WO2012023305A1 - Automobile - Google Patents

Automobile Download PDF

Info

Publication number
WO2012023305A1
WO2012023305A1 PCT/JP2011/057978 JP2011057978W WO2012023305A1 WO 2012023305 A1 WO2012023305 A1 WO 2012023305A1 JP 2011057978 W JP2011057978 W JP 2011057978W WO 2012023305 A1 WO2012023305 A1 WO 2012023305A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
force
friction coefficient
torque
braking
Prior art date
Application number
PCT/JP2011/057978
Other languages
French (fr)
Japanese (ja)
Inventor
信義 武藤
忠彦 加藤
和利 村上
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Publication of WO2012023305A1 publication Critical patent/WO2012023305A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an automobile.
  • Electric vehicles are becoming important not only as an environmental measure against global warming but also as an industrial policy. In order to use electric vehicles widely, it is indispensable to develop next-generation electric vehicles that achieve both safety and driving performance. In order to cope with such social demands, a conventional driving force generation mechanism, that is, a motor driving structure that strongly influences safety and driving performance has been studied. From the viewpoint of economic efficiency, various studies have been made on front- or rear-wheel 1-motor-driven electric vehicles (see FIG. 1A), and these electric vehicles are already on the market. In addition, research in two-wheel or four-wheel in-wheel motor-driven electric vehicles (see FIGS. 1B and 1C) has also been made from the viewpoint of control technology and implementation. First, focusing on driving performance, the electric vehicle shown in FIGS.
  • the electric vehicle shown in FIG. 1C has a problem in steering performance.
  • the electric vehicle shown in FIG. 1C has many drive structures as compared with other electric vehicles, so that the economic efficiency and the maintenance management are not good, and the reliability problem may be deteriorated.
  • the present invention provides a first electric motor for transmitting braking / driving force to the right front wheel and the left front wheel via the first differential, and a second electric wheel for the right rear wheel and the left rear wheel.
  • a second electric motor that transmits braking / driving force via a differential device, a friction coefficient estimating unit that estimates a friction coefficient of a traveling road surface, longitudinal load movement that occurs during acceleration and deceleration, and when turning left and right Based on the resulting lateral load movement, a tire load calculation unit that calculates the tire load of each wheel, and a friction circle is set from the friction coefficient and the tire load of each wheel, and the longitudinal force and lateral force of each wheel are set.
  • an automobile provided with a control unit for controlling the braking / driving force of the first and second electric motors so that the resultant force falls within the friction circle.
  • FIG. 1A is a plan view showing a front-wheel or rear-wheel drive electric vehicle.
  • FIG. 1B is a plan view showing a front-wheel or rear-wheel two-wheel in-wheel drive electric vehicle.
  • FIG. 1C is a plan view showing a four-wheel in-wheel drive electric vehicle.
  • FIG. 2 is a plan view showing a front and rear wheel independent drive type electric vehicle (FRID EV).
  • FIG. 3 is a plan view showing a state that occurs in a steering operation during cornering.
  • FIG. 4A is a friction circle to be considered when distributing the drive torque.
  • FIG. 4B is a side plan view showing a difference in torque distribution during straight running and cornering, which should be considered when distributing drive torque.
  • FIG. 5 is a graph showing a stable operation region of the slip ratio.
  • FIG. 6 is a flowchart illustrating the basic principle of the drive torque distribution method.
  • FIG. 7A is a side view of a moment diagram of a force acting on a vehicle in a stopped state.
  • FIG. 7B is a side view of the moment diagram of the force acting on the automobile in the accelerated state.
  • FIG. 8 is a plan view showing a two-wheeled vehicle model (left turn) equivalent to a four-wheeled vehicle.
  • FIG. 9 is a rear view of the roll moment acting when turning right.
  • FIG. 10 is a control block diagram of the torque controller when the proposed drive torque distribution method is applied to FRID ⁇ EV.
  • FIG. 10 is a control block diagram of the torque controller when the proposed drive torque distribution method is applied to FRID ⁇ EV.
  • FIG. 11A is a diagram showing a basic procedure for performing drive torque control by the torque controller shown in FIG.
  • FIG. 11B is a diagram illustrating a procedure for performing drive torque control by the torque controller illustrated in FIG. 10.
  • FIG. 13A is a graph showing the vehicle trajectory of the effect of the proposed drive torque distribution method for the vehicle trajectory under the same simulation conditions as FIG.
  • FIG. 13B is a perspective view showing a road state used for simulating the effect of the proposed driving torque distribution method for a vehicle trajectory under the same simulation conditions as FIG.
  • FIG. 14D shows
  • FIG. 2 is a block diagram conceptually showing the configuration of the front and rear wheel independent drive type electric vehicle (hereinafter also referred to as “FRID EV”) according to the embodiment of the present invention.
  • FRID EV front and rear wheel independent drive type electric vehicle
  • additional symbols f, r, fr, fl, rr, rl indicating whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side. Is attached to the component.
  • the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
  • the electric vehicle 1 After proposing front and rear wheel independent drive type electric vehicles (FRID EV) (see Fig. 2) that achieve both safety and driving performance, they are positioned as next-generation electric vehicles and are being studied from various angles.
  • the electric vehicle 1 includes a right front wheel 2fr, a left front wheel 2fl, a right rear wheel 2rr, a left rear wheel 2rl, a front wheel motor 3f as an example of a first electric motor, and a second electric motor.
  • a rear wheel motor 3r a front differential gear 4f as an example of a first differential, a rear differential gear 4r as an example of a second differential, and a drive energy source for the electric vehicle 1 Battery 7, front wheel inverter 8f, rear wheel inverter 8r, front wheel drive circuit 9f as an example of a first drive circuit, rear wheel drive circuit 9r as an example of a second drive circuit, torque controller 10, Encoders 16f and 16r, steering wheel 19, cameras 20fr and 20fl, accelerator pedal sensor 22, brake pedal sensor 23, shift sensor 4, comprises a vehicle body 25,3 axis acceleration sensor 26, wheel speed sensor 28fr, 28fl, 28rr and 28RL, and a steering angle sensor 29.
  • an “electric vehicle” is an automobile having an electric motor for driving front wheels and rear wheels, and has both an electric motor and an engine as power sources for wheels, and can be regeneratively braked by the electric motor. It is a concept that includes a hybrid car.
  • “automobile” is a concept including not only passenger cars but also buses and freight cars, regardless of whether they are ordinary cars, large cars, and oversized cars.
  • “braking / driving force” may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle or only one of them.
  • the battery 7 is a high-voltage battery that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r.
  • a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
  • the front wheel motor 3f drives the front wheels 2fr, 2fl via the front wheel differential gear 4f and the axles 5fr, 5fl.
  • the rear wheel motor 3r drives the rear wheels 2rr and 2rl via the rear wheel differential gear 4r and the axles 5rr and 5rl.
  • various motors such as a synchronous motor and an induction motor can be used.
  • the rotation of the motor 3 is transmitted to the axle 5 via the differential gear 4 on each of the front wheel side and the rear wheel side.
  • the axle 5 rotates integrally with the wheel 2.
  • the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other.
  • the output torque (motor capacity) generated by the front wheel motor 3f and the rear wheel motor 3r may or may not be equal to each other.
  • the inverters 8f and 8r convert the electric power from the battery 7 into alternating current power, and output the current according to the signals from the drive circuits 9f and 9r to the motors 3f and 3r to drive the motors 3f and 3r. Further, the inverters 8f and 8r convert the AC power generated by the motors 3f and 3r into DC power and charge the battery 7 via a capacitor (not shown).
  • the front wheel drive circuit 9f receives a current detection signal from a current sensor that detects the current of the primary winding of the front wheel motor 3f.
  • the rear wheel drive circuit 9r receives a current detection signal from a current sensor that detects the current of the primary winding of the rear wheel motor 3r.
  • the drive circuits 9f and 9r output signals corresponding to the target torque commanded from the torque controller 10 to the inverters 8f and 8r.
  • the braking / driving force of the front wheel motor 3f is distributed to the right front wheel 2fr and the left front wheel 2fl by the differential gear 4f.
  • the braking / driving force of the rear wheel motor 3r is distributed to the right front wheel 2rr and the left front wheel 2rl by the differential gear 4r.
  • the differential gears 4f and 4r are capable of rotating a pair of side gears connected to the front wheel axles 5fr and 5fl or the rear wheel axles 5rr and 5rl, a plurality of pinion gears engaged with the pair of side gears, and a plurality of pinion gears, for example. What is called an open differential provided with a differential case to support may be used.
  • the differential device may include a mechanism capable of controlling the distribution ratio of braking / driving force to the front wheel axles 5fr and 5fl or the distribution ratio of braking / driving force to the rear wheel axles 5rr and 5rl. Good.
  • this electric vehicle 1 is provided with a mechanical brake on each axle 5fl, 5fr, 5rr, 5rl.
  • the mechanical brake is, for example, a drum brake or a disc brake, and presses a brake shoe against a member to be braked by pressurized liquid from a pressure adjusting unit to obtain friction braking by friction force.
  • the operation of the mechanical brake is controlled independently for each wheel 2 by the torque controller 10.
  • the brake shoe may be pressed against the member to be braked by an actuator such as a motor.
  • the pressure adjustment unit is configured to be able to apply a different braking force for each mechanical brake by distributing pressurized liquid to the mechanical brake by a signal from the torque controller 10.
  • the pressure adjusting unit and the mechanical brake constitute a friction brake mechanism.
  • an electric brake and a mechanical brake are used together. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source.
  • the electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking.
  • a regenerative brake is mainly used, but a power generation brake may be used in a low speed region. The regenerative brake regenerates the electric power generated by the motor 3 to the battery 7 through a capacitor, thereby generating a braking force.
  • the encoders 16f and 16r detect the rotation speed of the motor 3 on each of the front wheel side and the rear wheel side, and output a signal corresponding to the detected rotation speed to the torque controller 10.
  • the accelerator pedal sensor 22 detects the amount of depression of the accelerator pedal and outputs a signal corresponding to the detected amount of depression to the torque controller 10.
  • the brake pedal sensor 23 detects the amount of depression of the brake pedal and outputs a signal corresponding to the detected amount of depression to the torque controller 10.
  • the shift sensor 24 detects the position of the shift lever and outputs a signal corresponding to the detected position to the torque controller 10.
  • the triaxial acceleration sensor 26 is a sensor that detects the longitudinal acceleration ⁇ Y , the lateral acceleration ⁇ X , and the yaw rate ⁇ of the vehicle body 25, and torques signals corresponding to the detected accelerations ⁇ Y , ⁇ X , and yaw rate ⁇ . Output to the controller 10.
  • the wheel speed sensors 28fr, 28fl, 28rr, 28rl detect the rotational speed ⁇ of the wheel 2 and output a signal corresponding to the detected rotational speed ⁇ to the torque controller 10.
