WO2014181578A1 - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
WO2014181578A1
WO2014181578A1 PCT/JP2014/056098 JP2014056098W WO2014181578A1 WO 2014181578 A1 WO2014181578 A1 WO 2014181578A1 JP 2014056098 W JP2014056098 W JP 2014056098W WO 2014181578 A1 WO2014181578 A1 WO 2014181578A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
motor
control device
engine
hybrid vehicle
Prior art date
Application number
PCT/JP2014/056098
Other languages
French (fr)
Japanese (ja)
Inventor
山岡 士朗
直之 田代
雄希 奥田
太雪 谷道
健太郎 志賀
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015515805A priority Critical patent/JPWO2014181578A1/en
Publication of WO2014181578A1 publication Critical patent/WO2014181578A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid vehicle control device and a vehicle using the control device.
  • a hybrid vehicle that drives an engine and a motor in cooperation has attracted attention.
  • a hybrid vehicle is characterized by low fuel consumption driving in a wide driving range by combining efficient points of an engine and a motor.
  • the engine and the motor are driven based on output commands to the respective control units set in advance in accordance with the driving conditions of the vehicle and the output request (accelerator position) of the driver of the vehicle.
  • a speed pattern is generated along a target travel route. For example, when the signal changes to a green signal before the vehicle reaches the target stop position, the vehicle is decelerated and stopped. Then, a speed pattern for re-acceleration and a speed pattern for acceleration and steady running are generated, and the speed pattern is selected in consideration of fuel efficiency improvement due to deceleration regeneration.
  • a pattern that allows more fuel-efficient driving can be selected by determining the target stop position, but when the target stop position is not determined, for example, when there is a vehicle traveling ahead Depending on the driving state, the speed pattern, that is, the deceleration may change from moment to moment, and as a result, the ride comfort of the vehicle may be deteriorated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for a hybrid vehicle that realizes fuel-efficient driving in an actual driving environment.
  • a control device for a hybrid vehicle includes: An outside world recognizing unit capable of recognizing at least the distance and relative speed between the host vehicle and the preceding vehicle is provided, and a preset output pattern of the motor is changed according to a recognition result by the outside world recognizing unit.
  • the external recognition means if the calculated relative speed between the own vehicle and the preceding vehicle is positive (the own vehicle is faster), or the own vehicle catches up with the preceding vehicle within a predetermined time. If the distance is between the vehicles, change the motor output pattern, further command the engine to stop, make the motor running time as long as possible, and do not perform engine operation or restart, thereby reducing the fuel consumption associated with it. It is characterized by suppression.
  • the motor for driving the vehicle by the motor has at least two operation modes, and the calculated relative speed between the own vehicle and the preceding vehicle is positive as a result of recognition by the external recognition means.
  • the motor's output pattern when the own vehicle is faster than the preceding vehicle within a predetermined time is faster than the output pattern during normal operation. It is said.
  • a hybrid vehicle according to the present invention is characterized by including the above-described control device.
  • control device for a hybrid vehicle that can take as long an output condition and time for motor operation as possible depending on the state of the vehicle in front in an actual driving environment, and can suppress the amount of fuel consumed by engine operation or restart can do.
  • FIG. 1 shows a configuration diagram of a vehicle 101 of a hybrid vehicle according to the first embodiment of the present invention.
  • the vehicle 101 is provided with an integrated ECU 102, and sensing results such as an accelerator opening, a brake position, a steering position such as a steering wheel, a vehicle speed of the host vehicle, acceleration, and battery information are input to the integrated ECU 102.
  • the integrated ECU 102 performs various calculations and issues an output command or the like to each actuator.
  • the inverter 103 that supplies driving power to the motor 104 through a power harness
  • a battery 106 that is a storage battery that supplies power to the inverter 103.
  • the battery 106 is controlled by the battery ECU 107, and battery information is transmitted to the integrated ECU 102 through communication with the integrated ECU 102. At the same time, battery control information for driving the motor 104 is received.
  • the reduction gear 105 transmits the rotational speed and torque corresponding to the reduction ratio of the shaft rotational force of the motor 104 to the tire of the vehicle 101.
  • the brake ECU 108 controls the brake state of the vehicle 101 in accordance with a command from the integrated ECU 102.
  • the vehicle-mounted camera 110 is provided at the front end of the vehicle 101.
  • the in-vehicle camera 110 recognizes external information in front of or around the host vehicle, and an image obtained by recognizing the presence of the preceding vehicle, an obstacle, or the like or information obtained by processing the image is input to the integrated ECU 102.
  • the in-vehicle camera 110 is treated as a vehicle external environment recognition means, but means capable of recognizing information such as a preceding vehicle, an obstacle, and a signal such as radar and navigation are also within the scope of the present invention.
  • the integrated ECU 102 determines the vehicle state and calculates the control state from these sensing results, and sends a command to each ECU that is a control device for each actuator or part.
  • the motor 104 is connected to the engine 109 via the transmission 105.
  • the motor 104 and the engine 109 are configured such that output values are determined by output commands from the integrated ECU 102 and power for driving the vehicle 101 is generated.
  • FIG. 2 is a control block diagram showing the first embodiment of the control device of the present invention. This control block is extracted from the integrated ECU 102 for determining the output (torque) distribution of the motor 104 and the engine 109.
  • the relative speed calculation unit 201 calculates the relative speed Vr between the host vehicle and the preceding vehicle based on the vehicle speed and acceleration of the host vehicle and the situation of the preceding vehicle captured by information from the in-vehicle camera 110. At this time, it is possible to estimate the future vehicle speed from information such as the accelerator opening, brake information, steering wheel position, etc., and the previous vehicle speed history, and estimate the future relative speed as well as the present. is there.
  • the output distribution calculation unit 202 determines the output distribution of the motor 104 and the engine 109 based on a command from the relative speed calculation unit 201 and commands these output values.
  • FIG. 3 shows an example of the relationship between the host vehicle 301 and the preceding vehicle 302 used for the processing in the relative speed etc. calculation unit 201 in FIG.
  • the vehicle speed V2 and the inter-vehicle distance X2 can be calculated by recognizing the preceding vehicle from information from the in-vehicle camera 110 or the like.
  • the forward vehicle 302 does not have to be in the same lane as the host vehicle 301.
  • the position of the vehicle with respect to the lane is determined and the same It is also possible to calculate the relative speed and the inter-vehicle distance with the own vehicle.
  • FIG. 4 is a diagram illustrating an example of the operation of the motor and the engine when the hybrid vehicle control device of the present invention is applied.
  • (a) shows the operation output range of the motor.
  • a normal operation area 401 indicates a motor operation area in a normal travel pattern, and is a normal operation pattern preset in the integrated ECU 102 as described above.
  • a line 404 indicates the relationship between the accelerator opening and the engine start flag in the normal operation pattern, and the feature of the present invention is that at least the line 404 (motor operation region 401) depends on the relative speed Vr between the host vehicle and the preceding vehicle. Normal operation) and line 405 (high power operation in the enlarged motor operation region 402) can be switched and controlled.
  • motors may cause problems such as demagnetization and dielectric breakdown due to overheating when operated at high output for a long time.
  • Vr> 0 it is determined that the acceleration state does not continue for a long time. Therefore, it is possible to inhibit the engine from being commanded or restarted to suppress excessive fuel injection.
  • FIG. 5 is a control block diagram showing a second embodiment of the control device of the present invention.
  • the basic configuration and aim are the same as those in the first embodiment, and the control block in FIG. 5 is almost the same as that in FIG. 2, but the output distribution calculation unit 502 selects the driving pattern in consideration of the driving history. It is characteristic to judge.
  • the driving history of the driver of the own vehicle 301 is captured in the integrated ECU 102 or other recording device, and based on the analysis result, the time zone where high output is not required during daily driving, In the case of the route, as in the case of the relative speed Vr> 0 in the first embodiment, the vehicle is driven with the pattern of the motor operation region 402, and the engine drive and restart command are stopped.
  • history and selects a driving pattern becomes possible rather than 1st Embodiment.
  • FIG. 6 is a control block diagram showing a third embodiment of the control device of the present invention.
  • the basic configuration and aim are the same as those in the first embodiment, and the control block in FIG. 6 is almost the same as in FIG. 2, but the relative speed calculation unit 601 provides navigation information, C2X information (vehicles ahead). The information is also used to calculate the relative speed (and the inter-vehicle distance) and use the result.
  • the calculation of the inter-vehicle distance x2 using the in-vehicle camera information in the relative speed calculation unit 201 has been described.
  • the motor 104 and the engine 109 are considered in consideration of the relative speed with respect to a distant vehicle and the inter-vehicle distance using information from the navigation and C2X (communication device mounted on the vehicle ahead).
  • the output distribution is determined.
  • the host vehicle 301 and the preceding vehicle 302 have a large inter-vehicle distance that is equal to or greater than a predetermined distance, it is difficult to continue high-power driving using only the motor 104, and the time Vr> Even if it is 0, the host vehicle 301 travels in a normal driving pattern.
  • the relative speed and the inter-vehicle distance can be calculated with higher accuracy, and both low fuel consumption driving and prevention of deterioration in riding comfort can be achieved.
  • FIG. 7 is a control block diagram showing the fourth embodiment.
  • the basic configuration and aim are the same as those of the first embodiment, and the control block of FIG. 7 is substantially the same as that of FIG. 2, but the battery 106 for driving the motor 104 to the output distribution calculation unit 702 is shown. This is characterized in that it is determined in consideration of the SOC (charging state, charged amount).
  • FIG. 8 shows an example of a time chart showing the relationship between the SOC and the engine start flag in a certain travel mode when the fourth embodiment is applied. 8 indicates the SOC history of the battery 106 at time t.
  • the SOC of the battery for driving the motor is normally set to be 40 to 70% in view of the battery life and the like.
  • SOC 40% or EV running becomes long.
  • an SOC lower limit value lower than that is set.
  • the engine 109 is restarted in order to prioritize battery charging.
  • the output distribution at this time is driven by a distribution that can be operated with low fuel consumption while charging the battery 106, that is, a normal output pattern. With such a configuration, it is possible to favorably balance the emphasis of the battery 106 and the low fuel consumption operation.

