JP2005020830A - Yawing behavior of vehicle control device - Google Patents

Yawing behavior of vehicle control device Download PDF

Info

Publication number
JP2005020830A
JP2005020830A JP2003179348A JP2003179348A JP2005020830A JP 2005020830 A JP2005020830 A JP 2005020830A JP 2003179348 A JP2003179348 A JP 2003179348A JP 2003179348 A JP2003179348 A JP 2003179348A JP 2005020830 A JP2005020830 A JP 2005020830A
Authority
JP
Japan
Prior art keywords
road surface
wheel
yaw rate
driving force
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003179348A
Other languages
Japanese (ja)
Inventor
Toru Akiba
亨 穐場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003179348A priority Critical patent/JP2005020830A/en
Publication of JP2005020830A publication Critical patent/JP2005020830A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly correct a yaw rate change generated when one wheel slips on the low frictional road surface during straight running of an electric automobile adopting a four-wheel independent drive type, thereby the not intended yaw rate change arises on a vehicle body, by increasing a drive force of other wheels while avoiding a low frictional road surface. <P>SOLUTION: In the yawing behavior control device of the vehicle, a motor drive force controller 2 detects a slip detection starting time t1 and a slip detection ending time t2 based on the increase of a wheel speed Vw1; and estimates a road surface frictional coefficient μ of the low frictional road surface and an amount of a yaw rate change Δα of a vehicle body 8, when one front wheel W1 of four wheels slips on the low frictional road surface during passing, so that a drive force F2 cannot be transmitted to the road surface with the result that the front right wheel W1 races to increase the wheel speed Vw1. The motor drive force controller 2 estimates from a time t2 to a time t4 when a rear right wheel W4 at the same side with respect to a vehicle widthwise direction with the front right wheel W1 passes the low frictional road surface. The motor drive force controller 2 abolishes the amount of a yaw rate change estimation Δα by increasing the drive force command value F4 of the rear wheel W4 by avoiding from the time t2 to the time t4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、左右にそれぞれ複数の駆動輪を具え、全ての駆動輪を個々に独立して駆動力制御可能な車両のヨーイング挙動制御装置に関し、特に、走行方向前方の駆動輪がスリップして生じたヨーレート変化を各駆動輪間の駆動力配分制御により解消するヨーイング挙動制御装置の改良提案に関するものである。
【0002】
【従来の技術】
4輪を具えた車両であって、該4輪の駆動力をそれぞれ独立に制御する技術については従来、例えば特許文献1に記載のごときものが知られている。
【0003】
【特許文献1】
実開昭59−141405号公報
【0004】
特許文献1に記載の電気自動車は、車体の左右にて対をなす合計4つ以上の車輪と、該車輪のそれぞれと駆動結合するモータと、該モータを制御する制御装置とを具え、該制御装置が、運転者の操作と、各車輪の回転速度に基づいて、各車輪の駆動力をそれぞれ個別に制御するようにしたものである。
【0005】
【発明が解決しようとする課題】
しかし、上記従来のような駆動モータの制御装置にあっては、4輪の回転速度に基づき、該4輪の駆動力をそれぞれ独立に制御するのであって、回転速度の履歴に基づいて車輪速変動を求め、これを基に駆動力を制御することができないため、以下に説明するような問題を生ずる。
つまり、4輪中の1の車輪が水溜りやマンホールなどの滑りやすい低摩擦路面部分を通過する場合には、路面摩擦係数で決まる可能限界駆動力が小さくなって、要求される駆動力を路面に伝達することができず、スリップ中の車輪が路面に伝達する駆動力は他の3輪のそれよりも少なくなる。
この伝達駆動力の差、特に左右の駆動輪において発生する伝達駆動力の差は、車体に意図しないヨーレート変化をもたらし、進行方向と車体の方向が不一致となり、走行安定性を損なうこととなる。
特に、加速走行中など大きな駆動力を必要とする場合に、この問題が顕著に生じる。
【0006】
この場合、例えば右前輪がスリップぎみになり、ヨーレート変化が発生した時に4輪独立駆動の自由度を活かして当該右前輪の駆動力を上げようとすると、右前輪の回転速度がさらに増加して右前輪のスリップがさらに進み、路面に伝達される駆動力がさらに低下して、上記ヨーレート変化が増大し、ますます走行安定性を悪化させてしまう結果になる。
【0007】
本発明はかかる問題に鑑み、上記のような車輪スリップによるヨーレート変化が生じた場合には、スリップ中の車輪はもとより、走行方向後方の車輪についても、これら車輪が滑りやすい低摩擦路面部分を通過している期間以外の期間で、各車輪の駆動力制御によりヨーレート変化を解消することで、上記したヨーレート変化の増大によりますます走行安定性が悪化するという問題を解消し得るようにした車両のヨーイング挙動制御装置を提案するものである。
