WO2021141018A1 - Turning control device for vehicle - Google Patents

Turning control device for vehicle Download PDF

Info

Publication number
WO2021141018A1
WO2021141018A1 PCT/JP2021/000075 JP2021000075W WO2021141018A1 WO 2021141018 A1 WO2021141018 A1 WO 2021141018A1 JP 2021000075 W JP2021000075 W JP 2021000075W WO 2021141018 A1 WO2021141018 A1 WO 2021141018A1
Authority
WO
WIPO (PCT)
Prior art keywords
load factor
command value
vehicle
required load
torque command
Prior art date
Application number
PCT/JP2021/000075
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 鈴木
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2021141018A1 publication Critical patent/WO2021141018A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle turning control device, and relates to a technique for controlling torque commanded to each wheel according to a load factor required for each wheel by a driver's accelerator / brake operation and steering wheel operation.
  • Patent Document 1 a braking force control device that performs brake assist has been proposed.
  • the magnitude of the actual lateral acceleration generated in the vehicle the magnitude of the lateral force acting on the steering wheel (hereinafter referred to as the steering wheel), the steering angle of the steering wheel, and the friction circle of the steering wheel are used.
  • the target deceleration is calculated from the first gain, which is adjusted according to any one of the rates, and the second gain, which is adjusted according to the magnitude of the required deceleration due to the driver's braking operation, to control the deceleration. ..
  • the lateral force or friction circle usage rate (hereinafter referred to as load factor) applied to the steering wheel by operating the steering wheel and the driver's brake operation are monitored.
  • load factor the lateral force or friction circle usage rate
  • the margin of tire force is not known from the relationship between the load factor and the lateral force, how much more front-rear force is required when commanding the torque command value according to the accelerator / brake operation or the torque command value by yaw moment control. I don't know if it is permissible to add.
  • the margin of the tire force of the rear wheels is not known, and how much torque can be applied is not known, so that the turning performance of the vehicle cannot be optimally controlled.
  • An object of the present invention is to provide a vehicle turning control device capable of preventing the tire force of each wheel from diverging and optimally controlling the turning performance of the vehicle.
  • the vehicle turning control device 2 of the present invention is a vehicle turning control device that controls the turning characteristics of a vehicle 1 having a control drive source 4 capable of independently controlling the control drive torque of each of the wheels 3 and 8.
  • the yaw rate target value is obtained from the vehicle speed and steering angle, and the torque command value T s of each wheel 3 and 8 corresponding to the yaw moment generated in the vehicle 1 is calculated so as to obtain this yaw rate target value.
  • a yaw moment command value calculation means 17 having a yaw moment command value calculation unit 17b that feedback-controls the torque command value T s according to the deviation between the yaw rate target value and the yaw rate actual measurement value.
  • a torque distribution calculation means 18 having a required load factor calculation unit 20 for calculating a required load factor required for each of the wheels 3 and 8 by either one or both of accelerator / brake operation and steering is provided.
  • the torque distribution calculation means 18 is Depending on the magnitude relationship between the required load factor of each wheel 3 and 8 calculated by the required load factor calculation unit 20 and the allowable load factor which is the allowable load factor of each wheel 3 and 8.
  • the distribution of the accelerator / brake torque command value T ab which is the control drive torque due to the accelerator / brake operation, and the torque command value T s after the feedback control calculated by the yaw moment command value calculation means 17 is controlled.
  • the allowable load factor is often defined as "1" as the maximum value of the load factor, but the allowable load factor is the tire characteristics and the result obtained by simulation or actual vehicle test. It may be decided based on.
  • the required load factor calculation unit 20 calculates the required load factor required for each of the wheels 3 and 8 by either one or both of accelerator / brake operation and steering.
  • the torque distribution calculation means 18 determines the magnitude relationship between the required load factor and the allowable load factor.
  • the torque distribution calculation means 18 controls the distribution of the accelerator / brake torque command value T ab and the torque command value T s after the feedback control according to the magnitude relationship.
  • the required load factor calculation unit 20 calculates the required load factor of each of the wheels 3 and 8 and the required load factor ratio indicating the ratio of the front-rear force and the lateral force in the required load factor, and the torque distribution calculation means.
  • Reference numeral 18 denotes the accelerator / brake torque command value T ab and the feedback control according to the magnitude relationship between the required load factor of each of the wheels 3 and 8 and the allowable load factor and the magnitude of the required load factor ratio.
  • the distribution with the torque command value T s may be controlled. According to this configuration, the magnitude relationship between accelerator / brake operation and steering can be understood from the required load factor ratio, which is the ratio of front-rear force to lateral force. Therefore, the torque command value commanded to each of the wheels 3 and 8 can be controlled more finely.
  • the torque distribution calculation means 18 When the required load factor is smaller than the allowable load factor, the torque distribution calculation means 18 has a magnitude relationship between the required load factor ratio of the front-rear force and the required load factor ratio of the lateral force, and the accelerator / brake torque command value. depending on the sign of T ab, the accelerator and brake torque command value T ab, it may control the distribution of the torque command value T s after the feedback control. If the required load factor required by the driver is smaller than the allowable load factor, there is a margin in the tire force, so the accelerator / brake torque command according to the accelerator / brake operation is based on the relationship between the required load factor ratio of the front-rear force and the lateral force. The distribution of the value T ab and the torque command value T s of the yaw moment command value is determined according to the conditions.
  • the torque distribution calculation means 18 determines that the accelerator / brake torque command value Tab corresponds to the magnitude of the required lateral force load factor ratio and the sign of the accelerator / brake torque command value Tab.
  • the distribution of the brake torque command value T ab and the torque command value T s after the feedback control may be controlled. If the required load factor required by the driver is equal to or greater than the allowable load factor, there is no margin in the tire force. Therefore, for example, the accelerator / brake torque command value Tab is determined according to the conditions from the size of the required load factor ratio of the lateral force. Is zero, and the torque command value T s of the yaw moment command value is limited.
  • the torque distribution calculation means 18 includes a road surface friction coefficient calculation unit 19 for estimating a road surface friction coefficient, and the allowable load factor may change in value according to the estimated road surface friction coefficient. In this case, it is possible to more accurately determine how much tire force is left, and it is possible to realize a turning control device that takes more safety into consideration.
  • FIG. 1 It is a system block diagram which shows the conceptual structure of the turning control device of the vehicle which concerns on 1st Embodiment of this invention. It is sectional drawing which shows typically an example of the in-wheel motor drive device of the vehicle of FIG. It is a block diagram which shows a specific example of a part of the turning control device of FIG. It is a figure which shows the magnitude relationship between the required load factor and the permissible load factor of the turning control device of FIG. It is a figure which shows the magnitude relationship between the required load factor and the permissible load factor of the turning control device of FIG. It is a figure which shows the control example at the time of inputting the torque command value by the accelerator operation to each wheel of the vehicle of FIG. It is a figure which shows the control example at the time of inputting the torque command value by a brake operation to each wheel of the vehicle of FIG.
  • FIG. 1 is a system configuration diagram showing a conceptual configuration of a vehicle turning control device according to an embodiment.
  • a four-wheel independent drive type vehicle having an in-wheel motor drive device IWM on all four wheels will be described as an example.
  • the left and right rear wheels 3 and the left and right front wheels 8 are both independently driven by an electric motor 4 which is a control drive source.
  • the in-wheel motor drive device IWM reduces and transmits the wheel bearing 5, the electric motor 4, and the rotational output of the electric motor 4 to the hub wheel 5a, which is the rotating wheel of the wheel bearing 5.
  • the speed reducer 6 is provided, and the wheel of the wheel is attached to the hub wheel 5a.
  • the electric motor 4 is, for example, an AC motor such as a synchronous motor, and has a stator 4a and a rotor 4b.
  • the in-wheel motor drive device IWM includes a wheel rotation angular velocity sensor 7 that detects the wheel rotation angular velocity. The wheel rotation angular velocity is sent to the turning control device via an ECU described later.
  • the vehicle of this embodiment is equipped with an electric control unit (ECU) 9, sensors, a turning control device 2, an inverter torque command device 10, and an inverter device 11.
  • ECU electric control unit
  • sensors a turning control device 2
  • an inverter torque command device 10 a turning control device 11
  • inverter device 11 A plurality of inverter devices 11 (four in this example) are provided for the in-wheel motor drive devices IWM of each of the wheels 3 and 8.
  • the ECU 9 is connected to the turning control device 2, each inverter device 11, and the sensors by an in-vehicle communication network such as a control area network (abbreviated as CAN) to perform communication.
  • CAN control area network
  • the ECU 9 has, for example, a function of performing integrated control and coordinated control of the entire vehicle, and a function of generating an accelerator / brake torque command value which is a control drive torque by operating the accelerator / brake.
  • the ECU is also referred to as a "VCU" (Vehicle Control Unit).
  • the sensors include an accelerator / brake sensor 12, a vehicle speed sensor 13, a steering angle sensor 14, a yaw rate sensor 15, and an acceleration sensor 16.
  • the accelerator / brake sensor 12 is provided on an accelerator pedal and a brake pedal (not shown), respectively, and acquires a control driving force command according to an operation by these drivers.
  • the vehicle speed sensor 13 acquires the vehicle speed from, for example, the Global Positioning System (abbreviated as GPS) or the like.
  • the steering angle sensor 14 acquires a steering angle of a steering wheel or the like (not shown).
  • the yaw rate sensor 15 acquires an actually measured yaw rate value which is the yaw rate actually generated in the vehicle 1.
  • the acceleration sensor 16 acquires the acceleration actually occurring in the vehicle 1.