Abstract

Provided is a hybrid vehicle control device that is capable of minimizing fuel consumption associated with operating and restarting an engine in an actual driving environment of a hybrid vehicle. The hybrid vehicle control device changes a motor output pattern from a normal operation pattern to a high-output operation pattern, and further, directs the engine to stop if a calculated relative speed between the vehicle itself and a vehicle in front is positive (i.e., the vehicle itself is faster) according to recognition results of an external world recognition means that is capable of recognizing the distance and relative speed between the vehicle itself and the vehicle in front.

Description

ハイブリッド自動車の制御装置Control device for hybrid vehicle
 本発明はハイブリッド自動車の制御装置、および該制御装置を用いた車両に関する。 The present invention relates to a hybrid vehicle control device and a vehicle using the control device.
 環境負荷の小さな車両として、エンジンとモータを協調して運転するハイブリッド自動車が注目されている。
 ハイブリッド自動車は、エンジンとモータの効率の良い点を組み合わせることで、広い運転領域で低燃費運転ができることが特徴である。エンジンとモータは、車両の運転条件や車両のドライバの出力要求(アクセルポジション)に応じ、予めコントロールユニットに設定されたそれぞれへの出力指令に基づいて駆動される。
As a vehicle having a small environmental load, a hybrid vehicle that drives an engine and a motor in cooperation has attracted attention.
A hybrid vehicle is characterized by low fuel consumption driving in a wide driving range by combining efficient points of an engine and a motor. The engine and the motor are driven based on output commands to the respective control units set in advance in accordance with the driving conditions of the vehicle and the output request (accelerator position) of the driver of the vehicle.
 この時、例えば、ドライバが加減速を促すアクセル操作やブレーキ操作を実施した場合、エンジンの停止と再始動を繰り返す可能性があり、この結果、再始動に要する燃料消費によって、かえって燃費が悪化するという課題があった。 At this time, for example, when the driver performs an accelerator operation or a brake operation that accelerates acceleration / deceleration, there is a possibility that the engine is repeatedly stopped and restarted. As a result, fuel consumption deteriorates due to fuel consumption required for restart. There was a problem.
 本課題を解決する施策として、例えば特許文献1では、目標の走行経路に沿って速度パターンを生成し、例えば車両が目標停止位置に到達する前に信号が青信号に変わる時は、減速して停止してから再加速する速度パターンと、加速して定常走行する速度パターンとを生成し、減速回生による燃費性向上を考慮して速度パターンを選択する構成をとっている。 As a measure for solving this problem, for example, in Patent Document 1, a speed pattern is generated along a target travel route. For example, when the signal changes to a green signal before the vehicle reaches the target stop position, the vehicle is decelerated and stopped. Then, a speed pattern for re-acceleration and a speed pattern for acceleration and steady running are generated, and the speed pattern is selected in consideration of fuel efficiency improvement due to deceleration regeneration.
特開2010-264841号公報JP 2010-264841 A
 上述の制御装置の場合、目標停止位置が定まることによって、より低燃費運転が可能なパターンを選択可能であるが、目標停止位置が定まらない場合、例えば、前方を走行する車両が存在する場合などは、その走行状態によって、速度パターンすなわち減速度が時々刻々変化する可能性があり、その結果、今度は車両への乗り心地が悪化する恐れがあった。 In the case of the above-described control device, a pattern that allows more fuel-efficient driving can be selected by determining the target stop position, but when the target stop position is not determined, for example, when there is a vehicle traveling ahead Depending on the driving state, the speed pattern, that is, the deceleration may change from moment to moment, and as a result, the ride comfort of the vehicle may be deteriorated.
 本発明は、上記課題に鑑みなされたもので、実際の走行環境においてより低燃費運転を実現するハイブリッド自動車の制御装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for a hybrid vehicle that realizes fuel-efficient driving in an actual driving environment.
 前記の課題を解決するために、本発明に係るハイブリッド自動車の制御装置は、
 少なくとも自車両両と前方車両との距離および相対速度を認識できる外界認識手段を備え、前記外界認識手段による認識結果によって、予め設定されている前記モータの出力パターンを変更することを特徴とする。
In order to solve the above-described problem, a control device for a hybrid vehicle according to the present invention includes:
An outside world recognizing unit capable of recognizing at least the distance and relative speed between the host vehicle and the preceding vehicle is provided, and a preset output pattern of the motor is changed according to a recognition result by the outside world recognizing unit.
 具体的には、外界認識手段による認識の結果、演算される自車両と前方車両との相対速度が正の場合(自車両の方が速い)、もしくは所定時間以内に自車両が前方車両に追いつける車間距離である場合、モータの出力パターンを変更し、さらにエンジン停止を指令することによって、できるだけモータ走行の時間を長くし、さらにエンジン運転や再始動を実施しないことによって、それに伴う燃料消費量を抑制することを特徴としている。 Specifically, as a result of recognition by the external recognition means, if the calculated relative speed between the own vehicle and the preceding vehicle is positive (the own vehicle is faster), or the own vehicle catches up with the preceding vehicle within a predetermined time. If the distance is between the vehicles, change the motor output pattern, further command the engine to stop, make the motor running time as long as possible, and do not perform engine operation or restart, thereby reducing the fuel consumption associated with it. It is characterized by suppression.
 この時、車両のモータによる走行を駆動するモータは少なくとも2つ以上の運転モードを有しており、外界認識手段による認識の結果、演算される自車両と前方車両との相対速度が正の場合(自車両の方が速い)、もしくは所定時間以内に自車両が前方車両に追いつける車間距離である場合のモータの出力パターンは、通常運転時の出力パターンより高出力運転するパターンであることを特徴としている。 At this time, the motor for driving the vehicle by the motor has at least two operation modes, and the calculated relative speed between the own vehicle and the preceding vehicle is positive as a result of recognition by the external recognition means. The motor's output pattern when the own vehicle is faster than the preceding vehicle within a predetermined time is faster than the output pattern during normal operation. It is said.
 但し、このハイブリッド自動車に搭載されている蓄電装置のSOCが所定値以下の場合はこの限りではなく、エンジン停止指令を解除し、モータは通常の出力パターンによって運転し、エンジン動力によって発電することを特徴としている。 However, this is not the case when the SOC of the power storage device mounted on this hybrid vehicle is below a predetermined value. The engine stop command is canceled and the motor is operated according to a normal output pattern, and the engine power is generated. It is a feature.
 また、本発明に係るハイブリッド自動車は、上記の制御装置を備えたことを特徴とする。 Also, a hybrid vehicle according to the present invention is characterized by including the above-described control device.
 実際の走行環境において、前方車両の状態によってモータ運転する出力条件や時間を、できるだけ長く取ることができ、エンジン運転や再始動によって消費する燃料量を抑制することができるハイブリッド自動車の制御装置を提供することができる。 Provided is a control device for a hybrid vehicle that can take as long an output condition and time for motor operation as possible depending on the state of the vehicle in front in an actual driving environment, and can suppress the amount of fuel consumed by engine operation or restart can do.
本発明の第1の実施形態に係るハイブリッド自動車の構成を示す図である。It is a figure showing composition of a hybrid car concerning a 1st embodiment of the present invention. 本発明に係る制御装置の第1の実施形態を示す制御ブロック図である。It is a control block diagram which shows 1st Embodiment of the control apparatus which concerns on this invention. 自車両と前方車両の関係の一例を示す図である。It is a figure which shows an example of the relationship between the own vehicle and a front vehicle. 本発明に係るハイブリッド自動車の制御装置を適用した場合のモータとエンジンの動作の一例を示す図である。It is a figure which shows an example of operation | movement of a motor and an engine at the time of applying the control apparatus of the hybrid vehicle which concerns on this invention. 本発明に係る制御装置の第2の実施形態を示す制御ブロック図である。It is a control block diagram which shows 2nd Embodiment of the control apparatus which concerns on this invention. 本発明に係る制御装置の第3の実施形態を示す制御ブロック図である。It is a control block diagram which shows 3rd Embodiment of the control apparatus which concerns on this invention. 本発明に係る制御装置の第4の実施形態を示す制御ブロック図である。It is a control block diagram which shows 4th Embodiment of the control apparatus which concerns on this invention. 第4の実施形態を適用した場合のSOCとエンジン始動フラグの関係を示すタイムチャートの一例である。It is an example of the time chart which shows the relationship between SOC at the time of applying 4th Embodiment, and an engine start flag.
 以下、本発明の実施形態について図面と共に説明する。
 図1は本発明の第1の実施形態に係るハイブリッド自動車の車両101の構成図を示している。車両101には、統合ECU102が備えられ、アクセル開度、ブレーキポジション、ハンドル等のステアリングポジション、自車両の車速、加速度、バッテリ情報のようなセンシング結果が該統合ECU102に入力される。統合ECU102は、種々の演算を実施して、各アクチュエータに出力指令等を実施する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a configuration diagram of a vehicle 101 of a hybrid vehicle according to the first embodiment of the present invention. The vehicle 101 is provided with an integrated ECU 102, and sensing results such as an accelerator opening, a brake position, a steering position such as a steering wheel, a vehicle speed of the host vehicle, acceleration, and battery information are input to the integrated ECU 102. The integrated ECU 102 performs various calculations and issues an output command or the like to each actuator.
 また、モータ104に対して電力ハーネスを通じて駆動電力を供給するインバータ103と、このインバータ103に電力を供給する蓄電池であるバッテリ106と、を有する。バッテリ106の制御は、バッテリECU107で行い、統合ECU102との通信により、バッテリ情報を統合ECU102に伝達するのと同時に、モータ104の駆動のためのバッテリ制御情報を受信する。減速ギヤ105は、モータ104の軸回転力を減速比に応じた回転数とトルクを車両101のタイヤへ伝達する。ブレーキECU108は、統合ECU102からの指令に応じて車両101のブレーキ状態を制御する。 Further, it has an inverter 103 that supplies driving power to the motor 104 through a power harness, and a battery 106 that is a storage battery that supplies power to the inverter 103. The battery 106 is controlled by the battery ECU 107, and battery information is transmitted to the integrated ECU 102 through communication with the integrated ECU 102. At the same time, battery control information for driving the motor 104 is received. The reduction gear 105 transmits the rotational speed and torque corresponding to the reduction ratio of the shaft rotational force of the motor 104 to the tire of the vehicle 101. The brake ECU 108 controls the brake state of the vehicle 101 in accordance with a command from the integrated ECU 102.
 本実施形態では、車両101の前端部に車載カメラ110が備えられる。該車載カメラ110は、自車両の前方もしくはその周辺の外界情報を認識し、前方車両や障害物等の存在を認識して得られた画像もしくはこれを処理した情報が統合ECU102に入力される。本発明では、この車載カメラ110を車両の外界認識手段として扱うが、例えばレーダーやナビゲーションなど、前方車両、障害物、信号等の情報が認識できる手段も本発明の範疇である。 In this embodiment, the vehicle-mounted camera 110 is provided at the front end of the vehicle 101. The in-vehicle camera 110 recognizes external information in front of or around the host vehicle, and an image obtained by recognizing the presence of the preceding vehicle, an obstacle, or the like or information obtained by processing the image is input to the integrated ECU 102. In the present invention, the in-vehicle camera 110 is treated as a vehicle external environment recognition means, but means capable of recognizing information such as a preceding vehicle, an obstacle, and a signal such as radar and navigation are also within the scope of the present invention.
 統合ECU102は、これらのセンシング結果から、車両状態を判定及び制御状態を演算し、各アクチュエータやパーツの制御装置である各ECUに指令を送る。モータ104は、変速機105を介してエンジン109に接続されている。これらモータ104およびエンジン109は、統合ECU102からの出力指令によって、それぞれ出力値が決定され、車両101を駆動する動力を発生する構成となっている。 The integrated ECU 102 determines the vehicle state and calculates the control state from these sensing results, and sends a command to each ECU that is a control device for each actuator or part. The motor 104 is connected to the engine 109 via the transmission 105. The motor 104 and the engine 109 are configured such that output values are determined by output commands from the integrated ECU 102 and power for driving the vehicle 101 is generated.
 次に、図2~図4を用いて、本発明のハイブリッド自動車の制御装置の構成とその特徴について説明する。
 図2は、本発明の制御装置の第1の実施形態を示す制御ブロック図である。この制御ブロックは、統合ECU102において、モータ104とエンジン109の出力(トルク)配分を決定するブロックを抜粋している。
Next, the configuration and characteristics of the hybrid vehicle control device of the present invention will be described with reference to FIGS.
FIG. 2 is a control block diagram showing the first embodiment of the control device of the present invention. This control block is extracted from the integrated ECU 102 for determining the output (torque) distribution of the motor 104 and the engine 109.
 まず、相対速度等演算部201は、自車両の車速や加速度、また車載カメラ110からの情報によって捉えた前方車両の状況から、自車両と前方車両の相対速度Vrを演算する。この時、アクセル開度、ブレーキ情報、ハンドル位置などの情報、これまでの自車両速度履歴から、将来の自車両速度を推定し、現在だけでなく将来の相対速度を推測演算することも可能である。 First, the relative speed calculation unit 201 calculates the relative speed Vr between the host vehicle and the preceding vehicle based on the vehicle speed and acceleration of the host vehicle and the situation of the preceding vehicle captured by information from the in-vehicle camera 110. At this time, it is possible to estimate the future vehicle speed from information such as the accelerator opening, brake information, steering wheel position, etc., and the previous vehicle speed history, and estimate the future relative speed as well as the present. is there.
 出力配分演算部202は、相対速度等演算部201からの指令を元に、モータ104およびエンジン109の出力配分を決定して、これらの出力値を指令する。
 図3は、図2の相対速度等演算部201での処理に用いる自車両301と前方車両302の関係の一例を示す。
The output distribution calculation unit 202 determines the output distribution of the motor 104 and the engine 109 based on a command from the relative speed calculation unit 201 and commands these output values.
FIG. 3 shows an example of the relationship between the host vehicle 301 and the preceding vehicle 302 used for the processing in the relative speed etc. calculation unit 201 in FIG.
 自車両が車速V1で走行している時、車載カメラ110の情報等から前方車両を認識することによって、その車速V2と車間距離X2を演算することができる。この時の自車両と前方車両の相対速度Vrは Vr=V1-V2 として定義し、Vr>0の場合、すなわち自車両の車速V1の方が前方車両の車速V2より大きい場合は、現在の車間距離X2が今後小さくなることを示す。 When the host vehicle is traveling at the vehicle speed V1, the vehicle speed V2 and the inter-vehicle distance X2 can be calculated by recognizing the preceding vehicle from information from the in-vehicle camera 110 or the like. The relative speed Vr between the host vehicle and the preceding vehicle at this time is defined as Vr = V1-V2, and if Vr> 0, that is, if the vehicle speed V1 of the host vehicle is greater than the vehicle speed V2 of the preceding vehicle, It shows that the distance X2 will become smaller in the future.
 このとき、前方車両302は自車両301と同じレーンである必要はなく、例えば別の車両303が右側のレーンにて車速V3で走行している場合、レーンに対するその車両の位置を割り出して、同様に自車両との相対速度と車間距離を演算することも可能である。 At this time, the forward vehicle 302 does not have to be in the same lane as the host vehicle 301. For example, when another vehicle 303 is traveling at the vehicle speed V3 in the right lane, the position of the vehicle with respect to the lane is determined and the same It is also possible to calculate the relative speed and the inter-vehicle distance with the own vehicle.
 図4は、本発明のハイブリッド自動車の制御装置を適用した場合のモータとエンジンの動作の一例を示す図である。(a)はモータの動作出力範囲を示している。
 通常運転領域401は通常の走行パターンにおけるモータの運転領域を示しており、上述のように予め統合ECU102に設定された通常の運転パターンである。
FIG. 4 is a diagram illustrating an example of the operation of the motor and the engine when the hybrid vehicle control device of the present invention is applied. (a) shows the operation output range of the motor.
A normal operation area 401 indicates a motor operation area in a normal travel pattern, and is a normal operation pattern preset in the integrated ECU 102 as described above.
 点線で囲まれた高出力運転用領域402は相対速度Vr>0と判定される場合のモータ運転領域を示している。これは自車両走行中に前方車両との相対速度Vr>0の場合、すなわち前方車両との距離が縮まってきている場合には、長い時間の高出力が必要ない状況と判断できるので、例えば自車両301がEV走行(モータ104のみによる走行)中、瞬間的にドライバがアクセルを踏み込んだとしても、図4(b)に線405で示すようにアクセル開度に応じてエンジンを再始動することなく(エンジン始動フラグ=0に維持)、一時的にモータを通常の運転パターンよりも高出力運転することを特徴としている。線404は、通常運転パターンにおけるアクセル開度とエンジン始動フラグの関係を示しており、本発明の特徴は、自車両と前方車両の相対速度Vrに応じて、少なくともこの線404(モータ運転領域401での通常運転)と線405(拡大されたモータ運転領域402での高出力運転)を切り替えて制御できることにある。 A high-power operation area 402 surrounded by a dotted line indicates a motor operation area when the relative speed Vr> 0 is determined. If the relative speed Vr> 0 with the preceding vehicle while the host vehicle is traveling, that is, if the distance from the preceding vehicle is shrinking, it can be determined that a high output for a long time is not necessary. Even if the driver depresses the accelerator momentarily while the vehicle 301 is traveling by EV (traveling only by the motor 104), the engine is restarted according to the accelerator opening as shown by the line 405 in FIG. (The engine start flag = 0 is maintained), and the motor is temporarily operated at a higher output than the normal operation pattern. A line 404 indicates the relationship between the accelerator opening and the engine start flag in the normal operation pattern, and the feature of the present invention is that at least the line 404 (motor operation region 401) depends on the relative speed Vr between the host vehicle and the preceding vehicle. Normal operation) and line 405 (high power operation in the enlarged motor operation region 402) can be switched and controlled.
 一般的に、モータは長時間高出力運転すると過熱による減磁や絶縁破壊等の問題を引き起こすことがあるが、数秒単位であれば過熱もなく、問題ない。上記のようなVr>0の場合は、長時間加速状態が続かないと判断されるので、エンジン停止を指令もしくは再始動を禁じて、余分な燃料噴射を抑えることができる。 Generally, motors may cause problems such as demagnetization and dielectric breakdown due to overheating when operated at high output for a long time. In the case of Vr> 0 as described above, it is determined that the acceleration state does not continue for a long time. Therefore, it is possible to inhibit the engine from being commanded or restarted to suppress excessive fuel injection.
 この時、Vr>0であっても、前方車両や障害物との衝突が懸念される急な減速が必要となる場合は、低燃費より衝突回避が優先されるため、これは本発明の範疇ではない。但し、衝突回避機能等が停止している環境下でのVr>0の場合は、本発明ではエンジン再始動を行わないことで燃料消費を抑制でき、さらにエンジンの始動と停止を繰り返すことによる乗り心地の悪化も併せてと回避することが可能となる。 At this time, even if Vr> 0, if a sudden deceleration is required to cause a collision with a preceding vehicle or an obstacle, collision avoidance is given priority over low fuel consumption. is not. However, when Vr> 0 in an environment where the collision avoidance function or the like is stopped, in the present invention, the fuel consumption can be suppressed by not restarting the engine, and further, the riding by repeating the start and stop of the engine. It is possible to avoid the deterioration of comfort.
 図5は、本発明の制御装置の第2の実施形態を示す制御ブロック図である。基本的な構成や狙いは第1の実施形態と同様であり、図5の制御ブロックも図2とほぼ同じであるが、出力配分演算部502が、運転パターンの選択を、走行履歴を加味して判断することが特徴である。 FIG. 5 is a control block diagram showing a second embodiment of the control device of the present invention. The basic configuration and aim are the same as those in the first embodiment, and the control block in FIG. 5 is almost the same as that in FIG. 2, but the output distribution calculation unit 502 selects the driving pattern in consideration of the driving history. It is characteristic to judge.
 具体的には、例えば自車両301のドライバの運転履歴が統合ECU102やその他の記録装置等に取り込まれており、その分析結果に基づき、日々の走行の中では高出力を必要としない時間帯や経路の場合は、第1の実施形態の相対速度Vr>0のときと同じように、モータの運転領域402のパターンで車両を運転して、エンジン駆動や再始動指令を停止するものである。このように、走行履歴を加味して運転パターンを選択する構成によって、第1の実施形態よりもさらなる低燃費運転が可能となる。 Specifically, for example, the driving history of the driver of the own vehicle 301 is captured in the integrated ECU 102 or other recording device, and based on the analysis result, the time zone where high output is not required during daily driving, In the case of the route, as in the case of the relative speed Vr> 0 in the first embodiment, the vehicle is driven with the pattern of the motor operation region 402, and the engine drive and restart command are stopped. Thus, by the structure which considers driving | running | working log | history and selects a driving pattern, the further fuel-efficient driving | operation becomes possible rather than 1st Embodiment.
 図6は本発明の制御装置の第3の実施形態を示す制御ブロック図である。基本的な構成や狙いは第1の実施形態と同じであり、図6の制御ブロックも図2とほぼ同じであるが、相対速度等演算部601に対して、ナビ情報、C2X情報(前方車両からの情報)も用いて、相対速度(および車間距離)を演算し、その結果を用いることが特徴である。 FIG. 6 is a control block diagram showing a third embodiment of the control device of the present invention. The basic configuration and aim are the same as those in the first embodiment, and the control block in FIG. 6 is almost the same as in FIG. 2, but the relative speed calculation unit 601 provides navigation information, C2X information (vehicles ahead). The information is also used to calculate the relative speed (and the inter-vehicle distance) and use the result.
 この理由として、第1の実施形態において、相対速度等演算部201にて車載カメラ情報を用いて車間距離x2を求めることを記載したが、例えば前方車両が自車両から遠い場合には車載カメラでは検出できないことがある。そこでこのような場合には、ナビゲーションやC2X(前方車両等に装着されている通信器)からの情報を用いて、遠方の車両との相対速度や車間距離を考慮して、モータ104とエンジン109の出力配分を決定する構成である。 As a reason for this, in the first embodiment, the calculation of the inter-vehicle distance x2 using the in-vehicle camera information in the relative speed calculation unit 201 has been described. For example, when the front vehicle is far from the host vehicle, It may not be detected. Therefore, in such a case, the motor 104 and the engine 109 are considered in consideration of the relative speed with respect to a distant vehicle and the inter-vehicle distance using information from the navigation and C2X (communication device mounted on the vehicle ahead). The output distribution is determined.
 例えば、ナビゲーションやC2Xにより自車両301と前方車両302が所定距離以上の大きな車間距離であることが検出された場合には、モータ104のみによる高出力運転継続が困難になるため、時間がVr>0であっても、自車両301は通常運転パターンで走行するものである。かかる構成により、より高精度に相対速度や車間距離を演算でき低燃費運転と乗り心地悪化防止を両立できるものである。 For example, when it is detected by navigation or C2X that the host vehicle 301 and the preceding vehicle 302 have a large inter-vehicle distance that is equal to or greater than a predetermined distance, it is difficult to continue high-power driving using only the motor 104, and the time Vr> Even if it is 0, the host vehicle 301 travels in a normal driving pattern. With this configuration, the relative speed and the inter-vehicle distance can be calculated with higher accuracy, and both low fuel consumption driving and prevention of deterioration in riding comfort can be achieved.
 次に、本発明の制御装置の第4の実施形態について、図7および図8を用いて説明する。
 図7は第4の実施形態を示す制御ブロック図である。基本的な構成や狙いは第1の実施形態と同様であり、図7の制御ブロックも図2とほぼ同様であるが、出力配分演算部702に対して、モータ104を駆動するためのバッテリ106のSOC(充電状態、蓄電量)を加味して判断する構成であることが特徴である。
Next, a fourth embodiment of the control device of the present invention will be described with reference to FIGS.
FIG. 7 is a control block diagram showing the fourth embodiment. The basic configuration and aim are the same as those of the first embodiment, and the control block of FIG. 7 is substantially the same as that of FIG. 2, but the battery 106 for driving the motor 104 to the output distribution calculation unit 702 is shown. This is characterized in that it is determined in consideration of the SOC (charging state, charged amount).
 すなわち、バッテリ106のSOCが低い場合には、エンジン109からの出力による蓄電制御を実施する必要があるので、相対速度Vr>0であっても、エンジンは駆動状態を維持、もしくは再始動する必要がある。 That is, when the SOC of the battery 106 is low, it is necessary to perform power storage control based on the output from the engine 109. Therefore, even if the relative speed Vr> 0, the engine needs to maintain or restart the driving state. There is.
 図8には第4の実施形態を適用した場合の、ある走行モードにおけるSOCとエンジン始動フラグの関係を示すタイムチャートの一例を示している。図8の上図中の線801は時刻tにおけるバッテリ106のSOC履歴である。 FIG. 8 shows an example of a time chart showing the relationship between the SOC and the engine start flag in a certain travel mode when the fourth embodiment is applied. 8 indicates the SOC history of the battery 106 at time t.
 ハイブリッド自動車の場合、モータ駆動用のバッテリのSOCはバッテリ寿命等を鑑みて、通常40~70%になるように設定されているが、本発明の制御装置ではSOC40%もしくはEV走行が長くなることを想定して、それ以下のSOC下限値が設定されている。車両101がVr>0の場合にEV走行を継続していても、時刻t1において、SOC下限値に達した場合は、バッテリの充電を優先するため、エンジン109を再始動することとなる。この時の出力配分は、バッテリ106への充電を実施しつつ、低燃費に運転できる配分、すなわち通常の出力パターンによって運転する。かかる構成によって、バッテリ106の重点と低燃費運転を好適に両立することができる。 In the case of a hybrid vehicle, the SOC of the battery for driving the motor is normally set to be 40 to 70% in view of the battery life and the like. However, in the control device of the present invention, SOC 40% or EV running becomes long. As a result, an SOC lower limit value lower than that is set. Even if the vehicle 101 continues EV traveling when Vr> 0, when the SOC lower limit value is reached at time t1, the engine 109 is restarted in order to prioritize battery charging. The output distribution at this time is driven by a distribution that can be operated with low fuel consumption while charging the battery 106, that is, a normal output pattern. With such a configuration, it is possible to favorably balance the emphasis of the battery 106 and the low fuel consumption operation.
 101…車両、102…統合ECU、104…モータ、106…バッテリ、107…バッテリECU、109…エンジン、110…車載カメラ、201,501,601,701…相対速度等演算部、202,502,602,702…出力配分演算部、301…自車両、302…前方車両 DESCRIPTION OF SYMBOLS 101 ... Vehicle, 102 ... Integrated ECU, 104 ... Motor, 106 ... Battery, 107 ... Battery ECU, 109 ... Engine, 110 ... In-vehicle camera, 201, 501, 601, 701 ... Relative speed calculation unit, 202, 502, 602, 702 ... Output distribution calculation unit, 301 ... Own vehicle , 302 ... Vehicle ahead

Claims (9)

  1.  モータおよびエンジンの少なくとも一方の出力によって走行するハイブリッド自動車の制御装置において、
     少なくとも自車両と前方車両との距離および相対速度を認識できる外界認識手段を備え、前記外界認識手段による認識結果によって、予め設定されている前記モータの出力パターンを変更することを特徴とする、ハイブリッド自動車の制御装置。
    In a control apparatus for a hybrid vehicle that travels by the output of at least one of a motor and an engine,
    A hybrid comprising: an outside world recognizing unit capable of recognizing at least a distance and a relative speed between the host vehicle and a preceding vehicle, wherein a preset output pattern of the motor is changed according to a recognition result by the outside world recognizing unit. Automotive control device.
  2.  前記外界認識手段による認識の結果、演算された前記自車両と前方車両との相対速度が正の場合は、前記モータの出力パターンを変更し、さらにエンジンの停止を指令することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。 As a result of recognition by the external environment recognition means, if the calculated relative speed between the host vehicle and the preceding vehicle is positive, the output pattern of the motor is changed, and further, the engine is instructed to stop. The control apparatus of the hybrid vehicle of Claim 1.
  3.  前記外界認識手段による認識の結果、前記自車両が所定時間以内に前記前方車両に追いつく相対速度かつ車間距離である場合は、前記モータの出力パターンを変更し、さらに前記エンジンの停止を指令することを特徴とする、請求項2に記載のハイブリッド自動車の制御装置。 As a result of recognition by the external environment recognition means, if the host vehicle has a relative speed and an inter-vehicle distance that catches up with the preceding vehicle within a predetermined time, the output pattern of the motor is changed, and further, the engine is instructed to stop. The hybrid vehicle control device according to claim 2, wherein:
  4.  前記外界認識手段による認識の結果、変更する前記モータの出力パターンは、変更前の出力パターンより高出力で運転するパターンであることを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。 2. The control apparatus for a hybrid vehicle according to claim 1, wherein the output pattern of the motor to be changed as a result of recognition by the external environment recognition means is a pattern that operates at a higher output than the output pattern before the change.
  5.  前記自車両が前記モータによる走行中に、前記外界認識手段による認識の結果、演算された前記自車両と前方車両との相対速度が負の場合は、前記エンジンの停止指令を解除し、前記モータは通常の出力パターンによって運転することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。 If the calculated relative speed between the host vehicle and the preceding vehicle is negative as a result of recognition by the external field recognition means while the host vehicle is traveling by the motor, the engine stop command is canceled, and the motor 2. The hybrid vehicle control device according to claim 1, wherein the vehicle is operated with a normal output pattern.
  6.  前記自車両が前記モータのみによる走行中に、前記外界認識手段による認識の結果、演算された前記自車両と前方車両との車間距離が所定値以上である場合は、前記エンジンの停止指令を解除し、前記モータは通常の出力パターンによって運転することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。 While the host vehicle is traveling only by the motor, if the calculated inter-vehicle distance between the host vehicle and the preceding vehicle is equal to or greater than a predetermined value as a result of recognition by the external field recognition means, the engine stop command is canceled. The control apparatus for a hybrid vehicle according to claim 1, wherein the motor is driven by a normal output pattern.
  7.  前記自車両に備えられた蓄電装置のSOCが所定値以下の場合は、エンジン停止指令を解除し、前記モータは通常の出力パターンによって運転することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。 2. The hybrid vehicle according to claim 1, wherein when the SOC of the power storage device provided in the host vehicle is equal to or lower than a predetermined value, the engine stop command is canceled, and the motor is driven according to a normal output pattern. Control device.
  8.  前記外界認識手段は、車載カメラ、通信による伝達手段の少なくとも一方を含むことを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。 2. The hybrid vehicle control device according to claim 1, wherein the external environment recognition means includes at least one of an in-vehicle camera and communication transmission means.
  9.  請求項1に記載の制御装置を備えたことを特徴とする、ハイブリッド自動車。 A hybrid vehicle comprising the control device according to claim 1.
PCT/JP2014/056098 2013-05-07 2014-03-10 Hybrid vehicle control device WO2014181578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015515805A JPWO2014181578A1 (en) 2013-05-07 2014-03-10 Control device for hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-097898 2013-05-07
JP2013097898 2013-05-07

Publications (1)

Publication Number Publication Date
WO2014181578A1 true WO2014181578A1 (en) 2014-11-13

Family

ID=51867064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056098 WO2014181578A1 (en) 2013-05-07 2014-03-10 Hybrid vehicle control device

Country Status (2)

Country Link
JP (3) JPWO2014181578A1 (en)
WO (1) WO2014181578A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014181578A1 (en) * 2013-05-07 2017-02-23 日立オートモティブシステムズ株式会社 Control device for hybrid vehicle
KR20180050729A (en) * 2015-09-07 2018-05-15 르노 에스.아.에스. Energy management methods in hybrid vehicles
KR20180065567A (en) * 2016-12-08 2018-06-18 현대자동차주식회사 Method for controlling engine clutch of hybrid vehicle
JP2018118690A (en) * 2017-01-27 2018-08-02 株式会社Subaru Engine start control device of hybrid vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186069A (en) * 2006-01-13 2007-07-26 Toyota Motor Corp Running control system for hybrid vehicle
JP2009029386A (en) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2012086803A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle and control method of hybrid vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006684A (en) * 1998-06-22 2000-01-11 Mitsubishi Motors Corp Vehicle travel control device
JP2000120460A (en) * 1998-10-14 2000-04-25 Daihatsu Motor Co Ltd Hybrid automobile
JP2002170200A (en) * 2000-12-01 2002-06-14 Nissan Diesel Motor Co Ltd Vehicle rear-end collision alarm system
JP4026013B2 (en) * 2004-01-30 2007-12-26 三菱自動車工業株式会社 Torque control device
JP2007276508A (en) * 2006-04-03 2007-10-25 Fujitsu Ten Ltd Collision avoidance controller for vehicle
JP2008030678A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Vehicle traveling controller
JP5102101B2 (en) * 2008-05-15 2012-12-19 本田技研工業株式会社 Control device for hybrid vehicle
JP6194152B2 (en) * 2011-03-28 2017-09-06 本田技研工業株式会社 Vehicle control device
JP5713106B2 (en) * 2011-07-26 2015-05-07 トヨタ自動車株式会社 Vehicle identification system and vehicle identification device
WO2014181578A1 (en) * 2013-05-07 2014-11-13 日立オートモティブシステムズ株式会社 Hybrid vehicle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186069A (en) * 2006-01-13 2007-07-26 Toyota Motor Corp Running control system for hybrid vehicle
JP2009029386A (en) * 2007-07-31 2009-02-12 Nissan Motor Co Ltd Control device for hybrid vehicle
JP2012086803A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle and control method of hybrid vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014181578A1 (en) * 2013-05-07 2017-02-23 日立オートモティブシステムズ株式会社 Control device for hybrid vehicle
KR20180050729A (en) * 2015-09-07 2018-05-15 르노 에스.아.에스. Energy management methods in hybrid vehicles
JP2018529566A (en) * 2015-09-07 2018-10-11 ルノー エス.ア.エス.Renault S.A.S. Methods for energy management in hybrid vehicles
KR102048891B1 (en) 2015-09-07 2019-11-26 르노 에스.아.에스. How to manage energy in hybrid vehicles
KR20180065567A (en) * 2016-12-08 2018-06-18 현대자동차주식회사 Method for controlling engine clutch of hybrid vehicle
KR102440493B1 (en) 2016-12-08 2022-09-06 현대자동차주식회사 Method for controlling engine clutch of hybrid vehicle
JP2018118690A (en) * 2017-01-27 2018-08-02 株式会社Subaru Engine start control device of hybrid vehicle

Also Published As

Publication number Publication date
JP2017137053A (en) 2017-08-10
JP2019059474A (en) 2019-04-18
JPWO2014181578A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6048457B2 (en) Vehicle travel control device
JP5125293B2 (en) Control device for hybrid vehicle
JP2019059474A (en) Hybrid vehicle control device
KR20190067376A (en) Hybrid vehicle and method of controlling platooning therefor
JP6011572B2 (en) Automobile
JP6008425B2 (en) Auto cruise control device for hybrid vehicle
JP4079077B2 (en) Vehicle travel control device
JP2015080977A (en) Travel control device of hybrid vehicle
JP2007168502A (en) Inter-vehicle controller for hybrid vehicle
JP6018018B2 (en) Electric vehicle regeneration control device
WO2019043915A1 (en) Vehicle, and control device and control method therefor
JP2007125997A (en) Vehicular intelligent brake assist system
CN109689437B (en) Vehicle control method and vehicle control device
JP2014173454A (en) Control device of idle stop vehicle
US9783069B2 (en) Battery voltage control device and battery voltage control method
JP2015073347A (en) Electric-vehicular travel control apparatus
US9340209B2 (en) High-voltage system control device for vehicle
JP4586779B2 (en) Driving assistance device
CN105730434A (en) Method for controlling of charge in hybrid vehicle
JP2015104984A (en) Travel control device of hybrid vehicle
JP2017081353A (en) Electric car control device
JP6495793B2 (en) Control device and control method for electric vehicle
CN114802219A (en) Vehicle control device
JP2015116871A (en) Controller of hybrid electric vehicle
CN111267634B (en) Vehicle control method and system, electronic device, and computer storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794173

Country of ref document: EP

Kind code of ref document: A1