【0008】
【課題を解決するための手段】
この目的のため本発明による車両のヨーイング挙動制御装置は、請求項1に記載のごとく、上記型式の車両を基礎前提とし、
走行方向前方の駆動輪が低摩擦路面部分を通過中にスリップしてヨーレート変化が生じた時、このスリップを生じた側における走行方向後方の駆動輪が上記低摩擦路面部分を通過する期間以外の期間中に、各駆動輪間の駆動力配分を上記ヨーレート変化が解消されるよう決定する構成となしたものである。
【0009】
【発明の効果】
かかる本発明の構成によれば、上記低摩擦路面部分をいかなる駆動輪も通過していない期間に、上記ヨーレート変化を解消するような駆動輪間の駆動力配分制御が行われることとなり、
どれかの駆動輪が上記低摩擦路面部分を通過している期間中に上記の駆動輪間の駆動力配分制御が行われて、ヨーレート変化の増大を惹起し、これが原因で走行安定性が悪化するという前記の問題を解消することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
図1は本発明の一実施の形態になるヨーイング挙動制御装置を具えた電気自動車の車輪駆動系を、その駆動力制御装置と共に示す線図的平面図である。
この電気自動車は、4つの車輪W1,W2,W3,W4を車体の両側に2個ずつ具え、右側に前車輪W1および後車輪W4を、また、左側に前車輪W2および後車輪W3を配置する。
これら右前輪W1および右後輪W4、そして左前輪W2および左後輪W3は、個々のモータM1およびM4、そしてモータM2およびM3により個別に駆動する駆動輪とし、これらモータを介して駆動力を個別に制御可能とする。
【0011】
モータM1,M2,M3,M4の共通な電源としてバッテリ1を設け、インバータINV1,INV2,INV3,INV4を介してモータM1,M2,M3,M4をそれぞれ共通なバッテリ1に接続する。
インバータINV1,INV2,INV3,INV4はそれぞれ、モータ駆動力コントローラ2から駆動力指令F1,F2,F3,F4を受け、バッテリ1から対応するモータM1,M2,M3,M4への供給電流を決定して、モータM1,M2,M3,M4の駆動力(車輪W1,W2,W3,W4の駆動力)を駆動力指令F1,F2,F3,F4に一致させるものとする。
【0012】
モータ駆動力コントローラ2には、駆動力指令F1,F2,F3,F4を決定するために、車輪W1,W2,W3,W4の車輪速(回転周速)Vw1,Vw2,Vw3,Vw4に関する信号(回転数信号)を検出するための車輪速センサ3FR,3FL,3RL,3RRからの信号(回転数信号)と、アクセルペダル踏み込み量(アクセル開度)APOを検出するアクセル開度センサ4からの信号とを入力する。
【0013】
モータ駆動力コントローラ2は図2にブロック線図で示すように、基準駆動力演算部11と、駆動力合成部12と、車輪速演算部13と、スリップ検出部14と、路面摩擦係数推定部15と、ヨーレート変化量推定部16と、後輪通過期間推定部17と、遅延処理部18と、ヨーレート修正駆動力演算部19と、低摩擦路面部分用駆動力低下量演算部20とで構成し、前記の入力情報を基に以下のごとくにインバータINV1,INV2,INV3,INV4への駆動力指令F1,F2,F3,F4を決定する。
【0014】
基準駆動力演算部11は、アクセル開度APOに基づいて車両が要求している基準駆動力F0を求める。
駆動力合成部12は、輪荷重配分などを勘案しながら基準駆動力を各車輪W1,W2,W3,W4に配分して各輪W1,W2,W3,W4の基準駆動力(以下では、F0 /4ずつ当分に配分した)を求めると共に、これら各輪の基準駆動力に適宜後述するヨーレート修正駆動力指令ΔF’を加算して各輪W1,W2,W3,W4の駆動力指令F1,F2,F3,F4となし、これらをインバータINV1,INV2,INV3,INV4に供給してモータM1,M2,M3,M4の駆動力制御に資する。
【0015】
車輪速演算部13は、図1における車輪速センサ3FR,3FL,3RL,3RRからの信号(回転数信号)を基に、各車輪W1,W2,W3,W4の車輪速Vw1,Vw2,Vw3,Vw4を個々に演算する。
スリップ検出部14は、これら車輪速Vw1,Vw2,Vw3,Vw4を基に車輪のスリップを検出する。
なお以下では、右前輪W1が低摩擦路面部分上に乗って加速スリップを生じ、これにより車両が上方から見て時計方向のヨーレートを増大された場合につき説明する。
この場合スリップ検出部14は、右前輪W1の車輪速Vw1が図3の瞬時t1〜t2間に示されるように他の車輪の車輪速Vw2,Vw3,Vw4よりも大きくなることから、この状態をもって右前輪W1の加速スリップを検出し、図3に示すようなスリップ検出信号を出力することができる。
【0016】
路面摩擦係数推定部15は、かかる車輪(右前輪W1)スリップ検出信号を入力されるとき、該当車輪の車輪速Vw1から求めうる実加速度と、駆動力合成部12で求めた該当車輪の駆動力指令F1のもとで当然得られるべき最大加速度との比較(差など)により、スリップした車輪(右前輪W1)が乗った低摩擦路面部分の摩擦係数μを図3に示すように推定することができる。
なお路面摩擦係数推定部15は上記に代えて、該当車輪の回転を表す運動モデルを用いて路面摩擦係数μを推定することもできる。
ヨーレート変化量推定部16は、上記の車輪(右前輪W1)スリップ検出信号を入力されるとき、路面摩擦係数推定値μから該当車輪(右前輪W1)のスリップにより発生する車両のヨーレート変化量Δφを図3に示すように推定する。
【0017】
後輪通過期間推定部17は、車輪(右前輪W1)スリップ検出信号の入力がなくなった時、つまり、該当車輪が低摩擦路面部分を通過し終えてスリップが収束した図3の瞬時t2にスリップ収束信号を遅延処理部18へ出力すると共に、この瞬時t2を起点にして、スリップ発生車輪(右前輪W1)と同じ側における後輪(右後輪)W4が低摩擦路面部分に到達するまでの時間Δt1および当該低摩擦路面部分の通過に要する時間Δt2をホイールベースおよび対応する車輪速Vw4から算出し、これらから後輪(右後輪)W4が低摩擦路面部分を通過している期間t4〜t5を図3に示すように推定して後輪通過期間推定信号を遅延処理部18へ出力する。
【0018】
遅延処理部18は、後輪通過期間推定部17からのスリップ収束信号を受けてヨーレート修正駆動力演算部19に演算開始信号を出力する。
ヨーレート修正駆動力演算部19は、ヨーレート変化量推定値Δφを0にして車両のヨーレートを本来に値に戻すのに必要な車輪W1,W2,W3,W4の駆動力配分を演算し、これをヨーレート修正駆動力として出力する。
かかるヨーレートの修正に必要な車輪W1,W2,W3,W4の駆動力配分を決定するに当たっては、車輪スリップを生じた側(車両右側)における右後輪W4の駆動力指令F4だけを操作するのが簡単で有利である。
この場合図2および図3に示すように、ヨーレート変化量推定値Δφをなくすのに必要な駆動力指令F4の修正量ΔFをヨーレート修正駆動力として出力する。
【0019】
このヨーレート修正駆動力ΔFは以下のようにして求める。
ヨーレート変化量推定値Δφをなくすのに必要なヨーレート修正駆動力ΔF(t)の積分値P(t)=∫ΔF(t)・dtを求め、右後輪W4が低摩擦路面部分を通過する前後(図3の瞬時t4の前、および瞬時t5の後)で均等にヨーレート修正用の右後輪駆動力制御を行うものとすると、ヨーレート修正駆動力ΔFはΔF=P(t)/2/Δt1により算出することができ(Δt1は前記したように、右後輪が低摩擦路面部分に到達するまでの時間)、図3のごとくにヨーレート修正駆動力ΔFを求めることができる。
