 0.30 g / cm 3 . Further, the thickness of the absorbent core 140 under no load is preferably 1.5 to 3.5 mm, more preferably 1.7 to 3.0 mm.
 コアラップシート15は、図7に示すように、吸収性コア140の肌対向面140aに対向配置される(吸収性コア140の肌対向面140a側に配置される)、高液透過性紙151と、吸収性コア140の非肌対向面140bに対向配置され且つ吸収性コア140の長手方向Xに沿う両側縁部140s、140sを被覆する(吸収性コア140の非肌対向面140b側に配置される)、低液透過性シート152とを含んでいる。より具体的には、コアラップシート15は、幅方向Yの寸法が異なる2枚のシート151,152を含んで構成されており、そのうちの1枚が、吸収性コア140の長手方向X及び幅方向Yの長さ(ここでいう吸収性コアの長手方向及び幅方向の長さは、それぞれの方向の最大長さを意味する)と略同寸法の高液透過性紙151であり、他の1枚が、高液透過性紙151よりも幅広の低液透過性シート152である。高液透過性紙151と低液透過性シート152とは、長手方向Xの長さは同じである。高液透過性紙151は、吸収性コア140の肌対向面140aの略全域を被覆している。低液透過性シート152は、吸収性コア140の非肌対向面140bの略全域を被覆し、且つ吸収性コア140の両側縁部140s,140sから幅方向Yの外方に延出し、その延出部が、吸収性コア140の肌対向面140aに対向配置された高液透過性紙151上に巻き上げられ、高液透過性紙151の長手方向Xに沿う両側縁部を被覆している。高液透過性紙151と吸収性コア140との間、及び低液透過性シート152と吸収性コア140との間は、ホットメルト型接着剤等の公知の接合手段により接合されていても良い。 As shown in FIG. 7, the core wrap sheet 15 is disposed so as to face the skin facing surface 140 a of the absorbent core 140 (located on the skin facing surface 140 a side of the absorbent core 140). And covering both side edges 140s, 140s along the longitudinal direction X of the absorbent core 140 (disposed on the non-skin facing surface 140b side of the absorbent core 140) And a low liquid permeability sheet 152. More specifically, the core wrap sheet 15 includes two sheets 151 and 152 having different dimensions in the width direction Y, one of which is the longitudinal direction X and width of the absorbent core 140. A highly liquid-permeable paper 151 having substantially the same dimensions as the length in the direction Y (the length in the longitudinal direction and the width direction of the absorbent core here means the maximum length in each direction), One sheet is a low liquid permeability sheet 152 wider than the high liquid permeability paper 151. The high liquid permeable paper 151 and the low liquid permeable sheet 152 have the same length in the longitudinal direction X. The high liquid permeability paper 151 covers substantially the entire skin facing surface 140a of the absorbent core 140. The low liquid permeable sheet 152 covers substantially the entire area of the non-skin facing surface 140b of the absorbent core 140, and extends outward in the width direction Y from both side edge portions 140s, 140s of the absorbent core 140. The protruding portion is wound up on the highly liquid permeable paper 151 disposed opposite to the skin facing surface 140 a of the absorbent core 140 and covers both side edges along the longitudinal direction X of the highly liquid permeable paper 151. The high liquid permeable paper 151 and the absorbent core 140 and the low liquid permeable sheet 152 and the absorbent core 140 may be joined by a known joining means such as a hot melt adhesive. .
 本実施形態のおむつ1の主たる特長の1つとして、吸収性コア140の肌対向面140a上に他の部材を介在させずに直接配置される、高液透過性紙151が、強度特性が良好で液透過性に優れている点が挙げられる。 As one of the main features of the diaper 1 of the present embodiment, the highly liquid-permeable paper 151 that is directly disposed on the skin facing surface 140a of the absorbent core 140 without any other member has good strength characteristics. The point which is excellent in liquid permeability is mentioned.
 即ち、高液透過性紙151は、液透過性の向上の観点から、坪量及び密度が比較的低く設定されており、具体的には、高液透過性紙151の坪量は8~20g/m2、好ましくは10~14.5g/m2、更に好ましくは11~14g/m2であり、高液透過性紙51の密度は、密度は0.05~0.2g/cm3、好ましくは0.07~0.20g/cm3、更に好ましくは0.10~0.20g/cm3である。高液透過性紙151の坪量が8g/m2未満又は密度が0.05g/cm3未満では、紙力が著しく低下するおそれがあり、また、高液透過性紙151の坪量が20g/m2超又は密度が0.2g/cm3超では、液透過性の向上効果に乏しいおそれがある。高液透過性紙151(コアラップシート15)の坪量及び密度は、それぞれ、次のように測定される。 That is, the basis weight and density of the high liquid permeability paper 151 are set to be relatively low from the viewpoint of improving the liquid permeability. Specifically, the basis weight of the high liquid permeability paper 151 is 8 to 20 g. / M 2 , preferably 10 to 14.5 g / m 2 , more preferably 11 to 14 g / m 2 , and the density of the highly liquid-permeable paper 51 is 0.05 to 0.2 g / cm 3 , The amount is preferably 0.07 to 0.20 g / cm 3 , more preferably 0.10 to 0.20 g / cm 3 . If the basis weight of the highly liquid permeable paper 151 is less than 8 g / m 2 or the density is less than 0.05 g / cm 3 , the paper strength may be remarkably reduced, and the basis weight of the highly liquid permeable paper 151 is 20 g. If the density exceeds / m 2 or the density exceeds 0.2 g / cm 3 , the effect of improving the liquid permeability may be poor. The basis weight and density of the highly liquid-permeable paper 151 (core wrap sheet 15) are measured as follows.
<コアラップシートの坪量の測定方法>
 JIS P8111の条件にてサンプル(コアラップシート)の調湿を行った後、サンプルから10cm四方(面積100cm2)の測定片を切り出し、該測定片の重量を少数点以下2桁の天秤にて測定し、その測定値を面積で除して該測定片の坪量を算出する。サンプルから切り出した10枚の測定片について、前記手順に従って坪量を算出し、それらの平均値をサンプルの坪量とする。
<Measurement method of basis weight of core wrap sheet>
After conditioning the sample (core wrap sheet) under the conditions of JIS P8111, a 10 cm square (100 cm 2 ) measurement piece was cut out from the sample, and the weight of the measurement piece was measured with a two-digit scale below the decimal point. The basis weight of the measurement piece is calculated by dividing the measured value by the area. About 10 measurement pieces cut out from the sample, the basis weight is calculated according to the above procedure, and the average value thereof is taken as the basis weight of the sample.
<コアラップシートの密度の測定方法>
 20cm四方のサンプル(コアラップシート)を10枚重ねて積層体とし、該積層体を液体窒素で冷却固化させた後、カッターで該積層体の真ん中付近を切断する。そして、10枚のサンプルのうち、カッターによる切断で生じた断面にせん断がかかっていないものを選択し、選択したサンプルの厚みを光学顕微鏡により測定する。尚、サンプルの厚みは、当該サンプルに後述するクレープ等の凹凸がある場合は、その凹凸部における最底部から最上部までの長さ(見掛け厚み)ではなく、構成繊維が堆積している部分の長さ(実質厚み)である。こうして厚みを測定した20cm四方のサンプルの重量Wを、小数点以下2桁の天秤を用い測定する。目的とする密度は、サンプルの重量Wを次式により算出したサンプルの体積Vで除して(即ちW/Vにより)算出する。次式中、Tはサンプルの厚み(cm)、Aはサンプルのクレープ率(%)、Bはサンプルの1辺の長さ(20cm)である。クレープ率は前記測定方法によって測定される。測定対象のコアラップシートがクレープを有していない場合(クレープ率が0%の場合)、次式においてA=0とする。 V={T×B×B×(100+A)/100}
<Method of measuring the density of the core wrap sheet>
Ten 20 cm square samples (core wrap sheets) are stacked to form a laminate, and the laminate is cooled and solidified with liquid nitrogen, and then the vicinity of the center of the laminate is cut with a cutter. Then, of the 10 samples, one having no shear applied to the cross section generated by cutting with the cutter is selected, and the thickness of the selected sample is measured with an optical microscope. In addition, the thickness of the sample is not the length (apparent thickness) from the bottom to the top of the concavo-convex part when the sample has concavo-convex parts such as crepes described later, but the part where the constituent fibers are deposited Length (substantial thickness). The weight W of the 20 cm square sample whose thickness has been measured in this way is measured using a balance with two decimal places. The target density is calculated by dividing the weight W of the sample by the volume V of the sample calculated by the following equation (that is, by W / V). In the following formula, T is the thickness (cm) of the sample, A is the crepe rate (%) of the sample, and B is the length of one side (20 cm) of the sample. The crepe rate is measured by the measurement method. When the core wrap sheet to be measured does not have a crepe (when the crepe rate is 0%), A = 0 in the following equation. V = {T × B × B × (100 + A) / 100}
 そして、このような低坪量、低密度の高液透過性紙151は、下記方法で測定される液透過時間(高粘性液の液透過時間)が600秒以下であり、好ましくは400秒以下、更に好ましくは300秒以下である。液透過時間が短いほど、液透過性が高く高評価となる。液透過時間が前記範囲にある高液透過性紙151は、液透過性に優れており、尿等の比較的低粘性の排泄液の他、軟便や経血等の比較的高粘性の排泄液を、素早く透過させて吸収性コア40に速やかに吸収させることができ、表面液残りを生じ難い。 Such a low basis weight, low density high liquid permeability paper 151 has a liquid permeation time (liquid permeation time of a highly viscous liquid) measured by the following method of 600 seconds or less, preferably 400 seconds or less. More preferably, it is 300 seconds or less. The shorter the liquid permeation time, the higher the liquid permeability and the higher the evaluation. The high liquid permeability paper 151 having a liquid permeation time in the above range is excellent in liquid permeability and has a relatively low viscosity excretion such as loose stool and menstrual blood in addition to a relatively low viscosity excretion such as urine. Can be quickly permeated and absorbed quickly by the absorbent core 40, and the surface liquid residue is hardly generated.
<液透過時間の測定方法>
 図1に示すように、上下端が開口している内径35mmの2本の円筒91,92を、両円筒91,92の軸を一致させて上下に配し、測定対象のシートS(高液透過性紙)を上下の円筒91,92間に挟み込む。このとき、上側の円筒91の下端及び下側の円筒92の上端に設けられた環状のフランジ部にクリップ93を嵌合させ、上下の円筒91,92を連結させることが好ましい。符号94は、円筒91,92の内径と同径同形状の貫通孔を有するゴム製等のパッキンである。このように、上下の円筒91,92で測定対象のシートSを挟持固定した状態で、上側の円筒91内に、図1中符合Wで示す粘度290mPa・s(株式会社エー・アンド・デイの振動式粘度計CJV5000で測定する。高粘性液を試料容器に約10g入れ、粘度計にセットし感応板を所定レベルに挿入し、計測レンジを50mVに選択し、計測スイッチを押して測定開始する。測定開始してから60秒後の値、25℃で測定。)の高粘性液を10g±1g供給する。供給された高粘性液は、測定対象のシートSを透過するか又は測定対象のシートSに吸収されて上側の円筒91内からなくなる。高粘性液の供給開始時から、高粘性液の液面が測定対象のシートSの表面(上側の円筒91側の面)と同位置になるまでの時間を測定し、その時間を液透過時間とする。高粘性液は、グリセリンとイオン交換水とを、前者:後者=94:6の質量比で混合して調製される。
<Measurement method of liquid permeation time>
As shown in FIG. 1, two cylinders 91 and 92 having an inner diameter of 35 mm with upper and lower ends open are arranged vertically with the axes of both cylinders 91 and 92 aligned, and the sheet S (high liquid) to be measured A transparent paper) is sandwiched between the upper and lower cylinders 91 and 92. At this time, it is preferable that the upper and lower cylinders 91 and 92 are connected by fitting the clip 93 to an annular flange portion provided at the lower end of the upper cylinder 91 and the upper end of the lower cylinder 92. Reference numeral 94 denotes a rubber packing having a through hole having the same diameter and the same shape as the inner diameters of the cylinders 91 and 92. In this manner, with the sheet S to be measured sandwiched and fixed between the upper and lower cylinders 91 and 92, the viscosity of 290 mPa · s (A & D Co., Ltd.) indicated by the symbol W in FIG. Measure with a vibratory viscometer CJV 5000. Put about 10 g of high viscosity liquid into the sample container, set it in the viscometer, insert the sensitive plate at a predetermined level, select the measurement range to 50 mV, and press the measurement switch to start the measurement. 10 g ± 1 g of a highly viscous liquid of 60 seconds after the start of measurement, measured at 25 ° C.). The supplied highly viscous liquid passes through the measurement target sheet S or is absorbed by the measurement target sheet S and disappears from the upper cylinder 91. The time until the liquid level of the high-viscosity liquid reaches the same position as the surface of the sheet S to be measured (the surface on the upper cylinder 91 side) from the start of the supply of the high-viscosity liquid is measured. And The highly viscous liquid is prepared by mixing glycerin and ion exchange water at a mass ratio of the former: the latter = 94: 6.
 このように、高液透過性紙151は、液透過時間が600秒以下であって液透過性に優れているのに対し、高液透過性紙151と共にコアラップシート15を構成する低液透過性シート152は、液透過時間が600秒を超えており、液透過性に劣る。つまり、本実施形態における吸収性コア140は、軟便等の排泄液を直接受ける肌対向面140aが、液透過性に優れる高液透過性紙151で被覆されており、その反対側に位置する非肌対向面140b及び両側縁部140s,140sが、液透過性に劣る低液透過性シート152で被覆されている。 Thus, while the high liquid permeability paper 151 has a liquid permeation time of 600 seconds or less and excellent liquid permeability, the low liquid permeation constituting the core wrap sheet 15 together with the high liquid permeability paper 151. The liquid sheet 152 has inferior liquid permeability because the liquid permeation time exceeds 600 seconds. That is, in the absorbent core 140 according to the present embodiment, the skin facing surface 140a that directly receives excretion fluid such as loose stool is covered with the highly liquid permeable paper 151 that is excellent in liquid permeability, and is located on the opposite side. The skin facing surface 140b and the side edge portions 140s and 140s are covered with a low liquid permeability sheet 152 having poor liquid permeability.
 コアラップシート15の斯かる被覆形態により、吸収体14においては、おむつ1の着用時に排泄され表面シート12を透過した液は、高液透過性紙151の作用によって速やかに吸収体14内に引き込まれ、吸収性コア140によって吸収保持される。また、吸収性コア140の非肌対向面140b及び両側縁部140s,140sが低液透過性シート152で被覆されているので、吸収性コア140に一旦は吸収保持された液が吸収性コア140の外部に漏れ出したとしても、低液透過性シート152によって吸収体14の外部へ漏れ出すことは防止され、いわゆる横漏れが効果的に防止される。このような、低液透過性シート152による漏れ防止効果をより確実に奏させるようにする観点から、低液透過性シート152の液透過時間は、好ましくは600~3000秒、更に好ましくは600~2000秒である。 With such a covering form of the core wrap sheet 15, in the absorbent body 14, the liquid excreted when the diaper 1 is worn and transmitted through the top sheet 12 is quickly drawn into the absorbent body 14 by the action of the highly liquid-permeable paper 151. And is absorbed and held by the absorbent core 140. Further, since the non-skin facing surface 140b and both side edges 140s, 140s of the absorbent core 140 are covered with the low liquid permeable sheet 152, the liquid once absorbed and held in the absorbent core 140 is absorbed by the absorbent core 140. Even if it leaks to the outside, it is prevented from leaking to the outside of the absorbent body 14 by the low liquid permeability sheet 152, and so-called side leakage is effectively prevented. From the viewpoint of ensuring the effect of preventing leakage by the low liquid permeable sheet 152, the liquid permeation time of the low liquid permeable sheet 152 is preferably 600 to 3000 seconds, more preferably 600 to 2000 seconds.
 低液透過性シート152としては、紙、不織布等を用いることができ、特に、クレープ(ちりめん状のシワ)を有するクレープ紙が好ましく用いられる。液透過時間が600秒を超えるようにする観点から、低液透過性シート152の坪量は、好ましくは13~20g/m2、更に好ましくは15~18g/m2であり、低液透過性シート152の密度は、好ましくは0.10~0.30g/cm3、更に好ましくは0.20~0.25g/cm3であり、低液透過性シート152のクレープ率は、好ましくは5~20%、更に好ましくは7~15%である。クレープは従来公知の方法によって付与することができ、クレープ率は、前記方法により測定される(前記測定方法において「薄葉紙」を「シート」に読み替える)。 As the low-liquid-permeable sheet 152, paper, non-woven fabric, or the like can be used. In particular, crepe paper having crepe (crepe-like wrinkles) is preferably used. From the viewpoint of allowing the liquid permeation time to exceed 600 seconds, the basis weight of the low liquid permeability sheet 152 is preferably 13 to 20 g / m 2 , more preferably 15 to 18 g / m 2 . The density of the sheet 152 is preferably 0.10 to 0.30 g / cm 3 , more preferably 0.20 to 0.25 g / cm 3 , and the crepe rate of the low liquid permeability sheet 152 is preferably 5 to 20%, more preferably 7 to 15%. The crepe can be applied by a conventionally known method, and the crepe rate is measured by the above method (in the measurement method, “thin paper” is read as “sheet”).