  • the sensor signal output by each sensor is input to the ECU 9, and the ECU 9 sends a necessary sensor signal by each calculation means described later.
  • the turning control device 2 is a device that controls the turning characteristics of the vehicle 1, and is composed of, for example, a computer such as a microcomputer, a program executed by the computer, various electronic circuits, and the like.
  • the turning control device 2 includes a yaw moment command value calculating means 17 and a torque distribution calculating means 18.
  • the yaw moment command value calculating means 17 includes a turning property improving yaw moment calculating unit 17a and a posture stabilizing yaw moment calculating unit 17b.
  • the turning performance-improving yaw moment calculation unit 17a is a feed-forward yaw moment calculation unit, which obtains a yaw rate target value from at least the vehicle speed and steering angle output from the ECU 9 and generates yaw in the vehicle so as to reach this yaw rate target value.
  • the attitude stabilization yaw moment calculation unit 17b is a feedback yaw moment calculation unit, and controls the behavior of the vehicle by feedback-controlling the torque command value T s at least according to the deviation between the yaw rate target value and the yaw rate actual measurement value. It is stabilizing.
  • the torque distribution calculation means 18 includes a road surface friction coefficient calculation unit 19, a required load factor calculation unit 20, and a torque command value calculation unit 21.
  • the road surface friction coefficient calculation unit 19 estimates the road surface friction coefficient from the measured lateral acceleration value output from the ECU 9 and the lateral acceleration target value calculated by the yaw moment command value calculating means 17. Specifically, if the lateral acceleration deviation is equal to or less than the threshold value Gy c, the road surface friction coefficient ⁇ est is set to “1”, and if the lateral acceleration deviation exceeds the threshold value Gy c , the road surface friction coefficient ⁇ est is calculated from the actual lateral acceleration Gy act. That is, assuming that the lateral acceleration target value is Gy ref , the lateral acceleration measured value is Gy act , the threshold value is Gy c , and the road surface friction coefficient is ⁇ est , the road surface friction coefficient is calculated as shown in the following equations (1) and (2). ..
  • ⁇ Gy c , ⁇ est 1 equation (1)
  • the required load factor calculation unit 20 is provided with an accelerator / brake torque command value Tab , a vehicle speed V, a steering angle ⁇ h , a wheel rotation angular velocity ⁇ i , and a front-rear acceleration measured value Gx act, which are commanded by the ECU 9 in response to the accelerator / brake operation.
  • the lateral acceleration measured value G yact , the road surface friction coefficient ⁇ est from the road surface friction coefficient calculation unit 19 , and the skid angular velocity target value ⁇ ref and the yaw rate target value r ref are input from the yaw moment command value calculation means 17. From these input values, the required load factor calculation unit 20 calculates the front-rear force, lateral force, wheel load, the driver required load factor which is the required load factor, and the driver required load factor ratio which is the required load factor ratio as follows. Calculate to.
  • i 1: left front wheel
  • i 2: right front wheel
  • i 3: left rear wheel
  • i 4: right rear wheel.
  • the torque command value calculation unit 21 has an accelerator / brake torque command value Tab commanded by the ECU 9 in response to an accelerator / brake operation, a torque command value T s after feedback control from the yaw moment command value calculation means 17, and a required load.
  • the driver required load factor J D_i and the driver required load factor ratio J x_i , J y_i and the lateral force Y D_i are input from the rate calculation unit 20.
  • the torque command value calculation unit 21 (FIG. 3) determines the driver required load factor.
  • the torque command value is controlled as follows according to the magnitude relationship between the ratios J x_i and J y_i and the sign of the accelerator / brake torque command value Tab.
  • T com_i in each condition is the final torque command value output by the torque command value calculation unit 21 (FIG. 3).
  • the torque command value by the accelerator operation is set to zero in principle. Further, the torque command value is controlled as follows according to the magnitude of the driver required load factor ratio J y_i of the lateral force and the sign of the accelerator / brake torque command value Tab.
  • the allowable load factor is often defined as "1" as the maximum value of the load factor, but the allowable load factor J max_i is obtained by tire characteristics and simulation or actual vehicle test. It may be decided based on the obtained result.
  • the allowable load factor J max_i is not determined only by the sum of the front-rear force and the lateral force with respect to the multiplication of the wheel load and the road surface friction coefficient shown in the present embodiment, but the tire specifications (width, flatness, It may be adjusted according to the properties of the compound, the shape of the tread), and the measured values of the tire characteristics measured in the actual vehicle test.
  • the final torque command value T com determined by the torque command value calculation unit 21 according to the above conditions is output to the inverter torque command device 10.
  • the inverter torque command device 10 sends an inverter torque command value to the inverter devices 11 of the wheels 3 and 8.
  • Each inverter device 11 converts the DC power of a battery (not shown) into AC power for driving the motor 4 (FIG. 2) according to the inverter torque command value.
  • FIG. 5 shows a situation in which a torque command value based on a yaw moment command value is commanded to improve turning performance when a driver inputs a torque command value corresponding to an accelerator operation to a four-wheel independent drive vehicle. Is shown.
  • the torque command value corresponding to the accelerator operation is input evenly to all four wheels and the lateral force of the front wheels is larger than that of the rear wheels, the conditions for each wheel are as follows. Left front wheel: condition (6), right front wheel: condition (3), left rear wheel: condition (6), right rear wheel: condition (1)
  • FIG. 6 shows a situation in which a torque command value based on a yaw moment command value is commanded to improve turning performance when a driver inputs a torque command value corresponding to a brake operation to a four-wheel independent drive vehicle. Is shown.
  • the conditions for each wheel are as follows. Left front wheel: condition (7), right front wheel: condition (4), left rear wheel: condition (7), right rear wheel: condition (2)
  • the required load factor required for each of the wheels 3 and 8 is calculated by either one or both of the accelerator / brake operation and the steering.
  • the torque distribution calculation means 18 determines the magnitude relationship between the required load factor and the allowable load factor.
  • the torque distribution calculation means 18 controls the distribution of the accelerator / brake torque command value T ab and the torque command value T s after the feedback control according to the magnitude relationship.
  • the required load factor calculation unit 20 calculates the required load factor of each of the wheels 3 and 8, and the required load factor ratio indicating the ratio of the front-rear force and the lateral force in the required load factor.
  • Accelerator / brake torque command value T ab and torque command value T s after the feedback control are determined according to the magnitude relationship between the required load factor and the allowable load factor of each wheel 3 and 8 and the magnitude of the required load factor ratio. Control the distribution of. In this case, the magnitude relationship between the accelerator / brake operation and the steering can be understood from the required load factor ratio, which is the ratio of the front-rear force and the lateral force. Therefore, the torque command value commanded to each of the wheels 3 and 8 can be controlled more finely.
  • the torque distribution calculation means 18 responds to the magnitude relationship between the required load factor ratio of the front-rear force and the required load factor ratio of the lateral force and the sign of the accelerator / brake torque command value Tab. Therefore , the distribution of the accelerator / brake torque command value T ab and the torque command value T s after the feedback control is controlled. If the required load factor required by the driver is smaller than the allowable load factor, there is a margin in the tire force, so the accelerator / brake torque command according to the accelerator / brake operation is based on the relationship between the required load factor ratio of the front-rear force and the lateral force. The distribution of the value T ab and the torque command value T s of the yaw moment command value is determined according to the conditions.
  • the torque distribution calculation means 18 When the required load factor is equal to or greater than the allowable load factor, the torque distribution calculation means 18 has an accelerator / brake torque command value Tab according to the magnitude of the lateral force required load factor ratio and the sign of the accelerator / brake torque command value Tab. And the torque command value T s after the feedback control are controlled. If the required load factor required by the driver is equal to or greater than the allowable load factor, there is no margin in the tire force. Therefore, for example, the accelerator / brake torque command value Tab is determined according to the conditions from the size of the required load factor ratio of the lateral force. Is zero, and the torque command value T s of the yaw moment command value is limited.
  • Vehicles that can be equipped with a vehicle turning control device are not limited to four-wheel independent drive vehicles.
  • turning control is performed on a front-wheel drive vehicle equipped with a motor drive device that is a control drive source that can independently drive the left and right front wheels and an electric brake device that is a control drive source that can independently brake the left and right rear wheels.
  • the device may be mounted.
  • the vehicle is turned into a rear-wheel drive vehicle equipped with a motor drive device which is a control drive source capable of independently driving the left and right rear wheels and an electric brake device which is a control drive source capable of independently braking the left and right front wheels.
  • a control device may be mounted.
  • the electric brake device is a friction brake type device that generates a friction braking force by bringing a brake rotor (not shown) into contact with a friction material by the driving force of an electric motor.
  • a vehicle equipped with an in-wheel motor drive device IWM as a drive source has been described as an example, but a motor-on-board vehicle in which an electric motor as a drive source is installed in a vehicle body, and an internal combustion engine as a drive source. It can also be carried out on a vehicle equipped with. In any vehicle, a control drive torque can be generated via a differential, a drive shaft, or the like (not shown). It is also possible to apply a hydraulic brake device (not shown) instead of the electric brake device.
  • the hydraulic brake device includes, for example, a friction brake type hydraulic brake provided on each wheel, a master cylinder (not shown) that independently generates a braking force on each hydraulic brake, and the like.
  • the required load factor of each wheel is calculated by the driver's accelerator / brake operation and steering, but the driver's It is also possible to automatically calculate the required load factor, etc. without depending on the operation.