  • the steering angle sensor 29 detects the steering angle ⁇ of the steering wheel 19 and outputs a signal corresponding to the detected steering angle ⁇ to the torque controller 10.
  • the two cameras 20 fr and 20 rl are provided on the front side of the vehicle body 25.
  • the cameras 20 fr and 20 fl capture the road surface on the front side of the electric vehicle 1 and output the captured image to the torque controller 10.
  • the torque controller 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving.
  • the imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other.
  • the cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
  • a drive torque distribution method suitable for FRID EV that can secure sufficient lateral force for the front and rear wheels.
  • the lateral force necessary for the turning is estimated based on the condition regarding the friction circle in consideration of the load movement in the longitudinal direction and the lateral direction.
  • the effectiveness of the proposed drive torque distribution method will be confirmed using a simulator equivalent to the actual prototype FRID EV.
  • the drive torque is distributed to the front and rear wheels 2 so that the drive torques F x_f and F x_r can be generated.
  • F z_rl and F z_rr acting on the left and right tires of the front and rear wheels 2 are (F z_fl + z y ) and (F z_fr ⁇ z y ), It changes to (F z — rl + z y ) and (F z — rr ⁇ z y ), respectively.
  • the subscripts fl, rl, rl, and rr represent the left and right tires, respectively. Therefore, for stable cornering of the vehicle, it is always necessary to ensure the lateral forces of the front and rear that correspond to the lateral load transfer z y.
  • the driving torque distribution is based on the fact that the driving force, braking force and cornering force must not exceed the frictional force ⁇ W ( ⁇ : friction coefficient, W: tire load), respectively. Must be done.
  • ⁇ W friction coefficient
  • W tire load
  • ⁇ (tau) Rf and ⁇ Rr are front and rear torque commands separated from ⁇ R based on load movement.
  • X x_f and ⁇ x_r are front and rear drive commands determined from the front and rear lateral forces F y_f and F y_r .
  • r eff is the effective radius of the tire
  • V is the vehicle speed
  • ⁇ f — l and ⁇ f — r are the angular velocities of the left and right tires of the front wheels 2 fr, 2 fl
  • ⁇ r — l and ⁇ r — r are the rear wheels 2 rr, 2 rl.
  • torque commands ⁇ Rf * and ⁇ Rr * satisfying the procedures of Equations (4) and (5) are the actual torque commands of the front and rear torque control units. Become.
  • the torque controller 10 distributes the control system before and after the torque command optimization unit 120 described later.
  • the forward distribution rate R f is [Formula 17] Given by.
  • I z is the yaw motion of inertia around the z axis.
  • Equation (20) and front and rear lateral force F Y_f and F y_r (21) are each F z_fl: F z_fr and F z_rl: Considering that it is divided at a ratio of F Z_rr, front wheels 2fr, left and right 2fl and the lateral force F Y_fl and F Y_fr, the rear wheels 2rr, lateral force F Y_rl and F Y_rr left and right 2rl are [Formula 28] [Formula 29] [Formula 30] as well as, [Formula 31] Is represented by
  • the torque controller 10 includes a longitudinal / lateral force splitter unit 110 using a friction circle, a torque command optimization unit 120, wheel speed detectors 131f and 131r, a front wheel torque control unit 132f, and a rear wheel torque control unit 132r. And a vehicle speed calculator 133.
  • the longitudinal and lateral force splitter unit 110 using the friction circle includes a longitudinal torque splitter calculating unit 111 for the front and rear wheels, a longitudinal load movement calculating unit 112, a lateral load movement calculating unit 113, a lateral force calculating unit 114 for the front and rear wheels, and a friction coefficient estimation.
  • the cameras 20fr and 20fl capture an image of the road surface ahead of the front wheels 2fr and 2fl.
  • Front and rear wheel longitudinal torque splitter calculation unit 111 based on the torque command T R from the accelerator pedal sensor 22 using the above equations (11) - (16), the front wheels 2fr, driving torque command T Rf * and after the 2fl A drive torque command ⁇ Rr * for the wheels 2rr and 2rl is calculated.
  • the lateral load movement calculation unit 113 calculates the lateral load movement z Y based on the lateral acceleration ⁇ Y using the above equation (23).
  • the front / rear wheel lateral force calculation unit 114 calculates the lateral force Fy using the above formulas (20) and (21).
  • the road surface friction coefficient estimation calculation unit 115 determines road surface conditions such as a dry road surface, a wet road surface, and a frozen road surface based on the images captured by the cameras 20fr and 20fl, and based on the road surface conditions, the front surface of the front wheels 2fr and 2fl. Estimate the friction coefficient ⁇ of the road surface.
  • the maximum drive torque estimation unit 116 estimates the longitudinal forces (maximum drive torque) F z_f and F z_r based on the lateral force Fy and the road friction coefficient ⁇ using the equations (13) and (14).
  • Optimum drive torque command discrimination calculator 117 calculates the front of the distribution ratio Rf based on F Z_r. Similarly, the optimum drive torque command identification calculation unit 117 calculates the rearward distribution rate Rr.
  • the torque command optimization unit 120 includes a front torque command generator 121, a rear torque command generator 122, a front slip rate control unit 123, and a rear slip rate control unit 124.
  • the front slip ratio control unit 123 includes a front slip ratio calculator 123a, a front stability determination unit 123b, and a front torque command compensator 123c.
  • the rear slip ratio control unit 124 includes a rear slip ratio calculator 124a, a rear stability determination unit 124b, and a rear torque command compensator 124c.
  • Front torque command generator 121 based on the drive torque command T Rf calculates a driving torque command T Rf * using the equation (4).
  • Rear torque command generator 122 calculates a driving torque command T Rr based on the drive torque command T Rr * using the equation (5).
  • the front slip ratio calculator 123a of the front slip ratio control unit 123 calculates the slip ratio of the front wheels 2fr and 2fl.
  • the front stability determination unit 123b determines the stability of the front wheels 2fr and 2fl.
  • the front torque command compensator 123c generates a torque command in which the slip ratios of the front wheels 2fr and 2fl are below a certain level.
  • the rear slip ratio calculator 124a calculates the slip ratio of the rear wheels 2rr and 2rl.
  • the rear stability determination unit 124b determines the stability of the rear wheels 2rr and 2rl.
  • the rear torque command compensator 124c generates a torque command that causes the slip ratios of the rear wheels 2rr and 2rl to be below a certain level.
  • the basic flow of torque control in FIG. 11A (S21) is based on the signal generated by the accelerator pedal sensor 22 and the vertical and lateral accelerations detected by the triaxial acceleration sensor 26, the yaw rate, and the steering angle.
  • the drive torque command is determined.
  • the road surface friction coefficient estimation calculation unit 115 as the friction coefficient estimation unit estimates the friction coefficient of the road surface on which the vehicle travels (S21).
  • the maximum drive torque estimation unit 116 as a tire load calculation unit calculates the tire load of each wheel based on the vertical load movement that occurs during acceleration and deceleration and the lateral load movement that occurs during left-right turn. (S22).
  • the maximum drive torque estimation unit 116 as a friction circle calculation unit sets a friction circle from the friction coefficient and the tire load of each wheel (S23).
  • the maximum drive torque estimation unit 116 calculates the maximum drive torque of the front wheel motor 3f and the rear wheel motor 3r, that is, the front and rear wheels, so that the resultant force of the longitudinal force and the lateral force of each wheel falls within the friction circle. To do.
  • the drive torque distribution method of this embodiment is evaluated through simulation under severe driving conditions in which the vehicle turns left on a low ⁇ road. When the method of the present embodiment is not applied (see FIG.
  • the slip angle of the front wheels 2fr and 2fl gradually increases approximately two seconds after the start of cornering, and the front and rear lateral forces become saturated.
  • the automobile 1 cannot be cornered and deviates from the traveling lane (see FIGS. 13A and 13B).
  • the saturation state of the lateral force can be suppressed by reducing the driving force of the front and rear wheels 2 together with the cornering. Since the lateral force necessary for cornering is ensured (see FIG. 12B), the vehicle can turn left along the traveling lane, as shown by the broken line in FIG. 13B.
  • FIG. 14 shows the result of simulation under the condition that the vehicle turns left at a steering angle of 3 ° while accelerating on an ultra-low ⁇ road at time t 1 after about 10 seconds from the start.
  • the slip rate immediately increases to 1.
  • the wheels spin and cause skidding. Since sufficient lateral force required for turning cannot be ensured, the automobile cannot corner and is out of the traveling lane (see FIG. 14D).
  • the lateral force necessary for turning is secured by reducing the torque of the front wheel and rear wheel motors 3f and 3r as the speed increases, and the left turning Will be carried out efficiently, and the car will be aimed in the final direction.
  • the steering angle is kept constant, and the driver's accelerator adjustment is not taken into consideration.
  • the torque of the motors 3f and 3r is also adjusted by the steering angle through the driver's accelerator operation, the vehicle does not leave the traveling lane during traveling.
  • the results of these simulations mean that the driver can perform a more stable and safe turn at a low ⁇ road or at a high speed by the driving torque distribution method of the present embodiment.
  • the driving torque distribution method for solving these problems has been described by using the structural features of FRID EV that can freely distribute the driving force to the front and rear wheels 2 according to the road surface and traveling conditions.
  • the front and rear torque motors 3f, 3r are used for the front and rear torques so that the lateral force required for turning can be secured based on the steering angle, the friction coefficient, and the longitudinal and lateral acceleration information. It is characterized by distributing to.
  • the effectiveness of the driving torque distribution method of the present embodiment has been verified through simulations on cornering performance on a low ⁇ road and at high speed.
  • the proposed method adds more powerful functions to the FRID EV from the viewpoint of safety and driving performance.
  • the present invention can be similarly applied to the case where the braking force is controlled.
  • the torque controller 10 controls the braking force
  • the sign of z x is “minus”.
  • the case where the control is performed during the left turn has been described.
  • the present invention can be similarly applied to the case where the control is performed during the right turn.
  • the sign of z y is “minus” when turning right.
  • the sign of turning acceleration is “plus”, indicating acceleration, and the sign of turning acceleration is “minus”, indicating deceleration.
  • the present invention can be applied to vehicles such as passenger cars, buses, and trucks. [Explanation of symbols]
  • SYMBOLS 1 Electric vehicle, 2fr ... Right front wheel, 2fl ... Left front wheel, 2rr ... Right rear wheel, 2rl ... Left rear wheel, 3f ... Front wheel motor, 3r ... Rear wheel motor, 4f, 4r ... differential gear, 7 ... battery, 8f ... front wheel inverter, 8r ... rear wheel inverter, 9f ... front wheel drive circuit, 9r ... rear wheel drive circuit, 10 ... torque control unit, 16f , 16r ... encoder, 19 ... steering wheel, 22 ... accelerator pedal sensor, 23 ... brake pedal sensor, 24 ... shift sensor, 25 ... vehicle body, 26 ...
  • triaxial acceleration sensor 28fr, 28fl, 28rr, 28rl ... Angular velocity sensor, 29 ... steering angle sensor, 110 ... vertical / lateral force splitter unit using friction circle, 120 ... torque command optimization unit, 131f, 131r ... wheel speed Can, 132f ... front wheel torque controller, 132r ... rear wheel torque control unit, 133 ... vehicle speed calculator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