 高液透過性紙151について更に説明すると、高液透過性紙151は、前述したように、液透過性の向上の観点から坪量及び密度が比較的低く設定されているにもかかわらず、強度特性が良好であり、具体的には、製造時の搬送方向(Machine Direction、略してMD)の乾燥引張強度が600cN/25mm以上、好ましくは600~1500cN/25mm、更に好ましくは700~1200cN/25mmである。MDの乾燥引張強度が前記範囲にある高液透過性紙151は、実用上十分な強度を有しており、おむつ1の製造時に破れる等の不都合を起こし難く、吸収性コア形成材料の漏れ出しを起こし難い。 The high-liquid-permeable paper 151 will be further described. The high-liquid-permeable paper 151 has the strength despite the fact that the basis weight and the density are set relatively low from the viewpoint of improving the liquid permeability as described above. Specifically, the dry tensile strength in the conveying direction (Machine 搬 送 Direction, abbreviated as MD) during production is 600 cN / 25 mm or more, preferably 600 to 1500 cN / 25 mm, more preferably 700 to 1200 cN / 25 mm. It is. Highly liquid-permeable paper 151 having a dry tensile strength of MD in the above-mentioned range has a practically sufficient strength, and is unlikely to be broken during manufacture of diaper 1. It is hard to wake up.
 また、同様の観点から、高液透過性紙151のMDに直交する方向(Cross machine Direction、略してCD)の乾燥引張強度は、好ましくは150cN/25mm以上、更に好ましくは150~350cN/25mm、特に好ましくは170~300cN/25mmである。乾燥引張強度は前記方法により測定される(前記測定方法において「薄葉紙」を「高液透過性紙」に読み替える)。 From the same viewpoint, the dry tensile strength in the direction perpendicular to the MD of the highly liquid-permeable paper 151 (Cross machine Direction, abbreviated as CD) is preferably 150 cN / 25 mm or more, more preferably 150 to 350 cN / 25 mm, Particularly preferred is 170 to 300 cN / 25 mm. The dry tensile strength is measured by the above method (in the measurement method, “thin paper” is read as “highly liquid permeable paper”).
 高液透過性紙151は、クレープ(ちりめん状のシワ)を有していても良い。高液透過性紙151がクレープを有している場合、そのクレープは、ドライヤーパートにおけるヤンキードライヤー等から乾燥状態の繊維ウエブ(高液透過性紙151)をドクターナイフ等で剥離する際に生じる、ドライクレープであることが好ましい。クレープを有する紙は、クレープを有しない紙に比して液透過性が高く、また、クレープ率が高くなるほど液透過性が高まる。但し、クレープ率が高くなると、強度特性(引張強度)は低下する傾向がある。本発明においては、斯かる知見に基づき、液透過性と強度特性とのバランスの観点から、高液透過性紙151のクレープ率は、5~30%、特に5~20%、とりわけ7~15%とすることが好ましい。クレープ率は前記方法により測定される。 The high liquid permeability paper 151 may have a crepe (crepe-like wrinkles). When the highly liquid permeable paper 151 has a crepe, the crepe is generated when a dry fiber web (highly liquid permeable paper 151) is peeled off from the Yankee dryer or the like in the dryer part with a doctor knife or the like. A dry crepe is preferred. Paper having a crepe has higher liquid permeability than paper having no crepe, and the liquid permeability increases as the crepe rate increases. However, as the crepe rate increases, the strength properties (tensile strength) tend to decrease. In the present invention, based on such knowledge, from the viewpoint of balance between liquid permeability and strength characteristics, the crepe rate of the high liquid permeability paper 151 is 5 to 30%, particularly 5 to 20%, especially 7 to 15%. % Is preferable. The crepe rate is measured by the above method.
 このような、強度特性が良好で液透過性に優れている高液透過性紙151としては、下記高液透過性紙Aが好ましく用いられる。高液透過性紙Aは、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし、紙力増強剤が添加されている薄葉紙であって、前記2種の親水性セルロース繊維として、繊維粗度が0.13~0.16mg/mの第1パルプと繊維粗度が0.17~0.20mg/mの第2パルプとが含有されており、含有されている第1パルプと第2パルプとの繊維粗度の差が0.01~0.07mg/mであり、前記集合体のフリーネスが400~550mlである。高液透過性紙Aは、基本的に、前述した第1発明の薄葉紙と同じである。以下、高液透過性紙Aについては、前述した第1発明の薄葉紙と異なる構成部分を主として説明し、高液透過性紙Aにおける特に説明しない構成部分は、第1発明の薄葉紙についての説明が適宜適用される。 As such a high liquid permeability paper 151 having good strength characteristics and excellent liquid permeability, the following high liquid permeability paper A is preferably used. Highly liquid permeable paper A is a thin paper mainly composed of an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness, to which a paper strength enhancer is added, and as the two types of hydrophilic cellulose fibers, And a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m. The difference in fiber roughness between the second pulp and the second pulp is 0.01 to 0.07 mg / m, and the freeness of the aggregate is 400 to 550 ml. The high liquid permeability paper A is basically the same as the thin paper of the first invention described above. Hereinafter, with respect to the highly liquid-permeable paper A, components that are different from the thin paper of the first invention described above will be mainly described, and components that are not particularly described in the highly liquid-permeable paper A will be described with respect to the thin paper of the first invention. Applicable as appropriate.
 高液透過性紙Aにおいて2種以上の紙力増強剤を用いる場合、それらの好ましい組み合わせとして、1)1種の乾燥紙力増強剤及び1種の湿潤紙力増強剤の組み合わせ、並びに2)2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤の組み合わせが挙げられる。前記1)の組み合わせにおいて、1種の乾燥紙力増強剤としてはアニオン性PAMの塩が好ましく、1種の湿潤紙力増強剤としてはPAEが好ましい。また、前記2)の組み合わせにおいて、2種の乾燥紙力増強剤としてはCMCの塩及びアニオン性PAMの塩が好ましく、1種の湿潤紙力増強剤としてはPAEが好ましい。 When two or more kinds of paper strength enhancers are used in the highly liquid-permeable paper A, as a preferred combination thereof, 1) a combination of one dry paper strength enhancer and one wet paper strength enhancer, and 2) A combination of two dry paper strength enhancers and one wet paper strength enhancer. In the combination of 1) above, the one dry paper strength enhancer is preferably an anionic PAM salt, and the one wet paper strength enhancer is preferably PAE. In the combination 2), the two dry paper strength enhancers are preferably CMC salts and anionic PAM salts, and one wet paper strength enhancer is preferably PAE.
 高液透過性紙Aは、強度特性及び液透過性に加えて、通気性にも優れている。その理由は、主として、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体としているためである。本発明者らは、繊維粗度の異なる2種の親水性セルロース繊維を用いることと薄葉紙の通気性との関係を調べるべく、パルプ配合の異なる2種類の薄葉紙(サンプルA、B)を用意し、これらの透気度を測定した。サンプルAは、第1パルプ及び第2パルプを繊維材料として含むもので後述する高液透過性紙IIであり、サンプルBは、第1パルプのみを繊維材料として含むもので後述する高液透過性紙Iである。サンプルA及びB共に坪量は13g/m2であった。透気度は次のようにして測定される。 The high liquid permeability paper A is excellent in air permeability in addition to strength characteristics and liquid permeability. The reason is mainly because it mainly comprises an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness. In order to investigate the relationship between the use of two types of hydrophilic cellulose fibers having different fiber roughness and the breathability of thin paper, the present inventors prepared two types of thin paper (samples A and B) having different pulp compositions. The air permeability was measured. Sample A includes the first pulp and the second pulp as the fiber material, and is a high liquid permeability paper II described later. Sample B includes only the first pulp as the fiber material, and the high liquid permeability described later. Paper I. Both samples A and B had a basis weight of 13 g / m 2 . The air permeability is measured as follows.
<透気度の測定方法>
 透気度の測定はJIS P8117に準じて実施する。15cm四方の測定対象シート(薄葉紙)を32枚用意し、これらを熱風乾燥機により105℃の熱風で30分間乾燥させた後、32枚全てを重ねて1つの積層体とし、該積層体をB形透気度計にセットする。そして、B形透気度計において、標線の0ccをスタ-トとし300ccに達するまでに要する時間を測定する。以上の操作を5回実施し、得られた5つの測定時間の平均値を、当該測定対象シート(薄葉紙)の透気度とする。透気度の単位は、「s/32P・300cc」であり、32枚のシートを300ccの空気が抜けるのに要する時間(秒)を表す。透気度の値が小さいほど空気が抜け易く、通気性に優れると評価できる。
<Measurement method of air permeability>
The air permeability is measured according to JIS P8117. After preparing 32 sheets of 15 cm square measurement object sheets (thin paper) and drying them with hot air dryer for 30 minutes with hot air at 105 ° C., all 32 sheets are stacked to form one laminate, and the laminate is B Set on the air permeability meter. Then, in the B-type air permeability meter, the time required to reach 300 cc is measured with 0 cc of the marked line as a start. The above operation is performed 5 times, and the average value of the obtained five measurement times is defined as the air permeability of the measurement target sheet (thin paper). The unit of air permeability is “s / 32P · 300 cc” and represents the time (seconds) required for 300 cc of air to escape through 32 sheets. It can be evaluated that the smaller the value of the air permeability, the easier the air can escape and the better the air permeability.
 繊維材料として第1パルプのみを用いたサンプルB(後述する高液透過性紙I)は、透気度が2.1~2.7s/32P・300ccの範囲であったのに対し、繊維材料として繊維粗度が互いに異なる2種のパルプ(第1及び第2パルプ)を用いたサンプルA(後述する高液透過性紙II)は、透気度が1.6~2.2s/32P・300ccの範囲にあり、サンプルAの方がサンプルBよりも透気度の値が小さかった。このことから、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体として薄葉紙を構成することは、薄葉紙の通気性を向上させる上で有効であることがわかり、斯かる構成を具備する高液透過性紙Aが通気性に優れることが明らかである。 Sample B (highly liquid permeable paper I described later) using only the first pulp as the fiber material had an air permeability in the range of 2.1 to 2.7 s / 32 P · 300 cc, whereas the fiber material Sample A (highly liquid permeable paper II described later) using two kinds of pulps (first and second pulps) having different fiber roughnesses as described above has an air permeability of 1.6 to 2.2 s / 32 P · In the range of 300 cc, the value of air permeability of sample A was smaller than that of sample B. From this, it can be seen that it is effective to improve the air permeability of the thin paper to make the thin paper mainly composed of an aggregate of two kinds of hydrophilic cellulose fibers having different fiber roughnesses. It is clear that the highly liquid-permeable paper A is excellent in air permeability.
 高液透過性紙151は、前述した高液透過性紙Aに制限されず、坪量、密度、液透過時間及びMDの乾燥引張強度それぞれが前記範囲内にある紙であれば良い。例えば、高液透過性紙151は、フリーネスが400~550ml、好ましくは475~525ml、更に好ましくは490~510mlであるNBKP(針葉樹晒クラフトパルプ)を主体とし、2種以上の紙力増強剤が添加されており、クレープ率が5~30%、好ましくは5~20%、更に好ましくは7~15%である薄葉紙(クレープ紙)であっても良い。ここで、「主体としている」とは、フリーネスが斯かる範囲にあるNBKPの含有率が50質量%以上であることを意味する。該含有率は、良好な強度特性を得る観点から、好ましくは50~100質量%、更に好ましくは80~100質量%である。斯かるクレープ紙において、紙力増強剤の具体例など、特に説明しない点は、高液透過性紙Aについての説明が適宜適用される。 The high liquid permeable paper 151 is not limited to the above-described high liquid permeable paper A, and may be any paper in which the basis weight, density, liquid permeation time, and MD dry tensile strength are within the above ranges. For example, the highly liquid-permeable paper 151 is mainly composed of NBKP (softwood bleached kraft pulp) having a freeness of 400 to 550 ml, preferably 475 to 525 ml, more preferably 490 to 510 ml. It may be a thin paper (crepe paper) that is added and has a crepe rate of 5 to 30%, preferably 5 to 20%, more preferably 7 to 15%. Here, “mainly” means that the content of NBKP having a freeness in such a range is 50% by mass or more. The content is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, from the viewpoint of obtaining good strength characteristics. In such crepe paper, the description of the highly liquid-permeable paper A is appropriately applied to points that are not particularly described, such as specific examples of the paper strength enhancer.
 おむつ1における各部の形成材料について説明すると、表面シート12及び裏面シート13としては、当該技術分野において従来用いられている各種のものを用いることができる。表面シート12としては、不織布や開孔フィルム等の各種液透過性のシート材を用いることができる。裏面シート13としては、透湿性を有しない樹脂フィルムや、微細孔を有し、透湿性を有する樹脂フィルム、撥水不織布等の不織布、これらと他のシートとのラミネート体等の各種液不透過性ないし撥水性のものを用いることができる。また、サイドシート162としては、裏面シート13と同様のものを用いることができる。 If the formation material of each part in the diaper 1 is demonstrated, as the surface sheet 12 and the back surface sheet 13, various things conventionally used in the said technical field can be used. As the top sheet 12, various liquid-permeable sheet materials such as a nonwoven fabric and an apertured film can be used. As the back sheet 13, various liquid impervious materials such as a resin film having no moisture permeability, a resin film having fine pores and moisture permeability, a nonwoven fabric such as a water-repellent nonwoven fabric, and a laminate of these and other sheets. Or water repellent materials can be used. Moreover, as the side sheet 162, the same thing as the back surface sheet 13 can be used.
 本実施形態のおむつ1は、公知の展開型の使い捨ておむつと同様に使用される。本実施形態のおむつ1は、コアラップシート15における、吸収性コア140の肌対向面140a側に配置される部位が高液透過性紙151であるため、斯かる部位が合成繊維を構成繊維とする不織布で形成されている、特許文献4に記載の吸収性物品に比して、特に軟便等の排泄液の吸収性(繰り返し吸収性)に優れ、吸水性ポリマー等の吸収性コア形成材料の漏れ出しを起こし難く、且つ製造コストが抑えられている。また、本実施形態のおむつ1は、コアラップシート15における、吸収性コア140の非肌対向面140b側に配置される部位が低液透過性シート152であるため、横漏れを起こし難い。 The diaper 1 of this embodiment is used in the same manner as a known unfolded disposable diaper. In the diaper 1 of the present embodiment, the portion of the core wrap sheet 15 that is disposed on the skin facing surface 140a side of the absorbent core 140 is the highly liquid-permeable paper 151. Compared to the absorbent article described in Patent Document 4, which is formed of a nonwoven fabric that is excellent in absorbability (repeated absorbability) of excretory liquids such as loose stool, the absorbent core-forming material such as a water-absorbing polymer Leakage hardly occurs and the manufacturing cost is reduced. Moreover, since the site | part arrange | positioned at the non-skin opposing surface 140b side of the absorptive core 140 in the core wrap sheet | seat 15 of the diaper 1 of this embodiment is the low liquid permeability sheet | seat 152, it is hard to raise | generate a side leak.
 本発明(第4発明)は、前記実施形態に制限されず、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。例えば、前記実施形態におけるコアラップシート15は、高液透過性紙151と低液透過性シート152とから構成されていたが、高液透過性紙151のみから構成されていても良い。その場合、コアラップシート15を2枚の高液透過性紙151から構成しても良く、例えば図7に示す実施形態において、低液透過性シート152を高液透過性紙151に代えても良い。 The present invention (fourth invention) is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, the core wrap sheet 15 in the above embodiment is composed of the high liquid permeable paper 151 and the low liquid permeable sheet 152, but may be composed of only the high liquid permeable paper 151. In that case, the core wrap sheet 15 may be composed of two high liquid permeability papers 151. For example, in the embodiment shown in FIG. 7, the low liquid permeability sheet 152 may be replaced with the high liquid permeability paper 151. good.