Abstract

Provided is a turning control device that is for a vehicle and that is capable of preventing divergence of tire force of each wheel and of optimally controlling the turning performance of the vehicle. The turning control device for a vehicle controls turning characteristics of the vehicle having a breaking/driving source capable of independently controlling breaking/driving torque of each wheel. The turning control device is provided with: a yaw moment command value calculation means (17); and a torque distribution calculation means (18) having a required load factor calculation unit (20) for calculating a required load factor required for each wheel by one or both of accelerating/braking operation and steering. In accordance with a magnitude relationship between the required load factor for each wheel calculated by the required load factor calculation unit (20) and an allowable load factor that is a load factor allowable for each wheel, the torque distribution calculation means (18) controls distribution of an accelerating/braking torque command value Tab that is obtained by the accelerating/braking operation and a torque command value Ts that is obtained after feedback control and that is calculated by the yaw moment command value calculation means (17).

Description

車両の旋回制御装置Vehicle turn control device 関連出願Related application
 本出願は、2020年1月6日出願の特願2020-000267の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2020-000267 filed on January 6, 2020, and the entire application is cited as a part of the present application by reference.
 この発明は、車両の旋回制御装置に関し、ドライバのアクセル・ブレーキ操作とハンドル操作によって各車輪に要求される負荷率に応じて、各車輪に指令されるトルクを制御する技術に関する。 The present invention relates to a vehicle turning control device, and relates to a technique for controlling torque commanded to each wheel according to a load factor required for each wheel by a driver's accelerator / brake operation and steering wheel operation.
 従来、ブレーキアシストを行う制動力制御装置が提案されている(特許文献1)。この制動力制御装置では、車両に生じている実際の横加速度の大きさ、操向輪(以下、転舵輪)に作用する横力の大きさ、ハンドルの操舵角、および転舵輪の摩擦円使用率のいずれか一つに応じて調整する第1ゲインと、ドライバのブレーキ操作による要求減速度の大きさに応じて調整する第2ゲインから目標減速度を算出して減速度を制御している。 Conventionally, a braking force control device that performs brake assist has been proposed (Patent Document 1). In this braking force control device, the magnitude of the actual lateral acceleration generated in the vehicle, the magnitude of the lateral force acting on the steering wheel (hereinafter referred to as the steering wheel), the steering angle of the steering wheel, and the friction circle of the steering wheel are used. The target deceleration is calculated from the first gain, which is adjusted according to any one of the rates, and the second gain, which is adjusted according to the magnitude of the required deceleration due to the driver's braking operation, to control the deceleration. ..
特許第5453752号公報Japanese Patent No. 5453752
 特許文献1において、ハンドル操作によって転舵輪に掛かる横力または摩擦円使用率(以下、負荷率)とドライバのブレーキ操作とを監視している。しかし、負荷率と横力の関係からタイヤ力の余裕度を把握していないため、アクセル・ブレーキ操作に応じたトルク指令値、またはヨーモーメント制御によるトルク指令値を指令するとき、あとどれくらい前後力を付加することが許容されるのかが分からない。また、転舵輪の横力のみを監視した場合も同様に、後輪のタイヤ力の余裕度が分からず、どれくらいトルクを付加できるのかが分からず車両の旋回性能を最適に制御することができない。 In Patent Document 1, the lateral force or friction circle usage rate (hereinafter referred to as load factor) applied to the steering wheel by operating the steering wheel and the driver's brake operation are monitored. However, since the margin of tire force is not known from the relationship between the load factor and the lateral force, how much more front-rear force is required when commanding the torque command value according to the accelerator / brake operation or the torque command value by yaw moment control. I don't know if it is permissible to add. Similarly, when only the lateral force of the steering wheel is monitored, the margin of the tire force of the rear wheels is not known, and how much torque can be applied is not known, so that the turning performance of the vehicle cannot be optimally controlled.
 この発明の目的は、各車輪のタイヤ力の発散を防止すると共に車両の旋回性能を最適に制御することができる車両の旋回制御装置を提供することである。 An object of the present invention is to provide a vehicle turning control device capable of preventing the tire force of each wheel from diverging and optimally controlling the turning performance of the vehicle.
 以下、本発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, the present invention will be described with reference to the reference numerals of the embodiments for convenience in order to facilitate understanding.
 この発明の車両の旋回制御装置2は、各車輪3,8の制駆動トルクを独立に制御可能な制駆動源4を有する車両1の旋回特性を制御する車両の旋回制御装置であって、
 車速と操舵角からヨーレート目標値を求めこのヨーレート目標値になるように、前記車両1に生じさせるヨーモーメントに相当する各車輪3,8のトルク指令値Tsを計算する旋回性向上ヨーモーメント計算部17a、および前記ヨーレート目標値とヨーレート実測値の偏差に応じて前記トルク指令値Tsをフィードバック制御する姿勢安定化ヨーモーメント計算部17bを有するヨーモーメント指令値計算手段17と、
 アクセル・ブレーキ操作および操舵のいずれか一方または両方により各車輪3,8に要求する要求負荷率を計算する要求負荷率計算部20を有するトルク配分計算手段18と、を備え、
 このトルク配分計算手段18は、
 前記要求負荷率計算部20で計算された各車輪3,8の要求負荷率と、各車輪3,8が許容できる負荷率である許容負荷率と、の大小関係に応じて、
 前記アクセル・ブレーキ操作による制駆動トルクであるアクセル・ブレーキトルク指令値Tabと、前記ヨーモーメント指令値計算手段17で計算された前記フィードバック制御後のトルク指令値Tsとの配分を制御する。
 一般的にドライ路面の場合は、前記許容負荷率を負荷率の最大値として「1」と定義することが多いが、前記許容負荷率は、タイヤの特性およびシミュレーションまたは実車試験で得られた結果を基に決定してもよい。
The vehicle turning control device 2 of the present invention is a vehicle turning control device that controls the turning characteristics of a vehicle 1 having a control drive source 4 capable of independently controlling the control drive torque of each of the wheels 3 and 8.
The yaw rate target value is obtained from the vehicle speed and steering angle, and the torque command value T s of each wheel 3 and 8 corresponding to the yaw moment generated in the vehicle 1 is calculated so as to obtain this yaw rate target value. A yaw moment command value calculation means 17 having a yaw moment command value calculation unit 17b that feedback-controls the torque command value T s according to the deviation between the yaw rate target value and the yaw rate actual measurement value.
A torque distribution calculation means 18 having a required load factor calculation unit 20 for calculating a required load factor required for each of the wheels 3 and 8 by either one or both of accelerator / brake operation and steering is provided.
The torque distribution calculation means 18 is
Depending on the magnitude relationship between the required load factor of each wheel 3 and 8 calculated by the required load factor calculation unit 20 and the allowable load factor which is the allowable load factor of each wheel 3 and 8.
The distribution of the accelerator / brake torque command value T ab , which is the control drive torque due to the accelerator / brake operation, and the torque command value T s after the feedback control calculated by the yaw moment command value calculation means 17 is controlled.
Generally, in the case of a dry road surface, the allowable load factor is often defined as "1" as the maximum value of the load factor, but the allowable load factor is the tire characteristics and the result obtained by simulation or actual vehicle test. It may be decided based on.
 この構成によると、要求負荷率計算部20は、アクセル・ブレーキ操作および操舵のいずれか一方または両方により各車輪3,8に要求する要求負荷率を計算する。トルク配分計算手段18は、要求負荷率と許容負荷率との大小関係を判定する。トルク配分計算手段18は、前記大小関係に応じて、アクセル・ブレーキトルク指令値Tabと前記フィードバック制御後のトルク指令値Tsとの配分を制御する。このように各車輪3,8に要求する要求負荷率と、実際に各車輪3,8が許容できる許容負荷率との大小関係に応じてトルク指令値をきめ細かく制御することで、各車輪3,8のタイヤ力の発散を防止すると共に車両の旋回性能を最適に制御することができる。 According to this configuration, the required load factor calculation unit 20 calculates the required load factor required for each of the wheels 3 and 8 by either one or both of accelerator / brake operation and steering. The torque distribution calculation means 18 determines the magnitude relationship between the required load factor and the allowable load factor. The torque distribution calculation means 18 controls the distribution of the accelerator / brake torque command value T ab and the torque command value T s after the feedback control according to the magnitude relationship. By finely controlling the torque command value according to the magnitude relationship between the required load factor required for each of the wheels 3 and 8 and the allowable load factor actually allowed by each of the wheels 3 and 8, the wheels 3 and 8 are actually allowed. It is possible to prevent the divergence of the tire force of No. 8 and optimally control the turning performance of the vehicle.
 前記要求負荷率計算部20は、前記各車輪3,8の要求負荷率、およびこの要求負荷率における前後力と横力の比率を示す要求負荷率比を計算しており、前記トルク配分計算手段18は、前記各車輪3,8の要求負荷率と前記許容負荷率との大小関係および前記要求負荷率比の大きさに応じて、前記アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御してもよい。
 この構成によると、アクセル・ブレーキ操作と操舵の大小関係が、前後力と横力の比率である要求負荷率比によって分かる。このため、各車輪3,8に指令するトルク指令値をさらにきめ細かく制御することができる。
The required load factor calculation unit 20 calculates the required load factor of each of the wheels 3 and 8 and the required load factor ratio indicating the ratio of the front-rear force and the lateral force in the required load factor, and the torque distribution calculation means. Reference numeral 18 denotes the accelerator / brake torque command value T ab and the feedback control according to the magnitude relationship between the required load factor of each of the wheels 3 and 8 and the allowable load factor and the magnitude of the required load factor ratio. The distribution with the torque command value T s may be controlled.
According to this configuration, the magnitude relationship between accelerator / brake operation and steering can be understood from the required load factor ratio, which is the ratio of front-rear force to lateral force. Therefore, the torque command value commanded to each of the wheels 3 and 8 can be controlled more finely.