Provided is a method characterized by distributing a drive torque to right and left wheels of front and back wheels while taking into consideration not only a load shift in a vertical direction but also a load shift in a lateral direction which is caused at the time of cornering. The load shift is estimated by detecting elements in three axis directions, that is, a vertical and lateral direction acceleration, a yaw rate, and a steering angle, and a friction coefficient of a road surface. The effectiveness of the drive torque distribution method proposed has been verified by performing simulation with software of Matlab/Simulink and CarSim by using a simulator equivalent to a trial production FRID EV. The method should be essential to upgrade the running performance of FRID EV.

Description

自動車Car
 本発明は、自動車に関する。 The present invention relates to an automobile.
 電気自動車は、地球温暖化に対する環境対策としてだけではなく、産業政策としても重要となってきている。電気自動車を広く利用するには、安全性及び運転性能を両立する次世代電気自動車の開発が不可欠である。このような社会的要求に対処するため、従来型の推進力発生機構、即ち、安全性及び運転性能に強く影響を与えるモータ駆動構造が研究されている。経済効率の観点から、前又は後輪用1モータ駆動型電気自動車(図1A参照)における多様な研究がなされてきており、これらの電気自動車は、既に市販されている。更に、制御技術及び実装の観点から、二輪又は四輪インホイールモーター駆動型電気自動車(図1B及び図1C参照)における研究もまたなされている。まず、運転性能に着目すると、図1A及び図1Bに示す電気自動車では、加速又は減速する際に常に生じる荷重移動に起因する車輪のスピン及びホイールロックのような、自動車の危険な問題に対処できない。不具合時の安全性に留意すると、図1Cに示す電気自動車では操舵性能に問題がある。図1Cに示す電気自動車は、他の電気自動車に比べ多くの駆動構造を有するため、経済効率及び維持管理が良好でなく、信頼性の問題が悪化するおそれがある。 Electric vehicles are becoming important not only as an environmental measure against global warming but also as an industrial policy. In order to use electric vehicles widely, it is indispensable to develop next-generation electric vehicles that achieve both safety and driving performance. In order to cope with such social demands, a conventional driving force generation mechanism, that is, a motor driving structure that strongly influences safety and driving performance has been studied. From the viewpoint of economic efficiency, various studies have been made on front- or rear-wheel 1-motor-driven electric vehicles (see FIG. 1A), and these electric vehicles are already on the market. In addition, research in two-wheel or four-wheel in-wheel motor-driven electric vehicles (see FIGS. 1B and 1C) has also been made from the viewpoint of control technology and implementation. First, focusing on driving performance, the electric vehicle shown in FIGS. 1A and 1B cannot cope with dangerous vehicle problems such as wheel spin and wheel lock caused by load movement that always occurs when accelerating or decelerating. . When attention is paid to safety at the time of trouble, the electric vehicle shown in FIG. 1C has a problem in steering performance. The electric vehicle shown in FIG. 1C has many drive structures as compared with other electric vehicles, so that the economic efficiency and the maintenance management are not good, and the reliability problem may be deteriorated.
特開2005-184911号公報JP 2005-184911 A
 本発明は、低摩擦係数の路面上で安定した操舵を可能にする電気自動車を提供することにある。 It is an object of the present invention to provide an electric vehicle that enables stable steering on a road surface with a low friction coefficient.
 本発明は、上記目的を達成するため、右前輪及び左前輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、右後輪及び左後輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータと、走行する路面の摩擦係数を推定する摩擦係数推定部と、加速時及び減速時に生じる縦方向の荷重移動、及び左右旋回時に生じる横方向の荷重移動に基づいて、各車輪のタイヤ荷重を演算するタイヤ荷重演算部と、前記摩擦係数及び前記各車輪のタイヤ荷重から摩擦円をそれぞれ設定し、各車輪の縦力と横力の合力が前記摩擦円に収まるように、前記第1および第2の電気モータの制駆動力を制御する制御部とを備えた自動車を提供する。 In order to achieve the above object, the present invention provides a first electric motor for transmitting braking / driving force to the right front wheel and the left front wheel via the first differential, and a second electric wheel for the right rear wheel and the left rear wheel. A second electric motor that transmits braking / driving force via a differential device, a friction coefficient estimating unit that estimates a friction coefficient of a traveling road surface, longitudinal load movement that occurs during acceleration and deceleration, and when turning left and right Based on the resulting lateral load movement, a tire load calculation unit that calculates the tire load of each wheel, and a friction circle is set from the friction coefficient and the tire load of each wheel, and the longitudinal force and lateral force of each wheel are set. There is provided an automobile provided with a control unit for controlling the braking / driving force of the first and second electric motors so that the resultant force falls within the friction circle.
 本発明によれば、低摩擦係数の路面上で安定した操舵を可能にすることができる。 According to the present invention, it is possible to enable stable steering on a road surface having a low friction coefficient.
図1Aは、前輪又は後輪駆動型電気自動車を示す平面図である。FIG. 1A is a plan view showing a front-wheel or rear-wheel drive electric vehicle. 図1Bは、前輪又は後輪二輪インホイール駆動型電気自動車を示す平面図である。FIG. 1B is a plan view showing a front-wheel or rear-wheel two-wheel in-wheel drive electric vehicle. 図1Cは、四輪インホイール駆動型電気自動車を示す平面図である。FIG. 1C is a plan view showing a four-wheel in-wheel drive electric vehicle. 図2は、前後輪独立駆動型電気自動車(FRID EV)を示す平面図である。FIG. 2 is a plan view showing a front and rear wheel independent drive type electric vehicle (FRID EV). 図3は、コーナリング時のステアリング操作で起こる状態を示す平面図である。FIG. 3 is a plan view showing a state that occurs in a steering operation during cornering. 図4Aは、駆動トルクを分配する際に考慮すべき摩擦円である。FIG. 4A is a friction circle to be considered when distributing the drive torque. 図4Bは、駆動トルクを分配する際に考慮すべき、直線走行及びコーナリング時のトルク配分の違いを示す側平面図である。FIG. 4B is a side plan view showing a difference in torque distribution during straight running and cornering, which should be considered when distributing drive torque. 図5は、スリップ率の安定運転領域を示すグラフである。FIG. 5 is a graph showing a stable operation region of the slip ratio. 図6は、駆動トルク分配方法の基本原理を説明したフローチャートである。FIG. 6 is a flowchart illustrating the basic principle of the drive torque distribution method. 図7Aは、停止状態で自動車に作用する力のモーメント図の側面図である。FIG. 7A is a side view of a moment diagram of a force acting on a vehicle in a stopped state. 図7Bは、加速状態で自動車に作用する力のモーメント図の側面図である。FIG. 7B is a side view of the moment diagram of the force acting on the automobile in the accelerated state. 図8は、四輪車と同等の二輪車モデル(左旋回)を示す平面図である。FIG. 8 is a plan view showing a two-wheeled vehicle model (left turn) equivalent to a four-wheeled vehicle. 図9は、右旋回時に作用するロールモーメントの背面図である。FIG. 9 is a rear view of the roll moment acting when turning right. 図10は、提案の駆動トルク分配方法がFRID EVに適用された場合の、トルクコントローラの制御ブロック図である。FIG. 10 is a control block diagram of the torque controller when the proposed drive torque distribution method is applied to FRID に EV. 図11Aは、図10に示すトルクコントローラにより駆動トルク制御を行う基本的な手順を示す図である。FIG. 11A is a diagram showing a basic procedure for performing drive torque control by the torque controller shown in FIG. 図11Bは、図10に示すトルクコントローラにより駆動トルク制御を行う手順を示す図である。FIG. 11B is a diagram illustrating a procedure for performing drive torque control by the torque controller illustrated in FIG. 10. 図12Aは、低 μ路(μ=0.2)、操舵角3°でのコーナリングで、横力が前後輪に適切に配分されていない場合の、超低μ路における提案の駆動トルク分配方法の効果を示すグラフである。FIG. 12A shows a proposed driving torque distribution method on an ultra-low μ road when cornering is performed at a low-angle μ road (μ = 0.2) and a steering angle of 3 ° and the lateral force is not properly distributed to the front and rear wheels. It is a graph which shows the effect of. 図12Bは、低 μ路(μ=0.2)、操舵角3°でのコーナリングで、横力が前後輪に適切に配分されている場合の、超低μ路における提案の駆動トルク分配方法の効果を示すグラフである。FIG. 12B shows a proposed driving torque distribution method on an ultra-low μ road when the lateral force is appropriately distributed to the front and rear wheels in cornering at a low-angle μ road (μ = 0.2) and a steering angle of 3 °. It is a graph which shows the effect of. 図13Aは、図12と同じシミュレーション条件下における車両軌跡について、提案の駆動トルク分配方法の効果の車両軌跡を示すグラフである。FIG. 13A is a graph showing the vehicle trajectory of the effect of the proposed drive torque distribution method for the vehicle trajectory under the same simulation conditions as FIG. 図13Bは、図12と同じシミュレーション条件下における車両軌跡について、提案の駆動トルク分配方法の効果のシミュレーションに用いられる道路状態を示す斜視図である。FIG. 13B is a perspective view showing a road state used for simulating the effect of the proposed driving torque distribution method for a vehicle trajectory under the same simulation conditions as FIG. 図14Aは、提案の駆動トルク分配方法なしで加速(μ=0.1、操舵角=3°)しながら、超低 μ路上のコーナーで発進する場合の、提案の駆動トルク分配方法の効果を示すグラフである。FIG. 14A shows the effect of the proposed driving torque distribution method when starting at a corner on an ultra-low μ road while accelerating without the proposed driving torque distribution method (μ = 0.1, steering angle = 3 °). It is a graph to show. 図14Bは、スリップ率制御のもとで加速(μ=0.1、操舵角=3°)しながら、超低 μ路上のコーナーで発進する場合の、提案の駆動トルク分配方法の効果を示すグラフである。FIG. 14B shows the effect of the proposed drive torque distribution method when starting at a corner on an ultra-low μ road while accelerating under the slip ratio control (μ = 0.1, steering angle = 3 °). It is a graph. 図14Cは、提案の駆動トルク分配方法のもとで加速(μ=0.1、操舵角=3°)しながら、超低 μ路上のコーナーで発進する場合の、提案の駆動トルク分配方法の効果を示すグラフである。FIG. 14C shows the proposed drive torque distribution method in the case of starting at a corner on an ultra-low μ road while accelerating under the proposed drive torque distribution method (μ = 0.1, steering angle = 3 °). It is a graph which shows an effect. 図14Dは、加速しながらコーナリングする際、車両軌跡上で加速(μ=0.1、操舵角=3°)しながら、超低 μ路上のコーナーで発進する場合の、提案の駆動トルク分配方法の効果を示すグラフである。FIG. 14D shows a proposed method for distributing driving torque when cornering while accelerating and starting at a corner on an extremely low μ road while accelerating on the vehicle trajectory (μ = 0.1, steering angle = 3 °). It is a graph which shows the effect of. 図15Aは、提案の駆動トルク分配方法なしで加速(操舵角=3°μ=0.75)しながら、高μ路上をコーナリングする場合の、提案の駆動トルク分配方法の効果を示すグラフである。FIG. 15A is a graph showing the effect of the proposed drive torque distribution method when cornering on a high μ road while accelerating without the proposed drive torque distribution method (steering angle = 3 ° μ = 0.75). . 図15Bは、提案の駆動トルク分配方法のもとで加速(操舵角=3°μ=0.75)しながら、高μ路上をコーナリングする場合の、提案の駆動トルク分配方法の効果を示すグラフである。FIG. 15B is a graph showing the effect of the proposed drive torque distribution method when cornering on a high μ road while accelerating under the proposed drive torque distribution method (steering angle = 3 ° μ = 0.75). It is. 図15Cは、車両軌跡上で加速(操舵角=3°μ=0.75)しながら、高μ路上をコーナリングする場合の、提案の駆動トルク分配方法の効果を示すグラフである。FIG. 15C is a graph showing the effect of the proposed drive torque distribution method when cornering on a high μ road while accelerating on the vehicle trajectory (steering angle = 3 ° μ = 0.75).
 図2は、本発明の実施の形態に係る前後輪独立駆動型電気自動車(以下「FRID EV」ともいう。)の構成を概念的に示すブロック図である。なお、同図では、構成要素の位置が前輪側か後輪側か、前輪側の右側か左側か、後輪側の右側か左側かを示す付加記号f、r、fr、fl、rr、rlを構成要素に付している。また、構成要素の位置を特に区別する必要がない場合には、上記付加記号や位置を示す「前輪用」、「後輪用」の語を省略することもある。 FIG. 2 is a block diagram conceptually showing the configuration of the front and rear wheel independent drive type electric vehicle (hereinafter also referred to as “FRID EV”) according to the embodiment of the present invention. In the figure, additional symbols f, r, fr, fl, rr, rl indicating whether the position of the component is the front wheel side or the rear wheel side, the right side or the left side of the front wheel side, the right side or the left side of the rear wheel side. Is attached to the component. Further, when it is not necessary to particularly distinguish the positions of the constituent elements, the words “for front wheels” and “for rear wheels” indicating the additional symbols and positions may be omitted.