 あるいは、図8に示すように、コアラップシート15を1枚の高液透過性紙151から構成しても良い。図8に示す実施形態においては、コアラップシート15として、吸収性コア140の幅方向Yの長さの2倍以上3倍以下の幅を有する1枚の高液透過性紙151を用いている。図8に示す吸収体14は、1枚の高液透過性1紙51の幅方向Yの中央部に吸収性コア140を載置し、該高液透過性紙151の幅方向Yの両側部を吸収性コア140の上面側に折り返し、該高液透過性紙151の幅方向Yの両側縁部どうしをホットメルト型接着剤等の公知の接合手段により接合して該高液透過性紙151を筒状に形成し、上下反転させて得られる。 Alternatively, as shown in FIG. 8, the core wrap sheet 15 may be composed of a single sheet of high liquid permeability 151. In the embodiment shown in FIG. 8, as the core wrap sheet 15, one sheet of high liquid permeability paper 151 having a width that is two to three times the length of the absorbent core 140 in the width direction Y is used. . The absorbent body 14 shown in FIG. 8 has an absorbent core 140 placed at the center in the width direction Y of one sheet of high liquid permeability paper 51, and both sides of the high liquid permeability paper 151 in the width direction Y. Are folded back to the upper surface side of the absorbent core 140, and both edge portions in the width direction Y of the high liquid permeability paper 151 are joined by a known joining means such as a hot melt adhesive. Is formed into a cylindrical shape and obtained by turning it upside down.
 また、本発明(第4発明)の吸収性物品は、ファスニングテープを有する展開型の使い捨ておむつの他、予めパンツ型に形成されたパンツ型の使い捨ておむつ、吸収パッド、生理用ナプキン等であっても良い。 Further, the absorbent article of the present invention (fourth invention) is a deployable disposable diaper having a fastening tape, a pants-type disposable diaper, an absorbent pad, a sanitary napkin, etc., previously formed in a pants shape. Also good.
 上述した実施形態に関し、本発明はさらに以下の物品(薄葉紙、吸収性物品、薄葉紙の製造方法)を開示する。
<1> 繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし、紙力増強剤が添加されている薄葉紙であって、
 前記2種の親水性セルロース繊維として、繊維粗度が0.13~0.16mg/m、好ましくは0.135~0.155mg/m、更に好ましくは0.14~0.15mg/mの第1パルプと繊維粗度が0.17~0.20mg/m、好ましくは0.175~0.195mg/m、更に好ましくは0.18~0.19mg/mの第2パルプとが含有されており、含有されている第1パルプと第2パルプとの繊維粗度の差が0.01~0.07mg/m、好ましくは0.02~0.06mg/m、更に好ましくは0.03~0.05mg/mであり、前記集合体のフリーネスが400~550mlである薄葉紙。
In relation to the above-described embodiment, the present invention further discloses the following articles (thin paper, absorbent article, thin paper manufacturing method).
<1> A thin paper mainly composed of an aggregate of two types of hydrophilic cellulose fibers having different fiber roughness, and having a paper strength enhancer added thereto,
The two types of hydrophilic cellulose fibers have a fiber roughness of 0.13 to 0.16 mg / m, preferably 0.135 to 0.155 mg / m, more preferably 0.14 to 0.15 mg / m. 1 pulp and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m, preferably 0.175 to 0.195 mg / m, more preferably 0.18 to 0.19 mg / m. The difference in fiber roughness between the first pulp and the second pulp contained is 0.01 to 0.07 mg / m, preferably 0.02 to 0.06 mg / m, and more preferably 0.03 to 0.03 mg / m. A thin paper having a freeness of 400 to 550 ml at 0.05 mg / m.
<2> 前記第1パルプ及び前記第2パルプそれぞれの平均繊維長が2~3mm、好ましくは2.2~2.8mmである<1>記載の薄葉紙。
<3> 前記第1パルプと前記第2パルプとの含有質量比(第1パルプ/第2パルプ)が3/7~7/3、好ましくは4/6~6/4である<1>又は<2>記載の薄葉紙
<4> 前記第1パルプ及び第2パルプがそれぞれ針葉樹晒クラフトパルプ(NBKP)である<1>~<3>の何れか1に記載の薄葉紙。
<5> 前記第1パルプ及び第2パルプの含有率が70~100質量%、好ましくは80~100質量%である<1>~<4>の何れか1に記載の薄葉紙。
<6> 前記集合体のフリーネスが450~525ml、好ましくは475~510mlである<1>~<5>の何れか1に記載の薄葉紙。
<7> 前記紙力増強剤として、少なくともカルボキシメチルセルロース又はその塩が添加されている<1>~<6>の何れか1に記載の薄葉紙。
<8> 坪量が10~20g/m2、好ましくは11~16g/m2、更に好ましくは12~14g/m2ある<1>~<7>の何れか1に記載の薄葉紙。
<2> The thin paper according to <1>, wherein each of the first pulp and the second pulp has an average fiber length of 2 to 3 mm, preferably 2.2 to 2.8 mm.
<3> The content mass ratio of the first pulp to the second pulp (first pulp / second pulp) is 3/7 to 7/3, preferably 4/6 to 6/4 <1> or <2> Thin paper according to <4> The thin paper according to any one of <1> to <3>, wherein each of the first pulp and the second pulp is softwood bleached kraft pulp (NBKP).
<5> The thin paper according to any one of <1> to <4>, wherein the content of the first pulp and the second pulp is 70 to 100% by mass, preferably 80 to 100% by mass.
<6> The thin paper according to any one of <1> to <5>, wherein the aggregate has a freeness of 450 to 525 ml, preferably 475 to 510 ml.
<7> The thin paper according to any one of <1> to <6>, wherein at least carboxymethylcellulose or a salt thereof is added as the paper strength enhancer.
<8> The thin paper according to any one of <1> to <7>, wherein the basis weight is 10 to 20 g / m 2 , preferably 11 to 16 g / m 2 , and more preferably 12 to 14 g / m 2 .
<9> フリーネスが400~550ml、好ましくは475~525ml、更に好ましくは490~510mlである針葉樹晒クラフトパルプを主体とし、2種以上の紙力増強剤が添加されており、坪量が10~14.5g/m2、好ましくは11~14g/m2、密度が0.05~0.2g/cm3、好ましくは0.1~0.2g/cm3、クレープ率が5~30%、好ましくは5~20%、更に好ましくは7~15%である<1>~<7>の何れか1に記載の薄葉紙。
<10> 前記2種以上の紙力増強剤として、乾燥紙力増強剤及び湿潤紙力増強剤が添加されている<9>記載の薄葉紙。
<11> 前記2種以上の紙力増強剤の総添加量が、前記薄葉紙の全構成繊維の乾燥質量に対して、0.01~1.5質量%、好ましくは0.03~1.2質量%である<9>又は<10>記載の薄葉紙。
<12> 前記2種以上の前記紙力増強剤として、乾燥紙力増強剤の1種以上と湿潤紙力増強剤の1種以上との組み合わせを用いる場合、乾燥紙力増強剤の総添加質量と湿潤紙力増強剤の総添加質量との比(前者/後者)が、0.01~0.5、好ましくは0.03~0.35である<9>~<11>の何れか1に記載の薄葉紙。
<13> 前記乾燥紙力増強剤が、カルボキシメチルセルロース及びその塩、ポリアクリルアミド系樹脂及びその塩、カチオン化デンプン並びにポリビニルアルコールからなる群から選択される1種以上である<10>~<12>の何れか1に記載の薄葉紙。
<14>前記湿潤紙力増強剤が、エポキシ化ポリアミドポリアミン樹脂、尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂、ジアルデヒドデンプン、ポリエチレンアミン及びメチロール化ポリアミドからなる群から選択される1種以上である<10>~<13>の何れか1に記載の薄葉紙。
<15> 前記2種以上の紙力増強剤として、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤が添加されている<9>~<14>の何れか1に記載の薄葉紙。
<16> 2種の前記乾燥紙力増強剤が、カルボキシメチルセルロースの塩とアニオン性ポリアクリルアミドの塩であり、1種の前記湿潤紙力増強剤が、エポキシ化ポリアミドポリアミン樹脂である<15>記載の薄葉紙。
<17> 前記アニオン性ポリアクリルアミドの塩の重量平均分子量が800万以上、好ましくは1000万以上、更に好ましくは1500万以上であり、且つ2500万以下である<16>記載の薄葉紙。
<9> Mainly composed of softwood bleached kraft pulp with a freeness of 400 to 550 ml, preferably 475 to 525 ml, more preferably 490 to 510 ml, and two or more kinds of paper strength enhancers are added, and the basis weight is 10 to 14.5 g / m 2 , preferably 11-14 g / m 2 , density 0.05-0.2 g / cm 3 , preferably 0.1-0.2 g / cm 3 , crepe rate 5-30%, The thin paper according to any one of <1> to <7>, preferably 5 to 20%, more preferably 7 to 15%.
<10> The thin paper according to <9>, wherein a dry paper strength enhancer and a wet paper strength enhancer are added as the two or more paper strength enhancers.
<11> The total amount of the two or more kinds of paper strength enhancing agents is 0.01 to 1.5% by mass, preferably 0.03 to 1.2%, based on the dry mass of all the constituent fibers of the thin paper. The thin paper according to <9> or <10>, which is% by mass.
<12> When the combination of one or more dry paper strength enhancers and one or more wet paper strength enhancers is used as the two or more paper strength enhancers, the total added mass of the dry paper strength enhancer Any one of <9> to <11>, wherein the ratio of the added weight of the wet paper strength enhancer (the former / the latter) is 0.01 to 0.5, preferably 0.03 to 0.35. The thin paper described in 1.
<13> The dry paper strength enhancer is at least one selected from the group consisting of carboxymethylcellulose and salts thereof, polyacrylamide resins and salts thereof, cationized starch, and polyvinyl alcohol. <10> to <12> The thin paper according to any one of the above.
<14> The wet paper strength enhancer is at least one selected from the group consisting of epoxidized polyamide polyamine resin, urea-formalin resin, melamine-formalin resin, dialdehyde starch, polyethyleneamine and methylolated polyamide < The thin paper according to any one of 10> to <13>.
<15> The composition according to any one of <9> to <14>, wherein two or more kinds of paper strength enhancing agents and two kinds of paper strength enhancing agents are added. Tissue paper.
<16> The <15> description, wherein the two kinds of dry paper strength enhancers are a salt of carboxymethyl cellulose and an anionic polyacrylamide, and the one wet paper strength enhancer is an epoxidized polyamide polyamine resin. Tissue paper.
<17> The thin paper according to <16>, wherein the anionic polyacrylamide salt has a weight average molecular weight of 8 million or more, preferably 10 million or more, more preferably 15 million or more, and 25 million or less.
<18> 前記薄葉紙の製造時の搬送方向の乾燥引張強度が600~1500cN/25mm、好ましくは700~1200cN/25mm、更に好ましくは800~1200cN/25mm、ことさら好ましくは900~1200cN/25mm、該搬送方向に直交する方向の乾燥引張強度が150~350cN/25mm、好ましくは180~300cN/25mmである<1>~<17>の何れか1に記載の薄葉紙。
<19> 下記方法で測定される前記薄葉紙の液透過時間が0.2~3秒、好ましくは0.3~2.5秒、更に好ましくは0.5~2秒である<1>~<18>の何れか1に記載の薄葉紙。
<液透過時間の測定方法>
 上下端が開口している内径35mmの2本の円筒を、両円筒の軸を一致させて上下に配し、8cm四方の測定サンプルを上下の円筒間に挟み込み、その状態で、上側の円筒内に生理食塩水を40g±1g供給する。供給された生理食塩水は、測定サンプルを透過するか又はサンプルに吸収されて上側の円筒内からなくなる。生理食塩水の供給開始時から、生理食塩水の水面が測定サンプル表面と同位置になるまでの時間を測定し、その時間を液透過時間とする。
<18> The dry tensile strength in the conveying direction during the production of the thin paper is 600 to 1500 cN / 25 mm, preferably 700 to 1200 cN / 25 mm, more preferably 800 to 1200 cN / 25 mm, and still more preferably 900 to 1200 cN / 25 mm. The thin paper according to any one of <1> to <17>, wherein the dry tensile strength in the direction perpendicular to the direction is 150 to 350 cN / 25 mm, preferably 180 to 300 cN / 25 mm.
<19> The liquid permeation time of the thin paper measured by the following method is 0.2 to 3 seconds, preferably 0.3 to 2.5 seconds, more preferably 0.5 to 2 seconds <1> to < The thin paper according to any one of 18>.
<Measurement method of liquid permeation time>
Two cylinders with an inner diameter of 35 mm that open at the top and bottom are arranged vertically with the axes of both cylinders aligned, and an 8 cm square measurement sample is sandwiched between the upper and lower cylinders. 40 g ± 1 g of physiological saline is supplied. The supplied physiological saline passes through the measurement sample or is absorbed by the sample and disappears from the upper cylinder. The time from the start of the supply of the physiological saline to the time when the surface of the physiological saline reaches the same position as the surface of the measurement sample is measured, and the time is defined as the liquid permeation time.
<20> <1>~<19>の何れか1に記載の薄葉紙を用いた吸収性物品。
<21> 吸収性コア及びこれを被覆するコアラップシートを含んで構成され、該コアラップシートが前記薄葉紙である<20>記載の吸収性物品。
<20> An absorbent article using the thin paper according to any one of <1> to <19>.
<21> The absorbent article according to <20>, wherein the absorbent article includes an absorbent core and a core wrap sheet covering the absorbent core, and the core wrap sheet is the thin paper.
<22> 針葉樹晒クラフトパルプを含む原料から調整された原料スラリーを抄紙し乾燥して30g/m2以下の坪量の薄葉紙を製造する薄葉紙の製造方法であって、
 前記原料スラリーとして、前記針葉樹晒クラフトパルプのパルプスラリーに、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した後、以下に示す低分子乾燥紙力剤(b)及び高分子乾燥紙力剤(c)を同時に添加して、又は低分子乾燥紙力剤(b)を添加した後に更に高分子乾燥紙力剤(c)を添加して調整された原料スラリーを用いる薄葉紙の製造方法。
 (b)重量平均分子量(Mw)が0.2~50万のアニオン性基を有する低分子アニオンポリマーである低分子乾燥紙力剤
 (c)重量平均分子量(Mw)が500~3,000万のアニオン性基を有する高分子アニオンポリマーである高分子乾燥紙力剤
<22> A method for producing a thin paper that produces a paper having a basis weight of 30 g / m 2 or less by paper-making and drying a raw material slurry prepared from a raw material containing softwood bleached kraft pulp,
After adding the wet paper strength agent (a) made of a cationic polymer having a cationic group to the pulp slurry of the softwood bleached kraft pulp as the raw material slurry, the following low molecular dry paper strength agent (b) and high Thin paper using a raw material slurry prepared by adding a molecular dry paper strength agent (c) at the same time, or adding a low molecular weight dry strength agent (b) and then adding a polymer dry strength agent (c). Manufacturing method.
(B) Low molecular weight dry paper strength agent which is a low molecular weight anionic polymer having an anionic group having a weight average molecular weight (Mw) of 0.2 to 500,000 (c) Weight average molecular weight (Mw) of 500 to 30 million Polymer dry paper strength agent which is a polymer anionic polymer having an anionic group of
<23> 前記低分子乾燥紙力剤(b)の添加量が、製造目的物である薄葉紙の全構成繊維の乾燥質量に対して0.01~0.5質量%、好ましくは0.1~0.3質量%である<22>記載の薄葉紙の製造方法。
<24> 前記高分子乾燥紙力剤(c)の添加量が、製造目的物である薄葉紙の全構成繊維の乾燥質量に対して0.001~0.1質量%、好ましくは0.01~0.08質量%である<22>又は<23>記載の薄葉紙の製造方法。
<25> 1種の前記湿潤紙力剤(a)の添加質量と前記低分子乾燥紙力剤(b)及び前記高分子乾燥紙力剤(c)の総添加質量との比〔(a)/(b)及び(c)〕が0.5~10、好ましくは1~5である<22>~<24>の何れか1に記載の薄葉紙の製造方法。
<23> The amount of the low-molecular dry paper strength agent (b) added is 0.01 to 0.5% by mass, preferably 0.1 to 0.5% by mass with respect to the dry mass of all the constituent fibers of the thin paper as the production target. <22> The manufacturing method of the thin paper as described in <22> which is 0.3 mass%.
<24> The amount of the polymer dry paper strength agent (c) added is 0.001 to 0.1% by mass, preferably 0.01 to 0.1% by mass with respect to the dry mass of all the constituent fibers of the thin paper as the production target. The method for producing thin paper according to <22> or <23>, which is 0.08% by mass.
<25> Ratio of the added mass of one kind of the wet paper strength agent (a) and the total added mass of the low molecular weight dry strength agent (b) and the high molecular weight dry strength agent (c) [(a) / (B) and (c)] is 0.5 to 10, preferably 1 to 5, The method for producing a thin paper according to any one of <22> to <24>.
<26> 前記原料スラリーは、前記針葉樹晒クラフトパルプのパルプスラリーに前記湿潤紙力剤(a)を添加した後、前記低分子乾燥紙力剤(b)を添加し、その後更に前記高分子乾燥紙力剤(c)を添加して調整されている<22>~<25>の何れか1に記載の薄葉紙の製造方法。
<27> 前記原料を調整する工程は、前記低分子乾燥紙力剤(b)を添加した後に希釈し、希釈後に前記高分子乾燥紙力剤(c)を添加し、その後、ファンポンプ及び濾過スクリーンの少なくとも一方を用いて均一化する<26>に記載の薄葉紙の製造方法。
<26> The raw material slurry is obtained by adding the wet paper strength agent (a) to the pulp slurry of the softwood bleached kraft pulp, then adding the low molecular weight dry strength agent (b), and then further drying the polymer. The method for producing thin paper according to any one of <22> to <25>, which is adjusted by adding a paper strength agent (c).
<27> The step of adjusting the raw material is performed after the low-molecular dry paper strength agent (b) is added and diluted, and after the dilution, the polymer dry paper strength agent (c) is added, and then a fan pump and filtration The method for producing thin paper according to <26>, wherein the paper is homogenized using at least one of the screens.
 以下、本発明を実施例により更に具体的に説明するが、本発明は斯かる実施例に限定されるものではない。特に断らない限り、「%」は「質量%」を意味する。尚、第1発明の実施例及び比較例は、その番号の前に「A」を付し(例えば「実施例A1」)、第2発明の実施例及び比較例は、その番号の前に「B」を付し(例えば「実施例B1」)、第3発明の実施例及び比較例は、その番号の前に「C」を付し(例えば「実施例C1」)、第4発明の実施例及び比較例は、その番号の前に「D」を付している(例えば「実施例D1」)。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”. In the examples and comparative examples of the first invention, “A” is added before the number (for example, “Example A1”), and the examples and comparative examples of the second invention are preceded by “ B ”(for example,“ Example B1 ”), the examples of the third invention and the comparative example are preceded by“ C ”(for example,“ Example C1 ”), and the fourth embodiment is carried out. In Examples and Comparative Examples, “D” is added before the number (for example, “Example D1”).
〔実施例A1〕
 第1パルプ(相対的に繊維径の細いパルプ)として、繊維粗度0.15mg/mのNBKPを用い、第2パルプ(相対的に繊維径の太いパルプ)として、繊維粗度0.18mg/mのNBKPを用いた。第1パルプ及び第2パルプを、両パルプの含有質量比(第1パルプ/第2パルプ)が5/5となるように混合して繊維の集合体を得、該集合体を水中に均一に分散させて、繊維濃度2質量%のスラリーを調製し、このスラリーを叩解機にかけて、集合体のフリーネスを500mlに調整した。更に、このスラリーに、第1紙力増強剤としてCMCのナトリウム塩(乾燥紙力増強剤、第一工業製薬株式会社製、商品名「セロゲンWS-C」)を、スラリー中の全繊維の乾燥質量に対して0.2質量%投入し、次いで、第2紙力増強剤としてPAE(湿潤紙力増強剤、星光PMC株式会社製、商品名「WS4030」)を、スラリー中の全繊維の乾燥質量に対して0.78質量%投入し、各成分が均一になるように十分に撹拌した。こうして得られたスラリーを、ワイヤー目開き径90μm(166メッシュ)の金網抄紙ワイヤー上に散布し、金網抄紙ワイヤー上に紙層を形成させ、サクションボックスを用いて6ml/(cm2・sec)の速度で該紙層を脱水した後、該紙層をドライヤで乾燥させた。こうして得られた薄葉紙を実施例A1のサンプルとした。
[Example A1]
NBKP having a fiber roughness of 0.15 mg / m is used as the first pulp (pulp having a relatively small fiber diameter), and the fiber roughness is 0.18 mg / in as the second pulp (a pulp having a relatively large fiber diameter). m NBKP was used. The first pulp and the second pulp are mixed so that the content ratio of the two pulps (first pulp / second pulp) is 5/5 to obtain an aggregate of fibers, and the aggregate is uniformly in water. The slurry was dispersed to prepare a slurry having a fiber concentration of 2% by mass, and this slurry was passed through a beating machine to adjust the freeness of the aggregate to 500 ml. Further, CMC sodium salt (dry paper strength enhancer, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name “Serogen WS-C”) is added to the slurry as a first strength enhancer, and all fibers in the slurry are dried. Next, 0.2% by mass is added to the mass, and then PAE (wet paper strength enhancer, manufactured by Seiko PMC Co., Ltd., trade name “WS4030”) is used as the second paper strength enhancer, and all fibers in the slurry are dried. 0.78% by mass with respect to the mass was added, and the components were sufficiently stirred so that each component was uniform. The slurry thus obtained was spread on a wire mesh paper wire having a wire opening diameter of 90 μm (166 mesh), a paper layer was formed on the wire mesh paper wire, and 6 ml / (cm 2 · sec) was formed using a suction box. After dewatering the paper layer at speed, the paper layer was dried with a dryer. The thin paper thus obtained was used as a sample of Example A1.
〔実施例A2~A6及び比較例A1~A5〕
 パルプの種類(繊維粗度)やフリーネス、紙力増強剤の使用形態等を適宜変更した以外は実施例A1と同様にして薄葉紙を製造し、それぞれ各実施例及び各比較例のサンプルとした。尚、実施例A5では、前記の第1及び第2紙力増強剤に加えて、第3紙力増強剤としてアニオン性PAMのナトリウム塩(乾燥紙力増強剤、MTアクアポリマー製、商品名「アコフロックA95」、重量平均分子量1700万)を用いた。
[Examples A2 to A6 and Comparative Examples A1 to A5]
A thin paper was produced in the same manner as in Example A1 except that the type of pulp (fiber roughness), freeness, usage form of the paper strength enhancer, and the like were appropriately changed, and were used as samples of the respective examples and comparative examples. In Example A5, in addition to the first and second paper strength enhancers, an anionic PAM sodium salt (dry paper strength enhancer, manufactured by MT Aquapolymer, trade name “ Acofloc A95 ", weight average molecular weight 17 million) was used.
 実施例A1~A6及び比較例A1~A5で使用したパルプ(NBKP)の詳細は次の通り(繊維粗度の小さい順に記載)。これらのパルプは、日本紙パルプ商事又は伊藤忠商事を通じて入手した。
・繊維粗度0.09mg/m(商品名「Cenibra」、Cenibra製)
・繊維粗度0.13mg/m(商品名「Northwood」、ConFor製)
・繊維粗度0.15mg/m(商品名「Cariboo」、Cariboo Pulp and Paper Company製)
・繊維粗度0.16mg/m(商品名「Botnia」、BOTNIA製)
・繊維粗度0.17mg/m(商品名「Alabama  Pine」、Alabama  Pine,Inc製)
・繊維粗度0.18mg/m(商品名「ARAUCO」、ARAUCO製)
・繊維粗度0.2mg/m(商品名「Crofton CK」、Unifibra製)
Details of the pulp (NBKP) used in Examples A1 to A6 and Comparative Examples A1 to A5 are as follows (in the order of increasing fiber roughness). These pulps were obtained through Nippon Paper Pulp Trading or Itochu Corporation.
・ Fiber roughness 0.09mg / m (Brand name "Cenibra", made by Cenibra)
-Fiber roughness 0.13mg / m (trade name "Northwood", manufactured by ConFor)
-Fiber roughness 0.15mg / m (Brand name "Cariboo", Cariboo Pulp and Paper Company)
・ Fiber roughness 0.16mg / m (trade name "Botnia", manufactured by BOTNIA)
-Fiber roughness 0.17mg / m (trade name "Alabama Pine", manufactured by Alabama Pine, Inc)
-Fiber roughness 0.18mg / m (trade name "ARAUCO", manufactured by ARAUCO)
・ Fiber roughness 0.2mg / m (trade name "Crofton CK", Unifibra)
〔評価〕
 実施例A1~A6及び比較例A1~A5の各サンプル(薄葉紙)の各種評価結果は下記表1の通りである。乾燥引張強度及び液透過時間は、それぞれ、前記方法によって測定した。
[Evaluation]
The various evaluation results of each sample (thin paper) of Examples A1 to A6 and Comparative Examples A1 to A5 are shown in Table 1 below. The dry tensile strength and the liquid permeation time were measured by the methods described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から明らかなように、繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし且つ該集合体のフリーネスが前記特定範囲にある(第1発明の範囲内である)、各実施例の薄葉紙は、MDの乾燥引張強度が600cN/25mm以上、CDの乾燥引張強度が150cN/25mm以上で、且つ液透過時間が2秒以下であり、強度特性が良好で液透過性に優れた薄葉紙であることがわかる。特に、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤を用いた形態である、実施例A5は、強度特性及び液透過性が他の実施例に比して概ね良好であり、斯かる3種の紙力増強剤の組み合わせの有効性が明らかである。 As is apparent from the results shown in Table 1, the aggregate is mainly composed of two types of hydrophilic cellulose fibers having different fiber roughness, and the freeness of the aggregate is in the specific range (within the range of the first invention). ), The thin paper of each example has a dry tensile strength of MD of 600 cN / 25 mm or more, a dry tensile strength of CD of 150 cN / 25 mm or more, a liquid permeation time of 2 seconds or less, and has good strength characteristics and liquid permeation. It turns out that it is a thin paper with excellent properties. In particular, Example A5, which is a form using two dry paper strength enhancers and one wet paper strength enhancer, has generally better strength characteristics and liquid permeability than the other examples. The effectiveness of the combination of the three kinds of paper strength enhancers is clear.
 これに対し、各比較例の薄葉紙は、表1に示す結果から明らかなように、MDの乾燥引張強度が600cN/25mm未満(比較例A1、A2及びA5)あるいは液透過時間が3秒超(比較例A1、A3及びA4)であり、強度特性及び液透過性を高レベルで両立できていない。各比較例が強度特性及び液透過性の点で各実施例に劣る理由は、主として、比較例A1は第1パルプと第2パルプとの繊維粗度の差が0.07mg/mを超えているため、比較例A2、A3及びA5は1種の親水性セルロース繊維のみを用いているため、比較例A4は前記集合体のフリーネスが前記特定範囲から外れているためと推察される。 On the other hand, as is clear from the results shown in Table 1, the thin paper of each comparative example has an MD dry tensile strength of less than 600 cN / 25 mm (Comparative Examples A1, A2, and A5) or a liquid permeation time of more than 3 seconds ( Comparative Examples A1, A3, and A4), which do not have both strength characteristics and liquid permeability at a high level. The reason why each comparative example is inferior to each example in terms of strength characteristics and liquid permeability is that, in Comparative Example A1, the difference in fiber roughness between the first pulp and the second pulp exceeds 0.07 mg / m. Therefore, since Comparative Examples A2, A3, and A5 use only one kind of hydrophilic cellulose fiber, it is surmised that Comparative Example A4 is because the freeness of the aggregate is out of the specific range.
〔実施例B1〕
 NBKP(Cariboo Pulp and Paper Company製、商品名「Cariboo」、北米産、繊維粗度0.15mg/m、平均繊維長2.44mm)を水中に均一に分散させて、繊維濃度2質量%のスラリーを調製し、このスラリーを叩解機にかけて、NBKPのフリーネスを500mlに調整した。更に、このスラリーを希釈しながら、湿潤紙力増強剤としてPAE(星光PMC株式会社製、商品名「WS4030」)を、スラリー中の全繊維の乾燥質量に対して0.78質量%投入し、次いで、乾燥紙力増強剤としてCMCのナトリウム塩(第一工業製薬株式会社製、商品名「セロゲンWS-C」)を、スラリー中の全繊維の乾燥質量に対して0.2質量%投入し、各成分が均一になるように十分に撹拌し、固形分濃度0.1質量%のスラリーに調整した。こうして得られたスラリーを、ワイヤー目開き径90μm(166メッシュ)の金網抄紙ワイヤー上に散布し、金網抄紙ワイヤー上に紙層を形成させ、サクションボックスを用いて6ml/(cm2・sec)の速度で該紙層を脱水した後、該紙層をドライヤで乾燥させ、乾燥面からドクターブレードで紙層をはがしながら、ドライヤと巻き取りの速比をつけてクレープを付与した。こうして得られた薄葉紙(クレープ紙)を実施例B1のサンプルとした。
[Example B1]
NBKP (manufactured by Cariboo Pulp and Paper Company, trade name “Cariboo”, manufactured in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm) is uniformly dispersed in water to give a slurry having a fiber concentration of 2% by mass. The slurry was passed through a beater to adjust the freeness of NBKP to 500 ml. Furthermore, while diluting this slurry, PAE (trade name “WS4030”, manufactured by Seiko PMC Co., Ltd.) as a wet paper strength enhancer was added in an amount of 0.78% by mass with respect to the dry mass of all the fibers in the slurry. Next, 0.2% by mass of sodium salt of CMC (trade name “Serogen WS-C”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dry paper strength enhancer is added to the dry mass of all fibers in the slurry. The mixture was sufficiently stirred so that each component was uniform, and adjusted to a slurry having a solid content concentration of 0.1% by mass. The slurry thus obtained was spread on a wire mesh paper wire having a wire opening diameter of 90 μm (166 mesh), a paper layer was formed on the wire mesh paper wire, and 6 ml / (cm 2 · sec) was formed using a suction box. After the paper layer was dehydrated at a speed, the paper layer was dried with a dryer, and the paper layer was peeled off from the dry surface with a doctor blade, and a crepe was applied at a speed ratio of the dryer and the winding. The thin paper (crepe paper) thus obtained was used as the sample of Example B1.
〔実施例B2~B7及び比較例B1~B7〕
 NBKPのフリーネス、各種原料の仕込み量、クレープ率等を適宜変更した以外は実施例B1と同様にして薄葉紙(クレープ紙)を製造し、各実施例及び各比較例のサンプルとした。実施例B4~B7は、それぞれ、2種の乾燥紙力増強剤(乾燥紙力増強剤1及び2)並びに1種の湿潤紙力増強剤を用いたものであり、乾燥紙力増強剤1として、実施例B1と同じCMCのナトリウム塩を用い、乾燥紙力増強剤2として、アニオン性PAMのナトリウム塩(実施例B4~B6はMTアクアポリマー製、商品名「アコフロックA95」、重量平均分子量1700万;実施例B7は星光PMC(株)製、商品名「DA4119」、重量平均分子量200万)を用い、湿潤紙力増強剤として、実施例B1と同じPAEを用いた。
[Examples B2 to B7 and Comparative Examples B1 to B7]
A thin paper (crepe paper) was produced in the same manner as in Example B1 except that the freeness of NBKP, the charged amounts of various raw materials, the crepe rate, and the like were changed as appropriate, and used as samples for each example and each comparative example. In Examples B4 to B7, two types of dry paper strength enhancers (dry paper strength enhancers 1 and 2) and one wet paper strength enhancer were used. The same sodium salt of CMC as in Example B1 was used, and the anionic PAM sodium salt was used as the dry paper strength enhancer 2 (Examples B4 to B6 were manufactured by MT Aquapolymer, trade name “Acofloc A95”, weight average molecular weight 1700. Ten; Example B7 uses a product name “DA4119” manufactured by Seiko PMC Co., Ltd., with a weight average molecular weight of 2 million), and the same PAE as Example B1 was used as a wet paper strength enhancer.
〔評価〕
 実施例B1~B7及び比較例B1~B7の各サンプル(薄葉紙)の各種評価結果は下記表2及び3の通りである。乾燥引張強度及び液透過時間は、それぞれ、前記方法によって測定した。
[Evaluation]
The various evaluation results of each sample (thin paper) of Examples B1 to B7 and Comparative Examples B1 to B7 are as shown in Tables 2 and 3 below. The dry tensile strength and the liquid permeation time were measured by the methods described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示す結果から明らかなように、1)フリーネスが前記特定範囲にあるNBKPを主体とし且つ2)2種以上の紙力増強剤が添加されており且つ3)坪量、密度及びクレープ率がそれぞれ前記特定範囲にある、各実施例の薄葉紙は、MDの乾燥引張強度が600cN/25mm以上、CDの乾燥引張強度が150cN/25mm以上で、且つ液透過時間が2秒以下であり、強度特性が良好で液透過性に優れた薄葉紙であることがわかる。また、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤を用いた形態である、実施例B4~B7に関し、アニオン性PAMの塩(乾燥紙力増強剤2)の重量平均分子量が1700万である実施例B4~B6が、該重量平均分子量が200万である実施例B7に比して乾燥引張強度が大きい結果となったことから、計3種の紙力増強剤を用いる斯かる形態においては、そのうちの1種類として重量平均分子量の大きいアニオン性PAMの塩を用いることで、薄葉紙の強度向上効果がより顕著になることがわかる。 As is apparent from the results shown in Table 2, 1) NBKP having freeness in the specific range as a main component, 2) two or more kinds of paper strength enhancers are added, and 3) basis weight, density, and crepe rate. Each of the thin papers of each example in the specific range has an MD dry tensile strength of 600 cN / 25 mm or more, a CD dry tensile strength of 150 cN / 25 mm or more, and a liquid permeation time of 2 seconds or less. It can be seen that the thin paper has good characteristics and excellent liquid permeability. The weight average molecular weight of the salt of anionic PAM (dry paper strength enhancer 2) in Examples B4 to B7 in the form of using two types of dry paper strength enhancer and one wet paper strength enhancer Since Examples B4 to B6 having a weight average molecular weight of 17 million resulted in a higher dry tensile strength than Example B7 having a weight average molecular weight of 2 million, a total of three paper strength enhancers were used. In such a form, it can be seen that the strength improvement effect of the thin paper becomes more remarkable by using an anionic PAM salt having a large weight average molecular weight as one of them.
