JP2019059474A - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
JP2019059474A
JP2019059474A JP2018237857A JP2018237857A JP2019059474A JP 2019059474 A JP2019059474 A JP 2019059474A JP 2018237857 A JP2018237857 A JP 2018237857A JP 2018237857 A JP2018237857 A JP 2018237857A JP 2019059474 A JP2019059474 A JP 2019059474A
Authority
JP
Japan
Prior art keywords
vehicle
motor
control device
engine
output pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018237857A
Other languages
Japanese (ja)
Inventor
山岡 士朗
Shiro Yamaoka
士朗 山岡
直之 田代
Naoyuki Tashiro
直之 田代
雄希 奥田
Yuki Okuda
雄希 奥田
太雪 谷道
Taisetsu Tanimichi
太雪 谷道
健太郎 志賀
Kentaro Shiga
健太郎 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JP2019059474A publication Critical patent/JP2019059474A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

To provide a hybrid vehicle control device that is capable of reducing fuel consumption associated with operating and restarting an engine in actual driving environment of a hybrid vehicle, as much as possible.SOLUTION: A hybrid vehicle control device changes a motor output pattern from a normal operation pattern to a high-output operation pattern, and further, directs the engine to stop if calculated relative speed between a vehicle itself and a vehicle in front is positive (i.e., the vehicle itself is faster) according to recognition results of external world recognition means that is capable of recognizing distance and relative speed between the vehicle itself and the vehicle in front.SELECTED DRAWING: Figure 2

Description

本発明はハイブリッド自動車の制御装置、および該制御装置を用いた車両に関する。   The present invention relates to a control device for a hybrid vehicle and a vehicle using the control device.

環境負荷の小さな車両として、エンジンとモータを協調して運転するハイブリッド自動車が注目されている。ハイブリッド自動車は、エンジンとモータの効率の良い点を組み合わせることで、広い運転領域で低燃費運転ができることが特徴である。エンジンとモータは、車両の運転条件や車両のドライバの出力要求(アクセルポジション)に応じ、予めコントロールユニットに設定されたそれぞれへの出力指令に基づいて駆動される。   As a vehicle having a small environmental load, a hybrid vehicle operating in cooperation with an engine and a motor has attracted attention. The hybrid vehicle is characterized in that fuel-efficient driving can be performed in a wide driving range by combining the efficient points of the engine and the motor. The engine and the motor are driven based on an output command to each set in advance in the control unit according to the driving condition of the vehicle and the output request (accelerator position) of the driver of the vehicle.

この時、例えば、ドライバが加減速を促すアクセル操作やブレーキ操作を実施した場合、エンジンの停止と再始動を繰り返す可能性があり、この結果、再始動に要する燃料消費によって、かえって燃費が悪化するという課題があった。   At this time, for example, when the driver performs acceleration operation or braking operation to accelerate or decelerate, there is a possibility that engine stop and restart may be repeated. As a result, fuel consumption is deteriorated due to fuel consumption required for restart. There was a problem called.

本課題を解決する施策として、例えば特許文献1では、目標の走行経路に沿って速度パターンを生成し、例えば車両が目標停止位置に到達する前に信号が青信号に変わる時は、減速して停止してから再加速する速度パターンと、加速して定常走行する速度パターンとを生成し、減速回生による燃費性向上を考慮して速度パターンを選択する構成をとっている。   As a measure to solve the problem, for example, in Patent Document 1, a velocity pattern is generated along a target travel route, and when, for example, the signal changes to green before the vehicle reaches the target stop position, the vehicle decelerates and stops After that, a speed pattern to be re-accelerated and a speed pattern to accelerate and perform steady traveling are generated, and the speed pattern is selected in consideration of the improvement of the fuel efficiency by the deceleration regeneration.

特開2010−264841号公報Unexamined-Japanese-Patent No. 2010-264841

上述の制御装置の場合、目標停止位置が定まることによって、より低燃費運転が可能なパターンを選択可能であるが、目標停止位置が定まらない場合、例えば、前方を走行する車両が存在する場合などは、その走行状態によって、速度パターンすなわち減速度が時々刻々変化する可能性があり、その結果、今度は車両への乗り心地が悪化する恐れがあった。   In the case of the control device described above, it is possible to select a pattern capable of driving with lower fuel consumption by determining the target stop position, but when the target stop position is not determined, for example, when a vehicle traveling ahead is present Depending on the driving condition, the speed pattern, ie, the deceleration may change from moment to moment, and as a result, the riding comfort to the vehicle may be deteriorated.

本発明は、上記課題に鑑みなされたもので、実際の走行環境においてより低燃費運転を実現するハイブリッド自動車の制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device of a hybrid vehicle that realizes more fuel efficient driving in an actual driving environment.