 安全性及び運転性能を両立する前後輪独立駆動型電気自動車(FRID EV)(図2参照)の提案後、それらを次世代電気自動車と位置付け、様々な角度から研究されている。図2に示すように、電気自動車1は、右前輪2fr、左前輪2fl、右後輪2rr、左後輪2rl、第1の電気モータの一例としての前輪用モータ3f、第2の電気モータの一例としての後輪用モータ3r、第1の差動装置の一例としての前輪用デファレンシャルギア4f、第2の差動装置の一例としての後輪用デファレンシャルギヤ4r、電気自動車1の駆動エネルギー源としてのバッテリ7、前輪用インバータ8f、後輪用インバータ8r、第1の駆動回路の一例としての前輪用駆動回路9f、第2の駆動回路の一例としての後輪用駆動回路9r、トルクコントローラ10、エンコーダ16f及び16r、ステアリングホイール19、カメラ20fr及び20fl、アクセルペダルセンサ22、ブレーキペダルセンサ23、シフトセンサ24、車体25、3軸加速度センサ26、車輪速センサ28fr、28fl、28rr及び28rl、及び、操舵角センサ29を備える。 After proposing front and rear wheel independent drive type electric vehicles (FRID EV) (see Fig. 2) that achieve both safety and driving performance, they are positioned as next-generation electric vehicles and are being studied from various angles. As shown in FIG. 2, the electric vehicle 1 includes a right front wheel 2fr, a left front wheel 2fl, a right rear wheel 2rr, a left rear wheel 2rl, a front wheel motor 3f as an example of a first electric motor, and a second electric motor. As an example, a rear wheel motor 3r, a front differential gear 4f as an example of a first differential, a rear differential gear 4r as an example of a second differential, and a drive energy source for the electric vehicle 1 Battery 7, front wheel inverter 8f, rear wheel inverter 8r, front wheel drive circuit 9f as an example of a first drive circuit, rear wheel drive circuit 9r as an example of a second drive circuit, torque controller 10, Encoders 16f and 16r, steering wheel 19, cameras 20fr and 20fl, accelerator pedal sensor 22, brake pedal sensor 23, shift sensor 4, comprises a vehicle body 25,3 axis acceleration sensor 26, wheel speed sensor 28fr, 28fl, 28rr and 28RL, and a steering angle sensor 29.
 なお、本明細書において、「電気自動車」は、前輪および後輪を駆動する電気モータを有する自動車や、車輪の動力源として電気モータとエンジンの両方を有し、電気モータによる回生制動が可能なハイブリッドカーを含む概念である。ここで、「自動車」とは乗用自動車に限らず、バスや貨物自動車を含む概念であり、普通車、大型車、特大車を問わない。また、本明細書において、「制駆動力」は、自動車を減速させる制動力と、自動車を加速させる駆動力の両方を意味する場合や一方のみを意味する場合がある。 In this specification, an “electric vehicle” is an automobile having an electric motor for driving front wheels and rear wheels, and has both an electric motor and an engine as power sources for wheels, and can be regeneratively braked by the electric motor. It is a concept that includes a hybrid car. Here, “automobile” is a concept including not only passenger cars but also buses and freight cars, regardless of whether they are ordinary cars, large cars, and oversized cars. Further, in this specification, “braking / driving force” may mean both braking force for decelerating the vehicle and driving force for accelerating the vehicle or only one of them.
(電源系)
 バッテリ7は、前輪用モータ3fおよび後輪用モータ3rを駆動するための電力を出力することができる高電圧バッテリである。なお、電気自動車1の駆動エネルギー源として、バッテリ7の他に、乾電池等の一次電池、燃料電池等を用いてもよい。
(Power supply system)
The battery 7 is a high-voltage battery that can output electric power for driving the front wheel motor 3f and the rear wheel motor 3r. In addition to the battery 7, a primary battery such as a dry battery, a fuel cell, or the like may be used as a drive energy source for the electric vehicle 1.
(駆動系)
 前輪用モータ3fは、前輪2fr、2flを前輪用デファレンシャルギヤ4fおよび車軸5fr、5flを介して駆動する。後輪用モータ3rは、後輪2rr、2rlを後輪用デファレンシャルギヤ4rおよび車軸5rr、5rlを介して駆動する。前輪用モータ3fおよび後輪用モータ3rは、例えば同期モータ(Synchronous Motor)、誘導モータ(Induction Motor)等の各種のモータを用いることができる。前輪側および後輪側それぞれにおいて、モータ3の回転は、デファレンシャルギヤ4を介して車軸5に伝達される。車軸5は車輪2と一体的に回転する。すなわち、電気自動車1は、前輪2fr、2flと、後輪2rr、rlを互いに独立に制御可能に前輪2fr、2flおよび後輪2rr、rlに対応して2つのトルク発生源を有している。なお、前輪用モータ3fおよび後輪用モータ3rが発生する出力トルク(モータ容量)は、互いに等しくてもよいし、等しくなくてもよい。
(Drive system)
The front wheel motor 3f drives the front wheels 2fr, 2fl via the front wheel differential gear 4f and the axles 5fr, 5fl. The rear wheel motor 3r drives the rear wheels 2rr and 2rl via the rear wheel differential gear 4r and the axles 5rr and 5rl. As the front wheel motor 3f and the rear wheel motor 3r, for example, various motors such as a synchronous motor and an induction motor can be used. The rotation of the motor 3 is transmitted to the axle 5 via the differential gear 4 on each of the front wheel side and the rear wheel side. The axle 5 rotates integrally with the wheel 2. That is, the electric vehicle 1 has two torque generation sources corresponding to the front wheels 2fr and 2fl and the rear wheels 2rr and rl so that the front wheels 2fr and 2fl and the rear wheels 2rr and rl can be controlled independently of each other. The output torque (motor capacity) generated by the front wheel motor 3f and the rear wheel motor 3r may or may not be equal to each other.
 インバータ8f、8rは、バッテリ7からの電力を交流電力に変換し、駆動回路9f、9rからの信号に応じた電流をモータ3f、3rに出力してモータ3f、3rを駆動する。また、インバータ8f、8rは、モータ3f、3rにより発電された交流電力を直流電力に変換して図示しないコンデンサを介してバッテリ7を充電する。 The inverters 8f and 8r convert the electric power from the battery 7 into alternating current power, and output the current according to the signals from the drive circuits 9f and 9r to the motors 3f and 3r to drive the motors 3f and 3r. Further, the inverters 8f and 8r convert the AC power generated by the motors 3f and 3r into DC power and charge the battery 7 via a capacitor (not shown).
 前輪用駆動回路9fは、前輪用モータ3fの1次巻線の電流を検出する電流センサからの電流検出信号を受信する。後輪用駆動回路9rは、後輪用モータ3rの1次巻線の電流を検出する電流センサからの電流検出信号を受信する。駆動回路9f、9rは、トルクコントローラ10から指令された目標トルクに応じた信号をインバータ8f、8rに出力する。 The front wheel drive circuit 9f receives a current detection signal from a current sensor that detects the current of the primary winding of the front wheel motor 3f. The rear wheel drive circuit 9r receives a current detection signal from a current sensor that detects the current of the primary winding of the rear wheel motor 3r. The drive circuits 9f and 9r output signals corresponding to the target torque commanded from the torque controller 10 to the inverters 8f and 8r.
 前輪用モータ3fの制駆動力は、デファレンシャルギア4fによって右前輪2fr及び左前輪2flに配分される。また、後輪用モータ3rの制駆動力は、デファレンシャルギア4rによって右前輪2rr及び左前輪2rlに配分される。デファレンシャルギア4f、4rは、例えば前輪側の車軸5fr、5fl又は後輪側の車軸5rr、5rlに連結された一対のサイドギヤ、これら一対のサイドギヤに噛み合う複数のピニオンギヤ、及び複数のピニオンギヤを自転可能に支持するデフケースを備えた所謂オープンデフであってもよい。また、差動装置は、前輪側の車軸5fr、5flへの制駆動力の配分率、又は後輪側の車軸5rr、5rlへの制駆動力の配分率を制御可能な機構を備えたものでもよい。 The braking / driving force of the front wheel motor 3f is distributed to the right front wheel 2fr and the left front wheel 2fl by the differential gear 4f. The braking / driving force of the rear wheel motor 3r is distributed to the right front wheel 2rr and the left front wheel 2rl by the differential gear 4r. The differential gears 4f and 4r are capable of rotating a pair of side gears connected to the front wheel axles 5fr and 5fl or the rear wheel axles 5rr and 5rl, a plurality of pinion gears engaged with the pair of side gears, and a plurality of pinion gears, for example. What is called an open differential provided with a differential case to support may be used. Further, the differential device may include a mechanism capable of controlling the distribution ratio of braking / driving force to the front wheel axles 5fr and 5fl or the distribution ratio of braking / driving force to the rear wheel axles 5rr and 5rl. Good.
(ブレーキ系)
 また、この電気自動車1は、各車軸5fl、5fr、5rr、5rlに機械ブレーキを設けている。機械ブレーキは、例えばドラムブレーキやディスクブレーキであり、圧力調整ユニットからの加圧液体によりブレーキシューを被制動部材に押し付けて摩擦力による摩擦制動を得るものである。機械ブレーキの動作は、トルクコントローラ10により各車輪2に対して独立に制御される。なお、ブレーキシューをモータ等のアクチュエータにより被制動部材に押し付けてもよい。
(Brake system)
Moreover, this electric vehicle 1 is provided with a mechanical brake on each axle 5fl, 5fr, 5rr, 5rl. The mechanical brake is, for example, a drum brake or a disc brake, and presses a brake shoe against a member to be braked by pressurized liquid from a pressure adjusting unit to obtain friction braking by friction force. The operation of the mechanical brake is controlled independently for each wheel 2 by the torque controller 10. The brake shoe may be pressed against the member to be braked by an actuator such as a motor.
 圧力調整ユニットは、トルクコントローラ10からの信号により機械ブレーキに加圧液体を分配して機械ブレーキ毎に異なる制動力を付与可能に構成されている。なお、圧力調整ユニットおよび機械ブレーキは、摩擦ブレーキ機構を構成する。 The pressure adjustment unit is configured to be able to apply a different braking force for each mechanical brake by distributing pressurized liquid to the mechanical brake by a signal from the torque controller 10. The pressure adjusting unit and the mechanical brake constitute a friction brake mechanism.
 電気自動車1では、電気ブレーキと機械ブレーキとが併用される。すなわち、電気自動車1では、駆動源としてのモータ3により制動力を発生可能である。電気ブレーキは、例えば、制動エネルギーを熱エネルギーに変換する発電ブレーキ、および制動により発生する電気を回生する回生ブレーキである。本実施の形態では、主として回生ブレーキを用いるが、低速領域では発電ブレーキを用いる場合もある。回生ブレーキは、モータ3が発電した電力をコンデンサを介してバッテリ7に回生し、これにより制動力を発生させる。  In the electric vehicle 1, an electric brake and a mechanical brake are used together. That is, in the electric vehicle 1, a braking force can be generated by the motor 3 as a drive source. The electric brake is, for example, a power generation brake that converts braking energy into heat energy, and a regenerative brake that regenerates electricity generated by braking. In the present embodiment, a regenerative brake is mainly used, but a power generation brake may be used in a low speed region. The regenerative brake regenerates the electric power generated by the motor 3 to the battery 7 through a capacitor, thereby generating a braking force. *
(センサ系)
 エンコーダ16f、16rは、前輪側および後輪側のそれぞれにおいて、モータ3の回転数を検出し、検出した回転数に応じた信号をトルクコントローラ10に出力する。
(Sensor system)
The encoders 16f and 16r detect the rotation speed of the motor 3 on each of the front wheel side and the rear wheel side, and output a signal corresponding to the detected rotation speed to the torque controller 10.
 アクセルペダルセンサ22は、アクセルペダルの踏み込み量を検出し、検出した踏み込み量に応じた信号をトルクコントローラ10に出力する。 The accelerator pedal sensor 22 detects the amount of depression of the accelerator pedal and outputs a signal corresponding to the detected amount of depression to the torque controller 10.
 ブレーキペダルセンサ23は、ブレーキペダルの踏み込み量を検出し、検出した踏み込み量に応じた信号をトルクコントローラ10に出力する。 The brake pedal sensor 23 detects the amount of depression of the brake pedal and outputs a signal corresponding to the detected amount of depression to the torque controller 10.
 シフトセンサ24は、シフトレバーの位置を検出し、検出した位置に応じた信号をトルクコントローラ10に出力する。 The shift sensor 24 detects the position of the shift lever and outputs a signal corresponding to the detected position to the torque controller 10.
 3軸加速度センサ26は、車体25の縦方向加速度α、横方向加速度α、ヨーレートγを検出するセンサであり、検出したそれぞれの加速度α、α、ヨーレートγに応じた信号をトルクコントローラ10に出力する。 The triaxial acceleration sensor 26 is a sensor that detects the longitudinal acceleration α Y , the lateral acceleration α X , and the yaw rate γ of the vehicle body 25, and torques signals corresponding to the detected accelerations α Y , α X , and yaw rate γ. Output to the controller 10.
 車輪速センサ28fr、28fl、28rr、28rlは、車輪2の回転速度ωを検出し、検出した回転速度ωに応じた信号をトルクコントローラ10に出力する。 The wheel speed sensors 28fr, 28fl, 28rr, 28rl detect the rotational speed ω of the wheel 2 and output a signal corresponding to the detected rotational speed ω to the torque controller 10.
 操舵角センサ29は、ステアリングホイール19の操舵角γを検出し、検出した操舵角γに応じた信号をトルクコントローラ10に出力する。 The steering angle sensor 29 detects the steering angle γ of the steering wheel 19 and outputs a signal corresponding to the detected steering angle γ to the torque controller 10.
(撮影系)
 2つのカメラ20fr、20rlは、車体25の前方側に設けられている。カメラ20fr、20flは、電気自動車1の前方側の路面を撮像し、撮像した画像をトルクコントローラ10に出力する。トルクコントローラ10は、カメラ20fr、20flから取得した画像に基づいて路面の変化を検出して、制駆動に関する処理を実行する。前方のカメラ20fr、20flは、その撮像領域は互いに少なくとも一部が重複している。カメラ20fr、20flは、例えばCCD(Charge Coupled Device)カメラにより構成されている。
(Shooting system)
The two cameras 20 fr and 20 rl are provided on the front side of the vehicle body 25. The cameras 20 fr and 20 fl capture the road surface on the front side of the electric vehicle 1 and output the captured image to the torque controller 10. The torque controller 10 detects a change in the road surface based on the images acquired from the cameras 20fr and 20fl, and executes processing related to braking / driving. The imaging regions of the front cameras 20fr and 20fl overlap at least partially with each other. The cameras 20fr and 20fl are constituted by, for example, a CCD (Charge Coupled Device) camera.
 走行及び路面状態に応じて後輪2fr、2fl、2rr及び2rlの縦力を自在に制御できる構造的特徴を用いることで突出した運転性能が得られることが、車両運動解析実験を通じて明らかになっている。FRID EVでは、前輪2fr、2fl及び後輪2rr、2rlの左右のタイヤへの横力の分配は、通常のガソリン車のようにデファレンシャルギア4f、4rを介して行われる。よって、現在入手可能な車両では、旋回に要する十分な横力が確保できず、低μ路上でのコーナリング、或いは、乾燥路面を高速でコーナリングする際に図3に示すようにアンダーステアリングが起こりやすい。4つの車輪の縦力及び横力を直接処理できるのは、図1Cに示す四輪インホイールモーター駆動型電気自動車のみである。しかし、インホイールモーター駆動型電気自動車は、次世代電気自動車としては、上述した深刻な問題がある。 It has become clear through vehicle motion analysis experiments that outstanding driving performance can be obtained by using structural features that can freely control the longitudinal force of the rear wheels 2fr, 2fl, 2rr, and 2rl according to the running and road surface conditions. Yes. In FRID EV, the distribution of lateral force to the left and right tires of the front wheels 2fr and 2fl and the rear wheels 2rr and 2rl is performed via differential gears 4f and 4r as in a normal gasoline vehicle. Therefore, in a currently available vehicle, sufficient lateral force required for turning cannot be secured, and under-steering is likely to occur when cornering on a low μ road or cornering on a dry road surface at high speed as shown in FIG. . Only the four-wheel in-wheel motor driven electric vehicle shown in FIG. 1C can directly process the longitudinal and lateral forces of the four wheels. However, the in-wheel motor-driven electric vehicle has the serious problem described above as a next-generation electric vehicle.