【0020】
遅延処理部18は、このヨーレート修正駆動力ΔFと、後輪通過期間推定部17からの後輪通過期間推定信号とを基に、右後輪W4が低摩擦路面部分を通過する前後(図3の瞬時t4の前、および瞬時t5の後)で均等にヨーレート修正用の右後輪駆動力制御を行うよう、図3のスリップ収束瞬時t2より遅れた瞬時t3よりヨーレート修正駆動力ΔFをヨーレート修正駆動力指令ΔF’として図3のごとくに図2の駆動力合成部12へ出力し始め、右後輪W4の駆動力指令F4をΔF=ΔF’だけ図3のように嵩上げする。
【0021】
しかし、右後輪W4が低摩擦路面部分を通過している図3の瞬時t4〜t5期間において遅延処理部18は、ヨーレート修正駆動力ΔFをヨーレート修正駆動力指令ΔF’として出力するのに代え、ヨーレート修正駆動力指令ΔF’を図3に示すように0にする。
そしてこの間遅延処理部18は、低摩擦路面部分用駆動力低下量演算部20が以下のごとくに求めた低摩擦路面部分用駆動力低下量ΔFdをヨーレート修正駆動力指令ΔF’として図2の駆動力合成部12へ出力する。
【0022】
この低摩擦路面部分用駆動力低下量演算部20は、後輪通過期間推定信号を入力され図3の瞬時t4〜t5期間において、右後輪W4が低摩擦路面部分上にあってもスリップしないようにする(好ましくは、最大駆動力が得られる理想スリップ率にする)ための右後輪駆動力とするのに必要な低摩擦路面部分用駆動力低下量ΔFdを図3のごとくに求める。
よって、右後輪W4が低摩擦路面部分を通過している図3の瞬時t4〜t5期間中、右後輪W4の駆動力指令F4はΔF’=ΔFdだけ図3のように低下される。
【0023】
右後輪W4が低摩擦路面部分を通過した図3の瞬時t5以後においては、遅延処理部18が再びヨーレート修正駆動力ΔFをヨーレート修正駆動力指令ΔF’として図3のごとくに図2の駆動力合成部12へ出力し、右後輪W4の駆動力指令F4をΔF=ΔF’だけ図3のように再度嵩上げする。
この嵩上げは、ヨーレート修正駆動力の前記した積分値P(t)が達成される図3の瞬時t6にヨーレート修正駆動力ΔFが0になることで終了する。
【0024】
本実施の形態によれば、低摩擦路面部分をいかなる駆動輪も通過していない期間(図3の瞬時t3〜t4およびt5〜t6)で、車輪(右前輪W1)のスリップに伴うヨーレート変化Δφを解消するような駆動輪間の駆動力配分制御を行うことから、
どれかの駆動輪が低摩擦路面部分を通過している期間中に上記の駆動力配分制御が行われて、ヨーレート変化の増大を惹起するという問題、そして、これが原因で走行安定性が悪化するという問題を解消することができる。
【0025】
しかも上記の駆動力配分制御に際し、前輪(右前輪W1)スリップを生じた側における後輪(右後輪W4)の駆動力(F4)のみを制御することにより、ヨーレート変化を解消するための駆動力配分の決定を行うようにしたため、
1輪の駆動力制御のみで上記の作用効果を達成することができ、制御を簡単なものにすることができる。
【0026】
また、前輪(右前輪W1)スリップを生じた側における後輪(右後輪W4)が低摩擦路面部分を通過する前(図3の瞬時t4の前)と後(図3の瞬時t5の後)とで均等に分散させて、該後輪(右後輪W4)のヨーレート変化解消用の駆動力制御を行うようにしたため、
後輪(右後輪W4)が低摩擦路面部分を通過する前と後で路面摩擦係数が異なるようなことがあっても、少なくとも一方においてヨーレートの修正が補償されることとなり、上記の作用効果を確実なものにすることができる。
【0027】
更に、前輪(右前輪W1)スリップを生じた側における後輪(右後輪W4)が低摩擦路面部分を通過する期間中は、該後輪(右後輪W4)の駆動力F4を、低摩擦路面部分上にあってもスリップが発生しない値に低下させるようにしたため、
該後輪(右後輪W4)が低摩擦路面部分上でスリップするようなことがなくなり、このスリップで前記の作用効果が損なわれるのを回避することができる。
【0028】
なお、駆動輪の車輪速から求めた実加速度と、該駆動輪の駆動力指令のもとで当然得られるべき最大加速度との比較により路面摩擦係数μを推定し、この路面摩擦係数推定値μから前輪(右前輪W1)スリップによるヨーレート変化Δφを推定するようにしたため、
路面摩擦係数μおよびヨーレート変化Δφの推定を、センサの追加なしに、且つ、容易に行うことができ、コスト上大いに有利である。
【0029】
なお、本実施の形態においては、スリップが生じた左右の前輪1もしくは2と同じ側にある後輪3もしくは4の駆動力を増加することで、車体のヨーレート変化を解消するものであるが、反対側の前輪2もしくは1、または後輪4もしくは3の駆動力を減少することで、同様の効果を得られること勿論である。あるいは、両側の後輪3,4を同時に増加・減少するなど、複数の車輪の駆動力を同時に変化しても同様の効果を得られること勿論である。
【図面の簡単な説明】
【図1】本発明の一実施の形態になるヨーイング挙動制御装置を具えた電気自動車の車輪駆動系を、その駆動力制御装置と共に示す線図的平面図である。
【図2】同実施の形態になる電気自動車の車輪駆動系およびモータコントローラの構成を示すブロック線図である。
【図3】同実施の形態になる電気自動車の車輪速、各検出信号、各推定信号、駆動力およびヨーレート変化量を示すタイムチャートである。
【符号の説明】
1 バッテリ
2 モータ駆動力コントローラ
3FL,3FR,3RL,3RR 車輪速センサ
4 アクセル開度センサ
W1 右前輪
W2 左前輪
W3 左後輪
W4 右後輪
M1,M2,M3,M4 モータ
INV1,INV2,INV3,INV4 インバータ
11 基準駆動力演算部
12 駆動力合成部
13 車輪速演算部
14 スリップ検出部
15 路面摩擦係数推定部
16 ヨーレート変化量推定部
17 後輪通過期間推定部
18 遅延処理部
19 ヨーレート修正駆動力演算部
20 低摩擦路面部分用駆動力低下量演算部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a yaw behavior control device for a vehicle that includes a plurality of drive wheels on the left and right sides, and that can independently control the drive force of all the drive wheels. The present invention relates to an improvement proposal of a yawing behavior control device that eliminates the yaw rate change by controlling the driving force distribution between the driving wheels.
[0002]
[Prior art]
Conventionally, a vehicle having four wheels and controlling the driving force of each of the four wheels independently is disclosed in, for example, Patent Document 1.
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. 59-141405 [0004]
