WO2018008536A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2018008536A1
WO2018008536A1 PCT/JP2017/024077 JP2017024077W WO2018008536A1 WO 2018008536 A1 WO2018008536 A1 WO 2018008536A1 JP 2017024077 W JP2017024077 W JP 2017024077W WO 2018008536 A1 WO2018008536 A1 WO 2018008536A1
Authority
WO
WIPO (PCT)
Prior art keywords
target speed
vehicle
control
deceleration
engine
Prior art date
Application number
PCT/JP2017/024077
Other languages
French (fr)
Japanese (ja)
Inventor
龍 稲葉
飯星 洋一
岡田 隆
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018008536A1 publication Critical patent/WO2018008536A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration

Definitions

  • the present invention relates to a vehicle control device having a function of automatically stopping a vehicle such as an automobile, particularly an engine while traveling.
  • the present invention provides a vehicle control apparatus that performs a follow-up control that follows a preceding vehicle or an automatic travel control that repeats acceleration and deceleration so as to travel at a set speed.
  • the automatic travel control is being performed, and the external information from the external information recognition unit is changed from the first target speed to a second target speed smaller than the first target speed at a predetermined point ahead of the host vehicle.
  • the engine is braked so that the vehicle is brought to the second target speed at the predetermined point.
  • FIG. 1 is a block diagram showing a configuration of a traveling drive system of a sailing stop vehicle according to the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle control device.
  • FIG. 3 is a flowchart showing the control contents of automatic acceleration / deceleration determination control executed by the vehicle control device.
  • FIG. 4 is a flowchart showing the control content of the target speed change control calculation unit to be executed by the vehicle control device.
  • FIG. 5 is a time chart for explaining the effects of the present embodiment.
  • FIG. 6 is a flowchart showing the control content of the target speed change control calculation unit to be executed by the vehicle control device.
  • FIG. 7 is a graph showing the relationship between the first target speed and the second target speed for determining whether sailing stop deceleration is possible.
  • FIG. 1 is a block diagram showing a configuration of a traveling drive system of a sailing stop vehicle according to the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle control device
  • FIG. 8 is a time chart for explaining the operational effects of the present embodiment.
  • FIG. 9 is a flowchart showing the control contents of the automatic acceleration / deceleration determination executed by the vehicle control device.
  • FIG. 10 is a flowchart showing the control content of the target speed change control calculation unit to be executed by the vehicle control device.
  • FIG. 11 is a time chart for explaining the operational effects of the present embodiment.
  • FIG. 1 is a diagram showing a configuration of a vehicle including a vehicle control device according to the first embodiment of the present invention.
  • An engine 101 is mounted on the vehicle 100, and driving force generated by the engine 101 is transmitted to a driving wheel 108 connected via a differential mechanism 107 via a power transmission mechanism 103 and a transmission 102.
  • the vehicle 100 is caused to travel.
  • the transmission 102 may be a continuously variable transmission combining a belt or chain and a pulley, or a stepped transmission combining a torque converter and a planetary gear mechanism. Moreover, the transmission which combined the continuously variable transmission and the stepped transmission may be sufficient.
  • a power transmission mechanism 103 that can control the power transmission amount between the engine 101 and the transmission 102 is provided, and by adjusting the power transmission amount of the engine 101 and the drive wheels 108 by the power transmission mechanism 103, When the fuel supply to the engine 101 is stopped (fuel cut) during traveling, the engine can be stopped.
  • the power transmission mechanism 103 a torque converter, a dry or wet clutch, or a planetary gear mechanism may be used. A method using a lock-up clutch in the torque converter is also conceivable.
  • a rotating machine 111 is assembled to the engine 101 as an engine driving device.
  • the rotating machine 111 is driven by supplying electric power from the battery 109, and the engine 101 is rotated using the driving torque.
  • combustion can be started and the engine can be started.
  • the rotating machine 111 as the engine driving device is not limited to a starter for start, and may be a motor having both functions of a starter motor and a generator.
  • the flywheel etc. which rotate using the rotational energy during engine drive, without requiring the electric power from a battery may be used.
  • the generator 104 is connected to the rotating shaft of the engine 101 using a belt or a pulley, and generates electricity using the rotation of the engine as a power source.
  • the generated power is used in auxiliary equipment such as power steering and air conditioner in the vehicle. Further, the generated power is charged in the battery 109, so that the power can be supplied to the auxiliary equipment in the vehicle even when the engine 101 is stopped and the generator 104 cannot generate power.
  • the battery 109 may be an electricity storage device having a performance capable of cranking the engine 101, and may use any of a lead storage battery, a nickel metal hydride battery, a lithium ion battery, an electric double layer capacitor, a lithium ion capacitor, and the like. Further, the battery 109 is provided with a battery remaining amount detection sensor capable of detecting the remaining amount of the battery, and based on the information, the vehicle control device 110 determines that the sailing stop is permitted. Moreover, the power generation amount of the generator 104 is controlled based on the information.
  • a hydraulic oil supply oil pump (not shown) is provided, and hydraulic pressure is continuously supplied while the engine 101 is driven.
  • an electric oil pump 114 that can be driven by obtaining electric power from the battery 109 is provided, and when the hydraulic oil supply oil pump 105 determines that the hydraulic pressure is not sufficiently supplied, such as when the engine is stopped.
  • the motor can be driven by the motor driver in the electric oil pump to supply the necessary hydraulic pressure.
  • the electric oil pump 114 includes an oil pump main body, an electric motor that rotates the motor, and a motor driver. However, not only a mechanism that can continuously and variably control the drive output by a motor driver or the like, but also a mechanism that can only perform control to switch the output on and off by a relay or the like.
  • the electric oil pump 114 may be operated in order to compensate for the insufficient supply of cooling oil or lubricating oil by the hydraulic oil supply oil pump.
  • the operation is not limited to the temporary stop of the engine 101.
  • a hydraulic control circuit 106 is provided for adjusting and supplying the hydraulic pressure generated by the hydraulic oil supply oil pump and the electric oil pump 114 to the transmission 102 and the power transmission mechanism 103. Control of hydraulic control valves and step motors in each hydraulic circuit is performed in order to realize the calculated gear ratio and clutch state.
  • the braking device 105 applies a braking force to the driving wheel 108.
  • the vehicle 100 generates a braking force between the ground contact surface of the drive wheel 108 and the road surface, and can thereby be braked.
  • a configuration having a hydraulic brake unit and a brake booster as the braking device 105 is conceivable.
  • the hydraulic brake unit independently controls the wheel cylinder pressure that applies the braking torque to the four wheels according to the brake operation force of the driver or according to the vehicle state.
  • the hydraulic brake unit may be a VDC unit that realizes vehicle behavior control such as vehicle dynamics control and vehicle stability control, which are existing controls, or may be an original hydraulic unit and is not particularly limited.
  • the brake booster is a booster that electrically assists the piston stroke force by boosting the brake pedaling force of the driver with respect to the piston in the master cylinder operated by the brake pedal 113.
  • the master cylinder pressure is generated by the force boosted by the brake booster and is output to the hydraulic brake unit.
  • a negative pressure booster using the negative pressure of an engine may be sufficient, and it does not specifically limit.
  • a handle 117 is attached for the drive to operate the vehicle.
  • the vehicle control device 110 controls the engine 101 and the braking device 110 to output the driving force and braking force of the vehicle required for traveling by reading the operation amounts of the accelerator pedal 112 and the brake pedal 113 of the driver.
  • the accelerator pedal 112 and the brake pedal 113 when traveling by cruise control control that keeps the vehicle speed constant or adaptive cruise control control that automatically follows a vehicle traveling in front of the host vehicle
  • a control device that calculates driving force and braking force necessary for traveling from the surrounding information of the vehicle may be used.
  • a changeover switch 115 is attached to the handle 117 for the purpose of switching the driving mode by the driver.
  • the mounting location is not limited to this, and it is sufficient that the mounting location is a location where the driver can operate.
  • the vehicle control device 110 is a device that integrally controls the engine 101, the transmission 102 using the hydraulic control circuit 106, or the power transmission mechanism 103. As shown in FIG. And an interface for communicating with other controllers and sensors.
  • the main sensors are an engine speed sensor 203 for measuring the engine speed, a wheel speed sensor 204 for estimating the speed of the vehicle 101, and a transmission speed for measuring the speed at each location in the transmission.
  • a sensor a hydraulic sensor 206 for detecting the state of the hydraulic pressure in the hydraulic control circuit, the transmission, and the power transmission mechanism, an accelerator pedal operation amount sensor 207 for measuring the driver's accelerator operation amount, a driver brake A brake pedal operation amount sensor 208 for measuring the operation amount, an external information acquisition sensor 209 for acquiring external environment information of the vehicle, and the like.
  • a GPS antenna capable of acquiring GPS information, a laser, a radar, a monocular camera, a stereo camera, etc. in front of the vehicle can be considered. Further, it may be an inter-vehicle or road-to-vehicle communication antenna for exchanging information with a vehicle running around or around the road.
  • the CPU 201 performs calculations necessary for vehicle control, such as an engine control calculation unit, a brake control calculation unit, a hydraulic control calculation unit, and a sailing stop control calculation unit. These perform calculations based on signals obtained from various sensors and information stored in the storage device 203.
  • the storage device 202 stores information such as ignition timing, fuel injection amount, target gear ratio map, and the like.
  • FIG. 3 shows an automatic acceleration / deceleration determination control calculation unit in which the driver automatically performs acceleration / deceleration running without being operated by the accelerator pedal and the brake pedal, which is implemented in the vehicle control device 110 of the present embodiment.
  • the vehicle control device 110 includes a control unit (CPU 201) that performs engine control, and the control unit (CPU 201) performs a sailing stop start control calculation to perform control.
  • the sailing stop indicates that the rotational operation of the engine is stopped in a situation where the vehicle is not stopped.
  • step S100 the control unit (CPU 201) of the vehicle control device 110 determines that the vehicle is in the automatic acceleration / deceleration mode. For this reason, it is determined that the vehicle speed is greater than or equal to a predetermined value, the brake pedal is not depressed, the amount of hydraulic pressure supplied to the hydraulic control circuit 106 is greater than or equal to a predetermined value, and the electric oil pump 114 is abnormally determined. It is determined whether all the predetermined automatic acceleration / deceleration mode conditions such as the battery arithmetic amount of the battery 109 being not less than a predetermined value are satisfied. When it is determined that the condition that the automatic acceleration / deceleration mode is ON is satisfied, the process proceeds to step S101.
  • step S103 When it is determined that the condition is not satisfied, the process proceeds to step S103.
  • the above automatic acceleration / deceleration mode condition is merely an example, and the present invention is not limited to this, and some conditions may be set as the automatic acceleration / deceleration mode condition.
  • step S101 the control unit (CPU 201) of the vehicle control device 110 performs a target speed reduction determination.
  • the target speed reduction determination it is determined that the target speed at the point where the host vehicle obtained by the outside world information acquisition sensor 209 will travel in the future is lower than the target speed at the current time. For example, when a front recognition camera is mounted on the vehicle as the external information acquisition sensor 209, it is determined that the target speed is reduced from information on a speed limit sign positioned in front of the host vehicle.
  • a laser radar is mounted, a decrease in the target speed can be determined even when curve information of the traveling lane in front of the vehicle is detected.
  • GPS location information and map information recorded in the on-board ROM can be determined.
  • traffic information such as the occurrence of traffic jams stored in a server or the like that exists outside the vehicle by the communication device, presence of speed limit signs and signals, etc. Based on the above, a decrease in the target speed can be determined.
  • the driver decelerates in front of the host vehicle based on forward information obtained from the camera, position information obtained by GPS, environmental information obtained from the illuminance sensor and temperature sensor, and past driver operation information recorded in the on-board ROM. Even if it is predicted that the user is expecting, a decrease in the target speed can be determined.
  • step S102 If it is determined that the target speed is decreasing, the process proceeds to step S102. If it is determined that the target speed is not established, the process proceeds to step S103.
  • step S102 the control unit (CPU 201) of the vehicle control device 110 performs a target speed change control calculation.
  • step S103 the control unit (CPU 201) of the vehicle control device 110 performs an automatic acceleration / deceleration running control calculation.
  • FIG. 4 is a flowchart showing the target speed change control calculation unit.
  • step S201 the control unit (CPU 201) of the vehicle control device 110 performs an automatic acceleration / deceleration mode running calculation.
  • step S202 the control unit (CPU 201) of the vehicle control device 110 determines whether a deceleration start condition is satisfied.
  • the vehicle weight M including the occupant, the first vehicle speed V1 [m / s], the second target speed V2 [m / s], and the deceleration when decelerated by the engine brake is a [m / s ⁇ 2].
  • the inertial running distance L [m] of the vehicle is estimated using equations (1) and (2).
  • step S203 If it is determined that the deceleration start condition is satisfied, the process proceeds to step S203. If it is determined that the deceleration start condition is not satisfied, the process proceeds to step S201.
  • step S203 the control unit (CPU 201) of the vehicle control device 110 performs an engine brake deceleration process.
  • the engine brake deceleration process first, the power transmission mechanism 103 is in a state where the transmission and the engine are in a transmission state. Then, the injector is controlled so that the fuel injection amount injected into the engine is zero.
  • the combined torque of the engine friction torque and the power generation torque generated by the generator connected to the engine 101 is applied to the driving wheel 108 via the power transmission mechanism 103, the transmission 102, and the differential mechanism 107. give.
  • the vehicle decelerates toward the second target speed while the vehicle generates power with the generator.
  • fuel consumption can be reduced because the fuel can be cut without performing fuel injection to the engine.
  • step S204 the control unit (CPU 201) of the vehicle control device 110 determines whether an engine brake end condition is satisfied.
  • the condition is established when the vehicle speed substantially coincides with the second target speed.
  • the host vehicle speed may be substantially equal to a value obtained by subtracting a predetermined speed from the second target speed.
  • the vehicle control device 110 performs the follow-up control that follows the preceding vehicle, or the automatic travel control that repeats acceleration and deceleration so as to travel at the set speed. Then, the control unit (CPU 201) of the vehicle control device 110 performs tracking control or automatic travel control so as to achieve the first target speed, and is ahead of the host vehicle from the external information of the external information recognition unit. When it is recognized that a change from the first target speed to the second target speed smaller than the first target speed is necessary at the predetermined point, the following control is performed. That is, the control unit (CPU 201) controls the host vehicle so as to achieve the second target speed at the predetermined point by applying the engine brake after continuing acceleration and deceleration so as to travel at the first target speed.