 従って、前後輪の十分な横力を確保できるFRID EVに適した駆動トルク分配方法を、ここで提案する。旋回に必要な横力は、縦方向及び横方向の荷重移動を考慮した摩擦円に関する条件に基づいて推定される。なお、提案の駆動トルク配分方法の有効性は、実際の試作FRID EVと同等のシミュレータを用いて確認する。 Therefore, we propose here a drive torque distribution method suitable for FRID EV that can secure sufficient lateral force for the front and rear wheels. The lateral force necessary for the turning is estimated based on the condition regarding the friction circle in consideration of the load movement in the longitudinal direction and the lateral direction. The effectiveness of the proposed drive torque distribution method will be confirmed using a simulator equivalent to the actual prototype FRID EV.
<コーナリング時の駆動トルク配分の原理>
 車両1aの速度が定常状態(停止状態を含んでもよい)にある場合、前後のタイヤ荷重(法線力)Fzd_f及びFzd_rは、前後輪2の各タイヤ、即ち、車輪2fr、2fl、2rr及び2rlに作用する。この場合、車両1aは、前輪用及び後輪用モータ3f、3rからそれぞれ供給される前後の駆動力Fxd_f及びFxd_rにより駆動される。加速モードに切り替わると、前輪2fr、2flから後輪2rr、2rlへの縦方向の荷重移動Zが起きる。これにより、図4Bに示すように、前後のタイヤ荷重Fzd_f及びFzd_rは、Fz_f(=Fzd_f-z)及びFz_r(=Fzd_r+z)にzづつ変わる。従って、車両運動に基づいた車両1bの理想的走行を維持するために、前輪用及び後輪用モータ3f、3rが、荷重移動により変化する前後のタイヤ荷重Fz_f及びFz_rに対応した適切な駆動トルクFx_f及びFx_rを生成できるように、前後輪2への駆動トルク配分がなされることとなる。
<Principle of torque distribution during cornering>
When the speed of the vehicle 1a is in a steady state (may include a stopped state), the front and rear tire loads (normal force) F zd_f and F zd_r are the tires of the front and rear wheels 2, that is, the wheels 2fr, 2fl, 2rr. And 2rl. In this case, the vehicle 1a is driven by the front and rear driving forces F xd_f and F xd_r supplied from the front wheel and rear wheel motors 3f and 3r, respectively. When the acceleration mode is switched, a longitudinal load movement Z x from the front wheels 2fr, 2fl to the rear wheels 2rr, 2rl occurs. As a result, as shown in FIG. 4B, the front and rear tire loads F zd_f and F zd_r are changed to F z_f (= F zd_f −z x ) and F z_r (= F zd_r + z x ) by z x . Therefore, in order to maintain the ideal traveling of the vehicle 1b based on the vehicle motion, the front wheel and rear wheel motors 3f and 3r are appropriately adapted to the tire loads F z_f and F z_r before and after being changed by the load movement. The drive torque is distributed to the front and rear wheels 2 so that the drive torques F x_f and F x_r can be generated.
 次に、コーナリングを開始すると、左車輪2fl、2rlと右車輪2fr、2rrとの間に、新たな横方向の荷重移動zが起こる。前後のタイヤ荷重Fz_f及びFz_rは、生じた荷重移動zにより更に変化する。例えば、左に旋回する際、前後輪2の左右のタイヤに作用する左右のタイヤ荷重Fz_fl及びFz_fr、Fz_rl及びFz_rrは、(Fz_fl+z)及び(Fz_fr-z)、(Fz_rl+z)及び(Fz_rr-z)にそれぞれ変化する。なお、下付き文字fl、rl及びrl、rrは、それぞれ左及び右のタイヤを表す。よって、車両の安定したコーナリングのためには、横方向の荷重移動zに対応する前後の横力を常に確保する必要がある。そのためには、図4Aに示すように、駆動力、制動力及びコーナリング力が、それぞれ摩擦力μW(μ:摩擦係数、W:タイヤ荷重)を超えてはならないという事実に準じて、駆動トルク分配を行わなければならない。つまり、特に旋回に必要な横力を確保した後に、摩擦円内において、自動車の推進に必要な縦力の最大値Fx_j_maxが、
[数式1]
Figure JPOXMLDOC01-appb-I000001
により確保される。
Next, when starting the cornering, the left wheel 2FL, 2RL and right wheel 2fr, between 2rr, occurs load transfer z y new lateral. The front and rear tire loads F z — f and F z — r are further changed by the generated load movement zy . For example, when turning left, left and right tire loads F z_fl and F z_fr , F z_rl and F z_rr acting on the left and right tires of the front and rear wheels 2 are (F z_fl + z y ) and (F z_fr −z y ), It changes to (F z — rl + z y ) and (F z — rr −z y ), respectively. The subscripts fl, rl, rl, and rr represent the left and right tires, respectively. Therefore, for stable cornering of the vehicle, it is always necessary to ensure the lateral forces of the front and rear that correspond to the lateral load transfer z y. For this purpose, as shown in FIG. 4A, the driving torque distribution is based on the fact that the driving force, braking force and cornering force must not exceed the frictional force μW (μ: friction coefficient, W: tire load), respectively. Must be done. In other words, after securing the lateral force necessary for turning in particular, the maximum value F x_j_max of the longitudinal force necessary for propulsion of the vehicle is within the friction circle,
[Formula 1]
Figure JPOXMLDOC01-appb-I000001
Secured by
 以下、この研究における駆動トルク分配は、スリップ角が小さい場合、横力がコーナリング力とほぼ一致するという前提で行われる。前後輪2それぞれについて得られる最大縦力Fx_j_max(j=fl:前輪、j=r:後輪)は、
[数式2]
Figure JPOXMLDOC01-appb-I000002
により変換される。ここで、k(j=fl及びr)は、アクセルで発する車両全体のトルク指令Τと一致する前後輪2のトルク変換利得であり、
[数式3]
Figure JPOXMLDOC01-appb-I000003
により前後輪2の間で分けられる。
Hereinafter, the drive torque distribution in this study is performed on the assumption that the lateral force substantially matches the cornering force when the slip angle is small. The maximum longitudinal force F x_j_max (j = fl: front wheel, j = r: rear wheel) obtained for each of the front and rear wheels 2 is
[Formula 2]
Figure JPOXMLDOC01-appb-I000002
Converted by. Here, k j (j = fl and r) is a torque conversion gain of the front and rear wheels 2 that coincides with the torque command Τ R of the entire vehicle that is generated by the accelerator,
[Formula 3]
Figure JPOXMLDOC01-appb-I000003
Is divided between the front and rear wheels 2.
 ここで、Τ(タウ)Rf及びΤRrは、荷重移動に基づきΤから分けられた前後のトルク指令である。前後の駆動トルク指令ΤRf 及びΤRr は、次の手順でΤRfとΤx_f、及び、ΤRrとΤx_rを比較し、決定される。
[数式4]
Figure JPOXMLDOC01-appb-I000004
[数式5]
Figure JPOXMLDOC01-appb-I000005
Here, Τ (tau) Rf and Τ Rr are front and rear torque commands separated from Τ R based on load movement. The front and rear driving torque command T Rf * and T Rr *, the next steps in T Rf and T X_f, and compares the T Rr and T x_r, are determined.
[Formula 4]
Figure JPOXMLDOC01-appb-I000004
[Formula 5]
Figure JPOXMLDOC01-appb-I000005
 Τx_f及びΤx_rは、前後の横力Fy_f及びFy_rから決定する前後の駆動指令である。 X x_f and Τ x_r are front and rear drive commands determined from the front and rear lateral forces F y_f and F y_r .
 最後に、前後輪2の安定性を確保するため、以下のスリップ率条件に従って、上記駆動トルク指令ΤRf 及びΤRr を補償する(図5参照)。つまり、
[数式6]
Figure JPOXMLDOC01-appb-I000006
[数式7]
Figure JPOXMLDOC01-appb-I000007
Finally, to ensure the stability of the front and rear wheels 2, the following slip rate conditions, to compensate for the drive torque command T Rf * and T Rr * (see FIG. 5). In other words,
[Formula 6]
Figure JPOXMLDOC01-appb-I000006
[Formula 7]
Figure JPOXMLDOC01-appb-I000007
 ここで、reffはタイヤの有効半径であり、Vは車両速度であり、ωf_l及びωf_rは前輪2fr、2flの左右のタイヤの角速度であり、ωr_l及びωr_rは後輪2rr、2rlの左右のタイヤの角速度である。数式(6)及び(7)以外のスリップ率条件下では、数式(4)及び(5)の手順を満たすトルク指令ΤRf 及びΤRr が、前後のトルク制御部の実際のトルク指令となる。 Here, r eff is the effective radius of the tire, V is the vehicle speed, ω f — l and ω f — r are the angular velocities of the left and right tires of the front wheels 2 fr, 2 fl, and ω r — l and ω r — r are the rear wheels 2 rr, 2 rl. Is the angular velocity of the left and right tires. Under slip ratio conditions other than Equations (6) and (7), torque commands Τ Rf * and Τ Rr * satisfying the procedures of Equations (4) and (5) are the actual torque commands of the front and rear torque control units. Become.
 図6のフローチャート(S1~S13)に示すように、操舵角δに従って、アクセルが発したトルク指令に基づき、駆動トルク分配手順が横力から分配を決める手順と縦力から分配を決める手順の2つに分かれ、駆動トルク指令が前後輪2に分配される。以下に、各手順を詳細に説明する。 As shown in the flowchart (S1 to S13) of FIG. 6, two of the procedure for determining the distribution from the lateral force and the procedure for determining the distribution from the longitudinal force based on the torque command issued by the accelerator according to the steering angle δ. The driving torque command is distributed to the front and rear wheels 2. Each procedure will be described in detail below.
<アクセルから得たトルク指令に基づき前後輪に分配される駆動トルクを決定する手順>
 この手順の要点は、加速又は減速に起因する荷重移動を考慮し、縦力を前後輪2に分配することにある。そして、まず、図7Aに示す停止状態及び図7Bに示す加速状態にある自動車に作用する力のモーメント図を用いて、縦方向の荷重移動zが求められる。停止状態では、重心に作用する自動車荷重は、
[数式8]
Figure JPOXMLDOC01-appb-I000008
により、前後のタイヤの法線力Fzd_f及びFzd_rに分配される。
<Procedure for determining drive torque distributed to front and rear wheels based on torque command obtained from accelerator>
The main point of this procedure is to distribute the longitudinal force to the front and rear wheels 2 in consideration of load movement caused by acceleration or deceleration. First, using the moment diagram of the force acting on the automobile in the stop state shown in FIG. 7A and the acceleration state shown in FIG. 7B, the load movement z x in the vertical direction is obtained. In the stop state, the vehicle load acting on the center of gravity is
[Formula 8]
Figure JPOXMLDOC01-appb-I000008
Is distributed to the normal forces F zd_f and F zd_r of the front and rear tires.
 自動車が加速した際には、前後輪2の接点(X及びY)に作用するフォースモーメントが、
[数式9]
Figure JPOXMLDOC01-appb-I000009
及び、
[数式10]
Figure JPOXMLDOC01-appb-I000010
により与えられ、
When the car accelerates, the force moment acting on the contact points (X and Y) of the front and rear wheels 2 is
[Formula 9]
Figure JPOXMLDOC01-appb-I000009
as well as,
[Formula 10]
Figure JPOXMLDOC01-appb-I000010
Given by
 ここで自動車重量はFmg=mg(m:車両質量、g:重力による加速)、αcarは縦加速度、Hcarは重心高さ、Lcarは自動車のホイールベース、Lは前輪2fr、2flの車軸と重心との間の長さである。よって、前後輪2のタイヤに作用する法線力(Fz_f及びFz_r)は、
[数式11]
Figure JPOXMLDOC01-appb-I000011
及び、
[数式12]
Figure JPOXMLDOC01-appb-I000012
で表わされる。
Here, the automobile weight is F mg = mg (m: vehicle mass, g: acceleration due to gravity), α car is longitudinal acceleration, H car is the height of the center of gravity, L car is the wheel base of the automobile, L f is the front wheel 2fr, 2fl The length between the axle and the center of gravity. Therefore, the normal forces (F z_f and F z_r ) acting on the tires of the front and rear wheels 2 are
[Formula 11]
Figure JPOXMLDOC01-appb-I000011
as well as,
[Formula 12]
Figure JPOXMLDOC01-appb-I000012
It is represented by
 Fz_f、Fz_r及び路面の摩擦係数μを用い、路面と前後輪2のタイヤとの間に作用する縦力(Fx_f及びFx_r)が、
[数式13]
Figure JPOXMLDOC01-appb-I000013
及び、
[数式14]
Figure JPOXMLDOC01-appb-I000014
により、与えられる。
F Z_f, using the friction coefficient of the F Z_r and road mu, longitudinal force acting between the tire of the road surface and the front and rear wheels 2 (F x_f and F x_r) is,
[Formula 13]
Figure JPOXMLDOC01-appb-I000013
as well as,
[Formula 14]
Figure JPOXMLDOC01-appb-I000014
Is given by.
 そして、前輪用及び後輪用モータ3f、3rによりこれらの縦力に対応する駆動力が生じるように、トルク指令ΤRf及びΤRrを、
[数式15]
Figure JPOXMLDOC01-appb-I000015
及び、
[数式16]
Figure JPOXMLDOC01-appb-I000016
により、トルクコントローラ10の後述するトルク指令最適化部120の前後の制御系に分配する。
Then, the torque commands Τ Rf and Τ Rr are set so that the driving force corresponding to the longitudinal force is generated by the front wheel and rear wheel motors 3f, 3r.
[Formula 15]
Figure JPOXMLDOC01-appb-I000015
as well as,
[Formula 16]
Figure JPOXMLDOC01-appb-I000016
Accordingly, the torque controller 10 distributes the control system before and after the torque command optimization unit 120 described later.
 ここで、前方の分配率Rは、
[数式17]
Figure JPOXMLDOC01-appb-I000017
により与えられる。
Here, the forward distribution rate R f is
[Formula 17]
Figure JPOXMLDOC01-appb-I000017
Given by.
<コーナリングに必要な横力に基づき駆動トルク分配を決定する手順>
 ここで、図8を使って、一般的四輪モデルと同等の二輪モデルに置き換えて、自動車1の動きを説明する。自動車1の操舵角δ及びスリップ角βが小さいと仮定し、縦及び横方向の加速度α、α、及び、自動車1の重心に取り付けられた3軸加速度センサ26から検出されたヨーレートγを用いることで対処できる自動車1の横移動と自動車の重心におけるヨー運動を調べる。前後輪2の横移動は、
[数式18]
Figure JPOXMLDOC01-appb-I000018
で表わされる。
<Procedure for determining drive torque distribution based on lateral force required for cornering>
Here, the movement of the automobile 1 will be described with reference to FIG. 8 in place of a two-wheel model equivalent to a general four-wheel model. Assuming that the steering angle δ and the slip angle β of the automobile 1 are small, the longitudinal and lateral accelerations α x and α y , and the yaw rate γ detected from the three-axis acceleration sensor 26 attached to the center of gravity of the automobile 1 are The lateral movement of the automobile 1 that can be dealt with by using and the yaw motion at the center of gravity of the automobile are examined. The lateral movement of the front and rear wheels 2 is
[Formula 18]
Figure JPOXMLDOC01-appb-I000018
It is represented by
 z軸周囲のモーメントバランスを考慮に入れると、ヨー運動の方程式は、
[数式19]
Figure JPOXMLDOC01-appb-I000019
により与えられ、
Taking into account the moment balance around the z axis, the equation for yaw motion is
[Formula 19]
Figure JPOXMLDOC01-appb-I000019
Given by
 ここでIはz軸周囲の慣性のヨー運動である。Fy-f及びFy-rに関する数式(18)と数式(19)を解くと、前後の横力が、
[数式20]
Figure JPOXMLDOC01-appb-I000020
 