The electric vehicle described in Patent Document 1 includes a total of four or more wheels paired on the left and right of the vehicle body, a motor that is drivingly coupled to each of the wheels, and a control device that controls the motor. The apparatus controls the driving force of each wheel individually based on the operation of the driver and the rotational speed of each wheel.
[0005]
[Problems to be solved by the invention]
However, in the conventional drive motor control device, the driving force of the four wheels is controlled independently based on the rotational speed of the four wheels, and the wheel speed is determined based on the history of the rotational speed. Since the fluctuation cannot be obtained and the driving force cannot be controlled based on this, the following problem arises.
In other words, when one of the four wheels passes through a slippery, low-friction road surface portion such as a puddle or manhole, the possible driving force determined by the road surface friction coefficient is reduced, and the required driving force is reduced to the road surface. The driving force transmitted to the road surface by the slipping wheel is less than that of the other three wheels.
This difference in transmission driving force, particularly the difference in transmission driving force generated between the left and right driving wheels, causes an unintended yaw rate change in the vehicle body, resulting in a mismatch between the traveling direction and the vehicle body direction, thereby impairing running stability.
In particular, this problem occurs remarkably when a large driving force is required such as during acceleration traveling.
[0006]
In this case, for example, when the right front wheel becomes slipped and the yaw rate changes, if the drive power of the right front wheel is increased by utilizing the freedom of independent four-wheel drive, the rotational speed of the right front wheel further increases. The right front wheel slips further, the driving force transmitted to the road surface further decreases, the yaw rate change increases, and the running stability is further deteriorated.
[0007]
In view of such a problem, the present invention, when the yaw rate change due to the wheel slip as described above occurs, not only the wheel being slipped but also the wheel behind the running direction passes through the low friction road surface portion where the wheel is slippery. By eliminating the yaw rate change by controlling the driving force of each wheel during a period other than the period during which the vehicle is running, the yawing of the vehicle can solve the above-described problem that the running stability is further deteriorated due to the increase in the yaw rate change. A behavior control device is proposed.
[0008]
[Means for Solving the Problems]
For this purpose, the vehicle yawing behavior control device according to the present invention is based on a vehicle of the above type as described in claim 1,
When the drive wheel in the traveling direction slips while passing through the low friction road surface portion and the yaw rate changes, the driving wheel at the rear side in the traveling direction on the side where the slip occurs is other than the period in which the driving wheel passes through the low friction road surface portion. During the period, the driving force distribution between the driving wheels is determined so as to eliminate the yaw rate change.
