WO2012086223A1 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
WO2012086223A1
WO2012086223A1 PCT/JP2011/057840 JP2011057840W WO2012086223A1 WO 2012086223 A1 WO2012086223 A1 WO 2012086223A1 JP 2011057840 W JP2011057840 W JP 2011057840W WO 2012086223 A1 WO2012086223 A1 WO 2012086223A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric
inverter
center
electric motor
vehicle body
Prior art date
Application number
PCT/JP2011/057840
Other languages
French (fr)
Japanese (ja)
Inventor
信義 武藤
忠彦 加藤
和利 村上
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Publication of WO2012086223A1 publication Critical patent/WO2012086223A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/0207Wire harnesses
    • B60R16/0215Protecting, fastening and routing means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0416Arrangement in the rear part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0455Removal or replacement of the energy storages
    • B60K2001/0461Removal or replacement of the energy storages from the side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/647Surface situation of road, e.g. type of paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to an electric vehicle in which front and rear wheels are independently driven by two electric motors.
  • the driver's seat is arranged so as to be shifted from the center line of the vehicle body in order to improve ease of getting on and off, and the center of gravity of the collective battery composed of a plurality of individual batteries is offset from the center line of the vehicle body in the direction opposite to the driver's seat.
  • the electric motor is arranged near the rear of the driver's seat.
  • an object of the present invention is to provide an electric vehicle that ensures a comfortable operation performance and is excellent in running stability.
  • a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side and a second electric motor that transmits braking / driving force to the left and right wheels on the rear wheel side
  • the first and second inverters are arranged in line symmetry when the first and second electric motors are arranged in line symmetry, and the first and second inverters are arranged in line symmetry.
  • an electric vehicle arranged point-symmetrically is provided.
  • the center of gravity of the entire electric vehicle is located substantially at the center of the vehicle body and is stable. Driving is possible.
  • vibrations and motor sounds generated from the first electric motor are hardly transmitted to the driver.
  • FIG. 1 is a block diagram conceptually showing the structure of an electric vehicle according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of the front wiring portion for explaining the structure of the H-shaped wiring portion.
  • FIG. 2B is a cross-sectional view of the rear wiring portion for explaining the structure of the H-shaped wiring portion.
  • FIG. 2C is a cross-sectional view of the central wiring portion for explaining the structure of the H-shaped wiring portion.
  • FIG. 3 is a block diagram functionally showing the controller.
  • FIG. 4 is a diagram showing the relationship between the driving force and braking force and the slip ratio.
  • FIG. 5 is a diagram for explaining a method of distributing the braking force to the front wheels and the rear wheels.
  • FIG. 1 is a block diagram conceptually showing the configuration of an electric vehicle according to an embodiment of the present invention.
  • additional symbols f, r, fr, fl, rr, rl indicating whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side. Is attached to the component.
  • the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
  • the electric vehicle 1 includes a front wheel motor 3f as a first electric motor that drives front wheels 2fr and 2fl via a front wheel differential 4f and axles 5fr and 5fl as a first differential, and a rear wheel.
  • a low-voltage battery 7 for an electronic device of the electric vehicle 1 As a main power supply unit 6, a low-voltage battery 7 for an electronic device of the electric vehicle 1, a front-wheel inverter 8 f and a rear wheel for converting electric power from the main power supply unit 6 into AC power and supplying the motor 3 f and 3 r If the inverter 8r, the driver's seat 9 arranged on either the left or right side of the center line Lc of the vehicle body 25 (right side in the present embodiment), and a signal corresponding to the target torque are output to the inverters 8f and 8r.
  • a front-rear wheel independent drive type electric vehicle including a mechanical brake 18fr, 18fl, 18rr, 18rl and a pressure adjusting unit 12 that supplies fluid pressure to the mechanical brakes 18fr, 18fl, 18rr, 18rl to generate friction braking. is there.
  • the electric vehicle 1 includes the operating means such as an accelerator pedal, a brake pedal, and a shift lever for designating forward or reverse, and the rotation speeds of the front wheel motor 3f and the rear wheel motor 3r.
  • Sensors 27f, 27r and wheel speed sensors 28fr, 28fl, 28rr, 28rl for detecting the rotation speed of the wheel 2 are provided.
  • braking / driving force may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle, or only one of them.
  • the main power supply unit 6 includes a pair of batteries 60r and 60l connected in parallel to each other, and a pair of smoothing capacitors (for example, 6500 ⁇ F) 61r and 61l connected in parallel to the respective output sides of the high voltage batteries 60r and 60l. Prepare.
  • the high voltage batteries 60r and 60l are high voltage batteries that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r.
  • a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
  • the pair of high-voltage batteries 60r and 60l are configured to be electrically connectable to a terminal portion provided in a central wiring portion 132 of the H-shaped wiring portion 13 described later by a bus bar 62.
  • the terminal portion is connected to the power cable 142.
  • the replacement of the high voltage batteries 60r and 60l can be easily performed by attaching and detaching the bus bar 62 from the side of the vehicle body 25.
  • the front wheel motor 3f and the rear wheel motor 3r various motors such as a synchronous motor and an induction motor can be used.
  • the rotation of the motor 3 is transmitted to the axle 5 via the differential device 4 on each of the front wheel side and the rear wheel side.
  • the axle 5 rotates integrally with the wheel 2. That is, the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other.
  • the inverter 8 converts the power from the high voltage battery 60 into AC power, and outputs a current corresponding to a signal from the controller 10 to the motor 3 to drive the motor 3. Further, the inverter 8 converts the AC power generated by the motor 3 into DC power and charges the high voltage battery 60 via the capacitor 61.
  • the low voltage battery 7 converts a high DC voltage of the main power supply unit 6 by a DC / DC converter (not shown), converts it to a DC low voltage (for example, 12 V), and outputs it.
  • a DC / DC converter not shown
  • EDLC Electric Double Layer Capacitor
  • the controller 10 detects current sensors 15a to 15c, which will be described later, respectively, which detect the current of the primary winding of the front wheel motor 3f, and current sensors 17a, which will be described later, which detect the current of the primary winding of the rear wheel motor 3r.
  • the current detection signal from 17c is received, and a signal corresponding to the target torque is output to inverters 8f and 8r.
  • the differential devices 4f and 4r are, for example, so-called a pair of side gears connected to the axles 5fr, 5fl, 5rr, and 5rl, a plurality of pinion gears that mesh with the pair of side gears, and a differential case that supports the plurality of pinion gears so as to be able to rotate.
  • Open differential can be used.
  • the braking / driving force of the front wheel motor 3f is distributed to the right front wheel 2fr and the left front wheel 2fl by the front wheel differential 4f.
  • the braking / driving force of the rear wheel motor 3r is distributed to the right rear wheel 2rr and the left rear wheel 2rl by the rear wheel differential 4r.
  • the differential device includes a mechanism capable of controlling the distribution ratio of braking / driving force to the front wheel axles 5fr, 5fl or the distribution ratio of braking / driving force to the rear wheel axles 5rr, 5rl by the controller 10. May be good.
  • an electric brake and a mechanical brake are used in combination. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source.
  • the electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking.
  • a regenerative brake is mainly used, but a power generation brake may be used in a low speed region.
  • the regenerative brake regenerates the electric power generated by the motor 3 to the high voltage batteries 60r and 60l via the capacitors 61r and 61l, thereby generating a braking force.
  • the mechanical brake 18 is, for example, a drum brake or a disk brake, and presses a brake shoe against a member to be braked by a pressurized liquid from the pressure adjustment unit 12 to obtain friction braking by a friction force.
  • the operation of the mechanical brake 18 is controlled independently for each wheel 2 by the controller 10.
  • the brake shoe may be pressed against the member to be braked by an actuator such as a motor.
  • the pressure adjustment unit 12 is configured to be able to apply a different braking force to each mechanical brake 18 by distributing pressurized liquid to the mechanical brake 18 by a signal from the controller 10.
  • the pressure adjusting unit 12 and the mechanical brake 18 constitute a friction brake mechanism.
  • the front cameras 20 fr and 20 fl capture the road surface on the front side of the electric vehicle 1 and output the captured image to the controller 10.
  • the controller 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving.
  • the imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other.
  • the cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
  • the rear camera 21 captures the road surface behind the electric vehicle 1 and outputs the captured image to the controller 10.
  • the controller 10 detects a change in the road surface based on the image acquired from the camera 21 and executes processing related to braking / driving.
  • the camera 21 is constituted by a CCD camera, for example.
  • the entire center of gravity G of the electric vehicle 1 is substantially positioned at the center 25 a of the vehicle body 25 (for example, within 10 cm or 20 cm from the center 25 a).
  • the positions of the parts constituting the electric vehicle 1, for example, the parts constituting the front wheel and rear wheel drive systems are determined. That is, the front wheel motor 3f and the rear wheel motor 3r are arranged line-symmetrically or point-symmetrically with respect to the center 25a of the vehicle body 25, and the front wheel inverter 8f and the rear wheel inverter 8r include the front wheel motor 3f and the rear wheel.
  • the front motor 3r When the front motor 3r is arranged line-symmetrically, it is arranged line-symmetrically, and when the front wheel motor 3f and rear wheel motor 3r are arranged point-symmetrically, they are arranged point-symmetrically.
  • the front wheel motor 3f and the rear wheel motor 3r are arranged symmetrically with respect to the center 25a of the vehicle body 25, and the front wheel inverter 8f and the rear wheel inverter 8r are arranged with respect to the center 25a of the vehicle body 25.
  • the front wheel motor 3f and the rear wheel motor 3r are arranged symmetrically with respect to the center 25a of the vehicle body 25.
  • the front wheel inverter 8f and the rear wheel inverter 8r are arranged with respect to the center 25a of the vehicle body 25.
  • front wheel motor 3f, the rear wheel motor 3r, the front wheel inverter 8f, and the rear wheel inverter 8r pass through the center 25a of the vehicle body 25 when they are arranged in line contrast or point contrast with respect to the center 25a of the vehicle body 25.
  • An electric vehicle including a front wheel and a rear wheel drive system including a radiator 11, a controller 10, and a pair of high-voltage batteries 60r and 60l so as to cancel out moments about the axes (lateral x-axis, vertical y-axis) 1 may be positioned substantially at the center 25a of the vehicle body 25.
  • each component constituting the electric vehicle 1 may be arranged as follows. That is, the front wheel motor 3 f is disposed in front of the center 25 a of the vehicle body 25 and on the side opposite to the driver seat 9. The rear wheel motor 3r is arranged in a point contrast position with respect to the front wheel motor 3f. Further, the front wheel inverter 8f is disposed in front of the center 25a of the vehicle body 25 and on the driver's seat 9 side. The rear wheel inverter 8r is arranged in a point contrast position with respect to the front wheel inverter 8f.
  • the pair of high-voltage batteries 60f and 60r and the pair of smoothing capacitors 61f and 61r constituting the main power supply unit 6 are arranged at positions symmetrical with respect to the center line Lc. Further, the front wheel motor 3f, the front wheel inverter 8f, the radiator 11, the controller 10, the low voltage battery 7 and the pressure adjustment unit 12 are disposed in front of the left and right wheels 2fr and 2fl on the front wheel side.
  • the arrangement of the parts constituting the electric vehicle 1 does not need to consider the weight of the driver, and considers the weight of the driver (for example, 75 kg) and the passenger who rides on the passenger seat (for example, 75 kg). May be. Further, the electric vehicle 1 is configured such that the center of gravity of the entire electric vehicle moves to the center 25a of the vehicle body 25 when a driver having a predetermined weight gets on the driver's seat than when the driver does not get on. Parts may be placed.
  • weights of the front wheel motor 3f, the rear wheel motor 3r, the front wheel inverter 8f, and the rear wheel inverter 8r are W3f, W3r, W8f, and W8r, respectively.
  • the H-shaped wiring portion 13 includes a front wiring portion 130 provided along the front axles 5fr and 5fl, a rear wiring portion 131 provided along the rear axles 5rr and 5rl, and the center of the front wiring portion 130.
  • the central wiring part 132 is connected to the central part of the rear wiring part 131. Details of the H-type wiring portion 13 will be described with reference to the drawings.
  • FIG. 2A and 2B are diagrams for explaining the structure of the H-shaped wiring portion 13, where FIG. 2A is a cross-sectional view of the front wiring portion 130, FIG. 2B is a cross-sectional view of the rear wiring portion 131, and FIG. FIG.