及び、
[数式21]
Figure JPOXMLDOC01-appb-I000021
 
として求められる。
Here, I z is the yaw motion of inertia around the z axis. Solving the F y-f and F y-r about Equation (18) Equation (19), the lateral force of the front and rear,
[Formula 20]
Figure JPOXMLDOC01-appb-I000020

as well as,
[Formula 21]
Figure JPOXMLDOC01-appb-I000021

As required.
 次に、図9に示す自動車の重心におけるロールモーメントを考慮することで、コーナリング時に出現する横方向の荷重移動zが得られる。自動車の重心におけるモーメントバランスは、
前後輪2の左のタイヤの法線力Fz_lの方程式を、
[数式22]
Figure JPOXMLDOC01-appb-I000022
として与える。
Then, by considering the roll moment at the center of gravity of the vehicle shown in FIG. 9, the load movement z y lateral appearing during cornering is obtained. The moment balance at the center of gravity of the car is
The equation of the normal force F z — l of the left tire of the front and rear wheels 2 is
[Formula 22]
Figure JPOXMLDOC01-appb-I000022
Give as.
 その結果、得られたFz_lと数式(9)を用いて、
[数式23]
Figure JPOXMLDOC01-appb-I000023
により横方向の荷重移動zが得られる。
As a result, using the obtained F z — l and Equation (9),
[Formula 23]
Figure JPOXMLDOC01-appb-I000023
Load transfer z y of the transverse direction is obtained by.
 求めたzを用いることで、前輪2fr、2flのタイヤの左右の法線力Fz_fl及びFz_frと、後輪2rr、2rlのタイヤの左右の法線力Fz_rl及びFz_rrが、以下のように与えられる。
[数式24]
Figure JPOXMLDOC01-appb-I000024
[数式25]
Figure JPOXMLDOC01-appb-I000025
[数式26]
Figure JPOXMLDOC01-appb-I000026
及び、
[数式27]
Figure JPOXMLDOC01-appb-I000027
By using a z y determined, the front wheels 2fr, a normal force F Z_fl and F Z_fr of left and right tires of 2FL, rear wheels 2rr, the normal force F Z_rl and F Z_rr of right and left tires 2RL, following As given.
[Formula 24]
Figure JPOXMLDOC01-appb-I000024
[Formula 25]
Figure JPOXMLDOC01-appb-I000025
[Formula 26]
Figure JPOXMLDOC01-appb-I000026
as well as,
[Formula 27]
Figure JPOXMLDOC01-appb-I000027
 数式(20)及び(21)の前後の横力Fy_f及びFy_rが、それぞれFz_fl:Fz_fr及びFz_rl:Fz_rrの割合で分割されることを考慮すると、前輪2fr、2flの左右の横力Fy_fl及びFy_frと、後輪2rr、2rlの左右の横力Fy_rl及びFy_rrは、
[数式28]
Figure JPOXMLDOC01-appb-I000028
[数式29]
Figure JPOXMLDOC01-appb-I000029
[数式30]
Figure JPOXMLDOC01-appb-I000030
及び、
[数式31]
Figure JPOXMLDOC01-appb-I000031
によって表わされる。
Equation (20) and front and rear lateral force F Y_f and F y_r (21) are each F z_fl: F z_fr and F z_rl: Considering that it is divided at a ratio of F Z_rr, front wheels 2fr, left and right 2fl and the lateral force F Y_fl and F Y_fr, the rear wheels 2rr, lateral force F Y_rl and F Y_rr left and right 2rl are
[Formula 28]
Figure JPOXMLDOC01-appb-I000028
[Formula 29]
Figure JPOXMLDOC01-appb-I000029
[Formula 30]
Figure JPOXMLDOC01-appb-I000030
as well as,
[Formula 31]
Figure JPOXMLDOC01-appb-I000031
Is represented by
 最後に、数式(1)に横力を適用することで、車両の推進に必要な縦力の最大値Fx_j_maxが得られる。 Finally, the maximum value F x — j — max of the longitudinal force necessary for propulsion of the vehicle is obtained by applying the lateral force to Equation (1).
 上記手順は、図10に示したトルクコントローラ10で実現することができる。図10に示すように、トルクコントローラ10は、摩擦円を使った縦横力スプリッタ部110、トルク指令最適化部120、車輪速検出器131f及び131r、前輪トルク制御部132f、後輪トルク制御部132r、及び、車速計算器133を備える。 The above procedure can be realized by the torque controller 10 shown in FIG. As shown in FIG. 10, the torque controller 10 includes a longitudinal / lateral force splitter unit 110 using a friction circle, a torque command optimization unit 120, wheel speed detectors 131f and 131r, a front wheel torque control unit 132f, and a rear wheel torque control unit 132r. And a vehicle speed calculator 133.
 摩擦円を使った縦横力スプリッタ部110は、前後輪用縦トルクスプリッタ計算部111、縦方向荷重移動計算部112、横方向荷重移動計算部113、前後輪用横力計算部114、摩擦係数推定部としての路面摩擦係数推定計算部115、摩擦円計算部を使ったタイヤ荷重演算部及び制御部としての最大駆動トルク推定部116、及び、最適駆動トルク指令識別計算部117を備える。カメラ20fr、20flは前輪2fr、2flの前方の路面の画像を撮像する。 The longitudinal and lateral force splitter unit 110 using the friction circle includes a longitudinal torque splitter calculating unit 111 for the front and rear wheels, a longitudinal load movement calculating unit 112, a lateral load movement calculating unit 113, a lateral force calculating unit 114 for the front and rear wheels, and a friction coefficient estimation. A road surface friction coefficient estimation calculation unit 115 as a unit, a tire load calculation unit using a friction circle calculation unit and a maximum drive torque estimation unit 116 as a control unit, and an optimum drive torque command identification calculation unit 117. The cameras 20fr and 20fl capture an image of the road surface ahead of the front wheels 2fr and 2fl.
 前後輪用縦トルクスプリッタ計算部111は、上記数式(11)~(16)を用いてアクセルペダルセンサ22からのトルク指令Tに基づき、前輪2fr、2flへの駆動トルク指令ΤRf 及び後輪2rr、2rlへの駆動トルク指令ΤRr を計算する。 Front and rear wheel longitudinal torque splitter calculation unit 111, based on the torque command T R from the accelerator pedal sensor 22 using the above equations (11) - (16), the front wheels 2fr, driving torque command T Rf * and after the 2fl A drive torque command Τ Rr * for the wheels 2rr and 2rl is calculated.
 縦方向荷重移動計算部112は、上記数式(12)を用いて縦加速度αCAR(=α)に基づき、縦方向の荷重移動zを算出する。 The vertical load movement calculation unit 112 calculates the vertical load movement z X based on the vertical acceleration α CAR (= α X ) using the above formula (12).
 横方向荷重移動計算部113は、上記数式(23)を用いて横加速度αに基づいき横方向の荷重移動zを算出する。 The lateral load movement calculation unit 113 calculates the lateral load movement z Y based on the lateral acceleration α Y using the above equation (23).
 前後輪用横力計算部114は、上記数式(20)、(21)を用いて横力Fyを算出する。 The front / rear wheel lateral force calculation unit 114 calculates the lateral force Fy using the above formulas (20) and (21).
 路面摩擦係数推定計算部115は、カメラ20fr、20flが撮像した画像に基づいて、乾燥路面、湿潤路面、凍結路面等の路面状況を判定し、路面状況に基づいて、前輪2fr、2flの前方の路面の摩擦係数μを推定する。 The road surface friction coefficient estimation calculation unit 115 determines road surface conditions such as a dry road surface, a wet road surface, and a frozen road surface based on the images captured by the cameras 20fr and 20fl, and based on the road surface conditions, the front surface of the front wheels 2fr and 2fl. Estimate the friction coefficient μ of the road surface.
 最大駆動トルク推定部116は、上記数式(13)、(14)を用いて横力Fy及び路面の摩擦係数μに基づき縦力(最大駆動トルク)Fz_f、Fz_rを推定する。 The maximum drive torque estimation unit 116 estimates the longitudinal forces (maximum drive torque) F z_f and F z_r based on the lateral force Fy and the road friction coefficient μ using the equations (13) and (14).
 最適駆動トルク指令識別計算部117は、上記数式(17)を用いて駆動トルク指令ΤRf 、ΤRr 及び縦力Fz_f、Fz_rに基づいて前方の配分率Rfを算出する。また、最適駆動トルク指令識別計算部117は、同様に後方の配分率Rrを算出する。 Optimum drive torque command discrimination calculator 117, the driving torque command T Rf * using the equation (17), Τ Rr * and Tateryoku F Z_f, calculates the front of the distribution ratio Rf based on F Z_r. Similarly, the optimum drive torque command identification calculation unit 117 calculates the rearward distribution rate Rr.
 トルク指令最適化部120は、前部トルク指令発生器121、後部トルク指令発生器122、前部スリップ率制御部123、及び後部スリップ率制御部124を備える。前部スリップ率制御部123は、前部スリップ率計算器123a、前部安定性判定部123b、及び、前部トルク指令補償器123cを備える。後部スリップ率制御部124は、後部スリップ率計算器124a、後部安定性判定部124b、及び後部トルク指令補償器124cを備える。 The torque command optimization unit 120 includes a front torque command generator 121, a rear torque command generator 122, a front slip rate control unit 123, and a rear slip rate control unit 124. The front slip ratio control unit 123 includes a front slip ratio calculator 123a, a front stability determination unit 123b, and a front torque command compensator 123c. The rear slip ratio control unit 124 includes a rear slip ratio calculator 124a, a rear stability determination unit 124b, and a rear torque command compensator 124c.
 前部トルク指令発生器121は、上記数式(4)を用いて駆動トルク指令ΤRfに基づき駆動トルク指令ΤRf を算出する。 Front torque command generator 121 based on the drive torque command T Rf calculates a driving torque command T Rf * using the equation (4).
 後部トルク指令発生器122は、上記数式(5)を用いて駆動トルク指令ΤRrに基づき駆動トルク指令ΤRr を算出する。 Rear torque command generator 122 calculates a driving torque command T Rr based on the drive torque command T Rr * using the equation (5).
 前部スリップ率制御部123の前部スリップ率計算器123aは、前輪2fr、2flのスリップ率を算出する。前部安定性判定部123bは、前輪2fr、2flの安定性を判定する。前部トルク指令補償器123cは、前輪2fr、2flのスリップ率が一定以下となるトルク指令を発生する。 The front slip ratio calculator 123a of the front slip ratio control unit 123 calculates the slip ratio of the front wheels 2fr and 2fl. The front stability determination unit 123b determines the stability of the front wheels 2fr and 2fl. The front torque command compensator 123c generates a torque command in which the slip ratios of the front wheels 2fr and 2fl are below a certain level.
 後部スリップ率制御部124の後部スリップ率計算器124aは、後輪2rr、2rlのスリップ率を算出する。後部安定性判定部124bは、後輪2rr、2rlの安定性を判定する。後部トルク指令補償器124cは、後輪2rr、2rlのスリップ率が一定以下となるトルク指令を発生する。 The rear slip ratio calculator 124a calculates the slip ratio of the rear wheels 2rr and 2rl. The rear stability determination unit 124b determines the stability of the rear wheels 2rr and 2rl. The rear torque command compensator 124c generates a torque command that causes the slip ratios of the rear wheels 2rr and 2rl to be below a certain level.
 このトルクコントローラ10では、アクセルペダルセンサ22が発した信号、3軸加速度センサ26によって検出された縦方向加速度及び横方向加速度、ヨーレート及び操舵角に基づき、図11Aのトルク制御の基本的流れ(S21~S24)及び図11Bのトルク制御の流れ(S31~S46)に従って、駆動トルク指令を決定する。 In this torque controller 10, the basic flow of torque control in FIG. 11A (S21) is based on the signal generated by the accelerator pedal sensor 22 and the vertical and lateral accelerations detected by the triaxial acceleration sensor 26, the yaw rate, and the steering angle. To S24) and the torque control flow (S31 to S46) of FIG. 11B, the drive torque command is determined.
 トルク制御の基本的流れは、図11Aに示すように、摩擦係数推定部としての路面摩擦係数推定計算部115が、自車が走行する路面の摩擦係数を推定する(S21)。次に、タイヤ荷重演算部としての最大駆動トルク推定部116が、加速時及び減速時に生じる縦方向の荷重移動、及び左右旋回時に生じる横方向の荷重移動に基づいて、各車輪のタイヤ荷重を演算する(S22)。次に、摩擦円計算部としての最大駆動トルク推定部116が、上記摩擦係数及び上記各車輪のタイヤ荷重から摩擦円をそれぞれ設定する(S23)。次に、最大駆動トルク推定部116が、各車輪の縦力と横力の合力が上記摩擦円に収まるように、前輪用モータ3fおよび後輪用モータ3r、すなわち前後輪の最大駆動トルクを演算する。 In the basic flow of torque control, as shown in FIG. 11A, the road surface friction coefficient estimation calculation unit 115 as the friction coefficient estimation unit estimates the friction coefficient of the road surface on which the vehicle travels (S21). Next, the maximum drive torque estimation unit 116 as a tire load calculation unit calculates the tire load of each wheel based on the vertical load movement that occurs during acceleration and deceleration and the lateral load movement that occurs during left-right turn. (S22). Next, the maximum drive torque estimation unit 116 as a friction circle calculation unit sets a friction circle from the friction coefficient and the tire load of each wheel (S23). Next, the maximum drive torque estimation unit 116 calculates the maximum drive torque of the front wheel motor 3f and the rear wheel motor 3r, that is, the front and rear wheels, so that the resultant force of the longitudinal force and the lateral force of each wheel falls within the friction circle. To do.