[0009]
【The invention's effect】
According to the configuration of the present invention, the driving force distribution control between the driving wheels so as to eliminate the yaw rate change is performed in a period in which no driving wheel passes through the low friction road surface portion,
The drive force distribution control between the drive wheels is performed during the period when any of the drive wheels is passing through the low friction road surface portion, causing an increase in the yaw rate change, which causes the running stability to deteriorate. It is possible to solve the above-mentioned problem.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagrammatic plan view showing a wheel drive system of an electric vehicle including a yawing behavior control device according to an embodiment of the present invention, together with the drive force control device.
This electric vehicle has four wheels W1, W2, W3, and W4 on each side of the vehicle body, with a front wheel W1 and a rear wheel W4 on the right side, and a front wheel W2 and a rear wheel W3 on the left side. .
The right front wheel W1 and the right rear wheel W4, and the left front wheel W2 and the left rear wheel W3 are drive wheels that are individually driven by the individual motors M1 and M4, and the motors M2 and M3, and drive power is transmitted via these motors. Individual control is possible.
[0011]
A battery 1 is provided as a common power source for the motors M1, M2, M3, and M4, and the motors M1, M2, M3, and M4 are connected to the common battery 1 through inverters INV1, INV2, INV3, and INV4, respectively.
Inverters INV1, INV2, INV3 and INV4 receive driving force commands F1, F2, F3 and F4 from the motor driving force controller 2, respectively, and determine supply currents from the battery 1 to the corresponding motors M1, M2, M3 and M4. Thus, the driving force of the motors M1, M2, M3, and M4 (the driving force of the wheels W1, W2, W3, and W4) is made to coincide with the driving force commands F1, F2, F3, and F4.
[0012]
In order to determine the driving force commands F1, F2, F3, and F4, the motor driving force controller 2 receives signals relating to wheel speeds (rotational peripheral speeds) Vw1, Vw2, Vw3, and Vw4 of the wheels W1, W2, W3, and W4 ( Signals from the wheel speed sensors 3FR, 3FL, 3RL, 3RR for detecting the rotation speed signal) and signals from the accelerator opening sensor 4 for detecting the accelerator pedal depression amount (accelerator opening) APO. Enter.
[0013]
As shown by a block diagram in FIG. 2, the motor driving force controller 2 includes a reference driving force calculation unit 11, a driving force synthesis unit 12, a wheel speed calculation unit 13, a slip detection unit 14, and a road surface friction coefficient estimation unit. 15, a yaw rate change amount estimation unit 16, a rear wheel passage period estimation unit 17, a delay processing unit 18, a yaw rate correction driving force calculation unit 19, and a low friction road surface portion driving force decrease amount calculation unit 20. Based on the input information, driving force commands F1, F2, F3, and F4 to the inverters INV1, INV2, INV3, and INV4 are determined as follows.
[0014]
The reference driving force calculation part 11 calculates | requires the reference driving force F0 which the vehicle has requested | required based on accelerator opening APO.
The driving force synthesizing unit 12 distributes the reference driving force to each of the wheels W1, W2, W3, and W4 while considering the wheel load distribution and the like, and the reference driving force (hereinafter referred to as F0) of each of the wheels W1, W2, W3, and W4. / 4), and a yaw rate correction driving force command ΔF ′, which will be described later, is added to the reference driving force of each wheel as appropriate to determine the driving force commands F1, F2 of the wheels W1, W2, W3, and W4. , F3, F4, and these are supplied to the inverters INV1, INV2, INV3, INV4 to contribute to driving force control of the motors M1, M2, M3, M4.
[0015]
The wheel speed calculation unit 13 generates wheel speeds Vw1, Vw2, Vw3 of the wheels W1, W2, W3, W4 based on signals (rotational speed signals) from the wheel speed sensors 3FR, 3FL, 3RL, 3RR in FIG. Vw4 is calculated individually.
The slip detector 14 detects wheel slip based on the wheel speeds Vw1, Vw2, Vw3, and Vw4.
In the following, a case will be described in which the right front wheel W1 rides on the low friction road surface portion and causes an acceleration slip, whereby the vehicle is increased in the clockwise yaw rate as viewed from above.
In this case, since the wheel speed Vw1 of the right front wheel W1 becomes larger than the wheel speeds Vw2, Vw3, Vw4 of the other wheels as shown between the instants t1 and t2 in FIG. An acceleration slip of the right front wheel W1 can be detected, and a slip detection signal as shown in FIG. 3 can be output.
[0016]
When the wheel (right front wheel W1) slip detection signal is input, the road surface friction coefficient estimating unit 15 receives the actual acceleration that can be obtained from the wheel speed Vw1 of the relevant wheel and the driving force of the relevant wheel that is obtained by the driving force synthesizing unit 12. Estimate the friction coefficient μ of the low friction road surface portion on which the slipped wheel (right front wheel W1) rides by comparison (difference, etc.) with the maximum acceleration that should naturally be obtained under the command F1, as shown in FIG. Can do.
Instead of the above, the road surface friction coefficient estimating unit 15 can also estimate the road surface friction coefficient μ using a motion model representing the rotation of the corresponding wheel.
When the wheel (right front wheel W1) slip detection signal is input to the yaw rate change amount estimation unit 16, the yaw rate change amount Δφ of the vehicle generated by the slip of the corresponding wheel (right front wheel W1) from the road surface friction coefficient estimated value μ. Is estimated as shown in FIG.
[0017]
When the wheel (right front wheel W1) slip detection signal is not input, the rear wheel passage period estimation unit 17 slips at the instant t2 in FIG. 3 when the corresponding wheel has finished passing through the low friction road surface and the slip has converged. The convergence signal is output to the delay processing unit 18 and the instant t2 is used as a starting point until the rear wheel (right rear wheel) W4 on the same side as the slip generation wheel (right front wheel W1) reaches the low friction road surface portion. A time Δt1 and a time Δt2 required to pass through the low friction road surface portion are calculated from the wheel base and the corresponding wheel speed Vw4, and from these, the rear wheel (right rear wheel) W4 passes through the low friction road surface portion. As shown in FIG. 3, t5 is estimated and a rear wheel passage period estimation signal is output to the delay processing unit 18.