  • the H-shaped wiring part 13 is covered with an upper wall 13a, a lower wall 13b, side walls 13c and 13d, and the interior is partitioned by a partition wall 13e.
  • the upper part of the partition wall 13e of the front wiring part 130 is a signal cable wiring region 130a in which the signal cable 141 is accommodated, and the lower part of the partition wall 13e is accommodated in the power cable 142.
  • This is a power cable wiring region 130b.
  • the upper part of the partition wall 13e of the rear wiring part 131 is a signal cable wiring region 131a in which the signal cable 141 is accommodated, and the power cable 142 is accommodated in the lower part of the partition wall 13e.
  • This is a power cable wiring region 131b.
  • the upper stage of the partition wall 13e of the central wiring part 132 is a signal cable wiring area 132a in which the signal cable 141 is accommodated, and the lower stage of the partition wall 13e is accommodated in the power cable 142.
  • This is a power cable wiring region 132b.
  • the signal cable wiring region 132a is divided into two signal cable wiring regions 132a 1 and 132a 2 by a partition wall 13f.
  • the upper wall 13a, the lower wall 13b, the side walls 13c and 13d, and the partition walls 13e and 13f are made of a metal such as aluminum, copper, and stainless steel.
  • a signal cable 141 and a power cable 142 from components such as a front wheel inverter 8f, a mechanical brake 18fr, and a wheel speed sensor 28fr located on the right front side with respect to the center 25a of the vehicle body 25 are a front wiring portion 130, a central wiring portion 132, and the like. It is connected to other parts via.
  • 142 is connected to other components via the front wiring portion 130, the central wiring portion 132, and the like.
  • a signal cable 141 and a power cable 142 from components such as a rear wheel inverter 8r, a mechanical brake 18rl, and a wheel speed sensor 28rl located on the left rear side with respect to the center 25a of the vehicle body 25 are a rear wiring portion 131 and a central wiring portion 132. Etc. to be connected to other parts.
  • the cable 142 is connected to other components via the rear wiring part 131, the central wiring part 132, and the like.
  • the water cooling pipe from the radiator 11 is guided to the rear wheel motor 3r through the central wiring portion 132 to cool the rear wheel motor 3r.
  • the front wheel motor 3f is cooled by being guided directly to the front wheel motor 3f.
  • the electric system such as the inverters 8f and 8r may be cooled independently by the cooling water from the radiator 11.
  • the H-shaped wiring portion 13 may be attached to the vehicle body base so as to function as a part of the vehicle body structure. As a result, the rigidity of the vehicle can be increased.
  • FIG. 3 is a block diagram functionally showing the controller 10.
  • the controller 10 is configured by a computer, for example, and includes a CPU 100, a storage unit 110 such as a semiconductor memory and a hard disk, a front wheel drive circuit 9f for driving the front wheel inverter 8f, and a rear wheel drive for driving the rear wheel inverter 8r. Circuit 9r.
  • the controller 10 includes the cameras 20fr and 20fl, the encoders 16f and 16r, an accelerator sensor 22 that detects the amount of depression of the accelerator pedal, a brake sensor 23 that detects the amount of depression of the brake pedal, a shift sensor 24, An acceleration sensor (acceleration detection unit) 26, the wheel speed sensors 28fr, 28fl, 28rr, 28rl, and a steering angle sensor 29 are connected.
  • Encoders 16f and 16r detect the rotational speeds of the motors 3f and 3r on the front wheel side and the rear wheel side, respectively, and output signals corresponding to the detected rotational speeds to the controller 10.
  • the accelerator sensor 22 detects the depression amount of the accelerator pedal and outputs a signal corresponding to the detected depression amount to the controller 10.
  • the brake sensor 23 detects the amount of depression of the brake pedal, and outputs a signal corresponding to the detected amount of depression to the controller 10.
  • the shift sensor 24 detects the position of the shift lever and outputs a signal corresponding to the detected position to the controller 10.
  • the acceleration sensor 26 is provided at the center of the vehicle body 25 (which is also the center of gravity G of the electric vehicle 1) 25a, and the acceleration a in the three directions of the vehicle body 25 in the forward / backward direction, the lateral direction, and the rotational direction (turning direction) around the center of gravity axis.
  • Wheel speed sensors 28fr, 28fl, 28rr, and 28rl detect the rotational speed ⁇ of the wheel and output a signal corresponding to the detected rotational speed ⁇ to the controller 10.
  • the steering angle sensor 29 detects an operation angle ⁇ of the steering wheel and outputs a signal corresponding to the detected steering angle ⁇ to the controller 10.
  • the controller 10 issues an operation command for performing operations such as acceleration and deceleration in accordance with operation input information generated by a driver operating an operation means such as an accelerator pedal and a brake pedal.
  • the electric vehicle 1 can drive
  • the controller 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3Rr according to the signals from the sensors 22, 23, 24, etc., respectively, and the front wheel drive circuit 9f and the rear wheel drive circuit are calculated. Output to 9r.
  • the drive circuit 9 outputs a signal corresponding to the target torque commanded from the controller 10 to the inverter 8.
  • various data such as a road surface pattern 111, a ⁇ -SrLimit table 112, relational information on braking / driving force and slip ratio as shown in FIG. 4 described later, and various programs such as a braking / driving program 113 are stored. Stored.
  • the CPU 100 operates in accordance with the braking / driving program 113, so that the road surface friction coefficient ⁇ estimating means (estimating part) 101, slip ratio upper limit setting means (setting part) 102, slip ratio calculating means (calculating part) 103, braking force control. It functions as the means (control unit) 104 and the like.
  • the road surface friction coefficient ⁇ estimation means 101 is based on an image captured by the front cameras 20fr and fl (the rear camera 21 when the vehicle is reverse), and the road surface on which the automobile 1 travels is a dry road surface, a wet road surface, a frozen / snow surface. It is determined whether the road surface or the like, and the friction coefficient ⁇ of the road surface is estimated. These road surfaces are typical road surfaces with greatly different friction coefficients ⁇ . The determination is performed by pattern matching between the captured image and the road surface pattern 111 captured in advance in each road surface condition. The road surface pattern 111 is stored in the storage unit 110 in association with the friction coefficient ⁇ of the road surface. In addition, you may perform using the well-known technique suitably, such as performing the said determination by determination whether the brightness
  • FIG. 4 is a diagram showing the relationship between the driving force and braking force and the slip ratio.
  • a solid line L1 indicates a dry road surface
  • a solid line L2 indicates a wet road surface
  • a solid line L3 indicates a frozen / snow road surface.
  • Each of these road surfaces is a typical road surface having a significantly different friction coefficient.
  • the coefficient of friction is, for example, 0.75 on a dry road surface, 0.4 on a wet road surface, and 0.2 on a frozen / snow road surface.
  • the storage unit 110 stores a ⁇ -SrLimit table 112 indicating the relationship between the road friction coefficient ⁇ and the slip ratio upper limit value SrLimit.
  • the slip ratio upper limit value SrLimit1 (
  • SrLimit2 (
  • 0.14)
  • SrLimit3 (
  • the slip ratio upper limit setting means 102 refers to the ⁇ -SrLimit table 112 in the storage unit 110 based on the road surface friction coefficient ⁇ estimated by the road surface friction coefficient ⁇ estimation means 101, and determines the slip ratio upper limit as a predetermined value.
  • Set the value SrLimit For example, the slip ratio upper limit value SrLimit is set to a value near the maximum value of the braking / driving force that can be exhibited according to each road surface condition in FIG. 4, but is not limited to a value near the maximum value.
  • the slip ratio upper limit value SrLimit can be set to a slip ratio at which a braking / driving force higher than 70 to 90% of the maximum braking force that can be exhibited according to the friction coefficient of the road surface, for example.
  • the state where the absolute value of the slip ratio Sr is 1 is a state where any braking / driving force (driving force or braking force) cannot be transmitted to the road surface.
  • the state where the slip ratio Sr is 0 is a state where there is no slip between the wheel 2 and the road surface.
  • the braking / driving force control means 104 uses the ⁇ -SrLimit table 112, the slip ratio control for controlling the slip ratio to a certain target value based on the relation information between the braking / driving force and the slip ratio as shown in FIG. Carry out wheel lock and wheel spin suppression control. Hereinafter, those controls will be described.
  • the braking / driving force control means 104 compares the slip ratio
  • FIG. 5 is a diagram for explaining a method of distributing the braking force to the front wheels 2fr, 2fl and the rear wheels 2rr, 2rl in the electric vehicle 1.
  • FIG. 5 is a diagram for explaining a method of distributing the braking force to the front wheels 2fr, 2fl and the rear wheels 2rr, 2rl in the electric vehicle 1.
  • M is the mass (body mass) of the entire electric vehicle 1.
  • the load movement amount Z at that time is obtained by the following equation (4) in which the moment around the center of gravity G of the electric vehicle 1 generated by the braking force Fcar is converted to the vertical load at the contact point of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl. It is done.
  • Z Fcar ⁇ Hcar / Lcar (4)
  • Hcar is the height of the center of gravity G of the electric vehicle 1 from the ground contact surface
  • Lcar is the wheel base of the electric vehicle 1.
  • the braking force control means 104 sets the front wheel slip ratio upper limit value SrLimit to a slip ratio at which a braking force higher than 70 to 90% of the maximum braking force that can be exhibited in response to an increase in wheel load, for example, is exhibited. Can do. Further, by correcting the rear wheel side slip ratio upper limit value SrLimit so as to limit the braking force according to the decrease in the load on the rear wheel side, a braking force larger than that on the rear wheel side is generated on the front wheel side, A more appropriate braking force can be applied to each wheel 2.
  • the braking force control means 104 sets the rear wheel slip ratio upper limit value SrLimit to a slip ratio at which a driving force higher than 70 to 90% of the maximum braking force that can be exhibited in response to an increase in wheel load, for example. be able to.
  • SrLimit so as to limit the driving force according to the decrease in the load on the front wheel side, a larger driving force is generated on the rear wheel side than on the front wheel side, and more appropriately Drive force can be applied to each wheel 2.
  • the center of gravity G is located substantially at the center 25a of the vehicle body 25 and travels. It is excellent in stability.
  • (2) By disposing the front wheel motor 3f on the side opposite to the driver's seat 9 with respect to the center line Lc, and separating the front wheel motor 3f from the driver's seat, the driver's safety when the front wheel motor 3f is damaged is improved. Therefore, vibrations and motor sounds generated from the front wheel motor 3f are hardly transmitted to the driver.
  • each of the units 101 to 104 is realized by the CPU 100 and the braking / driving program 113, but may be realized by hardware such as ASIC (Application Specific IC).
  • ASIC Application Specific IC
  • the braking / driving program 113 may be taken into the controller 10 from a recording medium such as a CD-ROM, or may be taken into the controller 10 from a server device or the like via a network.
  • the radiator is disposed in front of the vehicle body, but may be disposed in front of and behind the vehicle body.
  • the present invention can be applied to vehicles such as passenger cars, buses and trucks.
  • SYMBOLS 1 Electric vehicle, 2 ... Wheel, 2fr, 2fl ... Front wheel, 2rr, rl ... Rear wheel, 3f ... Front wheel motor, 3r ... Rear wheel motor, 4f, 4r ... Differential device, 5fr, 5fl, 5rr, 5rl Axle, 6 ... main power supply, 7 ... low voltage battery, 8f ... front wheel inverter, 8r ... rear wheel inverter, 9f ... front wheel drive circuit, 9r ... rear wheel drive circuit, 10 ... controller, 11 ... radiator , 12 ... Pressure adjustment unit, 13 ... H-shaped wiring part, 13a ... Upper wall, 13b ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An electric vehicle (1) is provided with: a motor (3f) for the front wheels, transmitting braking and driving forces to the left and right front wheels; a motor (3r) for the rear wheels, transmitting braking and driving forces to the left and right rear wheels; an inverter (8f) for the front wheels, driving the motor (3f) for the front wheels; and an inverter (8r) for the rear wheels, driving the motor (3r) for the rear wheels. The motor (3f) for the front wheels and the motor (3r) for the rear wheels are arranged line-symmetrically or point-symmetrically with respect to the center (25a) of the vehicle body. The inverter (8f) for the front wheels and the inverter (8r) for the rear wheels are disposed so as to be line-symmetrical when the motor (3f) for the front wheels and the motor (3r) for the rear wheels are disposed line-symmetrically and so as to be point-symmetrical when the motors (3f) for the front wheels and the motors (3r) for the rear wheels are disposed point-symmetrically.

