JP2006232100A - Driving force distribution and controlling device for vehicle - Google Patents

Driving force distribution and controlling device for vehicle Download PDF

Info

Publication number
JP2006232100A
JP2006232100A JP2005049720A JP2005049720A JP2006232100A JP 2006232100 A JP2006232100 A JP 2006232100A JP 2005049720 A JP2005049720 A JP 2005049720A JP 2005049720 A JP2005049720 A JP 2005049720A JP 2006232100 A JP2006232100 A JP 2006232100A
Authority
JP
Japan
Prior art keywords
driving force
force distribution
vehicle
distribution control
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049720A
Other languages
Japanese (ja)
Inventor
Koichi Takayama
晃一 高山
Tomonaga Sugimoto
智永 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005049720A priority Critical patent/JP2006232100A/en
Publication of JP2006232100A publication Critical patent/JP2006232100A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/623
    • Y02T10/6243
    • Y02T10/6265

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving force distribution and controlling device for vehicle capable of reducing irregular feeling applied to a driver when the driver turns right or left and further reducing a load applied to some driving system components. <P>SOLUTION: There is provided a vehicle having a driving power distribution and controlling means for controlling a distribution of driving power of at least one of the front and rear wheels and the right and left wheels. The driving power distribution and controlling means is formed as means for executing a pre-assumed driving power distribution and controlling operation before starting its rightward or leftward turning in response to a planned turning point information where its own vehicle plans to enter next on a running course. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、前後輪と左右輪のうち少なくとも一方の駆動力配分を制御する駆動力配分制御手段を備えた車両の駆動力配分制御装置の技術分野に属する。   The present invention belongs to the technical field of a vehicle driving force distribution control device including a driving force distribution control means for controlling the driving force distribution of at least one of front and rear wheels and left and right wheels.

従来、前後輪と左右輪の駆動力配分を制御する駆動力配分制御手段を備えた車両において、車両のアンダーステア発生時にドライバのステアリング操作に応答して意図する旋回ラインに戻すことを目的とし、実旋回半径と目標旋回半径の差により検出されるアンダーステア程度が強いほど、オーバーステア方向の車両モーメントを得る側に駆動力配分を制御(例えば、FFベースの四輪駆動車にあっては、トランスファクラッチの締結力を強めて副駆動輪である後輪への駆動力配分比を高める制御)するようにしている(例えば、特許文献1参照)。
特開平5−185859号公報
Conventionally, in a vehicle equipped with a driving force distribution control means for controlling the driving force distribution between the front and rear wheels and the left and right wheels, the purpose is to return to the intended turning line in response to the driver's steering operation when the vehicle understeer occurs. The stronger the degree of understeer detected by the difference between the turning radius and the target turning radius, the more the driving force distribution is controlled on the side of obtaining the vehicle moment in the oversteer direction (for example, in the case of an FF-based four-wheel drive vehicle, the transfer clutch (A control for increasing the driving force distribution ratio to the rear wheels, which are auxiliary driving wheels) (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 5-185859

しかしながら、従来の車両の駆動力配分制御装置にあっては、車速が高く、旋回半径が小さい時、副駆動輪へ大きな駆動力配分を短時間(急激)で行うため、急激な駆動力印加によりドライバに違和感を与えるし、また、駆動系部品への負担が増加する、という問題があった。   However, in the conventional vehicle driving force distribution control device, when the vehicle speed is high and the turning radius is small, large driving force distribution is performed in a short time (rapidly) to the sub driving wheels. There is a problem that the driver feels uncomfortable and the burden on the drive system components increases.

本発明は、上記問題に着目してなされたもので、車両旋回時、ドライバに与える違和感低減と駆動系部品への負荷低減を図ることができる車両の駆動力配分制御装置を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a vehicle driving force distribution control device capable of reducing a sense of incongruity given to a driver and a load on driving system components when the vehicle turns. And

上記目的を達成するため、本発明では、前後輪と左右輪のうち少なくとも一方の駆動力配分を制御する駆動力配分制御手段を備えた車両において、
前記駆動力配分制御手段は、走行コース上で自車が次に進入を予定する旋回ポイント情報に基づき、予め想定される駆動力配分制御を旋回開始前から実行することを特徴とする。
In order to achieve the above object, in the present invention, in a vehicle provided with driving force distribution control means for controlling the driving force distribution of at least one of the front and rear wheels and the left and right wheels,
The driving force distribution control means is configured to execute a driving force distribution control that is assumed in advance from the start of a turn based on turning point information that the vehicle is scheduled to enter next on a traveling course.

よって、本発明の車両の駆動力配分制御装置にあっては、駆動力配分制御手段において、走行コース上で自車が次に進入を予定する旋回ポイント情報に基づき、予め想定される駆動力配分制御が旋回開始前から実行される。すなわち、車両旋回時、予め想定される駆動力配分制御を旋回開始前から実行することで、旋回ポイントへ進入するまでに駆動力配分比の変更を進行させておくことができ、旋回ポイントへの進入した時点でほぼ目標とする駆動力配分比が達成されており、旋回ポイントへの進入後、急激に駆動力を印加することを要さない。この結果、車両旋回時、ドライバに与える違和感低減と駆動系部品への負荷低減を図ることができる。   Therefore, in the driving force distribution control device for a vehicle according to the present invention, the driving force distribution control means predicts the driving force distribution that is assumed in advance based on the turning point information that the vehicle is scheduled to enter next on the traveling course. Control is executed before the start of turning. That is, when the vehicle is turning, the driving force distribution control that is assumed in advance is executed before the start of turning, so that the change of the driving force distribution ratio can be advanced before entering the turning point. The target driving force distribution ratio is almost achieved at the time of entering, and it is not necessary to apply the driving force rapidly after entering the turning point. As a result, it is possible to reduce the uncomfortable feeling given to the driver and reduce the load on the drive system components when the vehicle turns.

以下、本発明の車両の駆動力配分制御装置を実施するための最良の形態を、図面に示す実施例1に基づいて説明する。   Hereinafter, the best mode for carrying out a driving force distribution control device for a vehicle according to the present invention will be described based on a first embodiment shown in the drawings.

まず、構成を説明する。
図1は実施例1の駆動力配分制御装置が適用されたハイブリッド四輪駆動車を示す全体システム図である。
実施例1のハイブリッド四輪駆動車は、図1に示すように、エンジン1(第1駆動源)と、フロントモータ2a(第1駆動源)と、リアモータ2b(第2駆動源)と、左前輪タイヤ3a(主駆動輪)と、右前輪タイヤ3b(主駆動輪)と、左後輪タイヤ3c(副駆動輪)と、右後輪タイヤ3d(副駆動輪)と、フロントディファレンシャル4aと、リアディファレンシャル4bと、トランスミッション5と、を備えている。
First, the configuration will be described.
FIG. 1 is an overall system diagram showing a hybrid four-wheel drive vehicle to which the driving force distribution control device of Embodiment 1 is applied.
As shown in FIG. 1, the hybrid four-wheel drive vehicle of Embodiment 1 includes an engine 1 (first drive source), a front motor 2a (first drive source), a rear motor 2b (second drive source), a left Front wheel tire 3a (main drive wheel), right front wheel tire 3b (main drive wheel), left rear wheel tire 3c (sub drive wheel), right rear wheel tire 3d (sub drive wheel), front differential 4a, A rear differential 4b and a transmission 5 are provided.

前記フロントモータ2aとリアモータ2bは、電動発電機として、力行と回生の両方を行う。   The front motor 2a and the rear motor 2b perform both power running and regeneration as motor generators.

前記左右前輪タイヤ3a,3bは、エンジン1とフロントモータ2aのうち少なくとも一方を駆動源とし、トランスミッション5を経過した駆動力が、フロントディファレンシャル4aにより左右等配分にして駆動される。   The left and right front wheel tires 3a, 3b are driven by at least one of the engine 1 and the front motor 2a as a drive source, and the driving force that has passed through the transmission 5 is equally distributed by the front differential 4a.

前記左右後輪タイヤ3b,3cは、リアモータ2bのみを駆動源とし、左右輪への駆動力配分を制御可能なリアディファレンシャル4bを経過した駆動力によりそれぞれ駆動される。なお、リアディファレンシャル4bによる左右輪への駆動力配分制御は、リアディファレンシャル4b内に設定された差動制限クラッチの締結力制御や、リアディファレンシャル4b内に設定された左クラッチと右クラッチに対する締結力制御により行われる。   The left and right rear wheel tires 3b and 3c are driven by the driving force that has passed through the rear differential 4b that can control the driving force distribution to the left and right wheels, using only the rear motor 2b as a driving source. The driving force distribution control to the left and right wheels by the rear differential 4b includes the engagement force control of the differential limiting clutch set in the rear differential 4b and the engagement force for the left clutch and the right clutch set in the rear differential 4b. Controlled.

実施例1のハイブリッド四輪駆動車の駆動力配分制御系は、図1に示すように、車輪速センサ6と、GPS7(全世界測位システム:Global Positioning System)と、地図情報システム8と、操舵角センサ9と、ウィンカースイッチ10と、コントローラ11と、強電バッテリ12と、フロントインバータ13aと、リアインバータ13bと、を備えている。   As shown in FIG. 1, the driving force distribution control system of the hybrid four-wheel drive vehicle of Embodiment 1 includes a wheel speed sensor 6, a GPS 7 (Global Positioning System), a map information system 8, and a steering. An angle sensor 9, a blinker switch 10, a controller 11, a high-power battery 12, a front inverter 13a, and a rear inverter 13b are provided.

