WO2011151936A1 - Electric vehicle, program, and control device and control method for electric vehicle - Google Patents

Electric vehicle, program, and control device and control method for electric vehicle Download PDF

Info

Publication number
WO2011151936A1
WO2011151936A1 PCT/JP2010/066859 JP2010066859W WO2011151936A1 WO 2011151936 A1 WO2011151936 A1 WO 2011151936A1 JP 2010066859 W JP2010066859 W JP 2010066859W WO 2011151936 A1 WO2011151936 A1 WO 2011151936A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
driving force
wheel
vehicle
wheels
Prior art date
Application number
PCT/JP2010/066859
Other languages
French (fr)
Japanese (ja)
Inventor
信義 武藤
忠彦 加藤
和利 村上
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Publication of WO2011151936A1 publication Critical patent/WO2011151936A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/16Axle differentials, e.g. for dividing torque between left and right wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/406Torque distribution between left and right wheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle, a program, and a control device and a control method for an electric vehicle in which front and rear wheels are independently driven by two electric motors.
  • the electric vehicle of Patent Document 1 includes four motors for driving the four wheels, a yaw rate sensor for detecting rotational acceleration around the Z axis, that is, a turning speed of the vehicle body, and a turning speed of the vehicle body detected by the yaw rate sensor. And a control device for controlling the torques of the four motors so as to obtain a turning acceleration corresponding to the steering angle.
  • the electric vehicle of Patent Document 2 includes a control device that controls the front and rear wheel drive torque according to the slip ratio of the front and rear wheels.
  • an object of the present invention is to provide an electric vehicle, a program, and a control device and a control method for an electric vehicle capable of ensuring stable running performance under various road surfaces and driving conditions and improving turning performance. It is in.
  • one aspect of the present invention provides a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side.
  • a second electric motor that transmits a braking / driving force via a second differential device; and a controller that controls the braking / driving force of the first and second electric motors.
  • At least one of the differential devices of the present invention provides an electric vehicle having a configuration in which the power distribution ratio to the left and right can be controlled by the control unit.
  • stable running performance can be ensured under various road surfaces and running conditions.
  • FIG. 1 is a block diagram conceptually showing the structure of an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a block diagram functionally showing the control device.
  • FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio.
  • FIG. 4 is a diagram for explaining a method of distributing braking force to the front wheels and the rear wheels in an electric vehicle.
  • FIG. 5 is a diagram for explaining straightness control.
  • FIG. 6A is a plan view showing a state in which the vehicle body is about to move laterally during driving.
  • FIG. 6B is a plan view showing a state in which the vehicle body is going to turn during driving.
  • FIG. 7A is a diagram for explaining turning control during driving.
  • FIG. 7B is a diagram for explaining turning control during driving.
  • FIG. 7C is a diagram for explaining the turning control during driving.
  • FIG. 1 is a block diagram conceptually showing the configuration of an electric vehicle according to an embodiment of the present invention.
  • additional symbols f, r, fr, fl, rr, rl indicating whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side. Is attached to the component.
  • the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
  • the electric vehicle 1 includes a front wheel motor 3f as a first electric motor that drives front wheels 2fr and 2fl via a front wheel differential 4f and axles 5fr and 5fl as a first differential, and a rear wheel. 2rr, 2rl as rear differential gear 4r as second differential device and rear wheel motor 3r as second electric motor driven via axles 5rr, 5rl, and drive energy source of electric vehicle 1
  • a power supply unit 7 a front wheel inverter 8 f and a rear wheel inverter 8 r that convert electric power from the power supply unit 7 into AC power, and a first drive circuit that outputs signals corresponding to the target torque to the inverters 8 f and 8 r
  • the front wheel drive circuit 9f and the rear wheel drive circuit 9r as the second drive circuit, and the front wheel motor 3f and the rear wheel motor 3 by outputting command signals to the drive circuits 9f and 9r.
  • a control unit 10 for controlling independently of each other, a wheel independent drive electric vehicles back and forth.
  • the electric vehicle 1 includes an accelerator pedal 12 and a brake pedal 13 operated by a driver, operating means such as a shift lever 14 for designating forward and reverse, a front wheel motor 3f and a rear wheel motor 3r.
  • Encoders 16f and 16r for detecting the respective rotational speeds, mechanical brakes 18fr, 18fl, 18rr and 18rl for braking the rotation of the axles 5fr, 5fl, 5rr and 5rl, and two cameras 20fr provided on the front side of the vehicle body 25, 20rl, a camera 21 provided on the rear side of the vehicle body 25, an accelerator sensor 22 for detecting the amount of depression of the accelerator pedal 12, a brake sensor 23 for detecting the amount of depression of the brake pedal 13, and the positions of the shift lever 14
  • a shift sensor 24 to detect and an acceleration sensor to detect the acceleration of the vehicle body 25 Degree detector 26), temperature sensors 27f and 27r for detecting the temperatures of the motors 3f and 3r, wheel speed sensors 28fr, 28fl, 28rr and 28
  • an “electric vehicle” is an automobile having an electric motor for driving front wheels and rear wheels, and has both an electric motor and an engine as power sources for wheels, and can be regeneratively braked by the electric motor. It is a concept that includes a hybrid car.
  • “automobile” is a concept including not only passenger cars but also buses and freight cars, regardless of whether they are ordinary cars, large cars, and oversized cars.
  • “braking / driving force” may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle or only one of them.
  • the power supply unit 7 includes a battery 70, a front wheel smoothing capacitor 71f, a rear wheel smoothing capacitor 71r, a voltage sensor 72f for detecting the voltage (inverter input voltage) of the front wheel smoothing capacitor 71f, and a rear wheel smoothing capacitor 71r. Is provided with a voltage sensor 72r for detecting the voltage (inverter input voltage) and a battery capacity sensor 73 for detecting the storage capacity of the battery 70.
  • the battery 70 is a high voltage battery that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r.
  • a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
  • the front wheel motor 3f and the rear wheel motor 3r for example, various motors such as a synchronous motor and an induction motor can be used.
  • the rotation of the motor 3 is transmitted to the axle 5 via the differential device 4 on each of the front wheel side and the rear wheel side.
  • the axle 5 rotates integrally with the wheel 2. That is, the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other.
  • the output torque (motor capacity) generated by the front wheel motor 3f and the rear wheel motor 3r may or may not be equal to each other.
  • the inverter 8 converts the power from the battery 70 into AC power and outputs a current corresponding to a signal from the drive circuit 9 to the motor 3 to drive the motor 3. Further, the inverter 8 converts AC power generated by the motor 3 into DC power and charges the battery 70 via the capacitors 71f and 71r.
  • the front wheel drive circuit 9f receives current detection signals from the current sensors 15a, 15b, 15c that detect the current of the primary winding of the front wheel motor 3f.
  • the rear wheel drive circuit 9r receives current detection signals from the current sensors 17a, 17b, and 17c that detect the current of the primary winding of the rear wheel motor 3r.
  • the drive circuits 9 f and 9 r output a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
  • the differential devices 4f and 4r are mechanisms capable of controlling the braking / driving force distribution ratio to the front wheel axles 5fr and 5fl and the braking / driving force distribution ratio to the rear wheel axles 5rr and 5rl by the control device 10. It is equipped with.
  • the braking / driving force of the front wheel motor 3f is distributed to the right rear front wheel 2fr and the left front wheel 2fl by the front wheel differential device 4f at a distribution rate controlled by the control device 10.
  • the braking / driving force of the rear wheel motor 3r is distributed to the right rear wheel 2rr and the left rear wheel 2rl by the rear wheel differential device 4r at a distribution rate controlled by the control device 10.
  • the encoders 16f and 16r detect the rotational speed of the motor 3 on each of the front wheel side and the rear wheel side, and output a signal corresponding to the detected rotational speed to the control device 10.
  • the accelerator sensor 22 detects the depression amount of the accelerator pedal 12 and outputs a signal xa corresponding to the detected depression amount to the control device 10.
  • the brake sensor 23 detects the depression amount of the brake pedal 13, and outputs a signal xb corresponding to the detected depression amount to the control device 10.
  • the shift sensor 24 detects the position of the shift lever 14 and outputs it to the signal S control device 10 according to the detected position.
  • the acceleration sensor 26 is a three-axis acceleration sensor that detects accelerations a Y , a X , and a ⁇ in three directions of the vehicle body 25 in the front-rear direction, the lateral direction, and the rotational direction (turning direction) around the center of gravity axis.
  • the signals corresponding to the accelerations a Y , a X , and a ⁇ are output to the control device 10.
  • Wheel speed sensors 28fr, 28fl, 28rr, 28rl detect the rotational speed ⁇ of the wheel and output a signal corresponding to the detected rotational speed ⁇ to the control device 10.
  • the steering angle sensor 29 detects the steering angle ⁇ of the steering wheel 19 and outputs a signal corresponding to the detected steering angle ⁇ to the control device 10.
  • the voltage sensors 72f and 72r detect the voltage (inverter input voltage) of the capacitors 71f and 71r, and output a signal corresponding to the detected inverter input voltage to the control device 10.
  • Battery capacity sensor 73 detects the storage capacity (remaining capacity) of battery 70 and outputs a signal corresponding to the detected storage capacity to control device 10.
  • the battery capacity sensor 73 is obtained by, for example, a method based on the battery terminal voltage (open voltage), a method based on the battery internal resistance, a method based on the integrated value of the battery charge / discharge current, or a combination of these. Thus, the storage capacity of the battery 70 is detected.
  • an electric brake and a mechanical brake are used in combination. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source.
  • the electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking.
  • a regenerative brake is mainly used, but a power generation brake may be used in a low speed region. The regenerative brake regenerates the electric power generated by the motor 3 to the battery 70 via the capacitor 71, thereby generating a braking force.
  • the mechanical brake 18 is, for example, a drum brake or a disc brake, and presses a brake shoe against a member to be braked by pressurized liquid from the pressure adjustment unit 11 to obtain friction braking by a friction force.
  • the operation of the mechanical brake 18 is controlled independently for each wheel 2 by the control device 10.
  • the brake shoe may be pressed against the member to be braked by an actuator such as a motor.
  • the pressure adjustment unit 11 is configured to be able to apply a different braking force to each mechanical brake 18 by distributing pressurized liquid to the mechanical brake 18 according to a signal from the control device 10.
  • the pressure adjusting unit 11 and the mechanical brake 18 constitute a friction brake mechanism.
  • the front cameras 20 fr and 20 fl capture the road surface in front of the electric vehicle 1 and output the captured image to the control device 10.
  • the control device 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving.
  • the imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other.
  • the cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
  • the rear camera 21 images the road surface behind the electric vehicle 1 and outputs the captured image to the control device 10.
  • the control device 10 detects a change in the road surface based on the image acquired from the camera 21 and executes processing related to braking / driving.
  • the camera 21 is constituted by a CCD camera, for example.
  • FIG. 2 is a block diagram functionally showing the control device 10.
  • the control device 10 is configured by a computer, for example, and includes a CPU 100 and a storage unit 110 such as a semiconductor memory or a hard disk.
  • the control device 10 issues an operation command for performing an operation such as acceleration and deceleration according to operation input information generated by the driver operating the operating means such as the accelerator pedal 12 and the brake pedal 13.
  • the rear wheel drive circuit 9r and the mechanical brake 18 are output to control the driving torque (driving force) and braking torque (braking force) of the front wheel driving system and the rear wheel driving system.
  • the electric vehicle 1 can drive
  • the control device 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3r in accordance with signals from the sensors 22, 23, 24, 26, 29, etc., respectively, and the front wheel drive circuit 9f, Output to the rear wheel drive circuit 9r.
  • the drive circuit 9 outputs a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
  • various data such as a road surface pattern 111, a ⁇ -SrLimit table 112, relational information on braking / driving force and slip ratio as shown in FIG. 3 to be described later, and various programs such as a braking / driving program 113 are stored.
  • various data such as a road surface pattern 111, a ⁇ -SrLimit table 112, relational information on braking / driving force and slip ratio as shown in FIG. 3 to be described later, and various programs such as a braking / driving program 113 are stored.
  • the CPU 100 operates in accordance with the braking / driving program 113, so that the road surface friction coefficient ⁇ estimating unit (estimating unit) 101, the slip ratio upper limit setting unit (setting unit) 102, the slip ratio calculating unit (calculating unit) 103, the braking / driving force It functions as the control means (control unit) 104 and the like.
  • the road surface friction coefficient ⁇ estimation means 101 is based on an image captured by the front cameras 20fr and fl (the rear camera 21 when the vehicle is reverse), and the road surface on which the automobile 1 travels is a dry road surface, a wet road surface, a frozen / snow surface. It is determined whether the road surface condition or the like, and the friction coefficient ⁇ of the road surface is estimated. These road surfaces are typical road surfaces with greatly different friction coefficients ⁇ . The determination is performed by pattern matching between the captured image and the road surface pattern 111 captured in advance in each road surface condition. The road surface pattern 111 is stored in the storage unit 110 in association with the friction coefficient ⁇ of the road surface. In addition, you may perform using the well-known technique suitably, such as performing the said determination by determination whether the brightness
  • FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio.
  • a solid line L1 indicates a dry road surface
  • a solid line L2 indicates a wet road surface
  • a solid line L3 indicates a frozen / snow road surface.
  • Each of these road surfaces is a typical road surface having a significantly different friction coefficient.
  • the coefficient of friction is, for example, 0.75 on a dry road surface, 0.4 on a wet road surface, and 0.2 on a frozen / snow road surface.
  • the storage unit 110 stores a ⁇ -SrLimit table 112 indicating the relationship between the road friction coefficient ⁇ and the slip ratio upper limit value SrLimit.
  • the slip ratio upper limit value SrLimit1 (
  • 0.14) is stored, and the slip ratio upper limit value SrLimit3 (
  • the slip ratio upper limit value setting means 102 refers to the ⁇ -SrLimit table 112 in the storage unit 110 based on the road surface friction coefficient estimated by the road surface friction coefficient ⁇ estimation means 101, and determines the slip ratio upper limit value as a predetermined value.
  • Set SrLimit The slip ratio upper limit value SrLimit is set to a value in the vicinity of the maximum value of the braking force that can be exhibited according to each road surface condition in FIG. 3, for example, but is not limited to a value in the vicinity of the maximum value.
  • the slip ratio upper limit value SrLimit can be set to a slip ratio at which a braking force higher than 70 to 90% of the maximum braking force that can be exhibited according to the friction coefficient of the road surface, for example.
  • the slip ratio upper limit setting means 102 is a timing at which the front cameras 20fr and 20fl (the rear camera 21 when the vehicle is moving backward) images the road surface, and the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl enter the imaged road surface.
  • the slip ratio upper limit values of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl are respectively set.
  • a slip ratio upper limit value for example,
  • 0.14
  • corresponding to the wet road surface is set for the front wheels 2fr and 2fl.
  • a slip ratio upper limit value (for example,
  • 0.16) corresponding to the dry road surface is set.
  • the friction coefficient estimated from the images captured by the front cameras 20fr and 20fl and the friction coefficient estimated from the images captured by the rear camera 21 are used as the friction coefficient and slip ratio of the rear wheels. It may be used as an upper limit value, or an intermediate value thereof may be used as a front wheel friction coefficient or a slip ratio upper limit value when the vehicle is moving backward.
  • the slip ratio calculating means 103 integrates the acceleration a Y in the longitudinal direction of the vehicle body 25 based on a signal corresponding to the acceleration a Y in the longitudinal direction of the vehicle body 25 from the acceleration sensor 26 to obtain the vehicle body speed V. Ask. Further, the slip ratio calculating means 103 obtains the rotational speed ⁇ of the wheel 2 based on a signal corresponding to the rotational speed ⁇ of the wheel 2 from the wheel speed sensor 28.
  • the braking / driving force control means 104 determines whether or not the slip ratio Sr calculated by the slip ratio calculating means 103 is equal to or less than the slip ratio upper limit value SrLimit. In addition, when the braking / driving force control means 104 compares the slip ratio, the absolute value is used. Then, the braking / driving force control means 104 is configured to control the slip ratio to a certain target value based on the ⁇ -SrLimit table 112, the relation information between the braking / driving force and the slip ratio as shown in FIG.
  • Wheel lock accompanying movement wheel spin suppression control, straightness control to maintain straightness, disturbance suppression control to suppress the influence of disturbances such as cross wind, turning control to improve turning performance, and the like are performed.
  • those controls will be described.
  • these controls may be performed independently and some controls may be performed simultaneously.
  • ⁇ Slip rate control> When the slip rate of each wheel 2 is equal to or less than the slip rate upper limit value SrLimit, the braking / driving force control means 104 exerts the driving force of the motor 3 according to the depression amount of the accelerator pedal 12 and sets the depression amount of the brake pedal 13. Accordingly, both the braking force by the mechanical brake 18 and the braking force of the electric brake by the drive circuit 9 are exhibited. Further, the braking / driving force control means 104, for example, on a low ⁇ road with a small friction coefficient, one of the slip ratios of each wheel 2 (including the case where a plurality of wheels 2 are simultaneously used) sets the slip ratio upper limit value SrLimit.
  • the driving force of the motor 3 is controlled so that the slip ratio exceeding the slip ratio upper limit value SrLimit is equal to or less than the slip ratio upper limit value SrLimit regardless of the depression amount of the accelerator pedal 12, and the brake pedal 13 is depressed.
  • the braking force by the electric brake and the braking force by the mechanical brake 18 are controlled so that the slip rate exceeding the slip rate upper limit value SrLimit is equal to or less than the slip rate upper limit value SrLimit.
  • the braking / driving force control means 104 may determine the braking / driving force control based on the larger slip ratio by determining which of the slip ratios of the left and right wheels is larger.
  • FIG. 4 is a diagram for explaining a method of distributing braking force to the front wheels 2fr, 2fl and the rear wheels 2rr, 2rl in the electric vehicle 1.
  • M is the mass (body mass) of the entire electric vehicle 1.
  • the load movement amount Z at that time is obtained by the following equation (4) in which the moment around the center of gravity G of the electric vehicle 1 generated by the braking force Fcar is converted to the vertical load at the contact point of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl. It is done.
  • Z Fcar ⁇ Hcar / Lcar (4)
  • Hcar is the height of the center of gravity G of the electric vehicle 1 from the ground contact surface
  • Lcar is the wheel base of the electric vehicle 1.
  • the operation of the motor 3 and the mechanical brake 18 is controlled so that the braking force by the motor 3 and the mechanical brake 18 on the front wheel side and the rear wheel side becomes the maximum braking force Ffmax and the maximum braking force Frmax, respectively.
  • the entire vehicle 1 has the largest braking force, and wheel lock can be suppressed.
  • the above is the explanation about the deceleration, but the same applies to the acceleration, and the wheel spin can be suppressed by controlling so as to obtain an optimum driving force based on the load movement.
  • FIG. 5 is a diagram for explaining straightness control.
  • reference numerals 25a, 25b, 25c, and 25d indicate that the vehicle body goes straight from the bottom to the top of the page.
  • the braking / driving force control means 104 controls the braking / driving force of the motor 3 and the power distribution ratio of the differential device 4 so that the direction of the vehicle body 25 corresponds to the detected steering angle when performing straightness control. To do. The same applies to the turning control.
  • the braking / driving force control means 104 determines whether the vehicle body 25 is traveling straight or turning based on a signal corresponding to the steering angle ⁇ from the steering angle sensor 29. For example, when the detected steering angle ⁇ is within a certain angle range (for example, within ⁇ 2 °), it is determined that the vehicle is traveling straight, and otherwise, it is determined that the vehicle is turning. When it is determined that the vehicle is traveling straight ahead, straightness control is performed as described below.
  • the braking / driving force control means 104 determines that the wheel 2 (for example, the right wheel 2fr) While reducing the braking / driving force, control is performed to increase the braking / driving force of the opposite wheel 2 (for example, the left wheel 2fl) within a range where the slip ratio does not exceed a predetermined value, for example, the slip ratio upper limit value SrLimit. Thereby, a wheel spin and a wheel lock can be prevented and a propulsive force can be ensured.
  • the turning acceleration A.theta On the basis of the signals corresponding to the turning acceleration A.theta. From the acceleration sensor 26, the turning acceleration A.theta. It is determined whether or not exceeding the threshold A.theta. Th. If the threshold is exceeded A.theta. Th, as in turn acceleration A.theta. Is suppressed, it controls the braking and driving forces of the left and right wheels in the front-rear direction of the opposite side of the axle (e.g. right wheel 2rr, left wheel 2RL). That is, control is performed to increase the braking / driving force of the right wheel 2rr and reduce the braking / driving force of the left wheel 2rl. Thereby, turning is suppressed and straight running can be continued.
  • the threshold A.theta. Th
  • ⁇ Disturbance suppression control> 6A is a plan view showing a state in which the vehicle body 25 is about to move laterally during driving
  • FIG. 6B is a plan view showing a state in which the vehicle body 25 is about to turn during driving.
  • the braking / driving force control unit 104 suppresses the lateral displacement or turning when a lateral displacement or turning occurs due to a disturbance while performing the straightness control. Note that disturbance suppression control may be performed even when turning control is performed.
  • k X and k ⁇ are coefficients, and g is the gravitational acceleration.
  • the coefficients k X and k ⁇ can be determined from the viewpoint of stable running.
  • the braking / driving force control means 104 performs control as follows. Determines the direction of the lateral acceleration a X, when the direction of the lateral acceleration a X of the right, for example, as shown in Figure 6A, the predetermined as the right wheel torque is greater than the left wheel torque slip rate, For example, control is performed within a range not exceeding the slip ratio upper limit value SrLimit. That is, the braking / driving force distribution ratio of the front wheel differential device 4f is controlled so that the right wheel torque is larger than the left wheel torque, or the braking / driving force distribution ratio of the rear wheel differential device 4r is set to a predetermined slip. The right wheel torque is controlled to be greater than the left wheel torque within a range that does not exceed the ratio, for example, the slip ratio upper limit value SrLimit.
  • the left wheel torque is controlled to be larger than the right wheel torque.
  • the distribution ratio of the braking / driving force of the front wheel differential device 4f is controlled so that the left wheel torque is larger than the right wheel torque, or the braking / driving force distribution ratio of the rear wheel differential device 4r is controlled by the left wheel torque. Control to be greater than the right wheel torque.
  • the braking / driving force control means 104 performs the following control.
  • the direction of the turning acceleration a ⁇ is determined, and when the direction of the turning acceleration a ⁇ is clockwise, for example, as shown in FIG. 6B, control is performed so that the right wheel torque is larger than the left wheel torque.
  • the distribution ratio of braking / driving force of the front wheel differential device 4f is controlled so that the right wheel torque is larger than the left wheel torque, or the distribution ratio of braking / driving force of the rear wheel differential device 4r is set to the right wheel torque. Is controlled to be larger than the left wheel torque.
  • control is performed so that the left wheel torque is larger than the right wheel torque.
  • the distribution ratio of the braking / driving force of the front wheel differential device 4f is controlled so that the left wheel torque is larger than the right wheel torque, or the braking / driving force distribution ratio of the rear wheel differential device 4r is controlled by the left wheel torque.
  • the above is the control at the time of driving, but the control opposite to that at the time of driving is performed at the time of braking.
  • the front and rear differential devices 4f and 4r may be controlled in the same manner.
  • ⁇ Turning control> 7A to 7C are diagrams for explaining the turning control during driving.
  • the braking / driving force control means 104 controls the braking / driving force of the motor 3 and the power distribution ratio of the differential device 4 so that the direction of the vehicle body 25 corresponds to the detected steering angle when performing turning control. .
  • the braking / driving force control means 104 determines whether the vehicle body 25 is traveling straight or turning based on a signal corresponding to the steering angle ⁇ from the steering angle sensor 29. For example, when the detected steering angle ⁇ is within a certain angle range (for example, within ⁇ 2 °), it is determined that the vehicle is traveling straight, and otherwise, it is determined that the vehicle is turning. When it is determined that the vehicle is turning, turning control is performed as described below.
  • any one of the controls shown in FIGS. 7A to 7C can be performed.
  • control is performed so as to increase the braking / driving force of the left wheel 2fl on the front wheel side and decrease the braking / driving force of the right wheel 2fr on the front wheel side.
  • control is performed such that the braking / driving force of the rear wheel side left wheel 2rl is increased and the braking / driving force of the rear wheel side right wheel 2rr is decreased.
  • the braking / driving force of the left wheel 2fl on the front wheel side is increased and the braking / driving force of the right wheel 2fr on the front wheel side is decreased, and the braking / driving force of the left wheel 2rl on the rear wheel side is further increased.
  • control to reduce the braking / driving force of the right wheel 2rr on the rear wheel side is the control at the time of driving, but the control opposite to that at the time of driving is performed at the time of braking.
  • the braking / driving force control means 104 controls the braking / driving force applied to the front wheels 2fr, 2fl according to the road surface friction coefficient in order to ensure the lateral force of the front wheels 2fr, 2fl, and the braking / driving force applied to each wheel 1 is controlled.
  • the change in braking / driving force applied to the front wheels 2fr and 2fl may be compensated by the braking / driving force applied to the rear wheels 2rr and 2rl so that the sum does not change.
  • the braking / driving force control means 104 determines whether the vehicle is traveling straight or turning based on the detected steering angle. If it is determined that the vehicle is turning, the turning acceleration depends on the steering angle.
  • the braking / driving force to the inner and outer wheels of the front and rear wheels is increased / decreased within a range where the slip ratio does not exceed the predetermined value, and the braking / driving force to the outer and outer wheels of the front and rear wheels is increased / decreased.
  • the braking / driving force to the inner and outer wheels of the front and rear wheels is controlled by the slip ratio. Control may be performed in which the driving force of the outer wheels of the front and rear wheels is increased or decreased within a range that does not exceed the value and the slip rate does not exceed a predetermined value.
  • the braking / driving force to the front and rear wheels is controlled by the front and rear motors 3f and 3r based on the slip ratio and acceleration, and the braking / driving force distribution to the left and right wheels is controlled by the front / rear differential device 4f.
  • the front and rear motors 3f and 3r based on the slip ratio and acceleration
  • the braking / driving force distribution to the left and right wheels is controlled by the front / rear differential device 4f.
  • each of the means 101 to 104 is realized by the CPU 100 and the braking / driving program 113, but may be realized by hardware such as an ASIC (Application Specific IC).
  • ASIC Application Specific IC
  • the braking / driving program 113 may be taken into the control device 10 from a computer-readable recording medium such as a CD-ROM on which the braking / driving program 113 is recorded, or may be taken into the control device 10 from a server device or the like via a network.
  • one of the front and rear differential devices 4f and 4r may be configured such that the power distribution ratio to the left and right can be controlled.
  • the present invention also provides an electric vehicle control device, an electric vehicle control method, and a computer-readable recording medium that records a braking / driving program according to the following other embodiments. it can.
  • An electric vehicle control device includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a first electric motor on the left and right wheels on the rear wheel side. And a second electric motor that transmits braking / driving force via two differential devices, and at least one of the first and second differential devices has a power distribution ratio to the left and right controlled.
  • An apparatus for controlling an electric vehicle having a possible configuration, capable of controlling the braking / driving force and power distribution ratio of the first and second electric motors so that the direction of the vehicle body corresponds to the steering angle.
  • a control unit for controlling the power distribution ratio of the at least one differential device.
  • An electric vehicle control method includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a first electric motor on the left and right wheels on the rear wheel side. And a second electric motor that transmits braking / driving force via two differential devices, and at least one of the first and second differential devices has a power distribution ratio to the left and right controlled.
  • a computer-readable recording medium includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side. And a second electric motor that transmits braking / driving force via the second differential device, and at least one of the first and second differential devices has a power distribution ratio to the left and right.
  • a computer included in an electric vehicle having a controllable configuration can control the braking / driving force and power distribution ratio of the first and second electric motors so that the direction of the vehicle body corresponds to the steering angle.
  • a program for executing the step of controlling the power distribution ratio of the at least one differential device is recorded.
  • SYMBOLS 1 Electric vehicle, 2 ... Wheel, 2fr, 2fl ... Front wheel, 2rr, rl ... Rear wheel, 3f ... Front wheel motor, 3r ... Rear wheel motor, 4f, 4r ... Differential gear, 5fr, 5fl, 5rr, 5rl ... Axle, 7 ... Power supply, 8f ... Inverter for front wheel, 8r ... Inverter for rear wheel, 9f ... Drive circuit for front wheel, 9r ... Drive circuit for rear wheel, 10 ... Control device, 11 ... Pressure adjustment unit, 12 ... Accelerator Pedal, 13 ... Brake pedal, 14 ... Shift lever, 15a-15c ...
  • Road surface friction coefficient ⁇ estimation means 102 ... Slip ratio upper limit setting means, 103 ... Slip ratio calculation means, 104 ... Braking / driving force control means, 105 ... Failure detection means, 110 ... Memory 111, road surface pattern, 112, ⁇ -SrLimit table, 113, braking / driving program

Abstract

In order to ensure stable traveling performance under various road surfaces and traveling conditions to enable improvement in turning performance, disclosed is an electric vehicle (1) provided with a first electric motor (3f) for transmitting braking/driving force to right and left wheels on the front wheel side via a first differential (4f), a second electric motor (3r) for transmitting braking/driving force to right and left wheels on the rear wheel side via a second differential (4r), and a control unit for controlling the braking/driving force of the first and second electric motors (3f, 3r), at least one differential (4f, 4r) of the first and second differentials (4f, 4r) having a configuration in which the ratio of power distribution to right and left can be controlled by the control unit.

Description

電気自動車、プログラム、並びに電気自動車の制御装置および制御方法Electric vehicle, program, and control device and control method for electric vehicle
 本発明は、前後輪を2つの電気モータで独立に駆動する電気自動車、プログラム、並びに電気自動車の制御装置および制御方法に関する。 The present invention relates to an electric vehicle, a program, and a control device and a control method for an electric vehicle in which front and rear wheels are independently driven by two electric motors.
 従来、4輪それぞれをモータにより駆動する電気自動車や前後輪をそれぞれモータで駆動する電気自動車が知られている(例えば、特許文献1、2参照。)。 Conventionally, an electric vehicle in which each of the four wheels is driven by a motor and an electric vehicle in which the front and rear wheels are respectively driven by a motor are known (for example, see Patent Documents 1 and 2).
 特許文献1の電気自動車は、4輪それぞれを駆動する4つのモータと、Z軸の回りの回転加速度、すなわち車体の旋回速度を検出するヨーレートセンサと、ヨーレートセンサによって検出された車体の旋回速度に基づいて操舵角に応じた旋回加速度が得られるように4つのモータのトルクを制御する制御装置とを備える。 The electric vehicle of Patent Document 1 includes four motors for driving the four wheels, a yaw rate sensor for detecting rotational acceleration around the Z axis, that is, a turning speed of the vehicle body, and a turning speed of the vehicle body detected by the yaw rate sensor. And a control device for controlling the torques of the four motors so as to obtain a turning acceleration corresponding to the steering angle.
 特許文献2の電気自動車は前後輪のスリップ率に応じて前後輪駆動トルクを制御する制御装置を備える。 The electric vehicle of Patent Document 2 includes a control device that controls the front and rear wheel drive torque according to the slip ratio of the front and rear wheels.
特開2005-184911号公報JP 2005-184911 A 特開2008-228407号公報JP 2008-228407 A
 しかし、特許文献1の電気自動車によれば、4輪の各モータを独立に制御するため、車両安定性に欠けるという問題や、特許文献2の電気自動車によれば、車両直進時の横風等の外乱発生時は、前後輪の制駆動力制御だけでは、車両の乱れが修正できない、また、旋回時の路面及び走行条件の変化が大きい場合は、前後輪駆動力の制御だけでは、操舵角に応じた旋回加速度に近づけることが難しいという問題がある。 However, according to the electric vehicle of Patent Document 1, since each of the four-wheel motors is controlled independently, there is a problem of lack of vehicle stability, or according to the electric vehicle of Patent Document 2, such as a crosswind when the vehicle is traveling straight ahead. When a disturbance occurs, the vehicle's turbulence cannot be corrected by controlling the front / rear wheel braking / driving force alone.If the road surface and driving conditions change significantly when turning, the steering angle can be adjusted only by controlling the front / rear wheel driving force. There is a problem that it is difficult to approach the corresponding turning acceleration.
 従って、本発明の目的は、様々な路面や走行条件下で安定した走行性を確保し、旋回性能を改善することができる電気自動車、プログラム、並びに電気自動車の制御装置および制御方法を提供することにある。 Accordingly, an object of the present invention is to provide an electric vehicle, a program, and a control device and a control method for an electric vehicle capable of ensuring stable running performance under various road surfaces and driving conditions and improving turning performance. It is in.
 本発明の一態様は、上記目的を達成するために、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータと、前記第1および第2の電気モータの制駆動力を制御する制御部とを備え、前記第1および第2の差動装置の少なくとも一方の差動装置は、前記制御部により左右への動力配分率が制御可能な構成を有する電気自動車を提供する。 In order to achieve the above object, one aspect of the present invention provides a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side. A second electric motor that transmits a braking / driving force via a second differential device; and a controller that controls the braking / driving force of the first and second electric motors. At least one of the differential devices of the present invention provides an electric vehicle having a configuration in which the power distribution ratio to the left and right can be controlled by the control unit.
 本発明によれば、様々な路面や走行条件下で安定した走行性を確保することができる。 According to the present invention, stable running performance can be ensured under various road surfaces and running conditions.
図1は、本発明の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。FIG. 1 is a block diagram conceptually showing the structure of an electric vehicle according to an embodiment of the present invention. 図2は、制御装置を機能的に示すブロック図である。FIG. 2 is a block diagram functionally showing the control device. 図3は、駆動力および制動力とスリップ率との関係を示す図である。FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio. 図4は、電気自動車における制動力の前輪及び後輪ヘの分配方法を説明するための図である。FIG. 4 is a diagram for explaining a method of distributing braking force to the front wheels and the rear wheels in an electric vehicle. 図5は、直進性制御を説明するための図である。FIG. 5 is a diagram for explaining straightness control. 図6Aは、駆動時に車体が横方向に動こうとしている状態を示す平面図である。FIG. 6A is a plan view showing a state in which the vehicle body is about to move laterally during driving. 図6Bは、駆動時に車体が旋回しようとしている状態を示す平面図である。FIG. 6B is a plan view showing a state in which the vehicle body is going to turn during driving. 図7Aは、駆動時の旋回制御を説明するための図である。FIG. 7A is a diagram for explaining turning control during driving. 図7Bは、駆動時の旋回制御を説明するための図である。FIG. 7B is a diagram for explaining turning control during driving. 図7Cは、駆動時の旋回制御を説明するための図である。FIG. 7C is a diagram for explaining the turning control during driving.
 図1は、本発明の実施の形態に係る電気自動車の構成を概念的に示すブロック図である。なお、同図では、構成要素の位置が前輪側か後輪側か、前輪側の右側か左側か、後輪側の右側か左側かを示す付加記号f、r、fr、fl、rr、rlを構成要素に付している。また、構成要素の位置を特に区別する必要がない場合には、上記付加記号や位置を示す「前輪用」、「後輪用」の語を省略することもある。 FIG. 1 is a block diagram conceptually showing the configuration of an electric vehicle according to an embodiment of the present invention. In the figure, additional symbols f, r, fr, fl, rr, rl indicating whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side. Is attached to the component. Further, when it is not necessary to particularly distinguish the positions of the constituent elements, the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
 この電気自動車1は、前輪2fr、2flを第1の差動装置としての前輪用差動装置4fおよび車軸5fr、5flを介して駆動する第1の電気モータとしての前輪用モータ3fと、後輪2rr、2rlを第2の差動装置としての後輪用差動装置4rおよび車軸5rr、5rlを介して駆動する第2の電気モータとしての後輪用モータ3rと、電気自動車1の駆動エネルギー源としての電源部7と、電源部7からの電力を交流電力に変換する前輪用インバータ8fおよび後輪用インバータ8rと、目標トルクに応じた信号をインバータ8f、8rに出力する第1の駆動回路としての前輪用駆動回路9fおよび第2の駆動回路としての後輪用駆動回路9rと、駆動回路9f、9rに指令信号を出力して前輪用モータ3fおよび後輪用モータ3rを互いに独立に制御する制御装置10とを備えた、前後輪独立駆動型電気自動車である。 The electric vehicle 1 includes a front wheel motor 3f as a first electric motor that drives front wheels 2fr and 2fl via a front wheel differential 4f and axles 5fr and 5fl as a first differential, and a rear wheel. 2rr, 2rl as rear differential gear 4r as second differential device and rear wheel motor 3r as second electric motor driven via axles 5rr, 5rl, and drive energy source of electric vehicle 1 As a power supply unit 7, a front wheel inverter 8 f and a rear wheel inverter 8 r that convert electric power from the power supply unit 7 into AC power, and a first drive circuit that outputs signals corresponding to the target torque to the inverters 8 f and 8 r The front wheel drive circuit 9f and the rear wheel drive circuit 9r as the second drive circuit, and the front wheel motor 3f and the rear wheel motor 3 by outputting command signals to the drive circuits 9f and 9r. Was a control unit 10 for controlling independently of each other, a wheel independent drive electric vehicles back and forth.
 また、この電気自動車1は、運転者が操作するアクセルペダル12、ブレーキペダル13、および前進や後進を指定するためのシフトレバー14等の操作手段と、前輪用モータ3fおよび後輪用モータ3rの回転数をそれぞれ検出するエンコーダ16f、16rと、車軸5fr、5fl、5rr、5rlの回転を制動する機械ブレーキ18fr、18fl、18rr、18rlと、車体25の前方側に設けられた2つのカメラ20fr、20rlと、車体25の後方側に設けられたカメラ21と、アクセルペダル12の踏み込み量を検出するアクセルセンサ22と、ブレーキペダル13の踏み込み量を検出するブレーキセンサ23と、シフトレバー14の位置を検出するシフトセンサ24と、車体25の加速度を検出する加速度センサ(加速度検出部)26と、モータ3f、3rの温度をそれぞれ検出する温度センサ27f、27rと、車輪2の回転速度を検出する車輪速センサ28fr、28fl、28rr、28rlと、ステアリングホイール19の操舵角を検出する操舵角センサ(操舵角検出部)29とを備える。 The electric vehicle 1 includes an accelerator pedal 12 and a brake pedal 13 operated by a driver, operating means such as a shift lever 14 for designating forward and reverse, a front wheel motor 3f and a rear wheel motor 3r. Encoders 16f and 16r for detecting the respective rotational speeds, mechanical brakes 18fr, 18fl, 18rr and 18rl for braking the rotation of the axles 5fr, 5fl, 5rr and 5rl, and two cameras 20fr provided on the front side of the vehicle body 25, 20rl, a camera 21 provided on the rear side of the vehicle body 25, an accelerator sensor 22 for detecting the amount of depression of the accelerator pedal 12, a brake sensor 23 for detecting the amount of depression of the brake pedal 13, and the positions of the shift lever 14 A shift sensor 24 to detect and an acceleration sensor to detect the acceleration of the vehicle body 25 Degree detector 26), temperature sensors 27f and 27r for detecting the temperatures of the motors 3f and 3r, wheel speed sensors 28fr, 28fl, 28rr and 28rl for detecting the rotational speed of the wheel 2, and the steering angle of the steering wheel 19, respectively. And a steering angle sensor (steering angle detection unit) 29 for detecting.
 なお、本明細書において、「電気自動車」は、前輪および後輪を駆動する電気モータを有する自動車や、車輪の動力源として電気モータとエンジンの両方を有し、電気モータによる回生制動が可能なハイブリッドカーを含む概念である。ここで、「自動車」とは乗用自動車に限らず、バスや貨物自動車を含む概念であり、普通車、大型車、特大車を問わない。また、本明細書において、「制駆動力」は、自動車を減速させる制動力と、自動車を加速させる駆動力の両方を意味する場合や一方のみを意味する場合がある。 In this specification, an “electric vehicle” is an automobile having an electric motor for driving front wheels and rear wheels, and has both an electric motor and an engine as power sources for wheels, and can be regeneratively braked by the electric motor. It is a concept that includes a hybrid car. Here, “automobile” is a concept including not only passenger cars but also buses and freight cars, regardless of whether they are ordinary cars, large cars, and oversized cars. Further, in this specification, “braking / driving force” may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle or only one of them.
 次に、上記各部の詳細を説明する。 Next, the details of each part will be described.
(電源系)
 電源部7は、バッテリ70と、前輪用平滑コンデンサ71fと、後輪用平滑コンデンタ71rと、前輪用平滑コンデンサ71fの電圧(インバータ入力電圧)を検出する電圧センサ72fと、後輪用平滑コンデンサ71rの電圧(インバータ入力電圧)を検出する電圧センサ72rと、バッテリ70の蓄電容量を検出するバッテリ容量センサ73とを備える。
(Power supply system)
The power supply unit 7 includes a battery 70, a front wheel smoothing capacitor 71f, a rear wheel smoothing capacitor 71r, a voltage sensor 72f for detecting the voltage (inverter input voltage) of the front wheel smoothing capacitor 71f, and a rear wheel smoothing capacitor 71r. Is provided with a voltage sensor 72r for detecting the voltage (inverter input voltage) and a battery capacity sensor 73 for detecting the storage capacity of the battery 70.
 バッテリ70は、前輪用モータ3fおよび後輪用モータ3rを駆動するための電力を出力することができる高電圧バッテリである。なお、電気自動車1の駆動エネルギー源として、バッテリ70の他に、乾電池等の一次電池、燃料電池等を用いてもよい。 The battery 70 is a high voltage battery that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r. In addition to the battery 70, a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
(駆動系)
 前輪用モータ3fおよび後輪用モータ3rは、例えば同期モータ(Synchronous Motor)、誘導モータ(Induction Motor)等の各種のモータを用いることができる。前輪側および後輪側それぞれにおいて、モータ3の回転は、差動装置4を介して車軸5に伝達される。車軸5は車輪2と一体的に回転する。すなわち、電気自動車1は、前輪2fr、2flと、後輪2rr、rlを互いに独立に制御可能に前輪2fr、2flおよび後輪2rr、rlに対応して2つのトルク発生源を有している。なお、前輪用モータ3fおよび後輪用モータ3rが発生する出力トルク(モータ容量)は、互いに等しくてもよいし、等しくなくてもよい。
(Drive system)
As the front wheel motor 3f and the rear wheel motor 3r, for example, various motors such as a synchronous motor and an induction motor can be used. The rotation of the motor 3 is transmitted to the axle 5 via the differential device 4 on each of the front wheel side and the rear wheel side. The axle 5 rotates integrally with the wheel 2. That is, the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other. The output torque (motor capacity) generated by the front wheel motor 3f and the rear wheel motor 3r may or may not be equal to each other.
 インバータ8は、バッテリ70からの電力を交流電力に変換し、駆動回路9からの信号に応じた電流をモータ3に出力してモータ3を駆動する。また、インバータ8は、モータ3により発電された交流電力を直流電力に変換してコンデンサ71f、71rを介してバッテリ70を充電する。 The inverter 8 converts the power from the battery 70 into AC power and outputs a current corresponding to a signal from the drive circuit 9 to the motor 3 to drive the motor 3. Further, the inverter 8 converts AC power generated by the motor 3 into DC power and charges the battery 70 via the capacitors 71f and 71r.
 前輪用駆動回路9fは、前輪用モータ3fの1次巻線の電流を検出する電流センサ15a、15b、15cからの電流検出信号を受信する。後輪用駆動回路9rは、後輪用モータ3rの1次巻線の電流を検出する電流センサ17a、17b、17cからの電流検出信号を受信する。駆動回路9f、9rは、制御装置10から指令された目標トルクに応じた信号をインバータ8に出力する。 The front wheel drive circuit 9f receives current detection signals from the current sensors 15a, 15b, 15c that detect the current of the primary winding of the front wheel motor 3f. The rear wheel drive circuit 9r receives current detection signals from the current sensors 17a, 17b, and 17c that detect the current of the primary winding of the rear wheel motor 3r. The drive circuits 9 f and 9 r output a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
 差動装置4f、4rは、前輪側の車軸5fr、5flへの制駆動力の配分率、および後輪側の車軸5rr、5rlへの制駆動力の配分率を制御装置10により制御可能な機構を備えたものである。前輪用モータ3fの制駆動力は、制御装置10により制御された配分率で前輪用差動装置4fにより右後前輪2fr及び左前輪2flに配分される。また、後輪用モータ3rの制駆動力は、制御装置10により制御された配分率で後輪用差動装置4rにより右後輪2rr及び左後輪2rlに配分される。 The differential devices 4f and 4r are mechanisms capable of controlling the braking / driving force distribution ratio to the front wheel axles 5fr and 5fl and the braking / driving force distribution ratio to the rear wheel axles 5rr and 5rl by the control device 10. It is equipped with. The braking / driving force of the front wheel motor 3f is distributed to the right rear front wheel 2fr and the left front wheel 2fl by the front wheel differential device 4f at a distribution rate controlled by the control device 10. The braking / driving force of the rear wheel motor 3r is distributed to the right rear wheel 2rr and the left rear wheel 2rl by the rear wheel differential device 4r at a distribution rate controlled by the control device 10.
(センサ系)
 エンコーダ16f、16rは、前輪側および後輪側のそれぞれにおいて、モータ3の回転数を検出し、検出した回転数に応じた信号を制御装置10に出力する。
(Sensor system)
The encoders 16f and 16r detect the rotational speed of the motor 3 on each of the front wheel side and the rear wheel side, and output a signal corresponding to the detected rotational speed to the control device 10.
 アクセルセンサ22は、アクセルペダル12の踏み込み量を検出し、検出した踏み込み量に応じた信号xaを制御装置10に出力する。 The accelerator sensor 22 detects the depression amount of the accelerator pedal 12 and outputs a signal xa corresponding to the detected depression amount to the control device 10.
 ブレーキセンサ23は、ブレーキペダル13の踏み込み量を検出し、検出した踏み込み量に応じた信号xbを制御装置10に出力する。 The brake sensor 23 detects the depression amount of the brake pedal 13, and outputs a signal xb corresponding to the detected depression amount to the control device 10.
 シフトセンサ24は、シフトレバー14の位置を検出し、検出した位置に応じた信号S制御装置10に出力する。 The shift sensor 24 detects the position of the shift lever 14 and outputs it to the signal S control device 10 according to the detected position.
 加速度センサ26は、車体25の推進前後方向、横方向、重心軸回りの回転方向(旋回方向)の3方向の加速度aY、aX、aθを検出する3軸加速度センサであり、検出したそれぞれの加速度aY、aX、aθに応じた信号を制御装置10に出力する。 The acceleration sensor 26 is a three-axis acceleration sensor that detects accelerations a Y , a X , and aθ in three directions of the vehicle body 25 in the front-rear direction, the lateral direction, and the rotational direction (turning direction) around the center of gravity axis. The signals corresponding to the accelerations a Y , a X , and aθ are output to the control device 10.
 車輪速センサ28fr、28fl、28rr、28rlは、車輪の回転速度ωを検出し、検出した回転速度ωに応じた信号を制御装置10に出力する。 Wheel speed sensors 28fr, 28fl, 28rr, 28rl detect the rotational speed ω of the wheel and output a signal corresponding to the detected rotational speed ω to the control device 10.
 操舵角センサ29は、ステアリングホイール19の操舵角γを検出し、検出した操舵角γに応じた信号を制御装置10に出力する。 The steering angle sensor 29 detects the steering angle γ of the steering wheel 19 and outputs a signal corresponding to the detected steering angle γ to the control device 10.
 電圧センサ72f、72rは、コンデンサ71f、71rの電圧(インバータ入力電圧)を検出し、検出したインバータ入力電圧に応じた信号を制御装置10に出力する。 The voltage sensors 72f and 72r detect the voltage (inverter input voltage) of the capacitors 71f and 71r, and output a signal corresponding to the detected inverter input voltage to the control device 10.
 バッテリ容量センサ73は、バッテリ70の蓄電容量(残容量)を検出し、検出した蓄電容量に応じた信号を制御装置10に出力する。バッテリ容量センサ73は、例えば、バッテリ端子電圧(オープン電圧)に基づいて求める方法、バッテリ内部抵抗に基づいて求める方法、バッテリ充放電電流の積算値に基づいて求める方法、あるいはこれらの組み合わせた方法等により、バッテリ70の蓄電容量を検出する。 Battery capacity sensor 73 detects the storage capacity (remaining capacity) of battery 70 and outputs a signal corresponding to the detected storage capacity to control device 10. The battery capacity sensor 73 is obtained by, for example, a method based on the battery terminal voltage (open voltage), a method based on the battery internal resistance, a method based on the integrated value of the battery charge / discharge current, or a combination of these. Thus, the storage capacity of the battery 70 is detected.
(ブレーキ系)
 電気自動車1では、電気ブレーキと機械ブレーキとが併用される。すなわち、電気自動車1では、駆動源としてのモータ3により制動力を発生可能である。電気ブレーキは、例えば、制動エネルギーを熱エネルギーに変換する発電ブレーキ、および制動により発生する電気を回生する回生ブレーキである。本実施の形態では、主として回生ブレーキを用いるが、低速領域では発電ブレーキを用いる場合もある。回生ブレーキは、モータ3が発電した電力をコンデンサ71を介してバッテリ70に回生し、これにより制動力を発生させる。
(Brake system)
In the electric vehicle 1, an electric brake and a mechanical brake are used in combination. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source. The electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking. In the present embodiment, a regenerative brake is mainly used, but a power generation brake may be used in a low speed region. The regenerative brake regenerates the electric power generated by the motor 3 to the battery 70 via the capacitor 71, thereby generating a braking force.
 機械ブレーキ18は、例えばドラムブレーキやディスクブレーキであり、圧力調整ユニット11からの加圧液体によりブレーキシューを被制動部材に押し付けて摩擦力による摩擦制動を得るものである。機械ブレーキ18の動作は、制御装置10により各車輪2に対して独立に制御される。なお、ブレーキシューをモータ等のアクチュエータにより被制動部材に押し付けてもよい。 The mechanical brake 18 is, for example, a drum brake or a disc brake, and presses a brake shoe against a member to be braked by pressurized liquid from the pressure adjustment unit 11 to obtain friction braking by a friction force. The operation of the mechanical brake 18 is controlled independently for each wheel 2 by the control device 10. The brake shoe may be pressed against the member to be braked by an actuator such as a motor.
 圧力調整ユニット11は、制御装置10からの信号により機械ブレーキ18に加圧液体を分配して機械ブレーキ18毎に異なる制動力を付与可能に構成されている。なお、圧力調整ユニット11および機械ブレーキ18は、摩擦ブレーキ機構を構成する。 The pressure adjustment unit 11 is configured to be able to apply a different braking force to each mechanical brake 18 by distributing pressurized liquid to the mechanical brake 18 according to a signal from the control device 10. The pressure adjusting unit 11 and the mechanical brake 18 constitute a friction brake mechanism.
(撮像系)
 前方のカメラ20fr、20flは、電気自動車1の前方側の路面を撮像し、撮像した画像を制御装置10に出力する。制御装置10は、カメラ20fr、20flから取得した画像に基づいて路面の変化を検出して、制駆動に関する処理を実行する。前方のカメラ20fr、20flは、その撮像領域は互いに少なくとも一部が重複している。カメラ20fr、20flは、例えばCCD(Charge Coupled Device)カメラにより構成されている。
(Imaging system)
The front cameras 20 fr and 20 fl capture the road surface in front of the electric vehicle 1 and output the captured image to the control device 10. The control device 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving. The imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other. The cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
 後方のカメラ21は、電気自動車1の後方側の路面を撮像し、撮像した画像を制御装置10に出力する。制御装置10は、カメラ21から取得した画像に基づいて路面の変化を検出して、制駆動に関する処理を実行する。カメラ21は、例えばCCDカメラにより構成されている。 The rear camera 21 images the road surface behind the electric vehicle 1 and outputs the captured image to the control device 10. The control device 10 detects a change in the road surface based on the image acquired from the camera 21 and executes processing related to braking / driving. The camera 21 is constituted by a CCD camera, for example.
(制御系)
 図2は、制御装置10を機能的に示すブロック図である。制御装置10は、例えばコンピュータにより構成され、CPU100と、半導体メモリ、ハードディスク等の記憶部110とを有する。
(Control system)
FIG. 2 is a block diagram functionally showing the control device 10. The control device 10 is configured by a computer, for example, and includes a CPU 100 and a storage unit 110 such as a semiconductor memory or a hard disk.
 制御装置10は、運転者がアクセルペダル12、ブレーキペダル13等の操作手段を操作することによって発生する操作入力情報に応じた加速、減速等の動作を行うための動作指令を前輪用駆動回路9f、後輪用駆動回路9r、機械ブレーキ18に出力し、前輪駆動系および後輪駆動系の駆動トルク(駆動力)および制動トルク(制動力)を制御する。これにより、電気自動車1は、運転者の操作に従って走行することができる。 The control device 10 issues an operation command for performing an operation such as acceleration and deceleration according to operation input information generated by the driver operating the operating means such as the accelerator pedal 12 and the brake pedal 13. The rear wheel drive circuit 9r and the mechanical brake 18 are output to control the driving torque (driving force) and braking torque (braking force) of the front wheel driving system and the rear wheel driving system. Thereby, the electric vehicle 1 can drive | work according to a driver | operator's operation.
 制御装置10は、各センサ22、23、24、26、29からの信号等に応じて前輪用モータ3fの目標トルクおよび後輪用モータ3rの目標トルクをそれぞれ算出し、前輪用駆動回路9f、後輪用駆動回路9rに出力する。前輪側および後輪側それぞれにおいて、駆動回路9は、制御装置10から指令された目標トルクに応じた信号をインバータ8に出力する。 The control device 10 calculates the target torque of the front wheel motor 3f and the target torque of the rear wheel motor 3r in accordance with signals from the sensors 22, 23, 24, 26, 29, etc., respectively, and the front wheel drive circuit 9f, Output to the rear wheel drive circuit 9r. On each of the front wheel side and the rear wheel side, the drive circuit 9 outputs a signal corresponding to the target torque commanded from the control device 10 to the inverter 8.
 記憶部110には、路面パターン111、μ-SrLimitテーブル112、後述する図3に示すような制駆動力とスリップ率の関係情報等の各種のデータと、制駆動プログラム113等の各種のプログラムが格納されている。 In the storage unit 110, various data such as a road surface pattern 111, a μ-SrLimit table 112, relational information on braking / driving force and slip ratio as shown in FIG. 3 to be described later, and various programs such as a braking / driving program 113 are stored. Stored.
 CPU100は、制駆動プログラム113に従って動作することにより、路面摩擦係数μ推定手段(推定部)101、スリップ率上限値設定手段(設定部)102、スリップ率演算手段(演算部)103、制駆動力制御手段(制御部)104等として機能する。 The CPU 100 operates in accordance with the braking / driving program 113, so that the road surface friction coefficient μ estimating unit (estimating unit) 101, the slip ratio upper limit setting unit (setting unit) 102, the slip ratio calculating unit (calculating unit) 103, the braking / driving force It functions as the control means (control unit) 104 and the like.
(路面摩擦係数μ推定手段)
 路面摩擦係数μ推定手段101は、前方のカメラ20fr、fl(車両後退時は後方のカメラ21)が撮像した画像に基づいて、自動車1の走行する路面が、乾燥路面、湿潤路面、凍結・雪路路面況等のいずれかであるかを判定し、路面の摩擦係数μを推定する。これらの路面は、摩擦係数μが大きく異なる代表的な路面である。当該判定は、撮像した画像と、予め各路面状況において撮像された路面パターン111とのパターンマッチングにより行う。路面パターン111は、路面の摩擦係数μに関連付けて記憶部110に記憶されている。なお、当該判定を輝度等が所定の閾値を超えたか否かの判断により行うなど、公知の技術を適宜用いて行ってよい。
(Road surface friction coefficient μ estimation means)
The road surface friction coefficient μ estimation means 101 is based on an image captured by the front cameras 20fr and fl (the rear camera 21 when the vehicle is reverse), and the road surface on which the automobile 1 travels is a dry road surface, a wet road surface, a frozen / snow surface. It is determined whether the road surface condition or the like, and the friction coefficient μ of the road surface is estimated. These road surfaces are typical road surfaces with greatly different friction coefficients μ. The determination is performed by pattern matching between the captured image and the road surface pattern 111 captured in advance in each road surface condition. The road surface pattern 111 is stored in the storage unit 110 in association with the friction coefficient μ of the road surface. In addition, you may perform using the well-known technique suitably, such as performing the said determination by determination whether the brightness | luminance etc. exceeded the predetermined threshold value.
(スリップ率上限値設定手段)
 図3は、駆動力および制動力とスリップ率との関係を示す図である。実線L1は、乾路路面、実線L2は湿潤路面、実線L3は凍結・雪路路面の場合を示している。これらの各路面は、摩擦係数が大きく異なる代表的な路面である。摩擦係数は、例えば、乾路路面では0.75、湿潤路面では0.4、凍結・雪路路面では0.2である。記憶部110には、図2に示すように、路面の摩擦係数μとスリップ率上限値SrLimitとの関係を示すμ-SrLimitテーブル112が記憶されている。μ-SrLimitテーブル112には、例えば、乾路路面(μ=0.75)に対応してスリップ率上限値SrLimit1(|Sr|=0.16)が記憶され、湿潤路面(μ=0.4)に対応してスリップ率上限値SrLimit2(|Sr|=0.14)が記憶され、凍結・雪路路面(μ=0.2)に対応してスリップ率上限値SrLimit3(|Sr|=0.12)が記憶されている。
(Slip rate upper limit setting means)
FIG. 3 is a diagram showing the relationship between the driving force and braking force and the slip ratio. A solid line L1 indicates a dry road surface, a solid line L2 indicates a wet road surface, and a solid line L3 indicates a frozen / snow road surface. Each of these road surfaces is a typical road surface having a significantly different friction coefficient. The coefficient of friction is, for example, 0.75 on a dry road surface, 0.4 on a wet road surface, and 0.2 on a frozen / snow road surface. As shown in FIG. 2, the storage unit 110 stores a μ-SrLimit table 112 indicating the relationship between the road friction coefficient μ and the slip ratio upper limit value SrLimit. In the μ-SrLimit table 112, for example, the slip ratio upper limit value SrLimit1 (| Sr | = 0.16) is stored corresponding to the dry road surface (μ = 0.75), and the wet road surface (μ = 0.4). ) Is stored, and the slip ratio upper limit value SrLimit2 (| Sr | = 0.14) is stored, and the slip ratio upper limit value SrLimit3 (| Sr | = 0) corresponding to the frozen / snow road surface (μ = 0.2). .12) is stored.
 スリップ率上限値設定手段102は、路面摩擦係数μ推定手段101が推定した路面の摩擦係数に基づいて、記憶部110内のμ-SrLimitテーブル112を参照し、所定の値としてのスリップ率上限値SrLimitを設定する。スリップ率上限値SrLimitは、例えば、図3における各路面状況に応じて発揮し得る制動力の最大値付近の値に設定されるが、最大値付近の値に限られない。スリップ率上限値SrLimitは、例えば路面の摩擦係数に応じて発揮し得る最大制動力の70~90%よりも高い制動力が発揮されるスリップ率に設定することができる。 The slip ratio upper limit value setting means 102 refers to the μ-SrLimit table 112 in the storage unit 110 based on the road surface friction coefficient estimated by the road surface friction coefficient μ estimation means 101, and determines the slip ratio upper limit value as a predetermined value. Set SrLimit. The slip ratio upper limit value SrLimit is set to a value in the vicinity of the maximum value of the braking force that can be exhibited according to each road surface condition in FIG. 3, for example, but is not limited to a value in the vicinity of the maximum value. The slip ratio upper limit value SrLimit can be set to a slip ratio at which a braking force higher than 70 to 90% of the maximum braking force that can be exhibited according to the friction coefficient of the road surface, for example.
 スリップ率上限値設定手段102は、前方のカメラ20fr、20fl(車両後退時は後方のカメラ21)が路面を撮像し、その撮像した路面に前輪2fr、2fl及び後輪2rr、2rlが進入するタイミングで前輪2fr、2fl及び後輪2rr、2rlのスリップ率上限値をそれぞれ設定するように構成されている。例えば、乾路路面を走行中に前輪2fr、2flが湿潤路面に進入した場合、前輪2fr、2flについては、湿潤路面に対応したスリップ率上限値(例えば、|Sr|=0.14)が設定され、後輪2rr、2rlについては、乾路路面に対応したスリップ率上限値(例えば、|Sr|=0.16)が設定される。なお、車両前進時に、前方のカメラ20fr、20flが撮像した画像から推定される摩擦係数と後方のカメラ21が撮像した画像から推定される摩擦係数との中間値を後輪の摩擦係数やスリップ率上限値として用いてもよく、車両後退時に、その中間値を前輪の摩擦係数やスリップ率上限値として用いてもよい。 The slip ratio upper limit setting means 102 is a timing at which the front cameras 20fr and 20fl (the rear camera 21 when the vehicle is moving backward) images the road surface, and the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl enter the imaged road surface. Thus, the slip ratio upper limit values of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl are respectively set. For example, when the front wheels 2fr and 2fl enter a wet road surface while traveling on a dry road surface, a slip ratio upper limit value (for example, | Sr | = 0.14) corresponding to the wet road surface is set for the front wheels 2fr and 2fl. For the rear wheels 2rr and 2rl, a slip ratio upper limit value (for example, | Sr | = 0.16) corresponding to the dry road surface is set. When the vehicle moves forward, intermediate values between the friction coefficient estimated from the images captured by the front cameras 20fr and 20fl and the friction coefficient estimated from the images captured by the rear camera 21 are used as the friction coefficient and slip ratio of the rear wheels. It may be used as an upper limit value, or an intermediate value thereof may be used as a front wheel friction coefficient or a slip ratio upper limit value when the vehicle is moving backward.
(スリップ率演算手段)
 スリップ率演算手段103は、車体速度をV、車輪2の回転速度をω、車輪2の半径をRとしたとき、駆動時の車輪2のスリップ率Srを以下の式により算出する。
   Sr=(Rω-V)/Rω  ・・・・式(1)
(Slip rate calculation means)
The slip ratio calculating means 103 calculates the slip ratio Sr of the wheel 2 during driving by the following formula, where V is the vehicle body speed, ω is the rotational speed of the wheel 2, and R is the radius of the wheel 2.
Sr = (Rω−V) / Rω (1)
 また、スリップ率演算手段103は、制動時の車輪2のスリップ率Srを以下の式により算出する。
   Sr=(Rω-V)/V    ・・・・式(2)
Moreover, the slip ratio calculating means 103 calculates the slip ratio Sr of the wheel 2 at the time of braking by the following formula.
Sr = (Rω−V) / V (2)
 式(1)から理解されるように、駆動時においてスリップ率Srが1.0になる場合は、V=0であり、ホイールスピンが生じている状態である。式(2)から理解されるように、制動時においてスリップ率Srが-1.0になる場合は、ω=0であり、ホイールロックが生じている状態である。すなわち、スリップ率Srの絶対値が1である状態は、いずれも路面に制駆動力(駆動力又は制動力)を伝えられない状態である。また、スリップ率Srが0である状態は、車輪2と路面との間に滑りがない状態である。なお、スリップ率演算手段103は、加速度センサ26からの車体25の推進前後方向の加速度aYに応じた信号に基づいて、車体25の推進前後方向の加速度aYを積分して車体速度Vを求める。また、スリップ率演算手段103は、車輪速センサ28からの車輪2の回転速度ωに応じた信号に基づいて、車輪2の回転速度ωを求める。 As understood from the equation (1), when the slip ratio Sr becomes 1.0 at the time of driving, V = 0 and wheel spin is occurring. As understood from the equation (2), when the slip ratio Sr becomes −1.0 during braking, ω = 0 and the wheel is locked. That is, the state where the absolute value of the slip ratio Sr is 1 is a state where any braking / driving force (driving force or braking force) cannot be transmitted to the road surface. The state where the slip ratio Sr is 0 is a state where there is no slip between the wheel 2 and the road surface. The slip ratio calculating means 103 integrates the acceleration a Y in the longitudinal direction of the vehicle body 25 based on a signal corresponding to the acceleration a Y in the longitudinal direction of the vehicle body 25 from the acceleration sensor 26 to obtain the vehicle body speed V. Ask. Further, the slip ratio calculating means 103 obtains the rotational speed ω of the wheel 2 based on a signal corresponding to the rotational speed ω of the wheel 2 from the wheel speed sensor 28.
(制駆動力制御手段)
 制駆動力制御手段104は、スリップ率演算手段103が算出したスリップ率Srがスリップ率上限値SrLimit以下であるか否かを判断する。なお、制駆動力制御手段104がスリップ率の比較を行うときは、絶対値で行う。そして、制駆動力制御手段104は、μ-SrLimitテーブル112、図3に示すような制駆動力とスリップ率の関係情報等に基づいて、スリップ率をある目標値に制御するスリップ率制御、荷重移動に伴うホイールロック、ホイールスピンの抑制制御、直進性を保持する直進性制御、横風等の外乱の影響を抑制する外乱抑制制御、旋回性能を向上させるための旋回制御等を行う。以下、それらの制御について説明する。なお、これらの制御は、単独で行われ場合もあり、いくつかの制御が同時に行われる場合もある。
(Braking / driving force control means)
The braking / driving force control means 104 determines whether or not the slip ratio Sr calculated by the slip ratio calculating means 103 is equal to or less than the slip ratio upper limit value SrLimit. In addition, when the braking / driving force control means 104 compares the slip ratio, the absolute value is used. Then, the braking / driving force control means 104 is configured to control the slip ratio to a certain target value based on the μ-SrLimit table 112, the relation information between the braking / driving force and the slip ratio as shown in FIG. Wheel lock accompanying movement, wheel spin suppression control, straightness control to maintain straightness, disturbance suppression control to suppress the influence of disturbances such as cross wind, turning control to improve turning performance, and the like are performed. Hereinafter, those controls will be described. In addition, these controls may be performed independently and some controls may be performed simultaneously.
<スリップ率制御>
 制駆動力制御手段104は、各車輪2のスリップ率がスリップ率上限値SrLimit以下のときは、アクセルペダル12の踏み込み量に応じてモータ3の駆動力を発揮させ、ブレーキペダル13の踏み込み量に応じて機械ブレーキ18による制動力、および駆動回路9による電気ブレーキの制動力を共に発揮させる。また、制駆動力制御手段104は、例えば摩擦係数が小さい低μ路において、各車輪2のスリップ率のいずれか(複数の車輪2が同時の場合も含む。)が、スリップ率上限値SrLimitを超えたとき、アクセルペダル12の踏み込み量に関わらず、スリップ率上限値SrLimitを超えたスリップ率がスリップ率上限値SrLimit以下になるようにモータ3の駆動力を制御し、ブレーキペダル13の踏み込み量に関わらず、スリップ率上限値SrLimitを超えたスリップ率がスリップ率上限値SrLimit以下になるように、電気ブレーキによる制動力を制御するとともに、機械ブレーキ18による制動力を制御する。なお、制駆動力制御手段104は、制駆動力の制御を左右輪のスリップ率のうちいずれかが大きい方かを判断し、大きい方のスリップ率に基づいて行ってもよい。
<Slip rate control>
When the slip rate of each wheel 2 is equal to or less than the slip rate upper limit value SrLimit, the braking / driving force control means 104 exerts the driving force of the motor 3 according to the depression amount of the accelerator pedal 12 and sets the depression amount of the brake pedal 13. Accordingly, both the braking force by the mechanical brake 18 and the braking force of the electric brake by the drive circuit 9 are exhibited. Further, the braking / driving force control means 104, for example, on a low μ road with a small friction coefficient, one of the slip ratios of each wheel 2 (including the case where a plurality of wheels 2 are simultaneously used) sets the slip ratio upper limit value SrLimit. When it exceeds, the driving force of the motor 3 is controlled so that the slip ratio exceeding the slip ratio upper limit value SrLimit is equal to or less than the slip ratio upper limit value SrLimit regardless of the depression amount of the accelerator pedal 12, and the brake pedal 13 is depressed. Regardless, the braking force by the electric brake and the braking force by the mechanical brake 18 are controlled so that the slip rate exceeding the slip rate upper limit value SrLimit is equal to or less than the slip rate upper limit value SrLimit. The braking / driving force control means 104 may determine the braking / driving force control based on the larger slip ratio by determining which of the slip ratios of the left and right wheels is larger.
<荷重移動に伴うホイールロック、ホイールスピンの抑制制御>
 図4は、電気自動車1における制動力の前輪2fr、2fl及び後輪2rr、2rlヘの分配方法を説明するための図である。
<Control of wheel lock and wheel spin suppression with load transfer>
FIG. 4 is a diagram for explaining a method of distributing braking force to the front wheels 2fr, 2fl and the rear wheels 2rr, 2rl in the electric vehicle 1.
 図4に示すように、電気自動車1が加速度aYで減速するときの制動力Fcarは、
   Fcar=M×aY        ・・・式(3)
となる。ここで、Mは、電気自動車1全体の質量(車体質量)である。
As shown in FIG. 4, the braking force Fcar when the electric vehicle 1 decelerates at an acceleration a Y is
Fcar = M × a Y Expression (3)
It becomes. Here, M is the mass (body mass) of the entire electric vehicle 1.
 そのときの荷重移動量Zは、制動力Fcarによって生じる電気自動車1の重心G回りのモーメントを前輪2fr、2fl及び後輪2rr、2rlの接地点における垂直荷重に換算した次式(4)により得られる。
   Z=Fcar×Hcar/Lcar        ・・・式(4)
 ここで、Hcarは、電気自動車1の重心Gの接地面からの高さであり、Lcarは、電気自動車1のホイールベースである。
The load movement amount Z at that time is obtained by the following equation (4) in which the moment around the center of gravity G of the electric vehicle 1 generated by the braking force Fcar is converted to the vertical load at the contact point of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl. It is done.
Z = Fcar × Hcar / Lcar (4)
Here, Hcar is the height of the center of gravity G of the electric vehicle 1 from the ground contact surface, and Lcar is the wheel base of the electric vehicle 1.
 また、電気自動車1が停止しているときの前輪荷重をWf、後輪荷重をWr、路面の摩擦係数をμとすると、摩擦力と釣り合う前輪及び後輪の制動力、すなわち、前輪2fr、2flの最大制動力Ffmax及び後輪2rr、2rlの最大制動力Frmaxは、それぞれ次式(5)、(6)により表される。
   Ffmax=μ(Wf+Z)     ・・・式(5)
   Frmax=μ(Wr-Z)     ・・・式(6)
When the front wheel load when the electric vehicle 1 is stopped is Wf, the rear wheel load is Wr, and the friction coefficient of the road surface is μ, the braking force of the front and rear wheels that balances the friction force, that is, the front wheels 2fr, 2fl. The maximum braking force Ffmax and the maximum braking force Frmax of the rear wheels 2rr and 2rl are expressed by the following equations (5) and (6), respectively.
Ffmax = μ (Wf + Z) (5)
Frmax = μ (Wr−Z) (6)
 従って、前輪側及び後輪側のそれぞれにおけるモータ3及び機械ブレーキ18による制動力が、最大制動力Ffmax及び最大制動力Frmaxとなるように、モータ3及び機械ブレーキ18の動作を制御すれば、電気自動車1全体として最も制動力が大きくなり、ホイールロックを抑制することができる。以上は減速時についての説明であるが、加速時も同様であり、荷重移動に基づいて最適な駆動力となるように制御することにより、ホイールスピンを抑制することができる。 Therefore, if the operation of the motor 3 and the mechanical brake 18 is controlled so that the braking force by the motor 3 and the mechanical brake 18 on the front wheel side and the rear wheel side becomes the maximum braking force Ffmax and the maximum braking force Frmax, respectively. The entire vehicle 1 has the largest braking force, and wheel lock can be suppressed. The above is the explanation about the deceleration, but the same applies to the acceleration, and the wheel spin can be suppressed by controlling so as to obtain an optimum driving force based on the load movement.
<直進性制御>
 図5は、直進性制御を説明するための図である。同図中、25a、25b、25c、25dは、車体が紙面の下方から上方に向かって直進している様子を示している。
<Straightness control>
FIG. 5 is a diagram for explaining straightness control. In the figure, reference numerals 25a, 25b, 25c, and 25d indicate that the vehicle body goes straight from the bottom to the top of the page.
 制駆動力制御手段104は、直進性制御を行う際、検出された操舵角に応じた車体25の向きとなるように、モータ3の制駆動力、および差動装置4の動力配分比率を制御する。これは、旋回制御でも同様である。 The braking / driving force control means 104 controls the braking / driving force of the motor 3 and the power distribution ratio of the differential device 4 so that the direction of the vehicle body 25 corresponds to the detected steering angle when performing straightness control. To do. The same applies to the turning control.
 制駆動力制御手段104は、操舵角センサ29からの操舵角γに応じた信号に基づいて、車体25が直進走行しているか、旋回走行しているかを判定する。例えば、検出された操舵角γが一定の角度範囲内(例えば±2°以内)である場合には、直進走行していると判定し、それ以外は旋回走行していると判定する。直進走行していると判定した場合は、以下に説明するように直進性制御を行う。 The braking / driving force control means 104 determines whether the vehicle body 25 is traveling straight or turning based on a signal corresponding to the steering angle γ from the steering angle sensor 29. For example, when the detected steering angle γ is within a certain angle range (for example, within ± 2 °), it is determined that the vehicle is traveling straight, and otherwise, it is determined that the vehicle is turning. When it is determined that the vehicle is traveling straight ahead, straightness control is performed as described below.
 直進走行中に、各車輪2のスリップ率Srのうちいずれか1つのスリップ率Srがスリップ率上限値SrLimitを超えたとき、制駆動力制御手段104は、当該車輪2(例えば右輪2fr)の制駆動力を減らすとともに、反対側の車輪2(例えば左輪2fl)の制駆動力をスリップ率が所定の値、例えばスリップ率上限値SrLimitを超えない範囲で増やす制御を行う。これにより、ホイールスピンやホイールロックを防止し、推進力を確保することができる。 When any one of the slip ratios Sr of each wheel 2 exceeds the slip ratio upper limit value SrLimit during straight traveling, the braking / driving force control means 104 determines that the wheel 2 (for example, the right wheel 2fr) While reducing the braking / driving force, control is performed to increase the braking / driving force of the opposite wheel 2 (for example, the left wheel 2fl) within a range where the slip ratio does not exceed a predetermined value, for example, the slip ratio upper limit value SrLimit. Thereby, a wheel spin and a wheel lock can be prevented and a propulsive force can be ensured.
 このとき、加速度センサ26からの旋回加速度aθに応じた信号に基づいて、旋回加速度aθが閾値aθthを超えたか否かを判断し。閾値aθthを超えた場合には、旋回加速度aθが抑制されるように、前後方向の反対側の車軸の左右輪(例えば右輪2rr、左輪2rl)の制駆動力を制御する。すなわち、右輪2rrの制駆動力を増やし、左輪2rlの制駆動力を減らす制御を行う。これにより、旋回が抑制され、直進走行を継続することができる。 At this time, on the basis of the signals corresponding to the turning acceleration A.theta. From the acceleration sensor 26, the turning acceleration A.theta. It is determined whether or not exceeding the threshold A.theta. Th. If the threshold is exceeded A.theta. Th, as in turn acceleration A.theta. Is suppressed, it controls the braking and driving forces of the left and right wheels in the front-rear direction of the opposite side of the axle (e.g. right wheel 2rr, left wheel 2RL). That is, control is performed to increase the braking / driving force of the right wheel 2rr and reduce the braking / driving force of the left wheel 2rl. Thereby, turning is suppressed and straight running can be continued.
<外乱抑制制御>
 図6Aは、駆動時に車体25が横方向に動こうとしている状態を示す平面図、図6Bは、駆動時に車体25が旋回しようとしている状態を示す平面図である。制駆動力制御手段104は、例えば、直進性制御を行っている間に外乱によって横ズレや旋回が生じたときに横ズレや旋回を抑制する。なお、旋回制御を行っている場合でも外乱抑制制御を行ってもよい。
<Disturbance suppression control>
6A is a plan view showing a state in which the vehicle body 25 is about to move laterally during driving, and FIG. 6B is a plan view showing a state in which the vehicle body 25 is about to turn during driving. For example, the braking / driving force control unit 104 suppresses the lateral displacement or turning when a lateral displacement or turning occurs due to a disturbance while performing the straightness control. Note that disturbance suppression control may be performed even when turning control is performed.
 制駆動力制御手段104は、加速度センサ26によって検出された横方向加速度aX、旋回加速度aθのうちいずれの加速度が大きいかを判断する。この判断は、例えば各加速度aX、aθを正規化して行う。加速度aX、aθの正規化後の加速度をそれぞれaNX、aNθとすると、aNX、aNθは、以下の式によって求めることができる。
   aNX=aX×kX、aNθ=aθ×kθ×g
 ここで、kX、kθは係数、gは重力加速度である。係数kX、kθは、安定走行の観点から定めることができる。
The braking / driving force control means 104 determines which of the lateral acceleration a X and the turning acceleration aθ detected by the acceleration sensor 26 is greater. This determination is performed, for example, by normalizing the accelerations a X and aθ. If the accelerations after normalization of the accelerations aX and aθ are a NX and a N θ, respectively, a NX and a N θ can be obtained by the following equations.
a NX = a X × k X , a N θ = aθ × kθ × g
Here, k X and kθ are coefficients, and g is the gravitational acceleration. The coefficients k X and kθ can be determined from the viewpoint of stable running.
 正規化後の横方向加速度aNXの方が大きいと判断した場合には、制駆動力制御手段104は、以下のように制御を行う。横方向加速度aXの方向を判定し、横方向加速度aXの方向が右方向の場合、例えば、図6Aに示すように、右輪トルクが左輪トルクよりも大きくなるように所定のスリップ率、例えばスリップ率上限値SrLimitを超えない範囲で制御する。すなわち、前輪用差動装置4fの制駆動力の配分比率を右輪トルクが左輪トルクよりも大きくなるように制御するか、後輪用差動装置4rの制駆動力の配分比率を所定のスリップ率、例えばスリップ率上限値SrLimitを超えない範囲で右輪トルクが左輪トルクよりも大きくなるように制御する。 When it is determined that the lateral acceleration a NX after normalization is larger, the braking / driving force control means 104 performs control as follows. Determines the direction of the lateral acceleration a X, when the direction of the lateral acceleration a X of the right, for example, as shown in Figure 6A, the predetermined as the right wheel torque is greater than the left wheel torque slip rate, For example, control is performed within a range not exceeding the slip ratio upper limit value SrLimit. That is, the braking / driving force distribution ratio of the front wheel differential device 4f is controlled so that the right wheel torque is larger than the left wheel torque, or the braking / driving force distribution ratio of the rear wheel differential device 4r is set to a predetermined slip. The right wheel torque is controlled to be greater than the left wheel torque within a range that does not exceed the ratio, for example, the slip ratio upper limit value SrLimit.
 横方向加速度aXの方向が左方向の場合、左輪トルクが右輪トルクよりも大きくなるように制御する。例えば、前輪用差動装置4fの制駆動力の配分比率を左輪トルクが右輪トルクよりも大きくなるように制御するか、後輪用差動装置4rの制駆動力の配分比率を左輪トルクが右輪トルクよりも大きくなるように制御する。 When the direction of the lateral acceleration aX is the left direction, the left wheel torque is controlled to be larger than the right wheel torque. For example, the distribution ratio of the braking / driving force of the front wheel differential device 4f is controlled so that the left wheel torque is larger than the right wheel torque, or the braking / driving force distribution ratio of the rear wheel differential device 4r is controlled by the left wheel torque. Control to be greater than the right wheel torque.
 正規化後の旋回加速度aNθの方が大きいと判断した場合には、制駆動力制御手段104は、以下の制御を行う。旋回加速度aθの方向を判定し、旋回加速度aθの方向が右回転の場合、例えば、図6Bに示すように、右輪トルクが左輪トルクよりも大きくなるように制御する。例えば、前輪用差動装置4fの制駆動力の配分比率を右輪トルクが左輪トルクよりも大きくなるように制御するか、後輪用差動装置4rの制駆動力の配分比率を右輪トルクが左輪トルクよりも大きくなるように制御する。 If it is determined that the turning acceleration a N θ after normalization is larger, the braking / driving force control means 104 performs the following control. The direction of the turning acceleration aθ is determined, and when the direction of the turning acceleration aθ is clockwise, for example, as shown in FIG. 6B, control is performed so that the right wheel torque is larger than the left wheel torque. For example, the distribution ratio of braking / driving force of the front wheel differential device 4f is controlled so that the right wheel torque is larger than the left wheel torque, or the distribution ratio of braking / driving force of the rear wheel differential device 4r is set to the right wheel torque. Is controlled to be larger than the left wheel torque.
 旋回加速度aθの方向が左回転の場合、左輪トルクが右輪トルクよりも大きくなるように制御する。例えば、前輪用差動装置4fの制駆動力の配分比率を左輪トルクが右輪トルクよりも大きくなるように制御するか、後輪用差動装置4rの制駆動力の配分比率を左輪トルクが右輪トルクよりも大きくなるように制御する。以上は、駆動時における制御であるが、制動時は駆動時とは反対の制御を行う。なお、前後の差動装置4f、4rを同じように制御してもよい。 When the direction of the turning acceleration aθ is counterclockwise, control is performed so that the left wheel torque is larger than the right wheel torque. For example, the distribution ratio of the braking / driving force of the front wheel differential device 4f is controlled so that the left wheel torque is larger than the right wheel torque, or the braking / driving force distribution ratio of the rear wheel differential device 4r is controlled by the left wheel torque. Control to be greater than the right wheel torque. The above is the control at the time of driving, but the control opposite to that at the time of driving is performed at the time of braking. The front and rear differential devices 4f and 4r may be controlled in the same manner.
<旋回制御>
 図7A~図7Cは、駆動時の旋回制御を説明するための図である。
<Turning control>
7A to 7C are diagrams for explaining the turning control during driving.
 制駆動力制御手段104は、旋回制御を行う際、検出された操舵角に応じた車体25の向きとなるように、モータ3の制駆動力、および差動装置4の動力配分比率を制御する。 The braking / driving force control means 104 controls the braking / driving force of the motor 3 and the power distribution ratio of the differential device 4 so that the direction of the vehicle body 25 corresponds to the detected steering angle when performing turning control. .
 制駆動力制御手段104は、操舵角センサ29からの操舵角γに応じた信号に基づいて、車体25が直進走行しているか、旋回走行しているかを判定する。例えば、検出された操舵角γが一定の角度範囲内(例えば±2°以内)である場合には、直進走行していると判定し、それ以外は旋回走行していると判定する。旋回走行していると判定した場合は、以下に説明するように旋回制御を行う。 The braking / driving force control means 104 determines whether the vehicle body 25 is traveling straight or turning based on a signal corresponding to the steering angle γ from the steering angle sensor 29. For example, when the detected steering angle γ is within a certain angle range (for example, within ± 2 °), it is determined that the vehicle is traveling straight, and otherwise, it is determined that the vehicle is turning. When it is determined that the vehicle is turning, turning control is performed as described below.
 操舵角が右旋回を示しているとき、図7A~図7Cのいずれかの制御を行うことができる。図7Aに示す場合は、前輪側の左輪2flの制駆動力を増やすとともに、前輪側の右輪2frの制駆動力を減らすように制御する。また、図7Bに示す場合は、後輪側の左輪2rlの制駆動力を増やすとともに、後輪側の右輪2rrの制駆動力を減らすように制御する。また、図7Cに示す場合は、前輪側の左輪2flの制駆動力を増やすとともに、前輪側の右輪2frの制駆動力を減らすように制御し、さらに後輪側の左輪2rlの制駆動力を増やすとともに、後輪側の右輪2rrの制駆動力を減らすように制御する。以上は、駆動時における制御であるが、制動時は駆動時とは反対の制御を行う。 When the steering angle indicates a right turn, any one of the controls shown in FIGS. 7A to 7C can be performed. In the case shown in FIG. 7A, control is performed so as to increase the braking / driving force of the left wheel 2fl on the front wheel side and decrease the braking / driving force of the right wheel 2fr on the front wheel side. In the case shown in FIG. 7B, control is performed such that the braking / driving force of the rear wheel side left wheel 2rl is increased and the braking / driving force of the rear wheel side right wheel 2rr is decreased. 7C, the braking / driving force of the left wheel 2fl on the front wheel side is increased and the braking / driving force of the right wheel 2fr on the front wheel side is decreased, and the braking / driving force of the left wheel 2rl on the rear wheel side is further increased. And control to reduce the braking / driving force of the right wheel 2rr on the rear wheel side. The above is the control at the time of driving, but the control opposite to that at the time of driving is performed at the time of braking.
 なお、制駆動力制御手段104は、前輪2fr、2flの横力を確保するため、前輪2fr、2flへの制駆動力を路面摩擦係数に応じて制御し、各車輪1への制駆動力の合計が変化しないように、前輪2fr、2flへの制駆動力の変化分を後輪2rr、2rlへの制駆動力で補償してもよい。また、制駆動力制御手段104は、検出された操舵角に基づいて直進走行しているか、旋回走行しているかを判定し、旋回走行していると判定した場合、旋回加速度が操舵角に応じた所定の閾値を超えたときは、前後輪の各内輪側の車輪への制駆動力をスリップ率が所定の値を超えない範囲で増減し、前後輪の各外輪側の車輪への制駆動力をスリップ率が所定の値を超えない範囲で減増する制御を行い、旋回加速度が所定の閾値より小さいときは、前後輪の各内輪側の車輪への制駆動力をスリップ率が所定の値を超えない範囲で減増し、前後輪の各外側の車輪の駆動力をスリップ率が所定の値を超えない範囲で増減する制御を行ってもよい。これにより、旋回加速度の所定の閾値を越えたとき、車両の挙動が不安定領域に変化したと判断し、姿勢を安定化するように制御することができる。 The braking / driving force control means 104 controls the braking / driving force applied to the front wheels 2fr, 2fl according to the road surface friction coefficient in order to ensure the lateral force of the front wheels 2fr, 2fl, and the braking / driving force applied to each wheel 1 is controlled. The change in braking / driving force applied to the front wheels 2fr and 2fl may be compensated by the braking / driving force applied to the rear wheels 2rr and 2rl so that the sum does not change. The braking / driving force control means 104 determines whether the vehicle is traveling straight or turning based on the detected steering angle. If it is determined that the vehicle is turning, the turning acceleration depends on the steering angle. When the specified threshold value is exceeded, the braking / driving force to the inner and outer wheels of the front and rear wheels is increased / decreased within a range where the slip ratio does not exceed the predetermined value, and the braking / driving force to the outer and outer wheels of the front and rear wheels is increased / decreased. When the turning acceleration is smaller than a predetermined threshold value, the braking / driving force to the inner and outer wheels of the front and rear wheels is controlled by the slip ratio. Control may be performed in which the driving force of the outer wheels of the front and rear wheels is increased or decreased within a range that does not exceed the value and the slip rate does not exceed a predetermined value. Thereby, when the predetermined threshold value of the turning acceleration is exceeded, it can be determined that the behavior of the vehicle has changed to an unstable region, and the posture can be controlled to be stabilized.
(本実施の形態の効果)
 本実施の形態によれば、スリップ率および加速度に基づいて、前後輪への制駆動力を前後のモータ3f、3rで制御するとともに、左右輪への制駆動力配分を前後の差動装置4f、4rで行うことで、様々な路面や走行条件下で安定した走行性を確保することができ、旋回性能を改善することができる。
(Effect of this embodiment)
According to the present embodiment, the braking / driving force to the front and rear wheels is controlled by the front and rear motors 3f and 3r based on the slip ratio and acceleration, and the braking / driving force distribution to the left and right wheels is controlled by the front / rear differential device 4f. By using 4r, stable running performance can be ensured under various road surfaces and running conditions, and turning performance can be improved.
 本発明は、上記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲内で種々に変形実施が可能である。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、各手段101~104をCPU100と制駆動プログラム113によって実現したが、ASIC(Application Specific IC)等のハードウエアによって実現してもよい。 For example, each of the means 101 to 104 is realized by the CPU 100 and the braking / driving program 113, but may be realized by hardware such as an ASIC (Application Specific IC).
 また、制駆動プログラム113は、これを記録したCD-ROM等のコンピュータ読み取り可能な記録媒体から制御装置10内に取り込んでもよく、サーバ装置等からネットワークを介して制御装置10内に取り込んでもよい。 Further, the braking / driving program 113 may be taken into the control device 10 from a computer-readable recording medium such as a CD-ROM on which the braking / driving program 113 is recorded, or may be taken into the control device 10 from a server device or the like via a network.
 また、前後の差動装置4f、4rのうち一方の差動装置を左右への動力配分率が制御可能なものとしてもよい。 Further, one of the front and rear differential devices 4f and 4r may be configured such that the power distribution ratio to the left and right can be controlled.
 本発明は、上記実施の形態の他に、以下の他の実施の形態に係る電気自動車の制御装置、電気自動車の制御方法、制駆動プログラムを記録したコンピュータ読み取り可能な記録媒体を提供することもできる。 In addition to the above-described embodiments, the present invention also provides an electric vehicle control device, an electric vehicle control method, and a computer-readable recording medium that records a braking / driving program according to the following other embodiments. it can.
 他の実施の形態に係る電気自動車の制御装置は、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備え、前記第1および第2の差動装置の少なくとも一方の差動装置は、左右への動力配分率が制御可能な構成を有する電気自動車を制御する装置であって、操舵角に応じた車体の向きとなるように、前記第1および第2の電気モータの制駆動力、および動力配分率の制御が可能な前記少なくとも一方の差動装置の動力配分率を制御する制御部を備える。 An electric vehicle control device according to another embodiment includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a first electric motor on the left and right wheels on the rear wheel side. And a second electric motor that transmits braking / driving force via two differential devices, and at least one of the first and second differential devices has a power distribution ratio to the left and right controlled. An apparatus for controlling an electric vehicle having a possible configuration, capable of controlling the braking / driving force and power distribution ratio of the first and second electric motors so that the direction of the vehicle body corresponds to the steering angle. And a control unit for controlling the power distribution ratio of the at least one differential device.
 他の実施の形態に係る電気自動車の制御方法は、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備え、前記第1および第2の差動装置の少なくとも一方の差動装置は、左右への動力配分率が制御可能な構成を有する電気自動車を制御する方法であって、操舵角に応じた車体の向きとなるように、前記第1および第2の電気モータの制駆動力、および動力配分率の制御が可能な前記少なくとも一方の差動装置の動力配分率を制御するステップを含む。 An electric vehicle control method according to another embodiment includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a first electric motor on the left and right wheels on the rear wheel side. And a second electric motor that transmits braking / driving force via two differential devices, and at least one of the first and second differential devices has a power distribution ratio to the left and right controlled. A method of controlling an electric vehicle having a possible configuration, wherein the braking / driving force and power distribution ratio of the first and second electric motors can be controlled so that the direction of the vehicle body corresponds to the steering angle. And controlling the power distribution ratio of the at least one differential device.
 他の実施の形態に係るコンピュータ読み取り可能な記録媒体は、前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備え、前記第1および第2の差動装置の少なくとも一方の差動装置は、左右への動力配分率が制御可能な構成を有する電気自動車に含まれるコンピュータに、操舵角に応じた車体の向きとなるように、前記第1および第2の電気モータの制駆動力、および動力配分率の制御が可能な前記少なくとも一方の差動装置の動力配分率を制御するステップを実行させるためのプログラムが記録されたものである。 A computer-readable recording medium according to another embodiment includes a first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential, and the left and right wheels on the rear wheel side. And a second electric motor that transmits braking / driving force via the second differential device, and at least one of the first and second differential devices has a power distribution ratio to the left and right. A computer included in an electric vehicle having a controllable configuration can control the braking / driving force and power distribution ratio of the first and second electric motors so that the direction of the vehicle body corresponds to the steering angle. A program for executing the step of controlling the power distribution ratio of the at least one differential device is recorded.
 前輪および後輪を駆動する電気モータを有する自動車や、車輪の動力源として電気モータとエンジンの両方を有し、電気モータによる回生制動が可能なハイブリッドカー等に適用することでき、乗用自動車、バス、貨物自動車、普通車、大型車、特大車等の種類を問わない。 It can be applied to automobiles having electric motors for driving front wheels and rear wheels, and hybrid cars having both electric motors and engines as power sources for wheels and capable of regenerative braking by electric motors. Regardless of type, such as lorry, ordinary car, large car, extra large car.
1…電気自動車、2…車輪、2fr、2fl…前輪、2rr、rl…後輪、3f…前輪用モータ、3r…後輪用モータ、4f、4r…差動装置、5fr、5fl、5rr、5rl…車軸、7…電源部、8f…前輪用インバータ、8r…後輪用インバータ、9f…前輪用駆動回路、9r…後輪用駆動回路、10…制御装置、11…圧力調整ユニット、12…アクセルペダル、13…ブレーキペダル、14…シフトレバー、15a~15c…電流センサ、16f、16r…エンコーダ、17a~17c…電流センサ、18fr、18fl、18rr、18rl…機械ブレーキ、19…ステアリングホイール、20fr、20fl…カメラ、21…カメラ、22…アクセルセンサ、23…ブレーキセンサ、24…シフトセンサ、25…車体、26…加速度センサ、27f、27r…温度センサ、28…車輪速センサ、29…操舵角センサ、70…バッテリ、71f…前輪用平滑コンデンサ、71r…後輪用平滑コンデンタ、72f、72r…電圧センサ、73…バッテリ容量センサ、100…CPU、101…路面摩擦係数μ推定手段、102…スリップ率上限値設定手段、103…スリップ率演算手段、104…制駆動力制御手段、105…障害検出手段、110…記憶部、111…路面パターン、112…μ-SrLimitテーブル、113…制駆動プログラム DESCRIPTION OF SYMBOLS 1 ... Electric vehicle, 2 ... Wheel, 2fr, 2fl ... Front wheel, 2rr, rl ... Rear wheel, 3f ... Front wheel motor, 3r ... Rear wheel motor, 4f, 4r ... Differential gear, 5fr, 5fl, 5rr, 5rl ... Axle, 7 ... Power supply, 8f ... Inverter for front wheel, 8r ... Inverter for rear wheel, 9f ... Drive circuit for front wheel, 9r ... Drive circuit for rear wheel, 10 ... Control device, 11 ... Pressure adjustment unit, 12 ... Accelerator Pedal, 13 ... Brake pedal, 14 ... Shift lever, 15a-15c ... Current sensor, 16f, 16r ... Encoder, 17a-17c ... Current sensor, 18fr, 18fl, 18rr, 18rl ... Mechanical brake, 19 ... Steering wheel, 20fr, 20fl ... camera, 21 ... camera, 22 ... accelerator sensor, 23 ... brake sensor, 24 ... shift sensor, 25 ... vehicle body, 26 ... Speed sensor, 27f, 27r ... Temperature sensor, 28 ... Wheel speed sensor, 29 ... Steering angle sensor, 70 ... Battery, 71f ... Smoothing capacitor for front wheel, 71r ... Smoothing capacitor for rear wheel, 72f, 72r ... Voltage sensor, 73 ... Battery capacity sensor, 100 ... CPU, 101 ... Road surface friction coefficient μ estimation means, 102 ... Slip ratio upper limit setting means, 103 ... Slip ratio calculation means, 104 ... Braking / driving force control means, 105 ... Failure detection means, 110 ... Memory 111, road surface pattern, 112, μ-SrLimit table, 113, braking / driving program

Claims (11)

  1.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、
     後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータと、
     前記第1および第2の電気モータの制駆動力を制御する制御部とを備え、
     前記第1および第2の差動装置の少なくとも一方の差動装置は、前記制御部により左右への動力配分率が制御可能な構成を有する電気自動車。
    A first electric motor that transmits braking / driving force to the left and right wheels on the front wheel side via the first differential;
    A second electric motor for transmitting braking / driving force to the left and right wheels on the rear wheel side via a second differential;
    A controller for controlling the braking / driving force of the first and second electric motors,
    At least one of the first differential device and the second differential device is an electric vehicle having a configuration in which a left-right power distribution ratio can be controlled by the control unit.
  2.  前記第1および第2の差動装置は、前記制御部により左右への動力配分率が制御可能な構成を有する請求項1に記載の電気自動車。 2. The electric vehicle according to claim 1, wherein the first and second differential devices have a configuration in which a left-right power distribution ratio can be controlled by the control unit.
  3.  操舵角を検出する操舵角検出部を備え、
     前記制御部は、検出された前記操舵角に応じた車体の向きとなるように、前記第1および第2の電気モータの制駆動力、および動力配分率の制御が可能な前記差動装置の動力配分率を制御する請求項1に記載の電気自動車。
    A steering angle detector for detecting the steering angle;
    The control unit is configured to control the braking / driving force and power distribution ratio of the first and second electric motors so that the vehicle body is directed according to the detected steering angle. The electric vehicle according to claim 1 which controls a power distribution rate.
  4.  各車輪のスリップ率を演算する演算部と、
     車体の旋回加速度を検出する検出部とを備え、
     前記制御部は、検出された前記操舵角に基づいて直進走行しているか、旋回走行しているかを判定し、直進走行していると判定した場合、前記各車輪のスリップ率のうちの1つの車輪のスリップ率が所定の値を超えたとき、前記1つの車輪への制駆動力を減らし、前記1つの車輪の反対側の車輪への制駆動力を前記スリップ率が所定の値を超えない範囲で増やす制御を行い、検出された前記旋回加速度が所定の閾値を超えたとき、前後方向において前記1つの車輪の反対側の左右輪への制駆動力を制御する請求項3に記載の電気自動車。
    A calculation unit for calculating the slip ratio of each wheel;
    A detection unit for detecting the turning acceleration of the vehicle body,
    The control unit determines whether the vehicle is traveling straight or turning based on the detected steering angle. When the controller determines that the vehicle is traveling straight, one of the slip ratios of the wheels is determined. When the slip ratio of a wheel exceeds a predetermined value, the braking / driving force to the one wheel is reduced, and the slip ratio does not exceed the predetermined value for the braking / driving force to the wheel on the opposite side of the one wheel. The electricity according to claim 3, wherein control is performed in a range, and when the detected turning acceleration exceeds a predetermined threshold, the braking / driving force to the left and right wheels on the opposite side of the one wheel in the front-rear direction is controlled. Car.
  5.  各車輪のスリップ率を演算する演算部と、
     車体の横方向加速度および旋回加速度を検出する検出部とを備え、
     前記制御部は、検出された前記操舵角に基づいて直進走行しているか、旋回走行しているかを判定し、車両が直進走行していると判断した場合、車両の横力の発生及び旋回加速度が発生した場合、前記第1および第2の電気モータの制駆動力を制御すると共に、各左右輪のトルク配分を制御して、横方向及び旋回方向の加速度変化率を減少させる請求項3に記載の電気自動車。
    A calculation unit for calculating the slip ratio of each wheel;
    A detection unit that detects lateral acceleration and turning acceleration of the vehicle body,
    The controller determines whether the vehicle is traveling straight or turning based on the detected steering angle. If the controller determines that the vehicle is traveling straight, the lateral force generation and the turning acceleration of the vehicle are determined. The control device according to claim 3, wherein the braking / driving force of the first and second electric motors is controlled and the torque distribution of the left and right wheels is controlled to reduce the rate of acceleration change in the lateral direction and the turning direction. The described electric vehicle.
  6.  各車輪のスリップ率を演算する演算部と、
     車体の横方向加速度および旋回加速度を検出する検出部とを備え、
     前記制御部は、検出された前記操舵角に基づいて直進走行しているか、旋回走行しているかを判定し、旋回走行していると判定した場合、前記前後輪の外側の車輪への制駆動力を前記スリップ率が所定の値を超えない範囲で増減し、又は前記前後輪の内側の車輪への制駆動力を前記スリップ率が所定の値を超えない範囲で減増する制御を行う請求項3に記載の電気自動車。
    A calculation unit for calculating the slip ratio of each wheel;
    A detection unit that detects lateral acceleration and turning acceleration of the vehicle body,
    The control unit determines whether the vehicle is traveling straight or turning based on the detected steering angle. When the control unit determines that the vehicle is turning, braking / driving to the outer wheels of the front and rear wheels is determined. A control is performed to increase / decrease the force within a range where the slip ratio does not exceed a predetermined value, or to increase / decrease the braking / driving force to the inner wheels of the front and rear wheels within a range where the slip ratio does not exceed a predetermined value. Item 4. The electric vehicle according to Item 3.
  7.  車体の横方向加速度および旋回加速度を検出する検出部とを備え、
     前記制御部は、検出された前記操舵角に基づいて直進走行しているか、旋回走行しているかを判定し、旋回走行していると判定した場合、前輪の横力を確保するため、前輪への制駆動力を路面摩擦係数に応じて制御し、各車輪への制駆動力の合計が変化しないように、前輪への制駆動力の変化分を後輪への制駆動力で補償する請求項3に記載の電気自動車。
    A detection unit that detects lateral acceleration and turning acceleration of the vehicle body,
    Based on the detected steering angle, the control unit determines whether the vehicle is traveling straight or turning, and determines that the vehicle is turning. The braking / driving force is controlled according to the road surface friction coefficient, and the change in braking / driving force applied to the front wheels is compensated by the braking / driving force applied to the rear wheels so that the total braking / driving force applied to each wheel does not change. Item 4. The electric vehicle according to Item 3.
  8.  各車輪のスリップ率を演算する演算部と、
     車体の旋回加速度を検出する検出部とを備え、
     前記制御部は、検出された前記操舵角に基づいて直進走行しているか、旋回走行しているかを判定し、旋回走行していると判定した場合、前記旋回加速度が操舵角に応じた所定の閾値を超えたときは、前記前後輪の各内輪側の車輪への制駆動力を前記スリップ率が所定の値を超えない範囲で増減し、前記前後輪の各外輪側の車輪への制駆動力を前記スリップ率が所定の値を超えない範囲で減増する制御を行い、前記旋回加速度が前記所定の閾値より小さいときは、前記前後輪の各内輪側の車輪への制駆動力を前記スリップ率が所定の値を超えない範囲で減増し、前記前後輪の各外側の車輪の駆動力を前記スリップ率が所定の値を超えない範囲で増減する制御を行う請求項3に記載の電気自動車。
    A calculation unit for calculating the slip ratio of each wheel;
    A detection unit for detecting the turning acceleration of the vehicle body,
    The control unit determines whether the vehicle is traveling straight or turning based on the detected steering angle. When the control unit determines that the vehicle is turning, the turning acceleration is determined according to a predetermined steering angle. When the threshold value is exceeded, the braking / driving force to the inner and outer wheels of the front and rear wheels is increased / decreased within a range in which the slip ratio does not exceed a predetermined value, and braking / driving to the outer wheels of the front and rear wheels is increased / decreased. When the turning acceleration is smaller than the predetermined threshold, the braking / driving force applied to the inner and rear wheels of the front and rear wheels is controlled by increasing and decreasing the force within a range where the slip ratio does not exceed a predetermined value. The electricity according to claim 3, wherein control is performed such that the slip ratio is increased and decreased within a range not exceeding a predetermined value, and the driving force of each outer wheel of the front and rear wheels is increased or decreased within a range where the slip ratio does not exceed a predetermined value. Car.
  9.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備え、前記第1および第2の差動装置の少なくとも一方の差動装置は、左右への動力配分率が制御可能な構成を有する電気自動車に含まれるコンピュータに、
     操舵角に応じた車体の向きとなるように、前記第1および第2の電気モータの制駆動力、および動力配分率の制御が可能な前記少なくとも一方の差動装置の動力配分率を制御するステップを実行させるためのプログラム。
    A first electric motor for transmitting braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a braking / driving force to the left and right wheels on the rear wheel side via the second differential device. A second electric motor, and at least one of the first and second differential devices is a computer included in an electric vehicle having a configuration in which a power distribution ratio to the left and right can be controlled.
    The braking / driving force of the first and second electric motors and the power distribution ratio of the at least one differential device capable of controlling the power distribution ratio are controlled so that the vehicle body is oriented according to the steering angle. A program for executing steps.
  10.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備え、前記第1および第2の差動装置の少なくとも一方の差動装置は、左右への動力配分率が制御可能な構成を有する電気自動車を制御する装置であって、
     操舵角に応じた車体の向きとなるように、前記第1および第2の電気モータの制駆動力、および動力配分率の制御が可能な前記少なくとも一方の差動装置の動力配分率を制御する制御部を備えた電気自動車の制御装置。
    A first electric motor for transmitting braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a braking / driving force to the left and right wheels on the rear wheel side via the second differential device. A second electric motor, and at least one of the first and second differential devices is a device for controlling an electric vehicle having a configuration capable of controlling a power distribution ratio to the left and right. ,
    The braking / driving force of the first and second electric motors and the power distribution ratio of the at least one differential device capable of controlling the power distribution ratio are controlled so that the vehicle body is oriented according to the steering angle. An electric vehicle control device including a control unit.
  11.  前輪側の左右輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、後輪側の左右輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータとを備え、前記第1および第2の差動装置の少なくとも一方の差動装置は、左右への動力配分率が制御可能な構成を有する電気自動車を制御する方法であって、
     操舵角に応じた車体の向きとなるように、前記第1および第2の電気モータの制駆動力、および動力配分率の制御が可能な前記少なくとも一方の差動装置の動力配分率を制御するステップを含む電気自動車の制御方法。
    A first electric motor for transmitting braking / driving force to the left and right wheels on the front wheel side via the first differential device, and a braking / driving force to the left and right wheels on the rear wheel side via the second differential device. And a second electric motor, wherein at least one of the first and second differential devices is a method for controlling an electric vehicle having a configuration capable of controlling a power distribution ratio to the left and right. ,
    The braking / driving force of the first and second electric motors and the power distribution ratio of the at least one differential device capable of controlling the power distribution ratio are controlled so that the vehicle body is oriented according to the steering angle. An electric vehicle control method including steps.
PCT/JP2010/066859 2010-05-31 2010-09-28 Electric vehicle, program, and control device and control method for electric vehicle WO2011151936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010125085A JP2011251579A (en) 2010-05-31 2010-05-31 Electric vehicle and program
JP2010-125085 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011151936A1 true WO2011151936A1 (en) 2011-12-08

Family

ID=45066330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066859 WO2011151936A1 (en) 2010-05-31 2010-09-28 Electric vehicle, program, and control device and control method for electric vehicle

Country Status (2)

Country Link
JP (1) JP2011251579A (en)
WO (1) WO2011151936A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566861B2 (en) 2012-06-22 2017-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2018064258A1 (en) * 2016-09-28 2018-04-05 Polaris Industries Inc. Systems and methods for control of two independent powertrains in a vehicle
WO2024024333A1 (en) * 2022-07-29 2024-02-01 株式会社デンソー Control device and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104960435A (en) * 2015-05-25 2015-10-07 陆杰 Vehicle driving/braking integrated system
US9566963B2 (en) * 2015-06-25 2017-02-14 Robert Bosch Gmbh Method of decreasing braking distance
JP6714351B2 (en) * 2015-11-30 2020-06-24 株式会社Subaru Vehicle control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240024A (en) * 2002-02-14 2003-08-27 Fuji Heavy Ind Ltd Driving force transmission controller of vehicle
JP2006232100A (en) * 2005-02-24 2006-09-07 Nissan Motor Co Ltd Driving force distribution and controlling device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240024A (en) * 2002-02-14 2003-08-27 Fuji Heavy Ind Ltd Driving force transmission controller of vehicle
JP2006232100A (en) * 2005-02-24 2006-09-07 Nissan Motor Co Ltd Driving force distribution and controlling device for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566861B2 (en) 2012-06-22 2017-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2018064258A1 (en) * 2016-09-28 2018-04-05 Polaris Industries Inc. Systems and methods for control of two independent powertrains in a vehicle
CN109789758A (en) * 2016-09-28 2019-05-21 北极星工业有限公司 System and method for controlling two independent power power trains in vehicle
AU2017335774B2 (en) * 2016-09-28 2019-10-31 Polaris Industries Inc. Systems and methods for control of two independent powertrains in a vehicle
US10647324B2 (en) 2016-09-28 2020-05-12 Polaris Industries Inc. Systems and methods for control of two independent powertrains in a vehicle
AU2020200714B2 (en) * 2016-09-28 2021-07-15 Polaris Industries Inc. Systems and methods for control of two independent powertrains in a vehicle
AU2021204163B2 (en) * 2016-09-28 2023-02-23 Polaris Industries Inc. Systems and methods for control of two independent powertrains in a vehicle
WO2024024333A1 (en) * 2022-07-29 2024-02-01 株式会社デンソー Control device and program

Also Published As

Publication number Publication date
JP2011251579A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2012086223A1 (en) Electric vehicle
WO2012023305A1 (en) Automobile
JP3863838B2 (en) Hybrid vehicle
WO2011151936A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
KR20180058322A (en) Brake control system and method for electric vehicle
JP2006081343A (en) Regenerative braking control device for vehicle
JP2012086712A (en) Vehicle braking/driving force control device
KR20130013482A (en) Control method of vehicle using in-wheel motor
JP2007282406A (en) Braking force control system of vehicle
CN104812612A (en) Vehicle control device
JP5841265B2 (en) Wheel control device, vehicle, wheel control method
US20120152633A1 (en) Brake equipment of vehicle with driver seat whose direction is changeable
WO2012124045A1 (en) Electric automobile
JP4655895B2 (en) Vehicle control device
KR20160040629A (en) Vehicle
JP2011193702A (en) Electric vehicle and braking program
JP2007022527A (en) Hybrid vehicle
JP2006264628A (en) Vehicular braking/driving force control system
JP2011254590A (en) Electric vehicle and program
JP2011229286A (en) Electric vehicle and program
JP2006327335A (en) Torque distribution controller for vehicle
WO2011151935A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
WO2011114557A1 (en) Electric vehicle, braking program, and method for controlling and device for controlling electric vehicle
JP6152705B2 (en) Vehicle control device
JP2010200590A (en) Device for regenerative braking control of electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852540

Country of ref document: EP

Kind code of ref document: A1