 前記トルク配分計算手段18は、前記要求負荷率が前記許容負荷率よりも小さいとき、前記前後力の要求負荷率比と前記横力の要求負荷率比の大小関係と前記アクセル・ブレーキトルク指令値Tabの符号に応じて、前記アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御してもよい。ドライバの要求する要求負荷率が許容負荷率よりも小さい場合は、タイヤ力に余裕があるため、前後力と横力の要求負荷率比の関係からアクセル・ブレーキ操作に応じたアクセル・ブレーキトルク指令値Tabとヨーモーメント指令値のトルク指令値Tsの配分が条件に応じて決められる。 When the required load factor is smaller than the allowable load factor, the torque distribution calculation means 18 has a magnitude relationship between the required load factor ratio of the front-rear force and the required load factor ratio of the lateral force, and the accelerator / brake torque command value. depending on the sign of T ab, the accelerator and brake torque command value T ab, it may control the distribution of the torque command value T s after the feedback control. If the required load factor required by the driver is smaller than the allowable load factor, there is a margin in the tire force, so the accelerator / brake torque command according to the accelerator / brake operation is based on the relationship between the required load factor ratio of the front-rear force and the lateral force. The distribution of the value T ab and the torque command value T s of the yaw moment command value is determined according to the conditions.
 前記トルク配分計算手段18は、前記要求負荷率が前記許容負荷率以上のとき、前記横力の要求負荷率比の大きさと前記アクセル・ブレーキトルク指令値Tabの符号に応じて、前記アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御してもよい。ドライバの要求する要求負荷率が許容負荷率以上の場合は、タイヤ力に余裕がないため、例えば、横力の要求負荷率比の大きさから条件に応じて、アクセル・ブレーキトルク指令値Tabをゼロ、ヨーモーメント指令値のトルク指令値Tsに制限をかける。 When the required load factor is equal to or greater than the allowable load factor, the torque distribution calculation means 18 determines that the accelerator / brake torque command value Tab corresponds to the magnitude of the required lateral force load factor ratio and the sign of the accelerator / brake torque command value Tab. The distribution of the brake torque command value T ab and the torque command value T s after the feedback control may be controlled. If the required load factor required by the driver is equal to or greater than the allowable load factor, there is no margin in the tire force. Therefore, for example, the accelerator / brake torque command value Tab is determined according to the conditions from the size of the required load factor ratio of the lateral force. Is zero, and the torque command value T s of the yaw moment command value is limited.
 前記トルク配分計算手段18は、路面摩擦係数を推定する路面摩擦係数計算部19を備え、前記許容負荷率は、推定された前記路面摩擦係数に応じて値が変わるものとしてもよい。この場合、タイヤ力にあとどのくらい余裕があるかをより精度良く判定することができ、より安全性に配慮した旋回制御装置を実現し得る。 The torque distribution calculation means 18 includes a road surface friction coefficient calculation unit 19 for estimating a road surface friction coefficient, and the allowable load factor may change in value according to the estimated road surface friction coefficient. In this case, it is possible to more accurately determine how much tire force is left, and it is possible to realize a turning control device that takes more safety into consideration.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of claims and / or at least two configurations disclosed in the specification and / or drawings is included in the invention. In particular, any combination of two or more of each claim is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description purposes only and should not be used to define the scope of the invention. The scope of the present invention is determined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の第1の実施形態に係る車両の旋回制御装置の概念構成を示すシステム構成図である。It is a system block diagram which shows the conceptual structure of the turning control device of the vehicle which concerns on 1st Embodiment of this invention. 図1の車両のインホイールモータ駆動装置の一例を概略示す断面図である。It is sectional drawing which shows typically an example of the in-wheel motor drive device of the vehicle of FIG. 図1の旋回制御装置の一部の具体例を示すブロック図である。It is a block diagram which shows a specific example of a part of the turning control device of FIG. 図1の旋回制御装置の要求負荷率と許容負荷率との大小関係等を示す図である。It is a figure which shows the magnitude relationship between the required load factor and the permissible load factor of the turning control device of FIG. 図1の旋回制御装置の要求負荷率と許容負荷率との大小関係等を示す図である。It is a figure which shows the magnitude relationship between the required load factor and the permissible load factor of the turning control device of FIG. 図1の車両の各車輪にアクセル操作によるトルク指令値を入力している場合の制御例を示す図である。It is a figure which shows the control example at the time of inputting the torque command value by the accelerator operation to each wheel of the vehicle of FIG. 図1の車両の各車輪にブレーキ操作によるトルク指令値を入力している場合の制御例を示す図である。It is a figure which shows the control example at the time of inputting the torque command value by a brake operation to each wheel of the vehicle of FIG.
 [第1の実施形態]
 この発明の第1の実施形態に係る車両の旋回制御装置を図1ないし図6と共に説明する。
 図1は、実施形態に係る車両の旋回制御装置の概念構成を示すシステム構成図である。この実施形態では、旋回制御装置2を搭載した車両1として、四輪全てにインホイールモータ駆動装置IWMを備えた四輪独立駆動式の車両を例に説明する。この車両1は、左右の後輪となる車輪3および左右の前輪となる車輪8が、いずれも制駆動源となる電動機4で独立して駆動される。
[First Embodiment]
The vehicle turning control device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6.
FIG. 1 is a system configuration diagram showing a conceptual configuration of a vehicle turning control device according to an embodiment. In this embodiment, as the vehicle 1 equipped with the turning control device 2, a four-wheel independent drive type vehicle having an in-wheel motor drive device IWM on all four wheels will be described as an example. In this vehicle 1, the left and right rear wheels 3 and the left and right front wheels 8 are both independently driven by an electric motor 4 which is a control drive source.
 <インホイールモータ駆動装置IWM>
 図2に示すように、インホイールモータ駆動装置IWMは、車輪用軸受5と、前記電動機4と、この電動機4の回転出力を車輪用軸受5の回転輪となるハブ輪5aに減速して伝達する減速機6とを備え、ハブ輪5aに車輪のホイールが取付けられる。電動機4は、例えば、同期モータ等の交流モータであり、ステータ4aとロータ4bとを有する。このインホイールモータ駆動装置IWMは、車輪回転角速度を検出する車輪回転角速度センサ7を備えている。前記車輪回転角速度は、後述するECUを介して旋回制御装置に送られる。
<In-wheel motor drive device IWM>
As shown in FIG. 2, the in-wheel motor drive device IWM reduces and transmits the wheel bearing 5, the electric motor 4, and the rotational output of the electric motor 4 to the hub wheel 5a, which is the rotating wheel of the wheel bearing 5. The speed reducer 6 is provided, and the wheel of the wheel is attached to the hub wheel 5a. The electric motor 4 is, for example, an AC motor such as a synchronous motor, and has a stator 4a and a rotor 4b. The in-wheel motor drive device IWM includes a wheel rotation angular velocity sensor 7 that detects the wheel rotation angular velocity. The wheel rotation angular velocity is sent to the turning control device via an ECU described later.
 <制御系について>
 図1に示すように、この実施形態の車両には、電気制御ユニット(ECU)9、センサ類、旋回制御装置2、インバータトルク指令装置10およびインバータ装置11が搭載される。インバータ装置11は、各車輪3,8のインホイールモータ駆動装置IWMに対して複数(この例では4つ)設けられる。ECU9は、旋回制御装置2、各インバータ装置11およびセンサ類とコントロール・エリア・ネットワーク(略称CAN)等の車内通信網で接続されて通信を行っている。ECU9は、例えば、車両全般の統括制御および協調制御を行う機能と、アクセル・ブレーキ操作による制駆動トルクであるアクセル・ブレーキトルク指令値を生成する機能を有する。前記ECUは「VCU」(Vehicle Control Unit)とも称される。
<About the control system>
As shown in FIG. 1, the vehicle of this embodiment is equipped with an electric control unit (ECU) 9, sensors, a turning control device 2, an inverter torque command device 10, and an inverter device 11. A plurality of inverter devices 11 (four in this example) are provided for the in-wheel motor drive devices IWM of each of the wheels 3 and 8. The ECU 9 is connected to the turning control device 2, each inverter device 11, and the sensors by an in-vehicle communication network such as a control area network (abbreviated as CAN) to perform communication. The ECU 9 has, for example, a function of performing integrated control and coordinated control of the entire vehicle, and a function of generating an accelerator / brake torque command value which is a control drive torque by operating the accelerator / brake. The ECU is also referred to as a "VCU" (Vehicle Control Unit).
 前記センサ類は、アクセル・ブレーキセンサ12、車速センサ13、舵角センサ14、ヨーレートセンサ15、および加速度センサ16を含む。アクセル・ブレーキセンサ12は、図示外のアクセルペダルおよびブレーキペダルにそれぞれ設けられこれらの運転者による操作に応じた制駆動力指令を取得する。車速センサ13は、例えば、全地球測位システム(Global Positioning System:略称GPS)等から車速を取得する。舵角センサ14は、図示外のステアリングハンドル等の操舵角を取得する。ヨーレートセンサ15は、車両1に実際に生じているヨーレートであるヨーレート実測値を取得する。加速度センサ16は、車両1に実際に生じている加速度を取得する。各センサが出力したセンサ信号はECU9に入力され、ECU9は、後述する各計算手段で必票なセンサ信号を送っている。 The sensors include an accelerator / brake sensor 12, a vehicle speed sensor 13, a steering angle sensor 14, a yaw rate sensor 15, and an acceleration sensor 16. The accelerator / brake sensor 12 is provided on an accelerator pedal and a brake pedal (not shown), respectively, and acquires a control driving force command according to an operation by these drivers. The vehicle speed sensor 13 acquires the vehicle speed from, for example, the Global Positioning System (abbreviated as GPS) or the like. The steering angle sensor 14 acquires a steering angle of a steering wheel or the like (not shown). The yaw rate sensor 15 acquires an actually measured yaw rate value which is the yaw rate actually generated in the vehicle 1. The acceleration sensor 16 acquires the acceleration actually occurring in the vehicle 1. The sensor signal output by each sensor is input to the ECU 9, and the ECU 9 sends a necessary sensor signal by each calculation means described later.
 旋回制御装置2は、車両1の旋回特性を制御する装置であり、例えば、マイクロコンピュータ等のコンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。旋回制御装置2は、ヨーモーメント指令値計算手段17と、トルク配分計算手段18とを備える。 The turning control device 2 is a device that controls the turning characteristics of the vehicle 1, and is composed of, for example, a computer such as a microcomputer, a program executed by the computer, various electronic circuits, and the like. The turning control device 2 includes a yaw moment command value calculating means 17 and a torque distribution calculating means 18.
 <ヨーモーメント指令値計算手段17>
 図3に示すように、ヨーモーメント指令値計算手段17は、旋回性向上ヨーモーメント計算部17aと姿勢安定化ヨーモーメント計算部17bとを有する。
 旋回性向上ヨーモーメント計算部17aは、フィードフォワードのヨーモーメント計算部であり、ECU9から出力された少なくとも車速と操舵角からヨーレート目標値を求めこのヨーレート目標値になるように、車両に生じさせるヨーモーメントに相当する各車輪3,8のトルク指令値Tsを計算して指令することで、車両の旋回性を向上させている。
 姿勢安定化ヨーモーメント計算部17bは、フィードバックのヨーモーメント計算部であり、少なくとも前記ヨーレート目標値と前記ヨーレート実測値の偏差に応じて前記トルク指令値Tsをフィードバック制御することで車両の挙動を安定化させている。
<Yaw moment command value calculation means 17>