前記車輪速センサ6は、左前輪速センサ6a、右前輪速センサ6b、左後輪速センサ6c、右後輪速センサ6dにより構成され、自車の車速情報を得る。   The wheel speed sensor 6 includes a left front wheel speed sensor 6a, a right front wheel speed sensor 6b, a left rear wheel speed sensor 6c, and a right rear wheel speed sensor 6d, and obtains vehicle speed information of the host vehicle.

前記GPS7及び前記地図情報システム8により、自車を目的地まで渋滞情報等を加味して最短到達時間ルートで導くナビゲーションシステムが構成される。つまり、ドライバが目的地を入力すると、現在走行している地域の地図を表示し(地図情報システム8)、その地図上に自車位置(GPS7による測定)と目的地により設定した走行コースを表示する。自車が次に進入を予定する旋回ポイントの旋回半径情報は、地図情報システム8により得る。また、自車位置から旋回ポイントと迄の距離もGPS7及び地図情報システム8により得る。   The GPS 7 and the map information system 8 constitute a navigation system that guides the vehicle to the destination by taking the shortest arrival time route in consideration of traffic information and the like. In other words, when the driver inputs the destination, a map of the current driving area is displayed (map information system 8), and the traveling course set according to the vehicle position (measured by GPS 7) and the destination is displayed on the map. To do. The map information system 8 obtains turning radius information of the turning point at which the host vehicle is scheduled to enter next. The distance from the vehicle position to the turning point is also obtained by the GPS 7 and the map information system 8.

前記操舵角センサ9からは旋回中の操舵角情報を得る。また、前記ウィンカースイッチ10からはドライバのウィンカー操作情報を得る。   Information on the steering angle during turning is obtained from the steering angle sensor 9. Further, the winker operation information of the driver is obtained from the winker switch 10.

前記コントローラ11は、車輪速センサ6、GPS7、地図情報システム8、操舵角センサ9、ウィンカースイッチ10からの情報を読み込み、走行コース上で自車が次に進入を予定する旋回ポイントに入る前から前後輪の駆動力配分比を指令し、エンジン1、フロントモータ2a、リアモータ2bの駆動力を制御する。また、旋回コーナに突入すると、左右駆動力配分比を決定し、リアディファレンシャル4bを制御する。   The controller 11 reads information from the wheel speed sensor 6, the GPS 7, the map information system 8, the steering angle sensor 9, and the winker switch 10, and before entering the turning point where the vehicle is scheduled to enter next on the traveling course. The driving force distribution ratio of the front and rear wheels is commanded to control the driving force of the engine 1, the front motor 2a, and the rear motor 2b. Further, when entering the turning corner, the left / right driving force distribution ratio is determined, and the rear differential 4b is controlled.

前記強電バッテリ12は、両インバータ13a,13bを経由して電力を両モータ2a,2bに供給すると共に、両モータ2a,2bによる発電電力を回収する役目も果たす。   The high-power battery 12 supplies power to both motors 2a and 2b via both inverters 13a and 13b, and also serves to collect power generated by both motors 2a and 2b.

前記フロントインバータ13aとリアインバータ13bは、強電バッテリ12の電気エネルギーを両モータ2a,2bへ供給することと、両モータ2a,2bにより回生した電気エネルギーを強電バッテリ12へ戻す役割を果たす。   The front inverter 13a and the rear inverter 13b serve to supply the electric energy of the high-power battery 12 to both the motors 2a and 2b and to return the electric energy regenerated by the motors 2a and 2b to the high-power battery 12.

次に、作用を説明する。   Next, the operation will be described.

[駆動力配分制御処理]
図2は実施例1のコントローラ11にて実行される駆動力配分制御処理の流れを示すフローチャートで、以下、各ステップについて説明する(駆動力配分制御手段)。
[Driving force distribution control processing]
FIG. 2 is a flowchart showing the flow of the driving force distribution control process executed by the controller 11 of the first embodiment. Each step will be described below (driving force distribution control means).

ステップS1では、ナビゲーションシステムを用いての走行コース設定により、走行コースを事前に把握しているか否かを判断し、コース設定無しの場合はステップS2へ移行し、コース設定有りの場合はステップS12へ移行する(走行コース判断手段)。   In step S1, it is determined whether or not the traveling course is grasped in advance by setting the traveling course using the navigation system. If there is no course setting, the process proceeds to step S2. If there is a course setting, step S12 is performed. (Traveling course determination means).

ステップS2では、ステップS1でのコース設定無しとの判断に続き、GPS7からの情報により走行コース上での自車位置を確認し、ステップS3へ移行する。   In step S2, following the determination that there is no course setting in step S1, the vehicle position on the traveling course is confirmed based on information from the GPS 7, and the process proceeds to step S3.

ステップS3では、ステップS2での自車位置確認に続き、GPS7と地図情報システム8により、自車位置と目的地等により決定した走行コース情報を確認し、ステップS4へ移行する。   In step S3, following the vehicle position confirmation in step S2, the traveling course information determined by the vehicle position and the destination is confirmed by the GPS 7 and the map information system 8, and the process proceeds to step S4.

ステップS4では、ステップS3での走行コース情報確認に続き、自車位置情報と地図情報と自車速情報により、次に進入しようとする旋回ポイントの旋回半径情報を取得し、ステップS5へ移行する。   In step S4, following the traveling course information confirmation in step S3, the turning radius information of the turning point to be entered next is acquired from the own vehicle position information, the map information, and the own vehicle speed information, and the process proceeds to step S5.

ステップS5では、ステップS4での次に進入しようとする旋回ポイントの旋回半径情報取得に続き、自車位置情報と地図情報により、自車から旋回ポイントまでの距離情報を取得し、ステップS6へ移行する。   In step S5, following the turning radius information acquisition of the turning point to be entered next in step S4, the distance information from the own vehicle to the turning point is acquired from the own vehicle position information and map information, and the process proceeds to step S6. To do.

ステップS6では、ステップS5での旋回ポイントまでの距離情報取得に続き、駆動力配分制御開始地点を決定し、ステップS7へ移行する(制御開始地点決定手段)。
ここで、「駆動力配分制御開始地点の決定」は、旋回半径Rと車速Vに応じた決定とするもので、例えば、図3に示すように、車速Vが高いほど、また、自車が次に進入を予定する旋回ポイントの旋回半径Rが小半径であるほど、駆動力配分制御の開始地点を旋回ポイントから離れた地点(フライングポイント大)に設定する。
In step S6, following the acquisition of the distance information to the turning point in step S5, the driving force distribution control start point is determined, and the process proceeds to step S7 (control start point determining means).
Here, “determination of the driving force distribution control start point” is determined according to the turning radius R and the vehicle speed V. For example, as shown in FIG. The start point of the driving force distribution control is set to a point far from the turning point (large flying point) as the turning radius R of the turning point scheduled to enter next is smaller.

ステップS7では、ステップS6での駆動力配分制御開始地点の決定に続き、自車位置が駆動力配分制御開始地点に達したか否かが判断され、NOの場合はステップS2へ戻り、YESの場合はステップS8へ移行する。なお、同一コーナに対するフロー2周目以降は、駆動力配分制御開始地点に達しているとのチェックのみを行う。   In step S7, following the determination of the driving force distribution control start point in step S6, it is determined whether or not the vehicle position has reached the driving force distribution control start point. If NO, the process returns to step S2, and YES is determined. In this case, the process proceeds to step S8. In addition, after the second round of the flow for the same corner, only a check that the driving force distribution control start point has been reached is performed.

ステップS8では、ステップS7での駆動力配分制御開始地点突入の判断に続き、後輪駆動力配分比を決定し、前後輪駆動力配分制御を開始し、ステップS9へ移行する。
ここで、「後輪駆動力配分比の決定」は、図4に示すように、車速Vを旋回半径Rにより除した値を横軸とし、V/Rの値が大きいほど後輪駆動力配分比Trを大きくする特性により決定される。言い換えると、同じ旋回半径であれば高車速であるほど後輪駆動力配分比Trは大きくされ、また、同じ車速Vであれば旋回半径が小さいほど後輪駆動力配分比Trは大きくされる。そして、後輪駆動力配分比が決定されると、その時の要求駆動力により決定されている総駆動力と後輪駆動力配分比とにより、目標前輪駆動力と目標後輪駆動力のそれぞれを決め、旋回ポイントに到達するまでに、目標前輪駆動力と目標後輪駆動力を得るように、あるいは、目標前輪駆動力に近い値と目標後輪駆動力に近い値を得るように、徐々に駆動力を変更する制御が開始される(第1目標前後輪駆動力配分比設定手段)。
In step S8, following the determination of the driving force distribution control start point entry in step S7, the rear wheel driving force distribution ratio is determined, the front and rear wheel driving force distribution control is started, and the process proceeds to step S9.
Here, “determination of rear wheel driving force distribution ratio” means that, as shown in FIG. 4, the horizontal axis represents a value obtained by dividing the vehicle speed V by the turning radius R, and the rear wheel driving force distribution increases as the value of V / R increases. It is determined by the characteristic that increases the ratio Tr. In other words, the rear wheel driving force distribution ratio Tr is increased as the vehicle speed is higher at the same turning radius, and the rear wheel driving force distribution ratio Tr is increased as the turning radius is decreased at the same vehicle speed V. Then, when the rear wheel driving force distribution ratio is determined, each of the target front wheel driving force and the target rear wheel driving force is calculated based on the total driving force determined by the required driving force at that time and the rear wheel driving force distribution ratio. Until the turning point is reached, gradually obtain a target front wheel driving force and a target rear wheel driving force, or a value close to the target front wheel driving force and a value close to the target rear wheel driving force. Control for changing the driving force is started (first target front and rear wheel driving force distribution ratio setting means).