  • control unit (CPU 201) shuts off the power transmission between the engine 101 and the drive wheels 108 and causes the host vehicle to travel by inertia.
  • control unit (CPU 201) desirably operates the engine 101 by transmitting power from the drive wheels 108 to the engine 101 while cutting off fuel supply to the engine 101.
  • FIG. 5 shows a time chart when the above control is performed.
  • the horizontal axis represents the time axis
  • the vertical axis represents the driver's accelerator pedal operation amount, the automatic acceleration / deceleration mode state, the vehicle acceleration / deceleration state, and the vehicle speed.
  • the control unit (CPU 201) of the vehicle control device 110 shifts to the target speed transition mode when the second target speed falls below the first target speed during traveling in the automatic acceleration / deceleration mode.
  • the mode shifts to the target speed shift mode.
  • acceleration or deceleration control is performed by the automatic acceleration / deceleration mode running calculation.
  • it is determined that the deceleration start condition is satisfied.
  • the vehicle speed substantially coincides with the second target speed at a point before the point where the vehicle changes the second target speed (t15 when converted to time). It will be.
  • the engine brake end condition establishment determination unit determines that the vehicle speed and the second target speed are substantially the same, the target speed change control calculation ends and the automatic acceleration / deceleration travel control calculation is switched to.
  • the end condition may be satisfied when the vehicle speed substantially coincides with a value obtained by subtracting a predetermined value from the second target speed (third target speed).
  • the notification method may be an instrument panel of a driver's seat, a display of a car navigation system, a buzzer, or the like. This has the effect of reducing the driver's uncomfortable feeling with respect to the deceleration change caused by the sailing stop deceleration.
  • Sailing stop deceleration starts at the time when it is detected that the target speed has been changed, or at the point where the target speed changes when sailing stop deceleration is performed, at the time when the vehicle speed substantially matches the value after the target speed change.
  • a method is also conceivable.
  • a method is also conceivable in which deceleration is performed using the braking device 105 so that the second target speed is reached at a point immediately before the target speed is changed.
  • the battery life can be extended by preventing the amount of charge from being reduced more than necessary by the power generation of the battery by the generator.
  • the frequency of use of the rotating machine 111 can be reduced by decelerating by engine braking instead of sailing stop. Therefore, the use of electric energy can be reduced and the fuel used for combustion at the start can be reduced, and the fuel consumption can be improved.
  • the use frequency of the rotary machine 111 can be reduced, the probability of failure of the rotary machine can be reduced.
  • FIG. 6 is a diagram showing a target speed change control calculation implemented in the vehicle control apparatus 110 according to the second embodiment of the present invention.
  • step S300 the control unit (CPU 201) of the vehicle control device 110 determines whether the sailing stop deceleration determination is established.
  • the conditions for the sailing stop deceleration determination are that the difference between the first target speed and the second target speed is smaller than a predetermined value, the amount of hydraulic pressure supplied to the hydraulic control circuit 113 is less than a predetermined value, and the electric oil pump 106 Is determined to be abnormal, the remaining battery level is below a predetermined value, the driver's deceleration request is above a predetermined value, the driver's acceleration request is above a predetermined value, the brake negative pressure is It is determined whether or not a predetermined sailing stop condition such as a decrease is satisfied. If it is determined that the sailing stop deceleration determination condition is satisfied, the process proceeds to step S301. If it is determined that the sailing stop deceleration determination condition is not satisfied, the process proceeds to step S202.
  • the horizontal axis indicates the first target speed
  • the vertical axis indicates the second target speed
  • control unit (CPU 201) of the vehicle control device 110 determines whether the sailing deceleration can be performed or not based on the first target speed and the second target speed of the vehicle.
  • the vehicle is decelerated toward the second target speed in the sailing stop state.
  • the change in the target speed is caused by a speed limit sign positioned in front of the vehicle, the deceleration time and the deceleration distance become long if the control is performed so as to decelerate at the sailing stop and substantially match the second target speed. This starts deceleration from a distance far beyond the distance at which the driver can recognize the speed limit sign, which may cause the driver to feel uncomfortable or uncomfortable.
  • the control unit (CPU 201) of the vehicle control device 110 performs control so that sailing stop deceleration is performed instead of engine brake deceleration.
  • step S301 the control unit (CPU 201) of the vehicle control device 110 determines that the sailing stop deceleration start condition is satisfied.
  • the vehicle travel resistance R1 [N] predicted from the road condition in the travel direction of the vehicle and the environment around the vehicle, the vehicle weight M [kg] including the occupant, the current vehicle speed V1 [m / s], and the second target speed.
  • V2 [m / s] acceleration when decelerated by the engine brake is a [m / s ⁇ 2], and based on these values, the coasting distance L [ m].
  • step S302 the control unit (CPU 201) of the vehicle control device 110 performs a sailing stop deceleration process.
  • the sailing stop deceleration process first, the power transmission mechanism 103 is in a state where the transmission and the engine are not transmitting power (open state). Then, the injector is controlled so that the fuel injection amount injected into the engine is zero. As a result, the engine speed gradually becomes zero and the sailing stop deceleration state is established. In this state, the friction torque of the engine and the total torque generated by the generator connected to the engine 101 are not transmitted to the drive wheels 108. As a result, the vehicle is decelerated only by the running resistance, so that the deceleration distance can be extended rather than the engine brake decelerating.
  • step S303 the vehicle control device 110 determines whether a sailing stop end condition is satisfied.
  • the condition is established when the vehicle speed substantially coincides with the second target speed.
  • the host vehicle speed may be substantially equal to a value obtained by subtracting a predetermined speed from the second target speed.
  • the acceleration starts when returning to the automatic acceleration / deceleration mode. As a result, no deceleration step is generated, and the driver's uncomfortable feeling is reduced. If it is determined that the engine brake end condition is satisfied, the target speed change control calculation is ended. If it is determined that the engine brake end condition is not satisfied, the process proceeds to step S302.
  • the notification method may be an instrument panel of a driver's seat, a display of a car navigation system, a buzzer, an audio speaker, or the like. This has the effect of reducing the driver's uncomfortable feeling with respect to the deceleration change caused by the sailing stop deceleration.
  • control unit (CPU 201) of the present embodiment is performing follow-up control or automatic travel control so as to be the first target speed, and at a predetermined point from the external information of the external information recognition unit.
  • the vehicle travels at the first target speed when the difference between the first target speed and the second target speed is larger than the set value.
  • the host vehicle is controlled so that the second target speed is reached at a predetermined point by applying the engine brake.
  • control unit (CPU 201) does not continue acceleration and deceleration so as to travel at the first target speed. It is desirable to control the host vehicle so that the second target speed is reached at a predetermined point by interrupting power transmission with the drive wheel 108 and causing the host vehicle to travel inertially.
  • control unit CPU 201
  • the control unit continues acceleration and deceleration so as to travel at the first target speed. Instead, it is desirable to control the host vehicle so that the second target speed is reached at a predetermined point by applying the engine brake.
  • control unit (CPU 201) desirably notifies the driver that the engine brake deceleration has started.
  • the control unit (CPU 201) desirably notifies the driver that the sailing stop deceleration has started.
  • FIG. 8 shows a time chart when the above control is performed.
  • the horizontal axis represents the time axis
  • the vertical axis represents the driver's accelerator pedal operation amount, automatic acceleration / deceleration mode state, vehicle acceleration / deceleration state, and vehicle speed, respectively.
  • the control unit (CPU 201) of the vehicle control device 110 shifts to the target speed transition mode when the second target speed falls below the first target speed during traveling in the automatic acceleration / deceleration mode.
  • the mode shifts to the target speed shift mode.
  • sailing stop deceleration is selected. Then, it is determined that the sailing stop deceleration start condition is satisfied.
  • FIG. 9 is a diagram showing a target speed change control calculation implemented in the vehicle control apparatus 110 according to the third embodiment of the present invention.
  • step S100 the control unit (CPU 201) of the vehicle control device 110 determines that the vehicle is in the automatic acceleration / deceleration mode. If it is determined that the automatic acceleration / deceleration mode condition is satisfied, the process proceeds to step S101. If it is determined that the automatic acceleration / deceleration mode condition is not satisfied, the process proceeds to step S401.
  • step S401 the control unit (CPU 201) of the vehicle control device 110 determines whether the driver has turned on the automatic acceleration / deceleration start changeover switch 115 when not in the automatic acceleration / deceleration mode. If the ON operation has been performed, the process proceeds to step S101. If not, the target speed change control calculation ends.
  • step S101 the control unit (CPU 201) of the vehicle control device 110 performs a target speed reduction determination. If the target speed has decreased, the process proceeds to S402, and if not, the target speed change control calculation ends.
  • control unit (CPU 201) of the vehicle control device 110 performs automatic acceleration / deceleration mode transition control.
  • FIG. 10 is a flowchart showing the automatic acceleration / deceleration mode transition control unit.
  • the control unit (CPU 201) of the vehicle control device 110 performs driver requested acceleration estimation.
  • a method of obtaining from the accelerator opening is conceivable.
  • a correction method using not only the accelerator opening but also the inter-vehicle distance and relative speed with the preceding vehicle, the road surface condition, the road shape, and the road sign is also conceivable. For example, when the distance to the preceding vehicle or the speed limit sign located in front of the host vehicle is large and the accelerator opening is large, the estimated driver request acceleration is estimated to be a large value.
  • the control unit (CPU 201) of the vehicle control device 110 determines that the driver requested acceleration is smaller than the predetermined acceleration. If it is smaller, the process proceeds to S302, and if it is not smaller, the process proceeds to S502. Although it is necessary to identify a value that does not impair drivability using experiments, the predetermined acceleration may be set to zero, which is a boundary value between deceleration and acceleration, for example.
  • the control unit (CPU 201) of the vehicle control device 110 performs an acceleration mode process.
  • the vehicle is accelerated for a predetermined time in accordance with the estimated driver request acceleration of the driver. After a predetermined time has elapsed, the process proceeds to S202, and it is determined whether a deceleration start condition is satisfied. If not established, the acceleration is continued, and if established, the process proceeds to S203.
  • the driver's uncomfortable feeling when shifting to the automatic acceleration / deceleration mode can be reduced.
  • the driver operates the automatic acceleration / deceleration mode switch, if the road speed limit recognized by the driver at that time is greater than the current vehicle speed and the accelerator pedal is greater than or equal to a predetermined value, the driver It is thought that the vehicle is expecting an acceleration state. At that time, if sailing deceleration or engine brake deceleration is started, the driver may recall a malfunction of the engine or the like, and may feel uncomfortable or uncomfortable. Therefore, when the driver is expected to be in an accelerated state, the acceleration mode process is performed, thereby reducing the possibility of having such a sense of discomfort or discomfort.
  • the host vehicle of the present embodiment includes a switching unit that switches from normal operation to follow-up control or automatic travel control.
  • the control part (CPU201) of a present Example is in the state in which the driver has stepped on the accelerator pedal 112 of the own vehicle, and when the switching part performs the switching operation to the tracking control or the automatic travel control, and The following control is performed when it is recognized from the external information of the external information recognition unit that a change from the first target speed to the second target speed smaller than the first target speed is necessary at a predetermined point ahead of the host vehicle. .
  • control unit causes the vehicle to travel at the first target speed, and then interrupts power transmission between the engine 101 and the drive wheels 108 to cause the vehicle to travel inertially, or to engine brake.
  • the control unit causes the vehicle to travel at the first target speed, and then interrupts power transmission between the engine 101 and the drive wheels 108 to cause the vehicle to travel inertially, or to engine brake.
  • the host vehicle so that the second target speed is reached at a predetermined point.
  • control unit (CPU 201) performs the switching control to the tracking control or the automatic travel control by the switching unit while the driver is stepping on the accelerator pedal 112 of the host vehicle, and the external information recognition unit The following control is performed when it is recognized from the external information that a change from the first target speed to the second target speed is necessary at a predetermined point ahead of the host vehicle.
  • the control unit (CPU 201) causes the host vehicle to travel at the first target speed, and then the engine 101 and the driving wheels 108.
  • the own vehicle is controlled so as to reach the second target speed at a predetermined point by interrupting the power transmission between the vehicle and running the vehicle with inertia or by applying an engine brake.
  • FIG. 11 shows a time chart when the required acceleration is not smaller than the predetermined acceleration in the above control.
  • the horizontal axis represents the time axis
  • the vertical axis represents the driver's accelerator pedal operation amount, automatic acceleration / deceleration mode state, vehicle acceleration / deceleration state, and vehicle speed, respectively.
  • the driver operates the changeover switch to enter the automatic acceleration / deceleration mode.
  • the driver since the driver has operated the accelerator pedal, the driver determines that the required acceleration is not smaller than the predetermined acceleration, and enters an acceleration state.
  • time t12 when it is determined that the vehicle speed at the time (time t13) when the vehicle reaches the change point of the second target speed when the engine brake is decelerated substantially matches the second target speed. Then, engine brake deceleration control is started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

If technology for automatically controlling vehicle speed to reach a set vehicle speed or a restriction speed were applied to a vehicle equipped with sailing stop control, long periods of coasting (sailing stop travel) would be implemented so as to reduce fuel consumption, whereby the driver could experience discomfort. The present invention is a vehicle control device that performs tracking control for tracking a preceding vehicle or automatic travel control for repeatedly accelerating and decelerating so as to travel at a set speed, wherein, when performing said tracking control or said automatic travel control so as to reach a first target speed, if an external information recognition unit recognizes from external information that it will be necessary to change the first target speed to a second target speed slower than the first target speed at a prescribed position in front of the vehicle, the vehicle is controlled to continue accelerating or decelerating so as to travel at the first target speed, after which the engine brake is applied so as to reach the second target speed at the prescribed position.