<シミュレーションによる本実施の形態の駆動トルク分配方法の検証>
 以下の仕様の試作FRID EVを用いて、シミュレーションを行う。m:1900kg、Hcar:670mm、L:1500mm、L:1125mm、及び、Lcar:2625mm。図12は、低μ路(μ=0.2)、操舵角3°、加速してから3秒後の左旋回時の、シミュレーションの結果を示す。まず、低μ路上で左旋回する過酷な走行条件下でのシミュレーションを通して本実施の形態の駆動トルク分配方法を評価する。本実施の形態の方法が適用されない場合(図12A参照)、コーナリング開始からおよそ2秒後に、前輪2fr、2flのスリップ角が徐々に大きくなり、前後の横力が飽和状態となる。その結果、自動車1は、コーナリングができず走行車線からずれてしまう(図13A、図13B参照)。一方、本実施の形態の方法が適用される場合、前後輪2の駆動力をコーナリングとともに減少させることで、横力の飽和状態が抑えられる。コーナリングに必要な横力が確保されることから(図12B参照)、図13Bの破線で示すように、自動車は走行車線に沿って左旋回ができる。
<Verification of drive torque distribution method of this embodiment by simulation>
Simulation is performed using a prototype FRID EV with the following specifications. m: 1900 kg, H car : 670 mm, L f : 1500 mm, L r : 1125 mm, and L car : 2625 mm. FIG. 12 shows the result of the simulation at the time of a left turn 3 seconds after acceleration with a low μ road (μ = 0.2), a steering angle of 3 °, and acceleration. First, the drive torque distribution method of this embodiment is evaluated through simulation under severe driving conditions in which the vehicle turns left on a low μ road. When the method of the present embodiment is not applied (see FIG. 12A), the slip angle of the front wheels 2fr and 2fl gradually increases approximately two seconds after the start of cornering, and the front and rear lateral forces become saturated. As a result, the automobile 1 cannot be cornered and deviates from the traveling lane (see FIGS. 13A and 13B). On the other hand, when the method of the present embodiment is applied, the saturation state of the lateral force can be suppressed by reducing the driving force of the front and rear wheels 2 together with the cornering. Since the lateral force necessary for cornering is ensured (see FIG. 12B), the vehicle can turn left along the traveling lane, as shown by the broken line in FIG. 13B.
 次に、超低μ路(μ=0.1)上でコーナリングをしつつ自動車を加速させる過酷な条件下で、本実施の形態の方法を評価する。本実施の形態の方法と従来のスリップ制御とのコーナリング性能の違いもまた明らかである。図14は、発進約10秒後の時間tで超低μ路上で加速しながら、操舵角3°で自動車が左旋回する条件下でのシミュレーションの結果を示す。本実施の形態の方法が適用されない場合(図14A参照)、スリップ率は、直ちに1まで上昇する。そして、車輪がスピンし、横滑りを引き起こす。旋回に要する十分な横力が確保できないことから、自動車はコーナリングができず走行車線から外れてしまう(図14D参照)。スリップ率制御の場合においては、自動車を加速させると、スリップ率がすぐに1まで上昇し、一旦は車輪がスピン状態となるものの、スリップ率は0.2まで抑えられ、そして車輪のスピン状態を回避する。しかし、スリップ角が徐々に大きくなり(図14A参照)、最終的には自動車は左旋回できなくなる(図14D参照)。一方、提案の駆動トルク分配方法を使って適切な駆動トルクを前後輪2に加えた場合、スリップ率は0に近い値に保たれ、横滑りもまた見られない。そして、旋回に必要な横力もまた確保され、自動車は走行車線に沿って適切に左旋回できるようになる(図14C及び図14D参照)。 Next, the method of the present embodiment is evaluated under harsh conditions in which an automobile is accelerated while cornering on an ultra-low μ road (μ = 0.1). The difference in cornering performance between the method of the present embodiment and the conventional slip control is also apparent. FIG. 14 shows the result of simulation under the condition that the vehicle turns left at a steering angle of 3 ° while accelerating on an ultra-low μ road at time t 1 after about 10 seconds from the start. When the method of the present embodiment is not applied (see FIG. 14A), the slip rate immediately increases to 1. The wheels spin and cause skidding. Since sufficient lateral force required for turning cannot be ensured, the automobile cannot corner and is out of the traveling lane (see FIG. 14D). In the case of slip ratio control, when the automobile is accelerated, the slip ratio immediately rises to 1 and the wheel once enters the spin state, but the slip ratio is suppressed to 0.2, and the spin state of the wheel is reduced. To avoid. However, the slip angle gradually increases (see FIG. 14A), and eventually the vehicle cannot turn left (see FIG. 14D). On the other hand, when an appropriate driving torque is applied to the front and rear wheels 2 using the proposed driving torque distribution method, the slip ratio is maintained at a value close to 0 and no side slip is also seen. Further, the lateral force necessary for turning is also ensured, and the automobile can turn left appropriately along the traveling lane (see FIGS. 14C and 14D).
 最後に、加速しながら時間tに左旋回を開始する条件下での、高μ路(μ=0.75)上を高速で左旋回する場合の効果を調査する。本実施の形態の駆動トルク分配方法が適用されない場合、加速開始から10秒後、自動車は走行車線に沿ってコーナーBまで適切に左旋回できる(図15A及び図15C参照)。しかし、B地点を過ぎると徐々に横力が飽和していくことから、旋回に必要な横力を確保することができない。これにより、自動車は道路に沿って走行することができず、過度に加速していく。一方、本実施の形態の駆動トルク分配方法が適用される場合、速度増加に伴い前輪用及び後輪用モータ3f、3rのトルクを低減することにより旋回に必要な横力が確保され、左旋回が効率的に行われ、自動車を最終的に目指す方向へと向かわせる。 Finally, the effect of turning left at high speed on a high μ road (μ = 0.75) under the condition of starting left turning at time t 1 while accelerating will be investigated. When the driving torque distribution method according to the present embodiment is not applied, the car can turn left appropriately to the corner B along the traveling lane 10 seconds after the start of acceleration (see FIGS. 15A and 15C). However, since the lateral force gradually saturates after passing point B, the lateral force required for turning cannot be ensured. As a result, the automobile cannot travel along the road and accelerates excessively. On the other hand, when the driving torque distribution method of the present embodiment is applied, the lateral force necessary for turning is secured by reducing the torque of the front wheel and rear wheel motors 3f and 3r as the speed increases, and the left turning Will be carried out efficiently, and the car will be aimed in the final direction.
 上記シミュレーションにおいては、操舵角は一定に保たれており、運転者によるアクセルの調節については考慮していない。実際、モータ3f、3rのトルクもまた運転者のアクセル操作を介した操舵角により調整されるため、走行中に走行車線を離れることはない。しかし、これらシミュレーションの結果は、本実施の形態の駆動トルク分配方法により、運転者がより安定した安全な旋回を低μ路或いは高速で行える事を意味する。 In the above simulation, the steering angle is kept constant, and the driver's accelerator adjustment is not taken into consideration. Actually, since the torque of the motors 3f and 3r is also adjusted by the steering angle through the driver's accelerator operation, the vehicle does not leave the traveling lane during traveling. However, the results of these simulations mean that the driver can perform a more stable and safe turn at a low μ road or at a high speed by the driving torque distribution method of the present embodiment.
<結論>
 低μ路或いは高速でのコーナリングをする場合、全ての従来型自動車にとって、旋回のため操舵は非常に難しい。本実施の形態において、路面及び走行条件に応じて前後輪2に駆動力を自在分配できるFRID EVの構造的特徴を用いることで、これらの問題を解決する駆動トルク分配方法を説明した。この駆動トルク分配方法は、操舵角、摩擦係数、及び、縦及び横方向加速の情報に基づき旋回に必要な横力が確保できるように、前後のトルクを前輪用及び後輪用モータ3f、3rに分配することを特徴とする。本実施の形態の駆動トルク分配方法の有効性は、低μ路上かつ高速でのコーナリング性能に関するシミュレーションを通して実証された。
<Conclusion>
When cornering on a low μ road or at high speed, steering is very difficult for all conventional vehicles due to turning. In the present embodiment, the driving torque distribution method for solving these problems has been described by using the structural features of FRID EV that can freely distribute the driving force to the front and rear wheels 2 according to the road surface and traveling conditions. In this driving torque distribution method, the front and rear torque motors 3f, 3r are used for the front and rear torques so that the lateral force required for turning can be secured based on the steering angle, the friction coefficient, and the longitudinal and lateral acceleration information. It is characterized by distributing to. The effectiveness of the driving torque distribution method of the present embodiment has been verified through simulations on cornering performance on a low μ road and at high speed.
 更に、すでに開発されているFRID EVの制御方法に加え、ここで提案される方法は、安全性及び運転性能の観点から、より強力な機能をFRID EVに加えている。 Furthermore, in addition to the already developed FRIDFREV control method, the proposed method adds more powerful functions to the FRID EV from the viewpoint of safety and driving performance.
 上記実施の形態においては、駆動力を制御する場合について説明してきたが、本発明は制動力を制御する場合にも同様に適用することができる。この場合、トルクコントローラ10が制動力を制御し、zの符号が「マイナス」となる。
 更に、上記実施の形態においては、左旋回の際に制御する場合について説明してきたが、本発明は右旋回の際に制御する場合にも同様に適用することができる。この場合、右旋回時には、zの符号が「マイナス」となる。
 更に、旋回加速の符号が「プラス」で加速を示し、旋回加速の符号が「マイナス」で減速を示している。
Although the case where the driving force is controlled has been described in the above embodiment, the present invention can be similarly applied to the case where the braking force is controlled. In this case, the torque controller 10 controls the braking force, and the sign of z x is “minus”.
Furthermore, in the above-described embodiment, the case where the control is performed during the left turn has been described. However, the present invention can be similarly applied to the case where the control is performed during the right turn. In this case, the sign of z y is “minus” when turning right.
Further, the sign of turning acceleration is “plus”, indicating acceleration, and the sign of turning acceleration is “minus”, indicating deceleration.
 本発明は、乗用車、バス及びトラックなどの車両に適用できる。
[符号の説明]
The present invention can be applied to vehicles such as passenger cars, buses, and trucks.
[Explanation of symbols]
1・・・電気自動車、2fr・・・右前輪、2fl・・・左前輪、2rr・・・右後輪、2rl・・・左後輪、3f…前輪用モータ、3r…後輪用モータ、4f、4r…デファレンシャルギア、7・・・バッテリ、8f…前輪用インバータ、8r…後輪用インバータ、9f…前輪用駆動回路、9r…後輪用駆動回路、10・・・トルク制御部、16f、16r…エンコーダ、19…ステアリングホイール、22…アクセルペダルセンサ、23・・・ブレーキペダルセンサ、24…シフトセンサ、25…車体、26…3軸加速度センサ、28fr、28fl、28rr、28rl・・・角速度センサ、29…操舵角センサ、110・・・摩擦円を使った縦横力スプリッタ部、120・・・トルク指令最適化部、131f、131r・・・車輪速検出器、132f・・・前輪トルク制御部、132r・・・後輪トルク制御部、133・・・車速計算器 DESCRIPTION OF SYMBOLS 1 ... Electric vehicle, 2fr ... Right front wheel, 2fl ... Left front wheel, 2rr ... Right rear wheel, 2rl ... Left rear wheel, 3f ... Front wheel motor, 3r ... Rear wheel motor, 4f, 4r ... differential gear, 7 ... battery, 8f ... front wheel inverter, 8r ... rear wheel inverter, 9f ... front wheel drive circuit, 9r ... rear wheel drive circuit, 10 ... torque control unit, 16f , 16r ... encoder, 19 ... steering wheel, 22 ... accelerator pedal sensor, 23 ... brake pedal sensor, 24 ... shift sensor, 25 ... vehicle body, 26 ... triaxial acceleration sensor, 28fr, 28fl, 28rr, 28rl ... Angular velocity sensor, 29 ... steering angle sensor, 110 ... vertical / lateral force splitter unit using friction circle, 120 ... torque command optimization unit, 131f, 131r ... wheel speed Can, 132f ... front wheel torque controller, 132r ... rear wheel torque control unit, 133 ... vehicle speed calculator