ステップS9では、ステップS8での前後輪駆動力配分制御開始に続き、自車位置情報と地図情報により、旋回ポイントに突入したか否かを判断し、NOの場合はステップS8へ戻って前後輪駆動力配分制御を継続し、YESの場合はステップS10へ移行する。   In step S9, following the start of front and rear wheel driving force distribution control in step S8, it is determined whether or not the vehicle has entered a turning point based on the vehicle position information and map information. If NO, the process returns to step S8 to return to the front and rear wheels. The driving force distribution control is continued. If YES, the process proceeds to step S10.

ステップS10では、ステップS9での旋回ポイントへの突入判断に続き、後輪の左右駆動力配分比を決定し、左右輪駆動力配分制御を開始し、ステップS11へ移行する。
ここで、「左右輪駆動力配分比の決定」は、図5(a)に示すように、左旋回時の場合、旋回半径Rが最小半径のときにリア右輪(旋回外輪)の駆動力配分比を最大とし、旋回半径Rが大きくなるほどリア右輪の駆動力配分比を等配分比(50:50)に向かって小さくしてゆく。そして、図5(b)に示すように、車速Vが大きいほど大きな値による補正係数を設定し、旋回半径Rにより決めた左旋回時のリア右輪の駆動力配分比を車速対応の補正係数により補正する。すなわち、車速Vに応じ旋回内輪と旋回外輪の旋回半径の差と回転速度差を考慮し、左右駆動力配分比を決定する(第1目標左右輪駆動力配分比設定手段)。
In step S10, following the entry determination to the turning point in step S9, the left / right driving force distribution ratio of the rear wheels is determined, right / left wheel driving force distribution control is started, and the process proceeds to step S11.
Here, as shown in FIG. 5 (a), “determining the left / right wheel driving force distribution ratio” means the driving force of the rear right wheel (turning outer wheel) when the turning radius R is the minimum radius when turning left. The distribution ratio is maximized, and the driving force distribution ratio of the rear right wheel is decreased toward the equal distribution ratio (50:50) as the turning radius R increases. Then, as shown in FIG. 5 (b), a correction coefficient with a larger value is set as the vehicle speed V increases, and the driving force distribution ratio of the rear right wheel at the left turn determined by the turning radius R is set as a correction coefficient corresponding to the vehicle speed. Correct by That is, the left / right driving force distribution ratio is determined according to the vehicle speed V in consideration of the difference in turning radius and the rotational speed difference between the turning inner wheel and the turning outer wheel (first target left / right wheel driving force distribution ratio setting means).

ステップS11では、ステップS10での左右輪駆動力配分制御に続き、自車位置情報と地図情報により、旋回ポイントを抜けたか否かを判断し、NOの場合はステップS10へ戻り、YESの場合はリターンへ移行する。   In step S11, following the left and right wheel driving force distribution control in step S10, it is determined from the vehicle position information and map information whether or not the vehicle has passed the turning point. If NO, the process returns to step S10. If YES, Move to return.

ステップS12では、ステップS1でのコース設定有りとの判断に続き、自車が走行しているコースはナビゲーションシステムに登録されているGPS登録コースか否かを判断し、YESの場合はステップS13へ移行し、NOの場合はリターンへ移行する。   In step S12, following the determination that there is a course setting in step S1, it is determined whether the course in which the vehicle is traveling is a GPS registered course registered in the navigation system. If YES, the process proceeds to step S13. If NO, move to return.

ステップS13では、ステップS2での自車走行コースがGPS登録コースであるとの判断に続き、自車位置情報と地図情報と車速により、曲がるポイントとして登録されたコーナ(十字路やY時路など)付近に自車が到達したか否かを確認し、NOの場合はステップS13の判断を繰り返し、YESの場合はステップS14へ移行する。   In step S13, following the determination that the vehicle traveling course in step S2 is a GPS registered course, corners (such as crossroads and Y-time roads) registered as turning points based on the vehicle position information, map information, and vehicle speed. It is confirmed whether or not the vehicle has arrived in the vicinity. If NO, the determination in step S13 is repeated, and if YES, the process proceeds to step S14.

ステップS14では、ステップS13でのコーナ付近到達との判断に続き、ウィンカー操作有りか否かを判断し、NOの場合はステップS12へ戻り、YESの場合はステップS15へ移行する。すなわち、ウィンカー操作の有無判断により、ドライバに旋回意思があるのか無いのかを確認している。   In step S14, following the determination that the vicinity of the corner is reached in step S13, it is determined whether or not there is a winker operation. If NO, the process returns to step S12, and if YES, the process proceeds to step S15. That is, it is confirmed whether or not the driver has a intention to turn by determining whether or not a winker operation is performed.

ステップS15では、ステップS14でのウィンカー操作有りとの判断に続き、上記ステップS2〜ステップS7の処理を実行し、駆動力配分制御開始地点に自車が到達したらステップS16へ移行する。   In step S15, following the determination that there is a winker operation in step S14, the processing in steps S2 to S7 is executed. When the vehicle reaches the driving force distribution control start point, the process proceeds to step S16.

ステップS16では、ステップS2〜ステップS7の処理に続き、上記ステップS8と同様に、後輪駆動力配分比を決定し、前後輪駆動力配分制御を開始し、ステップS17へ移行する。   In step S16, following the processing of step S2 to step S7, the rear wheel driving force distribution ratio is determined and the front and rear wheel driving force distribution control is started in the same manner as in step S8, and the process proceeds to step S17.

ステップS17では、ステップS16での前後輪駆動力配分制御開始に続き、上記ステップS9と同様に、自車位置情報と地図情報により、旋回ポイントに突入したか否かを判断し、NOの場合はステップS16へ戻って前後輪駆動力配分制御を継続し、YESの場合はステップS18へ移行する。   In step S17, following the start of front and rear wheel driving force distribution control in step S16, it is determined whether or not the vehicle has entered a turning point based on the vehicle position information and the map information, as in step S9. Returning to step S16, the front and rear wheel driving force distribution control is continued. If YES, the process proceeds to step S18.

ステップS18では、ステップS17での旋回ポイントへの突入判断に続き、上記ステップS10と同様に、後輪の左右駆動力配分比を決定し、左右輪駆動力配分制御を開始し、ステップS19へ移行する。   In step S18, following the entry determination to the turning point in step S17, the right and left driving force distribution ratio of the rear wheels is determined and the left and right wheel driving force distribution control is started as in step S10, and the process proceeds to step S19. To do.

ステップS19では、ステップS18での左右輪駆動力配分制御に続き、車速が急激に減少したか否かを判断し、NOの場合はステップS21へ移行し、YESの場合はステップS20へ移行する(減速検出手段)。
ここで、車速の急激な減少判断は、例えば、車速情報を微分処理して車両の加減速度を求め、算出された車両の減速度が、設定減速度より低くなったことにより行う。
In step S19, following the left and right wheel driving force distribution control in step S18, it is determined whether or not the vehicle speed has sharply decreased. If NO, the process proceeds to step S21, and if YES, the process proceeds to step S20 ( Deceleration detection means).
Here, the rapid decrease determination of the vehicle speed is performed, for example, by differentiating the vehicle speed information to obtain the vehicle acceleration / deceleration, and the calculated vehicle deceleration being lower than the set deceleration.

ステップS20では、ステップS19での車速の急激な減少判断に続き、操舵角θにより駆動力配分を再設定し、ステップS21へ移行する。
ここで、「後輪駆動力配分比の再設定」は、図6に示すように、車速Vを操舵角θにより除した値を横軸とし、V/θの値が大きいほど後輪駆動力配分比Trを小さくする特性により決定される。言い換えると、同じ操舵角であれば高車速であるほど後輪駆動力配分比Trは小さくされ、また、同じ車速Vであれば操舵角が小さいほど後輪駆動力配分比Trは小さくされる。そして、後輪駆動力配分比が決定されると、その時の要求駆動力により決定されている総駆動力と後輪駆動力配分比とにより、目標前輪駆動力と目標後輪駆動力のが再設定され、新たに設定された目標前輪駆動力と目標後輪駆動力を得るように駆動力を変更する制御が開始される(第2目標前後輪駆動力配分比設定手段)。
また、「左右輪駆動力配分比の決定」は、図7(a)に示すように、左旋回時の場合、操舵角θがニュートラル位置に近いときにリア右輪(旋回外輪)の駆動力配分比を等配分比(50:50)とし、操舵角θが大きくなるほどリア右輪の駆動力配分比を大きくしてゆく。そして、図7(b)に示すように、車速Vが大きいほど大きな値による補正係数を設定し、操舵角θにより決めた左旋回時のリア右輪の駆動力配分比を車速対応の補正係数により補正する。すなわち、車速Vに応じ旋回内輪と旋回外輪の旋回半径の差と回転速度差を考慮し、左右駆動力配分比を決定する(第2目標左右輪駆動力配分比設定手段)。
In step S20, following the sudden decrease determination of the vehicle speed in step S19, the driving force distribution is reset by the steering angle θ, and the process proceeds to step S21.
Here, as shown in FIG. 6, “resetting the rear wheel driving force distribution ratio” uses the value obtained by dividing the vehicle speed V by the steering angle θ as the horizontal axis, and the rear wheel driving force increases as the value of V / θ increases. It is determined by the characteristic of reducing the distribution ratio Tr. In other words, the rear wheel driving force distribution ratio Tr decreases as the vehicle speed increases at the same steering angle, and the rear wheel driving force distribution ratio Tr decreases as the steering angle decreases at the same vehicle speed V. When the rear wheel driving force distribution ratio is determined, the target front wheel driving force and the target rear wheel driving force are re-established based on the total driving force determined by the required driving force at that time and the rear wheel driving force distribution ratio. The control for changing the driving force so as to obtain the newly set target front wheel driving force and target rear wheel driving force is started (second target front and rear wheel driving force distribution ratio setting means).
In addition, as shown in FIG. 7 (a), “determining the left / right wheel driving force distribution ratio” is the driving force of the rear right wheel (turning outer wheel) when the steering angle θ is close to the neutral position when turning left. The distribution ratio is an equal distribution ratio (50:50), and the driving force distribution ratio of the rear right wheel is increased as the steering angle θ increases. Then, as shown in FIG. 7B, the correction coefficient is set to a larger value as the vehicle speed V increases, and the driving force distribution ratio of the rear right wheel at the left turn determined by the steering angle θ is set as a correction coefficient corresponding to the vehicle speed. Correct by That is, the left / right driving force distribution ratio is determined according to the vehicle speed V in consideration of the difference in turning radius and the rotational speed difference between the turning inner wheel and the turning outer wheel (second target left / right wheel driving force distribution ratio setting means).

ステップS21では、ステップS20での操舵角による駆動力配分の再設定に続き、自車位置情報と地図情報により、旋回ポイントを抜けたか否かを判断し、NOの場合はステップS18へ戻り、YESの場合はリターンへ移行する。   In step S21, following the resetting of the driving force distribution based on the steering angle in step S20, it is determined whether or not the vehicle has passed the turning point based on the vehicle position information and the map information. If NO, the process returns to step S18, YES In case of, move to return.

[駆動力配分制御動作]
コース設定の無い走行コースを自車が走行している場合には、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→ステップS7へと進み、ステップS7において、決定された駆動力配分制御開始地点へ到達したと判断されるまで、ステップS2からステップS6までの自車位置確認・走行コース情報確認・次コーナの旋回半径の確認・コーナ迄の距離確認・駆動力配分制御開始地点の決定という処理が繰り返される。
[Driving force distribution control operation]
If the vehicle is traveling on a traveling course without a course setting, in the flowchart of FIG. 2, the process proceeds to step S1, step S2, step S3, step S4, step S5, step S6, step S7, and step S7. Until it is determined that the vehicle has reached the determined driving force distribution control start point, the vehicle position confirmation from step S2 to step S6, the traveling course information confirmation, the confirmation of the turning radius of the next corner, and the distance confirmation to the corner -The process of determining the driving force distribution control start point is repeated.

そして、自車が決定された駆動力配分制御開始地点へ到達すると、ステップS7からステップS8→ステップS9へと進み、ステップS9において、旋回ポイントに入ったと判断されるまで、ステップS8において、車速Vと旋回半径Rによる前後輪駆動力配分制御が旋回ポイントの進入に先行して実行される。   When the vehicle reaches the determined driving force distribution control start point, the process proceeds from step S7 to step S8 to step S9. In step S8, the vehicle speed V is determined until it is determined that the vehicle has entered the turning point. The front and rear wheel driving force distribution control based on the turning radius R is executed prior to the turning point entering.

そして、自車が旋回ポイントに入ると、ステップS9からステップS10→ステップS11へと進み、ステップS11において、旋回ポイントを抜けたと判断されるまで、ステップS10において、車速Vと旋回半径Rによる左右輪駆動力配分制御が前後輪駆動力配分制御に加えられる。   When the vehicle enters the turning point, the process proceeds from step S9 to step S10 to step S11. In step S10, the left and right wheels are determined by the vehicle speed V and the turning radius R until it is determined that the vehicle has passed the turning point. Driving force distribution control is added to the front and rear wheel driving force distribution control.

一方、ナビゲーションシステムによるコース設定により事前に把握している走行コースを自車が走行している場合には、図2のフローチャートにおいて、ステップS1からステップS12へと進み、ステップS12の自車走行コースはGPS登録コースであるという条件、次のステップS13のコーナ付近に到達したとの条件、次のステップS14のウインカー操作有りの条件、の全ての条件が成立するときに限り、ステップS15→ステップS16→ステップS17へ進み、ステップS15において、ステップS2〜ステップS7の処理が実行される。そして、自車が決定された駆動力配分制御開始地点へ到達すると、ステップS17において、旋回ポイントに入ったと判断されるまで、ステップS16において、車速Vと旋回半径Rによる前後輪駆動力配分制御が旋回ポイントの進入に先行して実行される。   On the other hand, when the host vehicle is traveling on a traveling course that is grasped in advance by course setting by the navigation system, the process proceeds from step S1 to step S12 in the flowchart of FIG. Step S15 → Step S16 only when all of the following conditions are met: the condition that the course is a GPS registration course, the condition that the vehicle has reached the corner in the next step S13, and the condition that the winker operation is performed in the next step S14. → Proceeding to step S17, the processing of step S2 to step S7 is executed in step S15. When the vehicle reaches the determined driving force distribution control start point, the front and rear wheel driving force distribution control based on the vehicle speed V and the turning radius R is performed in step S16 until it is determined in step S17 that the vehicle has entered the turning point. It is executed prior to the entry of the turning point.

そして、自車が旋回ポイントに入ると、ステップS17からステップS18→ステップS19へと進み、ステップS19において、車速が急激に減少したと判断されない限り、ステップS18→ステップS19→ステップS21の流れが繰り返され、ステップS18において、車速Vと旋回半径Rによる左右輪駆動力配分制御が前後輪駆動力配分制御に加えられる。   When the vehicle enters the turning point, the process proceeds from step S17 to step S18 → step S19. In step S19, the flow of step S18 → step S19 → step S21 is repeated unless it is determined that the vehicle speed has rapidly decreased. In step S18, the left and right wheel driving force distribution control based on the vehicle speed V and the turning radius R is added to the front and rear wheel driving force distribution control.

そして、旋回ポイントを走行しているときに車速が急激に減少すると、ステップS19からステップS20→ステップS21へと進み、ステップS21において、旋回ポイントを抜けたと判断されるまで、ステップS20において、車速Vと操舵角θにより前後輪と左右輪の駆動力配分比が再設定され、この再設定に基づく前後輪駆動力配分制御と左右輪駆動力配分制御が実行される。   Then, if the vehicle speed sharply decreases while traveling at the turning point, the process proceeds from step S19 to step S20 to step S21. In step S21, the vehicle speed V is determined until it is determined that the vehicle has passed the turning point. And the steering angle θ, the driving force distribution ratio between the front and rear wheels and the left and right wheels is reset, and the front and rear wheel driving force distribution control and the left and right wheel driving force distribution control based on the resetting are executed.

[駆動力配分制御作用]
実施例1の駆動力配分制御装置は、車両旋回時に、副駆動輪(後輪)への駆動力配分を、GPS7と地図情報システム8を用い、事前にトルク配分開始ポイントを設定することにより、急激な駆動力印加に伴う違和感の低減、駆動系部品への負荷低減を目的としてなされたものである。
[Driving force distribution control action]
The driving force distribution control device according to the first embodiment uses the GPS 7 and the map information system 8 to set the torque distribution start point in advance by using the GPS 7 and the map information system 8 to distribute the driving force to the auxiliary driving wheels (rear wheels) when the vehicle turns. It was made for the purpose of reducing the uncomfortable feeling caused by sudden application of driving force and reducing the load on the drive system components.

そこで、自車が近づく次の旋回ポイントが左旋回である場合の駆動力配分制御作用を、図8に基づいて説明する。
まず、現在地の時刻T1では、自車位置の確認と、走行コース情報の確認と、次のコーナの旋回半径Rの確認と、コーナ迄(自車と旋回ポイント迄)の距離Lの確認が行われる。そして、自車の車速Vと旋回半径Rにより、図3に示すマップを用いて制御開始地点(コーナ迄の設定距離)が決定される。制御開始地点の決定は、車速Vが高いほど、また、自車が次に進入を予定する旋回ポイントの旋回半径Rが小半径であるほど、駆動力配分制御の開始地点を旋回ポイントから離れた地点とする。
これは、車速Vが高いほど自車が旋回ポイントへ到達するのに要する時間が短くなるためであり、また、自車が次に進入を予定する旋回ポイントの旋回半径Rが小半径であるほど駆動力配分制御量が大きくなるためである。
このように、車速Vと旋回半径Rにより駆動力配分制御の開始タイミングを設定することで、駆動力配分変更開始時刻T2から操舵操作開始時刻T3までの前輪駆動力変化特性と後輪駆動力変化特性を、車速Vの高低や旋回半径Rの大小にかかわらず、常に緩やかな傾きによる変化勾配とすることができ、急激な駆動力配分変更に伴うショックの低減を図ることができる。
Therefore, the driving force distribution control operation when the next turning point where the host vehicle approaches is a left turn will be described with reference to FIG.
First, at the current time T1, the vehicle position is confirmed, the traveling course information is confirmed, the turning radius R of the next corner is checked, and the distance L to the corner (to the vehicle and the turning point) is checked. Is called. Then, the control start point (set distance to the corner) is determined by the vehicle speed V and the turning radius R of the host vehicle using the map shown in FIG. The determination of the control start point is such that the higher the vehicle speed V is, the further away the start point of the driving force distribution control is from the turning point, the smaller the turning radius R of the turning point at which the vehicle is scheduled to enter next is the smaller radius. A point.
This is because the time required for the vehicle to reach the turning point becomes shorter as the vehicle speed V is higher, and the turning radius R of the turning point at which the vehicle is scheduled to enter next is smaller. This is because the driving force distribution control amount increases.
In this way, by setting the start timing of the driving force distribution control based on the vehicle speed V and the turning radius R, the front wheel driving force change characteristic and the rear wheel driving force change from the driving force distribution change start time T2 to the steering operation start time T3. Regardless of whether the vehicle speed V is high or small and the turning radius R is large or small, the characteristic can always be a change gradient due to a gentle inclination, and a shock due to a sudden change in driving force distribution can be reduced.

次に、自車が制御開始地点に到達する駆動力配分変更開始時刻T2では、車速と旋回半径Rに基づき、前後輪駆動力配分比の変更制御が開始され、図8の実線駆動力特性に示すように、駆動力配分変更開始時刻T2から操舵操作開始時刻T3(=旋回ポイント到達時刻)までの間は、急激な駆動力配分を行わず、前輪駆動力を徐々に減少させ、この前輪駆動力の減少特性に相当する増加特性にて後輪駆動力を徐々に増大させる。
すなわち、旋回時に想定される前後輪駆動力配分制御は、実施例1のように前輪駆動ベースのハイブリッド車である場合、前輪駆動のままで旋回に入ると、車速Vが高いほど、また、旋回半径Rが小半径であるほど高いアンダーステア傾向を示すことで、オーバステアモーメントを発生するように行われる。
そして、従来の前後輪駆動力配分制御は、図8の点線駆動力特性に示すように、操舵操作開始時刻T3を開始タイミングとし、前輪駆動力を急激に減じ、後輪駆動力を急激に増すことで行われる。
これに対し、実施例1では、旋回時に想定される駆動力配分制御の開始タイミングを、旋回のための操舵操作を開始する前の時点(駆動力配分変更開始時刻T2)とし、駆動力配分変更開始時刻T2から先行して実行することにより、緩やかな勾配にて前輪駆動力を減じ、緩やかな勾配にて後輪駆動力を増すことができる。
この結果、リアモータ2bへの始動電流が低減でき、駆動系負荷の低減を図ることができると共に、ドライバへ与える違和感を減少できる。
Next, at the driving force distribution change start time T2 when the host vehicle reaches the control start point, the change control of the front and rear wheel driving force distribution ratio is started based on the vehicle speed and the turning radius R, and the solid line driving force characteristic of FIG. As shown, between the driving force distribution change start time T2 and the steering operation start time T3 (= turning point arrival time), the front wheel driving force is gradually reduced without abruptly reducing the driving force distribution. The rear wheel driving force is gradually increased with an increase characteristic corresponding to the force decrease characteristic.
That is, when the front and rear wheel driving force distribution control assumed at the time of turning is a front-wheel drive based hybrid vehicle as in the first embodiment, when the vehicle starts turning with front wheel driving, the higher the vehicle speed V is, the more The smaller the radius R, the higher the understeer tendency, so that the oversteer moment is generated.
In the conventional front and rear wheel driving force distribution control, as shown by the dotted line driving force characteristics in FIG. 8, the steering operation start time T3 is set as the start timing, the front wheel driving force is rapidly decreased, and the rear wheel driving force is rapidly increased. Is done.
In contrast, in the first embodiment, the driving force distribution control start timing assumed at the time of turning is set to a time point before starting the steering operation for turning (driving force distribution change start time T2), and the driving force distribution change is performed. By executing prior to the start time T2, it is possible to reduce the front wheel driving force with a gentle gradient and increase the rear wheel driving force with a gentle gradient.
As a result, the starting current to the rear motor 2b can be reduced, the driving system load can be reduced, and the uncomfortable feeling given to the driver can be reduced.

次に、旋回ポイントに到達する操舵操作開始時刻T3では、後輪に配分される駆動力のうち、右輪駆動力を左輪駆動力より大きくする左右輪駆動力配分制御が開始され、図8の実線後輪駆動力特性に示すように、操舵操作開始時刻T3から操舵操作終了時刻T4までの間は、右輪駆動力と左輪駆動力とに差を持たせている。
すなわち、左旋回時に想定される左右輪駆動力配分制御は、左右輪の駆動力配分を等配分のままで旋回に入ると、旋回半径Rが小半径であるほど回頭性が低くなり、また、同じ旋回半径Rの場合には車速Vが高いほど回頭性が低くなることで、車両に左回りのヨーモーメントを発生するように、旋回外輪である右輪の駆動力を増し、旋回内輪である左輪の駆動力を減じることで行われる。
そして、従来の左右輪駆動力配分制御の開始タイミングは、左右後輪へ駆動力が配分される前後輪駆動力配分制御を前提とするものであるため、前後輪駆動力配分制御が終了に近い時点や終了時点を待ってからのタイミングとなる。
これに対し、実施例1では、予め前後輪駆動力配分制御を駆動力配分変更開始時刻T2から先行して実行しておくようにしたため、左旋回時に想定される左右輪駆動力配分制御の開始タイミングは、操舵操作開始時刻T3の時点となり、回答要求の高い旋回初期から応答良く旋回回頭性を得ることができる。
Next, at the steering operation start time T3 to reach the turning point, left and right wheel driving force distribution control for making the right wheel driving force larger than the left wheel driving force out of the driving force distributed to the rear wheels is started. As shown by the solid line rear wheel driving force characteristics, the right wheel driving force and the left wheel driving force are different from each other between the steering operation start time T3 and the steering operation end time T4.
That is, in the left and right wheel driving force distribution control assumed when turning left, when turning with the left and right wheel driving force distribution being equally distributed, the smaller the turning radius R, the lower the turnability, and In the case of the same turning radius R, the higher the vehicle speed V, the lower the turning performance, so that the driving force of the right wheel, which is the outer turning wheel, is increased so that the counterclockwise yaw moment is generated in the vehicle. This is done by reducing the driving force of the left wheel.
And since the start timing of the conventional left and right wheel driving force distribution control is premised on the front and rear wheel driving force distribution control in which the driving force is distributed to the left and right rear wheels, the front and rear wheel driving force distribution control is close to the end. It is the timing after waiting for the time or end time.
On the other hand, in the first embodiment, the front and rear wheel driving force distribution control is executed in advance from the driving force distribution change start time T2, so the start of the left and right wheel driving force distribution control assumed when turning left is started. The timing is the time point of the steering operation start time T3, and it is possible to obtain the turning ability with good response from the beginning of turning with a high response request.

事前に把握している走行コースを自車が走行している場合には、自車走行コースはGPS登録コースであるという条件と、コーナ付近に到達したとの条件と、ウインカー操作有りのドライバ旋回意思条件、が成立し、かつ、自車が決定された駆動力配分制御開始地点へ到達すると、旋回ポイントへの進入に先行し、車速Vと旋回半径Rによる前後輪駆動力配分制御が開始される。
したがって、事前に把握している走行コースの場合、車速を落とさず曲がることのできる旋回半径の大きなコースは勿論のこと、十字路やY字路のように、低車速での走行状態となるコースでも本制御で対応することができるようになる。
When the vehicle is traveling on a traveling course that is known in advance, the vehicle traveling course is a GPS registered course, the condition that the vehicle has reached the vicinity of the corner, and the driver turning with a turn signal operation When the intention condition is satisfied and the vehicle reaches the determined driving force distribution control starting point, the front and rear wheel driving force distribution control based on the vehicle speed V and the turning radius R is started before entering the turning point. The
Therefore, in the case of a traveling course that has been grasped in advance, not only a course with a large turning radius that can bend without reducing the vehicle speed, but also a course that travels at a low vehicle speed, such as a crossroad or a Y-shaped road. It becomes possible to cope with this control.

そして、十字路旋回等の途中において、車速Vが減速側に大きく変化すると、設定されていた駆動力配分をリセットし、再加速時の操舵角θと車速Vから前後輪と左右輪の駆動力配分比を再設定し、車速Vと旋回半径Rに応じた駆動力配分制御から、車速Vと操舵角θに応じた駆動力配分制御へと切り替えられる。
すなわち、例えば、十字路旋回中に、横断歩行者を待つ等で車両を止める状況や大きく減速する状況で再スタートすると、駆動力のバランスが崩れ、走行操縦安定性が低下するおそれがある。よって、このような再加速を行うような状況では、再加速時の操舵角に応じて最適な駆動力配分に再設定することで、スムーズに旋回を再開できる。
If the vehicle speed V changes greatly to the deceleration side during a crossroad turn or the like, the set driving force distribution is reset, and the driving force distribution of the front and rear wheels and the left and right wheels is determined from the steering angle θ and the vehicle speed V at the time of reacceleration. The ratio is reset, and the driving force distribution control according to the vehicle speed V and the turning radius R is switched to the driving force distribution control according to the vehicle speed V and the steering angle θ.
That is, for example, if the vehicle is restarted in a situation where the vehicle is stopped by waiting for a crossing pedestrian or a situation where the vehicle is greatly decelerated while turning on a crossroad, the balance of driving force may be lost, and driving stability may be reduced. Therefore, in such a situation where re-acceleration is performed, turning can be smoothly resumed by resetting to the optimal driving force distribution according to the steering angle at the time of re-acceleration.