 これに対し、各比較例の薄葉紙は、表3に示す結果から明らかなように、MDの乾燥引張強度が600cN/25mm未満(比較例B2及びB4)あるいは液透過時間が3秒超(比較例B1、B3及びB5~B7)であり、強度特性及び液透過性を高レベルで両立できていない。各比較例が強度特性及び液透過性の点で各実施例に劣る理由は、主として、比較例B1は前記1)~3)の全てを満たしていないため、比較例B2は前記2)を満たしていないため、比較例B3は前記2)及び3)を満たしていないため、比較例B4~B6は前記3)を満たしていないため、比較例B7は前記1)及び3)を満たしていないためと推察される。 On the other hand, as is clear from the results shown in Table 3, the thin paper of each comparative example has an MD dry tensile strength of less than 600 cN / 25 mm (Comparative Examples B2 and B4) or a liquid permeation time of more than 3 seconds (Comparative Example). B1, B3, and B5 to B7), and the strength characteristics and liquid permeability are not compatible at a high level. The reason why each comparative example is inferior to each example in terms of strength characteristics and liquid permeability is that the comparative example B1 does not satisfy all of the above 1) to 3), so the comparative example B2 satisfies the above 2) Since Comparative Example B3 does not satisfy 2) and 3), Comparative Examples B4 to B6 do not satisfy 3), and Comparative Example B7 does not satisfy 1) and 3). It is guessed.
〔実施例C1〕
 図2に示す製造装置1A(円網フォーマータイプ抄紙機、抄紙速度400m/分、幅2000mm)を用い、パルパー21に、針葉樹晒クラフトパルプ原料を投入し、リファイナー23にて叩解した。針葉樹晒クラフトパルプ原料としては、NBKP(Cariboo Pulp
and Paper Company製、商品名「Cariboo」、北米産、繊維粗度0.15mg/m、平均
繊維長2.44mm)を用いた。パルパー21及びリファイナー23により、針葉樹晒クラフトパルプ(NBKP)のフリーネスを500mlとなるように調整した。次に、湿潤紙力剤添加部33を用いて、湿潤紙力剤(a)であるエポキシ化ポリアミドポリアミン樹脂(PAE)を添加し、第1スラリー貯蔵タンク32内において、十分に攪拌混合した。PAEの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.78質量%であった。次に、低分子乾燥紙力剤添加部43を用いて、低分子乾燥紙力剤(b)である、重量平均分子量(Mw)が10万のカルボキシメチルセルロース(CMC)の塩を添加し、第2スラリー貯蔵タンク42内において、十分に攪拌混合した。CMCの塩の添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.2質量%であった。次に、希釈水供給部63を用いて希釈水を供給し、0.11質量%となるように希釈した。次に、ファンポンプ64を用いて、乱流を引き起こしながら、高分子乾燥紙力剤添加部65を用いて、高分子乾燥紙力剤(c)である、重量平均分子量(Mw)が1,700万であるアクリル系ポリアクリルアミド樹脂(PAM)を添加し、濾過スクリーン62に搬送して、原料スラリーを調整した。PAMの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.03質量%であった。このように原料スラリー調整部2で調整された原料スラリーを、抄紙部7にて、抄紙・乾燥し、薄葉紙を製造した。原料スラリー調整部2の種箱52及び抄紙部7のフォーマーによって調節し、坪量11.0g/m2の薄葉紙を製造した。
[Example C1]
Using the manufacturing apparatus 1A shown in FIG. 2 (circular former type paper machine, paper making speed 400 m / min, width 2000 mm), the softwood bleached kraft pulp raw material was put into the pulper 21 and beaten by the refiner 23. NBKP (Cariboo Pulp) is used as a raw material for bleached kraft pulp.
and Paper Company, trade name “Cariboo”, manufactured in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm) was used. The freeness of the softwood bleached kraft pulp (NBKP) was adjusted by the pulper 21 and the refiner 23 to 500 ml. Next, the epoxidized polyamide polyamine resin (PAE) which is the wet paper strength agent (a) was added using the wet paper strength agent adding section 33 and sufficiently stirred and mixed in the first slurry storage tank 32. The addition amount of PAE was 0.78 mass% with respect to the dry mass of all the constituent fibers of a thin paper. Next, using the low molecular dry paper strength agent adding portion 43, a salt of carboxymethyl cellulose (CMC) having a weight average molecular weight (Mw) of 100,000, which is a low molecular dry paper strength agent (b), is added, 2 In the slurry storage tank 42, the mixture was sufficiently stirred and mixed. The addition amount of the salt of CMC was 0.2 mass% with respect to the dry mass of all the constituent fibers of the thin paper. Next, dilution water was supplied using the dilution water supply part 63, and it diluted so that it might become 0.11 mass%. Next, while causing turbulent flow using the fan pump 64, the polymer dry paper strength agent adding section 65 is used, and the weight average molecular weight (Mw) of the polymer dry paper strength agent (c) is 1, A 7 million acrylic polyacrylamide resin (PAM) was added and conveyed to the filter screen 62 to prepare a raw material slurry. The amount of PAM added was 0.03% by mass relative to the dry mass of all the constituent fibers of the thin paper. Thus, the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured. A thin paper having a basis weight of 11.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
〔実施例C2〕
 図2に示す製造装置1Aを用い、原料スラリー調整部2の種箱52及び抄紙部7のフォーマーによって調節し、坪量13.0g/m2の薄葉紙を製造した以外は実施例C1と同様にして薄葉紙を製造した。
[Example C2]
Using the production apparatus 1A shown in FIG. 2, adjustment was made by using the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7 to produce a thin paper having a basis weight of 13.0 g / m 2 , as in Example C1. Thin paper.
〔実施例C3〕
 図4に示す製造装置1Cを用い、パルパー21に、針葉樹晒クラフトパルプ原料を投入し、リファイナー23にて叩解した。針葉樹晒クラフトパルプ原料としては、NBKP(Cariboo Pulp and Paper Company製、商品名「Cariboo」、北米産、繊維粗度0.15m
g/m、平均繊維長2.44mm)を用いた。パルパー21及びリファイナー23により、針葉樹晒クラフトパルプ(NBKP)のフリーネスを500mlとなるように調整した。次に、湿潤紙力剤添加部33を用いて、湿潤紙力剤(a)であるエポキシ化ポリアミドポリアミン樹脂(PAE)を添加し、第1スラリー貯蔵タンク32内において、十分に攪拌混合した。PAEの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.78質量%であった。次に、低分子乾燥紙力剤添加部43を用いて、低分子乾燥紙力剤(b)である、重量平均分子量(Mw)が10万のカルボキシメチルセルロース(CMC)の塩を添加し、第2スラリー貯蔵タンク42内において、十分に攪拌混合した。CMCの塩の添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.2質量%であった。次に、希釈水供給部63を用いて希釈水を供給し、0.13質量%となるように希釈し、濾過スクリーン62に搬送した。次に、高分子乾燥紙力剤添加部65を用いて、高分子乾燥紙力剤(c)である、重量平均分子量(Mw)が1,700万であるアクリル系ポリアクリルアミド樹脂(PAM)を添加し、原料スラリーを調整した。PAMの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.03質量%であった。このように原料スラリー調整部2で調整された原料スラリーを、抄紙部7にて、抄紙・乾燥し、薄葉紙を製造した。原料スラリー調整部2の種箱52及び抄紙部7のフォーマーによって調節し、坪量13.0g/m2の薄葉紙を製造した。
[Example C3]
Using the manufacturing apparatus 1 </ b> C shown in FIG. 4, the softwood bleached kraft pulp raw material was put into the pulper 21 and beaten by the refiner 23. Softwood bleached kraft pulp raw material is NBKP (Cariboo Pulp and Paper Company, trade name "Cariboo", North America, fiber roughness 0.15m
g / m, average fiber length 2.44 mm). The freeness of the softwood bleached kraft pulp (NBKP) was adjusted by the pulper 21 and the refiner 23 to 500 ml. Next, the epoxidized polyamide polyamine resin (PAE) which is the wet paper strength agent (a) was added using the wet paper strength agent adding section 33 and sufficiently stirred and mixed in the first slurry storage tank 32. The addition amount of PAE was 0.78 mass% with respect to the dry mass of all the constituent fibers of a thin paper. Next, using the low molecular dry paper strength agent adding portion 43, a salt of carboxymethyl cellulose (CMC) having a weight average molecular weight (Mw) of 100,000, which is a low molecular dry paper strength agent (b), is added, 2 In the slurry storage tank 42, the mixture was sufficiently stirred and mixed. The addition amount of the salt of CMC was 0.2 mass% with respect to the dry mass of all the constituent fibers of the thin paper. Next, dilution water was supplied using the dilution water supply unit 63, diluted to 0.13 mass%, and conveyed to the filtration screen 62. Next, an acrylic polyacrylamide resin (PAM) having a weight average molecular weight (Mw) of 17 million, which is a polymer dry paper strength agent (c), is obtained using the polymer dry paper strength agent addition unit 65. The raw material slurry was prepared by adding. The amount of PAM added was 0.03% by mass relative to the dry mass of all the constituent fibers of the thin paper. Thus, the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured. A thin paper having a basis weight of 13.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
〔実施例C4〕
 図5に示す製造装置1Dを用い、パルパー21に、針葉樹晒クラフトパルプ原料を投入し、リファイナー23にて叩解した。針葉樹晒クラフトパルプ原料としては、NBKP(Cariboo Pulp and Paper Company製、商品名「Cariboo」、北米産、繊維粗度0.15mg/m、平均繊維長2.44mm)を用いた。パルパー21及びリファイナー23により、針葉樹晒クラフトパルプ(NBKP)のフリーネスを500mlとなるように調整した。次に、湿潤紙力剤添加部33を用いて、湿潤紙力剤(a)であるエポキシ化ポリアミドポリアミン樹脂(PAE)を添加し、第1スラリー貯蔵タンク32内において、十分に攪拌混合した。PAEの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.78質量%であった。次に、希釈水供給部63を用いて希釈水を供給し、0.13質量%となるように希釈した。次に、低分子乾燥紙力剤(b)部43と高分子乾燥紙力剤(c)部65を用いて重量平均分子量(Mw)が10万のカルボキシメチルセルロース(CMC)の塩と重量平均分子量(Mw)が1,700万であるアクリル系ポリアクリルアミド樹脂(PAM)を65の配管の途中で同時に添加し、原料スラリーを調整した。CMCの塩の添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.2質量%であった。PAMの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.03質量%であった。次に、ファンポンプ64を用いて、乱流を引き起こしながら、原料スラリーを調整した。このように原料スラリー調整部2で調整された原料スラリーを、抄紙部7にて、抄紙・乾燥し、薄葉紙を製造した。原料スラリー調整部2の種箱52及び抄紙部7のフォーマーによって調節し、坪量13.0g/m2の薄葉紙を製造した。
[Example C4]
Using the manufacturing apparatus 1 </ b> D shown in FIG. 5, the softwood bleached kraft pulp raw material was put into the pulper 21 and beaten by the refiner 23. NBKP (manufactured by Cariboo Pulp and Paper Company, trade name “Cariboo”, produced in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm) was used as a raw material for bleached kraft pulp. The freeness of the softwood bleached kraft pulp (NBKP) was adjusted by the pulper 21 and the refiner 23 to 500 ml. Next, the epoxidized polyamide polyamine resin (PAE) which is the wet paper strength agent (a) was added using the wet paper strength agent adding section 33 and sufficiently stirred and mixed in the first slurry storage tank 32. The addition amount of PAE was 0.78 mass% with respect to the dry mass of all the constituent fibers of a thin paper. Next, dilution water was supplied using the dilution water supply part 63, and it diluted so that it might become 0.13 mass%. Next, a carboxymethyl cellulose (CMC) salt having a weight average molecular weight (Mw) of 100,000 and a weight average molecular weight using the low molecular dry paper strength agent (b) part 43 and the polymer dry paper strength agent (c) part 65 An acrylic polyacrylamide resin (PAM) having a (Mw) of 17 million was simultaneously added in the middle of 65 pipes to prepare a raw material slurry. The addition amount of the salt of CMC was 0.2 mass% with respect to the dry mass of all the constituent fibers of the thin paper. The amount of PAM added was 0.03% by mass relative to the dry mass of all the constituent fibers of the thin paper. Next, the raw material slurry was adjusted using the fan pump 64 while causing turbulent flow. Thus, the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured. A thin paper having a basis weight of 13.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
〔比較例C1〕
 実施例C1と同様に、図2に示す製造装置1Aを用いるが、低分子乾燥紙力剤添加部43及び高分子乾燥紙力剤添加部65から乾燥紙力剤を添加せずに、原料スラリーを調整した。このように調整された原料スラリーを、抄紙部7にて、抄紙・乾燥し、薄葉紙を製造した。原料スラリー調整部2の種箱52及び抄紙部7のフォーマーによって調節し、坪量11.5g/m2の薄葉紙を製造した。
[Comparative Example C1]
As in Example C1, the manufacturing apparatus 1A shown in FIG. 2 is used, but without adding the dry paper strength agent from the low molecular dry paper strength agent addition unit 43 and the polymer dry paper strength agent addition unit 65, the raw material slurry Adjusted. The raw material slurry thus adjusted was paper-made and dried at the paper-making unit 7 to produce thin paper. A thin paper having a basis weight of 11.5 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
〔比較例C2〕
 実施例C1と同様に、図2に示す製造装置1Aを用いるが、高分子乾燥紙力剤添加部65から乾燥紙力剤を添加せずに、原料スラリーを調整した。このように調整された原料スラリーを、抄紙部7にて、抄紙・乾燥し、薄葉紙を製造した。原料スラリー調整部2の種箱52及び抄紙部7のフォーマーによって調節し、坪量11.0g/m2の薄葉紙を製造した。
[Comparative Example C2]
As in Example C1, the manufacturing apparatus 1A shown in FIG. 2 was used, but the raw material slurry was adjusted without adding the dry paper strength agent from the polymer dry paper strength agent addition unit 65. The raw material slurry thus adjusted was paper-made and dried at the paper-making unit 7 to produce thin paper. A thin paper having a basis weight of 11.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
〔比較例C3〕
 図2に示す製造装置1Aを用い、パルパー21に、針葉樹晒クラフトパルプ原料を投入し、リファイナー23にて叩解した。針葉樹晒クラフトパルプ原料としては、NBKP(Cariboo Pulp and Paper Company製、商品名「Cariboo」、北米産、繊維粗度0.15mg/m、平均繊維長2.44mm)を用いた。パルパー21及びリファイナー23により、針葉樹晒クラフトパルプ(NBKP)のフリーネスを500mlとなるように調整した。次に、湿潤紙力剤添加部33を用いて、湿潤紙力剤(a)であるエポキシ化ポリアミドポリアミン樹脂(PAE)を添加し、第1スラリー貯蔵タンク32内において、十分に攪拌混合した。PAEの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.78質量%であった。次に、高分子乾燥紙力剤添加部43を用いて、高分子乾燥紙力剤(c)である、重量平均分子量(Mw)が1,700万であるアクリル系ポリアクリルアミド樹脂(PAM)を添加し、第2スラリー貯蔵タンク42内において、十分に攪拌混合した。PAMの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.03質量%であった。次に、希釈水供給部63を用いて希釈水を供給し、0.13質量%となるように希釈した。次に、ファンポンプ64を用いて、乱流を引き起こしながら、低分子乾燥紙力剤添加部65を用いて、低分子量乾燥紙力剤(b)である、重量平均分子量(Mw)が10万のカルボキシメチルセルロースを添加し、濾過スクリーン62に搬送して、原料スラリーを調整した。CMCの添加量は、薄葉紙の全構成繊維の乾燥質量に対して、0.2質量%であった。このように原料スラリー調整部2で調整された原料スラリーを、抄紙部7にて、抄紙・乾燥し、薄葉紙を製造した。原料スラリー調整部2の種箱52及び抄紙部7のフォーマーによって調節し、坪量13.0g/m2の薄葉紙を製造した。
[Comparative Example C3]
Using the manufacturing apparatus 1 </ b> A shown in FIG. 2, the softwood bleached kraft pulp raw material was put into the pulper 21 and beaten by the refiner 23. NBKP (manufactured by Cariboo Pulp and Paper Company, trade name “Cariboo”, produced in North America, fiber roughness 0.15 mg / m, average fiber length 2.44 mm) was used as a raw material for bleached kraft pulp. The freeness of the softwood bleached kraft pulp (NBKP) was adjusted by the pulper 21 and the refiner 23 to 500 ml. Next, the epoxidized polyamide polyamine resin (PAE) which is the wet paper strength agent (a) was added using the wet paper strength agent adding section 33 and sufficiently stirred and mixed in the first slurry storage tank 32. The addition amount of PAE was 0.78 mass% with respect to the dry mass of all the constituent fibers of a thin paper. Next, an acrylic polyacrylamide resin (PAM) having a weight average molecular weight (Mw) of 17 million, which is a polymer dry paper strength agent (c), is obtained using the polymer dry paper strength agent addition section 43. The mixture was added and sufficiently stirred and mixed in the second slurry storage tank 42. The amount of PAM added was 0.03% by mass relative to the dry mass of all the constituent fibers of the thin paper. Next, dilution water was supplied using the dilution water supply part 63, and it diluted so that it might become 0.13 mass%. Next, a low molecular weight dry paper strength agent (b) having a weight average molecular weight (Mw) of 100,000 is generated using the low molecular weight dry paper strength agent adding unit 65 while causing turbulence using the fan pump 64. Of carboxymethyl cellulose was added and conveyed to the filter screen 62 to prepare a raw material slurry. The amount of CMC added was 0.2% by mass relative to the dry mass of all the constituent fibers of the thin paper. Thus, the raw material slurry adjusted by the raw material slurry adjustment part 2 was paper-made and dried in the paper making part 7, and the thin paper was manufactured. A thin paper having a basis weight of 13.0 g / m 2 was manufactured by adjusting with the seed box 52 of the raw material slurry adjusting unit 2 and the former of the paper making unit 7.
〔評価〕
 実施例C1~C4及び比較例C1~C3の各サンプル(薄葉紙)の各種評価結果は下記表4の通りである。MD方向CD方向の乾燥引張強度及び湿潤引張強度、クレープ率、並びに液透過時間は、それぞれ、前記方法によって測定した。
[Evaluation]
The various evaluation results of the samples (thin paper) of Examples C1 to C4 and Comparative Examples C1 to C3 are shown in Table 4 below. The dry tensile strength and wet tensile strength in the MD direction and CD direction, the crepe rate, and the liquid permeation time were measured by the methods described above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4に示す結果から明らかなように、実施例C1~C4の製造方法で製造された薄葉紙は、強度特性が良好でしかも液透過性に優れた薄葉紙であることがわかる。それに対して、比較例C1~C3の製造方法で製造された薄葉紙は、実施例C1~C4の製造方法で製造された薄葉紙に比べて、強度特性が劣り、液透過性も劣る薄葉紙であった。 As is apparent from the results shown in Table 4, it can be seen that the thin paper produced by the production methods of Examples C1 to C4 is a thin paper having good strength characteristics and excellent liquid permeability. On the other hand, the thin paper produced by the production method of Comparative Examples C1 to C3 was thin paper having inferior strength characteristics and poor liquid permeability as compared with the thin paper produced by the production methods of Examples C1 to C4. .
〔高液透過性紙Iの製造方法〕
 NBKP(Cariboo Pulp and Paper Company製、商品名「Cariboo」、北米産)を水中に均一に分散させて、繊維濃度2質量%のスラリーを調製し、このスラリーを叩解機にかけて、NBKPのフリーネスを500mlに調整した。更に、このスラリーに、第1紙力増強剤としてアニオン性PAMのナトリウム塩(乾燥紙力増強剤、MTアクアポリマー製、商品名「アコフロックA95」)を、スラリー中の全繊維の乾燥質量に対して0.2質量%投入し、次いで、第2紙力増強剤としてPAE(湿潤紙力増強剤、星光PMC株式会社製、商品名「WS4030」)を、スラリー中の全繊維の乾燥質量に対して0.2質量%投入し、各成分が均一になるように十分に撹拌した。こうして得られたスラリーを、ワイヤー目開き径90μm(166メッシュ)の金網抄紙ワイヤー上に散布し、金網抄紙ワイヤー上に紙層を形成させ、サクションボックスを用いて6ml/(cm2・sec)の速度で該紙層を脱水した後、該紙層をドライヤーで乾燥させ、乾燥面からドクターブレードで紙層をはがしながら、ドライヤーと巻き取りの速比をつけてクレープを付与した。こうして得られた薄葉紙(クレープ紙)を高液透過性紙Iとした。
[Production Method of Highly Liquid Permeable Paper I]
NBKP (manufactured by Cariboo Pulp and Paper Company, trade name “Cariboo”, manufactured in North America) is uniformly dispersed in water to prepare a slurry with a fiber concentration of 2% by mass. Adjusted. Further, an anionic PAM sodium salt (dry paper strength enhancer, manufactured by MT Aqua Polymer, trade name “Akofloc A95”) as a first paper strength enhancer was added to this slurry with respect to the dry mass of all fibers in the slurry. 0.2 mass%, and then PAE (wet paper strength enhancer, trade name “WS4030”, manufactured by Seiko PMC Co., Ltd.) as the second paper strength enhancer, based on the dry weight of all the fibers in the slurry. Then, 0.2% by mass was added and sufficiently stirred so that each component was uniform. The slurry thus obtained was spread on a wire mesh paper wire having a wire opening diameter of 90 μm (166 mesh), a paper layer was formed on the wire mesh paper wire, and 6 ml / (cm 2 · sec) was formed using a suction box. After the paper layer was dehydrated at a speed, the paper layer was dried with a drier, and a crepe was applied while peeling the paper layer with a doctor blade from the dry surface at a speed ratio of drier and winding. The thin paper (crepe paper) thus obtained was designated as a high liquid permeability paper I.
〔高液透過性紙II及びIIIの製造方法〕
 パルプの種類(繊維粗度)やフリーネス等を適宜変更した以外は高液透過性紙Iと同様にして薄葉紙(クレープ紙)を製造し、それぞれ高液透過性紙II、IIIとした。高液透過性紙II及びIIIは、それぞれ、前述した高液透過性紙Aである。
[Method for Producing Highly Liquid Permeable Paper II and III]
A thin paper (crepe paper) was produced in the same manner as the high liquid permeability paper I except that the type of pulp (fiber roughness), freeness, and the like were appropriately changed, and designated as high liquid permeability papers II and III, respectively. The high liquid permeability papers II and III are the above-described high liquid permeability paper A, respectively.
 高液透過性紙I~IIIで使用したパルプ(NBKP)の詳細は次の通り(繊維粗度の小さい順に記載)。これらのパルプは、日本紙パルプ商事又は伊藤忠商事を通じて入手した。
・繊維粗度0.13mg/m(商品名「Northwood」、ConFor製)
・繊維粗度0.15mg/m(商品名「Cariboo」、Cariboo Pulp and Paper Company製)
・繊維粗度0.18mg/m(商品名「ARAUCO」、ARAUCO製)
・繊維粗度0.2mg/m(商品名「Crofton CK」、Unifibra製)
The details of the pulp (NBKP) used in the high liquid permeability papers I to III are as follows (described in ascending order of fiber roughness). These pulps were obtained through Nippon Paper Pulp Trading or Itochu Corporation.
-Fiber roughness 0.13mg / m (trade name "Northwood", manufactured by ConFor)
-Fiber roughness 0.15mg / m (Brand name "Cariboo", Cariboo Pulp and Paper Company)
-Fiber roughness 0.18mg / m (trade name "ARAUCO", manufactured by ARAUCO)
・ Fiber roughness 0.2mg / m (trade name "Crofton CK", Unifibra)
 前記高液透過性紙I~IIIの各種評価結果は下記表5の通りである。乾燥引張強度及び液透過時間は、それぞれ前述した方法によって測定した。 The various evaluation results of the high liquid permeability papers I to III are as shown in Table 5 below. The dry tensile strength and the liquid permeation time were measured by the methods described above.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔実施例D1〕
 図6及び図7に示す如き展開型の使い捨ておむつを作製し、これを実施例D1のサンプルとした。実施例D1では、コアラップシートを2枚の前記高液透過性紙Iから構成し、低液透過性シートは使用していない。表面シートとしては、合成繊維を構成繊維とする坪量25g/m2のエアスルー不織布を用いた。エアスルー不織布は、芯がポリプロピレン、鞘が直鎖状ポリエチレンからなる芯鞘型複合繊維(太さ2.1dtex、界面活性剤で表面処理、液透過性を有する)から構成されていた。裏面シートとしては、坪量20g/m2の多孔質フィルムと坪量20g/m2のポリプロピレン製スパンポンドとを1.5g/m2ホットメルト型接着剤で接着して複合化したものを用いた。裏面シートを構成する多孔質フィルムは、密度0.925g/m3の直鎖状ポリエチレン樹脂100質量部に、炭酸カルシウム150質量部及び第3成分としてエステル化合物4質量部を均一混合した物を、インフレーション成形した後、縦方向に一軸延伸したフィルムであった。吸収性コアとしては、親水性繊維としてウエハウザー社製のNB416を用い、吸水性ポリマーとしてサンダイヤ社製のサンウェットIM997を用い、親水性繊維と吸水性ポリマーとの含有質量比が前者/後者=10/6~10/7であり、坪量が470g/m2の混合積繊型の吸収性コアを用いた。吸収性コアの長手方向の全長は360mm、幅方向の全長(最大長さ)は110mm、坪量は470g/m2、密度は0.17g/cm3、無荷重下での厚みは2.7mmであった。
[Example D1]
An unfolded disposable diaper as shown in FIGS. 6 and 7 was produced and used as a sample of Example D1. In Example D1, the core wrap sheet is composed of the two highly liquid permeable papers I, and the low liquid permeable sheet is not used. As the surface sheet, an air-through nonwoven fabric having a basis weight of 25 g / m 2 and comprising synthetic fibers as constituent fibers was used. The air-through nonwoven fabric was composed of a core-sheath type composite fiber (thickness: 2.1 dtex, surface treatment with a surfactant, and liquid permeability) having a core made of polypropylene and a sheath made of linear polyethylene. As the back sheet, a composite film in which a porous film having a basis weight of 20 g / m 2 and a spun pond made of polypropylene having a basis weight of 20 g / m 2 are bonded with a 1.5 g / m 2 hot-melt adhesive is used. It was. The porous film constituting the back sheet is obtained by uniformly mixing 100 parts by mass of a linear polyethylene resin having a density of 0.925 g / m 3 with 150 parts by mass of calcium carbonate and 4 parts by mass of an ester compound as a third component. After the inflation molding, the film was uniaxially stretched in the longitudinal direction. As the absorbent core, NB416 manufactured by Wafer User is used as the hydrophilic fiber, Sunwet IM997 manufactured by Sundia is used as the water-absorbing polymer, and the mass ratio of the hydrophilic fiber to the water-absorbing polymer is the former / the latter = 10. A mixed fiber type absorbent core having a basis weight of 470 g / m 2 was used. The total length in the longitudinal direction of the absorbent core is 360 mm, the total length in the width direction (maximum length) is 110 mm, the basis weight is 470 g / m 2 , the density is 0.17 g / cm 3 , and the thickness under no load is 2.7 mm. Met.
〔実施例D2~D4及び比較例D1〕
 実施例D1において、コアラップシート(吸収性コアの肌対向面側に配置される1枚及び吸収性コアの非肌対向面側に配置される他の1枚)を下記表6に示す通りに構成した以外は実施例D1と同様にして展開型の使い捨ておむつを作製し、これらを実施例D2~D4及び比較例D1のサンプルとした。実施例及び比較例で用いた低液透過性シートIは、坪量16g/m2、密度0.23g/cm3、クレープ率10%のクレープ紙であった。
[Examples D2 to D4 and Comparative Example D1]
In Example D1, the core wrap sheet (one sheet disposed on the skin facing surface side of the absorbent core and another sheet disposed on the non-skin facing surface side of the absorbent core) is as shown in Table 6 below. Except for the construction, unfolded disposable diapers were produced in the same manner as in Example D1, and these were used as samples of Examples D2 to D4 and Comparative Example D1. The low liquid permeability sheet I used in Examples and Comparative Examples was a crepe paper having a basis weight of 16 g / m 2 , a density of 0.23 g / cm 3 , and a crepe rate of 10%.
 実施例及び比較例の各サンプル(使い捨ておむつ)の各種評価結果は下記表6の通りである。軟便吸収性及び横漏れ防止性は、下記方法により評価した。 Various evaluation results of each sample (disposable diaper) of Examples and Comparative Examples are as shown in Table 6 below. Soft stool absorbability and side leakage prevention properties were evaluated by the following methods.
<軟便吸収性>
 使い捨ておむつを平面状に拡げ、表面シートを上に向けて水平面上に固定した状態で、高粘性液のモデルである擬似軟便10gを、吸収体の中心部に表面シート側からシリンジを用いて定速(6秒)で一括注入し、3.5kPaの加重下で5分間放置した。このとき、加重をかけるための錘と使い捨ておむつとの間にOHPフィルムを挟んでおいた。その後、OHPフィルムに付着した擬似軟便の量を測定し、その測定値を肌付着量とした。また、吸収性コアに吸収された量を軟便吸収量とした。肌付着量が少ないほど、また軟便吸収量が多いほど、軟便吸収性に優れ高評価となる。擬似軟便の成分は、ベントナイト28.0g、グリセリン14.0g、イオン交換水114.1g、エマルゲン130K0.03質量%水溶液(花王)14.2gであり、粘度は300mPa・s(株式会社エー・アンド・デイの振動式粘度計CJV5000で測定する。300mlビーカーに入った擬似軟便約170gをスターラーで300rpmにて60秒間攪拌し、直ぐに粘度計にセットし感応板を所定レベルに挿入し、計測レンジを50mVに選択し、計測スイッチを押して測定開始する。測定開始してから60秒後の値、25℃で測定。)であった。
<Soft stool absorbability>
With a disposable diaper spread in a flat shape and fixed on a horizontal surface with the top sheet facing upward, 10 g pseudo-soft stool, which is a model of highly viscous liquid, is fixed to the center of the absorbent body using a syringe from the top sheet side. The batch injection was carried out at a high speed (6 seconds) and left for 5 minutes under a load of 3.5 kPa. At this time, an OHP film was sandwiched between a weight for applying a weight and a disposable diaper. Thereafter, the amount of pseudo-soft stool adhering to the OHP film was measured, and the measured value was defined as the skin adhesion amount. The amount absorbed by the absorbent core was defined as the amount of soft stool absorption. The smaller the skin adhesion amount and the greater the amount of loose stool absorption, the better the stool absorption and the higher the evaluation. The components of the artificial soft stool were bentonite 28.0 g, glycerin 14.0 g, ion-exchanged water 114.1 g, emulgen 130K 0.03% by mass aqueous solution (Kao) 14.2 g, and the viscosity was 300 mPa · s (A &amp;・ Measured with a day vibration viscometer CJV 5000. Stir approximately 170 g of pseudo soft stool in a 300 ml beaker with a stirrer at 300 rpm for 60 seconds, immediately set in the viscometer, insert the sensitive plate at a predetermined level, and set the measurement range. Select 50 mV and start measurement by pressing the measurement switch.The value 60 seconds after the start of measurement, measured at 25 ° C.).
<横漏れ防止性>
 使い捨ておむつを平面状に拡げ、表面シートを上に向けて水平面上に固定した状態で、該おむつの吸収体の中心部に対して表面シートを介して2kPaで加圧しながら、40gの生理食塩水を注入して吸収させ、生理食塩水の注入から10分放置後、更に40gの生理食塩水を注入して吸収させた。この操作を、生理食塩水の合計注入量が160gになるまで繰り返し、生理食塩水注入後におむつの長手方向に沿う側部から幅方向外方に生理食塩水が流れ出るか否か(即ち横漏れがあるか否か)を目視で観察した。生理食塩水の合計注入量が160gとなった後も横漏れが見られない場合を○、合計注入量が120gとなった後は横漏れが見られないが、合計注入量が160gとなった後に横漏れが見られた場合を△、合計注入量が120gとなった後に横漏れが見られた場合を×と判定した。
<Side leakage prevention>
A disposable diaper is expanded in a flat shape, and the top sheet is fixed on a horizontal plane with the top sheet facing upward, while pressing with 2 kPa through the top sheet against the center of the absorbent body of the diaper, 40 g of physiological saline Was injected and absorbed, and after 10 minutes from the injection of physiological saline, 40 g of physiological saline was injected and absorbed. This operation is repeated until the total injection amount of the physiological saline reaches 160 g. After the physiological saline is injected, whether or not the physiological saline flows outward from the side along the longitudinal direction of the diaper in the width direction (i.e., side leakage occurs). Whether or not there was) was visually observed. A case where no side leakage was observed even after the total injection amount of physiological saline reached 160 g, and no side leakage was observed after the total injection amount reached 120 g, but the total injection amount became 160 g. The case where lateral leakage was observed later was evaluated as Δ, and the case where lateral leakage was observed after the total injection amount reached 120 g was determined as ×.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6に示す結果から明らかなように、吸収性コアの肌対向面に対向配置されるコアラップシートが特定の高液透過性紙である、各実施例の使い捨ておむつは、該コアラップシートが低液透過性シートである、比較例の使い捨ておむつに比して、軟便の肌への付着量が少なく且つ軟便吸収量が多く軟便吸収性に優れ、更には横漏れ防止性にも優れるものであった。特に、吸収性コアの非肌対向面に対向配置されるコアラップシートが低液透過性シートである、実施例D2~D4の使い捨ておむつは、コアラップシート全体が特定の高液透過性紙である、実施例D1の使い捨ておむつに比して横漏れ防止性に優れており、斯かる高液透過性紙及び低液透過性シートの組み合わせの有効性が明らかである。 As is clear from the results shown in Table 6, the disposable diaper of each example in which the core wrap sheet opposed to the skin-facing surface of the absorbent core is a specific highly liquid-permeable paper has the core wrap sheet Compared with the disposable diaper of the comparative example, which is a low liquid permeability sheet, the amount of loose stool attached to the skin is small, the amount of loose stool absorption is large and the stool absorbability is excellent, and the side leakage prevention property is also excellent. there were. In particular, the disposable diaper of Examples D2 to D4, in which the core wrap sheet disposed opposite to the non-skin facing surface of the absorbent core is a low liquid permeable sheet, the entire core wrap sheet is a specific high liquid permeable paper. As compared with the disposable diaper of Example D1, it is superior in preventing side leakage, and the effectiveness of the combination of such a high liquid permeability paper and a low liquid permeability sheet is clear.

Claims (18)

  1.  繊維粗度の異なる2種の親水性セルロース繊維の集合体を主体とし、紙力増強剤が添加されている薄葉紙であって、
     前記2種の親水性セルロース繊維として、繊維粗度が0.13~0.16mg/mの第1パルプと繊維粗度が0.17~0.20mg/mの第2パルプとが含有されており、含有されている第1パルプと第2パルプとの繊維粗度の差が0.01~0.07mg/mであり、前記集合体のフリーネスが400~550mlである薄葉紙。
    A thin paper mainly composed of an assembly of two kinds of hydrophilic cellulose fibers having different fiber roughnesses, to which a paper strength enhancer is added,
    The two kinds of hydrophilic cellulose fibers include a first pulp having a fiber roughness of 0.13 to 0.16 mg / m and a second pulp having a fiber roughness of 0.17 to 0.20 mg / m. A thin paper in which the difference in fiber roughness between the first pulp and the second pulp contained is 0.01 to 0.07 mg / m, and the freeness of the aggregate is 400 to 550 ml.
  2.  前記第1パルプ及び前記第2パルプそれぞれの平均繊維長が2~3mmである請求項1記載の薄葉紙。 The thin paper according to claim 1, wherein the average fiber length of each of the first pulp and the second pulp is 2 to 3 mm.
  3.  前記第1パルプと前記第2パルプとの含有質量比(第1パルプ/第2パルプ)が3/7~7/3である請求項1又は2記載の薄葉紙。 The thin paper according to claim 1 or 2, wherein the content ratio of the first pulp to the second pulp (first pulp / second pulp) is 3/7 to 7/3.
  4.  前記紙力増強剤として、少なくともカルボキシメチルセルロース又はその塩が添加されている請求項1~3の何れか一項に記載の薄葉紙。 The thin paper according to any one of claims 1 to 3, wherein at least carboxymethylcellulose or a salt thereof is added as the paper strength enhancer.
  5.  坪量が10~20g/m2である請求項1~4の何れか一項に記載の薄葉紙。 The thin paper according to any one of claims 1 to 4, having a basis weight of 10 to 20 g / m 2 .
  6.  フリーネスが400~550mlである針葉樹晒クラフトパルプを主体とし、2種以上の紙力増強剤が添加されており、坪量が10~14.5g/m2、密度が0.05~0.2g/cm3、クレープ率が5~30%である請求項1~4の何れか一項に記載の薄葉紙。 Mainly composed of softwood bleached kraft pulp with a freeness of 400-550 ml, with two or more paper strength enhancers added, basis weight of 10-14.5 g / m 2 , density of 0.05-0.2 g The thin paper according to any one of claims 1 to 4, having a crepe rate of 5 to 30% / cm 3 .
  7.  前記2種以上の紙力増強剤として、乾燥紙力増強剤及び湿潤紙力増強剤が添加されている請求項6記載の薄葉紙。 The thin paper according to claim 6, wherein a dry paper strength enhancer and a wet paper strength enhancer are added as the two or more types of paper strength enhancers.
  8.  前記乾燥紙力増強剤が、カルボキシメチルセルロース及びその塩、ポリアクリルアミド系樹脂及びその塩、カチオン化デンプン並びにポリビニルアルコールからなる群から選択される1種以上である請求項7記載の薄葉紙。 The thin paper according to claim 7, wherein the dry paper strength enhancer is at least one selected from the group consisting of carboxymethylcellulose and salts thereof, polyacrylamide resin and salts thereof, cationized starch, and polyvinyl alcohol.
  9.  前記湿潤紙力増強剤が、エポキシ化ポリアミドポリアミン樹脂、尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂、ジアルデヒドデンプン、ポリエチレンアミン及びメチロール化ポリアミドからなる群から選択される1種以上である請求項7又は8記載の薄葉紙。 The wet paper strength enhancer is at least one selected from the group consisting of epoxidized polyamide polyamine resin, urea-formalin resin, melamine-formalin resin, dialdehyde starch, polyethyleneamine and methylolated polyamide. 8. The tissue paper according to 8.
  10.  前記2種以上の紙力増強剤として、2種の乾燥紙力増強剤及び1種の湿潤紙力増強剤が添加されている請求項6~9の何れか一項に記載の薄葉紙。 The thin paper according to any one of claims 6 to 9, wherein as the two or more kinds of paper strength enhancers, two kinds of dry paper strength enhancers and one kind of wet paper strength enhancer are added.
  11.  2種の前記乾燥紙力増強剤が、カルボキシメチルセルロースの塩とアニオン性ポリアクリルアミドの塩であり、1種の前記湿潤紙力増強剤が、エポキシ化ポリアミドポリアミン樹脂である請求項10記載の薄葉紙。 The thin paper according to claim 10, wherein the two kinds of dry paper strength enhancers are a salt of carboxymethyl cellulose and an anionic polyacrylamide, and the one wet paper strength enhancer is an epoxidized polyamide polyamine resin.
  12.  前記アニオン性ポリアクリルアミドの塩の重量平均分子量が800万以上である請求項11記載の薄葉紙。 The thin paper according to claim 11, wherein the weight average molecular weight of the anionic polyacrylamide salt is 8 million or more.
  13.  前記薄葉紙の製造時の搬送方向の乾燥引張強度が600~1500cN/25mm、該搬送方向に直交する方向の乾燥引張強度が150~350cN/25mmである請求項1~12の何れか一項に記載の薄葉紙。 13. The dry tensile strength in the transport direction at the time of manufacturing the thin paper is 600 to 1500 cN / 25 mm, and the dry tensile strength in a direction orthogonal to the transport direction is 150 to 350 cN / 25 mm. Tissue paper.
  14.  下記方法で測定される前記薄葉紙の液透過時間が0.2~3秒である請求項1~13の何れか一項に記載の薄葉紙。
    <液透過時間の測定方法>
     上下端が開口している内径35mmの2本の円筒を、両円筒の軸を一致させて上下に配し、8cm四方の測定サンプルを上下の円筒間に挟み込み、その状態で、上側の円筒内に生理食塩水を40g±1g供給する。供給された生理食塩水は、測定サンプルを透過するか又はサンプルに吸収されて上側の円筒内からなくなる。生理食塩水の供給開始時から、生理食塩水の水面が測定サンプル表面と同位置になるまでの時間を測定し、その時間を液透過時間とする。
    The thin paper according to any one of claims 1 to 13, wherein a liquid permeation time of the thin paper measured by the following method is 0.2 to 3 seconds.
    <Measurement method of liquid permeation time>
    Two cylinders with an inner diameter of 35 mm that open at the top and bottom are arranged vertically with the axes of both cylinders aligned, and an 8 cm square measurement sample is sandwiched between the upper and lower cylinders. 40 g ± 1 g of physiological saline is supplied. The supplied physiological saline passes through the measurement sample or is absorbed by the sample and disappears from the upper cylinder. The time from the start of the supply of the physiological saline to the time when the surface of the physiological saline reaches the same position as the surface of the measurement sample is measured, and the time is defined as the liquid permeation time.
  15.  請求項1~14の何れか一項に記載の薄葉紙を用いた吸収性物品。 An absorbent article using the thin paper according to any one of claims 1 to 14.
  16.  針葉樹晒クラフトパルプを含む原料から調整された原料スラリーを抄紙し乾燥して30g/m2以下の坪量の薄葉紙を製造する薄葉紙の製造方法であって、
     前記原料スラリーとして、前記針葉樹晒クラフトパルプのパルプスラリーに、カチオン性基を有するカチオンポリマーからなる湿潤紙力剤(a)を添加した後、以下に示す低分子乾燥紙力剤(b)及び高分子乾燥紙力剤(c)を同時に添加して、又は低分子乾燥紙力剤(b)を添加した後に更に高分子乾燥紙力剤(c)を添加して調整された原料スラリーを用いる薄葉紙の製造方法。
     (b)重量平均分子量(Mw)が0.2~50万のアニオン性基を有する低分子アニオンポリマーである低分子乾燥紙力剤
     (c)重量平均分子量(Mw)が500~3,000万のアニオン性基を有する高分子アニオンポリマーである高分子乾燥紙力剤
    A method for producing thin paper, which produces a thin paper having a basis weight of 30 g / m 2 or less by papermaking and drying a raw material slurry prepared from a raw material containing softwood bleached kraft pulp,
    After adding the wet paper strength agent (a) made of a cationic polymer having a cationic group to the pulp slurry of the softwood bleached kraft pulp as the raw material slurry, the following low molecular dry paper strength agent (b) and high Thin paper using a raw material slurry prepared by adding a molecular dry paper strength agent (c) at the same time, or adding a low molecular weight dry strength agent (b) and then adding a polymer dry strength agent (c). Manufacturing method.
    (B) Low molecular weight dry paper strength agent which is a low molecular weight anionic polymer having an anionic group having a weight average molecular weight (Mw) of 0.2 to 500,000 (c) Weight average molecular weight (Mw) of 500 to 30 million Polymer dry paper strength agent which is a polymer anionic polymer having an anionic group of
  17.  前記原料スラリーは、前記針葉樹晒クラフトパルプのパルプスラリーに前記湿潤紙力剤(a)を添加した後、前記低分子乾燥紙力剤(b)を添加し、その後更に前記高分子乾燥紙力剤(c)を添加して調整されている請求項16に記載の薄葉紙の製造方法。 The raw material slurry is obtained by adding the wet paper strength agent (a) to the pulp slurry of the softwood bleached kraft pulp, then adding the low molecular weight dry strength agent (b), and then further adding the polymer dry strength material. The method for producing thin paper according to claim 16, which is adjusted by adding (c).
  18.  前記原料を調整する工程は、前記低分子乾燥紙力剤(b)を添加した後に希釈し、希釈後に前記高分子乾燥紙力剤(c)を添加し、その後、ファンポンプ及び濾過スクリーンの少なくとも一方を用いて均一化する請求項17に記載の薄葉紙の製造方法。 The step of adjusting the raw material includes diluting after adding the low molecular dry paper strength agent (b), adding the polymer dry paper strength agent (c) after dilution, and then adding at least a fan pump and a filtration screen. The method for producing thin paper according to claim 17, wherein one is used to make uniform.
PCT/JP2011/077524 2010-12-21 2011-11-29 Tissue paper and method for producing tissue paper WO2012086374A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2013701034A MY184185A (en) 2010-12-21 2011-11-29 Tissue paper and method for producing tissue paper
RU2013133812/05A RU2568218C2 (en) 2010-12-21 2011-11-29 Napkin paper and methods of production of napkin paper
CN201180060711.2A CN103261520B (en) 2010-12-21 2011-11-29 Tissue paper and method for producing tissue paper

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2010284525 2010-12-21
JP2010284526 2010-12-21
JP2010-284526 2010-12-21
JP2010-284525 2010-12-21
JP2010-289542 2010-12-27
JP2010289542 2010-12-27
JP2011-157613 2011-07-19
JP2011157613 2011-07-19
JP2011258846A JP5833415B2 (en) 2010-12-27 2011-11-28 Absorbent articles
JP2011-258844 2011-11-28
JP2011-258846 2011-11-28
JP2011-258845 2011-11-28
JP2011258844A JP5934497B2 (en) 2010-12-21 2011-11-28 Tissue paper
JP2011258845A JP5074621B2 (en) 2010-12-21 2011-11-28 Tissue paper

Publications (1)

Publication Number Publication Date
WO2012086374A1 true WO2012086374A1 (en) 2012-06-28

Family

ID=46313656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077524 WO2012086374A1 (en) 2010-12-21 2011-11-29 Tissue paper and method for producing tissue paper

Country Status (2)

Country Link
MY (1) MY184185A (en)
WO (1) WO2012086374A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070289A (en) * 2012-09-27 2014-04-21 Kao Corp Method for producing paper-making formed body
CN110004771A (en) * 2019-03-29 2019-07-12 广东理文卫生用纸有限公司 A kind of pulping process of the strong napkin paper of high humidity
US11035078B2 (en) 2018-03-07 2021-06-15 Gpcp Ip Holdings Llc Low lint multi-ply paper products having a first stratified base sheet and a second stratified base sheet
US11259967B2 (en) * 2017-02-24 2022-03-01 Principle Business Enterprises, Inc. Absorbent composite
CN115029958A (en) * 2022-06-22 2022-09-09 浙江华丰纸业科技有限公司 Air filter paper and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291495A (en) * 1995-04-17 1996-11-05 Kao Corp Absorbent paper, its production and absorbing material using the same
JP2003027389A (en) * 2001-07-23 2003-01-29 Mitsubishi Paper Mills Ltd Tissue product
JP2006097191A (en) * 2004-09-30 2006-04-13 Crecia Corp Tissue paper having excellent touch
JP2006132051A (en) * 2004-11-09 2006-05-25 Oji Nepia Kk Tissue paper product
JP2008223161A (en) * 2007-03-09 2008-09-25 Nippon Paper Crecia Co Ltd Sanitary paper having improved surface property and softness using externally added softener and method for producing the same
JP2008291409A (en) * 2007-05-28 2008-12-04 Kao Corp Water-soluble article
JP2009242999A (en) * 2008-03-31 2009-10-22 Nippon Paper Industries Co Ltd Base paper for liquid container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291495A (en) * 1995-04-17 1996-11-05 Kao Corp Absorbent paper, its production and absorbing material using the same
JP2003027389A (en) * 2001-07-23 2003-01-29 Mitsubishi Paper Mills Ltd Tissue product
JP2006097191A (en) * 2004-09-30 2006-04-13 Crecia Corp Tissue paper having excellent touch
JP2006132051A (en) * 2004-11-09 2006-05-25 Oji Nepia Kk Tissue paper product
JP2008223161A (en) * 2007-03-09 2008-09-25 Nippon Paper Crecia Co Ltd Sanitary paper having improved surface property and softness using externally added softener and method for producing the same
JP2008291409A (en) * 2007-05-28 2008-12-04 Kao Corp Water-soluble article
JP2009242999A (en) * 2008-03-31 2009-10-22 Nippon Paper Industries Co Ltd Base paper for liquid container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070289A (en) * 2012-09-27 2014-04-21 Kao Corp Method for producing paper-making formed body
US11259967B2 (en) * 2017-02-24 2022-03-01 Principle Business Enterprises, Inc. Absorbent composite
US11035078B2 (en) 2018-03-07 2021-06-15 Gpcp Ip Holdings Llc Low lint multi-ply paper products having a first stratified base sheet and a second stratified base sheet
US11781270B2 (en) 2018-03-07 2023-10-10 Gpcp Ip Holdings Llc Methods of making multi-ply fibrous sheets
CN110004771A (en) * 2019-03-29 2019-07-12 广东理文卫生用纸有限公司 A kind of pulping process of the strong napkin paper of high humidity
CN115029958A (en) * 2022-06-22 2022-09-09 浙江华丰纸业科技有限公司 Air filter paper and preparation method thereof

Also Published As

Publication number Publication date
MY184185A (en) 2021-03-24

Similar Documents

Publication Publication Date Title
TWI566752B (en) Absorbent items
JP3319603B2 (en) Liquid distribution member for absorbent products showing high suction and high capacity
JP5833415B2 (en) Absorbent articles
JP6080246B2 (en) Absorbent articles
EP0528248B1 (en) Wet-formed composite and method of manufacturing same
JP5973156B2 (en) Absorbent articles
RU2568218C2 (en) Napkin paper and methods of production of napkin paper
WO2014073376A1 (en) Absorbent article
WO2012086374A1 (en) Tissue paper and method for producing tissue paper
JP5851823B2 (en) Absorber
JP5352227B2 (en) Absorber
EP0779066B1 (en) Liquid absorbent sphagnum moss article
JP5074621B2 (en) Tissue paper
JP2013040434A (en) Method for producing tissue paper
EP0442223A1 (en) Disposable absorbent product
JP5596392B2 (en) Fiber sheet and absorbent article using the same
JP6229932B2 (en) Absorbent articles
JP3201136U (en) Absorbent articles
JPH09156014A (en) Absorptive sheet, manufacture thereof, and absorptive article
JP5235639B2 (en) Absorber, absorbent body manufacturing method, and absorbent article
JP5934497B2 (en) Tissue paper
JPH08232189A (en) Absorbent paper and its production
JPH08229071A (en) Absorbent article
JP5855912B2 (en) Tissue paper
JP5498152B2 (en) Absorber and absorbent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013133812

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11851771

Country of ref document: EP

Kind code of ref document: A1