前記の課題を解決するために、本発明に係るハイブリッド自動車の制御装置は、少なくとも自車両両と前方車両との距離および相対速度を認識できる外界認識手段を備え、前記外界認識手段による認識結果によって、予め設定されている前記モータの出力パターンを変更することを特徴とする。   In order to solve the above-mentioned problems, the control device of a hybrid vehicle according to the present invention comprises external recognition means capable of recognizing at least the distance between the host vehicle and the preceding vehicle and the relative speed, and the recognition result by the external recognition means And changing an output pattern of the motor set in advance.

具体的には、外界認識手段による認識の結果、演算される自車両と前方車両との相対速度が正の場合(自車両の方が速い)、もしくは所定時間以内に自車両が前方車両に追いつける車間距離である場合、モータの出力パターンを変更し、さらにエンジン停止を指令することによって、できるだけモータ走行の時間を長くし、さらにエンジン運転や再始動を実施しないことによって、それに伴う燃料消費量を抑制することを特徴としている。   Specifically, as a result of recognition by the external world recognition means, if the calculated relative speed between the host vehicle and the front vehicle is positive (the host vehicle is faster) or the host vehicle catches up with the front vehicle within a predetermined time If it is the inter-vehicle distance, change the output pattern of the motor and command the engine stop to lengthen the motor travel time as much as possible, and not to perform the engine operation or restart, the fuel consumption amount It is characterized by suppressing.

この時、車両のモータによる走行を駆動するモータは少なくとも2つ以上の運転モードを有しており、外界認識手段による認識の結果、演算される自車両と前方車両との相対速度が正の場合(自車両の方が速い)、もしくは所定時間以内に自車両が前方車両に追いつける車間距離である場合のモータの出力パターンは、通常運転時の出力パターンより高出力運転するパターンであることを特徴としている。
但し、このハイブリッド自動車に搭載されている蓄電装置のSOCが所定値以下の場合はこの限りではなく、エンジン停止指令を解除し、モータは通常の出力パターンによって運転し、エンジン動力によって発電することを特徴としている。
At this time, the motor for driving the traveling by the motor of the vehicle has at least two or more operation modes, and as a result of recognition by the external world recognition means, when the relative speed between the own vehicle and the forward vehicle calculated is positive. The output pattern of the motor in the case where the own vehicle catches up with the preceding vehicle within a predetermined time (the faster the own vehicle is) or the output pattern of the motor is characterized in that the output pattern is higher than that during normal operation. And
However, this is not the case when the SOC of the power storage device mounted in this hybrid vehicle is less than a predetermined value, and the engine stop command is canceled, the motor is operated with the normal output pattern, and power is generated by engine power. It is characterized.

また、本発明に係るハイブリッド自動車は、上記の制御装置を備えたことを特徴とする。   A hybrid vehicle according to the present invention is characterized by including the above-described control device.

実際の走行環境において、前方車両の状態によってモータ運転する出力条件や時間を、できるだけ長く取ることができ、エンジン運転や再始動によって消費する燃料量を抑制することができるハイブリッド自動車の制御装置を提供することができる。   Provided is a control device of a hybrid vehicle capable of taking as long as possible the output condition and time for motor operation depending on the condition of the front vehicle in an actual traveling environment and suppressing the amount of fuel consumed by engine operation and restart. can do.

本発明の第1の実施形態に係るハイブリッド自動車の構成を示す図である。FIG. 1 is a diagram showing a configuration of a hybrid vehicle according to a first embodiment of the present invention. 本発明に係る制御装置の第1の実施形態を示す制御ブロック図である。It is a control block diagram showing a first embodiment of a control device according to the present invention. 自車両と前方車両の関係の一例を示す図である。It is a figure which shows an example of the relationship between self-vehicles and a front vehicle. 本発明に係るハイブリッド自動車の制御装置を適用した場合のモータとエンジンの動作の一例を示す図である。It is a figure which shows an example of operation | movement of a motor at the time of applying the control apparatus of the hybrid vehicle which concerns on this invention, and an engine. 本発明に係る制御装置の第2の実施形態を示す制御ブロック図である。It is a control block diagram showing a second embodiment of a control device according to the present invention. 本発明に係る制御装置の第3の実施形態を示す制御ブロック図である。It is a control block diagram showing a third embodiment of a control device according to the present invention. 本発明に係る制御装置の第4の実施形態を示す制御ブロック図である。It is a control block diagram showing a 4th embodiment of a control device concerning the present invention. 第4の実施形態を適用した場合のSOCとエンジン始動フラグの関係を示すタイムチャートの一例である。It is an example of the time chart which shows the relationship between SOC at the time of applying a 4th embodiment, and an engine start flag.