Description

電気自動車Electric car
 本発明は、前後輪を2つの電気モータで独立に駆動する電気自動車に関する。 The present invention relates to an electric vehicle in which front and rear wheels are independently driven by two electric motors.
 従来、運転者が乗車した時に重心が車体の中心線上に位置するようにした電動車両が提案されている(例えば、特許文献1参照。)。 Conventionally, an electric vehicle has been proposed in which the center of gravity is positioned on the center line of the vehicle body when the driver gets on (see, for example, Patent Document 1).
 この電動車両は、乗降性を向上させるために運転席を車体の中心線からずらして配置し、複数の個別バッテリからなる集合バッテリの重心を車体の中心線から運転席と反対方向にオフセットするように配置し、電動モータを運転席の後方近傍に配置したものである。 In this electric vehicle, the driver's seat is arranged so as to be shifted from the center line of the vehicle body in order to improve ease of getting on and off, and the center of gravity of the collective battery composed of a plurality of individual batteries is offset from the center line of the vehicle body in the direction opposite to the driver's seat. The electric motor is arranged near the rear of the driver's seat.
特開平9-309343号公報JP-A-9-309343
 しかし、従来の電動車両によれば、電動モータが運転席に近い位置に配置されているため、電動モータの振動やモータ音が運転者に伝達され易く、快適な操作性能が確保され難い。 However, according to the conventional electric vehicle, since the electric motor is arranged at a position close to the driver's seat, vibrations and motor sounds of the electric motor are easily transmitted to the driver, and it is difficult to ensure comfortable operation performance.
 そこで、本発明は、快適な操作性能を確保するとともに、走行安定性に優れた電気自動車を提供することを課題とする。 Therefore, an object of the present invention is to provide an electric vehicle that ensures a comfortable operation performance and is excellent in running stability.
 本発明の一態様は、上記課題を解決するため、前輪側の左右輪に制駆動力を伝達する第1の電気モータと、後輪側の左右輪に制駆動力を伝達する第2の電気モータと、前記第1の電気モータを駆動する第1のインバータと、前記第2の電気モータを駆動する第2のインバータとを備え、前記第1及び第2の電気モータは、車体の中心に対して線対称又は点対称に配置され、前記第1及び第2のインバータは、前記第1及び第2の電気モータが線対称に配置されているときは線対称に配置され、前記第1及び第2の電気モータが点対称に配置されているときは点対称に配置された電気自動車を提供する。 In one aspect of the present invention, in order to solve the above problems, a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side and a second electric motor that transmits braking / driving force to the left and right wheels on the rear wheel side are provided. A motor, a first inverter that drives the first electric motor, and a second inverter that drives the second electric motor, wherein the first and second electric motors are located at the center of the vehicle body. The first and second inverters are arranged in line symmetry when the first and second electric motors are arranged in line symmetry, and the first and second inverters are arranged in line symmetry. When the second electric motor is arranged point-symmetrically, an electric vehicle arranged point-symmetrically is provided.
 上記構成によれば、上記第1及び第2の電気モータ、及び第1及び第2のインバータを上記のように配置することにより、電気自動車全体の重心が車体の中心にほぼ位置し、安定した走行が可能になる。ここで、前輪用の第1の電気モータを運転席から離すことにより、第1の電気モータから発生する振動やモータ音が運転者に伝達し難くなる。 According to the above configuration, by arranging the first and second electric motors and the first and second inverters as described above, the center of gravity of the entire electric vehicle is located substantially at the center of the vehicle body and is stable. Driving is possible. Here, by separating the first electric motor for the front wheels from the driver's seat, vibrations and motor sounds generated from the first electric motor are hardly transmitted to the driver.
 本発明によれば、快適な操作性能を確保するとともに、走行安定性に優れたものとなる。 According to the present invention, it is possible to ensure comfortable operation performance and excellent running stability.
図1は、本発明の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。FIG. 1 is a block diagram conceptually showing the structure of an electric vehicle according to an embodiment of the present invention. 図2Aは、H型配線部の構造を説明するための前方配線部の断面図である。FIG. 2A is a cross-sectional view of the front wiring portion for explaining the structure of the H-shaped wiring portion. 図2Bは、H型配線部の構造を説明するための後方配線部の断面図である。FIG. 2B is a cross-sectional view of the rear wiring portion for explaining the structure of the H-shaped wiring portion. 図2Cは、H型配線部の構造を説明するための中央配線部の断面図である。FIG. 2C is a cross-sectional view of the central wiring portion for explaining the structure of the H-shaped wiring portion. 図3は、コントローラを機能的に示すブロック図である。FIG. 3 is a block diagram functionally showing the controller. 図4は、駆動力及び制動力とスリップ率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the driving force and braking force and the slip ratio. 図5は、制動力の前輪及び後輪への分配方法を説明するための図である。FIG. 5 is a diagram for explaining a method of distributing the braking force to the front wheels and the rear wheels.
 図1は、本発明の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。なお、同図では、構成要素の位置が前輪側か後輪側か、前輪側の右側か左側か、後輪側の右側か左側かを示す付加記号f、r、fr、fl、rr、rlを構成要素に付している。また、構成要素の位置を特に区別する必要がない場合には、上記付加記号や位置を示す「前輪用」、「後輪用」の語を省略することもある。 FIG. 1 is a block diagram conceptually showing the configuration of an electric vehicle according to an embodiment of the present invention. In the figure, additional symbols f, r, fr, fl, rr, rl indicating whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side. Is attached to the component. Further, when it is not necessary to particularly distinguish the positions of the constituent elements, the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
(全体の構成)
 この電気自動車1は、前輪2fr、2flを第1の差動装置としての前輪用差動装置4f及び車軸5fr、5flを介して駆動する第1の電気モータとしての前輪用モータ3fと、後輪2rr、2rlを第2の差動装置としての後輪用差動装置4r及び車軸5rr、5rlを介して駆動する第2の電気モータとしての後輪用モータ3rと、電気自動車1の駆動エネルギー源としての主電源部6と、電気自動車1の電子機器用の低電圧バッテリ7と、主電源部6からの電力を交流電力に変換してモータ3f、3rに供給する前輪用インバータ8f及び後輪用インバータ8rと、車体25の中心線Lcよりも左右のいずれか一方(本実施の形態では右側)に配置された運転席9と、目標トルクに応じた信号をインバータ8f、8rに出力するとともに、前輪用モータ3f及び後輪用モータ3rの制駆動力を独立に制御するコントローラ10と、モータ3f、3r等を冷却するラジエター11と、車軸5fr、5fl、5rr、5rlの回転を制動する機械ブレーキ18fr、18fl、18rr、18rlと、機械ブレーキ18fr、18fl、18rr、18rlに液圧を供給して摩擦制動を生じさせる圧力調整ユニット12とを備えた、前後輪独立駆動型の電気自動車である。
(Overall configuration)
The electric vehicle 1 includes a front wheel motor 3f as a first electric motor that drives front wheels 2fr and 2fl via a front wheel differential 4f and axles 5fr and 5fl as a first differential, and a rear wheel. 2rr and 2rl as a second differential device, a rear wheel differential device 4r and a rear wheel motor 3r as a second electric motor driven via the axles 5rr and 5rl, and a drive energy source for the electric vehicle 1 As a main power supply unit 6, a low-voltage battery 7 for an electronic device of the electric vehicle 1, a front-wheel inverter 8 f and a rear wheel for converting electric power from the main power supply unit 6 into AC power and supplying the motor 3 f and 3 r If the inverter 8r, the driver's seat 9 arranged on either the left or right side of the center line Lc of the vehicle body 25 (right side in the present embodiment), and a signal corresponding to the target torque are output to the inverters 8f and 8r. In addition, the controller 10 that independently controls the braking / driving force of the front wheel motor 3f and the rear wheel motor 3r, the radiator 11 that cools the motors 3f, 3r, and the like, and the rotation of the axles 5fr, 5fl, 5rr, and 5rl are braked. A front-rear wheel independent drive type electric vehicle including a mechanical brake 18fr, 18fl, 18rr, 18rl and a pressure adjusting unit 12 that supplies fluid pressure to the mechanical brakes 18fr, 18fl, 18rr, 18rl to generate friction braking. is there.
 また、この電気自動車1は、運転者が操作するアクセルペダル、ブレーキペダル、及び前進や後進を指定するためのシフトレバー等の操作手段と、前輪用モータ3f及び後輪用モータ3rの回転数をそれぞれ検出するエンコーダ16f、16rと、車体25の前方側に設けられた2つのカメラ20fr、20rlと、車体25の後方側に設けられたカメラ21と、モータ3f、3rの温度をそれぞれ検出する温度センサ27f、27rと、車輪2の回転速度を検出する車輪速センサ28fr、28fl、28rr、28rlとを備える。 In addition, the electric vehicle 1 includes the operating means such as an accelerator pedal, a brake pedal, and a shift lever for designating forward or reverse, and the rotation speeds of the front wheel motor 3f and the rear wheel motor 3r. Temperatures for detecting the temperatures of the encoders 16f and 16r for detecting, the two cameras 20fr and 20rl provided on the front side of the vehicle body 25, the camera 21 provided on the rear side of the vehicle body 25, and the motors 3f and 3r, respectively. Sensors 27f, 27r and wheel speed sensors 28fr, 28fl, 28rr, 28rl for detecting the rotation speed of the wheel 2 are provided.
 なお、本明細書において、「制駆動力」は、自動車を減速させる制動力と、自動車を加速させる駆動力の両方を意味する場合や一方のみを意味する場合がある。 In this specification, “braking / driving force” may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle, or only one of them.
(電源系)
 主電源部6は、互いに並列に接続された一対のバッテリ60r、60lと、高電圧バッテリ60r、60lのそれぞれの出力側に並列に接続された一対の平滑コンデンサ(例えば6500μF)61r、61lとを備える。
(Power supply system)
The main power supply unit 6 includes a pair of batteries 60r and 60l connected in parallel to each other, and a pair of smoothing capacitors (for example, 6500 μF) 61r and 61l connected in parallel to the respective output sides of the high voltage batteries 60r and 60l. Prepare.
 高電圧バッテリ60r、60lは、前輪用モータ3f及び後輪用モータ3rを駆動するための電力を出力することができる高電圧バッテリである。なお、電気自動車1の駆動エネルギー源として、バッテリの他に、乾電池等の一次電池、燃料電池等を用いてもよい。 The high voltage batteries 60r and 60l are high voltage batteries that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r. In addition to the battery, a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
 一対の高電圧バッテリ60r、60lは、ブスバー62によって後述するH型配線部13の中央配線部132内に設けられた端子部に電気的に接続可能に構成されている。端子部は、電源ケーブル142に接続されている。高電圧バッテリ60r、60lを交換するときは、車体25の側方からブスバー62に着脱することで容易に行うことができる。 The pair of high-voltage batteries 60r and 60l are configured to be electrically connectable to a terminal portion provided in a central wiring portion 132 of the H-shaped wiring portion 13 described later by a bus bar 62. The terminal portion is connected to the power cable 142. The replacement of the high voltage batteries 60r and 60l can be easily performed by attaching and detaching the bus bar 62 from the side of the vehicle body 25.
 前輪用モータ3f及び後輪用モータ3rは、例えば同期モータ(Synchronous Motor)、誘導モータ(Induction Motor)等の各種のモータを用いることができる。前輪側及び後輪側それぞれにおいて、モータ3の回転は、差動装置4を介して車軸5に伝達される。車軸5は車輪2と一体的に回転する。すなわち、電気自動車1は、前輪2fr、2flと、後輪2rr、rlを互いに独立に制御可能に前輪2fr、2fl及び後輪2rr、rlに対応して2つのトルク発生源を有している。 As the front wheel motor 3f and the rear wheel motor 3r, various motors such as a synchronous motor and an induction motor can be used. The rotation of the motor 3 is transmitted to the axle 5 via the differential device 4 on each of the front wheel side and the rear wheel side. The axle 5 rotates integrally with the wheel 2. That is, the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other.
 インバータ8は、高電圧バッテリ60からの電力を交流電力に変換し、コントローラ10からの信号に応じた電流をモータ3に出力してモータ3を駆動する。また、インバータ8は、モータ3により発電された交流電力を直流電力に変換してコンデンサ61を介して高電圧バッテリ60を充電する。 The inverter 8 converts the power from the high voltage battery 60 into AC power, and outputs a current corresponding to a signal from the controller 10 to the motor 3 to drive the motor 3. Further, the inverter 8 converts the AC power generated by the motor 3 into DC power and charges the high voltage battery 60 via the capacitor 61.
 低電圧バッテリ7は、主電源部6の直流の高電圧を図示しないDC/DCコンバータにより変換して直流の低電圧(例えば12V)に変換して出力するものである。低電圧バッテリ7として、例えば電気二重層キャパシタ(EDLC:Electric Double Layer Capacitor)を用いることができる。 The low voltage battery 7 converts a high DC voltage of the main power supply unit 6 by a DC / DC converter (not shown), converts it to a DC low voltage (for example, 12 V), and outputs it. As the low voltage battery 7, for example, an electric double layer capacitor (EDLC: Electric Double Layer Capacitor) can be used.
 コントローラ10は、前輪用モータ3fの1次巻線の電流をそれぞれ検出する後述する電流センサ15a~15c、及び後輪用モータ3rの1次巻線の電流をそれぞれ検出する後述する電流センサ17a~17cからの電流検出信号を受信し、目標トルクに応じた信号をインバータ8f、8rに出力する。 The controller 10 detects current sensors 15a to 15c, which will be described later, respectively, which detect the current of the primary winding of the front wheel motor 3f, and current sensors 17a, which will be described later, which detect the current of the primary winding of the rear wheel motor 3r. The current detection signal from 17c is received, and a signal corresponding to the target torque is output to inverters 8f and 8r.
 差動装置4f、4rは、例えば車軸5fr、5fl、5rr、5rlに連結された一対のサイドギヤ、これら一対のサイドギヤに噛み合う複数のピニオンギヤ、及び複数のピニオンギヤを自転可能に支持するデフケースを備えた所謂オープンデフを用いることができる。前輪用モータ3fの制駆動力は、前輪用差動装置4fにより右前輪2fr及び左前輪2flに配分される。また、後輪用モータ3rの制駆動力は、後輪用差動装置4rにより右後輪2rr及び左後輪2rlに配分される。なお、差動装置は、前輪側の車軸5fr、5flへの制駆動力の配分率、又は後輪側の車軸5rr、5rlへの制駆動力の配分率をコントローラ10により制御可能な機構を備えたものでもよい。 The differential devices 4f and 4r are, for example, so-called a pair of side gears connected to the axles 5fr, 5fl, 5rr, and 5rl, a plurality of pinion gears that mesh with the pair of side gears, and a differential case that supports the plurality of pinion gears so as to be able to rotate. Open differential can be used. The braking / driving force of the front wheel motor 3f is distributed to the right front wheel 2fr and the left front wheel 2fl by the front wheel differential 4f. The braking / driving force of the rear wheel motor 3r is distributed to the right rear wheel 2rr and the left rear wheel 2rl by the rear wheel differential 4r. The differential device includes a mechanism capable of controlling the distribution ratio of braking / driving force to the front wheel axles 5fr, 5fl or the distribution ratio of braking / driving force to the rear wheel axles 5rr, 5rl by the controller 10. May be good.
(ブレーキ系)
 電気自動車1では、電気ブレーキと機械ブレーキとが併用される。すなわち、電気自動車1では、駆動源としてのモータ3により制動力を発生可能である。電気ブレーキは、例えば、制動エネルギーを熱エネルギーに変換する発電ブレーキ、及び制動により発生する電気を回生する回生ブレーキである。本実施の形態では、主として回生ブレーキを用いるが、低速領域では発電ブレーキを用いる場合もある。回生ブレーキは、モータ3が発電した電力をコンデンサ61r、61lを介して高電圧バッテリ60r、60lに回生し、これにより制動力を発生させる。
(Brake system)
In the electric vehicle 1, an electric brake and a mechanical brake are used in combination. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source. The electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking. In the present embodiment, a regenerative brake is mainly used, but a power generation brake may be used in a low speed region. The regenerative brake regenerates the electric power generated by the motor 3 to the high voltage batteries 60r and 60l via the capacitors 61r and 61l, thereby generating a braking force.
 機械ブレーキ18は、例えばドラムブレーキやディスクブレーキであり、圧力調整ユニット12からの加圧液体によりブレーキシューを被制動部材に押し付けて摩擦力による摩擦制動を得るものである。機械ブレーキ18の動作は、コントローラ10により各車輪2に対して独立に制御される。なお、ブレーキシューをモータ等のアクチュエータにより被制動部材に押し付けてもよい。 The mechanical brake 18 is, for example, a drum brake or a disk brake, and presses a brake shoe against a member to be braked by a pressurized liquid from the pressure adjustment unit 12 to obtain friction braking by a friction force. The operation of the mechanical brake 18 is controlled independently for each wheel 2 by the controller 10. The brake shoe may be pressed against the member to be braked by an actuator such as a motor.
 圧力調整ユニット12は、コントローラ10からの信号により機械ブレーキ18に加圧液体を分配して機械ブレーキ18毎に異なる制動力を付与可能に構成されている。なお、圧力調整ユニット12及び機械ブレーキ18は、摩擦ブレーキ機構を構成する。 The pressure adjustment unit 12 is configured to be able to apply a different braking force to each mechanical brake 18 by distributing pressurized liquid to the mechanical brake 18 by a signal from the controller 10. The pressure adjusting unit 12 and the mechanical brake 18 constitute a friction brake mechanism.
(撮像系)
 前方のカメラ20fr、20flは、電気自動車1の前方側の路面を撮像し、撮像した画像をコントローラ10に出力する。コントローラ10は、カメラ20fr、20flから取得した画像に基づいて路面の変化を検出して、制駆動に関する処理を実行する。前方のカメラ20fr、20flは、その撮像領域は互いに少なくとも一部が重複している。カメラ20fr、20flは、例えばCCD(Charge Coupled Device)カメラにより構成されている。
(Imaging system)
The front cameras 20 fr and 20 fl capture the road surface on the front side of the electric vehicle 1 and output the captured image to the controller 10. The controller 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving. The imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other. The cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
 後方のカメラ21は、電気自動車1の後方側の路面を撮像し、撮像した画像をコントローラ10に出力する。コントローラ10は、カメラ21から取得した画像に基づいて路面の変化を検出して、制駆動に関する処理を実行する。カメラ21は、例えばCCDカメラにより構成されている。 The rear camera 21 captures the road surface behind the electric vehicle 1 and outputs the captured image to the controller 10. The controller 10 detects a change in the road surface based on the image acquired from the camera 21 and executes processing related to braking / driving. The camera 21 is constituted by a CCD camera, for example.
(各部品の配置)
 この電気自動車1は、運転者(例えば体重75kg)が運転席に乗車したときに、電気自動車1の全体の重心Gが車体25の中心25aにほぼ位置(例えば中心25aから10cm又は20cm以内)するように電気自動車1を構成する部品、例えば前輪及び後輪駆動系を構成する部品の位置を定めている。すなわち、前輪用モータ3f及び後輪用モータ3rは、車体25の中心25aに対して線対称又は点対称に配置され、前輪用インバータ8f及び後輪用インバータ8rは、前輪用モータ3f及び後輪用モータ3rが線対称に配置されているときは、線対称に配置され、前輪用モータ3f及び後輪用モータ3rが点対称に配置されているときは点対称に配置されている。本実施の形態は、前輪用モータ3f及び後輪用モータ3rが車体25の中心25aに対して点対称に配置され、前輪用インバータ8f及び後輪用インバータ8rは、車体25の中心25aに対して点対称に配置されている。
(Arrangement of each part)
In the electric vehicle 1, when a driver (for example, a weight of 75 kg) gets on the driver's seat, the entire center of gravity G of the electric vehicle 1 is substantially positioned at the center 25 a of the vehicle body 25 (for example, within 10 cm or 20 cm from the center 25 a). As described above, the positions of the parts constituting the electric vehicle 1, for example, the parts constituting the front wheel and rear wheel drive systems are determined. That is, the front wheel motor 3f and the rear wheel motor 3r are arranged line-symmetrically or point-symmetrically with respect to the center 25a of the vehicle body 25, and the front wheel inverter 8f and the rear wheel inverter 8r include the front wheel motor 3f and the rear wheel. When the front motor 3r is arranged line-symmetrically, it is arranged line-symmetrically, and when the front wheel motor 3f and rear wheel motor 3r are arranged point-symmetrically, they are arranged point-symmetrically. In the present embodiment, the front wheel motor 3f and the rear wheel motor 3r are arranged symmetrically with respect to the center 25a of the vehicle body 25, and the front wheel inverter 8f and the rear wheel inverter 8r are arranged with respect to the center 25a of the vehicle body 25. Are arranged symmetrically.
 また、前輪用モータ3f、後輪用モータ3r、及び前輪用インバータ8f及び後輪用インバータ8rを車体25の中心25aに対して線対照又は点対照に配置したときの車体25の中心25aを通る軸(横方向のx軸、縦方向のy軸)の周りのモーメントを打ち消すようにラジエター11、コントローラ10及び一対の高電圧バッテリ60r、60lを含む前輪及び後輪駆動系を配置して電気自動車1の全体の重心Gが車体25の中心25aにほぼ位置するようにしてもよい。 Further, the front wheel motor 3f, the rear wheel motor 3r, the front wheel inverter 8f, and the rear wheel inverter 8r pass through the center 25a of the vehicle body 25 when they are arranged in line contrast or point contrast with respect to the center 25a of the vehicle body 25. An electric vehicle including a front wheel and a rear wheel drive system including a radiator 11, a controller 10, and a pair of high-voltage batteries 60r and 60l so as to cancel out moments about the axes (lateral x-axis, vertical y-axis) 1 may be positioned substantially at the center 25a of the vehicle body 25.
 また、電気自動車1を構成する各部品を次のように配置してもよい。すなわち、前輪用モータ3fは、車体25の中心25aよりも前方であって運転席9と反対側に配置されている。後輪用モータ3rは、前輪用モータ3fに対して点対照の位置に配置されている。また、前輪用インバータ8fは、車体25の中心25aよりも前方であって運転席9の側に配置されている。後輪用インバータ8rは、前輪用インバータ8fに対して点対照の位置に配置されている。主電源部6を構成する一対の高電圧バッテリ60f、60r及び一対の平滑コンデンサ61f、61rは、中心線Lcに対して線対称の位置に配置されている。また、前輪用モータ3f、前輪用インバータ8f、ラジエター11、コントローラ10、低電圧バッテリ7及び圧力調整ユニット12は、前輪側の左右輪2fr、2flよりも前方に配置されている。 In addition, each component constituting the electric vehicle 1 may be arranged as follows. That is, the front wheel motor 3 f is disposed in front of the center 25 a of the vehicle body 25 and on the side opposite to the driver seat 9. The rear wheel motor 3r is arranged in a point contrast position with respect to the front wheel motor 3f. Further, the front wheel inverter 8f is disposed in front of the center 25a of the vehicle body 25 and on the driver's seat 9 side. The rear wheel inverter 8r is arranged in a point contrast position with respect to the front wheel inverter 8f. The pair of high-voltage batteries 60f and 60r and the pair of smoothing capacitors 61f and 61r constituting the main power supply unit 6 are arranged at positions symmetrical with respect to the center line Lc. Further, the front wheel motor 3f, the front wheel inverter 8f, the radiator 11, the controller 10, the low voltage battery 7 and the pressure adjustment unit 12 are disposed in front of the left and right wheels 2fr and 2fl on the front wheel side.
 なお、電気自動車1を構成する各部品の配置は、運転者の体重を考慮しなくてもよいし、運転者(例えば体重75kg)と助手席(例えば体重75kg)に乗車する者の体重を考慮してもよい。また、予め定められた体重の運転者が運転席に乗車したとき、運転者が乗車していないときよりも電気自動車全体の重心が車体25の中心25aに移動するように電気自動車1を構成する部品を配置してもよい。 The arrangement of the parts constituting the electric vehicle 1 does not need to consider the weight of the driver, and considers the weight of the driver (for example, 75 kg) and the passenger who rides on the passenger seat (for example, 75 kg). May be. Further, the electric vehicle 1 is configured such that the center of gravity of the entire electric vehicle moves to the center 25a of the vehicle body 25 when a driver having a predetermined weight gets on the driver's seat than when the driver does not get on. Parts may be placed.
 前輪用モータ3f、後輪用モータ3r、前輪用インバータ8f、後輪用インバータ8rの重量をそれぞれW3f、W3r、W8f、W8rとすると、これらの関係は、本実施の形態では次のようになる。
   W3r>W3f>W8r>W8f
 なお、W3r=W3f>W8r>W8f、又はW3f>W3r>W8f>W8rでもよい。
If the weights of the front wheel motor 3f, the rear wheel motor 3r, the front wheel inverter 8f, and the rear wheel inverter 8r are W3f, W3r, W8f, and W8r, respectively, these relationships are as follows in the present embodiment. .
W3r>W3f>W8r> W8f
Note that W3r = W3f>W8r> W8f or W3f>W3r>W8f> W8r may be used.
(H型配線部の構造)
 上記のように配置した各部品等へのケーブルは、H型配線部13を用いて配線している。H型配線部13は、前方の車軸5fr、5flに沿って設けられた前方配線部130と、後方の車軸5rr、5rlに沿って設けられた後方配線部131と、前方配線部130の中央と後方配線部131の中央部とを接続する中央配線部132とから構成されている。H型配線部13の詳細については、図面を参照して説明する。
(Structure of H-type wiring part)
Cables to the components and the like arranged as described above are wired using the H-shaped wiring portion 13. The H-shaped wiring portion 13 includes a front wiring portion 130 provided along the front axles 5fr and 5fl, a rear wiring portion 131 provided along the rear axles 5rr and 5rl, and the center of the front wiring portion 130. The central wiring part 132 is connected to the central part of the rear wiring part 131. Details of the H-type wiring portion 13 will be described with reference to the drawings.
 図2は、H型配線部13の構造を説明するための図であり、(a)は前方配線部130の断面図、(b)は後方配線部131の断面図、(c)は中央配線部132の断面図である。H型配線部13は、上壁13a、下壁13b、側壁13c、13dで覆われ、内部は仕切り壁13eによって仕切られている。 2A and 2B are diagrams for explaining the structure of the H-shaped wiring portion 13, where FIG. 2A is a cross-sectional view of the front wiring portion 130, FIG. 2B is a cross-sectional view of the rear wiring portion 131, and FIG. FIG. The H-shaped wiring part 13 is covered with an upper wall 13a, a lower wall 13b, side walls 13c and 13d, and the interior is partitioned by a partition wall 13e.
 図2(a)に示すように、前方配線部130の仕切り壁13eの上段は、信号ケーブル141が収容される信号ケーブル配線領域130aであり、仕切り壁13eの下段は、電源ケーブル142が収容される電源ケーブル配線領域130bである。 As shown in FIG. 2A, the upper part of the partition wall 13e of the front wiring part 130 is a signal cable wiring region 130a in which the signal cable 141 is accommodated, and the lower part of the partition wall 13e is accommodated in the power cable 142. This is a power cable wiring region 130b.
 図2(b)に示すように、後方配線部131の仕切り壁13eの上段は、信号ケーブル141が収容される信号ケーブル配線領域131aであり、仕切り壁13eの下段は電源ケーブル142が収容される電源ケーブル配線領域131bである。 As shown in FIG. 2B, the upper part of the partition wall 13e of the rear wiring part 131 is a signal cable wiring region 131a in which the signal cable 141 is accommodated, and the power cable 142 is accommodated in the lower part of the partition wall 13e. This is a power cable wiring region 131b.
 図2(c)に示すように、中央配線部132の仕切り壁13eの上段は、信号ケーブル141が収容される信号ケーブル配線領域132aであり、仕切り壁13eの下段は電源ケーブル142が収容される電源ケーブル配線領域132bである。そして、信号ケーブル配線領域132aは、仕切り仕切り壁13fによって2つの信号ケーブル配線領域132a1、132a2に区分けされている。 As shown in FIG. 2C, the upper stage of the partition wall 13e of the central wiring part 132 is a signal cable wiring area 132a in which the signal cable 141 is accommodated, and the lower stage of the partition wall 13e is accommodated in the power cable 142. This is a power cable wiring region 132b. The signal cable wiring region 132a is divided into two signal cable wiring regions 132a 1 and 132a 2 by a partition wall 13f.
 上壁13a、下壁13b、側壁13c、13d及び仕切り壁13e、13fは、例えばアルミニウム、銅、ステンレススチール等の金属から形成されている。信号ケーブル141と電源ケーブル142とを仕切り壁13eによって仕切ることにより、信号ケーブル141によって伝送される信号に電源ケーブル142からのノイズが混入するのを抑制することができる。 The upper wall 13a, the lower wall 13b, the side walls 13c and 13d, and the partition walls 13e and 13f are made of a metal such as aluminum, copper, and stainless steel. By partitioning the signal cable 141 and the power cable 142 by the partition wall 13e, it is possible to prevent noise from the power cable 142 from being mixed into the signal transmitted by the signal cable 141.
 車体25の中心25aに対し、右前方に位置する前輪用インバータ8f、機械ブレーキ18fr、車輪速センサ28fr等の部品からの信号ケーブル141及び電源ケーブル142は、前方配線部130、中央配線部132等を介して他の部品に接続される。 A signal cable 141 and a power cable 142 from components such as a front wheel inverter 8f, a mechanical brake 18fr, and a wheel speed sensor 28fr located on the right front side with respect to the center 25a of the vehicle body 25 are a front wiring portion 130, a central wiring portion 132, and the like. It is connected to other parts via.
 車体25の中心25aに対し、左前方に位置する前輪用モータ3f、エンコーダ16f、電流センサ15a~15c、機械ブレーキ18fl、温度センサ27f、車輪速センサ28fl等の部品からの信号ケーブル141及び電源ケーブル142は、前方配線部130、中央配線部132等を介して他の部品に接続される。 A signal cable 141 and a power cable from components such as a front wheel motor 3f, an encoder 16f, current sensors 15a to 15c, a mechanical brake 18fl, a temperature sensor 27f, and a wheel speed sensor 28fl located on the left front side with respect to the center 25a of the vehicle body 25. 142 is connected to other components via the front wiring portion 130, the central wiring portion 132, and the like.
 車体25の中心25aに対し、左後方に位置する後輪用インバータ8r、機械ブレーキ18rl、車輪速センサ28rl等の部品からの信号ケーブル141及び電源ケーブル142は、後方配線部131、中央配線部132等を介して他の部品に接続される。 A signal cable 141 and a power cable 142 from components such as a rear wheel inverter 8r, a mechanical brake 18rl, and a wheel speed sensor 28rl located on the left rear side with respect to the center 25a of the vehicle body 25 are a rear wiring portion 131 and a central wiring portion 132. Etc. to be connected to other parts.
 車体25の中心25aに対し、右後方に位置する後輪用モータ3r、エンコーダ16r、電流センサ17a~17c、機械ブレーキ18rr、温度センサ27r、車輪速センサ28rr等の部品からの信号ケーブル141及び電源ケーブル142は、後方配線部131、中央配線部132等を介して他の部品に接続される。 A signal cable 141 and power from components such as a rear wheel motor 3r, an encoder 16r, current sensors 17a to 17c, a mechanical brake 18rr, a temperature sensor 27r, a wheel speed sensor 28rr, etc., located on the right rear side with respect to the center 25a of the vehicle body 25. The cable 142 is connected to other components via the rear wiring part 131, the central wiring part 132, and the like.
 図示は省略するが、ラジエター11からの水冷却用のパイプは、中央配線部132内を通って後輪用モータ3rに導かれて後輪用モータ3rを冷却するとともに、水冷却用のパイプを前輪用モータ3fに直接導かれて前輪用モータ3fを冷却している。なお、ラジエター11からの冷却水によりモータ3のみならず、インバータ8f、8r等の電気系統を前後独立に冷却してもよい。 Although not shown, the water cooling pipe from the radiator 11 is guided to the rear wheel motor 3r through the central wiring portion 132 to cool the rear wheel motor 3r. The front wheel motor 3f is cooled by being guided directly to the front wheel motor 3f. In addition, not only the motor 3 but also the electric system such as the inverters 8f and 8r may be cooled independently by the cooling water from the radiator 11.
 H型配線部13を車体構造の一部として機能するように車体ベースに取り付けてもよい。これにより車両の剛性アップを図ることができる。 The H-shaped wiring portion 13 may be attached to the vehicle body base so as to function as a part of the vehicle body structure. As a result, the rigidity of the vehicle can be increased.
(制御系)
 図3は、コントローラ10を機能的に示すブロック図である。コントローラ10は、例えばコンピュータにより構成され、CPU100と、半導体メモリ、ハードディスク等の記憶部110と、前輪用インバータ8fを駆動する前輪用駆動回路9fと、後輪用インバータ8rを駆動する後輪用駆動回路9rとを有する。
(Control system)
FIG. 3 is a block diagram functionally showing the controller 10. The controller 10 is configured by a computer, for example, and includes a CPU 100, a storage unit 110 such as a semiconductor memory and a hard disk, a front wheel drive circuit 9f for driving the front wheel inverter 8f, and a rear wheel drive for driving the rear wheel inverter 8r. Circuit 9r.
 コントローラ10には、前記カメラ20fr、20flと、前記エンコーダ16f、16rと、アクセルペダルの踏み込み量を検出するアクセルセンサ22と、ブレーキペダルの踏み込み量を検出するブレーキセンサ23と、シフトセンサ24と、加速度センサ(加速度検出部)26と、前記車輪速センサ28fr、28fl、28rr、28rlと、操舵角センサ29とが接続されている。 The controller 10 includes the cameras 20fr and 20fl, the encoders 16f and 16r, an accelerator sensor 22 that detects the amount of depression of the accelerator pedal, a brake sensor 23 that detects the amount of depression of the brake pedal, a shift sensor 24, An acceleration sensor (acceleration detection unit) 26, the wheel speed sensors 28fr, 28fl, 28rr, 28rl, and a steering angle sensor 29 are connected.
 エンコーダ16f、16rは、前輪側及び後輪側のそれぞれにおいて、モータ3f、3rの回転数を検出し、検出した回転数に応じた信号をコントローラ10に出力する。 Encoders 16f and 16r detect the rotational speeds of the motors 3f and 3r on the front wheel side and the rear wheel side, respectively, and output signals corresponding to the detected rotational speeds to the controller 10.
 アクセルセンサ22は、アクセルペダルの踏み込み量を検出し、検出した踏み込み量に応じた信号をコントローラ10に出力する。 The accelerator sensor 22 detects the depression amount of the accelerator pedal and outputs a signal corresponding to the detected depression amount to the controller 10.
 ブレーキセンサ23は、ブレーキペダルの踏み込み量を検出し、検出した踏み込み量に応じた信号をコントローラ10に出力する。 The brake sensor 23 detects the amount of depression of the brake pedal, and outputs a signal corresponding to the detected amount of depression to the controller 10.
 シフトセンサ24は、シフトレバーの位置を検出し、検出した位置に応じた信号をコントローラ10に出力する。 The shift sensor 24 detects the position of the shift lever and outputs a signal corresponding to the detected position to the controller 10.
 加速度センサ26は、車体25の中心(電気自動車1の重心Gでもある)25aに設けられ、車体25の推進前後方向、横方向、重心軸回りの回転方向(旋回方向)の3方向の加速度aY、aX、aθを検出する3軸加速度センサであり、検出した加速度aY、aX、aθに応じた信号をコントローラ10に出力する。 The acceleration sensor 26 is provided at the center of the vehicle body 25 (which is also the center of gravity G of the electric vehicle 1) 25a, and the acceleration a in the three directions of the vehicle body 25 in the forward / backward direction, the lateral direction, and the rotational direction (turning direction) around the center of gravity axis. Y, a X, a triaxial acceleration sensor for detecting A.theta., and outputs the detected acceleration a Y, a X, a signal corresponding to A.theta. the controller 10.
 車輪速センサ28fr、28fl、28rr、28rlは、車輪の回転速度ωを検出し、検出した回転速度ωに応じた信号をコントローラ10に出力する。 Wheel speed sensors 28fr, 28fl, 28rr, and 28rl detect the rotational speed ω of the wheel and output a signal corresponding to the detected rotational speed ω to the controller 10.
 操舵角センサ29は、ステアリングホイールの操作角γを検出し、検出した操舵角γに応じた信号をコントローラ10に出力する。 The steering angle sensor 29 detects an operation angle γ of the steering wheel and outputs a signal corresponding to the detected steering angle γ to the controller 10.
 コントローラ10は、運転者がアクセルペダル、ブレーキペダル等の操作手段を操作することによって発生する操作入力情報に応じた加速、減速等の動作を行うための動作指令を前輪用駆動回路9f、後輪用駆動回路9r、機械ブレーキ18に出力し、前輪駆動系及び後輪駆動系の駆動トルク(駆動力)及び制動トルク(制動力)を制御する。これにより、電気自動車1は、運転者の操作に従って走行することができる。 The controller 10 issues an operation command for performing operations such as acceleration and deceleration in accordance with operation input information generated by a driver operating an operation means such as an accelerator pedal and a brake pedal. Output to the driving circuit 9r and the mechanical brake 18 to control the driving torque (driving force) and braking torque (braking force) of the front wheel driving system and the rear wheel driving system. Thereby, the electric vehicle 1 can drive | work according to a driver | operator's operation.
 コントローラ10は、各センサ22、23、24からの信号等に応じて前輪用モータ3fの目標トルク及び後輪用モータ3Rrの目標トルクをそれぞれ算出し、前輪用駆動回路9f、後輪用駆動回路9rに出力する。前輪側及び後輪側それぞれにおいて、駆動回路9は、コントローラ10から指令された目標トルクに応じた信号をインバータ8に出力する。 The controller 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3Rr according to the signals from the sensors 22, 23, 24, etc., respectively, and the front wheel drive circuit 9f and the rear wheel drive circuit are calculated. Output to 9r. On each of the front wheel side and the rear wheel side, the drive circuit 9 outputs a signal corresponding to the target torque commanded from the controller 10 to the inverter 8.
 記憶部110には、路面パターン111、μ-SrLimitテーブル112、後述する図4に示すような制駆動力とスリップ率の関係情報等の各種のデータと、制駆動プログラム113等の各種のプログラムが格納されている。 In the storage unit 110, various data such as a road surface pattern 111, a μ-SrLimit table 112, relational information on braking / driving force and slip ratio as shown in FIG. 4 described later, and various programs such as a braking / driving program 113 are stored. Stored.
 CPU100は、制駆動プログラム113に従って動作することにより、路面摩擦係数μ推定手段(推定部)101、スリップ率上限値設定手段(設定部)102、スリップ率演算手段(演算部)103、制動力制御手段(制御部)104等として機能する。 The CPU 100 operates in accordance with the braking / driving program 113, so that the road surface friction coefficient μ estimating means (estimating part) 101, slip ratio upper limit setting means (setting part) 102, slip ratio calculating means (calculating part) 103, braking force control. It functions as the means (control unit) 104 and the like.
(路面摩擦係数μ推定手段)
 路面摩擦係数μ推定手段101は、前方のカメラ20fr、fl(車両後退時は後方のカメラ21)が撮像した画像に基づいて、自動車1の走行する路面が、乾燥路面、湿潤路面、凍結・雪路路面等のいずれかであるかを判定し、路面の摩擦係数μを推定する。これらの路面は、摩擦係数μが大きく異なる代表的な路面である。当該判定は、撮像した画像と、予め各路面状況において撮像された路面パターン111とのパターンマッチングにより行う。路面パターン111は、路面の摩擦係数μに関連付けて記憶部110に記憶されている。なお、当該判定を輝度等が所定の閾値を超えたか否かの判断により行うなど、公知の技術を適宜用いて行ってもよい。
(Road surface friction coefficient μ estimation means)
The road surface friction coefficient μ estimation means 101 is based on an image captured by the front cameras 20fr and fl (the rear camera 21 when the vehicle is reverse), and the road surface on which the automobile 1 travels is a dry road surface, a wet road surface, a frozen / snow surface. It is determined whether the road surface or the like, and the friction coefficient μ of the road surface is estimated. These road surfaces are typical road surfaces with greatly different friction coefficients μ. The determination is performed by pattern matching between the captured image and the road surface pattern 111 captured in advance in each road surface condition. The road surface pattern 111 is stored in the storage unit 110 in association with the friction coefficient μ of the road surface. In addition, you may perform using the well-known technique suitably, such as performing the said determination by determination whether the brightness | luminance etc. exceeded the predetermined threshold value.
(スリップ率上限値設定手段)
 図4は、駆動力及び制動力とスリップ率との関係を示す図である。実線L1は、乾路路面、実線L2は湿潤路面、実線L3は凍結・雪路路面の場合を示している。これらの各路面は、摩擦係数が大きく異なる代表的な路面である。摩擦係数は、例えば、乾路路面では0.75、湿潤路面では0.4、凍結・雪路路面では0.2である。記憶部110には、図4に示すように、路面の摩擦係数μとスリップ率上限値SrLimitとの関係を示すμ-SrLimitテーブル112が記憶されている。μ-SrLimitテーブル112には、例えば、乾路路面(μ=0.75)に対応してスリップ率上限値SrLimit1(|Sr|=0.16)が記憶され、湿潤路面(μ=0.4)に対応してスリップ率上限値SrLimit2(|Sr|=0.14)が記憶され、凍結・雪路路面(μ=0.2)に対応してスリップ率上限値SrLimit3(|Sr|=0.12)が記憶されている。
(Slip rate upper limit setting means)
FIG. 4 is a diagram showing the relationship between the driving force and braking force and the slip ratio. A solid line L1 indicates a dry road surface, a solid line L2 indicates a wet road surface, and a solid line L3 indicates a frozen / snow road surface. Each of these road surfaces is a typical road surface having a significantly different friction coefficient. The coefficient of friction is, for example, 0.75 on a dry road surface, 0.4 on a wet road surface, and 0.2 on a frozen / snow road surface. As shown in FIG. 4, the storage unit 110 stores a μ-SrLimit table 112 indicating the relationship between the road friction coefficient μ and the slip ratio upper limit value SrLimit. In the μ-SrLimit table 112, for example, the slip ratio upper limit value SrLimit1 (| Sr | = 0.16) is stored corresponding to the dry road surface (μ = 0.75), and the wet road surface (μ = 0.4). ) Is stored in response to the slip ratio upper limit value SrLimit2 (| Sr | = 0.14), and the slip ratio upper limit value SrLimit3 (| Sr | = 0) corresponding to the frozen / snow road surface (μ = 0.2). .12) is stored.
 スリップ率上限値設定手段102は、路面摩擦係数μ推定手段101が推定した路面の摩擦係数μに基づいて、記憶部110内のμ-SrLimitテーブル112を参照し、所定の値としてのスリップ率上限値SrLimitを設定する。スリップ率上限値SrLimitは、例えば、図4における各路面状況に応じて発揮し得る制駆動力の最大値付近の値に設定されるが、最大値付近の値に限られない。スリップ率上限値SrLimitは、例えば路面の摩擦係数に応じて発揮し得る最大制動力の70~90%よりも高い制駆動力が発揮されるスリップ率に設定することができる。 The slip ratio upper limit setting means 102 refers to the μ-SrLimit table 112 in the storage unit 110 based on the road surface friction coefficient μ estimated by the road surface friction coefficient μ estimation means 101, and determines the slip ratio upper limit as a predetermined value. Set the value SrLimit. For example, the slip ratio upper limit value SrLimit is set to a value near the maximum value of the braking / driving force that can be exhibited according to each road surface condition in FIG. 4, but is not limited to a value near the maximum value. The slip ratio upper limit value SrLimit can be set to a slip ratio at which a braking / driving force higher than 70 to 90% of the maximum braking force that can be exhibited according to the friction coefficient of the road surface, for example.
(スリップ率演算手段)
 スリップ率演算手段103は、車体速度をV、車輪2の回転速度をω、車輪2の半径をRとしたとき、駆動時の車輪2のスリップ率Srを以下の式により算出する。
   Sr=(Rω-V)/Rω  ・・・・式(1)
(Slip rate calculation means)
The slip ratio calculating means 103 calculates the slip ratio Sr of the wheel 2 during driving by the following formula, where V is the vehicle body speed, ω is the rotational speed of the wheel 2, and R is the radius of the wheel 2.
Sr = (Rω−V) / Rω (1)
 また、スリップ率演算手段103は、制動時の車輪2のスリップ率Srを以下の式により算出する。
   Sr=(Rω-V)/V    ・・・・式(2)
Moreover, the slip ratio calculating means 103 calculates the slip ratio Sr of the wheel 2 at the time of braking by the following formula.
Sr = (Rω−V) / V (2)
 式(1)から理解されるように、駆動時においてスリップ率Srが1.0になる場合は、V=0であり、ホイルスピンが生じている状態である。式(2)から理解されるように、制動時においてスリップ率Srが-1.0になる場合は、ω=0であり、ホイルロックが生じている状態である。すなわち、スリップ率Srの絶対値が1である状態は、いずれも路面に制駆動力(駆動力又は制動力)を伝えられない状態である。また、スリップ率Srが0である状態は、車輪2と路面との間に滑りがない状態である。 As understood from the equation (1), when the slip ratio Sr becomes 1.0 at the time of driving, V = 0 and the wheel spin is generated. As understood from the equation (2), when the slip ratio Sr becomes −1.0 during braking, ω = 0 and a wheel lock is generated. That is, the state where the absolute value of the slip ratio Sr is 1 is a state where any braking / driving force (driving force or braking force) cannot be transmitted to the road surface. The state where the slip ratio Sr is 0 is a state where there is no slip between the wheel 2 and the road surface.
(制駆動力制御手段)
 制駆動力制御手段104は、μ-SrLimitテーブル112、図4に示すような制駆動力とスリップ率の関係情報等に基づいて、スリップ率をある目標値に制御するスリップ率制御、荷重移動に伴うホイールロック、ホイールスピンの抑制制御等を行う。以下、それらの制御について説明する。
(Braking / driving force control means)
The braking / driving force control means 104 uses the μ-SrLimit table 112, the slip ratio control for controlling the slip ratio to a certain target value based on the relation information between the braking / driving force and the slip ratio as shown in FIG. Carry out wheel lock and wheel spin suppression control. Hereinafter, those controls will be described.
<スリップ率制御>
 制駆動力制御手段104は、左右輪同士でスリップ率|Sr|を比較し、大きい方のスリップ率|Sr|が設定されたスリップ率上限値SrLimitとなるようにモータ3f、3rの駆動力、又はモータ3f、3rの電気ブレーキ及び機械ブレーキ18の制動力を制御する。また、制駆動力制御手段104は、アクセルペダル又はブレーキペダルの踏み込み量による制駆動力を超えない範囲で制駆動力を制御する。
<Slip rate control>
The braking / driving force control means 104 compares the slip ratio | Sr | between the left and right wheels, and the driving force of the motors 3f and 3r so that the larger slip ratio | Sr | becomes the set slip ratio upper limit value SrLimit. Alternatively, the braking force of the electric brakes of the motors 3f and 3r and the mechanical brake 18 is controlled. The braking / driving force control means 104 controls the braking / driving force within a range not exceeding the braking / driving force depending on the depression amount of the accelerator pedal or the brake pedal.
<荷重移動に伴うホイールロック、ホイールスピンの抑制制御>
 図5は、電気自動車1における制動力の前輪2fr、2fl及び後輪2rr、2rlヘの分配方法を説明するための図である。
<Control of wheel lock and wheel spin suppression with load transfer>
FIG. 5 is a diagram for explaining a method of distributing the braking force to the front wheels 2fr, 2fl and the rear wheels 2rr, 2rl in the electric vehicle 1. FIG.
 図5に示すように、電気自動車1が加速度aYで減速するときの制動力Fcarは、
   Fcar=M×aY        ・・・式(3)
となる。ここで、Mは、電気自動車1全体の質量(車体質量)である。
As shown in FIG. 5, the braking force Fcar when the electric vehicle 1 is decelerated at the acceleration a Y is
Fcar = M × a Y Expression (3)
It becomes. Here, M is the mass (body mass) of the entire electric vehicle 1.
 そのときの荷重移動量Zは、制動力Fcarによって生じる電気自動車1の重心G回りのモーメントを前輪2fr、2fl及び後輪2rr、2rlの接地点における垂直荷重に換算した次式(4)により得られる。
   Z=Fcar×Hcar/Lcar        ・・・式(4)
 ここで、Hcarは、電気自動車1の重心Gの接地面からの高さであり、Lcarは、電気自動車1のホイールベースである。
The load movement amount Z at that time is obtained by the following equation (4) in which the moment around the center of gravity G of the electric vehicle 1 generated by the braking force Fcar is converted to the vertical load at the contact point of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl. It is done.
Z = Fcar × Hcar / Lcar (4)
Here, Hcar is the height of the center of gravity G of the electric vehicle 1 from the ground contact surface, and Lcar is the wheel base of the electric vehicle 1.
 また、電気自動車1が停止しているときの前輪荷重をWf、後輪荷重をWr、路面の摩擦係数をμとすると、摩擦力と釣り合う前輪及び後輪の制動力、すなわち、前輪2fr、2flの最大制動力Ffmax及び後輪2rr、2rlの最大制動力Frmaxは、それぞれ次式(5)、(6)により表される。
   Ffmax=μ(Wf+Z)     ・・・式(5)
   Frmax=μ(Wr-Z)     ・・・式(6)
When the front wheel load when the electric vehicle 1 is stopped is Wf, the rear wheel load is Wr, and the friction coefficient of the road surface is μ, the braking force of the front and rear wheels that balances the friction force, that is, the front wheels 2fr, 2fl. The maximum braking force Ffmax and the maximum braking force Frmax of the rear wheels 2rr and 2rl are expressed by the following equations (5) and (6), respectively.
Ffmax = μ (Wf + Z) (5)
Frmax = μ (Wr−Z) (6)
 従って、前輪側及び後輪側のそれぞれにおけるモータ3及び機械ブレーキ18による制動力が、最大制動力Ffmax及び最大制動力Frmaxとなるように、モータ3及び機械ブレーキ18の動作を制御すれば、電気自動車1全体として最も制動力が大きくなり、ホイールロックを抑制することができる。以上は減速時の説明であるが、加速時も同様であり、荷重移動に基づいて最適な駆動力となるように制御することにより、ホイールスピンを抑制することができる。 Therefore, if the operation of the motor 3 and the mechanical brake 18 is controlled so that the braking force by the motor 3 and the mechanical brake 18 on the front wheel side and the rear wheel side becomes the maximum braking force Ffmax and the maximum braking force Frmax, respectively. The entire vehicle 1 has the largest braking force, and wheel lock can be suppressed. The above is the explanation at the time of deceleration, but the same is true at the time of acceleration, and wheel spin can be suppressed by controlling so as to obtain an optimum driving force based on the load movement.
 例えば、電気自動車1の前進時における減速時には、加速度の大きさに応じた荷重移動によって前輪側の荷重が増加し、後輪側の荷重が減少する。制動力制御手段104は、前輪のスリップ率上限値SrLimitを、例えば車輪荷重の増加に応じて発揮し得る最大制動力の70~90%よりも高い制動力が発揮されるスリップ率に設定することができる。また、後輪側のスリップ率上限値SrLimitを後輪側の荷重の減少分に応じて制動力を制限するように補正することによって、前輪側に後輪側よりも大きな制動力を発生させ、より適切な制動力を各車輪2に付与することができる。 For example, when the electric vehicle 1 decelerates when moving forward, the load on the front wheel side increases and the load on the rear wheel side decreases due to load movement corresponding to the magnitude of acceleration. The braking force control means 104 sets the front wheel slip ratio upper limit value SrLimit to a slip ratio at which a braking force higher than 70 to 90% of the maximum braking force that can be exhibited in response to an increase in wheel load, for example, is exhibited. Can do. Further, by correcting the rear wheel side slip ratio upper limit value SrLimit so as to limit the braking force according to the decrease in the load on the rear wheel side, a braking force larger than that on the rear wheel side is generated on the front wheel side, A more appropriate braking force can be applied to each wheel 2.
 また、電気自動車1の前進時における加速時には、加速度の大きさに応じた荷重移動によって前輪側の荷重が減少し、後輪側の荷重が増加する。制動力制御手段104は、後輪のスリップ率上限値SrLimitを、例えば車輪荷重の増加に応じて発揮し得る最大制動力の70~90%よりも高い駆動力が発揮されるスリップ率に設定することができる。また、前輪側のスリップ率上限値SrLimitを前輪側の荷重の減少分に応じて駆動力を制限するように補正することによって、後輪側に前輪側よりも大きな駆動力を発生させ、より適切な駆動力を各車輪2に付与することができる。 In addition, when the electric vehicle 1 is accelerated when moving forward, the load on the front wheel side is reduced and the load on the rear wheel side is increased by moving the load according to the magnitude of the acceleration. The braking force control means 104 sets the rear wheel slip ratio upper limit value SrLimit to a slip ratio at which a driving force higher than 70 to 90% of the maximum braking force that can be exhibited in response to an increase in wheel load, for example. be able to. In addition, by correcting the front wheel side slip ratio upper limit value SrLimit so as to limit the driving force according to the decrease in the load on the front wheel side, a larger driving force is generated on the rear wheel side than on the front wheel side, and more appropriately Drive force can be applied to each wheel 2.
(実施の形態の効果)
 本実施の形態によれば、以下の効果を奏する。
(1)モータ3f、3r、インバータ8f、8rを点対称に配置し、一対の高電圧バッテリ60r、60lを線対称に配置することにより、重心Gが車体25の中心25aにほぼ位置し、走行安定性に優れたものとなる。
(2)中心線Lcに対し前輪用モータ3fを運転席9と反対側に配置して、前輪用モータ3fを運転席から離すことにより、前輪用モータ3fが破損したときの運転者の安全を確保することができ、前輪用モータ3fから発生する振動やモータ音が運転者に伝達し難くなる。このため、快適な操作性能を確保することができる。
(3)前輪側の左右輪2fr、2flよりも前方には、ラジエター11、コントローラ10、低電圧バッテリ7及び圧力調整ユニット12等を配置しているので、前方のボンネットを開けて制御系の点検が容易になる。
(4)一対の高電圧バッテリ60r、60lは、互いに並列に接続されているので、一対の高電圧バッテリ60r、60lのうち一方が故障しても他方の高電圧バッテリ60から直流電力を供給することができる。
(5)高電圧バッテリ60r、60lを交換するときは、車体25の側方からブスバー62に着脱することで容易に行うことができる。
(6)信号ケーブル141と電源ケーブル142とは、H型配線部13の仕切り壁13e、13fによって分離することができるため、電源ケーブル142から発生する電磁波ノイズが信号ケーブル141を伝送する信号に混入するのを抑制することができる。
(Effect of embodiment)
According to the present embodiment, the following effects can be obtained.
(1) By arranging the motors 3f and 3r and the inverters 8f and 8r in a point-symmetric manner and arranging the pair of high-voltage batteries 60r and 60l in a line-symmetric manner, the center of gravity G is located substantially at the center 25a of the vehicle body 25 and travels. It is excellent in stability.
(2) By disposing the front wheel motor 3f on the side opposite to the driver's seat 9 with respect to the center line Lc, and separating the front wheel motor 3f from the driver's seat, the driver's safety when the front wheel motor 3f is damaged is improved. Therefore, vibrations and motor sounds generated from the front wheel motor 3f are hardly transmitted to the driver. For this reason, comfortable operation performance can be ensured.
(3) Since the radiator 11, the controller 10, the low voltage battery 7, the pressure adjustment unit 12, and the like are arranged in front of the left and right wheels 2fr and 2fl on the front wheel side, the front bonnet is opened and the control system is inspected. Becomes easier.
(4) Since the pair of high voltage batteries 60r and 60l are connected in parallel to each other, even if one of the pair of high voltage batteries 60r and 60l breaks down, DC power is supplied from the other high voltage battery 60. be able to.
(5) When replacing the high-voltage batteries 60r and 60l, it can be easily performed by attaching and detaching the bus bar 62 from the side of the vehicle body 25.
(6) Since the signal cable 141 and the power cable 142 can be separated by the partition walls 13e and 13f of the H-shaped wiring part 13, electromagnetic wave noise generated from the power cable 142 is mixed in the signal transmitted through the signal cable 141. Can be suppressed.
 本発明は、上記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲内で種々に変形実施が可能である。例えば、各手段101~104をCPU100と制駆動プログラム113によって実現したが、ASIC(Application Specific IC)等のハードウエアによって実現してもよい。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, each of the units 101 to 104 is realized by the CPU 100 and the braking / driving program 113, but may be realized by hardware such as ASIC (Application Specific IC).
 また、制駆動プログラム113は、CD-ROM等の記録媒体からコントローラ10内に取り込んでもよく、サーバ装置等からネットワークを介してコントローラ10内に取り込んでもよい。 Further, the braking / driving program 113 may be taken into the controller 10 from a recording medium such as a CD-ROM, or may be taken into the controller 10 from a server device or the like via a network.
 また、上記実施の形態では、ラジエターを車体の前方に配置したが、車体の前方と後方にそれぞれ配置してもよい。 In the above embodiment, the radiator is disposed in front of the vehicle body, but may be disposed in front of and behind the vehicle body.
 本発明は、乗用車、バス及びトラックなどの車両に適用できる。 The present invention can be applied to vehicles such as passenger cars, buses and trucks.
1…電気自動車、2…車輪、2fr、2fl…前輪、2rr、rl…後輪、3f…前輪用モータ、3r…後輪用モータ、4f、4r…差動装置、5fr、5fl、5rr、5rl…車軸、6…主電源部、7…低電圧バッテリ、8f…前輪用インバータ、8r…後輪用インバータ、9f…前輪用駆動回路、9r…後輪用駆動回路、10…コントローラ、11…ラジエター、12…圧力調整ユニット、13…H型配線部、13a…上壁、13b…下壁、13c、13d…側壁、13e、13f…仕切り壁、15a~15c…電流センサ、16f、16r…エンコーダ、17a~17c…電流センサ、18fr、18fl、18rr、18rl…機械ブレーキ、20fr、20fl…カメラ、21…カメラ、22…アクセルセンサ、23…ブレーキセンサ、24…シフトセンサ、25…車体、25a…車体の中心、26…加速度センサ、27f、27r…温度センサ、28fr、28fl、28rr、28rl…車輪速センサ、29…操舵角センサ、60r、60l…高電圧バッテリ、61r、61l…平滑コンデンサ、62…ブスバー、100…CPU、101…路面摩擦係数μ推定手段、102…スリップ率上限値設定手段、103…スリップ率演算手段、104…制動力制御手段、110…記憶部、111…路面パターン、112…μ-SrLimitテーブル、113…制駆動プログラム、130…前方配線部、131…後方配線部、132…中央配線部、141…信号ケーブル、130a、131a、132a1、132a2…信号ケーブル配線領域、130b、131b、132b…電源ケーブル配線領域、142…電源ケーブル DESCRIPTION OF SYMBOLS 1 ... Electric vehicle, 2 ... Wheel, 2fr, 2fl ... Front wheel, 2rr, rl ... Rear wheel, 3f ... Front wheel motor, 3r ... Rear wheel motor, 4f, 4r ... Differential device, 5fr, 5fl, 5rr, 5rl Axle, 6 ... main power supply, 7 ... low voltage battery, 8f ... front wheel inverter, 8r ... rear wheel inverter, 9f ... front wheel drive circuit, 9r ... rear wheel drive circuit, 10 ... controller, 11 ... radiator , 12 ... Pressure adjustment unit, 13 ... H-shaped wiring part, 13a ... Upper wall, 13b ... Lower wall, 13c, 13d ... Side wall, 13e, 13f ... Partition wall, 15a-15c ... Current sensor, 16f, 16r ... Encoder, 17a to 17c: current sensor, 18fr, 18fl, 18rr, 18rl ... mechanical brake, 20fr, 20fl ... camera, 21 ... camera, 22 ... accelerator sensor, 23 ... brake Sensor, 24 ... shift sensor, 25 ... vehicle body, 25a ... center of vehicle body, 26 ... acceleration sensor, 27f, 27r ... temperature sensor, 28fr, 28fl, 28rr, 28rl ... wheel speed sensor, 29 ... steering angle sensor, 60r, 60l ... high voltage battery, 61r, 61l ... smoothing capacitor, 62 ... bus bar, 100 ... CPU, 101 ... road surface friction coefficient μ estimation means, 102 ... slip ratio upper limit setting means, 103 ... slip ratio calculation means, 104 ... braking force control Means: 110: storage unit, 111: road surface pattern, 112: μ-SrLimit table, 113: braking / driving program, 130: front wiring unit, 131: rear wiring unit, 132: central wiring unit, 141: signal cable, 130a, 131a, 132a 1, 132a 2 ... signal cabling areas, 130b, 131b, 132b ... Sources cabling area, 142 ... power cable

Claims (8)

  1.  前輪側の左右輪に制駆動力を伝達する第1の電気モータと、
     後輪側の左右輪に制駆動力を伝達する第2の電気モータと、
     前記第1の電気モータを駆動する第1のインバータと、
     前記第2の電気モータを駆動する第2のインバータとを備え、
     前記第1及び第2の電気モータは、車体の中心に対して線対称又は点対称に配置され、
     前記第1及び第2のインバータは、前記第1及び第2の電気モータが線対称に配置されているときは線対称に配置され、前記第1及び第2の電気モータが点対称に配置されているときは点対称に配置された電気自動車。
    A first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side;
    A second electric motor that transmits braking / driving force to the left and right wheels on the rear wheel side;
    A first inverter for driving the first electric motor;
    A second inverter for driving the second electric motor,
    The first and second electric motors are arranged in line symmetry or point symmetry with respect to the center of the vehicle body,
    The first and second inverters are arranged in line symmetry when the first and second electric motors are arranged in line symmetry, and the first and second electric motors are arranged in point symmetry. When you have an electric car arranged symmetrically.
  2.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、
     後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータと、
     前記第1の電気モータを駆動する第1のインバータと、
     前記第2の電気モータを駆動する第2のインバータと、
     前記第1及び/又は第2の電気モータを冷却するラジエターと、
     前記第1及び第2のインバータを制御して前記第1及び第2の電気モータが出力する制駆動力を制御するコントローラと、
     互いに並列に接続され、前記第1及び第2のインバータに直流電力を供給する一対のバッテリとを備えた前輪及び後輪駆動系を有し、
     前記第1及び第2の電気モータは、車体の中心に対して線対称又は点対称に配置され、前記第1及び第2のインバータは、前記第1及び第2の電気モータが線対称に配置されているときは線対称に配置され、前記第1及び第2の電気モータが点対称に配置されているときは点対称に配置され、前記第1及び第2の電気モータ、及び前記第1及び第2のインバータを前記車体の中心に対して線対照又は点対照に配置したときの前記車体の中心を通る軸の周りのモーメントを打ち消すように前記ラジエター、前記コントローラ及び前記一対のバッテリを含む前記前輪及び後輪駆動系を配置した電気自動車。
    A first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential;
    A second electric motor for transmitting braking / driving force to the left and right wheels on the rear wheel side via a second differential;
    A first inverter for driving the first electric motor;
    A second inverter for driving the second electric motor;
    A radiator for cooling the first and / or second electric motor;
    A controller that controls the first and second inverters to control the braking / driving force output by the first and second electric motors;
    A front wheel and a rear wheel drive system including a pair of batteries connected in parallel to each other and supplying DC power to the first and second inverters;
    The first and second electric motors are arranged in line symmetry or point symmetry with respect to the center of the vehicle body, and the first and second inverters are arranged in line symmetry with the first and second electric motors. When the first and second electric motors are arranged point-symmetrically, they are arranged point-symmetrically, the first and second electric motors, and the first And the radiator, the controller, and the pair of batteries so as to cancel a moment around an axis passing through the center of the vehicle body when the second inverter is arranged in line contrast or point contrast with respect to the center of the vehicle body An electric vehicle in which the front wheel and rear wheel drive systems are arranged.
  3.  前記第1の電気モータは、前記車体の中心よりも前方であって、前記車体の前後方向に沿う中心線から一方にずれて配置された運転席と反対側に配置され、
     前記第2の電気モータは、前記第1の電気モータに対して点対照の位置に配置され、
     前記第1のインバータは、前記車体の中心よりも前方であって前記運転席の側に配置され、
     前記第2のインバータは、前記第1のインバータに対して点対照の位置に配置された電気自動車。
    The first electric motor is disposed in front of the center of the vehicle body and on the opposite side of the driver seat disposed to be shifted from the center line along the front-rear direction of the vehicle body,
    The second electric motor is disposed in a point contrast position with respect to the first electric motor;
    The first inverter is disposed in front of the center of the vehicle body and on the driver's seat side,
    The second inverter is an electric vehicle arranged at a point contrast with respect to the first inverter.
  4.  前記一対のバッテリが出力する電圧よりも低い電圧を出力する低電圧バッテリを更に備え、
     前記第1の電気モータ、前記第1のインバータ、前記ラジエター、前記低電圧バッテリ、前記コントローラを前記前輪側の左右輪よりも前方に配置した請求項2又は3に記載の電気自動車。
    A low-voltage battery that outputs a voltage lower than the voltage output by the pair of batteries;
    The electric vehicle according to claim 2 or 3, wherein the first electric motor, the first inverter, the radiator, the low-voltage battery, and the controller are arranged in front of the left and right wheels on the front wheel side.
  5.  前記第1及び第2の電気モータ、前記第1及び第2のインバータ、前記一対のバッテイリ、前記低電圧バッテリ、及び前記コントローラは、H型配線部を介して配線される請求項4に記載の電気自動車。 5. The first and second electric motors, the first and second inverters, the pair of batteries, the low-voltage battery, and the controller are wired via an H-shaped wiring unit. Electric car.
  6.  前記H型配線部は、前輪側の車軸に平行な前方配線部と、後輪側の車軸に平行な後方配線部と、前記前方配線部の中央と前記後方配線部の中央とを接続する中央配線部とを備え、
     前記一対のバッテリは、車体の側面方向から前記中央配線部に対して着脱可能に構成された請求項5に記載の電気自動車。
    The H-shaped wiring portion includes a front wiring portion parallel to the front wheel axle, a rear wiring portion parallel to the rear wheel axle, a center connecting the center of the front wiring portion and the center of the rear wiring portion. With wiring part,
    The electric vehicle according to claim 5, wherein the pair of batteries are configured to be detachable from the central wiring portion from a side surface direction of a vehicle body.
  7.  前記ラジエターからの水パイプは、前記H型配線部の前記中央配線部を介して第2の電気モータに導かれた構成の請求項6に記載の電気自動車。 The electric vehicle according to claim 6, wherein the water pipe from the radiator is led to a second electric motor through the central wiring portion of the H-shaped wiring portion.
  8.  前記H型配線部は、電源ケーブルと信号ケーブルを仕切り壁によって分離した請求項5、6又は7に記載の電気自動車。 The electric vehicle according to claim 5, 6 or 7, wherein the H-shaped wiring part has a power cable and a signal cable separated by a partition wall.
PCT/JP2011/057840 2010-12-24 2011-03-29 Electric vehicle WO2012086223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010287392A JP2012135172A (en) 2010-12-24 2010-12-24 Electric vehicle
JP2010-287392 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086223A1 true WO2012086223A1 (en) 2012-06-28

Family

ID=46313512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057840 WO2012086223A1 (en) 2010-12-24 2011-03-29 Electric vehicle

Country Status (2)

Country Link
JP (1) JP2012135172A (en)
WO (1) WO2012086223A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077959A (en) * 2013-10-15 2015-04-23 サーチウェア株式会社 Vehicle
EP3037312A4 (en) * 2013-08-23 2016-08-03 Advics Co Ltd Electric braking device for vehicle
EP3323652A1 (en) * 2016-11-16 2018-05-23 Nextev Limited Electric vehicle
CN108136919A (en) * 2015-09-28 2018-06-08 开利公司 Including the vehicle of the generator of wheel driving to charge for battery
EP3517345B1 (en) * 2016-09-23 2020-11-11 Hitachi Automotive Systems, Ltd. Electric vehicle control device, control method, and control system
EP3744546A3 (en) * 2019-05-07 2021-03-10 Yazaki Corporation Vehicle cooling system and wire harness cooling structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188490A (en) * 2014-03-27 2015-11-02 三菱電機株式会社 self-propelled vacuum cleaner
KR102618652B1 (en) * 2016-12-15 2023-12-27 주식회사 대동 Electric vehicle with Power Take-Off function
JP6752258B2 (en) 2018-09-12 2020-09-09 本田技研工業株式会社 vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236611A (en) * 1992-02-19 1993-09-10 Toyota Motor Corp Wheel motor type electric automobile
JP2005020830A (en) * 2003-06-24 2005-01-20 Nissan Motor Co Ltd Yawing behavior of vehicle control device
JP2005199878A (en) * 2004-01-16 2005-07-28 Autech Japan Inc Vehicle structure
JP2005269735A (en) * 2004-03-17 2005-09-29 Toyota Motor Corp Vehicle propulsion apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236611A (en) * 1992-02-19 1993-09-10 Toyota Motor Corp Wheel motor type electric automobile
JP2005020830A (en) * 2003-06-24 2005-01-20 Nissan Motor Co Ltd Yawing behavior of vehicle control device
JP2005199878A (en) * 2004-01-16 2005-07-28 Autech Japan Inc Vehicle structure
JP2005269735A (en) * 2004-03-17 2005-09-29 Toyota Motor Corp Vehicle propulsion apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037312A4 (en) * 2013-08-23 2016-08-03 Advics Co Ltd Electric braking device for vehicle
US10023167B2 (en) 2013-08-23 2018-07-17 Advics Co., Ltd. Electric braking device for vehicle
JP2015077959A (en) * 2013-10-15 2015-04-23 サーチウェア株式会社 Vehicle
CN108136919A (en) * 2015-09-28 2018-06-08 开利公司 Including the vehicle of the generator of wheel driving to charge for battery
US11021066B2 (en) 2015-09-28 2021-06-01 Carrier Corporation Vehicle comprising a wheel driven generator for charging a battery
EP3517345B1 (en) * 2016-09-23 2020-11-11 Hitachi Automotive Systems, Ltd. Electric vehicle control device, control method, and control system
US11267345B2 (en) 2016-09-23 2022-03-08 Hitachi Astemo, Ltd. Control apparatus, control method, and control system for electric vehicle
EP3323652A1 (en) * 2016-11-16 2018-05-23 Nextev Limited Electric vehicle
CN109996694A (en) * 2016-11-16 2019-07-09 蔚来汽车有限公司 Electric vehicle
CN109996694B (en) * 2016-11-16 2023-09-05 蔚来(安徽)控股有限公司 electric vehicle
EP3744546A3 (en) * 2019-05-07 2021-03-10 Yazaki Corporation Vehicle cooling system and wire harness cooling structure

Also Published As

Publication number Publication date
JP2012135172A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
WO2012086223A1 (en) Electric vehicle
CN110650862B (en) Control device for electric vehicle, control system for electric vehicle, and control method for electric vehicle
WO2012023305A1 (en) Automobile
WO2011151936A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
KR101360038B1 (en) Control method of vehicle using in-wheel motor
JP4997347B1 (en) Electric car
CN106696947B (en) Dynamical system and the method for coordinating chassis and propulsion system torque limit
CN108237950A (en) Control method, system and the vehicle of vehicle
WO2014057838A1 (en) Anti-lock brake control system for motor-mounted automobile
JP2006081343A (en) Regenerative braking control device for vehicle
JP2007282406A (en) Braking force control system of vehicle
JP2019064556A (en) Braking force control apparatus for vehicle
JP2011193702A (en) Electric vehicle and braking program
JP4655895B2 (en) Vehicle control device
JP2011254590A (en) Electric vehicle and program
JP2011229286A (en) Electric vehicle and program
JP2008228407A (en) Braking/driving controller of vehicle
JP2016111891A (en) Vehicular braking force controller
WO2011151935A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
WO2013076806A1 (en) Vehicle drive device
JP2011229211A (en) Regenerative controller
WO2011114557A1 (en) Electric vehicle, braking program, and method for controlling and device for controlling electric vehicle
Athari et al. Optimal torque control for an electric-drive vehicle with in-wheel motors: implementation and experiments
JP2003209905A (en) Controller of hybrid vehicle
JP6079356B2 (en) Control device for each wheel independent drive cart

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851059

Country of ref document: EP

Kind code of ref document: A1