次に、効果を説明する。
実施例1の車両の駆動力配分制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the vehicle driving force distribution control apparatus according to the first embodiment, the effects listed below can be obtained.

(1) 前後輪と左右輪のうち少なくとも一方の駆動力配分を制御する駆動力配分制御手段を備えた車両において、前記駆動力配分制御手段は、走行コース上で自車が次に進入を予定する旋回ポイント情報に基づき、予め想定される駆動力配分制御を旋回開始前から実行するため、車両旋回時、ドライバに与える違和感低減と駆動系部品への負荷低減を図ることができる。   (1) In a vehicle provided with a driving force distribution control means for controlling the driving force distribution of at least one of the front and rear wheels and the left and right wheels, the driving force distribution control means schedules the vehicle to enter next on the traveling course. Since the driving force distribution control that is assumed in advance is executed before the start of turning based on the turning point information to be turned, it is possible to reduce the uncomfortable feeling given to the driver and reduce the load on the drive system components when turning the vehicle.

(2) 駆動力配分制御の開始地点を決定する制御開始地点決定手段(ステップS6)を設け、前記駆動力配分制御手段は、自車が決定された開始地点に達したら、予め想定される駆動力配分制御を開始するため、駆動力配分制御の開始タイミングのバラツキを抑えることができる。   (2) Provided is a control start point determining means (step S6) for determining a start point of the driving force distribution control, and the driving force distribution control means drives in advance when the host vehicle reaches the determined start point. Since the force distribution control is started, variations in the start timing of the driving force distribution control can be suppressed.

(3) 前記制御開始地点決定手段(ステップS6)は、自車速Vが高いほど、また、自車が次に進入を予定する旋回ポイントの旋回半径Rが小半径であるほど、駆動力配分制御の開始地点を旋回ポイントから離れた地点に決定するため、自車の車速Vの高低にかかわらず駆動力配分制御の開始から旋回ポイントに達するまでの到達時間の変動を抑え、旋回半径Rの大小にかかわらず、目標駆動力配分比への到達度合いの変動を抑えることができるというように、車速Vや旋回半径Rにかかわらず常に最適の制御開始タイミングを得ることができる。   (3) The control start point determination means (step S6) performs driving force distribution control as the host vehicle speed V is higher and as the turning radius R of the turning point at which the host vehicle is scheduled to enter next is the smaller radius. Because the starting point of the vehicle is determined to be a point away from the turning point, the fluctuation of the arrival time from the start of the driving force distribution control to the turning point is suppressed regardless of the vehicle speed V, and the turning radius R is small or large. Regardless of the vehicle speed V and the turning radius R, the optimal control start timing can always be obtained regardless of the vehicle speed V and the turning radius R.

(4) ナビゲーションシステムを用いての走行コース設定により、走行コースを事前に把握しているか否かを判断する走行コース判断手段(ステップS1)を設け、前記駆動力配分制御手段は、事前に把握しているコースを走行中、旋回ポイント付近への到達が確認されている状態でウィンカー操作がなされ、かつ、自車が決定された開始地点に達したら、予め想定される駆動力配分制御を開始するため、車速を落とさず曲がることのできる旋回半径の大きなコースは勿論のこと、十字路やY字路のように、低車速での走行状態となるコースでも本駆動力配分制御で対応することができる。   (4) A traveling course determination means (step S1) is provided for determining whether or not the traveling course is grasped in advance by setting the traveling course using the navigation system, and the driving force distribution control means grasps in advance. When driving on a course, the winker operation is performed in a state where the arrival at the vicinity of the turning point is confirmed, and when the vehicle reaches the determined starting point, the driving force distribution control assumed in advance is started. Therefore, this driving force distribution control can be used not only for courses with a large turning radius that can bend without reducing the vehicle speed, but also for courses that run at low vehicle speeds, such as crossroads and Y-shaped roads. it can.

(5) 車速Vと旋回半径Rに基づき第1目標前後輪駆動力配分比を予め設定する第1目標前後輪駆動力配分比設定手段(ステップS8)と、車速Vと旋回半径Rに基づき第1目標左右輪駆動力配分比を予め設定する第1目標左右輪駆動力配分比設定手段(ステップS10)と、を設け、前記駆動力配分制御手段は、駆動力配分制御の開始条件が成立すると、第1目標前後輪駆動力配分比に向かって徐々に前後輪駆動力配分比を変更する前後輪駆動力配分制御を開始し、旋回ポイントに入ると、第1目標左右輪駆動力配分比を得る左右輪駆動力配分制御を開始するため、車速Vと旋回半径Rに応じた最適な前後輪と左右輪の駆動力配分比を得ることができると共に、前後輪駆動力配分制御を先行することで、左右輪駆動力配分制御の開始が早期タイミングとなり、回答要求の高い旋回初期から応答良く旋回回頭性を得ることができる。   (5) First target front and rear wheel driving force distribution ratio setting means (step S8) for presetting a first target front and rear wheel driving force distribution ratio based on the vehicle speed V and the turning radius R; A first target left and right wheel driving force distribution ratio setting means (step S10) for presetting one target left and right wheel driving force distribution ratio, and the driving force distribution control means is configured to satisfy a driving force distribution control start condition. The front and rear wheel driving force distribution control for gradually changing the front and rear wheel driving force distribution ratio toward the first target front and rear wheel driving force distribution ratio is started. In order to start the obtained left / right wheel driving force distribution control, it is possible to obtain the optimal front / rear wheel / left / right wheel driving force distribution ratio according to the vehicle speed V and the turning radius R, and to precede the front / rear wheel driving force distribution control. Therefore, the start of the left and right wheel drive force distribution control It is possible to obtain a turning ability with good response from the beginning of turning with a high response request.

(6) 車速Vと操舵角θに基づき第2目標前後輪駆動力配分比を設定する第2目標前後輪駆動力配分比設定手段(ステップS20)と、車速Vと操舵角θに基づき第2目標左右輪駆動力配分比を設定する第2目標左右輪駆動力配分比設定手段(ステップS20)と、自車の減速を検出する減速検出手段(ステップS19)と、を設け、前記駆動力配分制御手段は、旋回ポイントに進入した後、自車の減速が検出されると、制御目標を第2目標前後輪駆動力配分比および第2目標左右輪駆動力配分比に再設定するため、十字路旋回等の再加速を行うような状況において、操舵角θに応じた左右輪駆動力配分比の再設定により、スムーズに旋回を再開することができる。   (6) Second target front / rear wheel driving force distribution ratio setting means (step S20) for setting a second target front / rear wheel driving force distribution ratio based on the vehicle speed V and the steering angle θ, and second based on the vehicle speed V and the steering angle θ. A second target left / right wheel driving force distribution ratio setting means (step S20) for setting the target left / right wheel driving force distribution ratio and a deceleration detecting means (step S19) for detecting deceleration of the host vehicle are provided, and the driving force distribution is provided. When the control means detects the deceleration of the host vehicle after entering the turning point, the control means resets the control target to the second target front / rear wheel driving force distribution ratio and the second target left / right wheel driving force distribution ratio. In a situation where re-acceleration such as turning is performed, turning can be smoothly resumed by resetting the left and right wheel driving force distribution ratio according to the steering angle θ.

(7) 前記車両は、前後輪のうち一方の主駆動輪を駆動する第1駆動源と、前記前後輪のうち他方の副駆動輪を駆動する第2駆動源と、GPS7と、地図情報システム8と、を搭載するハイブリッド四輪駆動車であるため、前輪駆動力変更と後輪駆動力変更がそれぞれの駆動源応答性により行われるハイブリッド四輪駆動車において、車両旋回時、効果的にドライバに与える違和感低減と駆動系部品への負荷低減を図ることができる。   (7) The vehicle includes a first drive source that drives one of the front and rear wheels, a second drive source that drives the other auxiliary drive wheel of the front and rear wheels, a GPS 7, and a map information system. 8 is a hybrid four-wheel drive vehicle, and therefore, in the hybrid four-wheel drive vehicle in which the front wheel drive force change and the rear wheel drive force change are performed by the respective drive source responsiveness, the driver is effectively turned when turning the vehicle. It is possible to reduce the uncomfortable feeling given to the vehicle and to reduce the load on the drive system components.

(8) 前記第1駆動源は、エンジンとモータの少なくとも一方であり、前記第2駆動源は、モータであるため、前輪駆動力変更と後輪駆動力変更が高応答のモータにて短時間(急激)に行われ、駆動力印加に伴う違和感や駆動系部品の負荷増加問題が大きく発生するハイブリッド四輪駆動車において、ドライバに与える違和感と駆動系部品への負荷を低減しながら、車両旋回時に制御量の大きな駆動力配分制御を適用することができる。   (8) Since the first drive source is at least one of an engine and a motor and the second drive source is a motor, the front wheel drive force change and the rear wheel drive force change are performed in a highly responsive motor for a short time. In a hybrid four-wheel drive vehicle, which is performed suddenly and causes uncomfortable feelings due to the application of driving force and a problem of increased load on driving system parts, the vehicle turns while reducing the uncomfortable feeling given to the driver and the load on the driving system parts. Sometimes driving force distribution control with a large control amount can be applied.

以上、本発明の車両の駆動力配分制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   The vehicle driving force distribution control device according to the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and each claim of the claims Design changes and additions are allowed without departing from the gist of the invention.

実施例1では、GPSと地図情報システムを搭載し、自車位置情報と旋回半径情報を得る車両への適用例を示したが、例えば、車間センサにより先行車に対する自車位置を認識し、車車間通信や走行コースに設置されたインフラから旋回情報を受信し、予め想定される駆動力配分制御を旋回開始前から実行するようにしても良い。要するに、走行コース上で自車が次に進入を予定する旋回ポイント情報を入手できればよい。   In the first embodiment, the GPS and the map information system are installed, and the application example to the vehicle that obtains the vehicle position information and the turning radius information is shown. For example, the vehicle position with respect to the preceding vehicle is recognized by the inter-vehicle sensor, It is also possible to receive turning information from an inter-vehicle communication or an infrastructure installed in a traveling course and to execute a driving force distribution control that is assumed in advance before the start of turning. In short, it is only necessary that the turning point information on which the vehicle plans to enter next on the traveling course can be obtained.

実施例1では、駆動力配分制御手段として、旋回開始前の制御開始地点から前後輪駆動力配分制御を開始し、旋回ポイントに到達すると左右輪駆動力配分制御を開始るする例を示したが、前後輪駆動力配分制御手段のみを搭載した車両では、予め想定される前後輪駆動力配分制御を旋回開始前から実行するだけのものであっても良いし、また、左右輪駆動力配分制御手段のみを搭載した車両では、予め想定される左右輪駆動力配分制御を旋回開始前から実行するだけのものであっても良い。要するに、駆動力配分制御手段としては、走行コース上で自車が次に進入を予定する旋回ポイント情報に基づき、予め想定される駆動力配分制御を旋回開始前から実行するものであれば良い。   In the first embodiment, as an example of the driving force distribution control means, the front and rear wheel driving force distribution control is started from the control start point before the start of turning, and the left and right wheel driving force distribution control is started when the turning point is reached. In a vehicle equipped with only the front and rear wheel driving force distribution control means, it is possible to simply execute the front and rear wheel driving force distribution control that is assumed in advance before the start of turning, or the left and right wheel driving force distribution control. In a vehicle equipped with only the means, the left and right wheel driving force distribution control assumed in advance may be executed only before the start of turning. In short, any driving force distribution control means may be used as long as the driving force distribution control assumed in advance is executed from the start of the turn on the basis of the turning point information that the host vehicle is scheduled to enter next on the traveling course.

実施例1では、前後輪と左右輪の目標駆動力配分比を車速と旋回半径と操舵角により設定する例を示したが、これ以外の情報、例えば、路面μ情報やアクセル開度情報等を加えて、あるいは、これらの情報から複数の情報を選択して前後輪と左右輪の目標駆動力配分比を設定するようにしても良い。   In the first embodiment, an example in which the target driving force distribution ratio of the front and rear wheels and the left and right wheels is set by the vehicle speed, the turning radius, and the steering angle is shown, but other information such as road surface μ information, accelerator opening information, etc. In addition, or alternatively, a plurality of pieces of information may be selected from these pieces of information to set the target driving force distribution ratio between the front and rear wheels and the left and right wheels.

実施例1では、前輪駆動ベース車両の駆動力配分制御装置を示したが、後輪駆動ベースの車両にも適用することができる。また、適用車両についても実施例1で示した以外の、例えば、左右後輪にそれぞれモータを有するハイブリッド車等にも適用できるし、さらには、ハイブリッド車に限らず、エンジン駆動車にも適用できる。実施例1では、駆動力配分制御手段として、主駆動輪と副駆動輪のそれぞれの駆動源の駆動力を直接制御する例を示したが、従来技術に記載されているように、駆動系にトランスファクラッチや差動制限クラッチ等を備え、クラッチの締結力制御により駆動力配分比を制御するものにも適用できる。   Although the driving force distribution control device for the front wheel drive base vehicle is shown in the first embodiment, the present invention can also be applied to a rear wheel drive base vehicle. Further, the applied vehicle can be applied to, for example, a hybrid vehicle having motors on the left and right rear wheels other than those shown in the first embodiment, and further applicable to an engine driven vehicle as well as the hybrid vehicle. . In the first embodiment, as an example of the driving force distribution control unit, the driving force of the driving source of each of the main driving wheel and the auxiliary driving wheel is directly controlled. However, as described in the related art, in the driving system, The present invention can also be applied to a transfer clutch, a differential limiting clutch, and the like that control the driving force distribution ratio by controlling the clutch engaging force.

実施例1の駆動力配分制御装置が適用されたハイブリッド車を示す全体システム図である。1 is an overall system diagram illustrating a hybrid vehicle to which a driving force distribution control device according to a first embodiment is applied. 実施例1のコントローラにて実行される駆動力配分制御処理の流れを示すフローチャートである。3 is a flowchart illustrating a flow of a driving force distribution control process executed by the controller according to the first embodiment. 実施例1で用いられる旋回半径Rと車速Vにより制御開始地点を決定するための制御開始地点マップの一例を示す図である。It is a figure which shows an example of the control start point map for determining a control start point with the turning radius R and the vehicle speed V which are used in Example 1. FIG. 実施例1で用いられる旋回半径Rと車速Vにより後輪駆動力配分比を決定するための後輪駆動力配分比マップの一例を示す図である。FIG. 3 is a diagram showing an example of a rear wheel driving force distribution ratio map for determining a rear wheel driving force distribution ratio based on a turning radius R and a vehicle speed V used in the first embodiment. 実施例1で用いられる旋回半径Rにより左右駆動力配分比を決定するための左右駆動力配分比マップの一例を示す図と車速Vに応じて補正係数を決めるための補正係数テーブルの一例を示す図である。The figure which shows an example of the left-right driving force distribution ratio map for determining left-right driving force distribution ratio with the turning radius R used in Example 1, and an example of the correction coefficient table for determining a correction coefficient according to the vehicle speed V are shown. FIG. 実施例1で用いられる操舵角θと車速Vにより後輪駆動力配分比を決定するための後輪駆動力配分比マップの一例を示す図である。FIG. 3 is a diagram showing an example of a rear wheel driving force distribution ratio map for determining a rear wheel driving force distribution ratio based on the steering angle θ and the vehicle speed V used in the first embodiment. 実施例1で用いられる操舵角θにより左右駆動力配分比を決定するための左右駆動力配分比マップの一例を示す図と車速Vに応じて補正係数を決めるための補正係数テーブルの一例を示す図である。The figure which shows an example of the left-right driving force distribution ratio map for determining left-right driving force distribution ratio by steering angle (theta) used in Example 1, and an example of the correction coefficient table for determining a correction coefficient according to the vehicle speed V are shown. FIG. 左旋回を予定している走行時におけるコーナ迄の距離・平面視による自車の走行軌跡・前輪駆動力特性と後輪駆動力特性を示す説明図である。It is explanatory drawing which shows the distance to a corner at the time of driving | running | working which is going to turn left, the driving | running | working locus | trajectory of the own vehicle by plane view, a front wheel driving force characteristic, and a rear-wheel driving force characteristic.

符号の説明Explanation of symbols

1 エンジン(第1駆動源)
2a フロントモータ(第1駆動源)
2b リアモータ(第2駆動源)
3a 左前輪タイヤ(主駆動輪)
3b 右前輪タイヤ(主駆動輪)
3c 左後輪タイヤ(副駆動輪)
3d 右後輪タイヤ(副駆動輪)
4a フロントディファレンシャル
4b リアディファレンシャル
5 トランスミッション
6 車輪速センサ
7 GPS(全世界測位システム)
8 地図情報システム
9 操舵角センサ
10 ウィンカースイッチ
11 コントローラ
12 強電バッテリ
13a フロントインバータ
13b リアインバータ
1 engine (first drive source)
2a Front motor (first drive source)
2b Rear motor (second drive source)
3a Left front wheel tire (main drive wheel)
3b Right front wheel tire (main drive wheel)
3c Left rear wheel tire (sub drive wheel)
3d Right rear wheel tire (sub drive wheel)
4a Front differential 4b Rear differential 5 Transmission 6 Wheel speed sensor 7 GPS (Global positioning system)
8 Map information system 9 Steering angle sensor 10 Blinker switch 11 Controller 12 High power battery 13a Front inverter 13b Rear inverter

Claims (8)

前後輪と左右輪のうち少なくとも一方の駆動力配分を制御する駆動力配分制御手段を備えた車両において、
前記駆動力配分制御手段は、走行コース上で自車が次に進入を予定する旋回ポイント情報に基づき、予め想定される駆動力配分制御を旋回開始前から実行することを特徴とする車両の駆動力配分制御装置。
In a vehicle provided with driving force distribution control means for controlling the driving force distribution of at least one of the front and rear wheels and the left and right wheels,
The driving force distribution control means executes a driving force distribution control that is assumed in advance from the start of a turn on the basis of turning point information that the host vehicle is scheduled to enter next on a traveling course. Power distribution control device.
請求項1に記載された車両の駆動力配分制御装置において、
駆動力配分制御の開始地点を決定する制御開始地点決定手段を設け、
前記駆動力配分制御手段は、自車が決定された開始地点に達したら、予め想定される駆動力配分制御を開始することを特徴とする車両の駆動力配分制御装置。
In the vehicle driving force distribution control device according to claim 1,
Provide a control start point determination means for determining the start point of the driving force distribution control,
The driving force distribution control unit starts driving force distribution control assumed in advance when the host vehicle reaches a determined starting point.
請求項2に記載された車両の駆動力配分制御装置において、
前記制御開始地点決定手段は、自車速が高いほど、また、自車が次に進入を予定する旋回ポイントの旋回半径が小半径であるほど、駆動力配分制御の開始地点を旋回ポイントから離れた地点に決定することを特徴とする車両の駆動力配分制御装置。
In the vehicle driving force distribution control device according to claim 2,
The control start point determination means moves the start point of the driving force distribution control away from the turning point as the own vehicle speed is higher and the turning radius of the turning point at which the own vehicle is scheduled to enter next is smaller. A driving force distribution control device for a vehicle, characterized in that it is determined as a point.
請求項2または3に記載された車両の駆動力配分制御装置において、
ナビゲーションシステムを用いての走行コース設定により、走行コースを事前に把握しているか否かを判断する走行コース判断手段を設け、
前記駆動力配分制御手段は、事前に把握しているコースを走行中、旋回ポイント付近への到達が確認されている状態でウィンカー操作がなされ、かつ、自車が決定された開始地点に達したら、予め想定される駆動力配分制御を開始することを特徴とする車両の駆動力配分制御装置。
In the vehicle driving force distribution control device according to claim 2 or 3,
A traveling course determination means for determining whether or not the traveling course is grasped in advance by setting the traveling course using the navigation system is provided.
When the driving force distribution control means is running on a course that has been grasped in advance, the winker operation is performed in a state where arrival near the turning point is confirmed, and the vehicle has reached the determined starting point A driving force distribution control device for a vehicle, which starts a driving force distribution control assumed in advance.
請求項1乃至4の何れか1項に記載された車両の駆動力配分制御装置において、
車速と旋回半径に基づき第1目標前後輪駆動力配分比を予め設定する第1目標前後輪駆動力配分比設定手段と、
車速と旋回半径に基づき第1目標左右輪駆動力配分比を予め設定する第1目標左右輪駆動力配分比設定手段と、を設け、
前記駆動力配分制御手段は、駆動力配分制御の開始条件が成立すると、第1目標前後輪駆動力配分比に向かって徐々に前後輪駆動力配分比を変更する前後輪駆動力配分制御を開始し、旋回ポイントに入ると、第1目標左右輪駆動力配分比を得る左右輪駆動力配分制御を開始することを特徴とする車両の駆動力配分制御装置。
In the vehicle driving force distribution control device according to any one of claims 1 to 4,
First target front and rear wheel driving force distribution ratio setting means for presetting a first target front and rear wheel driving force distribution ratio based on the vehicle speed and the turning radius;
First target left and right wheel driving force distribution ratio setting means for presetting a first target left and right wheel driving force distribution ratio based on the vehicle speed and the turning radius;
The driving force distribution control means starts the front and rear wheel driving force distribution control that gradually changes the front and rear wheel driving force distribution ratio toward the first target front and rear wheel driving force distribution ratio when the driving force distribution control start condition is satisfied. When the vehicle enters the turning point, the left and right wheel driving force distribution control for obtaining the first target left and right wheel driving force distribution ratio is started.
請求項5に記載された車両の駆動力配分制御装置において、
車速と操舵角に基づき第2目標前後輪駆動力配分比を設定する第2目標前後輪駆動力配分比設定手段と、
車速と操舵角に基づき第2目標左右輪駆動力配分比を設定する第2目標左右輪駆動力配分比設定手段と、
自車の減速を検出する減速検出手段と、を設け、
前記駆動力配分制御手段は、旋回ポイントに進入した後、自車の減速が検出されると、制御目標を第2目標前後輪駆動力配分比および第2目標左右輪駆動力配分比に再設定することを特徴とする車両の駆動力配分制御装置。
In the vehicle driving force distribution control device according to claim 5,
Second target front and rear wheel driving force distribution ratio setting means for setting a second target front and rear wheel driving force distribution ratio based on the vehicle speed and the steering angle;
Second target left and right wheel driving force distribution ratio setting means for setting a second target left and right wheel driving force distribution ratio based on the vehicle speed and the steering angle;
A deceleration detection means for detecting deceleration of the host vehicle,
The driving force distribution control means resets the control target to the second target front / rear wheel driving force distribution ratio and the second target left / right wheel driving force distribution ratio when deceleration of the host vehicle is detected after entering the turning point. A driving force distribution control device for a vehicle.
請求項1乃至6の何れか1項に記載された車両の駆動力配分制御装置において、
前記車両は、前後輪のうち一方の主駆動輪を駆動する第1駆動源と、前記前後輪のうち他方の副駆動輪を駆動する第2駆動源と、全世界測位システムと、地図情報システムと、を搭載するハイブリッド四輪駆動車であることを特徴とする車両の駆動力配分制御装置。
In the vehicle driving force distribution control device according to any one of claims 1 to 6,
The vehicle includes a first drive source that drives one of the front and rear wheels, a second drive source that drives the other auxiliary drive wheel of the front and rear wheels, a global positioning system, and a map information system And a driving force distribution control device for a vehicle.
請求項7に記載された車両の駆動力配分制御装置において、
前記第1駆動源は、エンジンとモータの少なくとも一方であり、前記第2駆動源は、モータであることを特徴とする車両の駆動力配分制御装置。
In the vehicle driving force distribution control device according to claim 7,
The vehicle driving force distribution control device according to claim 1, wherein the first driving source is at least one of an engine and a motor, and the second driving source is a motor.
JP2005049720A 2005-02-24 2005-02-24 Driving force distribution and controlling device for vehicle Pending JP2006232100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049720A JP2006232100A (en) 2005-02-24 2005-02-24 Driving force distribution and controlling device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049720A JP2006232100A (en) 2005-02-24 2005-02-24 Driving force distribution and controlling device for vehicle

Publications (1)

Publication Number Publication Date
JP2006232100A true JP2006232100A (en) 2006-09-07

Family

ID=37040223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049720A Pending JP2006232100A (en) 2005-02-24 2005-02-24 Driving force distribution and controlling device for vehicle

Country Status (1)

Country Link
JP (1) JP2006232100A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230542A (en) * 2010-04-23 2011-11-17 Honda Motor Co Ltd Vehicle
WO2011151936A1 (en) * 2010-05-31 2011-12-08 株式会社ユニバンス Electric vehicle, program, and control device and control method for electric vehicle
JP2014000887A (en) * 2012-06-19 2014-01-09 Honda Motor Co Ltd Drive control device, and vehicle
KR101410451B1 (en) 2013-02-25 2014-06-20 주식회사 만도 Apparatus, method and computer readable recording medium for controlling wheels in an independant traction type electric vehicle
US9566861B2 (en) 2012-06-22 2017-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP2017109558A (en) * 2015-12-15 2017-06-22 三菱自動車工業株式会社 Cruise control device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230542A (en) * 2010-04-23 2011-11-17 Honda Motor Co Ltd Vehicle
WO2011151936A1 (en) * 2010-05-31 2011-12-08 株式会社ユニバンス Electric vehicle, program, and control device and control method for electric vehicle
JP2014000887A (en) * 2012-06-19 2014-01-09 Honda Motor Co Ltd Drive control device, and vehicle
US9566861B2 (en) 2012-06-22 2017-02-14 Toyota Jidosha Kabushiki Kaisha Vehicle control device
KR101410451B1 (en) 2013-02-25 2014-06-20 주식회사 만도 Apparatus, method and computer readable recording medium for controlling wheels in an independant traction type electric vehicle
JP2017109558A (en) * 2015-12-15 2017-06-22 三菱自動車工業株式会社 Cruise control device for vehicle

Similar Documents

Publication Publication Date Title
JP6352956B2 (en) Vehicle control apparatus and vehicle control method
JP6406141B2 (en) Vehicle travel control device
CN102422001B (en) Vehicle drive control device
JP5703597B2 (en) Driving assistance device
JP6112311B2 (en) Vehicle behavior control device
JP4581988B2 (en) Control device for hybrid vehicle
US11731631B2 (en) Vehicle movement control device, method, program, and system, and target trajectory generating device, method, program, and system
JP2020019392A (en) Automatic operation system
WO2019043915A1 (en) Vehicle, and control device and control method therefor
JP2006321354A (en) Cruise traveling control device of car
JP2011101515A (en) Braking force control device of vehicle
JP2006232100A (en) Driving force distribution and controlling device for vehicle
WO2017135369A1 (en) Overtake assistance device
JP2020028151A (en) Driving force control device
JP2007253861A (en) Vehicle controller
JP2006141150A (en) Regenerative controller
JP2023029457A (en) Operation support apparatus
JP5929597B2 (en) Vehicle travel control apparatus and method
JP2006327335A (en) Torque distribution controller for vehicle
JP2021146767A (en) Travel control device, vehicle, travel control method and program
WO2019073583A1 (en) Method and apparatus for controlling automated vehicle
JPWO2019058776A1 (en) Vehicle control device
JP2012196061A (en) Drive force control device of electric vehicle
WO2014181578A1 (en) Hybrid vehicle control device
JP3933085B2 (en) Automatic steering device for vehicles