[0018]
The delay processing unit 18 receives the slip convergence signal from the rear wheel passage period estimation unit 17 and outputs a calculation start signal to the yaw rate correction driving force calculation unit 19.
The yaw rate correction driving force calculation unit 19 calculates the driving force distribution of the wheels W1, W2, W3, and W4 necessary for setting the yaw rate change estimated value Δφ to 0 and returning the yaw rate of the vehicle to the original value. Output as yaw rate correction driving force.
In determining the driving force distribution of the wheels W1, W2, W3, and W4 necessary for correcting the yaw rate, only the driving force command F4 for the right rear wheel W4 on the side where the wheel slip occurs (the vehicle right side) is operated. Is simple and advantageous.
In this case, as shown in FIGS. 2 and 3, the correction amount ΔF of the driving force command F4 necessary to eliminate the estimated yaw rate change value Δφ is output as the yaw rate correction driving force.
[0019]
The yaw rate correction driving force ΔF is obtained as follows.
The integral value P (t) = ∫ΔF (t) · dt of the yaw rate correction driving force ΔF (t) necessary to eliminate the yaw rate change estimated value Δφ is obtained, and the right rear wheel W4 passes through the low friction road surface portion. Assuming that the right rear wheel driving force control for yaw rate correction is performed equally before and after (before the moment t4 and after the instant t5 in FIG. 3), the yaw rate correction driving force ΔF is ΔF = P (t) / 2 / Δt1 can be calculated (Δt1 is the time until the right rear wheel reaches the low friction road surface portion as described above), and the yaw rate correction driving force ΔF can be obtained as shown in FIG.
[0020]
Based on the yaw rate correction driving force ΔF and the rear wheel passage period estimation signal from the rear wheel passage period estimation unit 17, the delay processing unit 18 performs before and after the right rear wheel W4 passes through the low friction road surface portion (FIG. 3). Yaw rate correction driving force ΔF is corrected from yaw rate correction driving force ΔF from instant t3 lagging from slip convergence instant t2 in FIG. 3 so that the right rear wheel driving force control for yaw rate correction is performed evenly before instant t4 and after instant t5. As shown in FIG. 3, the driving force command ΔF ′ starts to be output to the driving force combining unit 12 shown in FIG. 2, and the driving force command F4 for the right rear wheel W4 is increased by ΔF = ΔF ′ as shown in FIG.
[0021]
However, the delay processing unit 18 instead of outputting the yaw rate correction driving force ΔF as the yaw rate correction driving force command ΔF ′ during the instant t4 to t5 in FIG. 3 in which the right rear wheel W4 passes the low friction road surface portion. The yaw rate correction driving force command ΔF ′ is set to 0 as shown in FIG.
During this time, the delay processing unit 18 uses the low friction road surface portion driving force decrease amount calculation portion 20 as the following to obtain the low friction road surface portion driving force decrease amount ΔFd as the yaw rate correction driving force command ΔF ′ as shown in FIG. Output to the force synthesizer 12.
[0022]
The low-friction road surface portion driving force reduction amount calculation unit 20 receives the rear wheel passage period estimation signal and does not slip even during the instant t4 to t5 in FIG. 3 even if the right rear wheel W4 is on the low-friction road surface portion. As shown in FIG. 3, a low friction road surface portion driving force reduction amount ΔFd necessary for obtaining the right rear wheel driving force for achieving the above (preferably, the ideal slip ratio for obtaining the maximum driving force) is obtained.
Therefore, during the instant t4 to t5 of FIG. 3 in which the right rear wheel W4 passes through the low friction road surface portion, the driving force command F4 for the right rear wheel W4 is reduced by ΔF ′ = ΔFd as shown in FIG.
[0023]
After the instant t5 of FIG. 3 when the right rear wheel W4 has passed through the low friction road surface portion, the delay processing unit 18 again uses the yaw rate correction driving force ΔF as the yaw rate correction driving force command ΔF ′ as shown in FIG. The power is output to the force synthesizer 12 and the driving force command F4 for the right rear wheel W4 is raised again by ΔF = ΔF ′ as shown in FIG.
The raising is finished when the yaw rate correction driving force ΔF becomes 0 at the instant t6 in FIG. 3 when the above-described integrated value P (t) of the yaw rate correction driving force is achieved.
[0024]
According to the present embodiment, the yaw rate change Δφ associated with the slip of the wheel (right front wheel W1) during a period when no drive wheel passes through the low friction road surface portion (instantaneous t3 to t4 and t5 to t6 in FIG. 3). Because it performs the driving force distribution control between the driving wheels to eliminate
The driving force distribution control described above is performed during the period when any of the driving wheels is passing through the low friction road surface portion, causing an increase in yaw rate change, and this causes a deterioration in running stability. Can be solved.
[0025]
In addition, during the above-described driving force distribution control, only the driving force (F4) of the rear wheel (right rear wheel W4) on the side on which the front wheel (right front wheel W1) slips is controlled to drive for eliminating the yaw rate change. Because we decided to decide the power distribution,
The above-described effects can be achieved only by controlling the driving force of one wheel, and the control can be simplified.
[0026]
Also, the front wheel (right front wheel W1) before the rear wheel (right rear wheel W4) on the side where the slip occurs passes through the low friction road surface portion (before the moment t4 in FIG. 3) and after (after the moment t5 in FIG. 3). ) And the driving force control for eliminating the yaw rate change of the rear wheel (right rear wheel W4).
Even if the road surface friction coefficient is different before and after the rear wheel (right rear wheel W4) passes through the low-friction road surface portion, the correction of the yaw rate is compensated for at least one of the above effects. Can be ensured.
[0027]
Further, during the period when the rear wheel (right rear wheel W4) on the side where the front wheel (right front wheel W1) slips passes through the low friction road surface portion, the driving force F4 of the rear wheel (right rear wheel W4) is reduced. Because the slip is reduced to a value that does not cause slipping even on the friction road surface,
The rear wheel (the right rear wheel W4) is prevented from slipping on the low friction road surface portion, and it is possible to avoid the above-described effects from being impaired by this slip.
[0028]
The road surface friction coefficient μ is estimated by comparing the actual acceleration obtained from the wheel speed of the driving wheel with the maximum acceleration that should be obtained under the driving force command of the driving wheel, and this road surface friction coefficient estimated value μ Since the yaw rate change Δφ due to the front wheel (right front wheel W1) slip is estimated from
The estimation of the road surface friction coefficient μ and the yaw rate change Δφ can be easily performed without adding a sensor, which is very advantageous in terms of cost.
[0029]
In this embodiment, the yaw rate change of the vehicle body is eliminated by increasing the driving force of the rear wheels 3 or 4 on the same side as the left and right front wheels 1 or 2 where the slip has occurred. Of course, the same effect can be obtained by reducing the driving force of the front wheel 2 or 1 on the opposite side or the rear wheel 4 or 3. Alternatively, it is a matter of course that the same effect can be obtained even if the driving forces of a plurality of wheels are changed simultaneously, such as simultaneously increasing / decreasing the rear wheels 3 and 4 on both sides.
[Brief description of the drawings]
FIG. 1 is a diagrammatic plan view showing a wheel drive system of an electric vehicle including a yawing behavior control device according to an embodiment of the present invention together with the drive force control device.
FIG. 2 is a block diagram showing a configuration of a wheel drive system and a motor controller of the electric vehicle according to the embodiment.
FIG. 3 is a time chart showing wheel speeds, detection signals, estimation signals, driving force, and yaw rate change amount of the electric vehicle according to the embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 2 Motor drive force controller 3FL, 3FR, 3RL, 3RR Wheel speed sensor 4 Accelerator opening degree sensor W1 Right front wheel W2 Left front wheel W3 Left rear wheel W4 Right rear wheel M1, M2, M3, M4 Motor INV1, INV2, INV3 INV4 Inverter 11 Reference driving force calculating unit 12 Driving force synthesizing unit 13 Wheel speed calculating unit 14 Slip detecting unit 15 Road surface friction coefficient estimating unit 16 Yaw rate change amount estimating unit 17 Rear wheel passage period estimating unit 18 Delay processing unit 19 Yaw rate correcting driving force Calculation unit 20 Low-friction road surface driving force reduction amount calculation unit

Claims (5)

左右にそれぞれ複数の駆動輪を具え、全ての駆動輪を個々に独立して駆動力制御可能な車両において、
走行方向前方の駆動輪が低摩擦路面部分を通過中にスリップしたことにより、車体にヨーレート変化が生じた場合には、該スリップを生じた側における走行方向後方の駆動輪が前記低摩擦路面部分を通過する期間以外の期間中に、各駆動輪間の駆動力配分を前記ヨーレート変化が解消されるよう決定する構成にしたことを特徴とする車両のヨーイング挙動制御装置。
In vehicles with multiple drive wheels on the left and right, and all drive wheels can control drive power independently,
When the drive wheel ahead in the running direction slips while passing through the low friction road surface portion, and the yaw rate change occurs in the vehicle body, the drive wheel behind the running direction on the side where the slip occurs causes the low friction road surface portion. A yawing behavior control apparatus for a vehicle, characterized in that the driving force distribution between the driving wheels is determined so as to eliminate the change in yaw rate during a period other than the period passing through the vehicle.
請求項1に記載のヨーイング挙動制御装置において、
前記スリップを生じた側における走行方向後方の駆動輪の駆動力のみを制御することにより、前記ヨーレート変化を解消するための前記駆動力配分の決定を行うよう構成したことを特徴とする車両のヨーイング挙動制御装置。
In the yawing behavior control device according to claim 1,
The vehicle yawing is configured to determine the driving force distribution for eliminating the yaw rate change by controlling only the driving force of the driving wheel behind the running direction on the side where the slip occurs. Behavior control device.
請求項2に記載のヨーイング挙動制御装置において、
前記スリップを生じた側における走行方向後方の駆動輪が前記低摩擦路面部分を通過する前と後とで分散させて、該駆動輪の前記ヨーレート変化解消用の駆動力制御を行うよう構成したことを特徴とする車両のヨーイング挙動制御装置。
In the yawing behavior control device according to claim 2,
The drive wheels on the side where the slip is generated are configured to perform drive force control for canceling the yaw rate change of the drive wheels by dispersing the drive wheels behind the running direction before and after passing through the low friction road surface portion. A yawing behavior control device for a vehicle characterized by the above.
請求項2または3に記載のヨーイング挙動制御装置において、
前記スリップを生じた側における走行方向後方の駆動輪が前記低摩擦路面部分を通過する期間中は、該駆動輪の駆動力を、前記低摩擦路面部分上にあってもスリップが発生しない値に低下させるよう構成したことを特徴とする車両のヨーイング挙動制御装置。
In the yawing behavior control device according to claim 2 or 3,
During the period in which the driving wheel behind the running direction on the side where the slip occurs passes through the low friction road surface portion, the driving force of the driving wheel is set to a value at which no slip occurs even on the low friction road surface portion. A yawing behavior control device for a vehicle, characterized by being configured to decrease.
請求項1乃至4のいずれか1項に記載のヨーイング挙動制御装置において、
駆動輪の実加速度と、該駆動輪の駆動力指令のもとで当然得られるべき最大加速度との比較により路面摩擦係数を推定し、この路面摩擦係数推定値から前記ヨーレート変化を推定するよう構成したことを特徴とする車両のヨーイング挙動制御装置。
In the yawing behavior control device according to any one of claims 1 to 4,
The road surface friction coefficient is estimated by comparing the actual acceleration of the driving wheel and the maximum acceleration that should be naturally obtained under the driving force command of the driving wheel, and the yaw rate change is estimated from the estimated value of the road surface friction coefficient. A yawing behavior control apparatus for a vehicle characterized by the above.
JP2003179348A 2003-06-24 2003-06-24 Yawing behavior of vehicle control device Pending JP2005020830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179348A JP2005020830A (en) 2003-06-24 2003-06-24 Yawing behavior of vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179348A JP2005020830A (en) 2003-06-24 2003-06-24 Yawing behavior of vehicle control device

Publications (1)

Publication Number Publication Date
JP2005020830A true JP2005020830A (en) 2005-01-20

Family

ID=34180697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179348A Pending JP2005020830A (en) 2003-06-24 2003-06-24 Yawing behavior of vehicle control device

Country Status (1)

Country Link
JP (1) JP2005020830A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240417A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Individual driving type automobile coping with drive obstacle of each wheel
JP2006315661A (en) * 2005-04-15 2006-11-24 Nissan Motor Co Ltd Driving force distribution device for four-wheel independent driving vehicle
KR100811943B1 (en) * 2006-06-20 2008-03-10 현대자동차주식회사 System for independent drive traveling of a battery car and control method of the system
US7650216B2 (en) 2005-03-31 2010-01-19 Hitachi, Ltd. Vehicle driving system with adaptive skid control
WO2012086223A1 (en) * 2010-12-24 2012-06-28 株式会社ユニバンス Electric vehicle
JP2015023691A (en) * 2013-07-19 2015-02-02 富士重工業株式会社 Drive control device of vehicle
JP5883490B1 (en) * 2014-09-30 2016-03-15 富士重工業株式会社 Vehicle control apparatus and vehicle control method
WO2018028854A1 (en) * 2016-08-11 2018-02-15 Robert Bosch Gmbh Method and device for operating a motor vehicle, and motor vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240417A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Individual driving type automobile coping with drive obstacle of each wheel
US7650216B2 (en) 2005-03-31 2010-01-19 Hitachi, Ltd. Vehicle driving system with adaptive skid control
JP2006315661A (en) * 2005-04-15 2006-11-24 Nissan Motor Co Ltd Driving force distribution device for four-wheel independent driving vehicle
KR100811943B1 (en) * 2006-06-20 2008-03-10 현대자동차주식회사 System for independent drive traveling of a battery car and control method of the system
WO2012086223A1 (en) * 2010-12-24 2012-06-28 株式会社ユニバンス Electric vehicle
JP2015023691A (en) * 2013-07-19 2015-02-02 富士重工業株式会社 Drive control device of vehicle
JP5883490B1 (en) * 2014-09-30 2016-03-15 富士重工業株式会社 Vehicle control apparatus and vehicle control method
JP2016073107A (en) * 2014-09-30 2016-05-09 富士重工業株式会社 Control device of vehicle and control method of the same
WO2018028854A1 (en) * 2016-08-11 2018-02-15 Robert Bosch Gmbh Method and device for operating a motor vehicle, and motor vehicle
US11142077B2 (en) 2016-08-11 2021-10-12 Robert Bosch Gmbh Method and device for operating a motor vehicle, and motor vehicle

Similar Documents

Publication Publication Date Title
JP3578019B2 (en) Hybrid vehicle
US7957881B2 (en) Vehicle and method of controlling driving force for the vehicle based on detected slip of the drive wheel
JP6109894B2 (en) Vehicle control apparatus and vehicle control method
JP4867369B2 (en) Driving force control device for electric vehicle, automobile and driving force control method for electric vehicle
CN107848526B (en) Vehicle turning control device
JP2008178216A (en) Automobile, and controller of automobile
JP2004104991A (en) Control method and system for independent braking and controllability of vehicle with regenerative braking
JPH0549106A (en) Motor controller
JP2007106399A (en) Torque distribution control system
JP2007131093A (en) Deceleration controller for vehicle
JP4233794B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP2005020830A (en) Yawing behavior of vehicle control device
JP2010028982A (en) Method for controlling electric vehicle and controller for the electric vehicle
JP2010200590A (en) Device for regenerative braking control of electric vehicle
JP4725431B2 (en) Driving force estimation device for electric vehicle, automobile and driving force estimation method for electric vehicle
JP2001097204A (en) Braking force control device of automobile
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
JP3931852B2 (en) Electric vehicle and control method thereof
KR20210018652A (en) Wheel slip control method for vehicle
KR20210014822A (en) System and method for controlling wheel slip of vehicle
JP2685644B2 (en) Electric car
JPH10210604A (en) Driving control equipment for electric vehicle
JP2011088492A (en) Traction control device for hybrid vehicle
JP3783661B2 (en) Hybrid vehicle
WO2022074717A1 (en) Control method and control device for electric four-wheel drive vehicle