As shown in FIG. 3, the yaw moment command value calculating means 17 includes a turning property improving yaw moment calculating unit 17a and a posture stabilizing yaw moment calculating unit 17b.
The turning performance-improving yaw moment calculation unit 17a is a feed-forward yaw moment calculation unit, which obtains a yaw rate target value from at least the vehicle speed and steering angle output from the ECU 9 and generates yaw in the vehicle so as to reach this yaw rate target value. By calculating and commanding the torque command value T s of each of the wheels 3 and 8 corresponding to the moment, the turning performance of the vehicle is improved.
The attitude stabilization yaw moment calculation unit 17b is a feedback yaw moment calculation unit, and controls the behavior of the vehicle by feedback-controlling the torque command value T s at least according to the deviation between the yaw rate target value and the yaw rate actual measurement value. It is stabilizing.
 <トルク配分計算手段18>
 トルク配分計算手段18は、路面摩擦係数計算部19と、要求負荷率計算部20と、トルク指令値計算部21とを有する。
<Torque distribution calculation means 18>
The torque distribution calculation means 18 includes a road surface friction coefficient calculation unit 19, a required load factor calculation unit 20, and a torque command value calculation unit 21.
 路面摩擦係数計算部19は、ECU9から出力された横加速度実測値と、ヨーモーメント指令値計算手段17で計算した横加速度目標値から路面摩擦係数を推定する。具体的には、横加速度偏差が閾値Gyc以下ならば路面摩擦係数μestを「1」とし、閾値Gycを超えたときは実横加速度Gyactから路面摩擦係数μestを計算する。すなわち横加速度目標値をGyref、横加速度実測値をGyact、閾値をGyc、路面摩擦係数をμestとすると、以下の式(1),(2)のように路面摩擦係数を計算する。
 |Gyref|-|Gyact|≦Gycならばμest=1        式(1)
 |Gyref|-|Gyact|>Gycならばμest≧|Gyact|   式(2)
The road surface friction coefficient calculation unit 19 estimates the road surface friction coefficient from the measured lateral acceleration value output from the ECU 9 and the lateral acceleration target value calculated by the yaw moment command value calculating means 17. Specifically, if the lateral acceleration deviation is equal to or less than the threshold value Gy c, the road surface friction coefficient μ est is set to “1”, and if the lateral acceleration deviation exceeds the threshold value Gy c , the road surface friction coefficient μ est is calculated from the actual lateral acceleration Gy act. That is, assuming that the lateral acceleration target value is Gy ref , the lateral acceleration measured value is Gy act , the threshold value is Gy c , and the road surface friction coefficient is μ est , the road surface friction coefficient is calculated as shown in the following equations (1) and (2). ..
| Gy ref | - | Gy act | ≦ Gy c , μ est = 1 equation (1)
| Gy ref | - | Gy act | > If Gy c , μ est ≧ | Gy act | Equation (2)
 要求負荷率計算部20には、ECU9からアクセル・ブレーキ操作に応じて指令されるアクセル・ブレーキトルク指令値Tab、車速V、操舵角δh、車輪回転角速度ωi、前後加速度実測値Gxact、横加速度実測値Gyact、路面摩擦係数計算部19から路面摩擦係数μest、ヨーモーメント指令値計算手段17から横滑り角目標値βrefとヨーレート目標値rrefが入力される。要求負荷率計算部20は、入力されたこれらの値から前後力、横力、輪荷重、要求負荷率であるドライバ要求負荷率、および要求負荷率比であるドライバ要求負荷率比を以下のように算出する。 The required load factor calculation unit 20 is provided with an accelerator / brake torque command value Tab , a vehicle speed V, a steering angle δ h , a wheel rotation angular velocity ω i , and a front-rear acceleration measured value Gx act, which are commanded by the ECU 9 in response to the accelerator / brake operation. , The lateral acceleration measured value G yact , the road surface friction coefficient μ est from the road surface friction coefficient calculation unit 19 , and the skid angular velocity target value β ref and the yaw rate target value r ref are input from the yaw moment command value calculation means 17. From these input values, the required load factor calculation unit 20 calculates the front-rear force, lateral force, wheel load, the driver required load factor which is the required load factor, and the driver required load factor ratio which is the required load factor ratio as follows. Calculate to.
 <各車輪の前後力>
Figure JPOXMLDOC01-appb-M000001
 但し、i=1:左前輪、i=2:右前輪、i=3:左後輪、i=4:右後輪を指す。
<Front and rear force of each wheel>
Figure JPOXMLDOC01-appb-M000001
However, i = 1: left front wheel, i = 2: right front wheel, i = 3: left rear wheel, i = 4: right rear wheel.
 <各車輪の横力>
Figure JPOXMLDOC01-appb-M000002
<Horizontal force of each wheel>
Figure JPOXMLDOC01-appb-M000002
 <各車輪の輪荷重>
Figure JPOXMLDOC01-appb-M000003
<Wheel load>
Figure JPOXMLDOC01-appb-M000003
 <ドライバ要求負荷率>
Figure JPOXMLDOC01-appb-M000004
<Driver required load factor>
Figure JPOXMLDOC01-appb-M000004
 <ドライバ要求負荷率比>
Figure JPOXMLDOC01-appb-M000005
<Driver required load factor ratio>
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 トルク指令値計算部21には、ECU9からアクセル・ブレーキ操作に応じて指令されるアクセル・ブレーキトルク指令値Tab、ヨーモーメント指令値計算手段17からフィードバック制御後のトルク指令値T、要求負荷率計算部20からドライバ要求負荷率JD_iとドライバ要求負荷率比Jx_i、Jy_iと横力YD_iが入力される。
図4Aに示すように、各車輪で許容される負荷率である許容負荷率Jmax_iに対しドライバ要求負荷率JD_iが小さい場合、トルク指令値計算部21(図3)は、ドライバ要求負荷率比Jx_iとJy_iの大小関係およびアクセル・ブレーキトルク指令値Tabの符号に応じて、以下のようにトルク指令値を制御する。各条件におけるTcom_iはトルク指令値計算部21(図3)が出力する最終トルク指令値である。
The torque command value calculation unit 21 has an accelerator / brake torque command value Tab commanded by the ECU 9 in response to an accelerator / brake operation, a torque command value T s after feedback control from the yaw moment command value calculation means 17, and a required load. The driver required load factor J D_i and the driver required load factor ratio J x_i , J y_i and the lateral force Y D_i are input from the rate calculation unit 20.
As shown in FIG. 4A, when the driver required load factor JD_i is smaller than the allowable load factor J max_i, which is the allowable load factor for each wheel, the torque command value calculation unit 21 (FIG. 3) determines the driver required load factor. The torque command value is controlled as follows according to the magnitude relationship between the ratios J x_i and J y_i and the sign of the accelerator / brake torque command value Tab. T com_i in each condition is the final torque command value output by the torque command value calculation unit 21 (FIG. 3).
 [許容負荷率:Jmax_i>ドライバ要求負荷率:JD_iの場合]
 条件(1)(ヨーモーメント指令値 優先)
Figure JPOXMLDOC01-appb-M000007
[Allowable load factor: J max_i > Driver required load factor: J D_i ]
Condition (1) (Yaw moment command value priority)
Figure JPOXMLDOC01-appb-M000007
 条件(2)(ブレーキ操作 優先)
Figure JPOXMLDOC01-appb-M000008
Condition (2) (Brake operation priority)
Figure JPOXMLDOC01-appb-M000008
 条件(3)(ヨーモーメント指令値 優先、アクセル操作によるトルク指令 禁止)
Figure JPOXMLDOC01-appb-M000009
Condition (3) (Yaw moment command value priority, torque command prohibited by accelerator operation)
Figure JPOXMLDOC01-appb-M000009
 条件(4)(ブレーキ操作 優先、ヨーモーメント指令値 制限)
Figure JPOXMLDOC01-appb-M000010
Condition (4) (Brake operation priority, yaw moment command value limit)
Figure JPOXMLDOC01-appb-M000010
 図4Bに示すように、ドライバ要求負荷率JD_iが許容負荷率Jmax_i以上のとき、原則としてアクセル操作によるトルク指令値はゼロとする。また、横力のドライバ要求負荷率比Jy_iの大きさおよびアクセル・ブレーキトルク指令値Tabの符号に応じて、以下のようにトルク指令値を制御する。 As shown in FIG. 4B, when the driver required load factor J D_i is equal to or higher than the allowable load factor J max_i , the torque command value by the accelerator operation is set to zero in principle. Further, the torque command value is controlled as follows according to the magnitude of the driver required load factor ratio J y_i of the lateral force and the sign of the accelerator / brake torque command value Tab.
 [許容負荷率:Jmax_i≦ドライバ要求負荷率:JD_iの場合]
 条件(5)(全てのトルク指令値 禁止)
Figure JPOXMLDOC01-appb-M000011
[Allowable load factor: J max_i ≤ Driver required load factor: J D_i ]
Condition (5) (Prohibition of all torque command values)
Figure JPOXMLDOC01-appb-M000011
 条件(6)(ヨーモーメント指令値 優先)
Figure JPOXMLDOC01-appb-M000012
Condition (6) (Yaw moment command value priority)
Figure JPOXMLDOC01-appb-M000012
 条件(7)(ブレーキ操作 優先、ブレーキ操作&ヨーモーメント指令値 制限)
Figure JPOXMLDOC01-appb-M000013
Condition (7) (Brake operation priority, brake operation & yaw moment command value limit)
Figure JPOXMLDOC01-appb-M000013
 ここで、一般的にドライ路面の場合は、許容負荷率を負荷率の最大値として「1」と定義することが多いが、許容負荷率Jmax_iは、タイヤの特性およびシミュレーションまたは実車試験で得られた結果を基に決定してもよい。例えば、許容負荷率Jmax_iは、本実施形態で示した輪荷重と路面摩擦係数の乗算に対する前後力と横力の和の大きさだけで決定するのではなく、タイヤの仕様(幅、扁平、コンパウンドの性質、トレッド形状)、および実車試験で計測したタイヤ特性の実測値に応じて調整してもよい。 Here, generally, in the case of a dry road surface, the allowable load factor is often defined as "1" as the maximum value of the load factor, but the allowable load factor J max_i is obtained by tire characteristics and simulation or actual vehicle test. It may be decided based on the obtained result. For example, the allowable load factor J max_i is not determined only by the sum of the front-rear force and the lateral force with respect to the multiplication of the wheel load and the road surface friction coefficient shown in the present embodiment, but the tire specifications (width, flatness, It may be adjusted according to the properties of the compound, the shape of the tread), and the measured values of the tire characteristics measured in the actual vehicle test.
 図3に示すように、トルク指令値計算部21において上記の条件に応じて決定した最終トルク指令値Tcomは、インバータトルク指令装置10に出力される。このインバータトルク指令装置10から、各車輪3,8のインバータ装置11にインバータトルク指令値を送る。各インバータ装置11は、インバータトルク指令値に従って、図示外のバッテリの直流電力を電動機4(図2)の駆動のための交流電力に変換する。 As shown in FIG. 3, the final torque command value T com determined by the torque command value calculation unit 21 according to the above conditions is output to the inverter torque command device 10. The inverter torque command device 10 sends an inverter torque command value to the inverter devices 11 of the wheels 3 and 8. Each inverter device 11 converts the DC power of a battery (not shown) into AC power for driving the motor 4 (FIG. 2) according to the inverter torque command value.
 <トルク配分例>
 図5は、四輪独立駆動車に対しドライバがアクセル操作に応じたトルク指令値を入力しているときに、旋回性を向上するようにヨーモーメント指令値によるトルク指令値が指令している状況を示している。四輪均等にアクセル操作に応じたトルク指令値を入力し、後輪よりも前輪の横力が大きい場合、各車輪の条件は以下のようになる。
 左前輪:条件(6)、右前輪:条件(3)、左後輪:条件(6)、右後輪:条件(1)
<Torque distribution example>
FIG. 5 shows a situation in which a torque command value based on a yaw moment command value is commanded to improve turning performance when a driver inputs a torque command value corresponding to an accelerator operation to a four-wheel independent drive vehicle. Is shown. When the torque command value corresponding to the accelerator operation is input evenly to all four wheels and the lateral force of the front wheels is larger than that of the rear wheels, the conditions for each wheel are as follows.
Left front wheel: condition (6), right front wheel: condition (3), left rear wheel: condition (6), right rear wheel: condition (1)
 図6は、四輪独立駆動車に対しドライバがブレーキ操作に応じたトルク指令値を入力しているときに、旋回性を向上するようにヨーモーメント指令値によるトルク指令値が指令している状況を示している。四輪均等にブレーキ操作に応じたトルク指令値を入力し、後輪よりも前輪の横力が大きい場合、各車輪の条件は以下のようになる。
 左前輪:条件(7)、右前輪:条件(4)、左後輪:条件(7)、右後輪:条件(2)
FIG. 6 shows a situation in which a torque command value based on a yaw moment command value is commanded to improve turning performance when a driver inputs a torque command value corresponding to a brake operation to a four-wheel independent drive vehicle. Is shown. When the torque command value corresponding to the brake operation is input evenly for all four wheels and the lateral force of the front wheels is larger than that of the rear wheels, the conditions for each wheel are as follows.
Left front wheel: condition (7), right front wheel: condition (4), left rear wheel: condition (7), right rear wheel: condition (2)
 <作用効果>
 以上説明した旋回制御装置2によると、アクセル・ブレーキ操作および操舵のいずれか一方または両方により各車輪3,8に要求する要求負荷率を計算する。トルク配分計算手段18は、要求負荷率と許容負荷率との大小関係を判定する。トルク配分計算手段18は、前記大小関係に応じて、アクセル・ブレーキトルク指令値Tabと前記フィードバック制御後のトルク指令値Tsとの配分を制御する。このように各車輪3,8に要求する要求負荷率と、実際に各車輪3,8が許容できる許容負荷率との大小関係に応じてトルク指令値をきめ細かく制御することで、各車輪3,8のタイヤ力の発散を防止すると共に車両1の旋回性能を最適に制御することができる。
<Effect>
According to the turning control device 2 described above, the required load factor required for each of the wheels 3 and 8 is calculated by either one or both of the accelerator / brake operation and the steering. The torque distribution calculation means 18 determines the magnitude relationship between the required load factor and the allowable load factor. The torque distribution calculation means 18 controls the distribution of the accelerator / brake torque command value T ab and the torque command value T s after the feedback control according to the magnitude relationship. By finely controlling the torque command value according to the magnitude relationship between the required load factor required for each of the wheels 3 and 8 and the allowable load factor actually allowed by each of the wheels 3 and 8, the wheels 3 and 8 are actually allowed. It is possible to prevent the divergence of the tire force of No. 8 and optimally control the turning performance of the vehicle 1.
 要求負荷率計算部20は、各車輪3,8の要求負荷率、およびこの要求負荷率における前後力と横力の比率を示す要求負荷率比を計算しており、トルク配分計算手段18は、各車輪3,8の要求負荷率と許容負荷率との大小関係および要求負荷率比の大きさに応じて、アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御する。この場合、アクセル・ブレーキ操作と操舵の大小関係が、前後力と横力の比率である要求負荷率比によって分かる。このため、各車輪3,8に指令するトルク指令値をさらにきめ細かく制御することができる。 The required load factor calculation unit 20 calculates the required load factor of each of the wheels 3 and 8, and the required load factor ratio indicating the ratio of the front-rear force and the lateral force in the required load factor. Accelerator / brake torque command value T ab and torque command value T s after the feedback control are determined according to the magnitude relationship between the required load factor and the allowable load factor of each wheel 3 and 8 and the magnitude of the required load factor ratio. Control the distribution of. In this case, the magnitude relationship between the accelerator / brake operation and the steering can be understood from the required load factor ratio, which is the ratio of the front-rear force and the lateral force. Therefore, the torque command value commanded to each of the wheels 3 and 8 can be controlled more finely.
 トルク配分計算手段18は、要求負荷率が許容負荷率よりも小さいとき、前後力の要求負荷率比と横力の要求負荷率比の大小関係とアクセル・ブレーキトルク指令値Tabの符号に応じて、アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御する。ドライバの要求する要求負荷率が許容負荷率よりも小さい場合は、タイヤ力に余裕があるため、前後力と横力の要求負荷率比の関係からアクセル・ブレーキ操作に応じたアクセル・ブレーキトルク指令値Tabとヨーモーメント指令値のトルク指令値Tsの配分が条件に応じて決められる。 When the required load factor is smaller than the allowable load factor, the torque distribution calculation means 18 responds to the magnitude relationship between the required load factor ratio of the front-rear force and the required load factor ratio of the lateral force and the sign of the accelerator / brake torque command value Tab. Therefore , the distribution of the accelerator / brake torque command value T ab and the torque command value T s after the feedback control is controlled. If the required load factor required by the driver is smaller than the allowable load factor, there is a margin in the tire force, so the accelerator / brake torque command according to the accelerator / brake operation is based on the relationship between the required load factor ratio of the front-rear force and the lateral force. The distribution of the value T ab and the torque command value T s of the yaw moment command value is determined according to the conditions.
 トルク配分計算手段18は、要求負荷率が許容負荷率以上のとき、横力の要求負荷率比の大きさとアクセル・ブレーキトルク指令値Tabの符号に応じて、アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御する。ドライバの要求する要求負荷率が許容負荷率以上の場合は、タイヤ力に余裕がないため、例えば、横力の要求負荷率比の大きさから条件に応じて、アクセル・ブレーキトルク指令値Tabをゼロ、ヨーモーメント指令値のトルク指令値Tsに制限をかける。 When the required load factor is equal to or greater than the allowable load factor, the torque distribution calculation means 18 has an accelerator / brake torque command value Tab according to the magnitude of the lateral force required load factor ratio and the sign of the accelerator / brake torque command value Tab. And the torque command value T s after the feedback control are controlled. If the required load factor required by the driver is equal to or greater than the allowable load factor, there is no margin in the tire force. Therefore, for example, the accelerator / brake torque command value Tab is determined according to the conditions from the size of the required load factor ratio of the lateral force. Is zero, and the torque command value T s of the yaw moment command value is limited.
 <他の実施形態について>
 車両の旋回制御装置を搭載可能な車両は、四輪独立駆動式の車両に限定されるものではない。例えば、左右の前輪を独立に駆動可能な制駆動源であるモータ駆動装置と、左右の後輪を独立に制動可能な制駆動源である電動ブレーキ装置とを備えた前輪駆動車両に、旋回制御装置を搭載してもよい。また、左右の後輪を独立に駆動可能な制駆動源であるモータ駆動装置と、左右の前輪を独立に制動可能な制駆動源である電動ブレーキ装置とを備えた後輪駆動車両に、旋回制御装置を搭載してもよい。前記電動ブレーキ装置は、電動モータの駆動力により、図示外のブレーキロータと摩擦材とを当接させて摩擦制動力を発生させる摩擦ブレーキ式の装置である。
<About other embodiments>
Vehicles that can be equipped with a vehicle turning control device are not limited to four-wheel independent drive vehicles. For example, turning control is performed on a front-wheel drive vehicle equipped with a motor drive device that is a control drive source that can independently drive the left and right front wheels and an electric brake device that is a control drive source that can independently brake the left and right rear wheels. The device may be mounted. Further, the vehicle is turned into a rear-wheel drive vehicle equipped with a motor drive device which is a control drive source capable of independently driving the left and right rear wheels and an electric brake device which is a control drive source capable of independently braking the left and right front wheels. A control device may be mounted. The electric brake device is a friction brake type device that generates a friction braking force by bringing a brake rotor (not shown) into contact with a friction material by the driving force of an electric motor.
 第1の実施形態では、駆動源としてインホイールモータ駆動装置IWMを搭載した車両を例に説明したが、駆動源である電動機を車体に設置したモータオンボード式の車両、駆動源である内燃機関を備えた車両でも実施可能である。いずれの車両においても、図示外のディファレンシャル、ドライブシャフト等を介して制駆動トルクを発生させ得る。
 前記電動ブレーキ装置に代えて、油圧ブレーキ装置(図示せず)を適用することも可能である。前記油圧ブレーキ装置は、例えば、各車輪にそれぞれ設けられた摩擦ブレーキ式の油圧ブレーキと、各油圧ブレーキに独立に制動力を発生させる図示外のマスタシリンダ等を備える。
In the first embodiment, a vehicle equipped with an in-wheel motor drive device IWM as a drive source has been described as an example, but a motor-on-board vehicle in which an electric motor as a drive source is installed in a vehicle body, and an internal combustion engine as a drive source. It can also be carried out on a vehicle equipped with. In any vehicle, a control drive torque can be generated via a differential, a drive shaft, or the like (not shown).
It is also possible to apply a hydraulic brake device (not shown) instead of the electric brake device. The hydraulic brake device includes, for example, a friction brake type hydraulic brake provided on each wheel, a master cylinder (not shown) that independently generates a braking force on each hydraulic brake, and the like.
 第1の実施形態では、ドライバのアクセル・ブレーキ操作および操舵により各車輪の要求負荷率等を計算しているが、例えば自動運転車両のように車両の状態および各種センサ等の情報から、ドライバの操作に依ることなく自動的に要求負荷率等を計算することも可能である。 In the first embodiment, the required load factor of each wheel is calculated by the driver's accelerator / brake operation and steering, but the driver's It is also possible to automatically calculate the required load factor, etc. without depending on the operation.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiment has been described with reference to the drawings, but various additions, changes, and deletions can be made without departing from the spirit of the present invention. Therefore, such things are also included within the scope of the present invention.
 1…車両、2…旋回制御装置、3,8…車輪、4…電動機(制駆動源)、17…ヨーモーメント指令値計算手段、17a…旋回性向上ヨーモーメント計算部、17b…姿勢安定化ヨーモーメント計算部、18…トルク配分計算手段、19…路面摩擦係数計算部、20…要求負荷率計算部 1 ... Vehicle, 2 ... Swivel control device, 3, 8 ... Wheels, 4 ... Electric motor (control drive source), 17 ... Yaw moment command value calculation means, 17a ... Swivelability improvement yaw moment calculation unit, 17b ... Attitude stabilization yaw Moment calculation unit, 18 ... Torque distribution calculation means, 19 ... Road surface friction coefficient calculation unit, 20 ... Required load factor calculation unit

Claims (5)

  1.  各車輪の制駆動トルクを独立に制御可能な制駆動源を有する車両の旋回特性を制御する車両の旋回制御装置であって、
     車速と操舵角からヨーレート目標値を求めこのヨーレート目標値になるように、前記車両に生じさせるヨーモーメントに相当する各車輪のトルク指令値Tsを計算する旋回性向上ヨーモーメント計算部、および前記ヨーレート目標値とヨーレート実測値の偏差に応じて前記トルク指令値Tsをフィードバック制御する姿勢安定化ヨーモーメント計算部を有するヨーモーメント指令値計算手段と、
     アクセル・ブレーキ操作および操舵のいずれか一方または両方により各車輪に要求する要求負荷率を計算する要求負荷率計算部を有するトルク配分計算手段と、を備え、
     このトルク配分計算手段は、
     前記要求負荷率計算部で計算された各車輪の要求負荷率と、各車輪が許容できる負荷率である許容負荷率と、の大小関係に応じて、
     前記アクセル・ブレーキ操作による制駆動トルクであるアクセル・ブレーキトルク指令値Tabと、前記ヨーモーメント指令値計算手段で計算された前記フィードバック制御後のトルク指令値Tsとの配分を制御する車両の旋回制御装置。
    A vehicle turning control device that controls the turning characteristics of a vehicle having a controlling drive source that can independently control the controlling drive torque of each wheel.
    The turning performance-improving yaw moment calculation unit that obtains the yaw rate target value from the vehicle speed and steering angle and calculates the torque command value T s of each wheel corresponding to the yaw moment generated in the vehicle so as to reach this yaw rate target value, and the above-mentioned A yaw moment command value calculation means having an attitude stabilizing yaw moment calculation unit that feedback-controls the torque command value T s according to the deviation between the yaw rate target value and the yaw rate actual measurement value.
    A torque distribution calculation means having a required load factor calculation unit for calculating the required load factor required for each wheel by either one or both of accelerator / brake operation and steering.
    This torque distribution calculation means
    Depending on the magnitude relationship between the required load factor of each wheel calculated by the required load factor calculation unit and the allowable load factor which is the allowable load factor of each wheel.
    A vehicle that controls the distribution of the accelerator / brake torque command value T ab , which is the control drive torque due to the accelerator / brake operation, and the torque command value T s after the feedback control calculated by the yaw moment command value calculation means. Swing control device.
  2.  請求項1に記載の車両の旋回制御装置において、前記要求負荷率計算部は、前記各車輪の要求負荷率、およびこの要求負荷率における前後力と横力の比率を示す要求負荷率比を計算しており、前記トルク配分計算手段は、前記各車輪の要求負荷率と前記許容負荷率との大小関係および前記要求負荷率比の大きさに応じて、前記アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御する車両の旋回制御装置。 In the vehicle turning control device according to claim 1, the required load factor calculation unit calculates the required load factor of each wheel and the required load factor ratio indicating the ratio of the front-rear force to the lateral force in the required load factor. The torque distribution calculation means sets the accelerator / brake torque command value Tab according to the magnitude relationship between the required load factor of each wheel and the allowable load factor and the magnitude of the required load factor ratio. , A vehicle turning control device that controls distribution with the torque command value T s after the feedback control.
  3.  請求項2に記載の車両の旋回制御装置において、前記トルク配分計算手段は、前記要求負荷率が前記許容負荷率よりも小さいとき、前記前後力の要求負荷率比と前記横力の要求負荷率比の大小関係と前記アクセル・ブレーキトルク指令値Tabの符号に応じて、前記アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御する車両の旋回制御装置。 In the vehicle turning control device according to claim 2, when the required load factor is smaller than the allowable load factor, the torque distribution calculation means has the required load factor ratio of the front-rear force and the required load factor of the lateral force. depending on the sign of the magnitude relation of the ratio between the accelerator and brake torque command value T ab, the turning of the vehicle to control and the accelerator and brake torque command value T ab, the distribution of the torque command value T s after the feedback control Control device.
  4.  請求項2に記載の車両の旋回制御装置において、前記トルク配分計算手段は、前記要求負荷率が前記許容負荷率以上のとき、前記横力の要求負荷率比の大きさと前記アクセル・ブレーキトルク指令値Tabの符号に応じて、前記アクセル・ブレーキトルク指令値Tabと、前記フィードバック制御後のトルク指令値Tsとの配分を制御する車両の旋回制御装置。 In the vehicle turning control device according to claim 2, when the required load factor is equal to or greater than the allowable load factor, the torque distribution calculation means has the magnitude of the required load factor ratio of the lateral force and the accelerator / brake torque command. depending on the sign of the value T ab, the accelerator and brake torque command value T ab, the turning control apparatus for a vehicle which controls the distribution of the torque command value T s after the feedback control.
  5.  請求項1ないし請求項4のいずれか1項に記載の車両の旋回制御装置において、前記トルク配分計算手段は、路面摩擦係数を推定する路面摩擦係数計算部を備え、前記許容負荷率は、推定された前記路面摩擦係数に応じて値が変わる車両の旋回制御装置。 In the vehicle turning control device according to any one of claims 1 to 4, the torque distribution calculation means includes a road surface friction coefficient calculation unit for estimating a road surface friction coefficient, and the allowable load factor is estimated. A vehicle turning control device whose value changes according to the road surface friction coefficient.
PCT/JP2021/000075 2020-01-06 2021-01-05 Turning control device for vehicle WO2021141018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020000267A JP2021109454A (en) 2020-01-06 2020-01-06 Turn control device of vehicle
JP2020-000267 2020-01-06