Description

車両用制御装置Vehicle control device
 本発明は、自動車等の車両、特にエンジンを走行中に自動停止する機能を備えた車両用制御装置に関する。 The present invention relates to a vehicle control device having a function of automatically stopping a vehicle such as an automobile, particularly an engine while traveling.
 従来、自車両の速度が設定車速と一致するように車両を制御する自動加減速装置において、道路の制限速度を取得し、取得した制限速度が変化した場合に、設定車速を制限速度に変更するか、そのままの設定車速を維持するかをドライバに選択できるようにする技術が提案されている(例えば、特許文献1を参照)。
 また、車両の電源がオンされている状態において車両が停止し、所定のエンジン停止条件が成立したときにエンジンを自動停止させ、燃料の節約、排気エミッションの低減、あるいは騒音の低減等を図るように構成した車両が提案され、すでに実用化されている。またエンジン停止条件として、車両が停止をしていない場合においても、惰性走行中にエンジンを自動停止させることによって、より燃費低減効果を図るセーリングストップ制御を搭載した車両が提案されている(例えば、特許文献2を参照)。
Conventionally, in an automatic acceleration / deceleration device that controls a vehicle so that the speed of the host vehicle matches the set vehicle speed, the speed limit of the road is acquired, and when the acquired speed limit changes, the set vehicle speed is changed to the speed limit. Alternatively, a technique has been proposed that allows the driver to select whether to maintain the set vehicle speed as it is (see, for example, Patent Document 1).
In addition, the vehicle stops when the vehicle is turned on, and the engine is automatically stopped when a predetermined engine stop condition is satisfied, so as to save fuel, reduce exhaust emission, or reduce noise. A vehicle constructed in this way has been proposed and already put into practical use. Moreover, even when the vehicle is not stopped as an engine stop condition, a vehicle equipped with a sailing stop control that further reduces the fuel consumption by automatically stopping the engine during coasting has been proposed (for example, (See Patent Document 2).
特開2008-265706号公報JP 2008-265706 A 特開2010-164143号公報JP 2010-164143 A
 しかしながら、セーリングストップ制御が搭載された車両に、設定車速や制限速度に自動的に車速に制御する技術が適用されると、燃費を低減させるために長い惰性走行(セーリングストップ走行)が行なわれることによって、ドライバに違和感を生じさせる可能性が考えられる。 However, if a technology that automatically controls the vehicle speed to the set vehicle speed or the limit speed is applied to a vehicle equipped with sailing stop control, a long inertia traveling (sailing stop traveling) is performed in order to reduce fuel consumption. Therefore, there is a possibility that the driver may feel uncomfortable.
 本発明は、先行車両を追従する追従制御、又は設定速度で走行するように加速と減速とを繰り返す自動走行制御を行う車両制御装置において、第1目標速度となるように前記追従制御、又は前記自動走行制御を行っている場合で、かつ、外部情報認識部の外部情報から自車両より先の所定地点において前記第1目標速度から前記第1目標速度よりも小さい第2目標速度への変更が必要であることを認識した場合において、前記第1目標速度で走行するように加速と減速を継続した後、エンジンブレーキをかけることで前記所定地点において前記第2目標速度となるように自車両を制御する制御する。 The present invention provides a vehicle control apparatus that performs a follow-up control that follows a preceding vehicle or an automatic travel control that repeats acceleration and deceleration so as to travel at a set speed. When the automatic travel control is being performed, and the external information from the external information recognition unit is changed from the first target speed to a second target speed smaller than the first target speed at a predetermined point ahead of the host vehicle. When recognizing that it is necessary, after accelerating and decelerating so as to run at the first target speed, the engine is braked so that the vehicle is brought to the second target speed at the predetermined point. To control to control.
本発明によれば、自動加減速走行に伴う燃料消費の抑制と運低性能の悪化を抑制することができる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。 According to the present invention, it is possible to suppress the fuel consumption and the deterioration of the driving performance associated with the automatic acceleration / deceleration traveling. Other configurations, operations, and effects of the present invention will be described in detail in the following examples.
図1は、本発明のセーリングストップ車両の走行駆動系の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a traveling drive system of a sailing stop vehicle according to the present invention. 図2は、車両用制御装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the vehicle control device. 図3は、車両用制御装置によって実行させる自動加減速判定制御の制御内容を示したフローチャートである。FIG. 3 is a flowchart showing the control contents of automatic acceleration / deceleration determination control executed by the vehicle control device. 図4は、車両用制御装置によって実行させる目標速度変更制御演算部の制御内容を示したフローチャートである。FIG. 4 is a flowchart showing the control content of the target speed change control calculation unit to be executed by the vehicle control device. 図5は、本実施形態の作用効果を説明するためのタイムチャートである。FIG. 5 is a time chart for explaining the effects of the present embodiment. 図6は、車両用制御装置によって実行させる目標速度変更制御演算部の制御内容を示したフローチャートである。FIG. 6 is a flowchart showing the control content of the target speed change control calculation unit to be executed by the vehicle control device. 図7は、セーリングストップ減速が可能であるかを判定するための第1目標速度と第2目標速度の関係を示すグラフであるFIG. 7 is a graph showing the relationship between the first target speed and the second target speed for determining whether sailing stop deceleration is possible. 図8は、本実施形態の作用効果を説明するためのタイムチャートである。FIG. 8 is a time chart for explaining the operational effects of the present embodiment. 図9は、車両用制御装置によって実行させる自動加減速判定の制御内容を示したフローチャートである。FIG. 9 is a flowchart showing the control contents of the automatic acceleration / deceleration determination executed by the vehicle control device. 図10は、車両用制御装置によって実行させる目標速度変更制御演算部の制御内容を示したフローチャートである。FIG. 10 is a flowchart showing the control content of the target speed change control calculation unit to be executed by the vehicle control device. 図11は、本実施形態の作用効果を説明するためのタイムチャートである。FIG. 11 is a time chart for explaining the operational effects of the present embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明の第1実施形態における車両用制御装置を備えた車両の構成を示す図である。車両100には、エンジン101が搭載されており、エンジン101によって発生させた駆動力は動力伝達機構103と変速機102を経て、ディファレンシャル機構107を介して連結された駆動輪108に伝達されることで車両100を走行させる。 FIG. 1 is a diagram showing a configuration of a vehicle including a vehicle control device according to the first embodiment of the present invention. An engine 101 is mounted on the vehicle 100, and driving force generated by the engine 101 is transmitted to a driving wheel 108 connected via a differential mechanism 107 via a power transmission mechanism 103 and a transmission 102. The vehicle 100 is caused to travel.
 変速機102は、ベルトあるいはチェーンとプーリを組み合わせた無段変速機や、トルクコンバータと遊星歯車機構を組み合わせた有段変速機でもよい。また無段変速機と有段変速機を組み合わせた変速機であってもよい。 The transmission 102 may be a continuously variable transmission combining a belt or chain and a pulley, or a stepped transmission combining a torque converter and a planetary gear mechanism. Moreover, the transmission which combined the continuously variable transmission and the stepped transmission may be sufficient.
 また、エンジン101と変速機102との間の動力伝達量を制御可能な動力伝達機構103が備わっており、動力伝達機構103により、エンジン101と駆動輪108の動力伝達量を調整することで、走行中にエンジン101への燃料供給を停止(燃料カット)させている場合にエンジンを停止することが可能となる。ここで、動力伝達機構103としてはトルクコンバータ、乾式あるいは湿式クラッチ、遊星歯車機構を用いてもよい。また、トルクコンバータ内のロックアップクラッチを用いる方法も考えられる。 In addition, a power transmission mechanism 103 that can control the power transmission amount between the engine 101 and the transmission 102 is provided, and by adjusting the power transmission amount of the engine 101 and the drive wheels 108 by the power transmission mechanism 103, When the fuel supply to the engine 101 is stopped (fuel cut) during traveling, the engine can be stopped. Here, as the power transmission mechanism 103, a torque converter, a dry or wet clutch, or a planetary gear mechanism may be used. A method using a lock-up clutch in the torque converter is also conceivable.
 また、エンジン駆動装置として回転機111がエンジン101に組みつけられており、バッテリ109から電力を供給することで回転機111を駆動し、その駆動トルクを用いてエンジン101を回転させた後、燃料噴射と点火を行なうことにより、燃焼を開始させてエンジンを始動することができる。ここで、エンジン駆動装置としての回転機111は、始動用スタータに限定されず、始動用モータと発電機の両方の機能を有したモータでもあってもよい。また、バッテリからの電力を必要とせずに、エンジン駆動中にその回転エネルギを使用して、回転させるフライホイールなどでも良い。 Further, a rotating machine 111 is assembled to the engine 101 as an engine driving device. The rotating machine 111 is driven by supplying electric power from the battery 109, and the engine 101 is rotated using the driving torque. By performing injection and ignition, combustion can be started and the engine can be started. Here, the rotating machine 111 as the engine driving device is not limited to a starter for start, and may be a motor having both functions of a starter motor and a generator. Moreover, the flywheel etc. which rotate using the rotational energy during engine drive, without requiring the electric power from a battery may be used.
 また、発電機104は、エンジン101の回転軸に対してベルトやプーリを用いて接続しており、エンジンの回転を動力源として用いて発電する。発電した電力は車両内にあるパワーステアリングやエアコンなど補機装置で使用される。また、発電した電力はバッテリ109に充電されることにより、エンジン101が停止して発電機104が発電できない状態においても、車両内の補機へ電力を供給することができる。 The generator 104 is connected to the rotating shaft of the engine 101 using a belt or a pulley, and generates electricity using the rotation of the engine as a power source. The generated power is used in auxiliary equipment such as power steering and air conditioner in the vehicle. Further, the generated power is charged in the battery 109, so that the power can be supplied to the auxiliary equipment in the vehicle even when the engine 101 is stopped and the generator 104 cannot generate power.
 また、バッテリ109は、エンジン101をクランキング可能な性能を有する蓄電デバイスとし、鉛蓄電池や、ニッケル水素、リチウムイオン電池、電気二重層キャパシタ、リチウムイオンキャパシタなどのいずれかを用いてもよい。また、バッテリ109にはバッテリ残量を検知することが出来るバッテリ残量検知センサが備わっており、その情報を基にして、車両用制御装置110はセーリングストップを許可することを判定している。また、その情報を基にして、発電機104の発電量を制御している。 Further, the battery 109 may be an electricity storage device having a performance capable of cranking the engine 101, and may use any of a lead storage battery, a nickel metal hydride battery, a lithium ion battery, an electric double layer capacitor, a lithium ion capacitor, and the like. Further, the battery 109 is provided with a battery remaining amount detection sensor capable of detecting the remaining amount of the battery, and based on the information, the vehicle control device 110 determines that the sailing stop is permitted. Moreover, the power generation amount of the generator 104 is controlled based on the information.
 また、車両100内で変速機102や動力伝達機構103を動作させること、および潤滑と冷却を行なうことに主に用いる油圧を発生させるためにエンジン101のクランク軸に駆動ベルトを介して接続された図示しない作動油供給オイルポンプが備わっており、エンジン101が駆動している間は連続的に油圧の供給を行なっている。 Further, it is connected to the crankshaft of the engine 101 via a drive belt in order to generate a hydraulic pressure mainly used for operating the transmission 102 and the power transmission mechanism 103 in the vehicle 100 and performing lubrication and cooling. A hydraulic oil supply oil pump (not shown) is provided, and hydraulic pressure is continuously supplied while the engine 101 is driven.
 また、バッテリ109から電力を得ることによって駆動することができる電動式オイルポンプ114が備わっており、エンジン停止中などの作動油供給オイルポンプ105によって油圧の供給が十分でないと判断された場合には、電動式オイルポンプ内のモータドライバによってモータを駆動させて、必要な油圧を供給することを可能とする。電動式オイルポンプ114は、オイルポンプ本体と、これを回転駆動する電気モータおよびモータドライバとで構成されている。ただし、モータドライバなどによって駆動出力を連続的に可変制御できる機構を持つものだけでなく、リレーなどにより出力のオンとオフを切り替える制御のみをできるものであっても良い。 In addition, an electric oil pump 114 that can be driven by obtaining electric power from the battery 109 is provided, and when the hydraulic oil supply oil pump 105 determines that the hydraulic pressure is not sufficiently supplied, such as when the engine is stopped. The motor can be driven by the motor driver in the electric oil pump to supply the necessary hydraulic pressure. The electric oil pump 114 includes an oil pump main body, an electric motor that rotates the motor, and a motor driver. However, not only a mechanism that can continuously and variably control the drive output by a motor driver or the like, but also a mechanism that can only perform control to switch the output on and off by a relay or the like.
 なお、エンジン101の運転中であっても、作動油供給オイルポンプによる冷却用オイル又は潤滑用オイルの供給不足を補うために、電動式オイルポンプ114を作動させる場合もあり、電動式オイルポンプ114の作動を、エンジン101の一時停止中に限定するものではない。 Even when the engine 101 is in operation, the electric oil pump 114 may be operated in order to compensate for the insufficient supply of cooling oil or lubricating oil by the hydraulic oil supply oil pump. The operation is not limited to the temporary stop of the engine 101.
 また、作動油供給オイルポンプおよび電動式オイルポンプ114によって発生した油圧を変速機102および動力伝達機構103に調圧されて供給するために油圧制御回路106が備わっており、車両用制御装置110によって演算された変速比やクラッチ状態を実現するために各油圧回路内の油圧制御弁やステップモータなどの制御を行なっている。 In addition, a hydraulic control circuit 106 is provided for adjusting and supplying the hydraulic pressure generated by the hydraulic oil supply oil pump and the electric oil pump 114 to the transmission 102 and the power transmission mechanism 103. Control of hydraulic control valves and step motors in each hydraulic circuit is performed in order to realize the calculated gear ratio and clutch state.
 また、制動装置105は、駆動輪108に制動力を作用させる。この結果、車両100は駆動輪108の接地面と路面との間に制動力が生じ、これにより制動することができる。
  制動装置105として油圧ブレーキユニットおよびブレーキブースタを持つ構成が考えられる。油圧ブレーキユニットは、ドライバのブレーキ操作力に応じて、又は、車両状態に応じて4輪に制動トルクを付与するホイルシリンダ圧を独立に制御する。この油圧ブレーキユニットは、既存の制御であるビークルダイナミクス制御やビークルスタビリティ制御といった車両挙動制御を実現するVDCユニットでもよいし、独自の油圧ユニットでもよく特に限定しない。ブレーキブースタは、ブレーキペダル113によって作動するマスタシリンダ内のピストンに対し、ドライバのブレーキ踏力を倍力してピストンストローク力を電気的にアシストする倍力装置である。ブレーキブースタによって倍力された力によってマスタシリンダ圧が発生し、油圧ブレーキユニットへ出力する。尚、電気的にアシストする構成に限らず、エンジンの負圧を用いた負圧ブースタであってもよく特に限定しない。
In addition, the braking device 105 applies a braking force to the driving wheel 108. As a result, the vehicle 100 generates a braking force between the ground contact surface of the drive wheel 108 and the road surface, and can thereby be braked.
A configuration having a hydraulic brake unit and a brake booster as the braking device 105 is conceivable. The hydraulic brake unit independently controls the wheel cylinder pressure that applies the braking torque to the four wheels according to the brake operation force of the driver or according to the vehicle state. The hydraulic brake unit may be a VDC unit that realizes vehicle behavior control such as vehicle dynamics control and vehicle stability control, which are existing controls, or may be an original hydraulic unit and is not particularly limited. The brake booster is a booster that electrically assists the piston stroke force by boosting the brake pedaling force of the driver with respect to the piston in the master cylinder operated by the brake pedal 113. The master cylinder pressure is generated by the force boosted by the brake booster and is output to the hydraulic brake unit. In addition, it is not restricted to the structure which assists electrically, A negative pressure booster using the negative pressure of an engine may be sufficient, and it does not specifically limit.
 また、ドラバイが車両を操作するために、ハンドル117が取り付けられている。 In addition, a handle 117 is attached for the drive to operate the vehicle.
 また、車両用制御装置110はドライバのアクセルペダル112およびブレーキペダル113の操作量を読み取ることにより、走行に必要とする車両の駆動力および制動力をエンジン101および制動装置110が出力するように制御する。ただし、アクセルペダル112およびブレーキペダル113の代替として、車両速度を一定とするクルーズ・コントロール制御や自車の前方を走行する車両を自動的に追従するアダプティブ・クルーズ・コントロール制御で走行している場合や、ドライバの操作を必要とせずに車両が走行することができる自動運転車両などにおいては、走行に必要となる駆動力および制動力を車両の周囲情報から演算する制御装置としてもよい。そのために、ドライバが走行モードを切り替えることを目的として、切り替えスイッチ115がハンドル117に取り付けられている。ただし、取り付け場所に関しては、ここに限定せず、ドライバが操作できる場所に取り付けられていれば良いとする。 Further, the vehicle control device 110 controls the engine 101 and the braking device 110 to output the driving force and braking force of the vehicle required for traveling by reading the operation amounts of the accelerator pedal 112 and the brake pedal 113 of the driver. To do. However, as an alternative to the accelerator pedal 112 and the brake pedal 113, when traveling by cruise control control that keeps the vehicle speed constant or adaptive cruise control control that automatically follows a vehicle traveling in front of the host vehicle In addition, in an autonomous driving vehicle or the like in which the vehicle can travel without requiring a driver's operation, a control device that calculates driving force and braking force necessary for traveling from the surrounding information of the vehicle may be used. For this purpose, a changeover switch 115 is attached to the handle 117 for the purpose of switching the driving mode by the driver. However, the mounting location is not limited to this, and it is sufficient that the mounting location is a location where the driver can operate.