以下、本発明の実施形態について図面と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施形態に係るハイブリッド自動車の車両101の構成図を示している。車両101には、統合ECU102が備えられ、アクセル開度、ブレーキポジション、ハンドル等のステアリングポジション、自車両の車速、加速度、バッテリ情報のようなセンシング結果が該統合ECU102に入力される。統合ECU102は、種々の演算を実施して、各アクチュエータに出力指令等を実施する。   FIG. 1 shows a block diagram of a vehicle 101 of a hybrid vehicle according to a first embodiment of the present invention. The vehicle 101 is provided with an integrated ECU 102, and sensing results such as an accelerator opening degree, a brake position, a steering position such as a steering wheel, a vehicle speed of the host vehicle, acceleration, and battery information are input to the integrated ECU 102. The integrated ECU 102 carries out various calculations and carries out output commands and the like to each actuator.

また、モータ104に対して電力ハーネスを通じて駆動電力を供給するインバータ103と、このインバータ103に電力を供給する蓄電池であるバッテリ106と、を有する。バッテリ106の制御は、バッテリECU107で行い、統合ECU102との通信により、バッテリ情報を統合ECU102に伝達するのと同時に、モータ104の駆動のためのバッテリ制御情報を受信する。減速ギヤ105は、モータ104の軸回転力を減速比に応じた回転数とトルクを車両101のタイヤへ伝達する。ブレーキECU108は、統合ECU102からの指令に応じて車両101のブレーキ状態を制御する。   Further, it has an inverter 103 for supplying drive power to the motor 104 through a power harness, and a battery 106 which is a storage battery for supplying power to the inverter 103. The control of the battery 106 is performed by the battery ECU 107, and communication with the integrated ECU 102 simultaneously transmits battery information to the integrated ECU 102 and receives battery control information for driving the motor 104. The reduction gear 105 transmits the shaft rotational force of the motor 104 to the rotation speed and torque according to the reduction ratio to the tire of the vehicle 101. The brake ECU 108 controls the brake state of the vehicle 101 in accordance with a command from the integrated ECU 102.

本実施形態では、車両101の前端部に車載カメラ110が備えられる。該車載カメラ110は、自車両の前方もしくはその周辺の外界情報を認識し、前方車両や障害物等の存在を認識して得られた画像もしくはこれを処理した情報が統合ECU102に入力される。本発明では、この車載カメラ110を車両の外界認識手段として扱うが、例えばレーダーやナビゲーションなど、前方車両、障害物、信号等の情報が認識できる手段も本発明の範疇である。   In the present embodiment, an on-vehicle camera 110 is provided at the front end of the vehicle 101. The on-vehicle camera 110 recognizes external information on the front of or in the vicinity of the host vehicle, and an image obtained by recognizing the presence of a vehicle in front or an obstacle or the like or information obtained by processing the image is input to the integrated ECU 102. In the present invention, the on-vehicle camera 110 is treated as an external world recognition means of a vehicle, but a means that can recognize information such as a forward vehicle, an obstacle, a signal or the like such as radar or navigation is also within the scope of the present invention.

統合ECU102は、これらのセンシング結果から、車両状態を判定及び制御状態を演算し、各アクチュエータやパーツの制御装置である各ECUに指令を送る。モータ104は、変速機105を介してエンジン109に接続されている。これらモータ104およびエンジン109は、統合ECU102からの出力指令によって、それぞれ出力値が決定され、車両101を駆動する動力を発生する構成となっている。   The integrated ECU 102 determines a vehicle state from the sensing results and calculates a control state, and sends an instruction to each ECU that is a control device of each actuator or part. The motor 104 is connected to the engine 109 via the transmission 105. The output values of the motor 104 and the engine 109 are determined according to an output command from the integrated ECU 102, and generate power for driving the vehicle 101.

次に、図2〜図4を用いて、本発明のハイブリッド自動車の制御装置の構成とその特徴について説明する。
図2は、本発明の制御装置の第1の実施形態を示す制御ブロック図である。この制御ブロックは、統合ECU102において、モータ104とエンジン109の出力(トルク)配分を決定するブロックを抜粋している。
Next, the configuration of the control device of the hybrid vehicle of the present invention and the features thereof will be described with reference to FIGS.
FIG. 2 is a control block diagram showing a first embodiment of the control device of the present invention. The control block extracts blocks in the integrated ECU 102 for determining the output (torque) distribution of the motor 104 and the engine 109.

まず、相対速度等演算部201は、自車両の車速や加速度、また車載カメラ110からの情報によって捉えた前方車両の状況から、自車両と前方車両の相対速度Vrを演算する。この時、アクセル開度、ブレーキ情報、ハンドル位置などの情報、これまでの自車両速度履歴から、将来の自車両速度を推定し、現在だけでなく将来の相対速度を推測演算することも可能である。   First, the relative speed etc. calculation unit 201 calculates the relative speed Vr between the own vehicle and the preceding vehicle from the vehicle speed and acceleration of the own vehicle and the situation of the preceding vehicle captured by the information from the on-vehicle camera 110. At this time, it is possible to estimate the future own vehicle speed from the accelerator opening degree, the brake information, the information such as the steering wheel position, and the own vehicle speed history so far and estimate the future relative speed as well as the present. is there.

出力配分演算部202は、相対速度等演算部201からの指令を元に、モータ104およびエンジン109の出力配分を決定して、これらの出力値を指令する。
図3は、図2の相対速度等演算部201での処理に用いる自車両301と前方車両302の関係の一例を示す。
The power distribution operation unit 202 determines the power distribution of the motor 104 and the engine 109 based on the command from the relative speed etc. operation unit 201, and commands these output values.
FIG. 3 shows an example of the relationship between the host vehicle 301 and the forward vehicle 302 used in the processing in the relative speed etc. operation unit 201 of FIG.

自車両が車速V1で走行している時、車載カメラ110の情報等から前方車両を認識することによって、その車速V2と車間距離X2を演算することができる。この時の自車両と前方車両の相対速度VrはVr=V1−V2 として定義し、Vr>0の場合、すなわち自車両の車速V1の方が前方車両の車速V2より大きい場合は、現在の車間距離X2が今後小さくなることを示す。   When the host vehicle is traveling at the vehicle speed V1, the vehicle speed V2 and the inter-vehicle distance X2 can be calculated by recognizing the preceding vehicle from the information of the on-vehicle camera 110 and the like. The relative speed Vr of the host vehicle and the front vehicle at this time is defined as Vr = V1-V2, and in the case of Vr> 0, that is, when the vehicle speed V1 of the host vehicle is larger than the vehicle speed V2 of the front vehicle, It shows that the distance X2 becomes smaller in the future.

このとき、前方車両302は自車両301と同じレーンである必要はなく、例えば別の車両303が右側のレーンにて車速V3で走行している場合、レーンに対するその車両の位置を割り出して、同様に自車両との相対速度と車間距離を演算することも可能である。   At this time, the forward vehicle 302 does not have to be in the same lane as the host vehicle 301. For example, when another vehicle 303 is traveling at the vehicle speed V3 in the right lane, the position of that vehicle with respect to the lane is determined. It is also possible to calculate the relative velocity with the host vehicle and the distance between the vehicles.

図4は、本発明のハイブリッド自動車の制御装置を適用した場合のモータとエンジンの動作の一例を示す図である。(a)はモータの動作出力範囲を示している。
通常運転領域401は通常の走行パターンにおけるモータの運転領域を示しており、上述のように予め統合ECU102に設定された通常の運転パターンである。
FIG. 4 is a diagram showing an example of the operation of the motor and the engine when the control device of the hybrid vehicle of the present invention is applied. (a) shows the operation output range of the motor.
The normal driving area 401 indicates the driving area of the motor in the normal traveling pattern, and is the normal driving pattern set in advance in the integrated ECU 102 as described above.

点線で囲まれた高出力運転用領域402は相対速度Vr>0と判定される場合のモータ運転領域を示している。これは自車両走行中に前方車両との相対速度Vr>0の場合、すなわち前方車両との距離が縮まってきている場合には、長い時間の高出力が必要ない状況と判断できるので、例えば自車両301がEV走行(モータ104のみによる走行)中、瞬間的にドライバがアクセルを踏み込んだとしても、図4(b)に線405で示すようにアクセル開度に応じてエンジンを再始動することなく(エンジン始動フラグ=0に維持)、一時的にモータを通常の運転パターンよりも高出力運転することを特徴としている。線404は、通常運転パターンにおけるアクセル開度とエンジン始動フラグの関係を示しており、本発明の特徴は、自車両と前方車両の相対速度Vrに応じて、少なくともこの線404(モータ運転領域401での通常運転)と線405(拡大されたモータ運転領域402での高出力運転)を切り替えて制御できることにある。   A high power operation area 402 surrounded by a dotted line shows a motor operation area when it is determined that the relative speed Vr> 0. This can be determined as a situation where a high output for a long time is not necessary when relative velocity Vr> 0 with the preceding vehicle while the host vehicle is traveling, that is, when the distance with the preceding vehicle is reduced. Even if the driver depresses the accelerator momentarily while the vehicle 301 is in EV travel (travel by only the motor 104), the engine is restarted according to the accelerator opening degree as shown by a line 405 in FIG. 4B. Instead, the motor is temporarily operated at a higher output than in the normal operation pattern (maintained at engine start flag = 0). A line 404 shows the relationship between the accelerator opening degree and the engine start flag in the normal operation pattern, and the feature of the present invention is that at least this line 404 (motor operation area 401) according to the relative speed Vr of the host vehicle and the forward vehicle. And the line 405 (high-power operation in the enlarged motor operation area 402) can be switched and controlled.

一般的に、モータは長時間高出力運転すると過熱による減磁や絶縁破壊等の問題を引き起こすことがあるが、数秒単位であれば過熱もなく、問題ない。上記のようなVr>0の場合は、長時間加速状態が続かないと判断されるので、エンジン停止を指令もしくは再始動を禁じて、余分な燃料噴射を抑えることができる。   In general, a motor may cause problems such as demagnetization and dielectric breakdown due to overheating if it is operated at high power for a long time, but there is no problem if it is in units of several seconds without overheating. In the case of Vr> 0 as described above, it is judged that the acceleration state does not continue for a long time, so it is possible to inhibit the engine stop by instructing or restarting the engine and to suppress the extra fuel injection.

この時、Vr>0であっても、前方車両や障害物との衝突が懸念される急な減速が必要となる場合は、低燃費より衝突回避が優先されるため、これは本発明の範疇ではない。但し、衝突回避機能等が停止している環境下でのVr>0の場合は、本発明ではエンジン再始動を行わないことで燃料消費を抑制でき、さらにエンジンの始動と停止を繰り返すことによる乗り心地の悪化も併せてと回避することが可能となる。   At this time, even if Vr> 0, when it is necessary to make a rapid deceleration that may cause a collision with a forward vehicle or an obstacle, collision avoidance is given priority over low fuel consumption, which falls within the scope of the present invention. is not. However, in the case where Vr> 0 in an environment where the collision avoidance function and the like are stopped, fuel consumption can be suppressed in the present invention by not performing engine restart, and riding by repeatedly starting and stopping the engine It also becomes possible to avoid the deterioration of comfort.

図5は、本発明の制御装置の第2の実施形態を示す制御ブロック図である。基本的な構成や狙いは第1の実施形態と同様であり、図5の制御ブロックも図2とほぼ同じであるが、出力配分演算部502が、運転パターンの選択を、走行履歴を加味して判断することが特徴である。   FIG. 5 is a control block diagram showing a second embodiment of the control device of the present invention. The basic configuration and aim are the same as in the first embodiment, and the control block in FIG. 5 is also substantially the same as in FIG. 2. However, the power distribution operation unit 502 takes into consideration the driving history by selecting the driving pattern. It is a feature to judge.

具体的には、例えば自車両301のドライバの運転履歴が統合ECU102やその他の記録装置等に取り込まれており、その分析結果に基づき、日々の走行の中では高出力を必要としない時間帯や経路の場合は、第1の実施形態の相対速度Vr>0のときと同じように、モータの運転領域402のパターンで車両を運転して、エンジン駆動や再始動指令を停止するものである。このように、走行履歴を加味して運転パターンを選択する構成によって、第1の実施形態よりもさらなる低燃費運転が可能となる。   Specifically, for example, the driving history of the driver of the host vehicle 301 is taken into the integrated ECU 102 and other recording devices, etc., and based on the analysis result, a time zone or the like which does not require a high output in daily driving. In the case of the route, as in the case of the relative velocity Vr> 0 of the first embodiment, the vehicle is driven in the pattern of the drive region 402 of the motor to stop the engine drive and the restart command. As described above, with the configuration in which the driving pattern is selected in consideration of the traveling history, it is possible to achieve a further fuel-efficient driving than in the first embodiment.

図6は本発明の制御装置の第3の実施形態を示す制御ブロック図である。
基本的な構成や狙いは第1の実施形態と同じであり、図6の制御ブロックも図2とほぼ同じであるが、相対速度等演算部601に対して、ナビ情報、C2X情報(前方車両からの情報)も用いて、相対速度(および車間距離)を演算し、その結果を用いることが特徴である。
FIG. 6 is a control block diagram showing a third embodiment of the control device of the present invention.
The basic configuration and aim are the same as in the first embodiment, and the control block in FIG. 6 is also substantially the same as in FIG. It is a feature that the relative speed (and the distance between the vehicles) is calculated using the information from (1) and the result is used.

この理由として、第1の実施形態において、相対速度等演算部201にて車載カメラ情報を用いて車間距離x2を求めることを記載したが、例えば前方車両が自車両から遠い場合には車載カメラでは検出できないことがある。そこでこのような場合には、ナビゲーションやC2X(前方車両等に装着されている通信器)からの情報を用いて、遠方の車両との相対速度や車間距離を考慮して、モータ104とエンジン109の出力配分を決定する構成である。   As the reason, in the first embodiment, it has been described that the inter-vehicle distance x2 is obtained using the on-vehicle camera information in the relative speed etc. computing unit 201, but for example, if the forward vehicle is far from the host vehicle Sometimes it can not be detected. Therefore, in such a case, the motor 104 and the engine 109 are considered in consideration of the relative speed with the distant vehicle and the distance between the vehicles using the navigation and the information from the C2X (a communicator attached to the forward vehicle etc.). It is the structure which determines the output allocation of.

例えば、ナビゲーションやC2Xにより自車両301と前方車両302が所定距離以上の大きな車間距離であることが検出された場合には、モータ104のみによる高出力運転継続が困難になるため、時間がVr>0であっても、自車両301は通常運転パターンで走行するものである。かかる構成により、より高精度に相対速度や車間距離を演算でき低燃費運転と乗り心地悪化防止を両立できるものである。   For example, when it is detected by navigation or C2X that the own vehicle 301 and the preceding vehicle 302 are at a large inter-vehicle distance of a predetermined distance or more, high power operation continuation by only the motor 104 becomes difficult. Even if it is 0, the host vehicle 301 travels in the normal driving pattern. With this configuration, the relative speed and the inter-vehicle distance can be calculated with higher accuracy, and both the low fuel consumption driving and the deterioration in riding comfort can be achieved.

次に、本発明の制御装置の第4の実施形態について、図7および図8を用いて説明する。図7は第4の実施形態を示す制御ブロック図である。基本的な構成や狙いは第1の実施形態と同様であり、図7の制御ブロックも図2とほぼ同様であるが、出力配分演算部702に対して、モータ104を駆動するためのバッテリ106のSOC(充電状態、蓄電量)を加味して判断する構成であることが特徴である。   Next, a fourth embodiment of the control device of the present invention will be described using FIG. 7 and FIG. FIG. 7 is a control block diagram showing a fourth embodiment. The basic configuration and aim are the same as in the first embodiment, and the control block in FIG. 7 is almost the same as in FIG. It is characterized in that it is determined in consideration of the SOC (state of charge, storage amount) of the above.

すなわち、バッテリ106のSOCが低い場合には、エンジン109からの出力による蓄電制御を実施する必要があるので、相対速度Vr>0であっても、エンジンは駆動状態を維持、もしくは再始動する必要がある。   That is, when the SOC of battery 106 is low, it is necessary to carry out storage control by the output from engine 109. Therefore, even if relative speed Vr> 0, the engine needs to be maintained or restarted. There is.

図8には第4の実施形態を適用した場合の、ある走行モードにおけるSOCとエンジン始動フラグの関係を示すタイムチャートの一例を示している。図8の上図中の線801は時刻tにおけるバッテリ106のSOC履歴である。   FIG. 8 shows an example of a time chart showing the relationship between the SOC and the engine start flag in a certain travel mode when the fourth embodiment is applied. A line 801 in the upper part of FIG. 8 is the SOC history of the battery 106 at time t.

ハイブリッド自動車の場合、モータ駆動用のバッテリのSOCはバッテリ寿命等を鑑みて、通常40〜70%になるように設定されているが、本発明の制御装置ではSOC40%もしくはEV走行が長くなることを想定して、それ以下のSOC下限値が設定されている。車両101がVr>0の場合にEV走行を継続していても、時刻t1において、SOC下限値に達した場合は、バッテリの充電を優先するため、エンジン109を再始動することとなる。この時の出力配分は、バッテリ106への充電を実施しつつ、低燃費に運転できる配分、すなわち通常の出力パターンによって運転する。かかる構成によって、バッテリ106の重点と低燃費運転を好適に両立することができる。   In the case of a hybrid vehicle, the SOC of the battery for driving the motor is usually set to 40 to 70% in view of the battery life etc., but in the control device of the present invention, the SOC 40% or the EV traveling becomes longer. Lower than the SOC lower limit value is set. Even when the vehicle 101 continues the EV traveling when Vr> 0, when the SOC lower limit value is reached at time t1, the engine 109 is restarted in order to prioritize battery charging. The power distribution at this time is performed according to a distribution that can be operated with low fuel consumption, that is, a normal power pattern while charging the battery 106. With such a configuration, it is possible to preferably achieve both the emphasis on the battery 106 and the low fuel consumption operation.

101…車両、102…統合ECU、104…モータ、106…バッテリ、107…バッテリECU、109…エンジン、110…車載カメラ、201,501,601,701…相対速度等演算部、202,502,602,702…出力配分演算部、301…自車両、302…前方車両 101: Vehicle, 102: Integrated ECU, 104: Motor, 106: Battery, 107: Battery ECU, 109: Engine, 110: In-vehicle camera, 201, 501, 601, 701: Calculation unit for relative speed etc., 202, 502, 602, 702: Output distribution calculation unit, 301: Own vehicle , 302 ... forward vehicle

Claims (9)

モータおよびエンジンの少なくとも一方の出力によって走行するハイブリッド自動車の制御装置において、
少なくとも自車両と前方車両との距離および相対速度を認識できる車載カメラを備え、
前記車載カメラによる認識結果、及びC2Xからの情報によって、予め設定されている前記モータの出力パターンを変更し、
前記C2Xからの情報により、前記自車両と前記前方車両との間の距離が前記モータのみによる高出力運転継続が困難なほど大きい場合は、前記前方車両に対する前記自車両の相対速度が正の場合でも、前記自車両は通常の出力パターンで走行し、
前記相対速度とは、前記前方車両に対する前記自車両の相対速度である、ことを特徴とするハイブリッド自動車の制御装置。
In a control device of a hybrid vehicle traveling by the output of at least one of a motor and an engine,
It has an in-vehicle camera that can recognize at least the distance between the host vehicle and the preceding vehicle and the relative speed.
The output pattern of the motor set in advance is changed according to the recognition result by the on-vehicle camera and the information from C2X,
When the distance between the host vehicle and the preceding vehicle is large enough to make it difficult to continue high-power operation with only the motor according to the information from the C2X, the relative velocity of the host vehicle with respect to the preceding vehicle is positive However, the vehicle travels with a normal output pattern,
The control device of a hybrid vehicle, wherein the relative speed is a relative speed of the host vehicle with respect to the forward vehicle.
前記車載カメラによる認識の結果、演算された前記自車両と前方車両との相対速度が正の場合は、前記モータの出力パターンを変更し、さらにエンジンの停止を指令することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。   As a result of the recognition by the on-vehicle camera, when the calculated relative speed between the own vehicle and the preceding vehicle is positive, the output pattern of the motor is changed, and a command to stop the engine is issued. The control apparatus of the hybrid vehicle of claim 1. 前記車載カメラによる認識の結果、前記自車両が所定時間以内に前記前方車両に追いつく相対速度かつ車間距離である場合は、前記モータの出力パターンを変更し、さらに前記エンジンの停止を指令することを特徴とする、請求項2に記載のハイブリッド自動車の制御装置。   As a result of the recognition by the on-vehicle camera, when the relative speed and the inter-vehicle distance are such that the host vehicle catches up with the preceding vehicle within a predetermined time, changing the output pattern of the motor and instructing to stop the engine The control device of a hybrid vehicle according to claim 2, characterized in that. 前記車載カメラによる認識の結果、変更する前記モータの出力パターンは、変更前の出力パターンより高出力で運転するパターンであることを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。   The control device of a hybrid vehicle according to claim 1, wherein an output pattern of the motor to be changed is a pattern operated at a higher output than the output pattern before the change as a result of recognition by the on-vehicle camera. 前記自車両が前記モータによる走行中に、前記車載カメラによる認識の結果、演算された前記自車両と前方車両との相対速度が負の場合は、前記エンジンの停止指令を解除し、
前記モータは通常の出力パターンによって運転することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。
If the calculated relative velocity between the host vehicle and the preceding vehicle is negative as a result of recognition by the on-vehicle camera while the host vehicle is traveling by the motor, the engine stop command is canceled.
The control device of a hybrid vehicle according to claim 1, wherein the motor operates according to a normal output pattern.
前記自車両が前記モータのみによる走行中に、前記車載カメラによる認識の結果、演算された前記自車両と前方車両との車間距離が所定値以上である場合は、前記エンジンの停止指令を解除し、前記モータは通常の出力パターンによって運転することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。   When the distance between the host vehicle and the preceding vehicle calculated as a result of recognition by the on-vehicle camera is equal to or greater than a predetermined value while the host vehicle is traveling by only the motor, the engine stop command is canceled. The control device of a hybrid vehicle according to claim 1, wherein the motor operates according to a normal output pattern. 前記自車両に備えられた蓄電装置のSOCが所定値以下の場合は、エンジン停止指令を解除し、前記モータは通常の出力パターンによって運転することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。   The hybrid vehicle according to claim 1, wherein when the SOC of the power storage device provided in the vehicle is less than a predetermined value, the engine stop command is canceled and the motor is operated according to a normal output pattern. Control device. 請求項1に記載の制御装置を備えたことを特徴とする、ハイブリッド自動車。   A hybrid vehicle comprising the control device according to claim 1. 請求項1に記載の制御装置において、
前記車載カメラによる認識結果、前記C2Xからの情報、及びナビゲーション装置からの情報によって、予め設定されている前記モータの出力パターンを変更することを特徴とする、ハイブリッド自動車の制御装置。
In the control device according to claim 1,
A control device of a hybrid vehicle, wherein an output pattern of the motor set in advance is changed according to a recognition result by the in-vehicle camera, information from the C2X, and information from a navigation device.
JP2018237857A 2013-05-07 2018-12-20 Hybrid vehicle control device Pending JP2019059474A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013097898 2013-05-07
JP2013097898 2013-05-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017081046A Division JP2017137053A (en) 2013-05-07 2017-04-17 Hybrid vehicle control device

Publications (1)

Publication Number Publication Date
JP2019059474A true JP2019059474A (en) 2019-04-18

Family

ID=51867064

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015515805A Pending JPWO2014181578A1 (en) 2013-05-07 2014-03-10 Control device for hybrid vehicle
JP2017081046A Pending JP2017137053A (en) 2013-05-07 2017-04-17 Hybrid vehicle control device
JP2018237857A Pending JP2019059474A (en) 2013-05-07 2018-12-20 Hybrid vehicle control device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015515805A Pending JPWO2014181578A1 (en) 2013-05-07 2014-03-10 Control device for hybrid vehicle
JP2017081046A Pending JP2017137053A (en) 2013-05-07 2017-04-17 Hybrid vehicle control device

Country Status (2)

Country Link
JP (3) JPWO2014181578A1 (en)
WO (1) WO2014181578A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181578A1 (en) * 2013-05-07 2014-11-13 日立オートモティブシステムズ株式会社 Hybrid vehicle control device
FR3040672B1 (en) * 2015-09-07 2017-10-13 Renault Sas METHOD FOR MANAGING ENERGY IN A HYBRID MOTOR VEHICLE
KR102440493B1 (en) * 2016-12-08 2022-09-06 현대자동차주식회사 Method for controlling engine clutch of hybrid vehicle
JP6778123B2 (en) * 2017-01-27 2020-10-28 株式会社Subaru Hybrid vehicle engine start control device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006684A (en) * 1998-06-22 2000-01-11 Mitsubishi Motors Corp Vehicle travel control device
JP2000120460A (en) * 1998-10-14 2000-04-25 Daihatsu Motor Co Ltd Hybrid automobile
JP2002170200A (en) * 2000-12-01 2002-06-14 Nissan Diesel Motor Co Ltd Vehicle rear-end collision alarm system
JP4026013B2 (en) * 2004-01-30 2007-12-26 三菱自動車工業株式会社 Torque control device
JP4281746B2 (en) * 2006-01-13 2009-06-17 トヨタ自動車株式会社 Hybrid vehicle operation control system
JP2007276508A (en) * 2006-04-03 2007-10-25 Fujitsu Ten Ltd Collision avoidance controller for vehicle
JP2008030678A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Vehicle traveling controller
JP5125293B2 (en) * 2007-07-31 2013-01-23 日産自動車株式会社 Control device for hybrid vehicle
JP5102101B2 (en) * 2008-05-15 2012-12-19 本田技研工業株式会社 Control device for hybrid vehicle
JP5659691B2 (en) * 2010-10-22 2015-01-28 日産自動車株式会社 Control device for hybrid vehicle and control method for hybrid vehicle
JP6194152B2 (en) * 2011-03-28 2017-09-06 本田技研工業株式会社 Vehicle control device
JP5713106B2 (en) * 2011-07-26 2015-05-07 トヨタ自動車株式会社 Vehicle identification system and vehicle identification device
WO2014181578A1 (en) * 2013-05-07 2014-11-13 日立オートモティブシステムズ株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
JP2017137053A (en) 2017-08-10
JPWO2014181578A1 (en) 2017-02-23
WO2014181578A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP2019059474A (en) Hybrid vehicle control device
JP6048457B2 (en) Vehicle travel control device
WO2019043915A1 (en) Vehicle, and control device and control method therefor
JP2007168502A (en) Inter-vehicle controller for hybrid vehicle
US11932243B2 (en) Vehicle control device and control method
JP2015080977A (en) Travel control device of hybrid vehicle
JP2012116428A (en) Vehicle stopping controller
US9783069B2 (en) Battery voltage control device and battery voltage control method
JP6988908B2 (en) Control method and control device for self-driving vehicles
JP7205444B2 (en) Driving support device
JP6302269B2 (en) Vehicle control device
CN111194286A (en) Vehicle control method and control device
JP2019004596A (en) vehicle
JP2015104984A (en) Travel control device of hybrid vehicle
JP2008049916A (en) Drive assist device
JP2017081353A (en) Electric car control device
JP6495793B2 (en) Control device and control method for electric vehicle
JP2015116871A (en) Controller of hybrid electric vehicle
JP4556672B2 (en) Vehicle regeneration control device
JP2012250693A (en) Vehicle control device
WO2018008536A1 (en) Vehicle control device
JP2014172456A (en) Controller of idling stop car
US20240132073A1 (en) Vehicle moving control apparatus, vehicle moving control method, and computer-readable storage medium storing vehicle moving control program
JP6389664B2 (en) Vehicle control device
JP7114171B2 (en) vehicle controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210209