Publications (1)

Publication Number Publication Date
WO2021141018A1 true WO2021141018A1 (en) 2021-07-15

Family

ID=76787952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000075 WO2021141018A1 (en) 2020-01-06 2021-01-05 Turning control device for vehicle

Country Status (2)

Country Link
JP (1) JP2021109454A (en)
WO (1) WO2021141018A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114194035A (en) * 2021-12-06 2022-03-18 浙江天尚元科技有限公司 Torque distribution method for balance arm type six-wheel independent drive intelligent chassis
WO2023119407A1 (en) * 2021-12-21 2023-06-29 ヤマハ発動機株式会社 Drive-steering control system, built-in drive-steering unit system, built-in drive-steering unit, and self-driving ground vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747853A (en) * 1993-08-04 1995-02-21 Mazda Motor Corp Control device for vehicle
WO2006093244A1 (en) * 2005-03-01 2006-09-08 Toyota Jidosha Kabushiki Kaisha Braking-driving force control device of vehicle
WO2012023305A1 (en) * 2010-08-20 2012-02-23 株式会社ユニバンス Automobile
JP2018039346A (en) * 2016-09-07 2018-03-15 Ntn株式会社 Vehicle turn control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747853A (en) * 1993-08-04 1995-02-21 Mazda Motor Corp Control device for vehicle
WO2006093244A1 (en) * 2005-03-01 2006-09-08 Toyota Jidosha Kabushiki Kaisha Braking-driving force control device of vehicle
WO2012023305A1 (en) * 2010-08-20 2012-02-23 株式会社ユニバンス Automobile
JP2018039346A (en) * 2016-09-07 2018-03-15 Ntn株式会社 Vehicle turn control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114194035A (en) * 2021-12-06 2022-03-18 浙江天尚元科技有限公司 Torque distribution method for balance arm type six-wheel independent drive intelligent chassis
CN114194035B (en) * 2021-12-06 2023-12-05 尚元智行(宁波)科技有限公司 Balance arm type six-wheel independent driving intelligent chassis torque distribution method
WO2023119407A1 (en) * 2021-12-21 2023-06-29 ヤマハ発動機株式会社 Drive-steering control system, built-in drive-steering unit system, built-in drive-steering unit, and self-driving ground vehicle

Also Published As

Publication number Publication date
JP2021109454A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
EP3466784B1 (en) Vehicle turning control device
EP3190000B1 (en) Electronic stability control system for vehicle
EP3533679B1 (en) Vehicle turning control apparatus
US10933875B2 (en) Vehicle turning control device
JP6765908B2 (en) Vehicle turn control device
US10029678B2 (en) Drive control device with traction control function for right-left independent drive vehicle
CN107848527B (en) Vehicle turning control device
JP6584779B2 (en) Vehicle attitude control device
US11648933B2 (en) Method for controlling wheel slip of vehicle
WO2021141018A1 (en) Turning control device for vehicle
JP2008062687A (en) Driving force distribution controller for vehicle
CN112550430B (en) Vehicle stability control method and system
JP4961751B2 (en) Vehicle driving force distribution device
GB2435102A (en) Friction estimation for vehicle control systems
JP2000025629A (en) Rear wheel steering device
JP2023174056A (en) Braking and driving power control device
WO2016125686A1 (en) Vehicle braking/driving torque control device
JP6664885B2 (en) Vehicle braking / driving torque control device
JP6679348B2 (en) Vehicle front-rear speed estimation device
JP7149713B2 (en) slip control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738404

Country of ref document: EP

Kind code of ref document: A1