 また、車両用制御装置110は、エンジン101、油圧制御回路106を用いた変速機102、または動力伝達機構103を統合的に制御する装置であり、図2に示すように、CPU201および記憶装置202や他のコントローラやセンサ類と通信を行なうためのインターフェースなどから構成されている。 The vehicle control device 110 is a device that integrally controls the engine 101, the transmission 102 using the hydraulic control circuit 106, or the power transmission mechanism 103. As shown in FIG. And an interface for communicating with other controllers and sensors.
 主なセンサ類は、エンジンの回転数を測定するエンジン回転数センサ203、車両101の速度を推定するための車輪速度センサ204、変速機内の各場所の回転数を測定するための変速機回転数センサ、油圧制御回路内や変速機、動力伝達機構内の油圧などの状態を検知するための油圧センサ206、ドライバのアクセルの操作量を測定するためのアクセルペダル操作量センサ207、ドライバのブレーキの操作量を測定するためのブレーキペダル操作量センサ208、車両の外界情報を取得する外界情報取得センサ209などである。 The main sensors are an engine speed sensor 203 for measuring the engine speed, a wheel speed sensor 204 for estimating the speed of the vehicle 101, and a transmission speed for measuring the speed at each location in the transmission. A sensor, a hydraulic sensor 206 for detecting the state of the hydraulic pressure in the hydraulic control circuit, the transmission, and the power transmission mechanism, an accelerator pedal operation amount sensor 207 for measuring the driver's accelerator operation amount, a driver brake A brake pedal operation amount sensor 208 for measuring the operation amount, an external information acquisition sensor 209 for acquiring external environment information of the vehicle, and the like.
 外界情報取得センサ209としては、GPS情報を取得することができるGPS用アンテナや、車両の前方をレーザー、レーダー、単眼カメラ、ステレオカメラなどが考えられる。また、周囲を走行している車両や道路周辺からと情報をやり取りするための車々間および路車間通信のアンテナなどでも良い。 As the external information acquisition sensor 209, a GPS antenna capable of acquiring GPS information, a laser, a radar, a monocular camera, a stereo camera, etc. in front of the vehicle can be considered. Further, it may be an inter-vehicle or road-to-vehicle communication antenna for exchanging information with a vehicle running around or around the road.
 また、CPU201は、車両制御に必要な演算を行なっており、例えばエンジン制御演算部、ブレーキ制御演算部、油圧制御演算部、セーリングストップ制御演算部などがある。これらは、各種センサ類から得られた信号および記憶装置203に格納されている情報を基に演算を行なっている。記憶装置202は点火タイミング、燃料噴射量、目標変速比マップなどの情報が格納されている。 Further, the CPU 201 performs calculations necessary for vehicle control, such as an engine control calculation unit, a brake control calculation unit, a hydraulic control calculation unit, and a sailing stop control calculation unit. These perform calculations based on signals obtained from various sensors and information stored in the storage device 203. The storage device 202 stores information such as ignition timing, fuel injection amount, target gear ratio map, and the like.
 次に本実施例の車両用制御装置110に実装されている走行中の加減速走行をドライバがアクセルペダルおよびブレーキペダルを操作することなく自動で行う自動加減速判定制御演算部について、図3に示したフローチャートを用いて説明する。具体的には車両用制御装置110はエンジン制御を行う制御部(CPU201)を備えており、制御部(CPU201)がセーリングストップ開始制御演算を行い、制御を行う。なお、本実施例においてセーリングストップとは、車両が停止していない状況において、エンジンの回転動作を停止することを示す。 Next, FIG. 3 shows an automatic acceleration / deceleration determination control calculation unit in which the driver automatically performs acceleration / deceleration running without being operated by the accelerator pedal and the brake pedal, which is implemented in the vehicle control device 110 of the present embodiment. This will be described with reference to the flowchart shown. Specifically, the vehicle control device 110 includes a control unit (CPU 201) that performs engine control, and the control unit (CPU 201) performs a sailing stop start control calculation to perform control. In the present embodiment, the sailing stop indicates that the rotational operation of the engine is stopped in a situation where the vehicle is not stopped.
 ステップS100では、車両用制御装置110の制御部(CPU201)は、車両が自動加減速モードであることを判定する。このために、車両速度が所定値以上であること、ブレーキペダルが踏まれていないこと、油圧制御回路106への油圧の供給量が所定値以上であること、電動式オイルポンプ114が異常判定されていないこと、バッテリ109のバッテリ算量が所定値以上などの所定の自動加減速モード条件が全て成立しているかを判定する。上記の自動加減速モードONであることの条件が成立していると判定されたときは、ステップS101の処理に進み、成立していないと判定されたときにはステップS103の処理に進む。なお、上記の自動加減速モード条件はあくまでも一例を示すものであり、これに限定されるわけではなく、一部の条件を自動加減速モード条件として設定してもよい。 In step S100, the control unit (CPU 201) of the vehicle control device 110 determines that the vehicle is in the automatic acceleration / deceleration mode. For this reason, it is determined that the vehicle speed is greater than or equal to a predetermined value, the brake pedal is not depressed, the amount of hydraulic pressure supplied to the hydraulic control circuit 106 is greater than or equal to a predetermined value, and the electric oil pump 114 is abnormally determined. It is determined whether all the predetermined automatic acceleration / deceleration mode conditions such as the battery arithmetic amount of the battery 109 being not less than a predetermined value are satisfied. When it is determined that the condition that the automatic acceleration / deceleration mode is ON is satisfied, the process proceeds to step S101. When it is determined that the condition is not satisfied, the process proceeds to step S103. The above automatic acceleration / deceleration mode condition is merely an example, and the present invention is not limited to this, and some conditions may be set as the automatic acceleration / deceleration mode condition.
 ステップS101では、車両用制御装置110の制御部(CPU201)は、目標速度低下判定を実施する。目標速度低下判定では、外界情報取得センサ209によって得られる自車両が将来走行する地点における目標速度が、現時刻における目標速度よりも低下していることを判定する。例えば、外界情報取得センサ209として、車両に前方認識用カメラが搭載されている場合、自車両の前方に位置する制限速度標識の情報から目標速度が低下することを判定する。また、レーザーレーダが搭載されており、車両前方における走行車線のカーブ情報を検知した場合においても目標速度の低下が判断できる。 In step S101, the control unit (CPU 201) of the vehicle control device 110 performs a target speed reduction determination. In the target speed reduction determination, it is determined that the target speed at the point where the host vehicle obtained by the outside world information acquisition sensor 209 will travel in the future is lower than the target speed at the current time. For example, when a front recognition camera is mounted on the vehicle as the external information acquisition sensor 209, it is determined that the target speed is reduced from information on a speed limit sign positioned in front of the host vehicle. In addition, since a laser radar is mounted, a decrease in the target speed can be determined even when curve information of the traveling lane in front of the vehicle is detected.
 また、GPSによる位置情報と車載されているROMに記録されている地図情報、通信装置によって車両外部に存在するサーバーなどに格納されている渋滞発生などの交通情報や制限速度標識や信号の有無などに基づいて、目標速度の低下を判定できる。 In addition, GPS location information and map information recorded in the on-board ROM, traffic information such as the occurrence of traffic jams stored in a server or the like that exists outside the vehicle by the communication device, presence of speed limit signs and signals, etc. Based on the above, a decrease in the target speed can be determined.
 また、カメラから得られる前方情報およびGPSによる位置情報や照度センサや温度センサから得られる環境情報と車載されているROMに記録された過去のドライバ操作情報に基づいて、ドライバが自車両前方において減速を期待していることが予測される場合にも、目標速度の低下を判定することができる。 The driver decelerates in front of the host vehicle based on forward information obtained from the camera, position information obtained by GPS, environmental information obtained from the illuminance sensor and temperature sensor, and past driver operation information recorded in the on-board ROM. Even if it is predicted that the user is expecting, a decrease in the target speed can be determined.
 目標速度が低下していると判定された場合には、ステップS102の処理に進み、成立していないと判定されたときにはステップS103の処理に進む。 If it is determined that the target speed is decreasing, the process proceeds to step S102. If it is determined that the target speed is not established, the process proceeds to step S103.
 ステップS102では、車両用制御装置110の制御部(CPU201)は、目標速度変更制御演算を実施する。 In step S102, the control unit (CPU 201) of the vehicle control device 110 performs a target speed change control calculation.
 ステップS103では、車両用制御装置110の制御部(CPU201)は、自動加減速走行制御演算を実施する。 In step S103, the control unit (CPU 201) of the vehicle control device 110 performs an automatic acceleration / deceleration running control calculation.
 図4は、目標速度変更制御演算部について示したフローチャートである。 FIG. 4 is a flowchart showing the target speed change control calculation unit.
 ステップS201では、車両用制御装置110の制御部(CPU201)は、自動加減速モード走行演算を実施する。 In step S201, the control unit (CPU 201) of the vehicle control device 110 performs an automatic acceleration / deceleration mode running calculation.
 ステップS202では、車両用制御装置110の制御部(CPU201)は、減速開始条件が成立しているかを判定する。 In step S202, the control unit (CPU 201) of the vehicle control device 110 determines whether a deceleration start condition is satisfied.
 ここで車両前方における道路状態や車両周囲環境により生じることが予測される走行抵抗R1[N]、エンジンのフリクショントルクおよび発電トルクが車輪に伝達されることによって生じる車両の減速力R2[N]、乗員を含めた車両重量M、第1車両速度V1[m/s]、第2目標速度V2[m/s]、エンジンブレーキによって減速した時の減速度をa[m/s^2]とし、これらの値を基に、数式(1)(2)を用いて車両の惰性走行距離L[m]を推測する。 Here, the running resistance R1 [N] predicted to be generated due to the road condition in front of the vehicle and the surrounding environment of the vehicle, the deceleration force R2 [N] of the vehicle generated by transmitting the engine friction torque and the power generation torque to the wheels, The vehicle weight M including the occupant, the first vehicle speed V1 [m / s], the second target speed V2 [m / s], and the deceleration when decelerated by the engine brake is a [m / s ^ 2]. Based on these values, the inertial running distance L [m] of the vehicle is estimated using equations (1) and (2).
 a=R1+R2/M  ・・・(1) 
  L=(V1^2-V2^2)/2a  ・・・(2) 
これによって得られた惰性走行距離Lと現在車両位置から目標速度変化地点までの距離L2が略一致したことにより、減速開始条件が成立したと判定する。
a = R1 + R2 / M (1)
L = (V1 ^ 2-V2 ^ 2) / 2a (2)
It is determined that the deceleration start condition is satisfied when the inertial travel distance L obtained in this manner and the distance L2 from the current vehicle position to the target speed change point substantially coincide.
 減速開始条件が成立していると判定された場合は、ステップS203に進み、成立していないと判定されたときにはステップS201に進む。 If it is determined that the deceleration start condition is satisfied, the process proceeds to step S203. If it is determined that the deceleration start condition is not satisfied, the process proceeds to step S201.
 ステップS203では、車両用制御装置110の制御部(CPU201)は、エンジンブレーキ減速処理を実施する。エンジンブレーキ減速処理として、はじめに動力伝達機構103が変速機とエンジンが伝達状態になっている状態とする。そして、エンジンに噴射する燃料噴射量を0とするようにインジェクタを制御する。これにより、エンジンのフリクショントルクおよびエンジン101に接続されている発電機によって生じる発電トルクの合算トルクが動力伝達機構103および変速機102、ディファレンシャル機構107を経由して駆動輪108に制動側の力を与える。これにより、車両は発電機によって発電しながら、車両は第2目標速度に向かって減速していく。また、エンジンへの燃料噴射を実施せずに燃料カット状態となることができるため、燃料消費を削減することできる。 In step S203, the control unit (CPU 201) of the vehicle control device 110 performs an engine brake deceleration process. In the engine brake deceleration process, first, the power transmission mechanism 103 is in a state where the transmission and the engine are in a transmission state. Then, the injector is controlled so that the fuel injection amount injected into the engine is zero. As a result, the combined torque of the engine friction torque and the power generation torque generated by the generator connected to the engine 101 is applied to the driving wheel 108 via the power transmission mechanism 103, the transmission 102, and the differential mechanism 107. give. As a result, the vehicle decelerates toward the second target speed while the vehicle generates power with the generator. In addition, fuel consumption can be reduced because the fuel can be cut without performing fuel injection to the engine.
 ステップS204では、車両用制御装置110の制御部(CPU201)は、エンジンブレーキ終了条件が成立しているかを判定する。エンジンブレーキ終了条件判定では、自車速度が第2目標速度と略一致したことをもって条件成立とする。もしくは第2目標速度に対して、所定の速度を減算した値に自車速度が略一致としてもよい。これにより、自動加減速モードに復帰した際に加速側から開始することになり、減速段差が生じることがなくため、ドライバの違和感が減少する。エンジンブレーキ終了条件が成立していると判定された場合は目標速度変更制御演算を終了し、成立していないと判定された場合には、ステップS203の処理に進む。 In step S204, the control unit (CPU 201) of the vehicle control device 110 determines whether an engine brake end condition is satisfied. In the engine brake end condition determination, the condition is established when the vehicle speed substantially coincides with the second target speed. Alternatively, the host vehicle speed may be substantially equal to a value obtained by subtracting a predetermined speed from the second target speed. As a result, when returning to the automatic acceleration / deceleration mode, the acceleration is started from the acceleration side, and no deceleration step is generated, so that the driver's uncomfortable feeling is reduced. If it is determined that the engine brake end condition is satisfied, the target speed change control calculation is ended. If it is determined that the engine brake end condition is not satisfied, the process proceeds to step S203.
 以上のように、本実施例の車両制御装置110は、先行車両を追従する追従制御、又は設定速度で走行するように加速と減速とを繰り返す自動走行制御を行う。そして、車両制御装置110の制御部(CPU201)は、第1目標速度となるように追従制御、又は自動走行制御を行っている場合で、かつ、外部情報認識部の外部情報から自車両より先の所定地点において第1目標速度から第1目標速度よりも小さい第2目標速度への変更が必要であることを認識した場合に、以下のように制御する。つまり、制御部(CPU201)は第1目標速度で走行するように加速と減速を継続した後、エンジンブレーキをかけることで上記した所定地点において第2目標速度となるように自車両を制御する。 As described above, the vehicle control device 110 according to the present embodiment performs the follow-up control that follows the preceding vehicle, or the automatic travel control that repeats acceleration and deceleration so as to travel at the set speed. Then, the control unit (CPU 201) of the vehicle control device 110 performs tracking control or automatic travel control so as to achieve the first target speed, and is ahead of the host vehicle from the external information of the external information recognition unit. When it is recognized that a change from the first target speed to the second target speed smaller than the first target speed is necessary at the predetermined point, the following control is performed. That is, the control unit (CPU 201) controls the host vehicle so as to achieve the second target speed at the predetermined point by applying the engine brake after continuing acceleration and deceleration so as to travel at the first target speed.
 また制御部(CPU201)は、自動走行制御で自車両を減速させる場合に、エンジン101と駆動輪108との間の動力伝達を遮断して自車両を惰性で走行させることが望ましい。また、制御部(CPU201)は、エンジンブレーキをかける場合に、エンジン101への燃料供給を遮断しつつ、駆動輪108による動力をエンジン101に伝達させることでエンジン101を動作させることが望ましい。 Further, when the host vehicle is decelerated by the automatic travel control, it is desirable that the control unit (CPU 201) shuts off the power transmission between the engine 101 and the drive wheels 108 and causes the host vehicle to travel by inertia. In addition, when applying engine brake, the control unit (CPU 201) desirably operates the engine 101 by transmitting power from the drive wheels 108 to the engine 101 while cutting off fuel supply to the engine 101.
 図5は、上記制御を行なった場合のタイムチャートを表す。横軸を時間軸とし、縦軸をドライバのアクセルペダル操作量、自動加減速モード状態、車両の加減速状態、車両速度を示している。 FIG. 5 shows a time chart when the above control is performed. The horizontal axis represents the time axis, and the vertical axis represents the driver's accelerator pedal operation amount, the automatic acceleration / deceleration mode state, the vehicle acceleration / deceleration state, and the vehicle speed.
 例えば、車両用制御装置110の制御部(CPU201)は、自動加減速モード走行中に第2目標速度が第1目標速度よりも低下したところで、目標速度移行モードに移行する。ここでは、時刻t11において、目標速度移行モードに移行している。そして、自動加減速モード走行演算により、加速もしくは減速制御を行なう。その後、減速開始条件が成立することを判定する。時刻t11においては、この時刻からエンジンブレーキ減速を開始すると、車両が第2目標速度が変化する地点よりも手前の地点(時刻に換算するとt15)で自車速度が第2目標速度と略一致することになる。この場合、ドライバが認識できない減速となり、違和感が生じる可能性があり、また車両の平均速度も低下することになり、結果として車両が目的地に到達するまでの時間が延長することとなる。そのため、時刻t11においては自動加減速走行を継続することが望ましい。そして、時刻t12において、エンジンブレーキ減速を開始した場合、車両が第2目標速度が変化する地点に達した際に(時刻t13)、自車速度が第2目標速度に略一致することが判定されると、エンジンブレーキ減速制御を開始する。そして、時刻t13において、エンジンブレーキ終了条件成立判定部により、車両速度と第2目標速度が略一致したことが判定されると目標速度変更制御演算が終了し、自動加減速走行制御演算に切り替わる。ここで、終了条件に関して、車両速度が第2目標速度から所定値を減算した値(第3目標速度)と略一致した際に、終了条件が成立したとしてもよい。 For example, the control unit (CPU 201) of the vehicle control device 110 shifts to the target speed transition mode when the second target speed falls below the first target speed during traveling in the automatic acceleration / deceleration mode. Here, at the time t11, the mode shifts to the target speed shift mode. Then, acceleration or deceleration control is performed by the automatic acceleration / deceleration mode running calculation. Thereafter, it is determined that the deceleration start condition is satisfied. At time t11, when engine brake deceleration is started from this time, the vehicle speed substantially coincides with the second target speed at a point before the point where the vehicle changes the second target speed (t15 when converted to time). It will be. In this case, the speed cannot be recognized by the driver, which may cause a sense of incongruity, and the average speed of the vehicle also decreases, resulting in an increase in the time until the vehicle reaches the destination. Therefore, it is desirable to continue the automatic acceleration / deceleration running at time t11. When engine brake deceleration is started at time t12, when the vehicle reaches a point where the second target speed changes (time t13), it is determined that the host vehicle speed substantially matches the second target speed. Then, engine brake deceleration control is started. Then, at time t13, when the engine brake end condition establishment determination unit determines that the vehicle speed and the second target speed are substantially the same, the target speed change control calculation ends and the automatic acceleration / deceleration travel control calculation is switched to. Here, regarding the end condition, the end condition may be satisfied when the vehicle speed substantially coincides with a value obtained by subtracting a predetermined value from the second target speed (third target speed).
 また、エンジンブレーキ減速を実施している際に、ドライバに対して、車両前方における目標速度が変化したことでエンジンブレーキ減速により車両を減速させていること、又は実施していることを報知する。報知する方法は、運転席のインストルメントパネルやカーナビゲーションシステムのディスプレイ、ブザーなどが考えられる。これにより、セーリングストップ減速による減速度変化に対して、ドライバの違和感が軽減する効果がある。 Also, during engine brake deceleration, the driver is informed that the vehicle has been decelerated by engine brake deceleration due to a change in the target speed in front of the vehicle, or is being implemented. The notification method may be an instrument panel of a driver's seat, a display of a car navigation system, a buzzer, or the like. This has the effect of reducing the driver's uncomfortable feeling with respect to the deceleration change caused by the sailing stop deceleration.
 目標速度が変更されたことが検知された時刻、もしくはセーリングストップ減速を行なうと目標速度が切り替わる地点において、自車速度が目標速度変更後の値と略一致する時刻において、セーリングストップ減速を開始する方法も考えられる。また、目標速度が変更される直前の地点において、制動装置105を用いて第2目標速度となるように減速を行なう方法も考えられる。これに対し、本実施例によれば、エンジンブレーキで変更後の目標速度に向かって減速していくことができるため、セーリングストップで減速する場合と比較して、減速時間が短くなることにより、ドライバの違和感が低減することが期待できる。 Sailing stop deceleration starts at the time when it is detected that the target speed has been changed, or at the point where the target speed changes when sailing stop deceleration is performed, at the time when the vehicle speed substantially matches the value after the target speed change. A method is also conceivable. In addition, a method is also conceivable in which deceleration is performed using the braking device 105 so that the second target speed is reached at a point immediately before the target speed is changed. On the other hand, according to the present embodiment, it is possible to decelerate toward the target speed after the change with the engine brake, and therefore, the deceleration time becomes shorter as compared with the case of decelerating with the sailing stop. It can be expected that the driver's discomfort is reduced.
 また、発電機によるバッテリへの発電によって、充電量を必要以上に低下させないことにより、バッテリの寿命を延長させることができる。またセーリングストップではなくエンジンブレーキにより減速することによって、回転機111の使用頻度を低減することができる。そのため、電気エネルギの使用低減や始動時の燃焼に用いる燃料の低減ができ、燃費が改善できる。また回転機111の使用頻度を低減できるため、回転機の故障の確率を低減することができる。 Also, the battery life can be extended by preventing the amount of charge from being reduced more than necessary by the power generation of the battery by the generator. Moreover, the frequency of use of the rotating machine 111 can be reduced by decelerating by engine braking instead of sailing stop. Therefore, the use of electric energy can be reduced and the fuel used for combustion at the start can be reduced, and the fuel consumption can be improved. Moreover, since the use frequency of the rotary machine 111 can be reduced, the probability of failure of the rotary machine can be reduced.
 図6は本発明の第2実施形態における車両用制御装置110に実装されている目標速度変更制御演算を示す図である。 FIG. 6 is a diagram showing a target speed change control calculation implemented in the vehicle control apparatus 110 according to the second embodiment of the present invention.
 ステップS300では、車両用制御装置110の制御部(CPU201)は、セーリングストップ減速判定が成立しているかを判定する。セーリングストップ減速判定の条件は、第1目標速度と第2目標速度の差が所定値よりも小さいこと、油圧制御回路113への油圧の供給量が所定値以下であること、電動式オイルポンプ106が異常判定されていること、バッテリ残量が所定値以下となったこと、ドライバの減速要求が所定値以上となったこと、ドライバの加速要求が所定値以上となったこと、ブレーキ負圧が低下したことなどの所定のセーリングストップ条件が共に成立しているかを判定する。上記のセーリングストップ減速判定条件が成立していると判定された場合は、ステップS301に進み、成立していないと判定されたときにはステップS202に進む。 In step S300, the control unit (CPU 201) of the vehicle control device 110 determines whether the sailing stop deceleration determination is established. The conditions for the sailing stop deceleration determination are that the difference between the first target speed and the second target speed is smaller than a predetermined value, the amount of hydraulic pressure supplied to the hydraulic control circuit 113 is less than a predetermined value, and the electric oil pump 106 Is determined to be abnormal, the remaining battery level is below a predetermined value, the driver's deceleration request is above a predetermined value, the driver's acceleration request is above a predetermined value, the brake negative pressure is It is determined whether or not a predetermined sailing stop condition such as a decrease is satisfied. If it is determined that the sailing stop deceleration determination condition is satisfied, the process proceeds to step S301. If it is determined that the sailing stop deceleration determination condition is not satisfied, the process proceeds to step S202.
 セーリングストップ減速判定が成立していることを判定するため、図7に示すセーリングストップ減速判定マップを参照する。このマップは、横軸が第1目標速度、縦軸が第2目標速度を示す。 Referring to the sailing stop deceleration determination map shown in FIG. 7 in order to determine that the sailing stop deceleration determination is established. In this map, the horizontal axis indicates the first target speed, and the vertical axis indicates the second target speed.
 すなわち本実施例において車両用制御装置110の制御部(CPU201)は、車両の第1目標速度、及び、第2目標速度からセーリング減速が可能な領域か不可の領域かを判断する。 That is, in this embodiment, the control unit (CPU 201) of the vehicle control device 110 determines whether the sailing deceleration can be performed or not based on the first target speed and the second target speed of the vehicle.
 具体的には第1目標速度に対して、第2目標速度が所定値よりも大きくなる場合、セーリングストップ状態により車両を第2目標速度に向けて減速を行なっていくことを考える。例えば目標速度の変更が車両前方に位置する速度制限標識によって生じる場合において、セーリングストップで減速して第2目標速度に略一致するように制御すると、減速時間および減速距離が長大となる。これはドライバが速度制限標識を認識できる距離よりも遠方から減速が開始することになり、ドライバへ違和感あるいは不快感を与える可能性がある。 Specifically, when the second target speed is larger than a predetermined value with respect to the first target speed, it is considered that the vehicle is decelerated toward the second target speed in the sailing stop state. For example, when the change in the target speed is caused by a speed limit sign positioned in front of the vehicle, the deceleration time and the deceleration distance become long if the control is performed so as to decelerate at the sailing stop and substantially match the second target speed. This starts deceleration from a distance far beyond the distance at which the driver can recognize the speed limit sign, which may cause the driver to feel uncomfortable or uncomfortable.
 一方で、第1目標速度と第2目標速度の差が所定値よりも小さくなる場合においては、セーリングストップ減速を行なったとしても、減速時間および距離が長大となることはない。そのため、ドライバへの違和感あるいは不快感を与える可能性が小さくなる。したがって、この場合に車両用制御装置110の制御部(CPU201)は、エンジンブレーキ減速ではなくセーリングストップ減速となるように制御する。 On the other hand, when the difference between the first target speed and the second target speed is smaller than a predetermined value, even if sailing stop deceleration is performed, the deceleration time and distance do not become long. Therefore, the possibility of giving the driver a sense of discomfort or discomfort is reduced. Therefore, in this case, the control unit (CPU 201) of the vehicle control device 110 performs control so that sailing stop deceleration is performed instead of engine brake deceleration.
 ステップS301で、車両用制御装置110の制御部(CPU201)は、セーリングストップ減速開始条件が成立していることを判定する。ここで車両の走行方向における道路状態や車両周囲環境から予測される車両走行抵抗R1[N]、乗員を含めた車両重量M[kg]、現在車両速度V1[m/s]、第2目標速度V2[m/s]、エンジンブレーキによって減速したときの加速度をa[m/s^2]とし、これらの値を基に、数式(3)(4)を用いて車両の惰性走行距離L[m]を推定する。 In step S301, the control unit (CPU 201) of the vehicle control device 110 determines that the sailing stop deceleration start condition is satisfied. Here, the vehicle travel resistance R1 [N] predicted from the road condition in the travel direction of the vehicle and the environment around the vehicle, the vehicle weight M [kg] including the occupant, the current vehicle speed V1 [m / s], and the second target speed. V2 [m / s], acceleration when decelerated by the engine brake is a [m / s ^ 2], and based on these values, the coasting distance L [ m].
 a=R1 /M  ・・・(3) 
  L=(V1^2-V2^2)/2a  ・・・(4) 
  これによって得られた惰性走行推定距離Lと現在車両位置から目標速度変化地点までの距離L2が略一致したことにより、減速開始条件が成立したと判定する。減速開始条件が成立していると判定された場合は、ステップS302に進み、成立していないと判定されたときにはステップS201に進む。
a = R1 / M (3)
L = (V1 ^ 2-V2 ^ 2) / 2a (4)
It is determined that the deceleration start condition is satisfied when the estimated coasting distance L obtained in this way and the distance L2 from the current vehicle position to the target speed change point substantially coincide. If it is determined that the deceleration start condition is satisfied, the process proceeds to step S302. If it is determined that the deceleration start condition is not satisfied, the process proceeds to step S201.
 ステップS302では、車両用制御装置110の制御部(CPU201)は、セーリングストップ減速処理を実施する。セーリングストップ減速処理として、はじめに動力伝達機構103により変速機とエンジンの動力伝達がされていない状態(開放状態)とする。
そして、エンジンに噴射する燃料噴射量を0とするようにインジェクタを制御する。これにより、エンジンの回転数は次第にゼロとなり、セーリングストップ減速状態となる。この状態では、エンジンのフリクショントルクおよびエンジン101に接続されている発電機によって生じる発電トルクの合算トルクが駆動輪108に伝達しない。これにより車両は走行抵抗のみにより減速していくため、エンジンブレーキ減速するよりも減速距離が延長できる。
In step S302, the control unit (CPU 201) of the vehicle control device 110 performs a sailing stop deceleration process. As the sailing stop deceleration process, first, the power transmission mechanism 103 is in a state where the transmission and the engine are not transmitting power (open state).
Then, the injector is controlled so that the fuel injection amount injected into the engine is zero. As a result, the engine speed gradually becomes zero and the sailing stop deceleration state is established. In this state, the friction torque of the engine and the total torque generated by the generator connected to the engine 101 are not transmitted to the drive wheels 108. As a result, the vehicle is decelerated only by the running resistance, so that the deceleration distance can be extended rather than the engine brake decelerating.
 ステップS303では、車両用制御装置110は、セーリングストップ終了条件が成立しているかを判定する。セーリングストップ終了条件判定では、自車速度が第2目標速度と略一致したことをもって条件成立とする。もしくは第2目標速度に対して、所定の速度を減算した値に自車速度が略一致としてもよい。この場合、自動加減速モードに復帰した際に加速から開始することになる。これにより減速段差が生じることがなくなるため、ドライバの違和感が減少する。エンジンブレーキ終了条件が成立していると判定された場合は目標速度変更制御演算を終了し、成立していないと判定された場合には、ステップS302の処理に進む。 In step S303, the vehicle control device 110 determines whether a sailing stop end condition is satisfied. In the sailing stop end condition determination, the condition is established when the vehicle speed substantially coincides with the second target speed. Alternatively, the host vehicle speed may be substantially equal to a value obtained by subtracting a predetermined speed from the second target speed. In this case, the acceleration starts when returning to the automatic acceleration / deceleration mode. As a result, no deceleration step is generated, and the driver's uncomfortable feeling is reduced. If it is determined that the engine brake end condition is satisfied, the target speed change control calculation is ended. If it is determined that the engine brake end condition is not satisfied, the process proceeds to step S302.
 また、セーリングストップ減速を実施している際に、ドライバに対して、セーリングストップ減速により車両を減速させていること、又は実施していることを報知する。さらに、どのような理由で目標速度が変化したかも含めて報知するとなお良い。例えば、車両前方において制限速度標識が存在していることなどである。報知する方法は、運転席のインストルメントパネルやカーナビゲーションシステムのディスプレイ、ブザー、オーディオ用スピーカーなどが考えられる。これにより、セーリングストップ減速によって生じる減速度変化に対して、ドライバの違和感が軽減する効果がある。 Also, when carrying out sailing stop deceleration, the driver is informed that the vehicle is being decelerated by sailing stop deceleration or is being implemented. Furthermore, it is even better to report the reason why the target speed has changed. For example, there is a speed limit sign in front of the vehicle. The notification method may be an instrument panel of a driver's seat, a display of a car navigation system, a buzzer, an audio speaker, or the like. This has the effect of reducing the driver's uncomfortable feeling with respect to the deceleration change caused by the sailing stop deceleration.
 以上の通り、本実施例の制御部(CPU201)は、第1目標速度となるように追従制御、又は自動走行制御を行っている場合で、かつ、外部情報認識部の外部情報から所定地点において第1目標速度から第2目標速度への変更が必要であることを認識した場合において、第1目標速度と第2目標速度との差が設定値よりも大きい場合に第1目標速度で走行するように加速と減速を継続した後、エンジンブレーキをかけることで所定地点において第2目標速度となるように自車両を制御する。 As described above, the control unit (CPU 201) of the present embodiment is performing follow-up control or automatic travel control so as to be the first target speed, and at a predetermined point from the external information of the external information recognition unit. When recognizing that a change from the first target speed to the second target speed is necessary, the vehicle travels at the first target speed when the difference between the first target speed and the second target speed is larger than the set value. After continuing acceleration and deceleration as described above, the host vehicle is controlled so that the second target speed is reached at a predetermined point by applying the engine brake.
 また制御部(CPU201)は、第1目標速度と第2目標速度との差が設定値以下の場合には、第1目標速度で走行するように加速と減速を継続することなく、エンジン101と駆動輪108との間の動力伝達を遮断して自車両を惰性で走行させることで所定地点において第2目標速度となるように自車両を制御するのが望ましい。 Further, when the difference between the first target speed and the second target speed is equal to or less than the set value, the control unit (CPU 201) does not continue acceleration and deceleration so as to travel at the first target speed. It is desirable to control the host vehicle so that the second target speed is reached at a predetermined point by interrupting power transmission with the drive wheel 108 and causing the host vehicle to travel inertially.
 また制御部(CPU201)は、第1目標速度と第2目標速度との差が上記した設定値よりも小さい設定値以下の場合には、第1目標速度で走行するように加速と減速を継続することなく、エンジンブレーキをかけることで所定地点において第2目標速度となるように自車両を制御することが望ましい。 Further, when the difference between the first target speed and the second target speed is equal to or smaller than the set value, the control unit (CPU 201) continues acceleration and deceleration so as to travel at the first target speed. Instead, it is desirable to control the host vehicle so that the second target speed is reached at a predetermined point by applying the engine brake.
 また、制御部(CPU201)は、第1目標速度から第2目標速度に変化の差が設定値以上である際、これによりエンジンブレーキ減速を開始したことをドライバに報知することが望ましい。また、制御部(CPU201)は、第1目標速度から第2目標速度に変化の差が設定値以下である際、これによりセーリングストップ減速を開始したことをドライバに報知することが望ましい。 Also, when the difference in change from the first target speed to the second target speed is greater than or equal to the set value, the control unit (CPU 201) desirably notifies the driver that the engine brake deceleration has started. In addition, when the difference in change from the first target speed to the second target speed is equal to or less than the set value, the control unit (CPU 201) desirably notifies the driver that the sailing stop deceleration has started.
 次に、本実施形態における上記制御を行なった場合について、図8に示すタイムチャートを用いて説明する。 Next, a case where the above-described control in the present embodiment is performed will be described with reference to a time chart shown in FIG.
 図8は、上記制御を行なった場合のタイムチャートを表す。横軸は時間軸を示し、縦軸はそれぞれドライバのアクセルペダル操作量、自動加減速モード状態、車両の加減速状態、車両速度を示している。 FIG. 8 shows a time chart when the above control is performed. The horizontal axis represents the time axis, and the vertical axis represents the driver's accelerator pedal operation amount, automatic acceleration / deceleration mode state, vehicle acceleration / deceleration state, and vehicle speed, respectively.
 例えば、車両用制御装置110の制御部(CPU201)は、自動加減速モード走行中に第2目標速度が第1目標速度よりも低下したところで、目標速度移行モードに移行する。ここでは、時刻t11において、目標速度移行モードに移行している。そして、第1目標速度と第2目標速度とセーリングストップ減速判定マップを参照することによって、セーリングストップ減速を行なうか、セーリングストップ減速を行なうかを判定する。ここでは、第1目標速度と第2目標速度の差が所定値よりも小さいことから、セーリングストップ減速を選択する。そして、セーリングストップ減速開始条件が成立することを判定する。実施例1と同様にセーリングストップ減速を行なった場合に、車両が第2目標速度の変化地点に達した時刻(時刻t13)における自車速度が第2目標速度に略一致することが判定された時刻(時刻t12)において、セーリングストップ減速制御を開始する。そして、時刻t13において、セーリングストップ終了条件成立判定部により、車両速度と第2目標速度が略一致したことが判定されると目標速度変更制御演算が終了し、自動加減速走行制御演算に切り替わる。ここで、終了条件に関して、車両速度が第2目標速度から所定値を減算した値(第3目標速度)と略一致した際に、終了条件が成立したとしてもよい。 For example, the control unit (CPU 201) of the vehicle control device 110 shifts to the target speed transition mode when the second target speed falls below the first target speed during traveling in the automatic acceleration / deceleration mode. Here, at the time t11, the mode shifts to the target speed shift mode. Then, by referring to the first target speed, the second target speed, and the sailing stop deceleration determination map, it is determined whether the sailing stop deceleration is performed or the sailing stop deceleration is performed. Here, since the difference between the first target speed and the second target speed is smaller than a predetermined value, sailing stop deceleration is selected. Then, it is determined that the sailing stop deceleration start condition is satisfied. When sailing stop deceleration was performed in the same manner as in Example 1, it was determined that the vehicle speed at the time (time t13) when the vehicle reached the change point of the second target speed substantially matches the second target speed. Sailing stop deceleration control is started at time (time t12). Then, at time t13, when the sailing stop end condition establishment determining unit determines that the vehicle speed and the second target speed substantially match, the target speed change control calculation ends, and the automatic acceleration / deceleration travel control calculation is switched to. Here, regarding the end condition, the end condition may be satisfied when the vehicle speed substantially coincides with a value obtained by subtracting a predetermined value from the second target speed (third target speed).
 図9は本発明の第3実施形態における車両用制御装置110に実装されている目標速度変更制御演算を示す図である。 FIG. 9 is a diagram showing a target speed change control calculation implemented in the vehicle control apparatus 110 according to the third embodiment of the present invention.
 ステップS100では、車両用制御装置110の制御部(CPU201)は、車両が自動加減速モードであることを判定する。自動加減速モード条件が成立していると判定された場合は、ステップS101に進み、成立していないと判定されたときにはステップS401に進む。 In step S100, the control unit (CPU 201) of the vehicle control device 110 determines that the vehicle is in the automatic acceleration / deceleration mode. If it is determined that the automatic acceleration / deceleration mode condition is satisfied, the process proceeds to step S101. If it is determined that the automatic acceleration / deceleration mode condition is not satisfied, the process proceeds to step S401.
 ステップS401では、車両用制御装置110の制御部(CPU201)は、自動加減速モードではないときに、ドライバが自動加減速開始の切り替えスイッチ115のON操作をしたかを判定する。ON操作をしている場合にはステップS101に進み、していない場合には目標速度変更制御演算を終了する。 In step S401, the control unit (CPU 201) of the vehicle control device 110 determines whether the driver has turned on the automatic acceleration / deceleration start changeover switch 115 when not in the automatic acceleration / deceleration mode. If the ON operation has been performed, the process proceeds to step S101. If not, the target speed change control calculation ends.
 ステップS101では、車両用制御装置110の制御部(CPU201)は、目標速度低下判定を実施する。目標速度が低下している場合にはS402に進み、していない場合には目標速度変更制御演算を終了する。 In step S101, the control unit (CPU 201) of the vehicle control device 110 performs a target speed reduction determination. If the target speed has decreased, the process proceeds to S402, and if not, the target speed change control calculation ends.
 S402では、車両用制御装置110の制御部(CPU201)は、自動加減速モード移行制御を実施する。 In S402, the control unit (CPU 201) of the vehicle control device 110 performs automatic acceleration / deceleration mode transition control.
 図10は、自動加減速モード移行制御部について示したフローチャートである。 FIG. 10 is a flowchart showing the automatic acceleration / deceleration mode transition control unit.
 S500では、車両用制御装置110の制御部(CPU201)は、ドライバ要求加速度推定を行なう。ドライバの加減速意図を推定するために、アクセル開度から求める方法が考えられる。また、アクセル開度だけでなく前方車両との車間距離や相対速度、道路の路面状態、道路形状、道路標識を用いて補正する方法も考えられる。例えば、自車両前方に位置する先行車両や制限速度標識までの距離が大きく、アクセル開度が大きい場合には、推定ドライバ要求加速度を大きい値だと推定する。 In S500, the control unit (CPU 201) of the vehicle control device 110 performs driver requested acceleration estimation. In order to estimate the driver's acceleration / deceleration intention, a method of obtaining from the accelerator opening is conceivable. In addition, a correction method using not only the accelerator opening but also the inter-vehicle distance and relative speed with the preceding vehicle, the road surface condition, the road shape, and the road sign is also conceivable. For example, when the distance to the preceding vehicle or the speed limit sign located in front of the host vehicle is large and the accelerator opening is large, the estimated driver request acceleration is estimated to be a large value.
 S501では、車両用制御装置110の制御部(CPU201)は、ドライバ要求加速度が所定加速度よりも小さいことを判定する。小さい場合はS302に進み、小さくない場合はS502に進む。所定加速度は実験を用いて運転性を損なわない値を同定する必要があるが、例えば減速と加速の境界値となるゼロとすることが考えられる。 In S501, the control unit (CPU 201) of the vehicle control device 110 determines that the driver requested acceleration is smaller than the predetermined acceleration. If it is smaller, the process proceeds to S302, and if it is not smaller, the process proceeds to S502. Although it is necessary to identify a value that does not impair drivability using experiments, the predetermined acceleration may be set to zero, which is a boundary value between deceleration and acceleration, for example.
 S502では、車両用制御装置110の制御部(CPU201)は、加速モード処理を実施する。加速モード処理ではドライバの推定ドライバ要求加速度に応じて、車両を所定時間加速させる。所定時間経過した後に、S202に進み、減速開始条件が成立しているかを判定する。成立していない場合には、加速を継続し、成立している場合にはS203に進む。 In S502, the control unit (CPU 201) of the vehicle control device 110 performs an acceleration mode process. In the acceleration mode process, the vehicle is accelerated for a predetermined time in accordance with the estimated driver request acceleration of the driver. After a predetermined time has elapsed, the process proceeds to S202, and it is determined whether a deceleration start condition is satisfied. If not established, the acceleration is continued, and if established, the process proceeds to S203.
 上記のようにドライバの要求加速度に基づく自動加減速モード移行制御を行なうことにより、自動加減速モードに移行する際のドライバの違和感を低減することができる。例えば、ドライバが自動加減速モード切り替えスイッチを操作した際に、そのときのドライバが認識している道路制限速度が現在車両速度よりも大きくかつアクセルペダルが所定値以上となっている場合、ドライバは車両に対して加速状態を期待していると考えられる。そのときに、セーリング減速もしくはエンジンブレーキ減速を開始すると、ドライバはエンジン等の故障を想起し、違和感あるいは不快感を持つ可能性がある。そのため、ドライバの加速状態が期待される場合には加速モード処理を行なうことにより、このような違和感あるいは不快感を持つ可能性を低減できる効果がある。 By performing the automatic acceleration / deceleration mode transition control based on the driver's required acceleration as described above, the driver's uncomfortable feeling when shifting to the automatic acceleration / deceleration mode can be reduced. For example, when the driver operates the automatic acceleration / deceleration mode switch, if the road speed limit recognized by the driver at that time is greater than the current vehicle speed and the accelerator pedal is greater than or equal to a predetermined value, the driver It is thought that the vehicle is expecting an acceleration state. At that time, if sailing deceleration or engine brake deceleration is started, the driver may recall a malfunction of the engine or the like, and may feel uncomfortable or uncomfortable. Therefore, when the driver is expected to be in an accelerated state, the acceleration mode process is performed, thereby reducing the possibility of having such a sense of discomfort or discomfort.
 以上の通り、本実施例の自車両は、通常運転から追従制御、又は自動走行制御へ切り替える切り替え部を備えている。そして、本実施例の制御部(CPU201)は、ドライバが自車両のアクセルペダル112を踏んでいる状態で、切り替え部により追従制御、又は自動走行制御への切り替え操作を行った場合において、かつ、外部情報認識部の外部情報から自車両より先の所定地点において第1目標速度から第1目標速度よりも小さい第2目標速度への変更が必要であることを認識した場合に以下の制御を行う。この場合に、制御部(CPU201)は自車両を第1目標速度で走行させた後、エンジン101と駆動輪108との間の動力伝達を遮断して自車両を惰性で走行させる、又はエンジンブレーキをかけることで所定地点において第2目標速度となるように自車両を制御する。 As described above, the host vehicle of the present embodiment includes a switching unit that switches from normal operation to follow-up control or automatic travel control. And the control part (CPU201) of a present Example is in the state in which the driver has stepped on the accelerator pedal 112 of the own vehicle, and when the switching part performs the switching operation to the tracking control or the automatic travel control, and The following control is performed when it is recognized from the external information of the external information recognition unit that a change from the first target speed to the second target speed smaller than the first target speed is necessary at a predetermined point ahead of the host vehicle. . In this case, the control unit (CPU 201) causes the vehicle to travel at the first target speed, and then interrupts power transmission between the engine 101 and the drive wheels 108 to cause the vehicle to travel inertially, or to engine brake. To control the host vehicle so that the second target speed is reached at a predetermined point.
 また制御部(CPU201)は、ドライバが自車両のアクセルペダル112を踏んでいる状態で、切り替え部により追従制御、又は自動走行制御への切り替え操作を行った場合において、かつ、外部情報認識部の外部情報から自車両より先の所定地点において第1目標速度から第2目標速度への変更が必要であることを認識した場合に以下の制御を行う。
この場合に、制御部(CPU201)は第1目標速度と第2目標速度との差が設定値よりも大きい場合に、自車両を第1目標速度で走行させた後、エンジン101と駆動輪108との間の動力伝達を遮断して自車両を惰性で走行させる、又はエンジンブレーキをかけることで所定地点において第2目標速度となるように自車両を制御する。
In addition, the control unit (CPU 201) performs the switching control to the tracking control or the automatic travel control by the switching unit while the driver is stepping on the accelerator pedal 112 of the host vehicle, and the external information recognition unit The following control is performed when it is recognized from the external information that a change from the first target speed to the second target speed is necessary at a predetermined point ahead of the host vehicle.
In this case, when the difference between the first target speed and the second target speed is greater than the set value, the control unit (CPU 201) causes the host vehicle to travel at the first target speed, and then the engine 101 and the driving wheels 108. The own vehicle is controlled so as to reach the second target speed at a predetermined point by interrupting the power transmission between the vehicle and running the vehicle with inertia or by applying an engine brake.
 図11は、上記制御において、要求加速度が所定加速度よりも小さくない場合におけるタイムチャートを表す。横軸は時間軸を示し、縦軸はそれぞれドライバのアクセルペダル操作量、自動加減速モード状態、車両の加減速状態、車両速度を示している。 FIG. 11 shows a time chart when the required acceleration is not smaller than the predetermined acceleration in the above control. The horizontal axis represents the time axis, and the vertical axis represents the driver's accelerator pedal operation amount, automatic acceleration / deceleration mode state, vehicle acceleration / deceleration state, and vehicle speed, respectively.
 時刻t11において、ドライバは切り替えスイッチを操作し自動加減速モードに入る。
その状態において、ドライバはアクセルペダル操作を行なっていたことから要求加速度が所定加速度よりも小さくないと判断し、加速状態となる。エンジンブレーキ減速を行なった場合に、車両が第2目標速度の変化地点に達した時刻(時刻t13)における自車速度が第2目標速度に略一致することが判定された時刻(時刻t12)において、エンジンブレーキ減速制御を開始する。
At time t11, the driver operates the changeover switch to enter the automatic acceleration / deceleration mode.
In this state, since the driver has operated the accelerator pedal, the driver determines that the required acceleration is not smaller than the predetermined acceleration, and enters an acceleration state. At the time (time t12) when it is determined that the vehicle speed at the time (time t13) when the vehicle reaches the change point of the second target speed when the engine brake is decelerated substantially matches the second target speed. Then, engine brake deceleration control is started.
100 車両、101 エンジン、102 変速機、103 動力伝達機構、104 発電機、105 制動装置、106 油圧制御回路、107 ディファレンシャル機構、108 駆動輪、109 バッテリ、110 車両用制御装置、111 回転機、112 アクセルペダル、113 ブレーキペダル、114 電動式作動オイル供給ポンプ、115 自動加減速走行スイッチ、116 通信装置、117 車両操作ハンドル、201 CPU、202 記憶装置、203 エンジン回転数センサ、204 車輪速度センサ、205 変速機回転数センサ、206 油圧センサ、207 アクセルペダル操作量センサ、208 ブレーキペダル操作量センサ、209 外界情報取得センサ 100 vehicle, 101 engine, 102 transmission, 103 power transmission mechanism, 104 generator, 105 braking device, 106 hydraulic control circuit, 107 differential mechanism, 108 drive wheels, 109 battery, 110 vehicle control device, 111 rotating machine, 112 Accelerator pedal, 113 Brake pedal, 114 Electric hydraulic oil supply pump, 115 Automatic acceleration / deceleration travel switch, 116 Communication device, 117 Vehicle operation handle, 201 CPU, 202 Storage device, 203 Engine speed sensor, 204 Wheel speed sensor, 205 Transmission rotation speed sensor, 206, hydraulic pressure sensor, 207, accelerator pedal operation amount sensor, 208, brake pedal operation amount sensor, 209 external information acquisition sensor

Claims (10)

  1.  先行車両を追従する追従制御、又は設定速度で走行するように加速と減速とを繰り返す自動走行制御を行う車両制御装置において、
     第1目標速度となるように前記追従制御、又は前記自動走行制御を行っている場合で、かつ、外部情報認識部の外部情報から自車両より先の所定地点において前記第1目標速度から前記第1目標速度よりも小さい第2目標速度への変更が必要であることを認識した場合において、
     前記第1目標速度で走行するように加速と減速を継続した後、エンジンブレーキをかけることで前記所定地点において前記第2目標速度となるように自車両を制御する制御部を備えた車両制御装置。
    In a vehicle control device that performs follow-up control that follows a preceding vehicle, or automatic travel control that repeats acceleration and deceleration so as to travel at a set speed,
    The follow-up control or the automatic travel control is performed so as to be the first target speed, and the first target speed is determined from the first target speed at a predetermined point ahead of the host vehicle from the external information of the external information recognition unit. When recognizing that it is necessary to change to a second target speed smaller than the one target speed,
    A vehicle control apparatus comprising a control unit that controls the host vehicle so that the second target speed is reached at the predetermined point by applying an engine brake after continuing acceleration and deceleration so as to travel at the first target speed .
  2.  請求項1に記載の車両制御装置において、
     前記制御部は、第1目標速度となるように前記追従制御、又は前記自動走行制御を行っている場合で、かつ、前記外部情報認識部の外部情報から前記所定地点において前記第1目標速度から前記第2目標速度への変更が必要であることを認識した場合において、
     前記第1目標速度と前記第2目標速度との差が設定値よりも大きい場合に前記第1目標速度で走行するように加速と減速を継続した後、前記エンジンブレーキをかけることで前記所定地点において前記第2目標速度となるように自車両を制御する車両制御装置。
    The vehicle control device according to claim 1,
    The control unit is performing the follow-up control or the automatic travel control so as to be the first target speed, and from the first target speed at the predetermined point from the external information of the external information recognition unit. In recognizing that a change to the second target speed is necessary,
    When the difference between the first target speed and the second target speed is larger than a set value, acceleration and deceleration are continued so that the vehicle travels at the first target speed, and then the engine brake is applied to apply the predetermined point. The vehicle control apparatus which controls the own vehicle so that it may become said 2nd target speed.
  3.  請求項1又は2に記載の車両制御装置において、
     前記自車両はエンジンと駆動輪とを備えており、
     前記制御部は、前記自動走行制御で前記自車両を減速させる場合に、前記エンジンと前記駆動輪との間の動力伝達を遮断して前記自車両を惰性で走行させる車両制御装置。
    In the vehicle control device according to claim 1 or 2,
    The host vehicle includes an engine and drive wheels,
    The said control part is a vehicle control apparatus which interrupts | blocks the power transmission between the said engine and the said driving wheel, and drives the said own vehicle by inertia, when decelerating the said own vehicle by the said automatic running control.
  4.  請求項1又は2に記載の車両制御装置において、
     前記自車両はエンジンと駆動輪とを備えており、 前記制御部は、前記エンジンブレーキをかける場合に、前記エンジンへの燃料供給を遮断しつつ、前記駆動輪による動力を前記エンジンに伝達させることで前記エンジンを動作させる車両制御装置。
    In the vehicle control device according to claim 1 or 2,
    The host vehicle includes an engine and driving wheels, and the control unit transmits power from the driving wheels to the engine while shutting off fuel supply to the engine when the engine brake is applied. A vehicle control device for operating the engine.
  5.  請求項1又は2に記載の車両制御装置において、
     前記制御部は、前記第1目標速度と前記第2目標速度との差が前記設定値以下の場合には、前記第1目標速度で走行するように加速と減速を継続することなく、前記エンジンと前記駆動輪との間の動力伝達を遮断して前記自車両を惰性で走行させることで前記所定地点において前記第2目標速度となるように自車両を制御する車両制御装置。
    In the vehicle control device according to claim 1 or 2,
    When the difference between the first target speed and the second target speed is less than or equal to the set value, the control unit does not continue acceleration and deceleration so that the vehicle travels at the first target speed. A vehicle control device that controls the host vehicle so that the second target speed is reached at the predetermined point by interrupting power transmission between the vehicle and the drive wheels and causing the host vehicle to travel by inertia.
  6.  請求項1又は2に記載の車両制御装置において、
     前記制御部は、前記第1目標速度と前記第2目標速度との差が前記設定値よりも小さい設定値以下の場合には、前記第1目標速度で走行するように加速と減速を継続することなく、前記エンジンブレーキをかけることで前記所定地点において前記第2目標速度となるように自車両を制御する車両制御装置。
    In the vehicle control device according to claim 1 or 2,
    When the difference between the first target speed and the second target speed is equal to or less than a set value that is smaller than the set value, the control unit continues acceleration and deceleration so as to travel at the first target speed. And a vehicle control device for controlling the host vehicle so that the second target speed is reached at the predetermined point by applying the engine brake.
  7.  先行車両を追従する追従制御、又は設定速度で走行するように加速と減速とを繰り返す自動走行制御を行う車両制御装置において、
     前記自車両は、通常運転から前記追従制御、又は前記自動走行制御へ切り替える切り替え部を備え、
     ドライバが前記自車両のアクセルペダルを踏んでいる状態で、前記切り替え部により前記追従制御、又は前記自動走行制御への切り替え操作を行った場合において、かつ、外部情報認識部の外部情報から自車両より先の所定地点において前記第1目標速度から前記第1目標速度よりも小さい第2目標速度への変更が必要であることを認識した場合において、
     前記自車両を前記第1目標速度で走行させた後、前記エンジンと前記駆動輪との間の動力伝達を遮断して前記自車両を惰性で走行させる、又はエンジンブレーキをかけることで前記所定地点において前記第2目標速度となるように自車両を制御する制御部を備えた車両制御装置。
    In a vehicle control device that performs follow-up control that follows a preceding vehicle, or automatic travel control that repeats acceleration and deceleration so as to travel at a set speed,
    The host vehicle includes a switching unit that switches from normal operation to the follow-up control or the automatic travel control,
    When the driver is stepping on the accelerator pedal of the host vehicle and the switching unit performs the switching operation to the tracking control or the automatic travel control, and from the external information of the external information recognition unit When recognizing that a change from the first target speed to a second target speed smaller than the first target speed is necessary at a predetermined point ahead,
    After traveling the host vehicle at the first target speed, the power transmission between the engine and the drive wheels is interrupted to cause the host vehicle to travel by inertia, or by applying an engine brake, the predetermined point. And a control unit that controls the host vehicle so that the second target speed is reached.
  8.  請求項7に記載の車両制御装置において、
     前記制御部は、ドライバが前記自車両のアクセルペダルを踏んでいる状態で、前記切り替え部により前記追従制御、又は前記自動走行制御への切り替え操作を行った場合において、かつ、前記外部情報認識部の外部情報から自車両より先の所定地点において前記第1目標速度から前記第2目標速度への変更が必要であることを認識した場合において、
     前記第1目標速度と前記第2目標速度との差が設定値よりも大きい場合に、前記自車両を前記第1目標速度で走行させた後、前記エンジンと前記駆動輪との間の動力伝達を遮断して前記自車両を惰性で走行させる、又はエンジンブレーキをかけることで前記所定地点において前記第2目標速度となるように自車両を制御する制御部を備えた車両制御装置。
    The vehicle control device according to claim 7, wherein
    The control unit, when the driver performs the switching operation to the follow-up control or the automatic travel control with the switching unit in a state where the driver is stepping on the accelerator pedal of the host vehicle, and the external information recognition unit When recognizing that a change from the first target speed to the second target speed is necessary at a predetermined point ahead of the host vehicle from the external information of
    When the difference between the first target speed and the second target speed is greater than a set value, power is transmitted between the engine and the drive wheels after the host vehicle has traveled at the first target speed. A vehicle control device comprising a control unit that controls the host vehicle so as to achieve the second target speed at the predetermined point by blocking the vehicle and running the host vehicle by inertia or applying an engine brake.
  9.  請求項2に記載の車両用制御装置において、
     前記制御部は、第1目標速度から前記第2目標速度に変化の差が設定値以上である際、これによりエンジンブレーキ減速を開始したことをドライバに報知することを特徴とする車両用制御装置。
    The vehicle control device according to claim 2,
    When the difference in change from the first target speed to the second target speed is greater than or equal to a set value, the control unit notifies the driver that the engine brake deceleration has started. .
  10.  請求項2に記載の車両用制御装置において、
     前記制御部は、第1目標速度から前記第2目標速度に変化の差が設定値以下である際、これによりセーリングストップ減速を開始したことをドライバに報知することを特徴とする車両用制御装置。
    The vehicle control device according to claim 2,
    When the difference in change from the first target speed to the second target speed is equal to or less than a set value, the control unit notifies the driver that the sailing stop deceleration has started. .
PCT/JP2017/024077 2016-07-08 2017-06-30 Vehicle control device WO2018008536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016135594A JP6838777B2 (en) 2016-07-08 2016-07-08 Vehicle control device
JP2016-135594 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008536A1 true WO2018008536A1 (en) 2018-01-11

Family

ID=60912186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024077 WO2018008536A1 (en) 2016-07-08 2017-06-30 Vehicle control device

Country Status (2)

Country Link
JP (1) JP6838777B2 (en)
WO (1) WO2018008536A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102368880B1 (en) * 2020-08-24 2022-03-02 한양대학교 산학협력단 Driving parameter control method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257739A (en) * 1991-02-12 1992-09-11 Toyota Motor Corp Running control device for vehicle
JP2002161784A (en) * 2000-11-24 2002-06-07 Rinjiro Suda Fuel injection control device for vehicular engine
JP2011063123A (en) * 2009-09-17 2011-03-31 Hitachi Automotive Systems Ltd Vehicle control device
JP2015501250A (en) * 2011-10-17 2015-01-15 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Determination of driving program for vehicles
JP2015134589A (en) * 2014-01-20 2015-07-27 アイシン・エィ・ダブリュ株式会社 vehicle control system, method and program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014205A (en) * 2011-07-03 2013-01-24 Toyota Motor Corp Travel controller of vehicle
JP5760968B2 (en) * 2011-11-08 2015-08-12 トヨタ自動車株式会社 Vehicle and vehicle control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257739A (en) * 1991-02-12 1992-09-11 Toyota Motor Corp Running control device for vehicle
JP2002161784A (en) * 2000-11-24 2002-06-07 Rinjiro Suda Fuel injection control device for vehicular engine
JP2011063123A (en) * 2009-09-17 2011-03-31 Hitachi Automotive Systems Ltd Vehicle control device
JP2015501250A (en) * 2011-10-17 2015-01-15 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Determination of driving program for vehicles
JP2015134589A (en) * 2014-01-20 2015-07-27 アイシン・エィ・ダブリュ株式会社 vehicle control system, method and program

Also Published As

Publication number Publication date
JP6838777B2 (en) 2021-03-03
JP2018002099A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US11442447B2 (en) Vehicle control system
EP2928745B1 (en) Hybrid electric vehicle control system and method
US9409567B2 (en) Driving assistance apparatus
US9283953B2 (en) Travel control device
JP6565699B2 (en) Vehicle control device
CN107949513B (en) Vehicle travel control method and vehicle travel control device
JP2012214181A (en) Vehicle control system
JP2009063001A (en) Engine control device
JP2017077867A (en) Vehicle control apparatus
CN109072998B (en) Vehicle control device
JP2014173454A (en) Control device of idle stop vehicle
US20150314768A1 (en) Vehicle drive away based engine control
KR101738818B1 (en) Method for controlling the engine of a hybrid vehicle
JP2017137053A (en) Hybrid vehicle control device
JP6302269B2 (en) Vehicle control device
EP3252347B1 (en) Coast-stop control device
WO2018008536A1 (en) Vehicle control device
CN108349487B (en) Hybrid vehicle and control method thereof
WO2017119189A1 (en) Vehicle control device
JP6354492B2 (en) Line pressure control device for continuously variable transmission
JP2014172456A (en) Controller of idling stop car
JP6389664B2 (en) Vehicle control device
JP2019031153A (en) Travel control device, vehicle, and travel control method
JP7114171B2 (en) vehicle controller
JP2023001690A (en) Travel control device of hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824141

Country of ref document: EP

Kind code of ref document: A1