Claims (3)

  1.  右前輪及び左前輪に第1の差動装置を介して制駆動力を伝達する第1の電気モータと、
     右後輪及び左後輪に第2の差動装置を介して制駆動力を伝達する第2の電気モータと、
     走行する路面の摩擦係数を推定する摩擦係数推定部と、
     加速時及び減速時に生じる縦方向の荷重移動、及び左右旋回時に生じる横方向の荷重移動に基づいて、各車輪のタイヤ荷重を演算するタイヤ荷重演算部と、
     前記摩擦係数及び前記各車輪のタイヤ荷重から摩擦円をそれぞれ設定し、各車輪の縦力と横力の合力が前記摩擦円に収まるように、前記第1および第2の電気モータの制駆動力を制御する制御部とを備えた自動車。
    A first electric motor for transmitting braking / driving force to the right front wheel and the left front wheel via a first differential;
    A second electric motor that transmits braking / driving force to the right rear wheel and the left rear wheel via a second differential;
    A friction coefficient estimator for estimating the friction coefficient of the running road surface;
    A tire load calculation unit that calculates the tire load of each wheel based on the vertical load movement that occurs during acceleration and deceleration, and the lateral load movement that occurs when turning left and right;
    A friction circle is set based on the friction coefficient and the tire load of each wheel, and the braking / driving force of the first and second electric motors is set so that the resultant force of the longitudinal force and lateral force of each wheel is within the friction circle. And a control unit for controlling the vehicle.
  2.  各車輪のスリップ率を演算するスリップ率演算部を備え、
     前記制御部は、前記スリップ率が所定の値を超えると制御を開始し、
     前記制御部は、前記第1および第2の電気モータの制駆動力を制御し、前記各車輪の縦力と横力の合力が前記摩擦円に収まり、かつ、前記各車輪のスリップ率を減じる制御を行う請求項1に記載の自動車。
    A slip ratio calculation unit for calculating the slip ratio of each wheel is provided.
    The control unit starts control when the slip ratio exceeds a predetermined value,
    The control unit controls the braking / driving force of the first and second electric motors, and the resultant force of the longitudinal force and the lateral force of each wheel is contained in the friction circle, and the slip ratio of each wheel is reduced. The automobile according to claim 1 which performs control.
  3.  前記摩擦係数推定部は、撮像された画像に基づき前輪前方の路面の摩擦係数を推定し、
     前記制御部は、摩擦係数を含む情報を用いて前記第2の電気モータの制駆動力を制御する請求項2に記載の自動車。
     
    The friction coefficient estimation unit estimates the friction coefficient of the road surface in front of the front wheels based on the captured image,
    The automobile according to claim 2, wherein the control unit controls braking / driving force of the second electric motor using information including a friction coefficient.
PCT/JP2011/057978 2010-08-20 2011-03-30 Automobile WO2012023305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2010/005152 2010-08-20
PCT/JP2010/005152 WO2012023162A1 (en) 2010-08-20 2010-08-20 A vehicle

Publications (1)

Publication Number Publication Date
WO2012023305A1 true WO2012023305A1 (en) 2012-02-23

Family

ID=45604838

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/005152 WO2012023162A1 (en) 2010-08-20 2010-08-20 A vehicle
PCT/JP2011/057978 WO2012023305A1 (en) 2010-08-20 2011-03-30 Automobile

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005152 WO2012023162A1 (en) 2010-08-20 2010-08-20 A vehicle

Country Status (1)

Country Link
WO (2) WO2012023162A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109050659A (en) * 2018-07-06 2018-12-21 长春工业大学 A kind of four-wheel steering automobile stability control method based on time-varying dynamics model
CN110341696A (en) * 2018-04-06 2019-10-18 现代自动车株式会社 Vehicle control system and its control method
CN111186308A (en) * 2019-12-31 2020-05-22 广汽蔚来新能源汽车科技有限公司 Electric vehicle driving torque distribution method and device and computer equipment
CN111452624A (en) * 2019-01-22 2020-07-28 上海汽车集团股份有限公司 Low-attachment starting and escaping control method and device
WO2021141018A1 (en) * 2020-01-06 2021-07-15 Ntn株式会社 Turning control device for vehicle

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042706B2 (en) * 2012-11-21 2016-12-14 日立オートモティブシステムズ株式会社 Vehicle control device
CN103092082B (en) * 2013-01-07 2015-08-12 河南科技大学 A kind of driver is in ring vehicle performance optimization Simulation pilot system
JP6542017B2 (en) * 2015-04-14 2019-07-10 Ntn株式会社 Vehicle attitude control device
CN106021765A (en) * 2016-05-30 2016-10-12 西安交通大学 Motor design method and system
CN106650059B (en) * 2016-12-08 2020-05-08 南京越博动力系统股份有限公司 Matlab-based whole automobile performance simulation and calculation method
CN108241762A (en) * 2016-12-26 2018-07-03 乐视汽车(北京)有限公司 For the test system and test method of automatic Pilot analogue system
JP6847492B2 (en) * 2017-06-02 2021-03-24 日立Astemo株式会社 Electric vehicle control device, electric vehicle control system, and electric vehicle control method
JP6630386B2 (en) * 2018-03-07 2020-01-15 株式会社Subaru Vehicle control device and vehicle control method
CN109050658B (en) * 2018-07-06 2020-09-18 长春工业大学 Model predictive control-based automobile active front wheel steering self-adaptive adjustment method
IT202000001510A1 (en) * 2020-01-27 2021-07-27 Visionar S R L METHOD AND CONTROL UNIT TO RESTART THE TRACTION IN A MOTORIZED TWO-WHEELED VEHICLE
CN113442739B (en) * 2021-07-30 2023-06-30 的卢技术有限公司 Electronic differential control system, method, computer device, and computer-readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282406A (en) * 2006-04-07 2007-10-25 Tokyo Metropolitan Univ Braking force control system of vehicle
JP2008228407A (en) * 2007-03-09 2008-09-25 Tokyo Metropolitan Univ Braking/driving controller of vehicle
JP2009044916A (en) * 2007-08-10 2009-02-26 Bridgestone Corp Electric vehicle driving system and tire
JP2009149247A (en) * 2007-12-21 2009-07-09 Bridgestone Corp Vehicle controller
JP2010155528A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Method of controlling vehicle operation by selective nonlinear optimization computation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282406A (en) * 2006-04-07 2007-10-25 Tokyo Metropolitan Univ Braking force control system of vehicle
JP2008228407A (en) * 2007-03-09 2008-09-25 Tokyo Metropolitan Univ Braking/driving controller of vehicle
JP2009044916A (en) * 2007-08-10 2009-02-26 Bridgestone Corp Electric vehicle driving system and tire
JP2009149247A (en) * 2007-12-21 2009-07-09 Bridgestone Corp Vehicle controller
JP2010155528A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Method of controlling vehicle operation by selective nonlinear optimization computation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341696A (en) * 2018-04-06 2019-10-18 现代自动车株式会社 Vehicle control system and its control method
CN110341696B (en) * 2018-04-06 2024-05-28 现代自动车株式会社 Vehicle control system and control method thereof
CN109050659A (en) * 2018-07-06 2018-12-21 长春工业大学 A kind of four-wheel steering automobile stability control method based on time-varying dynamics model
CN111452624A (en) * 2019-01-22 2020-07-28 上海汽车集团股份有限公司 Low-attachment starting and escaping control method and device
CN111452624B (en) * 2019-01-22 2023-02-03 上海汽车集团股份有限公司 Low-attachment starting and escaping control method and device
CN111186308A (en) * 2019-12-31 2020-05-22 广汽蔚来新能源汽车科技有限公司 Electric vehicle driving torque distribution method and device and computer equipment
WO2021141018A1 (en) * 2020-01-06 2021-07-15 Ntn株式会社 Turning control device for vehicle

Also Published As

Publication number Publication date
WO2012023162A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2012023305A1 (en) Automobile
JP6847492B2 (en) Electric vehicle control device, electric vehicle control system, and electric vehicle control method
CN100475596C (en) Vehicle regenerative braking control apparatus and method
US10518765B2 (en) Electronic stability control system for electric drive vehicle
CN101905659B (en) Regenerative brake control system and method
KR20180058322A (en) Brake control system and method for electric vehicle
CN108237950A (en) Control method, system and the vehicle of vehicle
JP4911111B2 (en) Vehicle control device
JP2004099029A (en) Braking and controllability control method and system of vehicle with regenerative braking
JP4655895B2 (en) Vehicle control device
WO2012086223A1 (en) Electric vehicle
WO2019053020A1 (en) System and method for a trailer towable by a vehicle
WO2011151936A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
JP2006264628A (en) Vehicular braking/driving force control system
JP2006327335A (en) Torque distribution controller for vehicle
JP2011229286A (en) Electric vehicle and program
JP2011193702A (en) Electric vehicle and braking program
JP2011254590A (en) Electric vehicle and program
US20230382367A1 (en) Driving/braking force control apparatus
WO2011151935A1 (en) Electric vehicle, program, and control device and control method for electric vehicle
WO2011114557A1 (en) Electric vehicle, braking program, and method for controlling and device for controlling electric vehicle
JP5971186B2 (en) Wheel control device, vehicle
JP4385992B2 (en) Control device for hybrid four-wheel drive vehicle
CN114312347A (en) Method and system for auxiliary driving of trailer
JP2011189912A (en) Electric vehicle and braking program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP