JP2006315661A - Driving force distribution device for four-wheel independent driving vehicle - Google Patents

Driving force distribution device for four-wheel independent driving vehicle

Info

Publication number
JP2006315661A
JP2006315661A JP2006005713A JP2006005713A JP2006315661A JP 2006315661 A JP2006315661 A JP 2006315661A JP 2006005713 A JP2006005713 A JP 2006005713A JP 2006005713 A JP2006005713 A JP 2006005713A JP 2006315661 A JP2006315661 A JP 2006315661A
Authority
JP
Japan
Prior art keywords
driving force
wheel
vehicle
δfx
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006005713A
Other languages
Japanese (ja)
Other versions
JP4892983B2 (en
Inventor
Ichiro Yamaguchi
一郎 山口
Yoshitaka Deguchi
欣高 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006005713A priority Critical patent/JP4892983B2/en
Publication of JP2006315661A publication Critical patent/JP2006315661A/en
Application granted granted Critical
Publication of JP4892983B2 publication Critical patent/JP4892983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device capable of making a yaw rate and a vehicle lateral acceleration a desired response even if variation of tire lateral force relative to variation of drive force becomes non-linear variation by a lateral slide angle and a wheel load. <P>SOLUTION: The drive force distribution device is provided with a means 8 for determining respective target values of vehicle longitudinal force, vehicle lateral force and yaw moment of the vehicle as vehicle behavior target values; a means 8 for setting a drive force basic value of the respective wheels; a means 8 for performing operation making respective basic values of the vehicle longitudinal force, the vehicle lateral force and the yaw moment realized by the set drive force basic value of the respective wheels as basic values of the vehicle behavior; a means 8 for operating an error of the target value of the vehicle behavior and the operated basic value of the vehicle behavior as an error of the vehicle behavior; a means 8 for operating a drive force correction amount of the respective wheels reducing the operated error of the vehicle behavior; and a means 8 for determining the drive force target value of the respective wheels by sum of the drive force basic value and the operated drive force correction amount. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、四輪独立駆動車の駆動力配分装置に関するものである。   The present invention relates to a driving force distribution device for a four-wheel independent drive vehicle.

従来技術として、左右輪を独立に駆動(あるいは制動)可能な車両において、ヨーレートや車両横方向加速度を所望の応答とする左右輪の駆動力差をフィードフォワードで求めるモデルフォロイング制御が特許文献1に記載されている。   As a prior art, model following control is known in which a left and right wheel driving force difference is determined by feedforward in a vehicle in which left and right wheels can be driven (or braked) independently, with yaw rate and vehicle lateral acceleration as desired responses. It is described in.

このモデルフォロイング制御では、各輪の舵角,駆動力,横すべり角等が十分小さいという仮定のもとで車両を線形化(線形2輪モデル)し、この線形化した車両モデルの逆モデルを用いてヨーレートや車両横方向加速度を所望の応答となる左右輪の駆動力差を求めている。
金井喜美雄,越智徳昌,川邊武俊著,「ビークル制御」,槇書店,2004年1月20日,第3章3.2節
In this model following control, the vehicle is linearized (linear two-wheel model) on the assumption that the steering angle, driving force, side slip angle, etc. of each wheel are sufficiently small, and an inverse model of this linearized vehicle model is obtained. By using the yaw rate and the vehicle lateral acceleration, the difference between the left and right wheels is obtained as a desired response.
Kimio Kanai, Tokumasa Ochi, Taketoshi Kawamata, “Vehicle Control”, Sakai Shoten, January 20, 2004, Chapter 3 Section 3.2

ところで、上記特許文献1の技術によれば、線形近似された車両モデルに対し、所望のヨーレートや車両横方向加速度を得ることができる。   By the way, according to the technique disclosed in Patent Document 1, a desired yaw rate and vehicle lateral acceleration can be obtained for a linearly approximated vehicle model.

しかしながら、ヨーレートや横方向加速度等を主として生じさせる各輪のタイヤ横力について考えると、駆動力変化に対するこのタイヤ横力の変化は、横すべり角や輪荷重等によって非線形に変化することが知られている。特に各輪の舵角や横すべり角が大きくなる急旋回時には、各輪の舵角や横すべり角を線形近似したことによるモデル誤差が大きくなる。   However, considering the tire lateral force of each wheel that mainly generates yaw rate, lateral acceleration, etc., it is known that the change of the tire lateral force with respect to the driving force changes nonlinearly depending on the side slip angle, wheel load, etc. Yes. In particular, during a sudden turn in which the rudder angle or side slip angle of each wheel is large, a model error due to linear approximation of the rudder angle or side slip angle of each wheel increases.

従って、このようにタイヤの非線形性が強くなりモデル誤差が大きくなるような場合には、上記特許文献1の技術で求めた左右輪駆動力差ではヨーレートや車両横方向加速度を所望の応答とすることができず、目標値に対してオーバーシュートや収束の遅れが発生し、ドライバーの操縦性を損ねる恐れがある。   Therefore, when the nonlinearity of the tire becomes strong and the model error increases as described above, the yaw rate and the vehicle lateral acceleration are set as desired responses in the difference between the left and right wheel driving forces obtained by the technique of Patent Document 1. This may result in overshoot or convergence delay with respect to the target value, which may impair the driver's maneuverability.

そこで本発明は、駆動力変化に対するタイヤ横力の変化が、横すべり角や輪荷重等によって非線形な変化となることがあっても、ヨーレートや車両横方向加速度を所望の応答としうる装置を提供することを目的とする。   Therefore, the present invention provides a device that can make yaw rate or vehicle lateral acceleration a desired response even if the change in tire lateral force with respect to the change in driving force becomes a non-linear change due to a side slip angle, wheel load, or the like. For the purpose.

本発明は、四輪を独立に駆動可能な車両において、車両の車両前後方向力Fxの目標値Fx**,車両横方向力Fyの目標値Fy**,ヨーモーメントMの目標値M**を車両挙動目標値として決定し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し、この設定された各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##を車両挙動の基本値として演算し、前記車両挙動の目標値Fx**,Fy**,M**とこの演算された車両挙動の基本値Fx##,Fy##,M##との誤差ΔFx,ΔFy,ΔMを車両挙動の誤差として演算し、この演算された車両挙動の誤差ΔFx,ΔFy,ΔMを小さくする各輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し、前記の基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し、この決定された各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**が得られるように各輪の駆動力を制御するように構成する。 The present invention relates to a target value Fx ** of a vehicle longitudinal force Fx, a target value Fy ** of a vehicle lateral force Fy, and a target value M ** of a yaw moment M in a vehicle capable of independently driving four wheels. Is set as the vehicle behavior target value, and the basic driving force values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel are set, and the basic driving force value of each wheel thus set is set. Basic value Fx ## of vehicle longitudinal force realized by Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ##, basic value Fy ## of vehicle lateral force, basic value of yaw moment M ## is calculated as the basic value of the vehicle behavior, and the target values Fx **, Fy **, M ** of the vehicle behavior and the calculated basic values Fx ##, Fy ##, M ## of the vehicle behavior are calculated. error between ΔFx, ΔFy, the .DELTA.M calculated as an error of the vehicle behavior, error DerutaFx the computed vehicle behavior, DerutaFy, driving force correction amount DerutaFx 1 of each wheel to reduce the .DELTA.M, delta x 2, ΔFx 3, calculates the ΔFx 4, wherein the base value Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## computed driving force correction amount DerutaFx 1 of Toko, ΔFx 2, The driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** of each wheel are determined by the sum of ΔFx 3 and ΔFx 4, and the determined driving force target value of each wheel is determined. The driving force of each wheel is controlled so as to obtain Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 **.

また、本発明は、四輪を独立に駆動可能な車両において、車両の車両前後方向力の目標値Fx**、ヨーモーメントの目標値M**を車両挙動の目標値として決定し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し、この設定された各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,ヨーモーメントの基本値M##を車両挙動の基本値として演算し、前記車両挙動の目標値Fx**、M**とこの演算された車両挙動の基本値Fx##,M##との誤差ΔFx,ΔMを車両挙動の誤差として演算し、この演算された車両挙動の誤差ΔFx,ΔMを小さくする各輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し、前記駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し、この決定された各輪の駆動力目標値が得られるように各輪の駆動力を制御するように構成する。 Further, according to the present invention, in a vehicle capable of independently driving four wheels, the target value Fx ** of the vehicle longitudinal force and the target value M ** of the yaw moment of the vehicle are determined as the target values of the vehicle behavior. Driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## are set, and the driving force basic values Fx 1 ##, Fx 2 ##, Fx of the set wheels are set. The basic value Fx ## of the vehicle longitudinal force realized by 3 ##, Fx 4 ## and the basic value M ## of the yaw moment are calculated as the basic value of the vehicle behavior, and the target value Fx ** of the vehicle behavior is calculated. Errors ΔFx and ΔM between M ** and the calculated vehicle behavior basic values Fx ## and M ## are calculated as vehicle behavior errors, and the calculated vehicle behavior errors ΔFx and ΔM are reduced. Wheel driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are calculated, and the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## and The driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of each wheel are obtained by adding the calculated driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4. The driving force of each wheel is controlled so that the determined driving force target value of each wheel is obtained.

また、本発明は、四輪を独立に駆動可能な車両において、車両の車両前後方向力の目標値Fx**、車両横方向力の目標値Fy**を車両挙動の目標値として決定し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し、この設定された各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##を車両挙動の基本値として演算し、前記車両挙動の目標値Fx**,Fy**とこの演算された車両挙動の基本値Fx##,Fy##との誤差ΔFx,ΔFyを車両挙動の誤差として演算し、この演算された車両挙動の誤差ΔFx,ΔMを小さくする各輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し、前記駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し、この決定された各輪の駆動力目標値が得られるように各輪の駆動力を制御するように構成する。 Further, the present invention determines a vehicle longitudinal force target value Fx ** and a vehicle lateral force target value Fy ** as vehicle behavior target values in a vehicle capable of independently driving four wheels. The basic driving force values Fx 1 ##, Fx 2 ##, Fx 3 ## and Fx 4 ## of each wheel are set, and the basic driving force values Fx 1 ## and Fx 2 ## of the wheels are set. , Fx 3 ##, Fx 4 ##, the vehicle front-rear direction force basic value Fx ## and the vehicle lateral force basic value Fy ## are calculated as vehicle behavior basic values, and the vehicle behavior target value is calculated. Errors ΔFx and ΔFy between Fx ** and Fy ** and the calculated vehicle behavior basic values Fx ## and Fy ## are calculated as vehicle behavior errors, and the calculated vehicle behavior errors ΔFx and ΔM are calculated. the driving force correction amount DerutaFx 1 of each wheel to reduce, ΔFx 2, ΔFx 3, calculates the ΔFx 4, the driving force basic value Fx 1 ##, Fx 2 ##, Fx 3 ##, F 4 ## The calculated driving force correction amount DerutaFx 1 of Toko, ΔFx 2, ΔFx 3, the sum driving force target value Fx 1 ** of each wheel with ΔFx 4, Fx 2 **, Fx 3 **, Fx 4 ** is determined, and the driving force of each wheel is controlled so that the determined driving force target value of each wheel is obtained.

本発明では、車両の車両前後方向力Fxの目標値Fx**,車両横方向力Fyの目標値Fy**,ヨーモーメントMの目標値M**を車両挙動目標値として決定し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し、この設定された各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##を車両挙動の基本値として演算し、前記車両挙動の目標値Fx**,Fy**,M**とこの演算された車両挙動の基本値Fx##,Fy##,M##との誤差ΔFx,ΔFy,ΔMを車両挙動の誤差として演算し、この演算された車両挙動の誤差ΔFx,ΔFy,ΔMを小さくする各輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し、前記駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し、この決定された各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**が得られるように各輪の駆動力を制御するように構成している。 In the present invention, the target value Fx ** of the vehicle longitudinal force Fx, the target value Fy ** of the vehicle lateral force Fy, and the target value M ** of the yaw moment M are determined as vehicle behavior target values, and each wheel Driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## are set, and the driving force basic values Fx 1 ##, Fx 2 ##, Fx of the set wheels are set. The basic value Fx ## of the vehicle longitudinal force realized by 3 ## and Fx 4 ##, the basic value Fy ## of the vehicle lateral force, and the basic value M ## of the yaw moment are calculated as the basic values of the vehicle behavior. , Errors ΔFx, ΔFy, ΔM between the vehicle behavior target values Fx **, Fy **, M ** and the calculated vehicle behavior basic values Fx ##, Fy ##, M ## the calculated as an error, error DerutaFx the computed vehicle behavior, DerutaFy, driving force correction amount DerutaFx 1 of each wheel to reduce ΔM, ΔFx 2, ΔFx 3, calculates the DerutaFx 4, Serial driving force basic value Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 computed driving force of ## Toko correction amount ΔFx 1, ΔFx 2, ΔFx 3 , each wheel as the sum of the DerutaFx 4 Driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** are determined, and the determined driving force target values Fx 1 **, Fx 2 **, Fx of each wheel are determined. 3 **, and configured to control the driving force of each wheel so as Fx 4 ** is obtained.

このように、本発明によれば、各輪についての駆動力とタイヤ横力との非線形な関係を考慮しながら、車両前後方向加速度、車両横方向加速度、ヨー角加速度の目標値を実現する各輪の駆動力目標値をフィードフォワードで求めているので、各輪についての駆動力変化に対するタイヤ横力の変化が、各輪の横すべり角や各輪の輪荷重等によって非線形な変化となることがあっても、ヨーレートや車両横方向加速度を所望の応答とすることが可能であり、これにより、ドライバーの操縦性が向上するとともに、所望のヨーレートや車両横方向加速度を得ることができないという不快感を低減できる。   As described above, according to the present invention, each of the target values for the vehicle longitudinal acceleration, the vehicle lateral acceleration, and the yaw angular acceleration is realized while taking into consideration the nonlinear relationship between the driving force and the tire lateral force for each wheel. Since the wheel driving force target value is obtained by feed-forward, the change in the tire lateral force with respect to the driving force change for each wheel may be a non-linear change depending on the side slip angle of each wheel, the wheel load of each wheel, etc. Even in such a case, the desired response can be obtained from the yaw rate or the vehicle lateral acceleration, which improves the driver's maneuverability and makes it impossible to obtain the desired yaw rate or vehicle lateral acceleration. Can be reduced.

また、本発明では、四輪を独立に駆動可能な車両において、車両の車両前後方向力の目標値Fx**、ヨーモーメントの目標値M**を車両挙動の目標値として決定し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し、この設定された各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,ヨーモーメントの基本値M##を車両挙動の基本値として演算し、前記車両挙動の目標値Fx**、M**とこの演算された車両挙動の基本値Fx##,M##との誤差ΔFx,ΔMを車両挙動の誤差として演算し、この演算された車両挙動の誤差ΔFx,ΔMを小さくする各輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し、この決定された各輪の駆動力目標値が得られるように各輪の駆動力を制御している。 In the present invention, in a vehicle capable of independently driving the four wheels, the target value Fx ** of the vehicle longitudinal force and the target value M ** of the yaw moment of the vehicle are determined as target values of the vehicle behavior, and each wheel is determined. Driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## are set, and the driving force basic values Fx 1 ##, Fx 2 ##, Fx of the set wheels are set. The basic value Fx ## of the vehicle longitudinal force realized by 3 ##, Fx 4 ## and the basic value M ## of the yaw moment are calculated as the basic values of the vehicle behavior, and the target value Fx ** of the vehicle behavior is calculated. Errors ΔFx and ΔM between M ** and the calculated vehicle behavior basic values Fx ## and M ## are calculated as vehicle behavior errors, and the calculated vehicle behavior errors ΔFx and ΔM are reduced. The wheel driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are calculated, and the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 of each wheel are calculated. ## and the calculated driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are the sum of the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 for each wheel. ** is determined, and the driving force of each wheel is controlled so that the determined driving force target value of each wheel is obtained.

このように、本発明によれば、車両横方向力について目標値を設定せず、車両前後方向力とヨーモーメントについてのみ目標値Fx**,M**を決定し、この2つの目標値Fx**,M**を実現する各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を求める構成としたので、車両横方向力の目標値を設計すること及び車両横方向力の目標値をコントローラに保持することが必要でなくなり、この設計工数の低減と車載コンピューターのメモリ消費量の引き下げによって車両価格を低減することできる。 Thus, according to the present invention, target values Fx ** and M ** are determined only for the vehicle longitudinal force and yaw moment without setting the target value for the vehicle lateral force, and the two target values Fx. Since the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of each wheel that realize ** and M ** are obtained, the vehicle lateral force target value is set to It is no longer necessary to design and hold the target value of the vehicle lateral force in the controller, and the vehicle price can be reduced by reducing the design man-hour and the memory consumption of the in-vehicle computer.

また、本発明では、四輪を独立に駆動可能な車両において、車両の車両前後方向力の目標値Fx**、車両横方向力の目標値Fy**を車両挙動の目標値として決定し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し、この設定された各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##を車両挙動の基本値として演算し、前記車両挙動の目標値Fx**,Fy**とこの演算された車両挙動の基本値Fx##,Fy##との誤差ΔFx,ΔFyを車両挙動の誤差として演算し、この演算された車両挙動の誤差ΔFx,ΔMを小さくする各輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し、各輪の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##にこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し、この決定された各輪の駆動力目標値が得られるように各輪の駆動力を制御している。 In the present invention, in a vehicle capable of independently driving the four wheels, the vehicle longitudinal force target value Fx ** and the vehicle lateral force target value Fy ** are determined as vehicle behavior target values, The basic driving force values Fx 1 ##, Fx 2 ##, Fx 3 ## and Fx 4 ## of each wheel are set, and the basic driving force values Fx 1 ## and Fx 2 ## of the wheels are set. , Fx 3 ##, Fx 4 ##, the vehicle front-rear direction force basic value Fx ## and the vehicle lateral force basic value Fy ## are calculated as vehicle behavior basic values, and the vehicle behavior target value is calculated. Errors ΔFx and ΔFy between Fx ** and Fy ** and the calculated vehicle behavior basic values Fx ## and Fy ## are calculated as vehicle behavior errors, and the calculated vehicle behavior errors ΔFx and ΔM are calculated. the driving force correction amount DerutaFx 1 of each wheel to reduce, ΔFx 2, ΔFx 3, calculates the ΔFx 4, the driving force basic value Fx 1 # # of each wheel, Fx 2 ##, Fx 3 ## Fx 4 # # to be the operation driving force correction amount ΔFx 1, ΔFx 2, ΔFx 3 , the sum driving force target value Fx 1 ** of each wheel with ΔFx 4, Fx 2 **, Fx 3 **, Fx 4 ** is determined, and the driving force of each wheel is controlled so that the determined driving force target value of each wheel is obtained.

このように、本発明によれば、ヨーモーメントについて目標値を設定せず、車両前後方向力と車両横方向力についてのみ目標値Fx**,Fy**を決定し、この2つの目標値Fx**,Fy**を実現する各輪の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を求める構成としたので、ヨーモーメントの目標値を設計すること及びヨーモーメントの目標値をコントローラに保持することが必要でなくなり、この設計工数の低減と車載コンピューターのメモリ消費量を引き下げによって車両価格を低減することできる。 As described above, according to the present invention, the target values Fx ** and Fy ** are determined only for the vehicle longitudinal force and the vehicle lateral force without setting the target value for the yaw moment, and the two target values Fx are determined. Since the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of each wheel that realize ** and Fy ** are obtained, the target value of the yaw moment is designed. Therefore, it is not necessary to hold the target value of yaw moment in the controller, and the vehicle price can be reduced by reducing the design man-hour and the memory consumption of the in-vehicle computer.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

図1は、本実施形態の四輪独立駆動車の概略構成図である。   FIG. 1 is a schematic configuration diagram of a four-wheel independent drive vehicle of the present embodiment.

バッテリ9からは、インバータ31〜34を介してモータ11〜14に電力が供給され、このバッテリ9より供給される電力によりモータ11が左前輪1を、モータ12が右前輪2を、モータ13が左後輪3を、モータ14が右後輪4を独立に駆動しあるいは独立に制動する。電力を供給するバッテリ9としてはニッケル水素電池あるいはリチウムイオン電池が望ましい。   Electric power is supplied from the battery 9 to the motors 11 to 14 via the inverters 31 to 34, and the electric power supplied from the battery 9 causes the motor 11 to move the left front wheel 1, the motor 12 to the right front wheel 2, and the motor 13 to The motor 14 drives the left rear wheel 3 independently or brakes the left rear wheel 3 independently. The battery 9 for supplying power is preferably a nickel metal hydride battery or a lithium ion battery.

上記各モータ11〜14(各輪1〜4を駆動または制動するアクチュエータ)は三相同期電動機や三相誘導電動機等の力行運転及び回生運転ができる交流機である。   The motors 11 to 14 (actuators that drive or brake the wheels 1 to 4) are AC machines that can perform power running and regenerative operations such as a three-phase synchronous motor and a three-phase induction motor.

上記インバータ31〜34はモータ1〜4で発電された交流電流を直流電流に変換しバッテリ9に充電する、あるいはバッテリ9が放電した直流電流を交流電流に変換しモータ1〜4に供給する。   The inverters 31 to 34 convert the alternating current generated by the motors 1 to 4 into a direct current and charge the battery 9, or convert the direct current discharged by the battery 9 into an alternating current and supply it to the motors 1 to 4.

各輪1〜4の回転半径は所定値Rで全て等しく、各モータ11〜14と各車輪1〜4間は減速比1つまり直接連結されている。またさらに、各輪1〜4の輪荷重と横滑り角と路面摩擦係数が四輪で等しい場合には、制駆動力とタイヤ横力との関係は四輪で同一となる。つまり、四輪とも同じタイヤ特性を有する。   The rotation radii of the wheels 1 to 4 are all equal to a predetermined value R, and the motors 11 to 14 and the wheels 1 to 4 are directly connected with a reduction ratio of 1, that is, directly. Furthermore, when the wheel load, the side slip angle, and the road surface friction coefficient of each wheel 1 to 4 are the same for the four wheels, the relationship between the braking / driving force and the tire lateral force is the same for the four wheels. That is, all four wheels have the same tire characteristics.

前輪1,2は、ステアリングギヤ15を介してステアリング5の操舵により転舵可能であり、その舵角は運転者によるステアリング5の操舵によりステアリングギヤ15を介して機械的に調整される。ここで、前輪1,2の舵角変化量はステアリング5の操舵角変化量に対して1/16になるように設定されている。一方、後輪3,4の舵角は、コントローラ8から送信された指令値に追従するようステアリングアクチュエータ16によって調整される。   The front wheels 1 and 2 can be steered by steering the steering 5 via the steering gear 15, and the steering angle is mechanically adjusted via the steering gear 15 by the steering of the steering 5 by the driver. Here, the steering angle change amount of the front wheels 1 and 2 is set to be 1/16 of the steering angle change amount of the steering 5. On the other hand, the steering angle of the rear wheels 3 and 4 is adjusted by the steering actuator 16 so as to follow the command value transmitted from the controller 8.

CPU、ROM、RAM、インターフェース回路及びインバータ回路等からなるコントローラ8には、車輪速センサ21〜24によって検出される各輪1〜4の速度、ステアリング角センサ25によって検出される運転者によるステアリング5の回転角、アクセルストロークセンサ26によって検出されるアクセルペダル6の踏込量、ブレーキストロークセンサ27によって検出されるブレーキペダル7の踏込量、舵角センサ41〜44(舵角検出手段)によって検出される各輪1〜4の舵角、車両重心位置に取り付けられた加速度センサ100によって検出される車両の横方向加速度、ヨーレートセンサ101によって検出される車両のヨーレート等の信号が入力され、これらの信号に基づいて各モータ11〜14にトルク配分を行う等の制御を行う。   A controller 8 comprising a CPU, ROM, RAM, interface circuit, inverter circuit, and the like includes steering speed 5 of each wheel 1 to 4 detected by the wheel speed sensors 21 to 24 and steering 5 by the driver detected by the steering angle sensor 25. , The depression amount of the accelerator pedal 6 detected by the accelerator stroke sensor 26, the depression amount of the brake pedal 7 detected by the brake stroke sensor 27, and the steering angle sensors 41 to 44 (steering angle detecting means). Signals such as the steering angles of the wheels 1 to 4, the lateral acceleration of the vehicle detected by the acceleration sensor 100 attached to the vehicle center of gravity, and the vehicle yaw rate detected by the yaw rate sensor 101 are input to these signals. Torque distribution to each motor 11-14 based on Please is carried out.

さて、従来技術として、左右輪を独立に駆動(あるいは制動)可能な車両において、ヨーレートや車両横方向加速度を所望の応答とする左右輪の駆動力差をフィードフォワードで求めるモデルフォロイング制御が知られている(金井喜美雄,越智徳昌,川邊武俊著,「ビークル制御」,槇書店,2004年1月20日,第3章3.2節)。   As a conventional technique, model following control is known in which a left-right wheel driving force difference in which a desired response is a yaw rate or lateral acceleration in a vehicle capable of independently driving (or braking) the left and right wheels is determined by feedforward. (Kimio Kanai, Tokumasa Ochi, Taketoshi Kawamata, “Vehicle Control”, Tsubaki Shoten, January 20, 2004, Chapter 3 Section 3.2).

このモデルフォロイング制御では、各輪の舵角,駆動力,横すべり角等が十分小さいという仮定のもとで車両を線形化(線形二輪モデル)し、この線形化した車両モデルの逆モデルを用いてヨーレートや車両横方向加速度を所望の応答となる左右輪の駆動力差を求めている。この従来技術では、線形近似された車両モデルに対し、所望のヨーレートや車両横方向加速度を得ることができる。   In this model following control, the vehicle is linearized (linear two-wheel model) on the assumption that the steering angle, driving force, side slip angle, etc. of each wheel are sufficiently small, and the inverse model of this linearized vehicle model is used. Thus, the difference in driving force between the left and right wheels, which makes the desired response to the yaw rate and vehicle lateral acceleration, is obtained. In this prior art, a desired yaw rate and vehicle lateral acceleration can be obtained for a linearly approximated vehicle model.

しかしながら、ヨーレートや横方向加速度等を主として生じさせる各輪のタイヤ横力について考えると、駆動力変化に対するこのタイヤ横力の変化は、横すべり角や輪荷重等によって非線形に変化することが知られている。特に各輪の舵角や各輪の横すべり角が大きくなる急旋回時には、各輪の舵角や各輪の横すべり角を線形近似したことによるモデル誤差が大きくなる。   However, considering the tire lateral force of each wheel that mainly generates yaw rate, lateral acceleration, etc., it is known that the change of the tire lateral force with respect to the driving force changes nonlinearly depending on the side slip angle, wheel load, etc. Yes. In particular, during a sudden turn in which the steering angle of each wheel or the side slip angle of each wheel is large, a model error due to linear approximation of the steering angle of each wheel or the side slip angle of each wheel increases.

従って、このようにタイヤの非線形性が強くなりモデル誤差が大きくなるような場合には、従来技術で求めた左右輪駆動力差ではヨーレートや車両横方向加速度を所望の応答とすることができず、目標値に対してオーバーシュートや収束の遅れが発生し、ドライバーの操縦性を損ねる恐れがある。   Therefore, when the tire nonlinearity becomes strong and the model error increases, the difference between the left and right wheel driving force obtained in the prior art cannot make the yaw rate or vehicle lateral acceleration a desired response. , Overshoot or convergence delay may occur with respect to the target value, which may impair the driver's maneuverability.

そこで本発明は、各輪についての駆動力とタイヤ横力との非線形な関係を考慮しながら、車両前後方向加速度、車両横方向加速度、ヨー角加速度の各目標値を実現する各輪の駆動力配分をフィードフォワードで求める手法を提案するものである。   Accordingly, the present invention provides a driving force for each wheel that realizes the target values of vehicle longitudinal acceleration, vehicle lateral acceleration, and yaw angular acceleration, while taking into consideration the nonlinear relationship between the driving force and tire lateral force for each wheel. We propose a method for obtaining the distribution by feedforward.

以下、本出願人が提案する手法の理論的背景と、この理論を用いて車両前後方向加速度、車両横方向加速度、ヨー角加速度の各目標値を実現する各輪の駆動力目標値が演算できることを示す。   Hereinafter, the theoretical background of the method proposed by the present applicant and the driving force target value of each wheel that realizes the target values of vehicle longitudinal acceleration, vehicle lateral acceleration, and yaw angular acceleration can be calculated using this theory. Indicates.

まず最初に本手法の理論的背景について図2を用いて説明する。   First, the theoretical background of this method will be described with reference to FIG.

図2は図1に示した四輪独立駆動車をモデル化したものである。すなわち、左前輪1、右前輪2、左後輪3、右後輪4をそれぞれ独立に駆動できる車両において、各輪1〜4の駆動力、各輪1〜4のタイヤ横力、各輪1〜4の舵角に加えて、車両に働く前後方向力、車両に働く横方向力、重心周りのヨーモーメントを表した図である。   FIG. 2 is a model of the four-wheel independent drive vehicle shown in FIG. That is, in a vehicle capable of independently driving the left front wheel 1, the right front wheel 2, the left rear wheel 3, and the right rear wheel 4, the driving force of each wheel 1-4, the tire lateral force of each wheel 1-4, and each wheel 1 FIG. 6 is a diagram illustrating a longitudinal force acting on the vehicle, a lateral force acting on the vehicle, and a yaw moment around the center of gravity in addition to the steering angle of ˜4.

図2において、δ1,δ2,δ3,δ4は各輪1〜4それぞれの舵角[rad]、Fx1,Fx2,Fx3,Fx4は各輪1〜4の駆動力[N]、Fy1,Fy2,Fy3,Fy4は各輪1〜4のタイヤ横力[N]である。また、Fxはタイヤ力の総和の車両前後方向力[N]、Fyはタイヤ力の総和の車両横方向力[N]、Mは各輪1〜4のタイヤ力によって発生する車両重心周りのヨーモーメントの総和[Nm]である。 In FIG. 2, δ 1, δ 2, δ 3, δ 4 each wheel 1-4 respectively of the steering angle [rad], Fx 1, Fx 2, Fx 3, Fx 4 in the driving force of each wheel 1-4 [ N], Fy 1 , Fy 2 , Fy 3 , and Fy 4 are tire lateral forces [N] of the wheels 1 to 4. Further, Fx is a vehicle longitudinal force [N] of the sum of tire forces, Fy is a vehicle lateral force [N] of the sum of tire forces, and M is a yaw around the center of gravity of the vehicle generated by the tire force of each wheel 1-4. The sum of moments [Nm].

ここで、各輪1〜4それぞれの舵角δ1,δ2,δ3,δ4およびMは車両を鉛直上方から見た場合に時計回りを正とし、各舵角δ1,δ2,δ3,δ4は各輪1〜4の回転方向が車両前後方向と一致している状態をゼロとする。また、各輪1〜4の駆動力Fx1,Fx2,Fx3,Fx4は各舵角δ1,δ2,δ3,δ4が全てゼロのときに車両を前方に加速させる方向を正とし、各輪1〜4のタイヤ横力Fy1,Fy2,Fy3,Fy4は各舵角δ1,δ2,δ3,δ4が全てゼロのときに車両を左方向に加速させる方向を正とする。例えば、Fx1,Fx2,Fx3,Fx4の値が負であれば車両を減速させることになるので、このときの駆動力は制動力である。従って、駆動力は制動力を含んだ概念として使用している。 Here, the steering angles δ 1 , δ 2 , δ 3 , δ 4 and M of each of the wheels 1 to 4 are positive in the clockwise direction when the vehicle is viewed from vertically above, and the steering angles δ 1 , δ 2 , δ 3 and δ 4 are set to zero when the rotation directions of the wheels 1 to 4 coincide with the vehicle longitudinal direction. Further, the driving forces Fx 1 , Fx 2 , Fx 3 , and Fx 4 of the wheels 1 to 4 indicate directions in which the vehicle is accelerated forward when the steering angles δ 1 , δ 2 , δ 3 , and δ 4 are all zero. Positive, tire lateral forces Fy 1 , Fy 2 , Fy 3 , Fy 4 of each wheel 1 to 4 accelerate the vehicle to the left when the steering angles δ 1 , δ 2 , δ 3 , δ 4 are all zero. The direction to make is positive. For example, if the values of Fx 1 , Fx 2 , Fx 3 , and Fx 4 are negative, the vehicle is decelerated, and the driving force at this time is a braking force. Therefore, the driving force is used as a concept including a braking force.

なお、各輪1〜4の舵角をδi(i=1〜4)、各輪1〜4の駆動力をFxi(i=1〜4)、各輪1〜4のタイヤ横力をFyi(i=1〜4)と表すことがあり、記号δ,Fx,Fyに添える整数iについては左前輪を1で、右前輪2で、左後輪を3で、右後輪を4で表すものとする。記号に付す整数iは他の記号についても同じ意味で使用する。 The steering angle of each wheel 1 to 4 is δ i (i = 1 to 4), the driving force of each wheel 1 to 4 is Fx i (i = 1 to 4), and the tire lateral force of each wheel 1 to 4 is Fy i (i = 1 to 4), and the integer i attached to the symbols δ, Fx, and Fy is 1 for the left front wheel, 2 for the right front wheel, 3 for the left rear wheel, and 4 for the right rear wheel. It shall be expressed as The integer i attached to the symbol is used in the same meaning for the other symbols.

また、図2において、Lfは車両重心軸から前輪車軸までの距離[m]、Lrは車両重心軸から後輪車軸までの距離[m]、Ltは前後輪のトレッド長さ[m]である。従って、車両のホイールベースの長さLl[m]はLl=Lf+Lrである。 In FIG. 2, L f is the distance [m] from the vehicle center of gravity axis to the front wheel axle, L r is the distance from the vehicle center of gravity axis to the rear wheel axle [m], and L t is the tread length [m] ]. Therefore, the length L l [m] of the vehicle wheel base is L l = L f + L r .

ここで、まず各輪1〜4で発生する駆動力とタイヤ横力の合力(つまりタイヤ力)の車両前後方向力Fx’i(i=1〜4)及び車両横方向力Fy’i(i=1〜4)を考える。すると図3のように各輪1〜4の舵角をδi(i=1〜4)だけ切った場合におけるタイヤ力の車両前後方向力Fx’iとタイヤ力の車両横方向力Fy’iは次の式(1)及び式(2)で表される。ただし、タイヤ力の車両前後方向力Fx’iは車両を前方に加速する方向を、タイヤ力の車両横方向力Fy’iは車両を左方向に加速させる方向をそれぞれ正とする。 Here, first, the vehicle longitudinal force Fx ′ i (i = 1 to 4) and the vehicle lateral force Fy ′ i (i) of the resultant force (ie, tire force) of the driving force and the tire lateral force generated in each of the wheels 1 to 4. = 1 to 4). Then, as shown in FIG. 3, the vehicle longitudinal force Fx ′ i of the tire force and the vehicle lateral force Fy ′ i of the tire force when the steering angles of the wheels 1 to 4 are cut by δ i (i = 1 to 4). Is represented by the following equations (1) and (2). However, the vehicle longitudinal force Fx ′ i of tire force is positive in the direction of accelerating the vehicle forward, and the vehicle lateral force Fy ′ i of tire force is positive in the direction of accelerating the vehicle in the left direction.

Fx’i=Fxicosδi−Fyisinδi …(1)
Fy’i=Fxisinδi+Fyicosδi …(2)
従って、各車輪1〜4の駆動力が微小な量であるΔFxi(i=1〜4)だけ変化したときのタイヤ横力変化量をΔFyi(i=1〜4)とすると、各車輪1〜4の駆動力が微小量ΔFxiだけ変化したときのタイヤ力の車両前後方向力Fx’i,各車輪1〜4の駆動力が微小量ΔFxiだけ変化したときのタイヤ力の車両横方向力Fy’iの変化量ΔFy’iは次の式(3)及び式(4)で表される。
Fx ′ i = Fx i cosδ i −Fy i sinδ i (1)
Fy ′ i = Fx i sin δ i + Fy i cos δ i (2)
Accordingly, when the tire lateral force change amount when the driving force of each wheel 1 to 4 is changed by a minute amount ΔFx i (i = 1 to 4) is ΔFy i (i = 1 to 4), each wheel 1-4 the driving force is small amount DerutaFx i only vehicle longitudinal direction force Fx of the tire force when changes' i, vehicle lateral tire force when the driving force of each wheel 1-4 has changed by a minute amount DerutaFx i i 'variation ΔFy of i' direction force Fy can be expressed by the following equation (3) and (4).

ΔFx’i=ΔFxicosδi−ΔFyisinδi …(3)
ΔFy’i=ΔFxisinδi+ΔFyicosδi …(4)
ここでさらに、各輪1〜4について駆動力とタイヤ横力の関係は図4に示す関係にある。図4は輪荷重と路面摩擦係数に変化が無いとしたときの駆動力とタイヤ横力の関係を表した図で、駆動力を横軸に、タイヤ横力を縦軸に採っている。この図4の関係を利用して、各輪1〜4の現在の駆動力Fxi(i=1〜4)とタイヤ横力Fyi(i=1〜4)における、駆動力変化ΔFxiに対するタイヤ横力の感度をki(i=1〜4)とおく。つまり、各輪1〜4の駆動力変化に対するタイヤ横力の感度kiは、図4に示すように車両前後方向力の変化量ΔFxi及び車体横方向力の変化量ΔFyiが微小のときの次の式(5)により定義される値である。
ΔFx ′ i = ΔFx i cosδ i −ΔFy i sinδ i (3)
ΔFy ′ i = ΔFx i sin δ i + ΔFy i cos δ i (4)
Here, the relationship between the driving force and the tire lateral force for each of the wheels 1 to 4 is as shown in FIG. FIG. 4 is a diagram showing the relationship between the driving force and the tire lateral force when there is no change in the wheel load and the road surface friction coefficient. The driving force is taken on the horizontal axis, and the tire lateral force is taken on the vertical axis. Using the relationship shown in FIG. 4, the current driving force Fx i (i = 1 to 4) and the tire lateral force Fy i (i = 1 to 4) of each wheel 1 to 4 with respect to the driving force change ΔFx i . The sensitivity of the tire lateral force is set to k i (i = 1 to 4). That is, the sensitivity k i of the tire lateral force with respect to the driving force change of each wheel 1 to 4 is as shown in FIG. 4 when the vehicle longitudinal force variation ΔFx i and the vehicle lateral force variation ΔFy i are very small. This is a value defined by the following equation (5).

i=ΔFyi/ΔFxi …(5)
すると、車両前後方向力の変化量ΔFxi及び車両横方向力の変化量ΔFyiが微小で、この式(5)の近似が十分成り立つとすると、ΔFyi=kiΔFxiとおけるので、各輪1〜4の駆動力Fxiが十分微小なΔFxiだけ変化したときのタイヤ力の車両前後方向力Fx’iの変化量ΔFx’iと、タイヤ力の車両横方向力Fy’iの変化量ΔFy’iとは次の式(6)及び式(7)へと変形される。
k i = ΔFy i / ΔFx i (5)
Then, the change amount DerutaFy i variation DerutaFx i and the vehicle lateral force in the vehicle front-rear direction force is very small, the approximation of the equation (5) is sufficiently satisfied, Okeru the ΔFy i = k i ΔFx i, each The change ΔFx ′ i in the vehicle longitudinal force Fx ′ i of the tire force and the change in the vehicle lateral force Fy ′ i of the tire force when the driving force Fx i of the wheels 1 to 4 changes by a sufficiently small ΔFx i. The quantity ΔFy ′ i is transformed into the following expressions (6) and (7).

ΔFx’i=(cosδi−kisinδi)ΔFxi=piΔFxi …(6)
ΔFy’i=(sinδi+kicosδi)ΔFxi=qiΔFxi …(7)
式(6)、式(7)の係数pi,qi(i=1〜4)は、各輪1〜4の舵角δiと、各輪1〜4についての駆動力変化に対するタイヤ横力の感度kiにより表される次の値である。
ΔFx ′ i = (cosδ i −k i sinδ i ) ΔFx i = p i ΔFx i (6)
ΔFy ′ i = (sin δ i + k i cos δ i ) ΔFx i = q i ΔFx i (7)
The coefficients p i and q i (i = 1 to 4) in the equations (6) and (7) indicate the steering angle δ i of each wheel 1 to 4 and the side of the tire with respect to the driving force change for each wheel 1 to 4. It is the next value represented by the force sensitivity k i .

i=cosδi−kisinδi …(補1)
i=sinδi+kicosδi …(補2)
ここで、図2の状態において、タイヤ力の総和の車両前後方向力Fxと、タイヤ力の総和の車両横方向力Fyと、各輪1〜4のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mとは、次の式(8)〜式(10)により表すことができる。ただし、各輪1〜4のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mは、図2の通り車両を鉛直上方からみたときに反時計回りを正とする。
p i = cosδ i −k i sinδ i (Supplement 1)
q i = sinδ i + k i cosδ i ... ( auxiliary 2)
Here, in the state of FIG. 2, the vehicle front-rear direction force Fx of the sum of tire forces, the vehicle lateral force Fy of the sum of tire forces, and the yaw moment around the center of gravity of the vehicle generated by the tire forces of the wheels 1 to 4. Can be expressed by the following equations (8) to (10). However, the total sum M of the yaw moments around the center of gravity of the vehicle generated by the tire forces of the wheels 1 to 4 is positive in the counterclockwise direction when the vehicle is viewed from above as shown in FIG.

Fx=Fx’1+Fx’2+Fx’3+Fx’4 …(8)
Fy=Fy’1+Fy’2+Fy’3+Fy’4 …(9)
M={(Fx’2+Fx’4)−(Fx’1+Fx’3)}×Lt/2
+{(Fy’1+Fy’2)×Lf−(Fy’3+Fy’4)×Lr
…(10)
従って、各輪1〜4の駆動力Fx1,Fx2,Fx3,Fx4がそれぞれ微小な量であるΔFx1,ΔFx2,ΔFx3,ΔFx4だけ変化したときのタイヤ力の総和の車両前後方向力Fx,タイヤ力の総和の車両横方向力Fy,各輪のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mの各変化量ΔFx,ΔFy,ΔMは、上記の式(補1)及び式(補2)の係数pi,qiを用いて、次の式(11)〜(13)により表される。
Fx = Fx ′ 1 + Fx ′ 2 + Fx ′ 3 + Fx ′ 4 (8)
Fy = Fy ′ 1 + Fy ′ 2 + Fy ′ 3 + Fy ′ 4 (9)
M = {(Fx ′ 2 + Fx ′ 4 ) − (Fx ′ 1 + Fx ′ 3 )} × L t / 2.
+ {(Fy ′ 1 + Fy ′ 2 ) × L f − (Fy ′ 3 + Fy ′ 4 ) × L r }
(10)
Therefore, the vehicle of the total tire force when the driving forces Fx 1 , Fx 2 , Fx 3 , and Fx 4 of the wheels 1 to 4 change by ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 , which are minute amounts, respectively. The change amounts ΔFx, ΔFy, ΔM of the front-rear direction force Fx, the vehicle lateral force Fy of the sum of tire forces, and the sum M of yaw moments around the center of gravity of the vehicle generated by the tire force of each wheel are expressed by the above formulas (Supplement 1). ) And the coefficients pi and qi of the formula (complement 2) are expressed by the following formulas (11) to (13).

ΔFx=ΔFx’1+ΔFx’2+ΔFx’3+ΔFx’4 …(11)
ΔFy=ΔFy’1+ΔFy’2+ΔFy’3+ΔFy’4 …(12)
ΔM={(ΔFx’2+ΔFx’4)−(ΔFx’1+ΔFx’3)}×Lt/2
+{(ΔFy’1+ΔFy’2)×Lf−(ΔFy’3+ΔFy’4)×Lr
=(−p1t/2+q1f)ΔFx1
+(p2t/2+q2f)ΔFx2
+(−p3t/2−q3r)ΔFx3
+(p4t/2−q4r)ΔFx4
…(13)
これら3つの式(11)〜(13)をまとめると次の行列式(14)により表すことができる。
ΔFx = ΔFx ′ 1 + ΔFx ′ 2 + ΔFx ′ 3 + ΔFx ′ 4 (11)
ΔFy = ΔFy ′ 1 + ΔFy ′ 2 + ΔFy ′ 3 + ΔFy ′ 4 (12)
ΔM = {(ΔFx ′ 2 + ΔFx ′ 4 ) − (ΔFx ′ 1 + ΔFx ′ 3 )} × L t / 2.
+ {(ΔFy ′ 1 + ΔFy ′ 2 ) × L f − (ΔFy ′ 3 + ΔFy ′ 4 ) × L r }
= (- p 1 L t / 2 + q 1 L f) ΔFx 1
+ (P 2 L t / 2 + q 2 L f ) ΔFx 2
+ (- p 3 L t / 2-q 3 L r) ΔFx 3
+ (P 4 L t / 2-q 4 L r ) ΔFx 4
... (13)
These three expressions (11) to (13) can be summarized by the following determinant (14).

Figure 2006315661
Figure 2006315661

いま、左前輪1の駆動力補正量ΔFx1を既知と仮定して残り三輪2〜4の駆動力補正量ΔFx2,ΔFx3,ΔFx4について解くと、残り三輪2〜4の駆動力補正量ΔFx2,ΔFx3,ΔFx4は次の式(15)により表される。 Now, assuming that the driving force correction amount ΔFx 1 of the left front wheel 1 is known and solving for the driving force correction amounts ΔFx 2 , ΔFx 3 , ΔFx 4 of the remaining three wheels 2 to 4, the driving force correction amount of the remaining three wheels 2 to 4 ΔFx 2 , ΔFx 3 , and ΔFx 4 are expressed by the following equation (15).

Figure 2006315661
Figure 2006315661

式(15)の係数D1,D2,D3,D4は、上記の係数pi,qiと、ホイールベース長さLlにより表される次の値である。 The coefficients D 1 , D 2 , D 3 , and D 4 in Equation (15) are the following values represented by the above-described coefficients p i and q i and the wheelbase length L l .

1=q2(p34−p43)Ll+p3(p24−p42)Lt …(16)
2=q1(p43−p34)Ll+p4(p31−p13)Lt …(17)
3=q4(p21−p12)Ll+p1(p42−p24)Lt …(18)
4=q3(p12−p21)Ll+p2(p13−p31)Lt …(19)
従って、上記の式(15)より、係数D1≠0の場合には、現在の動作点周りでタイヤ力の総和の車両前後方向力Fx,タイヤ力の総和の車両横方向力Fy,各輪1〜4のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mをそれぞれ微小な量であるΔFx,ΔFy,ΔMだけ変化させる各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4は、χを任意定数として次の式(20)により求めることができる。
D 1 = q 2 (p 3 q 4 −p 4 q 3 ) L 1 + p 3 (p 2 q 4 −p 4 q 2 ) L t (16)
D 2 = q 1 (p 4 q 3 -p 3 q 4) L l + p 4 (p 3 q 1 -p 1 q 3) L t ... (17)
D 3 = q 4 (p 2 q 1 −p 1 q 2 ) L 1 + p 1 (p 4 q 2 −p 2 q 4 ) L t (18)
D 4 = q 3 (p 1 q 2 −p 2 q 1 ) L 1 + p 2 (p 1 q 3 −p 3 q 1 ) L t (19)
Therefore, from the above equation (15), when the coefficient D 1 ≠ 0, the vehicle longitudinal force Fx of the total tire force around the current operating point, the vehicle lateral force Fy of the total tire force, and each wheel Driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx for the wheels 1 to 4 that change the sum M of the yaw moment around the center of gravity of the vehicle generated by the tire forces 1 to 4 by ΔFx, ΔFy, ΔM, which are minute amounts, respectively. 3 and ΔFx 4 can be obtained by the following equation (20) with χ as an arbitrary constant.

Figure 2006315661
Figure 2006315661

同様にして、残り三輪2〜4の駆動力補正量ΔFx2,ΔFx3,ΔFx4のいずれか一つを既知と仮定して上記の式(14)を解くと、係数D2≠0,係数D3≠0,係数D4≠0それぞれの場合に現在の動作点周りでタイヤ力の総和の車両前後方向力Fx,タイヤ力の総和の車両横方向力Fy,各輪1〜4のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mをそれぞれ微小な量であるΔFx,ΔFy,ΔMだけ変化させる各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求める式が得られる。例として、右後輪4の駆動力補正量ΔFx4を既知として上記の式(14)を解くと、次の式(21)のようになる。 Similarly, when the above equation (14) is solved assuming that any one of the driving force correction amounts ΔFx 2 , ΔFx 3 , ΔFx 4 of the remaining three wheels 2 to 4 is known, the coefficient D 2 ≠ 0, the coefficient When D 3 ≠ 0 and coefficient D 4 ≠ 0, the vehicle longitudinal force Fx of the total tire force around the current operating point, the vehicle lateral force Fy of the total tire force, and the tire force of each wheel 1 to 4 The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for the wheels 1 to 4 that change the total sum M of the yaw moments around the center of gravity of the vehicle generated by the above-mentioned amounts by ΔFx, ΔFy, and ΔM, respectively, are obtained. The formula is obtained. As an example, when the above formula (14) is solved with the driving force correction amount ΔFx 4 of the right rear wheel 4 known, the following formula (21) is obtained.

Figure 2006315661
Figure 2006315661

次に、これらの式(20)や式(21)を用い、各輪1〜4について駆動力Fx1,Fx2,Fx3,Fx4とタイヤ横力Fy1,Fy2,Fy3,Fy4との非線形な関係を考慮しながら、車両前後方向力の目標値Fx**,車両横方向力の目標値Fy**,ヨーモーメントの目標値M**を実現する各輪の駆動力目標値をフィードフォワードで求める手法について、図5を参照して説明する。 Next, using these equations (20) and (21), the driving forces Fx 1 , Fx 2 , Fx 3 , Fx 4 and the tire lateral forces Fy 1 , Fy 2 , Fy 3 , Fy for each wheel 1 to 4. 4. Driving force target for each wheel that realizes the target value Fx ** of the vehicle longitudinal force, the target value Fy ** of the vehicle lateral force, and the target value M ** of the yaw moment, taking into consideration the nonlinear relationship with FIG. A method for obtaining the value by feedforward will be described with reference to FIG.

車両挙動は、タイヤ力の総和の車両前後方向力Fx、タイヤ力の総和の車両横方向力Fy及び各輪1〜4のタイヤ力によって発生する車両重心周りのヨーモーメントの総和Mの3つによって一義的に決まるので、これらFx、Fy及びMの3つを、以下「車両挙動」で総称する。   There are three vehicle behaviors: a vehicle longitudinal force Fx that is the sum of tire forces, a vehicle lateral force Fy that is the sum of tire forces, and a sum M of yaw moments around the center of gravity of the vehicle that is generated by the tire forces of each wheel 1-4. Since these are uniquely determined, these three Fx, Fy, and M are hereinafter collectively referred to as “vehicle behavior”.

まず、ドライバーのアクセルやハンドル等の操作から、車両前後方向力の目標値Fx**,車両横方向力の目標値Fy**,ヨーモーメントの目標値M**、つまり車両挙動の目標値を生成する。この車両挙動の目標値が、例えば図5において上から第3段目までに破線で示したよう変化したとする。すなわち、図5において上から第3段目までに、t1のタイミングより、車両前後方向力の目標値Fx**が一定量小さくなる側へ、車両横方向力の目標値Fy**が一定量大きくなる側へ、ヨーモーメントの目標値M**が一定量大きくなる側へそれぞれ変化する場合を示す。   First, from the driver's accelerator and steering wheel operations, the vehicle longitudinal force target value Fx **, vehicle lateral force target value Fy **, yaw moment target value M **, that is, the vehicle behavior target value, are obtained. Generate. It is assumed that the target value of the vehicle behavior has changed as indicated by a broken line from the top to the third level in FIG. 5, for example. That is, from the top to the third stage in FIG. 5, the target value Fy ** of the vehicle lateral force decreases by a certain amount from the timing t1 to the side where the target value Fx ** of the vehicle longitudinal force decreases by a certain amount. The case where the target value M ** of the yaw moment changes to the side where it increases by a certain amount is shown.

ここで、車両前後方向力の目標値Fx**,車両横方向力の目標値Fy**,ヨーモーメントの目標値M**としては、例えば車両を線形近似したモデルに対しモデルフォロイング制御(金井喜美雄,越智徳昌,川邊武俊,「ビークル制御」,槇書店,2004年1月20日,第3章3.2節)等を適用して設定する。   Here, as the target value Fx ** of the vehicle longitudinal force, the target value Fy ** of the vehicle lateral force, and the target value M ** of the yaw moment, for example, model following control (for model that linearly approximates the vehicle) It is set by applying Kimio Kanai, Tokumasa Ochi, Taketoshi Kawamata, “Vehicle Control”, Tsubaki Shoten, January 20, 2004, Chapter 3, Section 3.2).

次に、この車両挙動の目標値(車両前後方向力の目標値Fx**,車両横方向力の目標値Fy**,ヨーモーメントの目標値M**)を概ね実現する各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を演算する。図5上三段に破線で示したように車両挙動の目標値が変化したとき、これら各駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##の動きを示したのが、図5において下四段の破線である。すなわち、図5において下四段に示したように、t1のタイミングより、左前輪1の駆動力基本値Fx1##は小さくなる側へ、右前輪2の駆動力基本値Fx2##は大きくなる側へ、左後輪3の駆動力基本値Fx3##は小さくなる側へ、右後輪4の駆動力基本値Fx4##は大きくなる側へそれぞれ一定量だけ変化している。 Next, each wheel 1 to 4 that substantially realizes the vehicle behavior target values (vehicle longitudinal force target value Fx **, vehicle lateral force target value Fy **, and yaw moment target value M **). The driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, and Fx 4 ## are calculated. When the target value of the vehicle behavior changes as shown by the broken lines in the upper three stages of FIG. 5, the movements of these driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## Shown are the lower four broken lines in FIG. That is, as shown in the lower four stages in FIG. 5, the basic driving force value Fx 2 ## of the right front wheel 2 is reduced toward the side where the basic driving force value Fx 1 ## of the left front wheel 1 becomes smaller from the timing t1. To the increasing side, the driving force basic value Fx 3 ## of the left rear wheel 3 changes to a decreasing side, and the driving force basic value Fx 4 ## of the right rear wheel 4 changes to a increasing side by a certain amount. .

そして、これら各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##で実現される車両挙動の基本値(車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##)を、各輪1〜4の駆動力とタイヤ横力との非線形な関係を考慮した車両モデルを用いて求める。 And the basic value of the vehicle behavior realized by the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of these wheels 1 to 4 (the basic value Fx of the vehicle longitudinal force) ##, basic value of vehicle lateral force Fy ##, basic value of yaw moment M ##) using a vehicle model that takes into account the non-linear relationship between the driving force of each wheel 1-4 and the tire lateral force Ask.

これら各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##で実現される車両挙動の基本値(車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##)を、図5において上から第3段目までに実線で重ねて示すと、図示のように、車両前後方向力の基本値Fx##の応答は車両前後方向力目標値Fx**より、車両横方向力の基本値Fy##の応答は車両横方向力目標値Fy**より、ヨーモーメントの基本値M##の応答はヨーモーメント目標値M**よりそれぞれ遅れることになる。 The basic values of vehicle behavior realized by the basic driving force values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of these wheels 1 to 4 (the basic value Fx ## of the vehicle longitudinal force) , The basic value Fy ## of the vehicle lateral force, and the basic value M ## of the yaw moment are shown by overlapping the solid line from the top to the third level in FIG. The response of the basic value Fx ## of the vehicle is from the vehicle longitudinal force target value Fx **, and the response of the vehicle lateral force basic value Fy ## is from the vehicle lateral force target value Fy **, the basic value M of the yaw moment. The response of ## is delayed from the yaw moment target value M **.

そこで、車両挙動の目標値(車両前後方向力の目標値Fx**,車両横方向力の目標値Fy**,ヨーモーメントの目標値M**)と、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##で実現される車両挙動の基本値(車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##)との誤差(ΔFx,ΔFy,ΔM)を算出し、この車両挙動の誤差(ΔFx,ΔFy,ΔM)を補償する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を上記の式(20)や式(21)を用いて求める。 Therefore, vehicle behavior target values (vehicle longitudinal force target value Fx **, vehicle lateral force target value Fy **, yaw moment target value M **) and the basic driving force of each wheel 1-4. Basic values of vehicle behavior realized by values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## (basic value of vehicle longitudinal force Fx ##, basic value of vehicle lateral force Fy # #, Yaw moment basic value M ##) error (ΔFx, ΔFy, ΔM) is calculated, and the driving force correction amount of each wheel 1 to 4 to compensate for this vehicle behavior error (ΔFx, ΔFy, ΔM) ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 are obtained using the above equations (20) and (21).

最後に、これら各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##に加算することにより、つまり次式により車両挙動の目標値(車両前後方向力の目標値Fx**,車両横方向力の目標値Fy**,ヨーモーメントの目標値M**)を実現する各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を求めることができる。 Finally, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 are used as the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ## of the wheels 1 to 4. , Fx 4 ##, that is, the vehicle behavior target value (vehicle longitudinal force target value Fx **, vehicle lateral force target value Fy **, yaw moment target value M * *) The driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of each of the wheels 1 to 4 that realize *) can be obtained.

Fx1**=Fx1##+ΔFx1 …(補3a)
Fx2**=Fx2##+ΔFx2 …(補3b)
Fx3**=Fx3##+ΔFx3 …(補3c)
Fx4**=Fx4##+ΔFx4 …(補3d)
これら各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を、図5において下四段に実線で重ねて示すと、図示のように、左前輪1の駆動力目標値Fx1**は左前輪1の駆動力基本値Fx1##より、右前輪2の駆動力目標値Fx2**は右前輪2の駆動力基本値Fx2##より、左後輪3の駆動力目標値Fx3**は左後輪3の駆動力基本値Fx3##より、右前輪4の駆動力目標値Fx4**は右後輪4の駆動力基本値Fx4##より、それぞれ進んでおり、フィードフォワード制御が可能となっていることがわかる。
Fx 1 ** = Fx 1 ## + ΔFx 1 (Supplement 3a)
Fx 2 ** = Fx 2 ## + ΔFx 2 (Supplement 3b)
Fx 3 ** = Fx 3 ## + ΔFx 3 (Supplement 3c)
Fx 4 ** = Fx 4 ## + ΔFx 4 (Supplement 3d)
When the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of these wheels 1 to 4 are shown in the lower four stages in FIG. The driving force target value Fx 1 ** of the left front wheel 1 is based on the driving force basic value Fx 1 ## of the left front wheel 1, and the driving force target value Fx 2 ** of the right front wheel 2 is the driving force basic value Fx of the right front wheel 2. 2 From ##, the driving force target value Fx 3 ** of the left rear wheel 3 is based on the driving force basic value Fx 3 ## of the left rear wheel 3, and the driving force target value Fx 4 ** of the right front wheel 4 is the right rear wheel. It can be seen from the driving force basic value Fx 4 ## 4 that the feed forward control is possible.

これが本発明の骨子であり、以上の理論的背景を踏まえて実施形態の詳細を説明する。   This is the gist of the present invention, and the details of the embodiment will be described based on the above theoretical background.

コントローラ8で実行されるこの制御を以下のフローチャートを参照して詳述する。   This control executed by the controller 8 will be described in detail with reference to the following flowchart.

図6、図7はモータ1〜4へのトルク配分制御を実行するためのもので、操作の手順を記載している。一定時間毎に実行するものではない。   FIGS. 6 and 7 are for executing torque distribution control to the motors 1 to 4 and describe operation procedures. It is not executed at regular intervals.

ステップ10では、車輪速センサ21〜24で各輪1〜4の回転速度ω1,ω2,ω3,ω4[rad/s]をそれぞれ検出し、各輪1〜4の半径Rを乗じて各車輪速度V1,V2,V3,V4[m/s]を求めると共に、車両速度V[m/s]を次の式(22)により算出する。 In step 10, the rotational speeds ω 1 , ω 2 , ω 3 , ω 4 [rad / s] of the wheels 1 to 4 are detected by the wheel speed sensors 21 to 24, respectively, and multiplied by the radius R of the wheels 1 to 4. The wheel speeds V 1 , V 2 , V 3 , and V 4 [m / s] are obtained, and the vehicle speed V [m / s] is calculated by the following equation (22).

V=(V1+V2+V3+V4)÷4 …(22)
また、アクセルストロークセンサ26によってアクセルペダル6の踏込量AP[%]を、ブレーキストロークセンサ27によってブレーキペダル7の踏込量BP[%]を、ステアリング角センサ25によってステアリング5の回転角θ[rad]を、加速度センサ100によって車両の前後方向加速度αx[m/s2]と横方向加速度αy[m/s2]を、ヨーレートセンサ101によってヨーレートγ[rad/s]を、舵角センサ41〜44によって各車輪1〜4の舵角δ1,δ2,δ3,δ4をそれぞれ検出する。
V = (V 1 + V 2 + V 3 + V 4 ) ÷ 4 (22)
Further, the accelerator stroke sensor 26 depresses the depression amount AP [%] of the accelerator pedal 6, the brake stroke sensor 27 depresses the depression amount BP [%] of the brake pedal 7, and the steering angle sensor 25 rotates the rotation angle θ [rad] of the steering wheel 5. , The longitudinal acceleration αx [m / s 2 ] and lateral acceleration αy [m / s 2 ] of the vehicle by the acceleration sensor 100, the yaw rate γ [rad / s] by the yaw rate sensor 101, and the steering angle sensors 41 to 44. To detect the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4 , respectively.

ここで、車両速度V及び各輪速度V1〜V4は車両前進方向を正とし、ステアリングの回転θは反時計回りを正とし、αxは車両が前方に加速する方向を正とし、αyは車両が左旋回時に車両重心位置から旋回中心に向かう方向を正とし、γは車両を鉛直上方からみたときに反時計回りを正とする。各輪1〜4の舵角δ1,δ2,δ3,δ4は、前述したように各輪1〜4の向きが車体前後方向と一致している状態をゼロとし、車両を鉛直上方からみたときに反時計回りを正とする。 Here, the vehicle speed V and the wheel speeds V 1 to V 4 are positive in the vehicle forward direction, the steering rotation θ is positive in the counterclockwise direction, αx is positive in the direction in which the vehicle accelerates forward, and αy is When the vehicle is turning left, the direction from the center of gravity of the vehicle toward the turning center is positive, and γ is positive when the vehicle is viewed from above vertically. As described above, the steering angles δ 1 , δ 2 , δ 3 , and δ 4 of the wheels 1 to 4 are set to zero when the directions of the wheels 1 to 4 coincide with the longitudinal direction of the vehicle body, and the vehicle is moved vertically upward. A counterclockwise direction is positive when entangled.

本実施形態では、前輪1,2の舵角δ1,δ2をδ1=δ2=θ/16とし、後輪3,4の舵角δ3,δ4をδ3=δ4=0とする。このような場合には、コンプライアンスステアやロールステア等、サスペンションの影響を考慮して各輪1〜4の舵角を補正できるようにするとなお良い。なお、舵角センサを持たない車両ではステアリング5の回転角θから各輪1〜4の舵角を求めるようにすればよい。 In this embodiment, the steering angles δ 1 and δ 2 of the front wheels 1 and 2 are set to δ 1 = δ 2 = θ / 16, and the steering angles δ 3 and δ 4 of the rear wheels 3 and 4 are set to δ 3 = δ 4 = 0. And In such a case, it is more preferable that the steering angles of the wheels 1 to 4 can be corrected in consideration of the influence of the suspension such as compliance steer and roll steer. In a vehicle that does not have a steering angle sensor, the steering angle of each wheel 1 to 4 may be obtained from the rotation angle θ of the steering 5.

ステップ20では、各輪1〜4の横すべり角β1,β2,β3,β4[rad]を推定する。各輪1〜4の横滑り角(スリップ角ともいう)とは、車両の進行方向とタイヤの前後方向のなす現時点における車輪のスリップ角(現状スリップ角)のことである。推定方法については種々あるが、ここでは一例として次の方法を用いる(特開平10-329689号公報参照)。 In step 20, the side slip angles β 1 , β 2 , β 3 , β 4 [rad] of each wheel 1 to 4 are estimated. The side slip angle (also referred to as slip angle) of each of the wheels 1 to 4 is a slip angle (current slip angle) of a wheel at the present time formed by the traveling direction of the vehicle and the front-rear direction of the tire. There are various estimation methods, but the following method is used here as an example (see Japanese Patent Laid-Open No. 10-329689).

即ち、ステップ10で読み込んだ横方向加速度αy、ヨーレートγ及び車両速度Vから車体横滑り角βをまず推定する。その上で、この車体横滑り角β,ヨーレートγ,車両速度V,操舵角θから各輪1〜4の横滑り角β1,β2,β3,β4を推定する。具体的には先ず、車体横滑り角β[rad]を次の式(補4)により算出する。 That is, the vehicle body side slip angle β is first estimated from the lateral acceleration αy, the yaw rate γ, and the vehicle speed V read in step 10. Then, the side slip angles β 1 , β 2 , β 3 , β 4 of each wheel 1 to 4 are estimated from the vehicle body side slip angle β, the yaw rate γ, the vehicle speed V, and the steering angle θ. Specifically, first, the vehicle body side slip angle β [rad] is calculated by the following equation (Supplement 4).

β=∫(Yg/V−γ)dt …(補4)
なお、(補4)式の求心加速度Ygとして横方向加速度αyを入れている。
β = ∫ (Yg / V−γ) dt (Supplement 4)
Note that the lateral acceleration αy is used as the centripetal acceleration Yg in (Supplement 4).

次いで、前輪1,2の横滑り角β1,β2を次の式(補5)により及び後輪3,4の横滑り角β3,β4を次の式(補6)によりそれぞれ算出する。 Next, the sideslip angles β 1 and β 2 of the front wheels 1 and 2 are calculated by the following formula (Supplement 5), and the sideslip angles β 3 and β 4 of the rear wheels 3 and 4 are calculated by the following formula (Supplement 6).

β1=β2=β+θ/Gs−γ×Lf/V …(補5)
β3=β4=β+γ×Lr/V …(補6)
式(補5)のGsはステアリングギヤ15のギヤ比である。
β 1 = β 2 = β + θ / Gs−γ × L f / V (Supplement 5)
β 3 = β 4 = β + γ × L r / V (Supplement 6)
Gs in the equation (Supplement 5) is a gear ratio of the steering gear 15.

各輪1〜4の横滑り角β1,β2,β3,β4の符号は、各輪1〜4の前後方向から車輪速度の方向までの角度が鉛直上方から見て反時計回りになっている場合を正とする。車体横滑り角βの符号も、各輪1〜4の横滑り角β1,β2,β3,β4の符号と同様である。 The signs of the sideslip angles β 1 , β 2 , β 3 , β 4 of the wheels 1 to 4 are counterclockwise when the angle from the front-rear direction of the wheels 1 to 4 to the direction of the wheel speed is viewed from above. The case is positive. The sign of the vehicle body side slip angle β is the same as the signs of the side slip angles β 1 , β 2 , β 3 , β 4 of the wheels 1 to 4.

また、ステップ20においては各輪1〜4の輪荷重W1,W2,W3,W4[N]を次の式(23)〜式(26)により算出する。 In Step 20, the wheel loads W 1 , W 2 , W 3 , W 4 [N] of the respective wheels 1 to 4 are calculated by the following formulas (23) to (26).

1=mgLr/2Ll−mhαx/2Ll−mhαy/2Lt …(23)
2=mgLr/2Ll−mhαx/2Ll+mhαy/2Lt …(24)
3=mgLf/2Ll+mhαx/2Ll−mhαy/2Lt …(25)
4=mgLf/2Ll+mhαx/2Ll+mhαy/2Lt …(26)
式(23)〜式(26)においてmは車両の質量[kg]、hは車両の重心高さ[m]、gは重力加速度[m/s2]である。前述のように、Lrはヨー回転方向の車両重心位置から後輪車軸までの距離[m]、Ltは前後輪のトレッド長さ[m]、Llはホイールベース長さ[m]である。各輪1〜4の輪荷重W1,W2,W3,W4の算出方法(推定方法)は特開2002−211378公報に記載されており、ここでは当該公報に従って求めている。なお、荷重センサを配して各輪1〜4の輪荷重W1,W2,W3,W4を検出するようにしてもかまわない。
W 1 = mgL r / 2L 1 −mhαx / 2L 1 −mhαy / 2L t (23)
W 2 = mgL r / 2L 1 −mhαx / 2L 1 + mhαy / 2L t (24)
W 3 = mgL f / 2L l + mhαx / 2L l -mhαy / 2L t ... (25)
W 4 = mgL f / 2L 1 + mhαx / 2L 1 + mhαy / 2L t (26)
In Expressions (23) to (26), m is the mass of the vehicle [kg], h is the height of the center of gravity of the vehicle [m], and g is the acceleration of gravity [m / s 2 ]. As described above, L r is the distance [m] from the center of gravity of the vehicle in the yaw rotation direction to the rear wheel axle, L t is the tread length [m] of the front and rear wheels, and L l is the wheel base length [m]. is there. A calculation method (estimation method) of the wheel loads W 1 , W 2 , W 3 , and W 4 of each of the wheels 1 to 4 is described in Japanese Patent Application Laid-Open No. 2002-212378, and is obtained according to the official gazette here. Note that a load sensor may be provided to detect the wheel loads W 1 , W 2 , W 3 , and W 4 of each of the wheels 1 to 4.

さらにステップ20においては各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4[無名数]を推定する。推定方法については種々あるが、ここでは一例として次の方法(特開平6−98418号公報参照)を用いる。この方法は、各車輪1〜4が路面から受ける路面反力F1,F2,F3,F4を推定し、この路面反力F1,F2,F3,F4とステップ20で求めた輪荷重W1,W2,W3,W4とから各車輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4を推定するものである。 Further, in step 20, the road surface friction coefficients μ 1 , μ 2 , μ 3 , μ 4 [unknown number] of each wheel 1 to 4 are estimated. There are various estimation methods, but here, as an example, the following method (see JP-A-6-98418) is used. In this method, road surface reaction forces F 1 , F 2 , F 3 , and F 4 received by the wheels 1 to 4 from the road surface are estimated, and the road surface reaction forces F 1 , F 2 , F 3 , and F 4 and step 20 are performed. The road surface friction coefficients μ 1 , μ 2 , μ 3 , and μ 4 of each wheel 1 to 4 are estimated from the obtained wheel loads W 1 , W 2 , W 3 , and W 4 .

簡単に概説すると、一輪についてモータに電磁トルクTmが加えられ、車輪には路面反力Fに車輪半径Rを乗じた路面反力トルクF×Rがモータによるトルクと逆方向に加えられているとする。そして、モータと車輪とは直結状態であり、車軸のねじり剛性κが十分に大きいと仮定でき(車軸のねじり変形を無視する)、モータの回転速度と車輪の回転速度とは同一の回転速度ω[rad/s]であるとの関係が成り立つとすると、モータと車輪との回転系の運動方程式は次の式(補7)にまとめることができる。   Briefly, the electromagnetic torque Tm is applied to the motor for one wheel, and the road surface reaction force torque F × R, which is the road surface reaction force F multiplied by the wheel radius R, is applied to the wheel in the opposite direction to the motor torque. To do. And it can be assumed that the motor and the wheel are directly connected, and the torsional rigidity κ of the axle is sufficiently large (ignoring torsional deformation of the axle), and the rotational speed of the motor and the rotational speed of the wheel are the same rotational speed ω. Assuming that the relationship of [rad / s] holds, the equation of motion of the rotating system of the motor and wheels can be summarized as the following equation (Supplement 7).

(Jm+Jw)dω/dt=Tm−Cmw・ω−Rmw・ω−F・R …(補7)
式(補7)のJmはモータの慣性モーメント、Jwは車輪の慣性モーメント、Cmwは車輪の回転系の粘性減衰定数、Rmwは車輪の回転系の個体摩擦である。
(Jm + Jw) dω / dt = Tm−Cmw · ω−Rmw · ω−F · R (Supplement 7)
Jm in the formula (Supplement 7) is the moment of inertia of the motor, Jw is the moment of inertia of the wheel, Cmw is the viscous damping constant of the wheel rotation system, and Rmw is the individual friction of the wheel rotation system.

その結果、路面反力Fを、上記の式(補7)を変形した次の式(補8)より算出することができる。   As a result, the road surface reaction force F can be calculated from the following equation (complement 8) obtained by modifying the above equation (complement 7).

F={Tm−(Jm+Jw)dω/dt−Cmw・ω−Rmw・ω}/R
…(補8)
従って、この式(補8)を用いて、各輪1〜4についての路面反力F1,F2,F3,F4を次の式(補9a)〜式(補9d)により算出する。
F = {Tm− (Jm + Jw) dω / dt−Cmw · ω−Rmw · ω} / R
... (Supplement 8)
Therefore, the road surface reaction forces F 1 , F 2 , F 3 , and F 4 for each of the wheels 1 to 4 are calculated by the following formulas (complement 9a) to formula (complement 9d) using this formula (complement 8). .

1={Tm−(Jm+Jw)dω1/dt−Cmw・ω1−Rmw・ω1}/R
…(補9a)
2={Tm−(Jm+Jw)dω2/dt−Cmw・ω2−Rmw・ω2}/R
…(補9b)
3={Tm−(Jm+Jw)dω3/dt−Cmw・ω3−Rmw・ω3}/R
…(補9c)
4={Tm−(Jm+Jw)dω4/dt−Cmw・ω4−Rmw・ω4}/R
…(補9d)
このようにして算出した各輪1〜4の路面反力F1,F2,F3,F4と、各輪1〜4の輪荷重W1,W2,W3,W4とにより、次の式(補10a)〜式(補10d)を用いて路面摩擦係数μ1、μ2、μ3、μ4を算出する。
F 1 = {Tm− (Jm + Jw) dω 1 / dt−Cmw · ω 1 −Rmw · ω 1 } / R
... (Supplement 9a)
F 2 = {Tm− (Jm + Jw) dω 2 / dt−Cmw · ω 2 −Rmw · ω 2 } / R
... (Supplement 9b)
F 3 = {Tm− (Jm + Jw) dω 3 / dt−Cmw · ω 3 −Rmw · ω 3 } / R
... (Supplement 9c)
F 4 = {Tm− (Jm + Jw) dω 4 / dt−Cmw · ω 4 −Rmw · ω 4 } / R
... (Supplement 9d)
The road surface reaction forces F 1 , F 2 , F 3 , F 4 of the wheels 1 to 4 calculated in this way and the wheel loads W 1 , W 2 , W 3 , W 4 of the wheels 1 to 4 are The road surface friction coefficients μ 1 , μ 2 , μ 3 and μ 4 are calculated using the following equations (complement 10a) to equation (complement 10d).

μ1=F1/W1 …(補10a)
μ2=F2/W2 …(補10b)
μ3=F3/W3 …(補10c)
μ4=F4/W4 …(補10d)
ステップ30では、車両前後方向力の静的目標値Fx*を次の式(23)により求める。
μ 1 = F 1 / W 1 (Supplement 10a)
μ 2 = F 2 / W 2 (Supplement 10b)
μ 3 = F 3 / W 3 (Supplement 10c)
μ 4 = F 4 / W 4 (Supplement 10d)
In step 30, a static target value Fx * of the vehicle longitudinal force is obtained by the following equation (23).

Fx*=Fax*+Fbx* …(23)
式(23)右辺第1項のFax*[N]はアクセルペダル6の踏込量AP及び車両速度Vに対応した目標駆動力を目標駆動力マップに基づいて、また右辺第2項のFbx*[N]はブレーキペダル7の踏込量BPに対応した目標制動力を目標制動力マップに基づいてそれぞれ算出したものである。ここで、目標駆動力マップはアクセルペダル6の踏込量AP及び車両速度Vに対応する目標駆動力を、目標制動力マップはブレーキペダルの踏込量BPに対応する目標制動力をそれぞれコントローラ8のROMに予め記憶させておいたものであり、目標駆動力Fa*、目標制動力Fb*はそれぞれ例えば図8及び図9のように設定している。
Fx * = Fax * + Fbx * (23)
Fax * [N] in the first term on the right side of Expression (23) is based on the target driving force map corresponding to the depression amount AP of the accelerator pedal 6 and the vehicle speed V, and Fbx * [ N] is obtained by calculating the target braking force corresponding to the depression amount BP of the brake pedal 7 based on the target braking force map. Here, the target driving force map indicates the target driving force corresponding to the depression amount AP of the accelerator pedal 6 and the vehicle speed V, and the target braking force map indicates the target braking force corresponding to the depression amount BP of the brake pedal, respectively. The target driving force Fa * and the target braking force Fb * are set as shown in FIGS. 8 and 9, for example.

車両前後方向力の静的目標値Fx*,目標駆動力Fax*,目標制動力Fbx*はいずれも車両を前方に加速させる向きを正とする。従って、目標制動力Fbx*はゼロまたは負の値となっている。   The static target value Fx *, the target driving force Fax *, and the target braking force Fbx * of the vehicle longitudinal force are all positive in the direction in which the vehicle is accelerated forward. Therefore, the target braking force Fbx * is zero or a negative value.

ステップ40では、車両横方向力の静的目標値Fy*を、目標駆動力と目標制動力の和である車両前後方向力の静的目標値Fx*と、ステアリング5の回転角θと、車両速度Vとから、車両横方力静的目標値マップに基づいて設定する。同じく、ヨーレートの静的目標値γ*を、車両前後方向力の静的目標値Fx*とステアリング5の回転角θと車両速度Vとから、ヨーレート静的目標値マップに基づいて設定する。   In step 40, the static target value Fy * of the vehicle lateral force, the static target value Fx * of the vehicle longitudinal force that is the sum of the target driving force and the target braking force, the rotation angle θ of the steering wheel 5, the vehicle The speed V is set based on the vehicle lateral force static target value map. Similarly, the static target value γ * of the yaw rate is set based on the yaw rate static target value map from the static target value Fx * of the vehicle longitudinal force, the rotation angle θ of the steering wheel 5 and the vehicle speed V.

ここで、車両横方力静的目標値マップは、車両前後方向力の静的目標値Fx*と、ステアリング5の回転角θと、車両速度Vとに対応する車両横方向力の静的目標値Fy*をコントローラ8のROMに予め記憶させておいたものであり、車両横方向力の静的目標値Fy*は例えば図10のように設定している。同様にして、ヨーレート静的目標値マップは、車両前後方向力の静的目標値Fx*と、ステアリング5の回転角θと、車両速度Vとに対応するヨーレートの静的目標値γ*をコントローラ8のROMに予め記憶させておいたものであり、ヨーレートの静的目標値γ*は例えば図11のように設定している。   Here, the vehicle lateral force static target value map is a vehicle lateral force static target value Fy corresponding to the vehicle longitudinal force static target value Fx *, the steering wheel 5 rotation angle θ, and the vehicle speed V. * Is previously stored in the ROM of the controller 8, and the static target value Fy * of the vehicle lateral force is set as shown in FIG. 10, for example. Similarly, the yaw rate static target value map is a controller that calculates the static target value Fx * of the vehicle longitudinal force, the rotation angle θ of the steering wheel 5, and the static target value γ * of the yaw rate corresponding to the vehicle speed V. The static target value γ * of the yaw rate is set as shown in FIG. 11, for example.

図10及び図11には、車両前後方向力の静的目標値Fx*が小さい場合を左側に、車両前後方向力の静的目標値Fx*が大きい場合を右側に示している。   10 and 11, the case where the static target value Fx * of the vehicle longitudinal force is small is shown on the left side, and the case where the static target value Fx * of the vehicle longitudinal force is large is shown on the right side.

図10、図11の各左側に示したように、ステアリングの回転角θが正の値で同じであれば、車両速度Vが大きくなるほど車両横方向力の静的目標値Fy*、ヨーレートの静的目標値γ*が正の値で大きくなり、これに対してステアリングの回転角θが負の値で同じであれば、車両速度Vが大きくなるほど車両横方向力の静的目標値Fy*、ヨーレートの静的目標値γ*が負の値で大きくなっている。また、車両速度Vが同じであれば、ステアリングの回転角θが正の値で大きくなるほど車両横方向力の静的目標値Fy*、ヨーレートの静的目標値γ*が正の値で大きくなり、これに対してステアリングの回転角θが負の値で大きくなるほど車両横方向力の静的目標値Fy*、ヨーレートの静的目標値γ*が負の値で大きくなっている。   As shown on the left side of each of FIGS. 10 and 11, if the steering rotation angle θ is a positive value and the same, as the vehicle speed V increases, the vehicle lateral force static target value Fy * and the yaw rate become static. If the target target value γ * increases with a positive value and the steering rotation angle θ is the same with a negative value, the vehicle lateral force static target value Fy * increases as the vehicle speed V increases. The static target value γ * of the yaw rate is negative and large. Further, if the vehicle speed V is the same, the vehicle lateral force static target value Fy * and the yaw rate static target value γ * increase with positive values as the steering rotation angle θ increases with positive values. On the other hand, as the steering rotation angle θ increases with a negative value, the vehicle lateral force static target value Fy * and the yaw rate static target value γ * increase with a negative value.

さらに、車両速度V及びステアリングの回転角θが同じでも、その回転角θが正の条件では、図10、図11の各右側に示す車両前後方向力の静的目標値Fx*が大きい場合のほうが、図10、図11の各左側に示す車両前後方向力の静的目標値Fx*が小さい場合より車両横方向力の静的目標値Fy*、ヨーレートの静的目標値γ*が共に正の値で小さくなり、これに対して、回転角θが負の条件では、図10、図11の各右側に示す車両前後方向力の静的目標値Fx*が大きい場合のほうが、図10、図11の各左側に示す車両前後方向力の静的目標値Fx*が小さい場合より車両横方向力の静的目標値Fy*、ヨーレートの静的目標値γ*が共に負の値で小さくなっている。   Further, even when the vehicle speed V and the steering rotation angle θ are the same, under the condition that the rotation angle θ is positive, the static target value Fx * of the vehicle longitudinal force shown on the right side of each of FIGS. 10 and 11 is large. However, both the static target value Fy * of the vehicle lateral force and the static target value γ * of the yaw rate are more positive than when the static target value Fx * of the vehicle longitudinal force shown on the left side of each of FIGS. On the other hand, when the rotational angle θ is negative, when the static target value Fx * of the vehicle longitudinal force shown on the right side of each of FIGS. The static target value Fy * of the vehicle lateral force and the static target value γ * of the yaw rate are both negative and smaller than when the static target value Fx * of the vehicle longitudinal force shown on each left side of FIG. 11 is small. ing.

なお、図10及び図11では、車両前後方向力の静的目標値Fx*が小さい場合と、車両前後方向力の静的目標値Fx*が大きい場合の2つの場合で代表させているが、実際には車両前後方向力の静的目標値Fx*のパラメータの数だけの車両横方向力静的目標値マップ及びヨーレート静的目標値マップが用意されている。例えば、車両前後方向力の静的目標値Fx*のパラメータが最小値から最大値まで合計50個あるとすれば、各マップとも50個あるということである。   In FIG. 10 and FIG. 11, the case where the static target value Fx * of the vehicle longitudinal force is small and the case where the static target value Fx * of the vehicle longitudinal force is large are representative. Actually, the vehicle lateral force static target value map and the yaw rate static target value map corresponding to the number of parameters of the vehicle front-rear direction force static target value Fx * are prepared. For example, if there are a total of 50 parameters from the minimum value to the maximum value of the static target value Fx * of the vehicle longitudinal force, each map has 50 parameters.

上記2つのマップ(車両横方力静的目標値マップ及びヨーレート静的目標値マップ)の設定方法は後述するステップ50のところでまとめて説明する。   A method for setting the two maps (the vehicle lateral force static target value map and the yaw rate static target value map) will be described together at step 50 described later.

ステップ50では、各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*を、ステアリングの回転角θ,車両速度V,車両前後方向力の静的目標値Fx*から、駆動力静的目標値マップに基づいて設定する。 In step 50, the static target values Fx 1 *, Fx 2 *, Fx 3 *, and Fx 4 * of the driving forces of the wheels 1 to 4 are set as the steering rotation angle θ, the vehicle speed V, and the vehicle longitudinal force. The target value Fx * is set based on the driving force static target value map.

ここで、駆動力静的目標値マップは、車両前後方向力の静的目標値Fx*と、ステアリング5の回転角θと、車両速度Vとに対応する各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*をコントローラ8のROMに予め記憶させておいたものであり、各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*は例えば図12のように設定している。 Here, the driving force static target value map is a static target value Fx * of the longitudinal force of the vehicle, the rotation angle θ of the steering wheel 5, and the static of the driving force of each wheel 1-4 corresponding to the vehicle speed V. Target values Fx 1 *, Fx 2 *, Fx 3 *, Fx 4 * are stored in the ROM of the controller 8 in advance, and the static target values Fx 1 * of the driving forces of the wheels 1 to 4 are stored. , Fx 2 *, Fx 3 *, and Fx 4 * are set as shown in FIG. 12, for example.

図12において、車両前後方向力の静的目標値Fx*が小さい場合(緩加速時)を中央の列に、車両前後方向力の静的目標値Fx*が大きい場合(急加速時)を右側の列に示しており、車両速度V及びステアリングの回転角θが同じでも、図12右側の列に示す車両前後方向力の静的目標値Fx*が大きい場合のほうが、図12中央の列に示す車両前後方向力の静的目標値Fx*が小さい場合より各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*の各値が正の値で大きくなっている。 In FIG. 12, when the static target value Fx * of the vehicle longitudinal force is small (slow acceleration), the center row, and when the static target value Fx * of the vehicle longitudinal force is large (rapid acceleration), the right side. Even if the vehicle speed V and the steering rotation angle θ are the same, the case where the static target value Fx * of the vehicle longitudinal force shown in the column on the right side of FIG. The values of the static target values Fx 1 *, Fx 2 *, Fx 3 *, and Fx 4 * of the driving forces of the wheels 1 to 4 are more positive than when the static target value Fx * of the vehicle longitudinal force shown is smaller. The value is getting bigger.

また、車両前後方向力の静的目標値Fx*が負の場合(つまり制動時)を図12の左側の列に示しており、図12左側の列に示す車両前後方向力の静的目標値Fx*が負の場合になると、各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*も負の値になっている。 Further, the case where the static target value Fx * of the vehicle longitudinal force is negative (that is, during braking) is shown in the left column of FIG. 12, and the static target value of the vehicle longitudinal force shown in the left column of FIG. When Fx * is negative, the static target values Fx 1 *, Fx 2 *, Fx 3 *, and Fx 4 * of the driving forces of the wheels 1 to 4 are also negative values.

なお、図12では、車両前後方向力の静的目標値Fx*が負の場合と、車両前後方向力の静的目標値Fx*が小さい場合と、車両前後方向力の静的目標値Fx*が大きい場合の3つの場合で代表させているが、実際には車両前後方向力の静的目標値Fx*のパラメータの数だけの駆動力静的目標値マップが用意されている。例えば、車両前後方向力の静的目標値Fx*のパラメータが最小値から最大値まで合計50個あるとすれば、駆動力静的目標値マップも50×4個あるということである。   In FIG. 12, the static target value Fx * of the vehicle longitudinal force is negative, the static target value Fx * of the vehicle longitudinal force is small, and the static target value Fx * of the vehicle longitudinal force. The driving force static target value maps corresponding to the number of parameters of the static target value Fx * of the vehicle longitudinal force are actually prepared. For example, if there are a total of 50 parameters from the minimum value to the maximum value of the static target value Fx * of the vehicle longitudinal force, there are 50 × 4 driving force static target value maps.

ここで、この駆動力配分静的目標値マップと、ステップ40で用いた車両横方力静的目標値マップ及びヨーレート静的目標値マップの求め方について、まとめて述べることとする。   Here, the driving force distribution static target value map, the vehicle lateral force static target value map and the yaw rate static target value map used in step 40 will be described together.

四輪1〜4の駆動力和Fxall[N],左右輪の駆動力差ΔFxall[N],前輪駆動力配分η[無名数],左右輪駆動力差の前輪配分Δη[無名数]を次の式(24)〜式(27)により定義する。 Driving force sum Fx all [N] of the four wheels 1 to 4, left and right wheel driving force difference ΔFx all [N], front wheel driving force distribution η [anonymous number], front wheel distribution Δη [anonymous number] of the left and right wheel driving force difference Is defined by the following equations (24) to (27).

Fxall=Fx1+Fx2+Fx3+Fx4 …(24)
ΔFxall=(Fx2+Fx4)−(Fx1+Fx3) …(25)
η=(Fx1+Fx2)/Fxall …(26)
Δη=(Fx2−Fx1)/Fxall …(27)
ただし、本実施形態では、式(26)、式(27)の前輪駆動力配分η及び左右輪駆動力差の前輪配分Δηは常に0.6(前輪1,2への配分を6割)とする。
Fx all = Fx 1 + Fx 2 + Fx 3 + Fx 4 (24)
ΔFx all = (Fx 2 + Fx 4 ) − (Fx 1 + Fx 3 ) (25)
η = (Fx 1 + Fx 2 ) / Fx all (26)
Δη = (Fx 2 −Fx 1 ) / Fx all (27)
However, in the present embodiment, the front wheel driving force distribution η and the front wheel distribution Δη of the left and right wheel driving force difference in the equations (26) and (27) are always 0.6 (60% of the distribution to the front wheels 1 and 2). To do.

そして、本車両が採り得る四輪1〜4の駆動力和Fxall,左右輪の駆動力差ΔFxall,ステアリング5の角度θ,車両前後方向力の静的目標値Fx*の4つのパラメータの組合せ全てに対して、次のようなシミュレーションあるいは実験を行い、駆動力静的目標値マップ,車両横方力静的目標値マップ,ヨーレート静的目標値マップを全て作成する。 Then, the driving force sum Fx all four wheel 1-4 which this vehicle can take, the driving force difference DerutaFx all, steering 5 of the left and right wheel angle theta, the static target value Fx * 4 one parameter of the front and rear vehicle direction force For all the combinations, the following simulation or experiment is performed to create all of the driving force static target value map, the vehicle lateral force static target value map, and the yaw rate static target value map.

まず最初に、四輪の駆動力和Fxall,左右輪の駆動力差ΔFxall,ステアリング角度θ,車両前後方向力の静的目標値Fx*の組み合わせの中から任意に一つを選択する。この選択した4つの各値を他と区別するため4つの各値Fxall,ΔFxall,θ,Fx*に「’」を添えると、選択された値はそれぞれ「Fxall’」,「ΔFxall’」,「θ’」,「Fx*’」となる。 First, one is arbitrarily selected from a combination of the driving force sum Fx all of the four wheels, the driving force difference ΔFx all of the left and right wheels, the steering angle θ, and the static target value Fx * of the vehicle longitudinal force. In order to distinguish each of the four selected values from the other, if “′” is added to each of the four values Fx all , ΔFx all , θ, Fx *, the selected values are “Fx all '”, “ΔFx all ”, respectively. '","Θ'",and" Fx * '".

こうして選択された4つの値のうちの2つの値(駆動力和Fxall’と左右輪の駆動力差ΔFxall’)から、各輪1〜4の駆動力値Fx1,Fx2,Fx3,Fx4(これらにも「’」を添えて「Fx1’」,「Fx2’」,「Fx3’」,「Fx4’」とする)を次の式(28)〜式(31)により設定する。 The driving force values Fx 1 , Fx 2 , and Fx 3 of the wheels 1 to 4 are calculated from two values (the driving force sum Fx all ′ and the driving force difference ΔFx all ′) of the left and right wheels. , Fx 4 (“Fx 1 ′”, “Fx 2 ′”, “Fx 3 ′”, and “Fx 4 ′” are added to these as well by adding “′”) to the following equations (28) to (31 ) To set.

Fx1’=Fxall’×η/2−ΔFxall’×Δη/2 …(28)
Fx2’=Fxall’×η/2+ΔFxall’×Δη/2 …(29)
Fx3’=Fxall’×(1−η)/2−ΔFxall’×(1−Δη)/2
…(30)
Fx4’=Fxall’×(1−η)/2+ΔFxall’×(1−Δη)/2
…(31)
また、選択された値であるθ'から前輪1,2の舵角をδ1’=δ2’=θ’/16(ステアリングギア比は1/16)とする。
Fx 1 ′ = Fx all ′ × η / 2−ΔFx all ′ × Δη / 2 (28)
Fx 2 '= Fx all ' × η / 2 + ΔFx all '× Δη / 2 (29)
Fx 3 ′ = Fx all ′ × (1−η) / 2−ΔFx all ′ × (1−Δη) / 2
... (30)
Fx 4 ′ = Fx all ′ × (1−η) / 2 + ΔFx all ′ × (1−Δη) / 2
... (31)
Further, the steering angle of the front wheels 1 and 2 is set to δ 1 ′ = δ 2 ′ = θ ′ / 16 (the steering gear ratio is 1/16) from the selected value θ ′.

こうして設定された駆動力値Fx1’,Fx2’,Fx3’,Fx4’と、選択された前輪舵角δ1’,δ2’(後輪3,4の舵角δ3,δ4はゼロ)とで図1の車両を走行させ、かつ−Fx*’を車両重心位置において車両前後方向に加える実験やシミュレーションを実行する。そして、十分時間が経過し車両速度が一定(定常状態)になったときの車両速度V,車両横方向力Fy,ヨーレートγを求める。こうして求めたV,Fy,γにも「’」を添えて、「V’」,「Fy’」,「γ’」とする。 The driving force values Fx 1 ′, Fx 2 ′, Fx 3 ′, Fx 4 ′ thus set and the selected front wheel steering angles δ 1 ′, δ 2 ′ (the steering angles δ 3 , δ of the rear wheels 3, 4). 4 causes the vehicle to travel in Figure 1 de zero), and -Fx * 'that perform experiments and simulations applied to the vehicle longitudinal direction at the center of gravity of the vehicle position. Then, the vehicle speed V, the vehicle lateral force Fy, and the yaw rate γ when sufficient time has elapsed and the vehicle speed becomes constant (steady state) are obtained. “V”, “Fy ′”, and “γ ′” are added to “V”, “Fy”, and “γ” thus obtained by adding “′”.

この1回の実験やシミュレーションによって、1つの状態を表すθ’,V’,Fy’,γ’,Fx1’,Fx2’,Fx3’,Fx4’の組み合わせが得られる。 By one experiment and simulation, a combination of θ ′, V ′, Fy ′, γ ′, Fx 1 ′, Fx 2 ′, Fx 3 ′, and Fx 4 ′ representing one state is obtained.

このようにして、1回目に実験やシミュレーションを行って得た車両速度V’,ステアリングの回転角θ’,車両前後方向力Fx’,車両横方向力Fy’,ヨーレートγ’,各輪1〜4の駆動力値Fx1’,Fx2’,Fx3’,Fx4’を、駆動力静的目標値マップ,車両横方力静的目標値マップ,ヨーレート静的目標値マップの車両速度V,ステアリングの回転角θ,車両前後方向力の静的目標値Fx*,車両横方向力の静的目標値Fy*,ヨーレートの静的目標値γ*,各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*として設定する。 In this way, the vehicle speed V ′, the steering rotation angle θ ′, the vehicle longitudinal force Fx ′, the vehicle lateral force Fy ′, the yaw rate γ ′, the wheel 1 to 1 obtained through the first experiment and simulation are obtained. 4 driving force values Fx 1 ′, Fx 2 ′, Fx 3 ′, Fx 4 ′, vehicle speed V of steering force static target value map, vehicle lateral force static target value map, yaw rate static target value map, steering Rotation angle θ, vehicle longitudinal force target static value Fx *, vehicle lateral force static target value Fy *, yaw rate static target value γ *, and driving force static targets for each wheel 1 to 4 Set as values Fx 1 *, Fx 2 *, Fx 3 *, Fx 4 *.

次に、四輪の駆動力和Fxall,左右輪の駆動力差ΔFxall,ステアリング角度θ,車両前後方向力の静的目標値Fx*の組み合わせの中から任意に、前記選択した組合せとは異なる他の一つを選択し、上記と同様の2回目の操作を行うことによって、他の1つの状態を表すθ’,V’,Fy’,γ’,Fx1’,Fx2’,Fx3’,Fx4’の組み合わせが得られる。このようにして、2回目の実験やシミュレーションを行って得た車両速度V’,ステアリングの回転角θ’,車両前後方向力Fx’,車両横方向力Fy’,ヨーレートγ’,各輪1〜4の駆動力値Fx1’,Fx2’,Fx3’,Fx4’を、駆動力静的目標値マップ,車両横方力静的目標値マップ,ヨーレート静的目標値マップの車両速度V,ステアリングの回転角θ,車両前後方向力の静的目標値Fx*,車両横方向力の静的目標値Fy*,ヨーレートの静的目標値γ*,各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*として設定する。 Next, the selected combination is arbitrarily selected from the combinations of the driving force sum Fx all of the four wheels, the driving force difference ΔFx all of the left and right wheels, the steering angle θ, and the static target value Fx * of the vehicle longitudinal force. By selecting another different one and performing the second operation similar to the above, θ ′, V ′, Fy ′, γ ′, Fx 1 ′, Fx 2 ′, Fx representing the other one state are performed. 3 ', Fx 4' combinations are obtained. Thus, the vehicle speed V ′, the steering rotation angle θ ′, the vehicle longitudinal force Fx ′, the vehicle lateral force Fy ′, the yaw rate γ ′, the wheel 1 to 1 obtained by performing the second experiment and simulation are obtained. 4 driving force values Fx 1 ′, Fx 2 ′, Fx 3 ′, Fx 4 ′, vehicle speed V of steering force static target value map, vehicle lateral force static target value map, yaw rate static target value map, steering Rotation angle θ, vehicle longitudinal force target static value Fx *, vehicle lateral force static target value Fy *, yaw rate static target value γ *, and driving force static targets for each wheel 1 to 4 Set as values Fx 1 *, Fx 2 *, Fx 3 *, Fx 4 *.

同様にして、実験やシミュレーションを任意の残りの組合せに対して次々と行って、他の1つの状態を表すθ’,V’,Fy’,γ’,Fx1’,Fx2’,Fx3’,Fx4’の組み合わせを得ていくと共に、このようにして得た車両速度V’,ステアリングの回転角θ’,車両前後方向力Fx’,車両横方向力Fy’,ヨーレートγ’,各輪1〜4の駆動力値Fx1’,Fx2’,Fx3’,Fx4’を、駆動力静的目標値マップ,車両横方力静的目標値マップ,ヨーレート静的目標値マップの車両速度V,ステアリングの回転角θ,車両前後方向力の静的目標値Fx*,車両横方向力の静的目標値Fy*,ヨーレートの静的目標値γ*,各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*として設定してゆく。 Similarly, experiments and simulations are performed one after another on any remaining combination, and θ ′, V ′, Fy ′, γ ′, Fx 1 ′, Fx 2 ′, Fx 3 representing the other one state. As well as obtaining a combination of ', Fx 4 ', the vehicle speed V ′ obtained in this way, the steering rotation angle θ ′, the vehicle longitudinal force Fx ′, the vehicle lateral force Fy ′, the yaw rate γ ′, The driving force values Fx 1 ′, Fx 2 ′, Fx 3 ′, and Fx 4 ′ of the wheels 1 to 4 are used as the vehicle speed of the driving force static target value map, the vehicle lateral force static target value map, and the yaw rate static target value map. V, steering rotation angle θ, vehicle front / rear direction force static target value Fx *, vehicle lateral force static target value Fy *, yaw rate static target value γ *, and driving force of each wheel 1-4 The static target values Fx 1 *, Fx 2 *, Fx 3 *, and Fx 4 * are set.

こうして、本車両が採り得る四輪1〜4の駆動力和Fxall,左右輪の駆動力差ΔFxall,ステアリング5の角度θ,車両前後方向力の静的目標値Fx*の4つのパラメータの組合せの全てに対してシミュレーションあるいは実験を行うことで、駆動力静的目標値マップ,車両横方力静的目標値マップ,ヨーレート静的目標値マップの設定が全て完了する。 Thus, the driving force sum Fx all four wheel 1-4 which this vehicle can take, the driving force difference DerutaFx all, steering 5 of the left and right wheel angle theta, the static target value Fx * 4 one parameter of the front and rear vehicle direction force By performing simulations or experiments for all the combinations, the setting of the driving force static target value map, the vehicle lateral force static target value map, and the yaw rate static target value map is all completed.

なお、実験あるいはシミュレーションを行う場合には、空気抵抗や転がり抵抗等の走行抵抗要素を除外するようにして行うと共に、シミュレーション上で実行する場合には各輪1〜4について駆動力とタイヤ横力等の非線形性を十分考慮した車両モデルを用いて行う。   In addition, when performing an experiment or simulation, it is performed so as to exclude travel resistance elements such as air resistance and rolling resistance, and when executed on the simulation, driving force and tire lateral force for each wheel 1-4. This is done using a vehicle model that fully considers nonlinearity such as the above.

ステップ60では、車両前後方向力の動的目標値Fx**,車両横方向力の動的目標値Fy**,ヨーレートの動的目標値γ**を、各輪1〜4の駆動力配分で実現可能な範囲でドライバーの操縦性が好適となるように各静的目標値Fx*,Fy*,γ*に対してなまし処理を行うことによって求める。本実施形態では車両前後方向力の静的目標値Fx*については2次遅れの伝達関数を用いて、また車両横方向力の静的目標値Fy*及びヨーレートの静的目標値γ*については1次遅れの伝達関数を用いてそれぞれなまし処理を行うことによって、車両前後方向力の動的目標値Fx**,車両横方向力の動的目標値Fy**,ヨーレートの動的目標値γ**を得る。なお、特に車両横方向力の動的目標値Fy**及びヨーレートの動的目標値γ**の応答は、各輪1〜4のタイヤ力によって実現可能なものになるようになまし処理を行う。   In step 60, the dynamic target value Fx ** of the vehicle longitudinal force, the dynamic target value Fy ** of the vehicle lateral force, and the dynamic target value γ ** of the yaw rate are distributed to the driving forces of the wheels 1 to 4. Thus, the static target values Fx *, Fy *, and γ * are obtained by performing an annealing process so that the driver's maneuverability is suitable within the range that can be realized by the above. In this embodiment, a second-order lag transfer function is used for the static target value Fx * of the vehicle longitudinal force, and the static target value Fy * of the vehicle lateral force and the static target value γ * of the yaw rate are used. By performing the smoothing process using the first-order lag transfer function, the dynamic target value Fx ** of the vehicle longitudinal force, the dynamic target value Fy ** of the vehicle lateral force, and the dynamic target value of the yaw rate Get γ **. In particular, the response of the vehicle lateral force dynamic target value Fy ** and the yaw rate dynamic target value γ ** is processed so that it can be realized by the tire force of each wheel 1 to 4. Do.

さらにステップ60においては、求めたヨーレートの動的目標値γ**を微分し、車両のヨー慣性モーメントI[kg・m2]を乗じることによって、ヨーモーメントの動的目標値M**を求める。 Further, in step 60, the dynamic target value γ ** of the obtained yaw rate is differentiated and multiplied by the yaw inertia moment I [kg · m 2 ] of the vehicle to obtain the dynamic target value M ** of the yaw moment. .

ステップ70では、ステップ50で設定している各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*に基づいて、ステップで60で求めている車両挙動の動的目標値(Fx**,Fy**,γ**)を概ね実現する各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を、次の式(32)〜式(35)により求める。 In step 70, a static target value Fx of the driving force of each wheel 1-4 are set in step 50 1 *, Fx 2 *, Fx 3 *, based on Fx 4 *, it is determined in 60 in step Driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx of the wheels 1 to 4 that substantially realize the dynamic target values (Fx **, Fy **, γ **) of the vehicle behavior. 4 ## is obtained by the following equations (32) to (35).

Fx1##=Fxall##×η/2−ΔFxall##×Δη/2 …(32)
Fx2##=Fxall##×η/2+ΔFxall##×Δη/2 …(33)
Fx3##=Fxall##×(1−η)/2−ΔFxall##×(1−Δη)/2
…(34)
Fx4##=Fxall##×(1−η)/2+ΔFxall##×(1−Δη)/2
…(35)
式(32)〜式(35)の前輪駆動力配分η、左右輪駆動力差の前輪配分Δηは、ステップ50で説明したようにη=Δη=0.6である。
Fx 1 ## = Fx all ## × η / 2−ΔFx all ## × Δη / 2 (32)
Fx 2 ## = Fx all ## × η / 2 + ΔFx all ## × Δη / 2 (33)
Fx 3 ## = Fx all ## × (1−η) / 2−ΔFx all ## × (1−Δη) / 2
... (34)
Fx 4 ## = Fx all ## × (1−η) / 2 + ΔFx all ## × (1−Δη) / 2
... (35)
The front wheel drive force distribution η and the front wheel distribution Δη of the left and right wheel drive force difference in Expression (32) to Expression (35) are η = Δη = 0.6 as described in Step 50.

また、式(32)〜式(35)のFxall##は、ステップ60で車両前後方向力の静的目標値Fx*に対してなまし処理を行った値を車両前後方向力の動的目標値Fx**としたときと同じなまし処理を、各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*の和であるFx1*+Fx2*+Fx3*+Fx4*に対して実行した値である。 Further, Fx all ## in the equations (32) to (35) is a value obtained by performing the smoothing process on the static target value Fx * of the vehicle longitudinal force in step 60 as the dynamic of the vehicle longitudinal force. Fx 1 * which is the sum of static target values Fx 1 *, Fx 2 *, Fx 3 *, and Fx 4 * of the driving forces of the wheels 1 to 4 is the same as that for the target value Fx **. This is the value executed for + Fx 2 * + Fx 3 * + Fx 4 *.

また、式(32)〜式(35)のΔFxall##は、車両を線形近似した線形2輪モデル(安部正人著,第2版,「自動車の運動と制御」,株式会社山海堂,平成15年4月10日,第3章3.2.1節)に左右輪駆動力差ΔFxall##が加わった場合を考え、この線形2輪モデルのヨーレートの応答がヨーレートの動的目標値γ**となるように設計したモデルフォロイング制御系(金井喜美雄,越智徳昌,川邊武俊著,「ビークル制御」,槇書店,2004年1月20日,第3章3.2節)を用い、かつ定常状態で各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*との間で偏差を生じないように補正した次の式(36)から求めている。 In addition, ΔFx all ## in the equations (32) to (35) is a linear two-wheel model that linearly approximates a vehicle (written by Masato Abe, 2nd edition, “Motion and control of automobiles”, Sankaido Co., Ltd., Heisei Considering the case where the left and right wheel driving force difference ΔFx all ## is added to April 3, 2015, Chapter 3 Section 3.2.1), the yaw rate response of this linear two-wheel model is the dynamic target value of the yaw rate. Model following control system designed to be γ ** (Kimio Kanai, Toshimasa Ochi, Taketoshi Kawamata, “Vehicle Control”, Tsubaki Shoten, January 20, 2004, Chapter 3 Section 3.2) The following equation (which is used and corrected so as not to cause a deviation between the static target values Fx 1 *, Fx 2 *, Fx 3 *, and Fx 4 * of the driving forces of the wheels 1 to 4 in a steady state) 36).

ΔFxall##={s2+(−a11−a22)s+(a1122−A1221)}
/{b22・s+(a2111−a1121)}×fr(s)
×{(a2111−a1121)θ/16+(−a1122)ΔFxall#}
/{a1122−a1221
−〔{b21・s+(a2111−a1121)}
/{b22・s+(−a1122)}〕×θ/16
…(36)
式(36)のfr(s)は、ステップ60でヨーレートの静的目標値γ*に対してなまし処理を行ってヨーレートの動的目標値γ**を求めたときのなまし処理における伝達関数、Kf,Krは前輪及び後輪の横滑り角が十分小さいときの単位横滑り角あたりのコーナーリングフォース[N/rad]である。
ΔFx all ## = {s 2 + (− a 11 −a 22 ) s + (a 11 a 22 −A 12 a 21 )}
/ {B 22 · s + (a 21 b 11 −a 11 b 21 )} × f r (s)
× {(a 21 b 11 −a 11 b 21 ) θ / 16 + (− a 11 b 22 ) ΔFx all #}
/ {A 11 b 22 -a 12 a 21}
- [{b 21 · s + (a 21 b 11 -a 11 b 21)}
/ {B 22 · s + ( - a 11 b 22)} ] × theta / 16
... (36)
F r (s) in the equation (36) is the smoothing process when the dynamic target value γ ** of the yaw rate is obtained by performing the smoothing process on the static target value γ * of the yaw rate in Step 60. The transfer functions, Kf and Kr, are cornering forces [N / rad] per unit side slip angle when the side slip angles of the front and rear wheels are sufficiently small.

また、式(36)の係数a11,a12,a21,a22,b11,b21,b22,ΔFxall#はそれぞれ次の値である。 Further, the coefficients a 11 , a 12 , a 21 , a 22 , b 11 , b 21 , b 22 , and ΔFx all # in the equation (36) are the following values, respectively.

11=−(2/mV)(Kf+Kr) …(補4)
12=−(2/mV2)(Kff−Krr)−1 …(補5)
21=−(2/I)(Kff−Krr) …(補6)
22=−(2/IV)(Kff 2+Krr 2) …(補7)
11=2Kf/mV …(補8)
21=2Kff/I …(補9)
22=Lt/2I …(補10)
ΔFxall#=(Fx2*+Fx4*)−(Fx1*+Fx3*) …(補11)
ステップ80では、ステップ70で得ている各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両挙動の基本値、つまり車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##を次の式(37)〜式(39)によりそれぞれ求める。
a 11 = − (2 / mV) (K f + K r ) (Supplement 4)
a 12 = − (2 / mV 2 ) (K f L f −K r L r ) −1 (Supplement 5)
a 21 = − (2 / I) (K f L f −K r L r ) (Supplement 6)
a 22 = − (2 / IV) (K f L f 2 + K r L r 2 ) (Supplement 7)
b 11 = 2K f / mV (Supplement 8)
b 21 = 2K f L f / I (Supplement 9)
b 22 = L t / 2I (Supplement 10)
ΔFx all # = (Fx 2 * + Fx 4 *) − (Fx 1 * + Fx 3 *) (Supplement 11)
In step 80, the basic values of the vehicle behavior realized by the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 obtained in step 70, that is, the vehicle. The basic value Fx ## of the longitudinal force, the basic value Fy ## of the vehicle lateral force, and the basic value M ## of the yaw moment are obtained by the following equations (37) to (39), respectively.

Fx##=Fx1##+Fx2##+Fx3##+Fx4## …(37)
Fy##=Fy1##+Fy2##+Fy3##+Fy4## …(38)
M##={(Fx2##+Fx4##)−(Fx1##+Fx3##)}×Lt/2
+{(Fy1##+Fy2##)×Lf−(Fy3##+Fy4##)×Lr
…(39)
式(38)のFy1##,Fy2##,Fy3##,Fy4##は、現在の車両状態で、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##が各輪1〜4に加わったときに発生するタイヤ横力である。
Fx ## = Fx 1 ## + Fx 2 ## + Fx 3 ## + Fx 4 ## (37)
Fy ## = Fy 1 ## + Fy 2 ## + Fy 3 ## + Fy 4 ## (38)
M ## = {(Fx 2 ## + Fx 4 ##) − (Fx 1 ## + Fx 3 ##)} × L t / 2.
+ {(Fy 1 ## + Fy 2 ##) × L f − (Fy 3 ## + Fy 4 ##) × L r }
... (39)
Fy 1 ##, Fy 2 ##, Fy 3 ##, Fy 4 ## in the equation (38) are the driving force basic values Fx 1 ##, Fx 2 # of the wheels 1 to 4 in the current vehicle state. The tire lateral force generated when #, Fx 3 ##, and Fx 4 ## are applied to the wheels 1 to 4.

上記各輪1〜4のタイヤ横力Fy1##,Fy2##,Fy3##,Fy4##の設定方法として次に3つの方法を示す。
<1>各輪のタイヤ横力の設定方法1
これは、各輪の輪荷重や路面摩擦係数の違いを考慮しない場合の簡易な設定方法で、各輪1〜4の現在の横すべり角β1,β2,β3,β4に基づいて駆動力とタイヤ横力との関係を表すタイヤ特性マップから設定する。
The following three methods are shown as setting methods of the tire lateral forces Fy 1 ##, Fy 2 ##, Fy 3 ##, and Fy 4 ## of the wheels 1 to 4 described above.
<1> Setting method 1 of tire lateral force of each wheel
This is a simple setting method when the difference in wheel load and road surface friction coefficient of each wheel is not taken into account, and it is driven based on the current side slip angles β 1 , β 2 , β 3 , β 4 of each wheel 1-4. It is set from a tire characteristic map that represents the relationship between force and tire lateral force.

例えば、左前輪1の場合を例にとって説明すると、左前輪1のタイヤ特性マップでは、図13のように左前輪1のタイヤ特性を設定している。すなわち、図13には、左前輪1の代表的な6つの横滑り角α1,α2,α3,α4,α5,α6(|α1|<|α2|<|α3|<|α4|<|α5|<|α6|)のときのタイヤ特性を重ねて示しており、横滑り角の絶対値が|α1|より|α4|へと大きくなるほど上方への膨らみが増した後に、|α5|、|α6|となれば今度は全体的に縮んでいる。従って、今かりに、左前輪1の横滑り角β1がα2であったとすれば、図13に示すタイヤ特性のうち上段のα2のタイヤ特性を選択し、その選択したタイヤ特性から左前輪1の駆動力基本値Fx1##に対応するタイヤ横力Fy1##を設定することができる。 For example, the case of the left front wheel 1 will be described as an example. In the tire characteristic map of the left front wheel 1, the tire characteristic of the left front wheel 1 is set as shown in FIG. That is, FIG. 13 shows six typical slip angles α 1 , α 2 , α 3 , α 4 , α 5 , α 6 (| α 1 | <| α 2 | <| α 3 | <| Α 4 | <| α 5 | <| α 6 |), the tire characteristics are shown repeatedly, and the absolute value of the skid angle increases from | α 1 | to | α 4 | If | α 5 |, | α 6 | after the bulge increases, the whole is now contracted. Therefore, Suppose, if slip angle beta 1 of the left front wheel 1 is a alpha 2, select the upper alpha 2 of the tire characteristics of the tire characteristic shown in FIG. 13, the left front wheel 1 from the selected tire characteristic The tire lateral force Fy 1 ## corresponding to the driving force basic value Fx 1 ## can be set.

残りの三輪2〜4についても同様に、各輪2〜4の横滑り角β2,β3,β4に対応したタイヤ特性を図13と同様に用意しておき、各輪2〜4の駆動力基本値Fx2##,Fx3##,Fx4##に対応するタイヤ横力Fy2##,Fy3##,Fy4##を、各輪2〜4毎のタイヤ特性のうち横滑り角β2,β3,β4のときのタイヤ特性を選択して設定する。
<2>各輪のタイヤ横力の設定方法2
これは、各輪の輪荷重または路面摩擦係数の違いを考慮する場合の設定方法(請求項6または7に記載の発明)で、各輪1〜4の現在の横すべり角β1,β2,β3,β4に基づくほか、ステップ20で求めている各輪1〜4の輪荷重W1,W2,W3,W4または各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4に基づいて、各輪1〜4についての駆動力とタイヤ横力との関係を表すタイヤ特性マップから設定する。
Similarly for the remaining three wheels 2 to 4 , tire characteristics corresponding to the sideslip angles β 2 , β 3 and β 4 of the respective wheels 2 to 4 are prepared in the same manner as in FIG. The tire lateral forces Fy 2 ##, Fy 3 ##, Fy 4 ## corresponding to the force basic values Fx 2 ##, Fx 3 ##, Fx 4 ## Select and set the tire characteristics for the sideslip angles β 2 , β 3 , and β 4 .
<2> Setting method 2 of tire lateral force of each wheel
This is a setting method (invention according to claim 6 or 7) in consideration of the difference in wheel load or road surface friction coefficient of each wheel, and the current side slip angles β 1 , β 2 , In addition to β 3 and β 4 , the wheel loads W 1 , W 2 , W 3 , W 4 of the wheels 1 to 4 obtained in step 20 or the road surface friction coefficients μ 1 , μ 2 of the wheels 1 to 4, Based on μ 3 and μ 4 , a tire characteristic map representing the relationship between the driving force and the tire lateral force for each of the wheels 1 to 4 is set.

この場合のタイヤ特性マップでは、各輪1〜4毎に図14のようにタイヤ特性を設定している。ここでも、左前輪1の場合を例にとって説明すると、図14には左前輪1の路面摩擦係数μ1または輪荷重W1が小さい場合のタイヤ特性マップの内容を左側に、これに対して左前輪1の路面摩擦係数μ1または輪荷重W1が大きい場合のタイヤ特性マップの内容を右側に示しており、そのときの左前輪1の路面摩擦係数μ1または輪荷重W1に応じたいずれかのタイヤ特性マップを選択し、その選択した側のタイヤ特性マップから、左前輪1の横滑り角β1と、左前輪1の駆動力基本値Fx1##とに応じた左前輪1のタイヤ横力Fy1##を設定する。 In the tire characteristic map in this case, the tire characteristics are set for each of the wheels 1 to 4 as shown in FIG. Here again, the case of the left front wheel 1 will be described as an example. FIG. 14 shows the content of the tire characteristic map when the road surface friction coefficient μ 1 or the wheel load W 1 of the left front wheel 1 is small, on the left side. The content of the tire characteristic map when the road surface friction coefficient μ 1 or the wheel load W 1 of the front wheel 1 is large is shown on the right side, and the road surface friction coefficient μ 1 or the wheel load W 1 of the left front wheel 1 at that time The tire characteristic map of the left front wheel 1 according to the side slip angle β 1 of the left front wheel 1 and the basic driving force value Fx 1 ## of the left front wheel 1 is selected from the tire characteristic map on the selected side. Set the lateral force Fy 1 ##.

残りの三輪2〜4についても同様である。すなわち、残り三輪2〜4の路面摩擦係数μ2,μ3,μ4または輪荷重W2,W3,W4が小さい場合のタイヤ特性マップの内容は図14左側と同様の特性となり、これに対して残り三輪2〜4の路面摩擦係数μ2,μ3,μ4または輪荷重W2,W3,W4が大きい場合のタイヤ特性マップの内容は図14右側と同様の特性となるので、そのときの路面摩擦係数μ2,μ3,μ4または輪荷重W2,W3,W4に応じたタイヤ特性マップを選択し、その選択した側のタイヤ特性マップから、横滑り角β2,β3,β4と、駆動力基本値Fx2##,Fx3##,Fx4##とに応じたタイヤ横力Fy2##,Fy3##,Fy4##をそれぞれ設定する。
<3>各輪のタイヤ横力の設定方法3
これは、各輪の舵角の違いを考慮する場合の設定方法(請求項5に記載の発明)で、上記の式(37)〜式(39)において、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##,この駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##が各輪1〜4に加わったときに発生するタイヤ横力Fy1##,Fy2##,Fy3##,Fy4##を用いて、つまり次の式(40a)〜式(40d),式(41a)〜式(40d)により各輪1〜4の舵角分だけ回転変換した値を用いて、車両前後方向力Fx##,車両横方向力Fy##,ヨーモーメントM##を推定する。
The same applies to the remaining three wheels 2-4. That is, when the road surface friction coefficients μ 2 , μ 3 , μ 4 of the remaining three wheels 2 to 4 or the wheel loads W 2 , W 3 , W 4 are small, the content of the tire characteristic map is the same as that on the left side of FIG. In contrast, the road surface friction coefficient μ 2 , μ 3 , μ 4 of the remaining three wheels 2 to 4 or the wheel load W 2 , W 3 , W 4 is large, and the content of the tire characteristic map is the same as the right side of FIG. Therefore, a tire characteristic map corresponding to the road surface friction coefficients μ 2 , μ 3 , μ 4 or wheel loads W 2 , W 3 , W 4 at that time is selected, and the skid angle β is selected from the tire characteristic map on the selected side. 2, beta 3, and beta 4, the driving force basic value Fx 2 ##, Fx 3 ##, Fx 4 ## and the tire lateral force Fy 2 # # in accordance with, Fy 3 ##, Fy 4 ##, respectively Set.
<3> Setting method 3 of tire lateral force of each wheel
This is a setting method (the invention according to claim 5) in consideration of the difference in the steering angle of each wheel. In the above formulas (37) to (39), the basic driving force of each wheel 1 to 4 Values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ##, this driving force basic value Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## 4 using the tire lateral forces Fy 1 ##, Fy 2 ##, Fy 3 ##, Fy 4 ## generated when applied to 4 , that is, the following equations (40a) to (40d), (41a The vehicle longitudinal force Fx ##, the vehicle lateral force Fy ##, and the yaw moment M ## are estimated by using the values obtained by rotationally converting the wheels 1 to 4 by the rudder angle by the formula (40d).

Fx1##←Fx1##cosδ1−Fy1##sinδ1 …(40a)
Fx2##←Fx2##cosδ2−Fy2##sinδ2 …(40b)
Fx3##←Fx3##cosδ3−Fy3##sinδ3 …(40c)
Fx4##←Fx4##cosδ4−Fy4##sinδ4 …(40d)
Fy1##←Fx1##sinδ1+Fy1##cosδ1 …(41a)
Fy2##←Fx2##sinδ2+Fy2##cosδ2 …(41b)
Fy3##←Fx3##sinδ3+Fy3##cosδ3 …(41c)
Fy4##←Fx4##sinδ4+Fy4##cosδ4 …(41d)
ステップ90では、ステップ60で設定されている車両挙動の目標値と、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##で実現される車両挙動の基本値との誤差、つまり車両前後方向力の動的目標値Fx**と車両前後方向力の基本値Fx##との誤差ΔFx,車両横方向力の動的目標値Fy**と車両横方向力の基本値Fy##との誤差ΔFy,ヨーモーメントの動的目標値M**とヨーモーメントの基本値M##との誤差ΔMを次の式(42)〜式(44)によりそれぞれ求める。
Fx 1 ## ← Fx 1 ## cosδ 1 −Fy 1 ## sinδ 1 (40a)
Fx 2 ## ← Fx 2 ## cosδ 2 −Fy 2 ## sinδ 2 (40b)
Fx 3 ## ← Fx 3 ## cosδ 3 −Fy 3 ## sinδ 3 (40c)
Fx 4 ## ← Fx 4 ## cosδ 4 −Fy 4 ## sinδ 4 (40d)
Fy 1 ## ← Fx 1 ## sinδ 1 + Fy 1 ## cosδ 1 (41a)
Fy 2 ## ← Fx 2 ## sinδ 2 + Fy 2 ## cosδ 2 (41b)
Fy 3 ## ← Fx 3 ## sinδ 3 + Fy 3 ## cosδ 3 (41c)
Fy 4 ## ← Fx 4 ## sinδ 4 + Fy 4 ## cosδ 4 (41d)
In step 90, the vehicle behavior target value set in step 60 and the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 are realized. Error, that is, an error ΔFx between the dynamic target value Fx ** of the vehicle longitudinal force and the basic value Fx ## of the vehicle longitudinal force, the dynamic target value Fy * of the vehicle lateral force The error ΔFy between * and the basic value Fy ## of the vehicle lateral force, and the error ΔM between the dynamic target value M ** of the yaw moment and the basic value M ## of the yaw moment are expressed by the following equations (42) to ( 44).

ΔFx=Fx**−Fx## …(42)
ΔFy=Fy**−Fy## …(43)
ΔM=M**−M## …(44)
図7のステップ100では、この車両前後方向力の誤差ΔFx,車両横方向力の誤差ΔFy及びヨーモーメントの誤差ΔM、つまり車両挙動の誤差を補正する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を、車両前後方向力の誤差ΔFx,車両横方向力の誤差ΔFy,ヨーモーメントの誤差ΔMと、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##と、各輪1〜4の現在の横すべり角β1,β2,β3,β4とから、駆動力補正量マップを参照して求める。
ΔFx = Fx ** − Fx ## (42)
ΔFy = Fy ** − Fy ## (43)
ΔM = M **-M ## (44)
In step 100 of FIG. 7, the vehicle longitudinal force error ΔFx, the vehicle lateral force error ΔFy, and the yaw moment error ΔM, that is, the driving force correction amount ΔFx 1 for each wheel 1-4 that corrects the vehicle behavior error. , ΔFx 2 , ΔFx 3 , ΔFx 4 , vehicle longitudinal force error ΔFx, vehicle lateral force error ΔFy, yaw moment error ΔM, and driving force basic values Fx 1 ##, Fx of the wheels 1 to 4. 2 ##, Fx 3 ##, Fx 4 ## and the current side slip angles β 1 , β 2 , β 3 , β 4 of the wheels 1 to 4 are obtained with reference to the driving force correction amount map.

ここで、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算する方法として次に6つの方法を示す。
<4>各輪の駆動力補正量の演算方法1
これは、各輪の舵角、輪荷重、路面摩擦係数の違いを全て考慮しない場合の簡易な演算方法で、上記の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を例えば図15のように設定しておく。
Here, six methods are shown as methods for calculating the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4.
<4> Calculation method 1 of driving force correction amount of each wheel
This steering angle of each wheel, wheel load, by a simple calculation method that does not consider all the difference in the road surface friction coefficient, said driving force correction amount ΔFx 1, ΔFx 2, ΔFx 3 , FIG. 15, for example a DerutaFx 4 Set as follows.

ここで、図15は駆動力補正量マップの内容を表すもので、駆動力補正量マップは、本車両が採り得る各輪1〜4の駆動力と横すべり角全ての組合せを抽出し、それぞれの組合せにおいて車両挙動の誤差ΔFx,ΔFy,ΔMと各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との関係を予め実験あるいはシミュレーションで求めておいたものである。なお、シミュレーション上で求める場合には、設定された各輪1〜4の駆動力と横すべり角に基づいてステップ80で用いたタイヤ特性マップ(つまり図13のようなタイヤ特性のマップ)を参照して各輪1〜4のタイヤ横力を求め、上記の式(37)〜式(39)を用いて各輪1〜4の駆動力が変化する前後の車両挙動(車両前後方向力Fx##,車両横方向力Fy##,ヨーモーメントM##)の変化を求める。 Here, FIG. 15 shows the contents of the driving force correction amount map. The driving force correction amount map extracts all combinations of driving forces and side slip angles of the wheels 1 to 4 that can be taken by the vehicle. In the combination, the relationship between the vehicle behavior errors ΔFx, ΔFy, ΔM and the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 is obtained in advance by experiments or simulations. In addition, when calculating | requiring on simulation, the tire characteristic map (that is, tire characteristic map like FIG. 13) used in step 80 is referred based on the set driving force and side slip angle of each wheel 1-4. Then, the tire lateral force of each wheel 1 to 4 is obtained, and the vehicle behavior (vehicle longitudinal force Fx ## before and after the driving force of each wheel 1 to 4 is changed using the above equations (37) to (39). , Change in the vehicle lateral force Fy ##, yaw moment M ##).

従って、図15のようなマップの形で持たせる場合には、図15のようなマップを本車両が採り得る各輪1〜4の駆動力と横すべり角全ての組合せに対して持たせておく。   Therefore, when the map is provided in the form as shown in FIG. 15, the map as shown in FIG. 15 is provided for all combinations of the driving force and the side slip angles of the wheels 1 to 4 that can be taken by the vehicle. .

図15において、車両前後方向力の誤差ΔFxが小さい場合を左側の列に、これに対して車両前後方向力の誤差ΔFxが大きい場合を右側の列に示しており、図15左側の列に示す車両前後方向力の誤差ΔFxが小さい場合において車両横方向力の誤差ΔFyが同じであれば、ヨーモーメントの誤差ΔMが大きくなるほど前輪1,2の駆動力補正量ΔFx1及びΔFx2が大きくなり、かつ後輪3,4の駆動力補正量ΔFx3,ΔFx4が小さくなっている。また、図15左側の列に示す車両前後方向力の誤差ΔFxが小さい場合においてヨーモーメントの誤差ΔMが同じであれば、車両横方向力の誤差ΔFyが負の値で大きくなるほど、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4が大きくなり、これに対して車両横方向力の誤差ΔFyが正の値で大きくなるほど、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4が小さくなっている。さらに、図15右側の列に示す車両前後方向力の誤差ΔFxが大きい場合になると、図15左側の列に示す車両前後方向力の誤差ΔFxが小さい場合よりも各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の採り得る幅が広がっている。 15, the case where the vehicle front-rear direction force error ΔFx is small is shown in the left column, while the case where the vehicle front-rear direction force error ΔFx is large is shown in the right column, and is shown in the left column of FIG. If the vehicle longitudinal force error ΔFy is the same when the vehicle longitudinal force error ΔFx is small, the driving force correction amounts ΔFx 1 and ΔFx 2 of the front wheels 1 and 2 increase as the yaw moment error ΔM increases. Further, the driving force correction amounts ΔFx 3 and ΔFx 4 of the rear wheels 3 and 4 are small. Further, in the case where the vehicle longitudinal force error ΔFx shown in the left column of FIG. 15 is small, if the yaw moment error ΔM is the same, the larger the vehicle lateral force error ΔFy is, the larger the negative value, The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of FIG. 4 increase, and as the vehicle lateral force error ΔFy increases with a positive value, the driving force correction amounts of the wheels 1 to 4 increase. ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 are small. Further, when the vehicle front-rear direction force error ΔFx shown in the right column of FIG. 15 is large, the driving force correction of each wheel 1 to 4 is corrected as compared with the case where the vehicle front-rear direction force error ΔFx shown in the left side column of FIG. The range in which the quantities ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 can be increased.

なお、図15では、車両前後方向力の誤差ΔFxが小さい場合と、車両前後方向力の誤差ΔFxが大きい場合の2つの場合で代表させているが、実際には車両前後方向力の誤差ΔFxの数だけの駆動力補正量マップが用意されている。
<5>各輪の駆動力補正量の演算方法2
これは、各輪の舵角の違いを考慮する場合の演算方法(請求項5に記載の発明)で、各輪1〜4の舵角δ1,δ2,δ3,δ4の採り得る組合せ全てに対しても、それぞれ車両挙動の誤差ΔFx,ΔFy,ΔMと各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との関係を予め実験あるいはシミュレーションで求めておくと共にマップ化して持たせておく。
<6>各輪の駆動力補正量の演算方法3
これは、各輪の輪荷重の違いを考慮する場合の演算方法(請求項6に記載の発明)で、各輪1〜4の輪荷重W1,W2,W3,W4の採り得る組合せ全てに対しても、それぞれ車両挙動の誤差ΔFx,ΔFy,ΔMと各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との関係を予め実験あるいはシミュレーションで求めておくと共にマップ化して持たせておく。
<7>各輪の駆動力補正量の演算方法4
これは、各輪の路面摩擦係数の違いを考慮する場合の演算方法(請求項7に記載の発明)で、各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4の採り得る組合せ全てに対しても、それぞれ車両挙動の誤差ΔFx,ΔFy,ΔMと各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との関係を予め実験あるいはシミュレーションで求めておくと共にマップ化して持たせておく。
<8>各輪の駆動力補正量の演算方法5
図17に示すフローチャートに従って各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4をそれぞれ求める(請求項3に記載の発明)。図17に示すフローによる各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の求め方については後述する。
<9>各輪の駆動力補正量の演算方法6
図18に示すフローチャートに従って各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4をそれぞれ求める(請求項4に記載の発明)。図18に示すフローによる各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の求め方については後述する。
In FIG. 15, two cases, the case where the vehicle longitudinal force error ΔFx is small and the case where the vehicle longitudinal force error ΔFx is large, are representative, but actually, the vehicle longitudinal force error ΔFx is A number of driving force correction amount maps are prepared.
<5> Calculation method 2 of driving force correction amount of each wheel
This is a calculation method (the invention according to claim 5) in consideration of the difference in the steering angle of each wheel, and the steering angles δ 1 , δ 2 , δ 3 , and δ 4 of each wheel 1 to 4 can be taken. For all the combinations, the relationship between the vehicle behavior errors ΔFx, ΔFy, ΔM and the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 is obtained in advance through experiments or simulations. And keep it in a map.
<6> Driving power correction amount calculation method 3 for each wheel
This is a calculation method (invention according to claim 6) in consideration of the wheel load difference of each wheel, and the wheel loads W 1 , W 2 , W 3 and W 4 of each wheel 1 to 4 can be taken. For all the combinations, the relationship between the vehicle behavior errors ΔFx, ΔFy, ΔM and the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 is obtained in advance through experiments or simulations. And keep it in a map.
<7> Driving power correction amount calculation method 4 for each wheel
This is a calculation method (invention of claim 7) in consideration of the difference in road surface friction coefficient of each wheel, and the road surface friction coefficients μ 1 , μ 2 , μ 3 , μ 4 of each wheel 1 to 4 are calculated. For all possible combinations, the relationship between the vehicle behavior errors ΔFx, ΔFy, ΔM and the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of each wheel 1 to 4 is previously experimentally or simulated. Find it and map it up.
<8> Calculation method 5 of driving force correction amount of each wheel
The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each of the wheels 1 to 4 are obtained according to the flowchart shown in FIG. 17 (the invention according to claim 3). A method of obtaining the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 according to the flow shown in FIG. 17 will be described later.
<9> Driving force correction amount calculation method 6 for each wheel
The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each of the wheels 1 to 4 are obtained according to the flowchart shown in FIG. 18 (the invention according to claim 4). A method of obtaining the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 according to the flow shown in FIG. 18 will be described later.

図7のステップ110では、ステップ100で求めている各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4と、図6のステップ70で推定している各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##との和を各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**として、つまり次の式(補12a)〜式(補12d)により、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を算出する。 In step 110 of FIG. 7, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 obtained in step 100 and the wheels 1 to 1 estimated in step 70 of FIG. The sum of four driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## is the driving force target value Fx 1 **, Fx 2 **, Fx of each wheel 1 to 4 As 3 **, Fx 4 **, that is, according to the following formula (complement 12a) to formula (complement 12d), the driving force target values Fx 1 **, Fx 2 **, Fx 3 ** of the wheels 1 to 4 , Fx 4 ** is calculated.

Fx1**=Fx1##+ΔFx1 …(補12a)
Fx2**=Fx2##+ΔFx2 …(補12b)
Fx3**=Fx3##+ΔFx3 …(補12c)
Fx4**=Fx4##+ΔFx4 …(補12d)
図7のステップ120では、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を各輪1〜4の半径Rで除した値を、各輪1〜4のモータ11〜14が出力するように制御を行う。
Fx 1 ** = Fx 1 ## + ΔFx 1 (Supplement 12a)
Fx 2 ** = Fx 2 ## + ΔFx 2 (Supplement 12b)
Fx 3 ** = Fx 3 ## + ΔFx 3 (Supplement 12c)
Fx 4 ** = Fx 4 ## + ΔFx 4 (Supplement 12d)
In step 120 of FIG. 7, a value obtained by dividing the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of each wheel 1 to 4 by the radius R of each wheel 1 to 4 is obtained. Then, control is performed so that the motors 11 to 14 of the wheels 1 to 4 output.

ここで、本実施形態(第1実施形態)の作用効果を説明する。   Here, the effect of this embodiment (1st Embodiment) is demonstrated.

本実施形態(請求項1に記載の発明)では、車両の車両前後方向力Fxの目標値Fx**,車両横方向力Fyの目標値Fy**,ヨーモーメントMの目標値M**を車両挙動目標値として決定し(図6のステップ50参照)、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し(図6のステップ70参照)、この設定された各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##を車両挙動の基本値として演算し(図6のステップ80参照)、前記車両挙動の目標値Fx**,Fy**,M**とこの演算された車両挙動の基本値Fx##,Fy##,M##との誤差ΔFx,ΔFy,ΔMを車両挙動の誤差として演算し(図6のステップ90参照)、この演算された車両挙動の誤差ΔFx,ΔFy,ΔMを小さくする各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し(図7のステップ100参照)、前記駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し(図7のステップ110参照)、この決定された各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**が得られるように各輪1〜4の駆動力を制御する(図7のステップ120参照)ように構成している。 In the present embodiment (the invention described in claim 1), the target value Fx ** of the vehicle longitudinal force Fx, the target value Fy ** of the vehicle lateral force Fy, and the target value M ** of the yaw moment M are determined. The vehicle behavior target value is determined (see step 50 in FIG. 6), and the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 are set (see FIG. 6), and the basic value of the vehicle longitudinal force realized by the set driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 thus set. Fx ##, the basic value Fy ## of the vehicle lateral force, and the basic value M ## of the yaw moment are calculated as basic values of the vehicle behavior (see step 80 in FIG. 6), and the target value Fx ** of the vehicle behavior is calculated. , Fy **, M ** and the calculated vehicle behavior basic values Fx ##, Fy ##, M ##, errors ΔFx, ΔFy, ΔM are calculated as vehicle behavior errors (FIG. 6). Step 90 of FIG. 7), the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the respective wheels 1 to 4 for reducing the calculated vehicle behavior errors ΔFx, ΔFy, ΔM are calculated (see FIG. 7). Step 100), the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## and the calculated driving force correction amounts ΔFx 1 , ΔFx 2 of the wheels 1 to 4. The driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** of the wheels 1 to 4 are determined by the sum of ΔFx 3 and ΔFx 4 (see step 110 in FIG. 7). The driving forces of the wheels 1 to 4 are controlled so that the determined driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the respective wheels 1 to 4 are obtained ( (See step 120 in FIG. 7).

このように、本実施形態(請求項1に記載の発明)によれば、各輪についての駆動力とタイヤ横力との非線形な関係を考慮しながら、車両前後方向加速度、車両横方向加速度、ヨー角加速度の目標値を実現する各輪の駆動力目標値をフィードフォワードで求めているので、各輪についての駆動力変化に対するタイヤ横力の変化が、各輪の横すべり角や各輪の輪荷重等によって非線形な変化となることがあっても、ヨーレートや車両横方向加速度を所望の応答とすることが可能であり、これにより、ドライバーの操縦性が向上するとともに、所望のヨーレートや車両横方向加速度を得ることができないという不快感を低減できる。   Thus, according to the present embodiment (the invention described in claim 1), the vehicle longitudinal acceleration, the vehicle lateral acceleration, the non-linear relationship between the driving force and the tire lateral force for each wheel are considered. Since the driving force target value of each wheel that achieves the target value of yaw angular acceleration is obtained by feedforward, the change in the tire lateral force with respect to the driving force change for each wheel is determined by the side slip angle of each wheel and the wheel of each wheel. Even if the load may change nonlinearly, the yaw rate or vehicle lateral acceleration can be set to a desired response. This improves the driver's maneuverability and also improves the desired yaw rate and vehicle lateral acceleration. The discomfort that directional acceleration cannot be obtained can be reduced.

各輪1〜4の駆動力変化に対する車両前後方向力の感度Kix,各輪1〜4の駆動力の変化に対する車両横方向力の感度Kiy,各輪1〜4の駆動力の変化に対するヨーモーメントの感度KiM及びタイヤ力の車両横方向力は各輪1〜4の舵角δ1,δ2,δ3,δ4によって変化するため、各輪1〜4の舵角δ1,δ2,δ3,δ4が一定であるとして各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算したのでは、当該駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4に誤差が生じるのであるが、本実施形態(請求項5に記載の発明)によれば、各輪1〜4の舵角δ1,δ2,δ3,δ4を検出する舵角センサ41〜44(舵角検出手段)を備え、車両挙動基本値演算手段が、この検出された各輪の舵角δ1,δ2,δ3,δ4に基づいて車両挙動の基本値Fx##,Fy##,M##を演算し、また駆動力補正量演算手段が、この検出された各輪1〜4の舵角δ1,δ2,δ3,δ4に基づいて前記駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算するので、各輪1〜4の舵角δ1,δ2,δ3,δ4が相違しても各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を正確に求めることができる。 Sensitivity K ix of the vehicle longitudinal force with respect to changes in the driving force of each wheel 1-4, sensitivity K iy of vehicle lateral force with respect to changes in the driving force of each wheel 1-4, and changes in driving force of each wheel 1-4 Since the sensitivity K iM of the yaw moment and the vehicle lateral force of the tire force change depending on the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4, the steering angles δ 1 , δ 2, δ 3, δ driving force correction amount DerutaFx 1 for the wheels 1 to 4 as a 4 is constant, ΔFx 2, ΔFx 3, than was calculating the DerutaFx 4, the driving force correction amount ΔFx 1, ΔFx 2 , ΔFx 3 , ΔFx 4 , an error occurs, but according to the present embodiment (the invention described in claim 5), the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4 are set. comprising a steering angle sensor 41 to 44 that detects (steering angle detection means), vehicle behavior basic value calculating means, the steering angle [delta] 1 of the detected each wheel was, δ 2, δ 3, δ 4 based on Basic value Fx # # of vehicle behavior have, Fy # #, calculates the M # #, also driving force correction amount calculating means, the steering angle [delta] 1 of the respective wheels 1-4 this is detected, [delta] 2, [delta] 3 , Δ 4 , the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are calculated, so that the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4 are different. In addition, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 can be accurately obtained.

各輪1〜4の駆動力変化に対する車両前後方向力の感度Kix,各輪1〜4の駆動力の変化に対する車両横方向力の感度Kiy,各輪1〜4の駆動力の変化に対するヨーモーメントの感度KiM及び車両横方向の運動に主たる影響を及ぼすタイヤ力の車両横方向力は各輪1〜4の輪荷重W1,W2,W3,W4によって変化するため、各輪1〜4の輪荷重W1,W2,W3,W4が一定であるとして各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算したのでは、当該駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4に誤差が生じるのであるが、本実施形態(請求項6に記載の発明)によれば、各輪1〜4の輪荷重W1,W2,W3,W4を推定または検出する輪荷重推定・検出手段を備え、車両挙動基本値演算手段が、この推定または検出された各輪1〜4の輪荷重W1,W2,W3,W4に基づいて前記車両挙動の基本値Fx##,Fy##,M##を演算し、また駆動力補正量演算手段が、この推定または検出された各輪1〜4の輪荷重W1,W2,W3,W4に基づいて各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算するので、各輪1〜4の輪荷重W1,W2,W3,W4が相違しても各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を正確に求めることができる。 Sensitivity K ix of the vehicle longitudinal force with respect to changes in the driving force of the wheels 1 to 4, sensitivity K iy of vehicle lateral force with respect to changes in the driving force of the wheels 1 to 4, and changes in driving force of the wheels 1 to 4 Since the vehicle lateral force of the tire force that mainly affects the yaw moment sensitivity KiM and the lateral movement of the vehicle varies depending on the wheel loads W 1 , W 2 , W 3 , and W 4 of each wheel, If the wheel loads W 1 , W 2 , W 3 and W 4 of the wheels 1 to 4 are constant, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 and ΔFx 4 of the wheels 1 to 4 are calculated. Although errors occur in the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 , according to the present embodiment (the invention according to claim 6), the wheel loads W 1 of the respective wheels 1 to 4. , W 2 , W 3 , W 4 are provided with wheel load estimation / detection means for estimating or detecting the vehicle behavior basic value calculation means. Based on the estimated or detected wheel loads W 1 , W 2 , W 3 , W 4 of the wheels 1 to 4 , the vehicle behavior basic values Fx ##, Fy ##, M ## are calculated and driven. Based on the estimated or detected wheel loads W 1 , W 2 , W 3 , W 4 of the wheels 1 to 4 , the force correction amount calculation means calculates the driving force correction amounts ΔFx 1 and ΔFx 2 of the wheels 1 to 4. , ΔFx 3 , ΔFx 4 are calculated, so that even if the wheel loads W 1 , W 2 , W 3 , W 4 of the wheels 1 to 4 are different, the driving force correction amounts ΔFx 1 , ΔFx 2 of the wheels 1 to 4 are different. , ΔFx 3 , ΔFx 4 can be accurately obtained.

各輪1〜4の駆動力変化に対する車両前後方向力の感度Kix,各輪1〜4の駆動力の変化に対する車両横方向力の感度Kiy,各輪1〜4の駆動力の変化に対するヨーモーメントの感度KiM及び車両横方向の運動に主たる影響を及ぼすタイヤ力の車両横方向力は各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4によって変化するため、各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4が一定であるとして各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算したのでは、当該駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4に誤差が生じるのであるが、本実施形態(請求項7に記載の発明)によれば、各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4を推定する路面摩擦係数推定手段を備え、車両挙動基本値演算手段が、この推定された各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4に基づいて車両挙動の基本値Fx##,Fy##,M##を演算し、また駆動力補正量演算手段が、この推定された各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4に基づいて各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算するので、各輪1〜4の路面摩擦係数μ1,μ2,μ3,μ4が相違しても各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を正確に求めることができる。 Sensitivity K ix of the vehicle longitudinal force with respect to changes in the driving force of each wheel 1-4, sensitivity K iy of vehicle lateral force with respect to changes in the driving force of each wheel 1-4, and changes in driving force of each wheel 1-4 Since the vehicle lateral force of the tire force that mainly affects the sensitivity K iM of the yaw moment and the lateral movement of the vehicle varies depending on the road surface friction coefficient μ 1 , μ 2 , μ 3 , μ 4 of each wheel 1-4, The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 were calculated on the assumption that the road surface friction coefficients μ 1 , μ 2 , μ 3 and μ 4 of the wheels 1 to 4 are constant. Then, an error occurs in the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 , but according to the present embodiment (the invention according to claim 7), the road surface friction of each of the wheels 1 to 4. Road surface friction coefficient estimating means for estimating the coefficients μ 1 , μ 2 , μ 3 , μ 4 is provided, and the vehicle behavior basic value calculating means Based on the estimated road surface friction coefficient μ 1 , μ 2 , μ 3 , μ 4 of each wheel 1-4, the vehicle behavior basic values Fx ##, Fy ##, M ## are calculated, and the driving force is corrected. Based on the estimated road surface friction coefficients μ 1 , μ 2 , μ 3 , μ 4 of the respective wheels 1 to 4 , the amount calculation means calculates the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 of the respective wheels 1 to 4. , ΔFx 4 is calculated, so that even if the road surface friction coefficients μ 1 , μ 2 , μ 3 , μ 4 of the wheels 1 to 4 are different, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx of the wheels 1 to 4 are different. 3 and ΔFx 4 can be accurately obtained.

図16は第2実施形態のフローチャートで、第1実施形態の図6、図7においてステップ80からステップ110までに置き換わるものである。   FIG. 16 is a flowchart of the second embodiment, which replaces steps 80 to 110 in FIGS. 6 and 7 of the first embodiment.

図16においてステップ200、210の操作は図6のステップ80、90と同じである。すなわち、ステップ200で各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両挙動の基本値(車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##)を推定し、ステップ210では車両挙動の目標値(車両前後方向力の動的目標値Fx**,車両横方向力の動的目標値Fy**,ヨーモーメントの動的目標値M**)と、ステップ200で求めている車両挙動の基本値(車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##,ヨーモーメントの基本値M##)との誤差ΔFx,ΔFy,ΔMを求める。 In FIG. 16, operations in steps 200 and 210 are the same as steps 80 and 90 in FIG. That is, in step 200, the basic value of the vehicle behavior realized by the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 (the basic value of the vehicle longitudinal force). Fx ##, vehicle lateral force basic value Fy ##, yaw moment basic value M ##) are estimated. In step 210, vehicle behavior target value (vehicle longitudinal force dynamic target value Fx **, The vehicle lateral force dynamic target value Fy ** and yaw moment dynamic target value M **) and the vehicle behavior basic value obtained in step 200 (vehicle longitudinal force basic value Fx ##, vehicle Errors ΔFx, ΔFy, ΔM from the basic value Fy ## of the lateral force and the basic value M ## of the yaw moment are obtained.

ステップ220では、車両前後方向力の誤差ΔFxの絶対値|ΔFx|,車両横方向力の誤差ΔFyの絶対値|ΔFy|が共に所定値(例えば10[N])以下でありかつヨーモーメントの誤差ΔMの絶対値|ΔM|が所定値(例えば10[Nm])以下であるか否かをみる。車両前後方向力の誤差ΔFxの絶対値|ΔFx|,車両横方向力の誤差ΔFyの絶対値|ΔFy|が共に10[N]以下でありかつヨーモーメントの誤差ΔMの絶対値|ΔM|が10[Nm]以下であるときには車両挙動の誤差は無視できると判断しステップ250に進み、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**に入れる。つまり、Fx1**=Fx1##、Fx2**=Fx2##、Fx3**=Fx3##、Fx4**=Fx4##として図16のフローチャートを終了し、図7のステップ120に進む。 In step 220, the absolute value | ΔFx | of the vehicle longitudinal force error ΔFx and the absolute value | ΔFy | of the vehicle lateral force error ΔFy are both equal to or less than a predetermined value (for example, 10 [N]) and the yaw moment error. It is checked whether or not the absolute value | ΔM | of ΔM is a predetermined value (for example, 10 [Nm]) or less. The absolute value | ΔFx | of the vehicle longitudinal force error ΔFx and the absolute value | ΔFy | of the vehicle lateral force error ΔFy are both 10 N or less and the absolute value | ΔM | of the yaw moment error ΔM is 10 If it is equal to or less than [Nm], it is determined that the error in the vehicle behavior can be ignored, and the process proceeds to Step 250, where the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 # # Is entered in the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the wheels 1 to 4. That is, Fx 1 ** = Fx 1 ##, Fx 2 ** = Fx 2 ##, Fx 3 ** = Fx 3 ##, Fx 4 ** = Fx 4 ## and the flowchart of FIG. Proceed to step 120 in FIG.

一方、そうでなければステップ220よりステップ230に進み、車両挙動の誤差ΔFx,ΔFy,ΔMを補正する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求める。 On the other hand, if not, the process proceeds from step 220 to step 230, and the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 for correcting the vehicle behavior errors ΔFx, ΔFy, ΔM are obtained.

ここで、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算する方法として次に6つの方法を示す。ステップ230での操作は図7のステップ100と同じであり、従って求め方には次のように<10>〜<15>の6つの方法がある。
<10>各輪の駆動力補正量の演算方法1
これは、各輪の舵角、輪荷重、路面摩擦係数の違いを全て考慮しない場合の演算方法で、 上記<4>の方法と同じである。
<11>各輪の駆動力補正量の演算方法2
これは、各輪の舵角の違いを考慮する場合の演算方法で、上記<5>の方法と同じである(請求項5に記載の発明)。
<12>各輪の駆動力補正量の演算方法3
これは各輪の輪荷重の違いを考慮する場合の演算方法で、上記<6>の方法と同じである(請求項6に記載の発明)。
<13>各輪の駆動力補正量の演算方法4
これは、各輪の路面摩擦係数の違いを考慮する場合の演算方法で、上記<7>の方法と同じである(請求項7に記載の発明)。
<14>各輪の駆動力補正量の演算方法5
図17に示すフローチャートに従って各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4をそれぞれ求める(請求項3に記載の発明)。
<15>各輪の駆動力補正量の演算方法6
図18に示すフローチャートに従って各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4をそれぞれ求める(請求項4に記載の発明)。
Here, six methods are shown as methods for calculating the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4. The operation in step 230 is the same as that in step 100 of FIG. 7, and therefore, there are six methods <10> to <15> as follows.
<10> Method 1 for calculating the driving force correction amount of each wheel
This is a calculation method when not considering all the differences in the steering angle, wheel load, and road surface friction coefficient of each wheel, and is the same as the method <4> above.
<11> Calculation method 2 of driving force correction amount of each wheel
This is a calculation method in consideration of the difference in the steering angle of each wheel, and is the same as the method <5> above (the invention according to claim 5).
<12> Calculation method 3 of driving force correction amount of each wheel
This is a calculation method in consideration of the difference in the wheel load of each wheel, and is the same as the method <6> above (the invention according to claim 6).
<13> Calculation method 4 of driving force correction amount of each wheel
This is a calculation method in the case of considering the difference in the road surface friction coefficient of each wheel, and is the same as the method <7> above (the invention according to claim 7).
<14> Calculation method 5 of driving force correction amount of each wheel
The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each of the wheels 1 to 4 are obtained according to the flowchart shown in FIG. 17 (the invention according to claim 3).
<15> Calculation method 6 of driving force correction amount of each wheel
The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each of the wheels 1 to 4 are obtained according to the flowchart shown in FIG. 18 (the invention according to claim 4).

ただし、上記<15>の方法の場合、つまり後述する図18に示すフローに従って各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求める場合、図18のステップ710において求めた係数D1,D2,D3,D4が全てゼロとなりステップ800において各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4がΔFx1=ΔFx2=ΔFx3=ΔFx4=0となったときには直ちに図16のフローを抜けて図7のステップ120に進む。 However, in the case of the method <15> described above, that is, when the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 are obtained according to the flow shown in FIG. The coefficients D 1 , D 2 , D 3 , and D 4 obtained in step S4 are all zero, and in step 800, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 are ΔFx 1 = ΔFx 2 = When ΔFx 3 = ΔFx 4 = 0, the process immediately passes through the flow of FIG. 16 and proceeds to step 120 of FIG.

なお、ステップ230においては、車両挙動の誤差ΔFx,ΔFy,ΔMに対して、1より小さい係数ν(0<ν<1)を乗じた値νΔFx,νΔFy,νΔMをゼロとするような各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めるようにしても良い。 In step 230, each wheel 1 such that the values νΔFx, νΔFy, νΔM obtained by multiplying the vehicle behavior errors ΔFx, ΔFy, ΔM by a coefficient ν (0 <ν <1) smaller than 1 is zero. Driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of ˜4 may be obtained.

ステップ240では、ステップ230で求めている各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4と、図6のステップ70で求めている各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とを加算して各輪1〜4の駆動力仮値Fx1###,Fx2###,Fx3###,Fx4###を、つまり次の式(補13a)〜式(補13d)により各輪1〜4の駆動力仮値Fx1###,Fx2###,Fx3###,Fx4###を求め、ステップ250でこの駆動力仮値Fx1###,Fx2###,Fx3###,Fx4###を再び各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##に置き直す。 In step 240, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 obtained in step 230 and the driving force of the wheels 1 to 4 obtained in step 70 of FIG. By adding the basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ##, the driving force provisional values Fx 1 ###, Fx 2 ###, Fx 3 of each wheel 1 to 4 ###, Fx 4 ###, that is, the temporary driving force values Fx 1 ###, Fx 2 ###, Fx 3 of the wheels 1 to 4 according to the following equations (complement 13a) to (complement 13d) ###, Fx 4 ### are obtained, and in step 250, the driving force provisional values Fx 1 ###, Fx 2 ###, Fx 3 ###, Fx 4 ### are again obtained for each wheel 1-4. The driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, and Fx 4 ## are replaced.

Fx1###←Fx1##+ΔFx1、 …(補13a)
Fx2###←Fx2##+ΔFx2、 …(補13b)
Fx3###←Fx3##+ΔFx3、 …(補13c)
Fx4###←Fx4##+ΔFx4、 …(補13d)
つまり、各駆動力補正量だけ大きくした仮値を改めて各輪1〜4の駆動力基本値に置き直し、ステップ200に戻ってステップ200、210、220の操作を実行する。ステップ220で|ΔFx|≦10,|ΔFy|≦10かつ|ΔM|≦10が成立しない場合には、ステップ230、240、250の操作を行って各駆動力補正量だけ大きくした仮値を改めて各輪1〜4の駆動力基本値に置き直し、ステップ200に戻ってステップ200、210、220の操作を実行する。このようにして、各駆動力補正量ずつ各輪1〜4の駆動力基本値を大きくしてゆけばやがて、ステップ220で|ΔFx|≦10,|ΔFy|≦10かつ|ΔM|≦10が成立するので、ステップ260に進んで各輪1〜4の駆動力基本値を各輪1〜4の駆動力目標値として設定する。なお、ステップ220よりステップ230〜250へと進んだ後にステップ200〜220の操作を行い、最終的にステップ260へと抜ける操作は一瞬にして行われる。
Fx 1 ### ← Fx 1 ## + ΔFx 1 , (Supplement 13a)
Fx 2 ### ← Fx 2 ## + ΔFx 2 , (Supplement 13b)
Fx 3 ### ← Fx 3 ## + ΔFx 3 , (Supplement 13c)
Fx 4 ### ← Fx 4 ## + ΔFx 4 , (Supplement 13d)
That is, the provisional value increased by each driving force correction amount is replaced with the basic driving force value of each wheel 1 to 4 and the operation returns to step 200 to execute the operations of steps 200, 210, and 220. If | ΔFx | ≦ 10, | ΔFy | ≦ 10 and | ΔM | ≦ 10 are not satisfied in step 220, the temporary values increased by the respective driving force correction amounts by performing the operations in steps 230, 240, and 250 are renewed. The driving force is reset to the basic driving force value for each of the wheels 1 to 4, and the operation returns to step 200 to execute the operations of steps 200, 210, and 220. In this way, if the driving force basic value of each of the wheels 1 to 4 is increased by each driving force correction amount, | ΔFx | ≦ 10, | ΔFy | ≦ 10 and | ΔM | ≦ 10 in step 220. Since it is established, the routine proceeds to step 260 where the driving force basic value of each wheel 1 to 4 is set as the driving force target value of each wheel 1 to 4. In addition, after proceeding from step 220 to steps 230 to 250, the operations of steps 200 to 220 are performed, and finally the operation of exiting to step 260 is performed in an instant.

このように、第2実施形態(請求項2に記載の発明)によれば、駆動力目標値決定手段が、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4と、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##との和を各輪1〜4の駆動力仮値Fx1###,Fx2###,Fx3###,Fx4###として演算し(図16のステップ240)、この演算された各輪1〜4の駆動力仮値Fx1###,Fx2###,Fx3###,Fx4###によって実現する車両前後方向力の基本値Fx###,車両横方向力の基本値Fy###,ヨーモーメントの基本値M###を車両挙動の基本値として再び演算し(図16のステップ250、200)、車両挙動の目標値Fx**,Fy**,M**とこの再び演算された車両挙動の基本値Fx###,Fy###,M###との誤差ΔFx#,ΔFy#,ΔM#を車両挙動の誤差として再び演算し(図16のステップ210)、この再び演算された車両挙動の誤差ΔFx#,ΔFy#,ΔM#を小さくする各輪1〜4の駆動力補正量ΔFx1#,ΔFx2#,ΔFx3#,ΔFx4#を再び演算し(図16のステップ230)、前記駆動力仮値Fx1###,Fx2###,Fx3###,Fx4###とこの再び演算された各輪1〜4の駆動力補正量ΔFx1#,ΔFx2#,ΔFx3#,ΔFx4#との和を各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**として置き換えることにより車両挙動の誤差を補償する処理を行う(図16のステップ220、260)ので、より精度良く車両挙動の目標値Fx**,Fy**,M**を実現する各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を得ることができ、ドライバーの操縦性が向上するとともに、所望のヨーレートや車両横方向加速度を得ることができないという不快感を低減できる。 As described above, according to the second embodiment (the invention described in claim 2), the driving force target value determining means determines the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4. And the sum of the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 is the temporary driving force value Fx 1 ### of each wheel 1 to 4. , Fx 2 ###, Fx 3 ###, Fx 4 ### (step 240 in FIG. 16), and the calculated driving force temporary values Fx 1 ###, Fx of the respective wheels 1 to 4 are calculated. 2 ###, Fx 3 ###, Fx 4 ### Realized vehicle longitudinal force Fx ###, Vehicle lateral force basic value Fy ###, Yaw moment basic value M # ## is again calculated as the basic value of the vehicle behavior (steps 250 and 200 in FIG. 16), the target values Fx **, Fy **, and M ** of the vehicle behavior and the basic value Fx of the vehicle behavior calculated again. Error with ###, Fy ###, M ### ΔFx #, ΔF #, ΔM # are calculated again as errors in the vehicle behavior (step 210 in FIG. 16), and the driving force correction of each of the wheels 1 to 4 is made to reduce the calculated error ΔFx #, ΔFy #, ΔM # in the vehicle behavior. The amounts ΔFx 1 #, ΔFx 2 #, ΔFx 3 #, ΔFx 4 # are calculated again (step 230 in FIG. 16), and the driving force temporary values Fx 1 ###, Fx 2 ###, Fx 3 ### , Fx 4 ### and the recalculated driving force correction amount ΔFx 1 #, ΔFx 2 #, ΔFx 3 #, ΔFx 4 # for each wheel 1 to 4 is the driving force target for each wheel 1 to 4. Processing for compensating for an error in vehicle behavior is performed by replacing the values as values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** (steps 220 and 260 in FIG. 16). To obtain the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** of the wheels 1 to 4 that realize the target values Fx **, Fy **, M ** of Can With driver maneuverability is improved, thereby reducing the discomfort that can not be obtained a desired yaw rate and the vehicle lateral acceleration.

次に、図17のフローチャートを説明する。   Next, the flowchart of FIG. 17 will be described.

これは、上記<8>と<14>の方法より、車両挙動の誤差ΔFx,ΔFy,ΔMを補正する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めるものである。 This is to obtain the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 for correcting the vehicle behavior errors ΔFx, ΔFy, ΔM by the methods <8> and <14> described above. Is.

図17においてステップ500では、各輪1〜4についての駆動力変化に対する車両前後方向力の感度K1x,K2x,K3x,K4x[無名数],車両横方向力の感度K1y,K2y,K3y,K4y[無名数],ヨーモーメントの感度K1M,K2M,K3M,K4M[rad・m]を、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##と、各輪1〜4の現在の横すべり角β1,β2,β3,β4とから車両挙動感度マップを参照して求める。 In FIG. 17, in step 500, vehicle longitudinal force sensitivities K 1x , K 2x , K 3x , K 4x [anonymous number] and vehicle lateral force sensitivities K 1y , K with respect to changes in driving force for each of the wheels 1 to 4. 2y , K 3y , K 4y [anonymous number], yaw moment sensitivity K 1M , K 2M , K 3M , K 4M [rad · m], the driving force basic values Fx 1 ##, Fx of each wheel 1 to 4 2 ##, Fx 3 ##, Fx 4 ## and the current side slip angles β 1 , β 2 , β 3 , β 4 of each wheel 1 to 4 are obtained with reference to the vehicle behavior sensitivity map.

ここで、車両挙動感度マップとは、車両前後方向力感度マップ、車両横方向力感度マップ、ヨーモーメント感度マップの3つのマップの総称であり、各輪1〜4毎にこれら3つのマップを有している。   Here, the vehicle behavior sensitivity map is a generic name of three maps, ie, a vehicle longitudinal force sensitivity map, a vehicle lateral force sensitivity map, and a yaw moment sensitivity map, and each wheel 1 to 4 has these three maps. is doing.

この車両挙動感度マップは、本車両が採り得る各輪1〜4の駆動力と横すべり角βi全ての組み合せを抽出し、それぞれの組み合せにおいて、いずれか1輪の駆動力を微小量(例えば1[N])変化させたときの車両前後方向力の変化量,車両横方向力の変化量,ヨーモーメントの変化量を求め、それら各変化量に基づいてマップ化したものである。 This vehicle behavior sensitivity map extracts combinations of all the driving forces of the wheels 1 to 4 and the side slip angle β i that can be taken by the vehicle, and in each combination, the driving force of any one wheel is a minute amount (for example, 1 [N]) A change amount of the vehicle longitudinal force, a change amount of the vehicle lateral force, and a change amount of the yaw moment when changed are obtained and mapped based on each change amount.

ここで、左前輪1について具体的に上記3つのマップの各内容を図19に示すと、図19上段は各輪1〜4についての駆動力変化に対する車両前後方向力の感度K1x、図19中段は車両横方向力の感度K1y、図19下段はヨーモーメントの感度K1Mの各特性である。 Here, the contents of the above three maps for the left front wheel 1 are specifically shown in FIG. 19. The upper part of FIG. 19 shows the sensitivity K 1x of the vehicle longitudinal force with respect to the driving force change for each wheel 1 to 4, FIG. The middle row shows the characteristics of the vehicle lateral force sensitivity K 1y , and the lower row of FIG. 19 shows the yaw moment sensitivity K 1M .

図19上段に示したように、左前輪1の横滑り角β1の絶対値|β1|が一定であれば、左前輪1の駆動力基本値Fx1##が正の値で大きくなるほど車両前後方向力の感度K1xが正の値で大きくなり、これに対して左前輪1の駆動力基本値Fx1##が負の値で大きくなるほど車両前後方向力の感度K1xが負の値で大きくなっている。また、左前輪1の駆動力基本値Fx1##が一定の条件では、左前輪1の駆動力基本値Fx1##が正の領域で左前輪1の横滑り角β1の絶対値|β1|が大きくなるほど車両前後方向力の感度K1xが正の値で小さくなり、これに対して左前輪1の駆動力基本値Fx1##が負の領域で左前輪1の横滑り角β1の絶対値|β1|が大きくなるほど車両前後方向力の感度K1xが負の値で小さくなっている。 As shown in the upper part of FIG. 19, if the absolute value | β 1 | of the side slip angle β 1 of the left front wheel 1 is constant, the vehicle becomes more positive as the driving force basic value Fx 1 ## of the left front wheel 1 becomes a positive value. The front-rear direction force sensitivity K 1x increases with a positive value. On the other hand, the vehicle front-rear direction force sensitivity K 1x decreases as the driving force basic value Fx 1 ## of the left front wheel 1 increases with a negative value. It is getting bigger. Further, under the condition that the basic driving force value Fx 1 ## of the left front wheel 1 is constant, the absolute value of the side slip angle β 1 of the left front wheel 1 in the region where the basic driving force value Fx 1 ## of the left front wheel 1 is positive | β As the value of 1 | increases, the vehicle front-rear direction force sensitivity K 1x decreases with a positive value. On the other hand, when the basic driving force value Fx 1 ## of the left front wheel 1 is negative, the side slip angle β 1 of the left front wheel 1 As the absolute value | β 1 | of the vehicle increases, the vehicle longitudinal force sensitivity K 1x decreases with a negative value.

図19中段に示したように、車両横方向力の感度K1yの特性は左右対称であるので、左前輪1の駆動力基本値Fx1##が正の領域についてだけのべると、左前輪1の横滑り角β1が負の値で一定であれば、左前輪1の駆動力基本値Fx1##が大きくなるほど車両横方向力の感度K1yが正の値で小さくなり、これに対して左前輪1の横滑り角β1が正の値で一定であれば、左前輪1の駆動力基本値Fx1##が大きくなるほど車両横方向力の感度K1yが負の値で小さくなっている。さらに、左前輪1の駆動力基本値Fx1##が一定の条件では、左前輪1の横滑り角β1が負の値で大きくなるほど車両横方向力の感度K1yが正の値で大きくなり、これに対して左前輪1の横滑り角β1が正の値で大きくなるほど車両横方向力の感度K1yが負の値で大きくなっている。 As shown in the middle of FIG. 19, the characteristic of the vehicle lateral force sensitivity K 1y is bilaterally symmetrical. Therefore, if the basic value of the driving force Fx 1 ## of the left front wheel 1 is added only in a positive region, If the side slip angle β 1 of the vehicle is constant at a negative value, the vehicle lateral force sensitivity K 1y decreases with a positive value as the driving force basic value Fx 1 ## of the left front wheel 1 increases. if constant value of sideslip angle beta 1 positive left front wheel 1, and the sensitivity K 1y enough vehicle lateral force of the driving force basic value Fx 1 # # left front wheel 1 is increased is reduced by a negative value . Further, under the condition that the driving force basic value Fx 1 ## of the left front wheel 1 is constant, the vehicle lateral force sensitivity K 1y increases with a positive value as the side slip angle β 1 of the left front wheel 1 increases with a negative value. , the vehicle lateral force sensitivity K 1y as the side slip angle beta 1 of the left front wheel 1 is increased in a positive value for this is large in negative value.

図19下段に示したように、左前輪1の横滑り角β1の絶対値|β1|が一定であれば、左前輪1の駆動力基本値Fx1##が正の値で大きくなるほどヨーモーメント感度K1Mが負の値で大きくなり、これに対して左前輪1の駆動力基本値Fx1##が負の値で大きくなるほどヨーモーメントの感度K1Mが正の値で大きくなっている。また、左前輪1の駆動力基本値Fx1##が一定の条件では、左前輪1の駆動力基本値Fx1##が正の領域において左前輪1の横滑り角β1が正の値で大きくなるほどヨーモーメントの感度K1Mが負の値で小さくなり、これに対して左前輪1の駆動力基本値Fx1##が負の領域において左前輪1の横滑り角β1が正の値で大きくなるほどヨーモーメントの感度K1Mが正の値で小さくなっている。さらに、左前輪1の駆動力基本値Fx1##が一定の条件では、左前輪1の駆動力基本値Fx1##が正の領域において左前輪1の横滑り角β1が負の値で大きくなるほどヨーモーメントの感度K1Mが負の値で大きくなり、これに対して左前輪1の駆動力基本値Fx1##が負の領域において左前輪1の横滑り角β1が負の値で大きくなるほどヨーモーメントの感度K1Mが正の値で大きくなっている。 As shown in the lower part of FIG. 19, if the absolute value | β 1 | of the side slip angle β 1 of the left front wheel 1 is constant, the yaw is increased as the driving force basic value Fx 1 ## of the left front wheel 1 becomes a positive value. The moment sensitivity K 1M increases with a negative value. On the other hand, the yaw moment sensitivity K 1M increases with a positive value as the driving force basic value Fx 1 ## of the left front wheel 1 increases with a negative value. . Further, under the condition that the driving force basic value Fx 1 ## of the left front wheel 1 is constant, the side slip angle β 1 of the left front wheel 1 is a positive value in the region where the driving force basic value Fx 1 ## of the left front wheel 1 is positive. As the value increases, the sensitivity K 1M of the yaw moment decreases with a negative value. On the other hand, when the basic driving force value Fx 1 ## of the left front wheel 1 is negative, the side slip angle β 1 of the left front wheel 1 is a positive value. As the value increases, the sensitivity K 1M of the yaw moment decreases with a positive value. Further, under the condition that the basic driving force value Fx 1 ## of the left front wheel 1 is constant, the side slip angle β 1 of the left front wheel 1 is a negative value in the region where the basic driving force value Fx 1 ## of the left front wheel 1 is positive. As the value increases, the sensitivity K 1M of the yaw moment increases with a negative value. On the other hand, when the basic driving force value Fx 1 ## of the left front wheel 1 is negative, the side slip angle β 1 of the left front wheel 1 is negative. As the value increases, the sensitivity K 1M of the yaw moment increases with a positive value.

ステップ510では、各輪1〜4についての駆動力変化に対する車両前後方向力の感度Kix,車両横方向力の感度Kiy,ヨーモーメント感度KiMをベクトルで表した[KixiyiM]が互いに1次独立である3つの車輪の組み合わせを選ぶ。選び方は次のようにして行う。 In step 510, the vehicle longitudinal force sensitivity K ix , vehicle lateral force sensitivity K iy , and yaw moment sensitivity K iM are expressed as vectors [K ix K iy K iM. ] Is selected as a combination of three wheels that are linearly independent of each other. How to choose is as follows.

まず、最初に左前輪1以外の残り三輪2〜4のベクトルを縦に並べた次の式(61)の行列K1を考え、この行列K1の行列式det|K1|がゼロでないならば、車輪の組み合わせを左前輪1以外の残り三輪2,3,4とし、フラグflgに1を設定する。 First, first consider a matrix K 1 of the following formula obtained by arranging vectors of the remaining Miwa 2-4 except the left front wheel 1 vertically (61), the matrix K 1 of the determinant det | if non-zero | K 1 For example, the combination of the wheels is the remaining three wheels 2, 3 and 4 other than the left front wheel 1, and 1 is set in the flag flg.

Figure 2006315661
Figure 2006315661

もしも、行列K1の行列式det|K1|がゼロならば、今度は右前輪2以外の残り三輪1,3,4のベクトルを縦に並べた行列K2を上記の式(61)と同様に考え、行列式det|K2|がゼロでないならば、車輪の組み合わせを右前輪2以外の残り三輪1,3,4とし、フラグflgに2を設定する。 If the matrix K 1 of the determinant det | K 1 | If zero, turn the matrix K 2 by arranging the vectors of the remaining Miwa 1,3,4 other than the right front wheel 2 in the vertical of the formula (61) Similarly, if the determinant det | K 2 | is not zero, the wheel combination is set to the remaining three wheels 1, 3, 4 other than the right front wheel 2, and 2 is set in the flag flg.

そして、行列K2の行列式det|K2|がゼロならば、今度は左後輪3以外の残り三輪1,2,4のベクトルを縦に並べた行列K3を上記の式(61)と同様に考え、行列式det|K3|がゼロでないならば、左後輪3以外の残り三輪1,2,4とし、フラグflgに3を設定する。 Then, the matrix K 2 of the determinant det | K 2 | if zero, this time a matrix K 3 by arranging the vectors of the remaining Miwa 1,2,4 other than the left rear wheel 3 vertically above formula (61) If the determinant det | K 3 | is not zero, the remaining three wheels 1, 2, 4 other than the left rear wheel 3 are set, and the flag flg is set to 3.

ここで、さらに行列K3の行列式det|K3|がゼロならば、今度は右後輪4以外の残り三輪1,2,3のベクトルを縦に並べた行列K4を上記の式(61)と同様に考え、行列式det|K4|がゼロでないならば、右後輪4以外の残り三輪1,2,3とし、フラグflgに4を設定する。 Here, further matrix K 3 of the determinant det | K 3 | If zero, the matrix K 4 of the turn formed by arranging a vector of the remaining Miwa 1,2,3 other than the right rear wheel 4 in the longitudinal formula ( If the determinant det | K 4 | is not zero, the remaining three wheels 1, 2, 3 other than the right rear wheel 4 are set, and 4 is set in the flag flg.

4つの行列式det|K1|、det|K2|、det|K3|、det|K4|が全てゼロの場合には組み合わせ無しとしてフラグflgにゼロを設定する。 When the four determinants det | K 1 |, det | K 2 |, det | K 3 |, and det | K 4 | are all zero, no flag is set and zero is set in the flag flg.

ステップ520では、ステップ510で設定しているフラグflgの値をみる。フラグflg=0である場合にはステップ540に進み、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を、ΔFx1=ΔFx2=ΔFx3=ΔFx4=0とする。 In step 520, the value of the flag flg set in step 510 is checked. When the flag flg = 0, the routine proceeds to step 540, where the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 are set to ΔFx 1 = ΔFx 2 = ΔFx 3 = ΔFx 4 = 0. And

一方、フラグflg≠0である場合には、ステップ520よりステップ530に進み、ステップ510で設定しているフラグflgの値に基づいて、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めて、図17のフローを終了する。 On the other hand, if the flag flg is not 0, the process proceeds from step 520 to step 530, and based on the value of the flag flg set in step 510, the driving force correction amounts ΔFx 1 and ΔFx 2 of the wheels 1 to 4 are set. , ΔFx 3 , ΔFx 4 are obtained, and the flow of FIG.

ここで、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の求め方であるが、例えばフラグflg=1である場合には次の式(62)のように、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求める。 Here, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for the wheels 1 to 4 are obtained. For example, when the flag flg = 1, the following equation (62) Then, driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each of the wheels 1 to 4 are obtained.

Figure 2006315661
Figure 2006315661

すなわち、式(62)のように、ステップ510で選択された行列K1が互いに1次独立である3つの車輪2,3,4の駆動力補正量ΔFx2,ΔFx3,ΔFx4を、車両挙動の誤差ΔFx,ΔFy,ΔMに行列K1の逆行列を乗じることで求め、選択されなかった左前輪1の駆動力補正量ΔFx1をゼロとする。 That is, as shown in the equation (62), the driving force correction amounts ΔFx 2 , ΔFx 3 , ΔFx 4 of the three wheels 2 , 3 , 4 in which the matrix K 1 selected in step 510 is linearly independent from each other are The behavior error ΔFx, ΔFy, ΔM is obtained by multiplying by the inverse matrix of the matrix K 1 , and the driving force correction amount ΔFx 1 of the left front wheel 1 that is not selected is set to zero.

各輪1〜4の駆動力補正量は各輪1〜4についての駆動力変化に対する車両前後方向力の感度Kix,車両横方向力の感度Kiy,ヨーモーメントの感度KiMによって変化するため、これら各輪1〜4についての駆動力変化に対する車両前後方向力の感度Kix,車両横方向力の感度Kiy,ヨーモーメントの感度KiMが一定であるとして各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算したのでは、当該駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4に誤差が生じるのであるが、本実施形態(請求項3に記載の発明)によれば、各輪1〜4についての駆動力変化に対する車両前後方向力の感度Kix,車両横方向力の感度Kiy,ヨーモーメントの感度KiMを車両挙動変化の感度として演算する車両挙動変化感度演算手段を備え、駆動力補正量演算手段が、この演算された車両挙動変化の感度(Kix,Kiy,KiM)に基づいて、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算するので、各輪1〜4についての駆動力変化に対する車両前後方向力の感度Kix,車両横方向力の感度Kiy,ヨーモーメントの感度KiMが相違しても、現在の動作点周りにおいてより正確に各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めることができる。 Because the driving force correction amount of each wheel 1 to 4 varies depending on the vehicle longitudinal force sensitivity K ix , vehicle lateral force sensitivity K iy , and yaw moment sensitivity K iM with respect to the driving force change for each wheel 1 to 4. The driving force of each wheel 1 to 4 is assumed that the vehicle longitudinal force sensitivity K ix , the vehicle lateral force sensitivity K iy , and the yaw moment sensitivity K iM are constant with respect to the driving force change for each wheel 1 to 4. If the correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are calculated, an error occurs in the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 , but this embodiment (Claim 3). The vehicle longitudinal force sensitivity K ix , vehicle lateral force sensitivity K iy , and yaw moment sensitivity K iM with respect to changes in vehicle behavior. Vehicle behavior change sensitivity calculation hand The provided, driving force correction amount calculating means, the sensitivity of the computed vehicle behavior change (K ix, K iy, K iM) based on the driving force correction amount DerutaFx 1 of each wheel 1~4, ΔFx 2, Since ΔFx 3 and ΔFx 4 are calculated, even if the vehicle longitudinal force sensitivity K ix , vehicle lateral force sensitivity K iy , and yaw moment sensitivity K iM differ with respect to the driving force change for each of the wheels 1 to 4. Thus, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 can be obtained more accurately around the current operating point.

次に、図18のフローチャートを説明する。   Next, the flowchart of FIG. 18 will be described.

これは、上記<9>と<15>の方法により、車両挙動の誤差ΔFx,ΔFy,ΔMを補正する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めるものである。 This is to obtain the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 for correcting the vehicle behavior errors ΔFx, ΔFy, ΔM by the methods <9> and <15> described above. Is.

図18においてステップ700では、各輪1〜4についての駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を求める。 In FIG. 18, in step 700, tire lateral force sensitivities k 1 , k 2 , k 3 , and k 4 with respect to changes in driving force for the wheels 1 to 4 are obtained.

ここで、各輪についての駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定する方法として次に3つの方法を示す。
<15>タイヤ横力の感度の推定方法1
これは、各輪の輪荷重、路面摩擦係数の違いを考慮しない場合の簡易な推定方法である。左前輪1の場合を例にとって説明すると、左前輪1の駆動力Fx1##+dFx1に対応するタイヤ横力Fy1##+dFy1を、ステップ80で用いた各輪1〜4の現在の横すべり角β1,β2,β3,β4のうち、左前輪1の横すべり角β1に基づいて、図4に示す駆動力とタイヤ横力との関係を表すタイヤ特性マップを参照して求め、次の式(71)に従って左前輪1のタイヤ横力の感度k1を求める。
Here, the following three methods are shown as methods for estimating the sensitivity k 1 , k 2 , k 3 , k 4 of the tire lateral force with respect to the driving force change for each wheel.
<15> Tire lateral force sensitivity estimation method 1
This is a simple estimation method when the difference between the wheel load and the road surface friction coefficient of each wheel is not taken into consideration. The case of the left front wheel 1 will be described as an example. The tire lateral force Fy 1 ## + dFy 1 corresponding to the driving force Fx 1 ## + dFx 1 of the left front wheel 1 is the current of each wheel 1 to 4 used in step 80. sideslip angle beta 1, beta 2, beta 3, among the beta 4, based on the slip angle beta 1 of the left front wheel 1, with reference to the tire characteristic map representing the relationship between the driving force and the tire lateral force shown in FIG. 4 The tire lateral force sensitivity k 1 of the left front wheel 1 is obtained according to the following equation (71).

1=dFy1/dFx1 …(71)
左前輪1の駆動力補正量dFx1[N](dFx1>0)は、本車両の左前輪1が採り得る輪荷重と比較して十分微小な値とし、本実施形態では10[N]とする(残り三輪2〜4の駆動力補正量dFx2,dFx3,dFx4も同じ10[N]とする)。すなわち、左前輪1の駆動力基本値Fx1##が微小な駆動力補正量dFx1だけ変化したときの左前輪1のタイヤ横力基本値Fy1##の変化量dFy1を求めることによって、左前輪1の駆動力を基本値Fx1##としたときの駆動力変化に対するタイヤ横力の感度k1が上記の式(71)によって求まる。
k 1 = dFy 1 / dFx 1 (71)
The driving force correction amount dFx 1 [N] (dFx 1 > 0) of the left front wheel 1 is set to a sufficiently small value as compared with the wheel load that can be taken by the left front wheel 1 of the vehicle, and in this embodiment, 10 [N]. (The driving force correction amounts dFx 2 , dFx 3 , and dFx 4 of the remaining three wheels 2 to 4 are also set to 10 [N]). That is, by obtaining the change amount dFy 1 of the tire lateral force basic value Fy 1 ## of the left front wheel 1 when the driving force basic value Fx 1 ## of the left front wheel 1 changes by a minute driving force correction amount dFx 1 . The tire lateral force sensitivity k 1 with respect to the change in the driving force when the driving force of the left front wheel 1 is set to the basic value Fx 1 ## is obtained by the above equation (71).

残り三輪2〜4についても同様にして各輪2〜4についてのタイヤ横力の感度k2,k3,k4を求める。
<16>タイヤ横力の感度の推定方法2
これは、各輪の輪荷重の違いを考慮する場合の推定方である(請求項6に記載の発明)。
Similarly, the tire lateral force sensitivities k 2 , k 3 , and k 4 for each of the wheels 2 to 4 are obtained for the remaining three wheels 2 to 4 .
<16> Tire lateral force sensitivity estimation method 2
This is an estimation method when the difference in wheel load of each wheel is taken into consideration (the invention according to claim 6).

ただし、上記<15>の方法とは、用いるタイヤ特性マップが相違するだけである。つまり、一つの車輪について各輪荷重毎に、駆動力とタイヤ横力との関係を表すタイヤ特性マップを備えさせ(例えば図14のように輪荷重の相違で2つのタイヤ特性マップを備えさせる)、そのときの輪荷重に応じたタイヤ特性マップを選択し、その選択したタイヤ特性マップを用いてタイヤ横力の感度を推定する。   However, it differs from the method <15> only in the tire characteristic map to be used. That is, a tire characteristic map representing the relationship between the driving force and the tire lateral force is provided for each wheel load for one wheel (for example, two tire characteristic maps are provided for different wheel loads as shown in FIG. 14). Then, a tire characteristic map corresponding to the wheel load at that time is selected, and the sensitivity of the tire lateral force is estimated using the selected tire characteristic map.

ここでも左前輪1の場合を例にとって説明すると、前記選択したタイヤ特性マップを用いて、左前輪1の駆動力基本値Fx1##が微小な駆動力補正量dFx1だけ変化したときの左前輪1のタイヤ横力基本値Fy1##の変化量dFy1を求めることによって、左前輪1の駆動力を基本値Fx1##としたときの駆動力変化に対するタイヤ横力の感度k1を求める。
<17>タイヤ横力の感度の推定方法3
これは、各輪の路面摩擦係数の違いを考慮する場合の推定方である(請求項7に記載の発明)。
Here, the case of the left front wheel 1 will be described as an example. Using the selected tire characteristic map, the left when the driving force basic value Fx 1 ## of the left front wheel 1 is changed by a minute driving force correction amount dFx 1 by determining the variation dFy 1 of the tire lateral force basic value Fy 1 # # front wheel 1, the sensitivity k 1 of the tire lateral force with respect to change of the driving force when the driving force of the left front wheel 1 and the basic value Fx 1 # # Ask for.
<17> Method 3 of estimating tire lateral force sensitivity
This is an estimation method when the difference in road surface friction coefficient of each wheel is taken into consideration (the invention according to claim 7).

ただし、上記<15>の方法とは、用いるタイヤ特性マップが相違するだけである。つまり、一つの車輪について各路面摩擦係数毎に、駆動力とタイヤ横力との関係を表すタイヤ特性マップを備えさせ(例えば図14のように路面摩擦係数の相違で2つのタイヤ特性マップを備えさせる)、そのときの路面摩擦係数に応じたタイヤ特性マップを選択し、その選択したタイヤ特性マップを用いてタイヤ横力の感度を推定する。   However, it differs from the method <15> only in the tire characteristic map to be used. That is, a tire characteristic map representing the relationship between the driving force and the tire lateral force is provided for each road friction coefficient for one wheel (for example, two tire characteristic maps are provided depending on the road friction coefficient as shown in FIG. 14). The tire characteristic map corresponding to the road surface friction coefficient at that time is selected, and the sensitivity of the tire lateral force is estimated using the selected tire characteristic map.

ここでも左前輪1の場合を例にとって説明すると、前記選択したタイヤ特性マップを用いて、左前輪1の駆動力基本値Fx1##が微小な駆動力補正量dFx1だけ変化したときの左前輪1のタイヤ横力基本値Fy1##の変化量dFy1を求めることによって、左前輪1の駆動力を基本値Fx1##としたときの駆動力変化に対するタイヤ横力の感度k1を求める。 Here, the case of the left front wheel 1 will be described as an example. Using the selected tire characteristic map, the left when the driving force basic value Fx 1 ## of the left front wheel 1 is changed by a minute driving force correction amount dFx 1 by determining the variation dFy 1 of the tire lateral force basic value Fy 1 # # front wheel 1, the sensitivity k 1 of the tire lateral force with respect to change of the driving force when the driving force of the left front wheel 1 and the basic value Fx 1 # # Ask for.

ステップ710では、ステップ700で得ている各輪1〜4についてのタイヤ横力の感度k1,k2,k3,k4から各輪1〜4の舵角δ1,δ2,δ3,δ4をゼロとして、次の式(16a)〜式(19a)で表される係数D1,D2,D3,D4を求める。 In step 710, the sensitivity k 1 of the tire lateral force for each wheel 1-4 are obtained in step 700, k 2, k 3, steering angle [delta] 1 of the respective wheels 1-4 from k 4, δ 2, δ 3 , Δ 4 is set to zero, and coefficients D 1 , D 2 , D 3 , and D 4 expressed by the following equations (16a) to (19a) are obtained.

1=q2(p34−p43)Ll+p3(p24−p42)Lt …(16a)
2=q1(p43−p34)Ll+p4(p31−p13)Lt …(17a)
3=q4(p21−p12)Ll+p1(p42−p24)Lt …(18a)
4=q3(p12−p21)Ll+p2(p13−p31)Lt …(19a)
式(16a)〜式(19a)の係数p1,p2,p3,p4,q1,q2,q3,q4は、次の値である。
D 1 = q 2 (p 3 q 4 −p 4 q 3 ) L 1 + p 3 (p 2 q 4 −p 4 q 2 ) L t (16a)
D 2 = q 1 (p 4 q 3 -p 3 q 4) L l + p 4 (p 3 q 1 -p 1 q 3) L t ... (17a)
D 3 = q 4 (p 2 q 1 -p 1 q 2 ) L 1 + p 1 (p 4 q 2 -p 2 q 4 ) L t (18a)
D 4 = q 3 (p 1 q 2 −p 2 q 1 ) L 1 + p 2 (p 1 q 3 −p 3 q 1 ) L t (19a)
The coefficients p 1 , p 2 , p 3 , p 4 , q 1 , q 2 , q 3 , and q 4 in the equations (16a) to (19a) are the following values.

1=cosδ1−k1sinδ1 …(補14a)
2=cosδ2−k2sinδ2 …(補14b)
3=cosδ3−k3sinδ3 …(補14c)
4=cosδ4−k4sinδ4 …(補14d)
1=sinδ1+k1cosδ1 …(補15a)
2=sinδ2+k2cosδ2 …(補15b)
3=sinδ3+k3cosδ3 …(補15c)
4=sinδ4+k4cosδ4 …(補15d)
ここで、式(16a)〜式(19a)は上記の式(16)〜式(19)と同じ式、また式(14a)〜式(15d)は、上記の式(補1)、式(補2)と同じ式である。
p 1 = cos δ 1 −k 1 sin δ 1 (Supplement 14a)
p 2 = cos δ 2 −k 2 sin δ 2 (Supplement 14b)
p 3 = cosδ 3 −k 3 sinδ 3 (Supplement 14c)
p 4 = cos δ 4 −k 4 sin δ 4 (Supplement 14d)
q 1 = sin δ 1 + k 1 cos δ 1 (Supplement 15a)
q 2 = sin δ 2 + k 2 cos δ 2 (Supplement 15b)
q 3 = sin δ 3 + k 3 cos δ 3 (Supplement 15c)
q 4 = sin δ 4 + k 4 cos δ 4 (Supplement 15d)
Here, the expressions (16a) to (19a) are the same as the expressions (16) to (19), and the expressions (14a) to (15d) are the expressions (complement 1) and ( It is the same formula as Supplement 2).

ステップ720では、ステップ710で求めている4つの係数D1,D2,D3,D4のうちから係数D1をみる。係数D1≠0であればステップ730に進み、各輪1〜4の舵角δ1,δ2,δ3,δ4をゼロとした次の式(20a)を用いて車両挙動の誤差ΔFx,ΔFy,ΔMを補償する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めて図18のフローを終了する。 In step 720, the coefficient D 1 is seen from the four coefficients D 1 , D 2 , D 3 and D 4 obtained in step 710. If the coefficient D 1 ≠ 0, the process proceeds to step 730, and the vehicle behavior error ΔFx using the following equation (20a) with the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4 being zero. , ΔFy, ΔM, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 are obtained, and the flow of FIG.

Figure 2006315661
Figure 2006315661

式(20a)は、上記の式(14)を左前輪2の駆動力補正量ΔFx1を既知として解いた式、つまり上記の式(20)と同じものである。 Expression (20a) is the same as the above expression (20), that is, the above expression (14) is solved with the driving force correction amount ΔFx 1 of the left front wheel 2 known.

ここで、式(20a)の任意定数χは、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の2乗和が最小となるように、次の式(72)により設定される値である。 Here, the arbitrary constant χ in the equation (20a) is set to the following equation (72) so that the sum of squares of the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 is minimized. ).

χ=(D11+D22+D33+D44
/(D1 2+D2 2+D3 2+D4 2
…(72)
ステップ720で係数D1=0である場合にはステップ740に進み上記4つの係数の内から別の係数D4をみる。この別の係数D4≠0であればステップ750に進み、各輪1〜4の舵角δ1,δ2,δ3,δ4をゼロとした次の式(21a)を用いて車両挙動の誤差ΔFx,ΔFy,ΔMを補償する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めて図18のフローを終了する。
χ = (D 1 E 1 + D 2 E 2 + D 3 E 3 + D 4 E 4 )
/ (D 1 2 + D 2 2 + D 3 2 + D 4 2 )
... (72)
If the coefficient D 1 = 0 in step 720, the process proceeds to step 740 and another coefficient D 4 is seen from the above four coefficients. If this other coefficient D 4 ≠ 0, the routine proceeds to step 750, where the vehicle behavior is calculated using the following equation (21a) in which the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4 are zero. The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each of the wheels 1 to 4 that compensate for the errors ΔFx, ΔFy, and ΔM are obtained, and the flow of FIG. 18 ends.

Figure 2006315661
Figure 2006315661

式(21a)は、上記の式(14)を右後輪4の駆動力補正量ΔFx4を既知として解いた式、つまり上記の式(21)と同じものである。 The expression (21a) is the same as the expression (21) obtained by solving the above expression (14) with the driving force correction amount ΔFx 4 of the right rear wheel 4 as known.

ここで、式(21a)中の任意定数χは、ステップ730と同様に各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の2乗和が最小となるように、次の式(73)により設定される値である。 Here, the arbitrary constant χ in the equation (21a) is set so that the sum of squares of the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 is minimized as in Step 730. , A value set by the following equation (73).

χ=(D11+D22+D33+D44
/(D1 2+D2 2+D3 2+D4 2
…(73)
ステップ740で係数D4=0である場合にはステップ760に進み別の係数D2をみる。この別の係数D2≠0であればステップ770に進み、上記の式(14)を、右前輪2の駆動力補正量ΔFx2を既知として解いた式から、車両挙動の誤差ΔFx,ΔFy,ΔMを補償する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めて図18のフローを終了する。ただし、舵角δ1,δ2,δ3,δ4はゼロとする。
χ = (D 1 G 1 + D 2 G 2 + D 3 G 3 + D 4 G 4 )
/ (D 1 2 + D 2 2 + D 3 2 + D 4 2 )
... (73)
If the coefficient D 4 = 0 in step 740, the process proceeds to step 760 and another coefficient D 2 is seen. If this other coefficient D 2 ≠ 0, the routine proceeds to step 770, where the above equation (14) is solved from the equation obtained by knowing the driving force correction amount ΔFx 2 of the right front wheel 2 as known, and the vehicle behavior errors ΔFx, ΔFy, The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each of the wheels 1 to 4 that compensate ΔM are obtained, and the flow of FIG. 18 ends. However, the steering angles δ 1 , δ 2 , δ 3 and δ 4 are zero.

なお、上記右前輪2の駆動力補正量ΔFx2を既知として解いた式には上記の式(20a)及び式(21a)中の任意定数χに対応する値が出現するが、上記の式(20a)及び式(21a)中の任意定数χに対応する値はステップ730,750と同様に各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の2乗和が最小となるように設定する。 It should be noted that a value corresponding to the arbitrary constant χ in the above equations (20a) and (21a) appears in the equation obtained by solving the driving force correction amount ΔFx 2 of the right front wheel 2 as known. 20a) and the value corresponding to the arbitrary constant χ in the equation (21a) are the sums of squares of the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 as in Steps 730 and 750. Set to the minimum.

ステップ760で係数D2=0である場合にはステップ780に進み別の係数D3をみる。この別の係数D3≠0であればステップ790に進み、上記の式(14)を、左後輪3の駆動力補正量ΔFx3を既知として解いた式から、車両挙動の誤差ΔFx,ΔFy,ΔMを補償する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めて図18のフローを終了する。ただし、舵角δ1,δ2,δ3,δ4はゼロとする。 If the coefficient D 2 = 0 in step 760, the process proceeds to step 780 to see another coefficient D 3 . If this other coefficient D 3 ≠ 0, the routine proceeds to step 790, and the vehicle behavior errors ΔFx, ΔFy are derived from the equation obtained by solving the above equation (14) with the driving force correction amount ΔFx 3 of the left rear wheel 3 known. , ΔM to compensate for the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of each of the wheels 1 to 4, and the flow of FIG. 18 ends. However, the steering angles δ 1 , δ 2 , δ 3 and δ 4 are zero.

なお、上記左後輪3の駆動力補正量ΔFx3を既知として解いた式には上記の式(20a)及び式(21a)中の任意定数χに対応する値が出現するが、上記の式(20a)及び式(21a)中の任意定数χに対応する値はステップ730,750と同様に各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4の2乗和が最小となるように設定する。 It should be noted that a value corresponding to the arbitrary constant χ in the above equations (20a) and (21a) appears in the equation obtained by solving the driving force correction amount ΔFx 3 of the left rear wheel 3 as known. The value corresponding to the arbitrary constant χ in (20a) and equation (21a) is the sum of squares of the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of each wheel 1 to 4 as in steps 730 and 750. Is set to be minimum.

ステップ780で係数D3=0、つまり4つ係数D1,D2,D3,D4が全てゼロである場合にはステップ800に進み、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4をΔFx1=ΔFx2=ΔFx3=ΔFx4=0として図18のフローを終了する。 If the coefficient D 3 = 0 in step 780, that is, if the four coefficients D 1 , D 2 , D 3 , and D 4 are all zero, the process proceeds to step 800, where the driving force correction amounts ΔFx 1 , The flow of FIG. 18 is ended by setting ΔFx 2 , ΔFx 3 , and ΔFx 4 to ΔFx 1 = ΔFx 2 = ΔFx 3 = ΔFx 4 = 0.

ステップ710において、各輪1〜4の舵角δ1,δ2,δ3,δ4をゼロとして4つの係数D1,D2,D3,D4を求め、また、ステップ730、750、770、790で各輪1〜4の舵角δ1,δ2,δ3,δ4をゼロとして、車両挙動の誤差ΔFx,ΔFy,ΔMを補償する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めているが、ステップ710において各輪1〜4の舵角δ1,δ2,δ3,δ4をゼロとすることなくそのまま用いて係数D1,D2,D3,D4を求め、また、ステップ730、750、770、790で各輪1〜4の舵角δ1,δ2,δ3,δ4をゼロとすることなくそのまま用いて、車両挙動の誤差ΔFx,ΔFy,ΔMを補償する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めるようにしてもかまわない(請求項5に記載の発明)。 In step 710, four coefficients D 1 , D 2 , D 3 , D 4 are obtained by setting the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4 to zero, and steps 730, 750, In 770 and 790, the steering angles δ 1 , δ 2 , δ 3 , and δ 4 of the wheels 1 to 4 are set to zero, and the driving force correction amounts ΔFx of the wheels 1 to 4 are compensated for the vehicle behavior errors ΔFx, ΔFy, and ΔM. 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 are obtained. In step 710, the steering angles δ 1 , δ 2 , δ 3 , and δ 4 of the wheels 1 to 4 are used as they are without being zero, and the coefficient D 1 , D 2 , D 3 , D 4 , and are used as they are without making the steering angles δ 1 , δ 2 , δ 3 , δ 4 of the wheels 1 to 4 zero in steps 730, 750, 770, 790. Thus, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 for compensating for the vehicle behavior errors ΔFx, ΔFy, ΔM are obtained. (The invention according to claim 5).

各輪1〜4の駆動力補正量は各輪1〜4についての駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4によって変化するため、当該感度k1,k2,k3,k4が一定であるとして各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算したのでは、当該駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4に誤差が生じるのであるが、本実施形態(請求項4に記載の発明)によれば、各輪1〜4についての駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を推定するタイヤ横力感度推定手段を備え、駆動力補正量演算手段が、この推定されたタイヤ横力の感度k1,k2,k3,k4に基づいて、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算するので、各輪1〜4についての駆動力変化に対するタイヤ横力の感度が相違しても、現在の動作点周りにおいてより正確かつ簡便に各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を求めることができる。 Since the driving force correction amount of each wheel 1 to 4 varies depending on the sensitivity k 1 , k 2 , k 3 , and k 4 of the tire lateral force with respect to the driving force change for each wheel 1 to 4, the sensitivity k 1 , k 2. , K 3 , k 4 are constant, and the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 are calculated, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 , but according to the present embodiment (the invention according to claim 4), the sensitivity of the tire lateral force to the driving force change for each of the wheels 1 to 4, k 1 , k 2 , tire lateral force sensitivity estimating means for estimating k 3 , k 4 is provided, and the driving force correction amount calculating means is based on the estimated tire lateral force sensitivities k 1 , k 2 , k 3 , k 4 , respectively. driving force correction amount DerutaFx 1 ring 1~4, ΔFx 2, ΔFx 3, since the operation of ΔFx 4, for each wheel 1-4 Be different sensitivity of tire lateral force against a power change, the driving force correction amount DerutaFx 1 of each wheel 1-4 more accurately and conveniently at about the current operating point, ΔFx 2, ΔFx 3, be determined DerutaFx 4 it can.

次に、図20、図21のフローチャートは第3実施形態、図24、図25のフローチャートは第4実施形態で、それぞれ第1実施形態の図6、図7と置き換わるものである。図20、図21及び図24、図25もモータ1〜4へのトルク配分制御を実行するためのもので、操作の手順を記載している。一定時間毎に実行するものではない。図6、図7と同一の部分には同一のステップ番号を付けている。   Next, the flowcharts of FIGS. 20 and 21 are the third embodiment, and the flowcharts of FIGS. 24 and 25 are the fourth embodiment, which replace FIGS. 6 and 7 of the first embodiment, respectively. 20, FIG. 21, FIG. 24, and FIG. 25 are also for executing the torque distribution control to the motors 1 to 4, and describe the operation procedure. It is not executed at regular intervals. The same step numbers are assigned to the same parts as those in FIGS.

さて、第1、第2の実施形態では、車両前後方向力Fx,車両横方向力Fy,ヨーモーメントMの全てに対してそれぞれ独立に各目標値Fx**,Fy**,M**を設定しているが、さらに考えてみると、車両横方向力FyとヨーモーメントMには強い従属関係があり、いずれか一方の応答が定まればもう一方の応答もほぼ定まってしまう。   In the first and second embodiments, the target values Fx **, Fy **, and M ** are independently set for all of the vehicle longitudinal force Fx, the vehicle lateral force Fy, and the yaw moment M, respectively. However, when considering further, there is a strong dependency between the vehicle lateral force Fy and the yaw moment M, and if one of the responses is determined, the other response is also approximately determined.

この車両横方向力FyとヨーモーメントMとの従属関係についてさらに説明すると、車両のヨーレートγと、求心加速度Ygとの間には次の式(81)の関係がある。   The dependency relationship between the vehicle lateral force Fy and the yaw moment M will be further described. The relationship of the following equation (81) exists between the vehicle yaw rate γ and the centripetal acceleration Yg.

Yg=V×(γ+dβ/dt) …(81)
式(81)は、上記の式(補4)と基本的に同じ式で、上記の式(補4)を時間で微分し、求心加速度Ygについて整理したものである。従って、(81)式右辺のVは車両速度、dβ/dtは車体横すべり角βの時間微分値である。
Yg = V × (γ + dβ / dt) (81)
Formula (81) is basically the same as the above formula (complement 4), and the above formula (complement 4) is differentiated with respect to time, and arranged for centripetal acceleration Yg. Therefore, V on the right side of the equation (81) is the vehicle speed, and dβ / dt is a time differential value of the vehicle body side slip angle β.

式(81)から、ヨーレートγと求心加速度Ygとの間の自由度はこの車体横滑り角時間微分値dβ/dtのみであり、ヨーレートγと求心加速度Ygは互いに強い従属関係にあることが分かる。   From the equation (81), it can be seen that the degree of freedom between the yaw rate γ and the centripetal acceleration Yg is only the vehicle body side slip angle time differential value dβ / dt, and the yaw rate γ and the centripetal acceleration Yg are in a strong dependency.

そして、ヨーレートγはヨーモーメントMを時間積分した値を車両のヨー慣性モーメントで除した値であり、求心加速度Ygは車体横すべり角βが充分小さいときには車両横方向加速度とほぼ等しいことから、上記の式(補4)の求心加速度Ygとして車両横方向加速度αyを入れていたわけである。これより、車両横方向力FyとヨーモーメントMには強い従属関係があることが分かる。   The yaw rate γ is a value obtained by dividing the yaw moment M by the yaw moment of inertia of the vehicle, and the centripetal acceleration Yg is substantially equal to the vehicle lateral acceleration when the vehicle body side slip angle β is sufficiently small. This is because the vehicle lateral acceleration αy is included as the centripetal acceleration Yg in the equation (Supplement 4). From this, it can be seen that the vehicle lateral force Fy and the yaw moment M have a strong dependency.

そこで第3、第4の実施形態では、この車両横方向力FyとヨーモーメントMの間の強い従属関係、つまり車両横方向力FyとヨーモーメントMのいずれか一方の車両挙動の応答が定まれば、もう一方の応答がほぼ定まってしまうことを利用し、車両横方向力FyとヨーモーメントMのうちいずれか一方の車両挙動についてのみ目標値を設定する。この結果、第3、第4の実施形態によれば、車両横方向力FyとヨーモーメントMのいずれか一方の車両挙動についてのみ目標値を設定すればよいので、第1、第2の実施形態に比べてコントローラ8の一部を構成している車載コンピューターのメモリ消費量を引き下げ、車両価格が低減することが期待できる。また、車両横方向力FyとヨーモーメントMのいずれか一方の目標値のみ設計すれば良くなるので、設計工数の低減も併せて期待できる。   Therefore, in the third and fourth embodiments, the strong dependency between the vehicle lateral force Fy and the yaw moment M, that is, the response of the vehicle behavior of either the vehicle lateral force Fy or the yaw moment M is determined. For example, the target value is set only for one of the vehicle lateral forces Fy and the yaw moment M using the fact that the other response is almost determined. As a result, according to the third and fourth embodiments, the target value only needs to be set for one of the vehicle behaviors of the vehicle lateral force Fy and the yaw moment M, so the first and second embodiments. Compared to the above, it can be expected that the memory consumption of the in-vehicle computer constituting a part of the controller 8 is reduced and the vehicle price is reduced. In addition, since only one of the target values of the vehicle lateral force Fy and the yaw moment M needs to be designed, a reduction in design man-hours can also be expected.

以下フローチャートに基づいて第3、第4の実施形態を詳述する。   The third and fourth embodiments will be described in detail below based on the flowchart.

図20、図21に示す第3実施形態(請求項1の技術のみを適用する場合)から先に、第1実施形態と相違する部分を主に説明すると、図20のステップ41で、ヨーレートの静的目標値γ*を、車両前後方向力の静的目標値Fx*とステアリング5の回転角θと車両速度Vとから、図11に示すヨーレート静的目標値マップに基づいて設定する。ここで、車両横方向力静的目標値マップはコントローラ8に備えておらず、図20のステップ41では車両横方向力の静的目標値Fy*を設定しない。車両横方向力静的目標値マップを設定しないのは、コントローラ8のメモリ使用量及び演算負荷の低減を目的とするものである。   From the third embodiment shown in FIGS. 20 and 21 (when only the technology of claim 1 is applied), the differences from the first embodiment will be mainly described. In step 41 of FIG. The static target value γ * is set based on the yaw rate static target value map shown in FIG. 11 from the static target value Fx * of the vehicle longitudinal force, the rotation angle θ of the steering 5 and the vehicle speed V. Here, the vehicle lateral force static target value map is not provided in the controller 8, and the vehicle lateral force static target value Fy * is not set in step 41 of FIG. The purpose of not setting the vehicle lateral force static target value map is to reduce the memory usage of the controller 8 and the calculation load.

図20のステップ61では、車両前後方向力の動的目標値Fx**,ヨーレートの動的目標値γ**を、各輪1〜4の駆動力配分で実現可能な範囲でドライバーの操縦性が好適となるように各静的目標値Fx*,γ*に対して時間的な遅れ要素を入れて求める。車両前後方向力の静的目標値Fx*については2次遅れの伝達関数を用いて、ヨーレートの静的目標値γ*については相応の伝達関数を用いてなまし処理を行うことによって、車両前後方向力の動的目標値Fx**,ヨーレートの動的目標値γ**を得る。なお、特にヨーレートの動的目標値γ**の応答は走行条件毎に実現可能な時間的遅れ要素を入れる。   In step 61 of FIG. 20, the driver's maneuverability within a range in which the dynamic target value Fx ** of the vehicle longitudinal force and the dynamic target value γ ** of the yaw rate can be realized by the driving force distribution of the wheels 1 to 4. Is obtained by adding a time delay element to each of the static target values Fx * and γ *. By using the second-order lag transfer function for the static target value Fx * of the vehicle longitudinal force and for the static target value γ * of the yaw rate using the corresponding transfer function, smoothing is performed. A dynamic target value Fx ** for directional force and a dynamic target value γ ** for yaw rate are obtained. In particular, the response of the dynamic target value γ ** of the yaw rate includes a time delay element that can be realized for each driving condition.

また、図20のステップ61では、ヨーレートの動的目標値γ**を求めるときに用いた時間的な遅れ要素の伝達関数に微分要素を乗じた伝達関数を用いてヨーモーメントの動的目標値M**を求める。   Further, in step 61 of FIG. 20, the dynamic target value of yaw moment is obtained using a transfer function obtained by multiplying the transfer function of the time delay element used for obtaining the dynamic target value γ ** of the yaw rate by a differential element. Find M **.

図20のステップ71では、ステップ50で設定している各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*に基づいて、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を、第1実施形態と同じに次の式(32)〜式(35)により求める。 In step 71 of FIG. 20, based on the static target values Fx 1 *, Fx 2 *, Fx 3 *, Fx 4 * of the driving forces of the wheels 1 to 4 set in step 50, The driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, and Fx 4 ## of 4 are obtained by the following equations (32) to (35) as in the first embodiment.

Fx1##=Fxall##×(η/2)−ΔFxall##×Δη/2 …(32)
Fx2##=Fxall##×(η/2)−ΔFxall##×Δη/2 …(33)
Fx3##=Fxall##×(1−η)/2−ΔFxall##×(1−Δη)/2
…(34)
Fx4##=Fxall##×(1−η)/2−ΔFxall##×(1−Δη)/2
…(35)
式(32)〜式(35)の前輪駆動力配分η、左右輪駆動力差の前輪配分Δηは、η=Δη=0.6である。また、式(32)〜式(35)のΔFxall##はステップ61で車両前後方向力の動的目標値Fx**を求めるときに車両前後方向力の静的目標値Fx*に入れた時間的な遅れ要素を、各輪1〜4の駆動力の静的目標値Fx1**,Fx2**,Fx3**,Fx4**の和であるFx1**+Fx2**+Fx3**+Fx4**に入れて求めた値である。
Fx 1 ## = Fx all ## × (η / 2) −ΔFx all ## × Δη / 2 (32)
Fx 2 ## = Fx all ## × (η / 2) −ΔFx all ## × Δη / 2 (33)
Fx 3 ## = Fx all ## × (1−η) / 2−ΔFx all ## × (1−Δη) / 2
... (34)
Fx 4 ## = Fx all ## × (1−η) / 2−ΔFx all ## × (1−Δη) / 2
... (35)
The front wheel driving force distribution η and the front wheel distribution Δη of the left and right wheel driving force difference in the equations (32) to (35) are η = Δη = 0.6. Further, ΔFx all ## in the equations (32) to (35) is entered in the static target value Fx * of the vehicle longitudinal force when the dynamic target value Fx ** of the vehicle longitudinal force is obtained in step 61. The time delay element is expressed as Fx 1 ** + Fx 2 * which is the sum of the static target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the driving forces of the wheels 1 to 4. * + Fx 3 ** + Fx 4 **.

ここで、式(32)〜式(35)のΔFxall##を次のようにして求める。すなわち、車両を線形近似した線形2輪モデル(安部正人著,第2版,「自動車の運動と制御」,株式会社山海堂,平成15年4月10日,第3章3.2.1節)に左右輪駆動力差ΔFxall##が加わった場合を考え、この線形2輪モデルのヨーレートの応答がヨーレートの動的目標値γ**となるように設計したモデルフォロイング制御系(金井喜美雄,越智徳昌,川邊武俊著,「ビークル制御」,槇書店,2004年1月20日,第3章3.2節)を用い、かつ定常状態で各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*との間で偏差を生じないように補正した次の式(36)から求める。 Here, ΔFx all ## in the equations (32) to (35) is obtained as follows. That is, a linear two-wheel model in which a vehicle is linearly approximated (Masato Abe, 2nd edition, “Automotive motion and control”, Sankaido Co., Ltd., April 10, 2003, Chapter 3 Section 3.2.1 ) to consider the case where joined by left and right wheel driving force difference ΔFx all ##, the linear two-wheel model of the yaw rate model following control system the response is designed to be dynamic target value gamma ** the yaw rate (Kanai Kimio, Norimasa Ochi, Taketoshi Kawamata, “Vehicle Control”, Tsubaki Shoten, January 20, 2004, Chapter 3, Section 3.2), and the static force of each wheel 1-4 in steady state The target value Fx 1 *, Fx 2 *, Fx 3 * , and Fx 4 * is obtained from the following equation (36) corrected so as not to cause a deviation.

ΔFxall##={s2+(−a11−a22)s+(a1122−A1221)}
/{b22・s+(a2111−a1121)}×fr(s)
×{(a2111−a1121)θ/16+(−a1122)ΔFxall#}
/{a1122−a1221
−〔{b21・s+(a2111−a1121)}
/{b22・s+(−a1122)}〕×θ/16
…(36)
式(36)のfr(s)は、ステップ61でヨーレートの動的目標値γ**を求めるときにヨーレートの静的目標値γ*に入れた時間的な遅れ要素の伝達関数、Kf,Kr[N/rad]は前輪び後輪の横滑り角が十分小さいときの単位横滑り角あたりのコーナーリングフォースである。
ΔFx all ## = {s 2 + (− a 11 −a 22 ) s + (a 11 a 22 −A 12 a 21 )}
/ {B 22 · s + (a 21 b 11 −a 11 b 21 )} × f r (s)
× {(a 21 b 11 −a 11 b 21 ) θ / 16 + (− a 11 b 22 ) ΔFx all #}
/ {A 11 b 22 -a 12 a 21}
- [{b 21 · s + (a 21 b 11 -a 11 b 21)}
/ {B 22 · s + ( - a 11 b 22)} ] × theta / 16
... (36)
F r (s) in the equation (36) is a transfer function of a temporal delay element that is entered into the static target value γ * of the yaw rate when the dynamic target value γ ** of the yaw rate is obtained in step 61, Kf, Kr [N / rad] is a cornering force per unit side slip angle when the side slip angle of the front and rear wheels is sufficiently small.

また、式(36)の係数a11,a12,a21,a22,b11,b21,b22,ΔFxall#はそれぞれ次の値である。 Also, the coefficients a 11 , a 12 , a 21 , a 22 , b 11 , b 21 , b 22 , and ΔFx all # in the equation (36) are the following values, respectively.

11=−(2/mV)(Kf+Kr) …(補4)
12=−(2/mV2)(Kff−Krr)−1 …(補5)
21=−(2/I)(Kff−Krr) …(補6)
22=−(2/IV)(Kff 2+Krr 2) …(補7)
11=2Kf/mV …(補8)
21=2Kff/I …(補9)
22=Lt/2I …(補10)
ΔFxall#=(Fx2*+Fx4*)−(Fx1*+Fx3*) …(補11)
式(補4)〜式(補11)のmは車両の質量[kg]、Vは車両速度[m/s]、Iは車両のヨー慣性モーメント[kg・m2]である。
a 11 = − (2 / mV) (K f + K r ) (Supplement 4)
a 12 = − (2 / mV 2 ) (K f L f −K r L r ) −1 (Supplement 5)
a 21 = − (2 / I) (K f L f −K r L r ) (Supplement 6)
a 22 = − (2 / IV) (K f L f 2 + K r L r 2 ) (Supplement 7)
b 11 = 2K f / mV (Supplement 8)
b 21 = 2K f L f / I (Supplement 9)
b 22 = L t / 2I (Supplement 10)
ΔFx all # = (Fx 2 * + Fx 4 *) − (Fx 1 * + Fx 3 *) (Supplement 11)
In the equations (A4) to (A11), m is a vehicle mass [kg], V is a vehicle speed [m / s], and I is a vehicle yaw inertia moment [kg · m 2 ].

このように第3実施形態におけるΔFxall##の求め方は、第1実施形態と同様である。 As described above, the method of obtaining ΔFx all ## in the third embodiment is the same as that in the first embodiment.

図20のステップ81では、ステップ71で得ている各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両挙動の基本値、つまり車両前後方向力の基本値Fx##,ヨーモーメントの基本値M##を次の式(37)、式(39)によりそれぞれ求める。 In step 81 of FIG. 20, the basic values of the vehicle behavior realized by the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 obtained in step 71 are obtained. That is, the basic value Fx ## of the vehicle longitudinal force and the basic value M ## of the yaw moment are obtained by the following equations (37) and (39), respectively.

Fx##=Fx1##+Fx2##+Fx3##+Fx4## …(37)
M##={(Fx2##+Fx4##)−(Fx1##+Fx3##)}×Lt/2
+{(Fy1##+Fy2##)×Lf−(Fy3##+Fy4##)×Lr
…(39)
第1実施形態と相違して、第3実施形態では車両横方向力の基本値Fy##を演算していない。これによって、コントローラ8の演算負荷を低減できる。
Fx ## = Fx 1 ## + Fx 2 ## + Fx 3 ## + Fx 4 ## (37)
M ## = {(Fx 2 ## + Fx 4 ##) − (Fx 1 ## + Fx 3 ##)} × L t / 2.
+ {(Fy 1 ## + Fy 2 ##) × L f − (Fy 3 ## + Fy 4 ##) × L r }
... (39)
Unlike the first embodiment, the basic value Fy ## of the vehicle lateral force is not calculated in the third embodiment. Thereby, the calculation load of the controller 8 can be reduced.

図20のステップ91では、ステップ61で設定されている車両挙動の目標値と、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##で実現される車両挙動の基本値との誤差、つまり車両前後方向力の動的目標値Fx**と車両前後方向力の基本値Fx##との誤差ΔFx,ヨーモーメントの動的目標値M**とヨーモーメントの基本値M##との誤差ΔMを次の式(42)、式(44)によりそれぞれ求める。 In step 91 of FIG. 20, the target value of the vehicle behavior set in step 61 and the basic driving force values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 are set. The difference between the basic value of the vehicle behavior and the dynamic target value Fx ** of the vehicle longitudinal force and the basic value Fx ## of the vehicle longitudinal force, and the dynamic target value M of the yaw moment. An error ΔM between ** and the basic value M ## of the yaw moment is obtained by the following equations (42) and (44).

ΔFx=Fx**−Fx## …(42)
ΔM=M**−M## …(44)
第3実施形態では車両横方向力の動的目標値Fy**、車両横方向力の基本値Fy##はいずれも求めていないので、第1実施形態と相違して、車両横方向力の動的目標値Fy**と車両横方向力の基本値Fy##との誤差ΔFyとしては、次の式(82)のようにゼロを設定する。
ΔFx = Fx ** − Fx ## (42)
ΔM = M **-M ## (44)
In the third embodiment, neither the dynamic target value Fy ** of the vehicle lateral force nor the basic value Fy ## of the vehicle lateral force is obtained, so unlike the first embodiment, the vehicle lateral force As an error ΔFy between the dynamic target value Fy ** and the vehicle lateral force basic value Fy ##, zero is set as in the following equation (82).

ΔFy=0 …(82)
図21のステップ111では、各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4を求め、ステップ112でこの各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4をステップ110で求めている各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**に加算した値を改めて各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**として、つまり次の式(83a)〜式(83d)により各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を再設定する。
ΔFy = 0 (82)
In step 111 of FIG. 21, the driving force recorrection amounts ∂Fx 1 , ∂Fx 2 , ∂Fx 3 , and ∂Fx 4 of each wheel 1 to 4 are obtained, and in step 112, the driving force recorrection of each wheel 1 to 4 is obtained. The driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 of the wheels 1 to 4 for which the amounts ∂Fx 1 , ∂Fx 2 , ∂Fx 3 , and ∂Fx 4 are obtained in step 110. The value added to ** is changed to the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** for each of the wheels 1 to 4, that is, the following formulas (83a) to (83d): ), The driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the wheels 1 to 4 are reset.

Fx1**←Fx1**+∂Fx1 …(83a)
Fx2**←Fx2**+∂Fx2 …(83b)
Fx3**←Fx3**+∂Fx3 …(83c)
Fx4**←Fx4**+∂Fx4 …(83d)
ここで、各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4の求め方については図22のフロー(図21のステップ111のサブルーチン)により説明する。
Fx 1 ** ← Fx 1 ** + ∂Fx 1 (83a)
Fx 2 ** ← Fx 2 ** + ∂Fx 2 (83b)
Fx 3 ** ← Fx 3 ** + ∂Fx 3 (83c)
Fx 4 ** ← Fx 4 ** + ∂Fx 4 (83d)
Here, how to obtain the driving force recorrection amounts ∂Fx 1 , ∂Fx 2 , ∂Fx 3 , and ∂Fx 4 for each of the wheels 1 to 4 will be described with reference to the flow of FIG. 22 (the subroutine of step 111 in FIG. 21). .

図22においてステップ3010では、車両前後方向力の動的目標値Fx**と車両前後方向力の基本値Fx##との誤差ΔFxをゼロ、車両横方向力についての誤差ΔFyを所定量∂Fy、ヨーモーメントの動的目標値M**とヨーモーメントの基本値M##との誤差ΔMをゼロとし、これらΔFx=0,ΔFy=∂Fy,ΔM=0を実現する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図21のステップ100と同様の処理を用いて求め、求めた各輪1〜4の駆動力補正値ΔFx1,ΔFx2,ΔFx3,ΔFx4を次の式(84a)〜(84d)のように各輪1〜4の駆動力再補正量∂∂Fx1,∂∂Fx2,∂∂Fx3,∂∂Fx4として設定する。 In FIG. 22, in step 3010, the error ΔFx between the dynamic target value Fx ** of the vehicle longitudinal force and the basic value Fx ## of the vehicle longitudinal force is zero, and the error ΔFy of the vehicle lateral force is a predetermined amount ∂Fy. The error ΔM between the dynamic target value M ** of the yaw moment and the basic value M ## of the yaw moment is set to zero, and each of the wheels 1 to 4 that realizes ΔFx = 0, ΔFy = ∂Fy, ΔM = 0. Driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are obtained using the same processing as in step 100 of FIG. 21, and the obtained driving force correction values ΔFx 1 , ΔFx 2 , ΔFx 3 of the respective wheels 1 to 4 are obtained. , ΔFx 4 are set as driving force recorrection amounts ∂∂Fx 1 , ∂∂Fx 2 , ∂∂Fx 3 , ∂∂Fx 4 for each wheel 1 to 4 as in the following equations (84a) to (84d). .

∂∂Fx1=ΔFx1 …(84a)
∂∂Fx2=ΔFx2 …(84b)
∂∂Fx3=ΔFx3 …(84c)
∂∂Fx4=ΔFx4 …(84d)
ただし、このとき、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4は各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から各駆動力補正量マップを参照して求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図17のフローチャートに基づいて求める場合には、ステップ500において、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から車両挙動感度マップを参照して各輪1〜4の駆動力変化に対する車両前後方向力,車両横方向力,ヨーモーメントそれぞれの感度Kix,Kiy,KiMを求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図18のフローチャートに基づいて求める場合には、ステップ700で、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**における各輪1〜4の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を求めるようにする。
∂∂Fx 1 = ΔFx 1 (84a)
∂∂Fx 2 = ΔFx 2 (84b)
∂∂Fx 3 = ΔFx 3 (84c)
∂∂Fx 4 = ΔFx 4 (84d)
However, at this time, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 are the driving force target values Fx 1 **, Fx 2 **, and Fx 3 * of the wheels 1 to 4, respectively. *, Fx 4 ** is obtained by referring to each driving force correction amount map. In addition, when the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of each wheel 1 to 4 are obtained based on the flowchart of FIG. By referring to the vehicle behavior sensitivity map from Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 **, the vehicle longitudinal force, vehicle lateral force, yaw moment with respect to the driving force change of each wheel 1-4 The respective sensitivities K ix , K iy and K iM are obtained. When the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each wheel 1 to 4 are obtained based on the flowchart of FIG. The tire lateral force sensitivities k 1 , k 2 , k 3 , and k 4 to the driving force changes of the wheels 1 to 4 in Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** are obtained. To do.

ステップ3020では各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4[N]及び各輪1〜4の駆動力最小値[N]を設定する。この各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4及び各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4の設定方法として次に3つの方法を示す。
<18>各輪の駆動力最大値・最小値の設定方法1
各モータ11〜14が過熱し破損しないようにする各輪1〜4の駆動力上限Fdmax1,Fdmax2,Fdmax3,Fdmax4[N]及び同じく各モータ11〜14が過熱し破損しないようにする各輪1〜4の駆動力下限Fdmin1,Fdmim2,Fdmim3,Fdmin4[N]を求め、このうちの各輪1〜4の駆動力上限Fdmax1,Fdmax2,Fdmax3,Fdmax4を各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4として、またもう一つの各輪1〜4の駆動力下限Fdmin1,Fdmim2,Fdmim3,Fdmin4を各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4として設定する。
In step 3020, the driving force maximum values Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 [N] of each wheel 1 to 4 and the driving force minimum value [N] of each wheel 1 to 4 are set. As a setting method of the driving force maximum values Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 of each wheel 1 to 4 and the driving force minimum values Fmin 1 , Fmin 2 , Fmin 3 , Fmin 4 of each wheel 1 to 4, Three methods are shown.
<18> Setting method 1 for maximum / minimum driving force of each wheel
The upper limit of driving force Fdmax 1 , Fdmax 2 , Fdmax 3 , Fdmax 4 [N] of each wheel 1 to 4 so that the motors 11 to 14 are not overheated and broken so that the motors 11 to 14 are not overheated and broken. Driving power lower limit Fdmin 1 , Fdmim 2 , Fdmim 3 , Fdmin 4 [N] of each wheel 1 to 4 is obtained, and driving power upper limit Fdmax 1 , Fdmax 2 , Fdmax 3 , Fdmax 4 of each wheel 1 to 4 is obtained. As the driving force maximum values Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 of the wheels 1 to 4, and the driving force lower limits Fdmin 1 , Fdmim 2 , Fdmim 3 , Fdmin 4 of the other wheels 1 to 4 , respectively. The driving force minimum values Fmin 1 , Fmin 2 , Fmin 3 , and Fmin 4 of the wheels 1 to 4 are set.

上記の駆動力上限Fdmax1,Fdmax2,Fdmax3,Fdmax4及び駆動力下限Fdmin1,Fdmim2,Fdmim3,Fdmin4は、各モータ11〜14の現在の温度T1,T2,T3,T4から、モータ温度とモータ過熱を抑えることができる最大出力Ptmax[W]との関係を求めたマップを参照して各モータ11〜14の最大出力Ptmax1,Ptmax2,Ptmax3,Ptmax4[W]を求め、この最大出力Ptmaxとステップ10で検出している各輪1〜4の回転速度ω1,ω2,ω3,ω4とを用いて、次の式(85a)〜式(85d)及び式(86a)〜式(86d)に従って求める。 The driving force upper limits Fdmax 1 , Fdmax 2 , Fdmax 3 , Fdmax 4 and driving force lower limits Fdmin 1 , Fdmim 2 , Fdmim 3 , Fdmin 4 are the current temperatures T 1 , T 2 , T 3 of the motors 11 to 14. , T 4 , the maximum output Ptmax 1 , Ptmax 2 , Ptmax 3 , Ptmax of each of the motors 11 to 14 is referred to with reference to a map in which the relationship between the motor temperature and the maximum output Ptmax [W] that can suppress the motor overheating is obtained. 4 [W] is obtained, and using the maximum output Ptmax and the rotational speeds ω 1 , ω 2 , ω 3 , ω 4 of the wheels 1 to 4 detected in step 10, the following formula (85a) to It calculates | requires according to Formula (85d) and Formula (86a)-Formula (86d).

Fdmax1=Ptmax1÷ω1 …(85a)
Fdmax2=Ptmax2÷ω2 …(85b)
Fdmax3=Ptmax3÷ω3 …(85c)
Fdmax4=Ptmax4÷ω4 …(85d)
Fdmin1=−Ptmax1÷ω1 …(86a)
Fdmin2=−Ptmax2÷ω2 …(86b)
Fdmin3=−Ptmax3÷ω3 …(86c)
Fdmin4=−Ptmax4÷ω4 …(86d)
モータ温度とモータ過熱を抑えることができる最大出力Ptmaxとの関係を求めたマップとしては例えば図23のように設定しておく。各モータ11〜14にはそれぞれ温度を検出するセンサ(図示しない)を内蔵しておき、各センサにより検出される各モータ温度T1,T2,T3,T4をコントローラ8に入力させるようにする。
Fdmax 1 = Ptmax 1 ÷ ω 1 (85a)
Fdmax 2 = Ptmax 2 ÷ ω 2 (85b)
Fdmax 3 = Ptmax 3 ÷ ω 3 (85c)
Fdmax 4 = Ptmax 4 ÷ ω 4 (85d)
Fdmin 1 = −Ptmax 1 ÷ ω 1 (86a)
Fdmin 2 = −Ptmax 2 ÷ ω 2 (86b)
Fdmin 3 = −Ptmax 3 ÷ ω 3 (86c)
Fdmin 4 = −Ptmax 4 ÷ ω 4 (86d)
As a map for obtaining the relationship between the motor temperature and the maximum output Ptmax capable of suppressing the motor overheating, for example, a map as shown in FIG. 23 is set. Each of the motors 11 to 14 is provided with a sensor (not shown) for detecting the temperature, and the motor temperature T 1 , T 2 , T 3 , T 4 detected by each sensor is input to the controller 8. To.

ここで、各輪1〜4のメカブレーキによる制動力と各モータ11〜14の駆動力とを協調制御できる車両であれば、各輪1〜4の駆動力下限Fdmin1,Fdmim2,Fdmim3,Fdmin4に、各輪1〜4のメカブレーキの最大制動力を加算する。
<19>各輪の駆動力最大値・最小値の設定方法2
スリップあるいは車輪ロックを起こさない各輪1〜4の駆動力上限Fsmax1,Fsmax2,Fsmax3,Fsmax4[N]及び同じくスリップあるいは車輪ロックを起こさない各輪1〜4の駆動力下限Fsmin1,Fsmin2,Fsmin3,Fsmin4[N]を求め、このうちの各輪1〜4の駆動力上限Fsmax1,Fsmax2,Fsmax3,Fsmax4を各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4として、またもう一つの各輪1〜4の駆動力下限Fsmin1,Fsmin2,Fsmin3,Fsmin4を各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4として設定する。
Here, if the vehicle is capable of cooperatively controlling the braking force by the mechanical brake of each wheel 1 to 4 and the driving force of each motor 11 to 14, the driving force lower limit Fdmin 1 , Fdmim 2 , and Fdmim 3 for each wheel 1 to 4. , Fdmin 4 is added with the maximum braking force of the mechanical brake of each wheel 1-4.
<19> Setting method 2 for maximum / minimum driving force of each wheel
Driving force upper limit Fsmax 1 , Fsmax 2 , Fsmax 3 , Fsmax 4 [N] of each wheel 1 to 4 that does not cause slip or wheel lock, and driving force lower limit Fsmin 1 of each wheel 1 to 4 that does not cause slip or wheel lock , Fsmin 2 , Fsmin 3 , Fsmin 4 [N], and the driving force upper limit Fsmax 1 , Fsmax 2 , Fsmax 3 , Fsmax 4 of each wheel 1 to 4 is determined as the maximum driving force value Fmax of each wheel 1 to 4. 1 , Fmax 2 , Fmax 3 , Fmax 4 , and another driving force lower limit Fsmin 1 , Fsmin 2 , Fsmin 3 , Fsmin 4 of each of the wheels 1 to 4 is set to the minimum driving force value Fmin 1 , of each wheel 1 to 4. Set as Fmin 2 , Fmin 3 , Fmin 4 .

上記の駆動力上限Fsmax1,Fsmax2,Fsmax3,Fsmax4及び駆動力下限Fsmin1,Fsmin2,Fsmin3,Fsmin4の求め方としては例えば次のようにする。特開平6−98418号公報に記載された方法を用い、各輪1〜4が路面から受ける反力F1,F2,F3,F4を推定し、この推定した反力F1,F2,F3,F4を用いて次の式(87a)〜式(87d)及び式(88a)〜式(88d)により求める。 The method for obtaining the driving force upper limits Fsmax 1 , Fsmax 2 , Fsmax 3 , Fsmax 4 and the driving force lower limits Fsmin 1 , Fsmin 2 , Fsmin 3 , Fsmin 4 is as follows, for example. Using the method described in JP-A-6-98418, the wheels 1 to 4 to estimate the reaction force F 1, F 2, F 3 , F 4 which receives from the road surface, the reaction force F 1 which is the estimated, F 2 , F 3 , and F 4 are used to obtain the following equations (87a) to (87d) and equations (88a) to (88d).

Fsmax1=F1 …(87a)
Fsmax2=F2 …(87b)
Fsmax3=F3 …(87c)
Fsmax4=F4 …(87d)
Fsmin1=−F1 …(88a)
Fsmin2=−F2 …(88b)
Fsmin3=−F3 …(88c)
Fsmin4=−F4 …(88d)
<20>各輪の駆動力最大値・最小値の設定方法3
上記の<19>で求まる各輪1〜4の駆動力上限Fsmax1,Fsmax2,Fsmax3,Fsmax4と、上記の<18>で求まる各輪1〜4の駆動力上限Fdmax1,Fdmax2,Fdmax3,Fdmax4とを比較して小さい方の値を各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4として、また、上記の<19>で求まる各輪1〜4の駆動力下限Fsmin1,Fsmin2,Fsmin3,Fsmin4と、上記の<18>で求まる各輪1〜4の駆動力下限Fdmin1,Fdmim2,Fdmim3,Fdmin4とを比較して大きい方の値を各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4として設定する。
Fsmax 1 = F 1 (87a)
Fsmax 2 = F 2 (87b)
Fsmax 3 = F 3 (87c)
Fsmax 4 = F 4 (87d)
Fsmin 1 = −F 1 (88a)
Fsmin 2 = −F 2 (88b)
Fsmin 3 = −F 3 (88c)
Fsmin 4 = −F 4 (88d)
<20> Setting method 3 for maximum / minimum driving force of each wheel
Driving force upper limit Fsmax 1 , Fsmax 2 , Fsmax 3 , Fsmax 4 of each wheel 1 to 4 obtained by <19> above, and driving force upper limit Fdmax 1 , Fdmax 2 of each wheel 1 to 4 obtained by <18> above. , Fdmax 3 , Fdmax 4 are compared, and the smaller value is set as the driving force maximum value Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 of each of the wheels 1 to 4, and each wheel obtained by the above <19> The driving force lower limits Fsmin 1 , Fsmin 2 , Fsmin 3 , and Fsmin 4 of 1 to 4 are compared with the driving force lower limits Fdmin 1 , Fdmim 2 , Fdmim 3 , and Fdmin 4 of each wheel 1 to 4 obtained by the above <18>. Then, the larger value is set as the driving force minimum values Fmin 1 , Fmin 2 , Fmin 3 , and Fmin 4 of the wheels 1 to 4.

これで、各輪1〜4の駆動力最大値・最小値を設定する3つの方法の説明を終える。   This concludes the description of the three methods for setting the driving force maximum value / minimum value of each of the wheels 1 to 4.

ステップ3030では、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を出力した場合における、各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を設定する。各輪1〜4の駆動力余裕代を設定する方法として次に2つの方法を示す。
<21>各輪の駆動力余裕代の設定方法1
各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4として、各輪1〜4が出力可能な最大駆動力と比較して充分小さな値を設定する。この十分小さな値として、例えば200[N]とする。
<22>各輪の駆動力余裕代の設定方法2
これは、各輪1〜4について駆動力余裕代を駆動力最大値や駆動力最小値に応じた可変値で設定する場合の設定方法(請求項11に記載の発明)で、ステップ3020において設定している各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4及び各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4と、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**とから、各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を次の式(89a)〜式(89d)及び式(90a)〜式(90d)に従って求める。
In step 3030, when the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the wheels 1 to 4 are output, the driving force margin Fmx of the wheels 1 to 4 is output. 1 , Fmx 2 , Fmx 3 , Fmx 4 are set. Next, two methods are shown as a method of setting the driving force margin for each of the wheels 1 to 4.
<21> Setting method 1 of driving force margin for each wheel
The driving force margins Fmx 1 , Fmx 2 , Fmx 3 , and Fmx 4 of the wheels 1 to 4 are set to a sufficiently small value as compared with the maximum driving force that can be output from the wheels 1 to 4. As this sufficiently small value, for example, 200 [N] is set.
<22> Setting method 2 for driving force margin for each wheel
This is a setting method (invention according to claim 11) for setting a driving force margin for each of the wheels 1 to 4 with a variable value corresponding to a driving force maximum value or a driving force minimum value, and is set in step 3020. The driving force maximum values Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 of each wheel 1 to 4 and the driving force minimum values Fmin 1 , Fmin 2 , Fmin 3 , Fmin 4 of each wheel 1 to 4 , and each wheel From the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of 1 to 4, the driving force margin Fmx 1 , Fmx 2 , Fmx 3 , Fmx of each wheel 1 to 4 is obtained. 4 is obtained according to the following equations (89a) to (89d) and equations (90a) to (90d).

〔1〕∂∂Fx1≧0,∂∂Fx2≧0,∂∂Fx3≧0,∂∂Fx4≧0の場合
Fmx1=Fmax1−Fx1** …(89a)
Fmx2=Fmax2−Fx2** …(89b)
Fmx3=Fmax3−Fx3** …(89c)
Fmx4=Fmax4−Fx4** …(89d)
〔2〕∂∂Fx1<0,∂∂Fx2<0,∂∂Fx3<0,∂∂Fx4<0場合
Fmx1=Fx1**−Fmin1 …(90a)
Fmx2=Fx2**−Fmin2 …(90b)
Fmx3=Fx3**−Fmin3 …(90c)
Fmx4=Fx4**−Fmin4 …(90d)
これで、各輪1〜4の駆動力余裕代を設定する2つの方法の説明を終える。
[1] ∂∂Fx 1 ≧ 0, ∂∂Fx 2 ≧ 0, ∂∂Fx 3 ≧ 0, when the ∂∂Fx 4 ≧ 0 Fmx 1 = Fmax 1 -Fx 1 ** ... (89a)
Fmx 2 = Fmax 2 -Fx 2 ** (89b)
Fmx 3 = Fmax 3 -Fx 3 ** (89c)
Fmx 4 = Fmax 4 -Fx 4 ** (89d)
[2] When ∂∂Fx 1 <0, ∂∂Fx 2 <0, ∂∂Fx 3 <0, ∂∂Fx 4 <0 Fmx 1 = Fx 1 ** − Fmin 1 (90a)
Fmx 2 = Fx 2 ** − Fmin 2 (90b)
Fmx 3 = Fx 3 ** − Fmin 3 (90c)
Fmx 4 = Fx 4 ** − Fmin 4 (90d)
This concludes the description of the two methods for setting the driving force margin for each of the wheels 1 to 4.

ステップ3040では、このようにして設定している各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を使うことによって、車両横方向力についての所定量∂Fyの誤差ΔFyをどれだけ補正できるか、その割合Ψ[無名数]を次の式(91)に従って求める。 In step 3040, by using the driving force margin Fmx 1, Fmx 2, Fmx 3 , Fmx 4 of the wheels 1 to 4 are set in this manner, the error of a predetermined amount ∂Fy for vehicle lateral force A ratio Ψ [anonymous number] of how much ΔFy can be corrected is obtained according to the following equation (91).

Ψ=min(Fmx1/∂∂Fx1,Fmx2/∂∂Fx2,Fmx3/∂∂Fx3
Fmx4/∂∂Fx4
…(91)
式(91)は各輪1〜4について駆動力余裕代を駆動力再補正量で割った値(つまりFmx1/∂∂Fx1,Fmx2/∂∂Fx2,Fmx3/∂∂Fx3,Fmx4/∂∂Fx4の4つの値)のうちの最小値を採用するものである。
Ψ = min (Fmx 1 / ∂∂Fx 1 , Fmx 2 / ∂∂Fx 2 , Fmx 3 / ∂∂Fx 3 ,
Fmx 4 / ∂∂Fx 4 )
... (91)
Formula (91) is a value obtained by dividing the driving force margin for each wheel 1 to 4 by the driving force recorrection amount (that is, Fmx 1 / ∂∂Fx 1 , Fmx 2 / ∂∂Fx 2 , Fmx 3 / ∂∂Fx 3). , Fmx 4 / ∂∂Fx 4 )).

ステップ3050では、所定量∂Fyにこの割合Ψを乗算した値を車両横方向力についての誤差ΔFyとして置き直し、再びΔFx=0,ΔFy=Ψ×∂Fy,ΔM=0を実現する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図21のステップ100と同様の処理を用いて求め、求めた各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を次の式(92a)〜式(92d)のように各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4として設定する。 In step 3050, a value obtained by multiplying the predetermined amount ∂Fy by this ratio ψ is replaced as an error ΔFy regarding the vehicle lateral force, and each wheel 1 that realizes ΔFx = 0, ΔFy = ψ × ∂Fy, ΔM = 0 again. ˜4 driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are obtained by using the same process as in Step 100 of FIG. 21, and the obtained driving force correction amounts ΔFx 1 , ΔFx 2 of the respective wheels 1 to 4 are obtained. , ΔFx 3 , ΔFx 4 are set as driving force re-correction amounts ∂Fx 1 , ∂Fx 2 , ∂Fx 3 , ∂Fx 4 for each wheel 1 to 4 as in the following formulas (92a) to (92d). .

∂Fx1=ΔFx1 …(92a)
∂Fx2=ΔFx2 …(92b)
∂Fx3=ΔFx3 …(92c)
∂Fx4=ΔFx4 …(92d)
ただし、このとき、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4は各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から駆動力補正量マップを参照して求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図17のフローチャートに基づいて求める場合には、ステップ500において、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から車両挙動感度マップを参照して各輪1〜4の駆動力変化に対する車両前後方向力,車両横方向力,ヨーモーメントそれぞれの感度Kix,Kiy,KiMを求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図18のフローチャートに基づいて求める場合には、ステップ700で、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**における各輪の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を求めるようにする。
∂Fx 1 = ΔFx 1 (92a)
∂Fx 2 = ΔFx 2 (92b)
∂Fx 3 = ΔFx 3 (92c)
∂Fx 4 = ΔFx 4 (92d)
However, at this time, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 are the driving force target values Fx 1 **, Fx 2 **, and Fx 3 * of the wheels 1 to 4, respectively. *, Fx 4 ** is obtained by referring to the driving force correction amount map. In addition, when the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of each wheel 1 to 4 are obtained based on the flowchart of FIG. By referring to the vehicle behavior sensitivity map from Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 **, the vehicle longitudinal force, vehicle lateral force, yaw moment with respect to the driving force change of each wheel 1-4 The respective sensitivities K ix , K iy and K iM are obtained. When the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each wheel 1 to 4 are obtained based on the flowchart of FIG. The tire lateral force sensitivities k 1 , k 2 , k 3 , and k 4 with respect to the driving force change of each wheel at Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** are obtained.

このように、第3実施形態(請求項8に記載の発明)では、四輪を独立に駆動可能な車両において、車両の車両前後方向力の目標値Fx**、ヨーモーメントの目標値M**を車両挙動の目標値として決定し(図20のステップ61参照)、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し(図20のステップ71参照)、この設定された各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,ヨーモーメントの基本値M##を車両挙動の基本値として演算し(図20のステップ81参照)、前記車両挙動の目標値Fx**、M**とこの演算された車両挙動の基本値Fx##,M##との誤差ΔFx,ΔMを車両挙動の誤差として演算し(図20のステップ91参照)、この演算された車両挙動の誤差ΔFx,ΔMを小さくする各輪の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し(図21のステップ100参照)、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し(図21のステップ110参照)、この決定された各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**が得られるように各輪1〜4の駆動力を制御している(図21のステップ120参照)。すなわち、第3実施形態(請求項8に記載の発明)によれば、車両横方向力Fyについて目標値Fy**を設定せず、車両前後方向力FxとヨーモーメントMについてのみ目標値Fx**,M**を決定し、この2つの目標値Fx**,M**を実現する各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を求める構成としたので、車両横方向力Fyの目標値を設計すること及び車両横方向力Fyの目標値をコントローラ8に保持することが必要でなくなり、この設計工数の低減と車載コンピューターのメモリ消費量の引き下げによって車両価格を低減することできる。 Thus, in the third embodiment (the invention described in claim 8), in a vehicle capable of independently driving four wheels, the target value Fx ** of the vehicle longitudinal force of the vehicle, and the target value M * of the yaw moment. * Is determined as a target value for vehicle behavior (see step 61 in FIG. 20), and driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 are set. (Refer to step 71 in FIG. 20), the vehicle longitudinal force realized by the set driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 The basic value Fx ## and the basic value M ## of the yaw moment are calculated as the basic values of the vehicle behavior (see step 81 in FIG. 20), and the target values Fx ** and M ** of the vehicle behavior are calculated. The error ΔFx, ΔM between the vehicle behavior basic values Fx ##, M ## is calculated as the vehicle behavior error (see step 91 in FIG. 20). Calculated by the vehicle behavior of the error DerutaFx, driving force correction amount DerutaFx 1 of each wheel to reduce ΔM, ΔFx 2, ΔFx 3, calculates the ΔFx 4 (see step 100 in FIG. 21), the driving of the respective wheels 1-4 The sum of the force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## and the calculated driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 4 driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** are determined (see step 110 in FIG. 21), and the determined driving force targets of the respective wheels 1 to 4 are determined. The driving forces of the wheels 1 to 4 are controlled so that the values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** are obtained (see step 120 in FIG. 21). That is, according to the third embodiment (the invention described in claim 8), the target value Fy ** is not set for the vehicle lateral force Fy, and only the vehicle longitudinal force Fx and the yaw moment M are set to the target value Fx *. *, M ** are determined, and the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx of the wheels 1 to 4 that realize these two target values Fx **, M ** 4 Since ** is determined, it is not necessary to design the target value of the vehicle lateral force Fy and to hold the target value of the vehicle lateral force Fy in the controller 8. Vehicle prices can be reduced by reducing computer memory consumption.

前述した式(81)においてヨーレートγと求心加速度Ygは完全な従属関係ではなくdβ/dtの自由度があることから、車両横方向力FyとヨーモーメントMとの間にも同様に自由度がある。従って、第3実施形態(請求項10に記載の発明)によれば、車両横方向力Fyについてもその目標値Fy**に近づける各輪1〜4の駆動力再補正量、つまり車両横方向力Fyをゼロから所定量∂Fyの誤差の範囲内で変化させる各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4を演算し(図21のステップ111参照)、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**にこの演算された駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4を加算した値を改めて各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**として再設定する(図21のステップ112参照)ので、車両横方向力Fyをこの自由度の範囲でドライバーにとって好適となる車両横方向力の目標値Fy**に近づけることが可能となり、運転性の向上が期待できる。 In the above equation (81), the yaw rate γ and the centripetal acceleration Yg are not completely dependent and have a degree of freedom of dβ / dt, and therefore the degree of freedom is similarly between the vehicle lateral force Fy and the yaw moment M. is there. Therefore, according to the third embodiment (the invention described in claim 10), the driving force recorrection amount of each wheel 1 to 4 that brings the vehicle lateral force Fy close to the target value Fy **, that is, the vehicle lateral direction. The driving force recorrection amounts ∂Fx 1 , ∂Fx 2 , ∂Fx 3 , and ∂Fx 4 for each wheel 1 to 4 that change the force Fy from zero within a range of error of the predetermined amount ∂Fy are calculated (see FIG. 21). Step 111), and the driving force re-correction amounts ∂Fx 1 and ∂Fx calculated for the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the wheels 1 to 4 , respectively. 2 , ∂Fx 3 , and ∂Fx 4 are added again and reset as driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** of each wheel 1 to 4 (FIG. 21), the vehicle lateral force Fy is brought close to the vehicle lateral force target value Fy ** suitable for the driver within the range of this degree of freedom. Theft becomes possible, and can be expected to improve drivability.

第3実施形態(請求項11に記載の発明)では、各輪1〜4の駆動力最大値Fxmax1,Fxmax2,Fxmax3,Fxmax4を設定し(図22のステップ3020参照)、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**とこの設定された駆動力最大値Fxmax1,Fxmax2,Fxmax3,Fxmax4とに基づいて、ゼロから所定量∂Fyの誤差の範囲内で車両横方向力Fyを変化させることが可能な量∂Fyreal(=Ψ×∂Fy)を演算し(図22のステップ3030〜3050参照)、車両横方向力Fyをこの量∂Fyreal変化させる各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4として設定している(図21のステップ112参照)。すなわち、第3実施形態(請求項11に記載の発明)によれば、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**が各輪1〜4の駆動力最大値Fxmax1,Fxmax2,Fxmax3,Fxmax4に対してあとどれだけ駆動力を変化させられるのかその駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を求め、この駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を用いることによって車両横方向力Fyをどれだけ目標値Fy**に漸近させられるのかを求める構成としたので、各輪1〜4の駆動力の制限を越えることなく車両横方向力Fyをドライバーにとって好適となる目標値Fy**に近づけることが可能となり、運転性の向上が期待できる。 In the third embodiment (the invention described in claim 11), the driving force maximum values Fxmax 1 , Fxmax 2 , Fxmax 3 , and Fxmax 4 of each of the wheels 1 to 4 are set (see step 3020 in FIG. 22). Based on the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** of 1 to 4 and the set driving force maximum values Fxmax 1 , Fxmax 2 , Fxmax 3 , Fxmax 4 Then, an amount ∂Fyreal (= Ψ × ∂Fy) that can change the vehicle lateral force Fy within a range of error from zero to a predetermined amount ∂Fy is calculated (see steps 3030 to 3050 in FIG. 22). Driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 that change the vehicle lateral force Fy by this amount ∂Freal are changed to driving force recorrection amounts ∂Fx 1 , ∂ fx 2, ∂Fx 3, are set as ∂Fx 4 (See step 112 in FIG. 21). That is, according to the third embodiment (the invention described in claim 11), the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the respective wheels 1 to 4 are respectively set. driving force maximum value Fxmax 1 ring 1~4, Fxmax 2, Fxmax 3, Fxmax whether is varied how much driving force after against 4 the driving force margin Fmx 1, Fmx 2, Fmx 3 , the Fmx 4 Since the driving force margin Fmx 1 , Fmx 2 , Fmx 3 , Fmx 4 is used to determine how much the vehicle lateral force Fy can be asymptotic to the target value Fy **, each wheel 1 It is possible to bring the vehicle lateral force Fy close to the target value Fy ** that is suitable for the driver without exceeding the driving force limit of ˜4, and improvement in drivability can be expected.

次に、図24、図25に示す第4実施形態の説明に移る。ここでも、第1実施形態と相違する部分を主に説明すると、図24のステップ42で、車両横方向力の静的目標値Fy*を、目標駆動力と目標制動力の和である車両前後方向力の静的目標値Fx*と、ステアリング5の回転角θと、車両速度Vとから、図10に示す車両横方向力静的目標値マップに基づいて設定する。ここで、ヨーレート静的目標値マップはコントローラ8に備えておらず、図24のステップ42ではヨーレートの静的目標値*を設定しない。ヨーレート静的目標値マップを設定しないのは、コントローラ8のメモリ使用量及び演算負荷の低減を目的とするものである。   Next, the description of the fourth embodiment shown in FIGS. 24 and 25 will be made. Again, the difference from the first embodiment will be mainly described. In step 42 of FIG. 24, the vehicle target value Fy * of the vehicle lateral force is set to the vehicle front-rear direction which is the sum of the target driving force and the target braking force. The directional force static target value Fx *, the rotation angle θ of the steering wheel 5, and the vehicle speed V are set based on the vehicle lateral force static target value map shown in FIG. Here, the yaw rate static target value map is not provided in the controller 8, and the static target value * of the yaw rate is not set in step 42 in FIG. The purpose of not setting the yaw rate static target value map is to reduce the memory usage of the controller 8 and the calculation load.

図24のステップ62では、車両前後方向力の動的目標値Fx**,車両横方向力の動的目標値Fy**を、各輪1〜4の駆動力配分で実現可能な範囲でドライバーの操縦性が好適となるように各静的目標値Fx*,Fy*に対して時間的な遅れ要素を入れて求める。車両前後方向力の静的目標値Fx*については2次遅れの伝達関数を用いて、車両横方向力の静的目標値Fy*については相応の伝達関数を用いてそれぞれなまし処理を行うことによって、車両前後方向力の動的目標値Fx**,車両横方向力の動的目標値Fy**を得る。なお、特に車両横方向力の動的目標値Fy**の応答は走行条件毎に実現可能な時間的遅れ要素を入れる。なお、第3実施形態では、ヨーレートの動的目標値γ**を求めるときに用いた時間的な遅れ要素の伝達関数に微分要素を乗じた伝達関数を用いてヨーモーメントの動的目標値M**を求めているが、第4実施形態では求めていない。   In step 62 of FIG. 24, the driver can set the dynamic target value Fx ** of the vehicle longitudinal force and the dynamic target value Fy ** of the vehicle lateral force within a range that can be realized by the driving force distribution of the wheels 1 to 4. In order to optimize the controllability, a time delay element is added to each of the static target values Fx * and Fy *. For the static target value Fx * of the vehicle longitudinal force, perform a smoothing process using a second-order lag transfer function, and for the static target value Fy * of the vehicle lateral force, use a corresponding transfer function. Thus, the dynamic target value Fx ** of the vehicle longitudinal force and the dynamic target value Fy ** of the vehicle lateral force are obtained. In particular, the response of the dynamic target value Fy ** of the vehicle lateral force includes a time delay element that can be realized for each traveling condition. In the third embodiment, the dynamic target value M of the yaw moment is obtained using a transfer function obtained by multiplying the transfer function of the time delay element used when obtaining the dynamic target value γ ** of the yaw rate by a differential element. ** is required, but not required in the fourth embodiment.

図24のステップ72では、ステップ50で設定している各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*に基づいて、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を、第1実施形態と同じに次の式(32)〜式(35)により求める。 In step 72 of FIG. 24, each wheel 1 to 1 is determined based on the static target values Fx 1 *, Fx 2 *, Fx 3 *, and Fx 4 * of the driving forces of the wheels 1 to 4 set in step 50. The driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, and Fx 4 ## of 4 are obtained by the following equations (32) to (35) as in the first embodiment.

Fx1##=Fxall##×(η/2)−ΔFxall##×Δη/2 …(32)
Fx2##=Fxall##×(η/2)−ΔFxall##×Δη/2 …(33)
Fx3##=Fxall##×(1−η)/2−ΔFxall##×(1−Δη)/2
…(34)
Fx4##=Fxall##×(1−η)/2−ΔFxall##×(1−Δη)/2
…(35)
式(32)〜式(35)の前輪駆動力配分η、左右輪駆動力差の前輪配分Δηは、η=Δη=0.6である。また、式(32)〜式(35)のΔFxall##はステップ60で車両前後方向力の動的目標値Fx**を求めるときに車両前後方向力の静的目標値Fx*に入れた時間的な遅れ要素を、各輪1〜4の駆動力の静的目標値Fx1**,Fx2**,Fx3**,Fx4**の和であるFx1**+Fx2**+Fx3**+Fx4**に入れて求めた値である。
Fx 1 ## = Fx all ## × (η / 2) −ΔFx all ## × Δη / 2 (32)
Fx 2 ## = Fx all ## × (η / 2) −ΔFx all ## × Δη / 2 (33)
Fx 3 ## = Fx all ## × (1−η) / 2−ΔFx all ## × (1−Δη) / 2
... (34)
Fx 4 ## = Fx all ## × (1−η) / 2−ΔFx all ## × (1−Δη) / 2
... (35)
The front wheel driving force distribution η and the front wheel distribution Δη of the left and right wheel driving force difference in the equations (32) to (35) are η = Δη = 0.6. Further, ΔFx all ## in the equations (32) to (35) is entered in the static target value Fx * of the vehicle longitudinal force when the dynamic target value Fx ** of the vehicle longitudinal force is obtained in step 60. The time delay element is expressed as Fx 1 ** + Fx 2 * which is the sum of the static target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the driving forces of the wheels 1 to 4. * + Fx 3 ** + Fx 4 **.

ここで、式(32)〜式(35)のΔFxall##を次のようにして求める。すなわち、車両を線形近似した線形2輪モデル(安部正人著,第2版,「自動車の運動と制御」,株式会社山海堂,平成15年4月10日,第3章3.2.1節)に左右輪駆動力差ΔFxall##が加わった場合を考え、この線形2輪モデルのヨーレートの応答がヨーレートの動的目標値γ**となるように設計したモデルフォロイング制御系(金井喜美雄,越智徳昌,川邊武俊著,「ビークル制御」,槇書店,2004年1月20日,第3章3.2節)を用い、かつ定常状態で各輪1〜4の駆動力の静的目標値Fx1*,Fx2*,Fx3*,Fx4*との間で偏差を生じないように補正した次の式(36)から求める。 Here, ΔFx all ## in the equations (32) to (35) is obtained as follows. That is, a linear two-wheel model in which a vehicle is linearly approximated (Masato Abe, 2nd edition, “Automotive motion and control”, Sankaido Co., Ltd., April 10, 2003, Chapter 3 Section 3.2.1 ) to consider the case where joined by left and right wheel driving force difference ΔFx all ##, the linear two-wheel model of the yaw rate model following control system the response is designed to be dynamic target value gamma ** the yaw rate (Kanai Kimio, Norimasa Ochi, Taketoshi Kawamata, “Vehicle Control”, Tsubaki Shoten, January 20, 2004, Chapter 3, Section 3.2), and the static force of each wheel 1-4 in steady state The target value Fx 1 *, Fx 2 *, Fx 3 * , and Fx 4 * is obtained from the following equation (36) corrected so as not to cause a deviation.

ΔFxall##={s2+(−a11−a22)s+(a1122−A1221)}
/{b22・s+(a2111−a1121)}×fr(s)
×{(a2111−a1121)θ/16+(−a1122)ΔFxall#}
/{a1122−a1221
−〔{b21・s+(a2111−a1121)}
/{b22・s+(−a1122)}〕×θ/16
…(36)
第3実施形態では、式(36)のfr(s)は、ステップ61でヨーレートの動的目標値γ**を求めるときにヨーレートの静的目標値γ*に入れた時間的な遅れ要素の伝達関数であったが、第4実施形態では、ヨーレートの動的目標値γ**を求めていないので、車両横方向力の動的目標値Fy**を車両質量mと車量速度Vとで除した値である次の式(93)によりヨーレートの動的目標値γ**を求め、このヨーレートの動的目標値γ**に基づいてΔFxall##を求める。
ΔFx all ## = {s 2 + (− a 11 −a 22 ) s + (a 11 a 22 −A 12 a 21 )}
/ {B 22 · s + (a 21 b 11 −a 11 b 21 )} × f r (s)
× {(a 21 b 11 −a 11 b 21 ) θ / 16 + (− a 11 b 22 ) ΔFx all #}
/ {A 11 b 22 -a 12 a 21}
- [{b 21 · s + (a 21 b 11 -a 11 b 21)}
/ {B 22 · s + ( - a 11 b 22)} ] × theta / 16
... (36)
In the third embodiment, f r (s) in Expression (36) is a time delay element that is included in the static target value γ * of the yaw rate when the dynamic target value γ ** of the yaw rate is obtained in step 61. However, in the fourth embodiment, since the dynamic target value γ ** of the yaw rate is not obtained, the dynamic target value Fy ** of the vehicle lateral force is determined from the vehicle mass m and the vehicle speed V. The dynamic target value γ ** of the yaw rate is obtained by the following equation (93) that is a value divided by the above, and ΔFx all ## is obtained based on the dynamic target value γ ** of the yaw rate.

γ**=Fy**/mV …(93)
式(36)のKf,Kr[N/rad]は前輪及び後輪の横滑り角が十分小さいときの単位横滑り角あたりのコーナーリングフォースである。
γ ** = Fy ** / mV (93)
Kf, Kr [N / rad] in the equation (36) is a cornering force per unit side slip angle when the side slip angle of the front wheel and the rear wheel is sufficiently small.

また、式(36)の係数a11,a12,a21,a22,b11,b21,b22,ΔFxall#はそれぞれ次の値である。 Also, the coefficients a 11 , a 12 , a 21 , a 22 , b 11 , b 21 , b 22 , and ΔFx all # in the equation (36) are the following values, respectively.

11=−(2/mV)(Kf+Kr) …(補4)
12=−(2/mV2)(Kff−Krr)−1 …(補5)
21=−(2/I)(Kff−Krr) …(補6)
22=−(2/IV)(Kff 2+Krr 2) …(補7)
11=2Kf/mV …(補8)
21=2Kff/I …(補9)
22=Lt/2I …(補10)
ΔFxall#=(Fx2*+Fx4*)−(Fx1*+Fx3*) …(補11)
式(補4)〜式(補11)のmは車両の質量[kg]、Vは車両速度[m/s]、Iは車両のヨー慣性モーメント[kg・m2]である。
a 11 = − (2 / mV) (K f + K r ) (Supplement 4)
a 12 = − (2 / mV 2 ) (K f L f −K r L r ) −1 (Supplement 5)
a 21 = − (2 / I) (K f L f −K r L r ) (Supplement 6)
a 22 = − (2 / IV) (K f L f 2 + K r L r 2 ) (Supplement 7)
b 11 = 2K f / mV (Supplement 8)
b 21 = 2K f L f / I (Supplement 9)
b 22 = L t / 2I (Supplement 10)
ΔFx all # = (Fx 2 * + Fx 4 *) − (Fx 1 * + Fx 3 *) (Supplement 11)
In the equations (A4) to (A11), m is a vehicle mass [kg], V is a vehicle speed [m / s], and I is a vehicle yaw inertia moment [kg · m 2 ].

このように第4実施形態におけるΔFxall##の求め方は、第3実施形態と若干異なっている。 As described above, the method of obtaining ΔFx all ## in the fourth embodiment is slightly different from that in the third embodiment.

図24のステップ82では、ステップ72で得ている各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両挙動の基本値、つまり車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##を次の式(37)、式(38)によりそれぞれ求める。 In step 82 of FIG. 24, the basic values of the vehicle behavior realized by the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## obtained in step 72 are obtained. That is, the basic value Fx ## of the vehicle longitudinal force and the basic value Fy ## of the vehicle lateral force are obtained by the following equations (37) and (38), respectively.

Fx##=Fx1##+Fx2##+Fx3##+Fx4## …(37)
Fy##=Fy1##+Fy2##+Fy3##+Fy4## …(38)
第1実施形態と相違して、第4実施形態ではヨーモーメントの基本値M##を演算していない。これによって、コントローラ8の演算負荷を低減できる。
Fx ## = Fx 1 ## + Fx 2 ## + Fx 3 ## + Fx 4 ## (37)
Fy ## = Fy 1 ## + Fy 2 ## + Fy 3 ## + Fy 4 ## (38)
Unlike the first embodiment, the fourth embodiment does not calculate the basic value M ## of the yaw moment. Thereby, the calculation load of the controller 8 can be reduced.

図24のステップ92では、ステップ62で設定されている車両挙動の目標値と、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##で実現される車両挙動の基本値との誤差、つまり車両前後方向力の動的目標値Fx**と車両前後方向力の基本値Fx##との誤差ΔFx,車両横方向力の動的目標値Fy**と車両横方向力の基本値Fy##との誤差ΔFyを次の式(42)、式(43)によりそれぞれ求める。 In step 92 of FIG. 24, the target value of the vehicle behavior set in step 62 and the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 are set. The difference between the vehicle behavior basic value and the vehicle longitudinal force dynamic target value Fx ** and the vehicle longitudinal force basic value Fx ##, the vehicle lateral force dynamic target An error ΔFy between the value Fy ** and the basic value Fy ## of the vehicle lateral force is obtained by the following equations (42) and (43).

ΔFx=Fx**−Fx## …(42)
ΔFy=Fy**−Fy## …(43)
第4実施形態ではヨーモーメントの動的目標値M**、ヨーモーメントの基本値Fy##は求めていないので、第1実施形態と相違して、ヨーモーメントの動的目標値M**とヨーモーメントの基本値M##との誤差ΔMとしては、次の式(94)のようにゼロを設定する。
ΔFx = Fx ** − Fx ## (42)
ΔFy = Fy ** − Fy ## (43)
In the fourth embodiment, since the dynamic target value M ** of the yaw moment and the basic value Fy ## of the yaw moment are not obtained, the dynamic target value M ** of the yaw moment is different from the first embodiment. As an error ΔM with respect to the basic value M ## of the yaw moment, zero is set as in the following equation (94).

ΔM=0 …(94)
図25のステップ113では、各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’を求め、ステップ114でこの各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’を各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**に加算した値を改めて各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**として、つまり次の式(95a)〜式(95d)により各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を再設定する。
ΔM = 0 (94)
In step 113 of FIG. 25, driving force recorrection amounts ∂Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′, ∂Fx 4 ′ of the respective wheels 1 to 4 are obtained. The driving force re-correction amounts ∂Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′, ∂Fx 4 ′ are used as the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, The value added to Fx 4 ** is changed to the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of each wheel 1-4, that is, the following formula (95a) to formula In (95d), the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the wheels 1 to 4 are reset.

Fx1**←Fx1**+∂Fx1’ …(95a)
Fx2**←Fx2**+∂Fx2’ …(95b)
Fx3**←Fx3**+∂Fx3’ …(95c)
Fx4**←Fx4**+∂Fx4’ …(95d)
ここで、各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’の求め方については図26のフロー(図25のステップ113のサブルーチン)により説明する。
Fx 1 ** ← Fx 1 ** + ∂Fx 1 '(95a)
Fx 2 ** ← Fx 2 ** + ∂Fx 2 '(95b)
Fx 3 ** ← Fx 3 ** + ∂Fx 3 '(95c)
Fx 4 ** ← Fx 4 ** + ∂Fx 4 '(95d)
Here, the flow of FIG. 26 (subroutine of step 113 in FIG. 25) shows how to obtain the driving force recorrection amounts ∂Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′, and ∂Fx 4 ′ of the wheels 1 to 4. ).

図26においてステップ4010では、車両前後方向力の動的目標値Fx**と車両前後方向力の基本値Fx##との誤差ΔFxをゼロ、車両横方向力の動的目標値Fy**と車両横方向力の基本値Fy##との誤差ΔFyをゼロ、ヨーモーメントについての誤差ΔMを所定量∂Mとし、これらΔFx=0,ΔFy=0,ΔM=∂Mを実現する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図25のステップ100と同様の処理を用いて求め、求めた各輪1〜4の駆動力補正値ΔFx1,ΔFx2,ΔFx3,ΔFx4を次の式(96a)〜(96d)のように各輪1〜4の駆動力再補正量∂∂Fx1’,∂∂Fx2’,∂∂Fx3’,∂∂Fx4’として設定する。 In FIG. 26, in Step 4010, the error ΔFx between the dynamic target value Fx ** of the vehicle longitudinal force and the basic value Fx ## of the vehicle longitudinal force is zero, and the dynamic target value Fy ** of the vehicle lateral force is The error ΔFy with respect to the basic value Fy ## of the vehicle lateral force is zero, the error ΔM regarding the yaw moment is a predetermined amount ∂M, and each wheel 1 that realizes ΔFx = 0, ΔFy = 0, ΔM = ∂M 4 driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are obtained using the same processing as in step 100 of FIG. 25, and the obtained driving force correction values ΔFx 1 , ΔFx 2 , ΔFx 3 and ΔFx 4 are converted into driving force recorrection amounts ∂∂Fx 1 ′, ∂∂Fx 2 ′, ∂∂Fx 3 ′, ∂∂ for each wheel 1 to 4 as in the following formulas (96a) to (96d): Set as Fx 4 '.

∂∂Fx1’=ΔFx1 …(96a)
∂∂Fx2’=ΔFx2 …(96b)
∂∂Fx3’=ΔFx3 …(96c)
∂∂Fx4’=ΔFx4 …(96d)
ただし、このとき、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4は各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から駆動力補正量マップを参照して求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図17のフローチャートに基づいて求める場合には、ステップ500において、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から車両挙動感度マップを参照して各輪1〜4の駆動力変化に対する車両前後方向力,車両横方向力,ヨーモーメントそれぞれの感度Kix,Kiy,KiMを求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図18のフローチャートに基づいて求める場合には、ステップ700で、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**における各輪の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を求めるようにする。
∂∂Fx 1 '= ΔFx 1 (96a)
∂∂Fx 2 '= ΔFx 2 (96b)
∂∂Fx 3 '= ΔFx 3 (96c)
∂∂Fx 4 '= ΔFx 4 (96d)
However, at this time, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 of the wheels 1 to 4 are the driving force target values Fx 1 **, Fx 2 **, and Fx 3 * of the wheels 1 to 4, respectively. *, Fx 4 ** is obtained by referring to the driving force correction amount map. In addition, when the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of each wheel 1 to 4 are obtained based on the flowchart of FIG. By referring to the vehicle behavior sensitivity map from Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 **, the vehicle longitudinal force, vehicle lateral force, yaw moment with respect to the driving force change of each wheel 1-4 The respective sensitivities K ix , K iy and K iM are obtained. When the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each wheel 1 to 4 are obtained based on the flowchart of FIG. The tire lateral force sensitivities k 1 , k 2 , k 3 , and k 4 with respect to the driving force change of each wheel at Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** are obtained.

ステップ4020では、各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4[N]及び各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4[N]を設定する。各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4及び各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4の設定方法としては、第3実施形態についての上記<18>〜<20>で示した3つの方法のいずれかの方法を用いる。 In step 4020, the driving force maximum values Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 [N] of each wheel 1 to 4 and the driving force minimum values Fmin 1 , Fmin 2 , Fmin 3 , Fmin 4 of each wheel 1 to 4 are determined. [N] is set. As the setting method of the driving force maximum values Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 of each wheel 1-4 and the driving force minimum values Fmin 1 , Fmin 2 , Fmin 3 , Fmin 4 of each wheel 1-4, One of the three methods shown in <18> to <20> above for the three embodiments is used.

ステップ4030では、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を出力した場合における、各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を設定する。各輪1〜4の駆動力余裕代を設定する方法として次に2つの方法を示す。
<23>各輪の駆動力余裕代の設定方法1
各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4として、各輪1〜4が出力可能な最大駆動力と比較して充分小さな値を設定する。この十分小さな値として、例えば200[N]とする。
<24>各輪の駆動力余裕代の設定方法2
これは、各輪1〜4について駆動力余裕代を駆動力最大値や駆動力最小値に応じた可変値で設定する場合の設定方法(請求項13に記載の発明)で、ステップ4020において設定している各輪1〜4の駆動力最大値Fmax1,Fmax2,Fmax3,Fmax4及び各輪1〜4の駆動力最小値Fmin1,Fmin2,Fmin3,Fmin4と、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**とから、各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を次の式(97a)〜式(97d)及び式(98a)〜式(98d)に従って求める。
In step 4030, the driving force allowance Fmx of each wheel 1 to 4 when the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of each wheel 1 to 4 are output. 1 , Fmx 2 , Fmx 3 , Fmx 4 are set. Next, two methods are shown as a method of setting the driving force margin for each of the wheels 1 to 4.
<23> Setting method 1 of driving force margin for each wheel
The driving force margins Fmx 1 , Fmx 2 , Fmx 3 , and Fmx 4 of the wheels 1 to 4 are set to a sufficiently small value as compared with the maximum driving force that can be output from the wheels 1 to 4. As this sufficiently small value, for example, 200 [N] is set.
<24> Setting method 2 of driving force margin for each wheel
This is a setting method (invention according to claim 13) for setting the driving force margin for each wheel 1 to 4 with a variable value according to the driving force maximum value or the driving force minimum value, and is set in step 4020. The driving force maximum values Fmax 1 , Fmax 2 , Fmax 3 , Fmax 4 of each wheel 1 to 4 and the driving force minimum values Fmin 1 , Fmin 2 , Fmin 3 , Fmin 4 of each wheel 1 to 4 , and each wheel From the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of 1 to 4, the driving force margin Fmx 1 , Fmx 2 , Fmx 3 , Fmx of each wheel 1 to 4 is obtained. 4 is obtained according to the following equations (97a) to (97d) and equations (98a) to (98d).

〔1〕∂∂Fx1’≧0,∂∂Fx2’≧0,∂∂Fx3’≧0,∂∂Fx4’≧0の場合
Fmx1=Fmax1−Fx1** …(97a)
Fmx2=Fmax2−Fx2** …(97b)
Fmx3=Fmax3−Fx3** …(97c)
Fmx4=Fmax4−Fx4** …(97d)
〔2〕∂∂Fx1’<0,∂∂Fx2’<0,∂∂Fx3’<0,∂∂Fx4’<0場合
Fmx1=Fx1**−Fmin1 …(98a)
Fmx2=Fx2**−Fmin2 …(98b)
Fmx3=Fx3**−Fmin3 …(98c)
Fmx4=Fx4**−Fmin4 …(98d)
ステップ4040では、このようにして設定している各輪1〜4の駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を使うことによって、ヨーモーメントについての所定量∂Mの誤差ΔMをどれだけ補正できるか、その割合Ψ’[無名数]を次の式(99)に従って求める。
[1] ∂∂Fx 1 '≧ 0, ∂∂Fx 2 ' ≧ 0, ∂∂Fx 3 '≧ 0, ∂∂Fx 4' For ≧ 0 Fmx 1 = Fmax 1 -Fx 1 ** ... (97a)
Fmx 2 = Fmax 2 -Fx 2 ** (97b)
Fmx 3 = Fmax 3 -Fx 3 ** (97c)
Fmx 4 = Fmax 4 -Fx 4 ** (97d)
[2] When ∂∂Fx 1 ′ <0, ∂∂Fx 2 ′ <0, ∂∂Fx 3 ′ <0, ∂∂Fx 4 ′ <0 Fmx 1 = Fx 1 ** − Fmin 1 (98a)
Fmx 2 = Fx 2 ** − Fmin 2 (98b)
Fmx 3 = Fx 3 ** − Fmin 3 (98c)
Fmx 4 = Fx 4 ** − Fmin 4 (98d)
In step 4040, by using the driving force margin Fmx 1, Fmx 2, Fmx 3 , Fmx 4 of the wheels 1 to 4 are set in this manner, the error ΔM predetermined amount ∂M for yaw moment The amount ψ ′ [anonymous number] of how much can be corrected is obtained according to the following equation (99).

Ψ’=min(Fmx1/∂∂Fx1’,Fmx2/∂∂Fx2’,Fmx3/∂∂Fx3’, Fmx4/∂∂Fx4’)
…(99)
式(99)は各輪1〜4について駆動力余裕代を駆動力再補正量で割った値(つまりFmx1/∂∂Fx1’,Fmx2/∂∂Fx2’,Fmx3/∂∂Fx3’,Fmx4/∂∂Fx4’の4つの値)のうちの最小値を採用するものである。
Ψ ′ = min (Fmx 1 / ∂∂Fx 1 ′, Fmx 2 / ∂∂Fx 2 ′, Fmx 3 / ∂∂Fx 3 ′, Fmx 4 / ∂∂Fx 4 ′)
... (99)
Equation (99) is a value obtained by dividing the driving force margin for each wheel 1 to 4 by the driving force recorrection amount (that is, Fmx 1 / ∂∂Fx 1 ′, Fmx 2 / ∂∂Fx 2 ′, Fmx 3 / ∂∂). The minimum value among the four values Fx 3 ′, Fmx 4 / ∂∂Fx 4 ′) is adopted.

ステップ4050では、所定量∂Mにこの割合Ψ’を乗算した値をヨーモーメントについての誤差ΔMとして置き直し、再びΔFx=0,ΔFy=0,ΔM=Ψ’×∂Mを実現する各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図25のステップ100と同様の処理を用いて求め、求めた各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を次の式(100a)〜式(100d)のように各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’として設定する。 In step 4050, a value obtained by multiplying the predetermined amount ∂M by this ratio ψ 'is replaced as an error ΔM for the yaw moment, and each wheel 1 that realizes ΔFx = 0, ΔFy = 0, ΔM = ψ' × ∂M again. ˜4 driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 are obtained using the same process as in step 100 of FIG. 25, and the obtained driving force correction amounts ΔFx 1 , ΔFx 2 of the respective wheels 1 to 4 are obtained. , ΔFx 3 , ΔFx 4 are converted into driving force recorrection amounts ∂Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′, ∂Fx 4 for each wheel 1 to 4 as in the following formulas (100a) to (100d): Set as'.

∂Fx1’=ΔFx1 …(100a)
∂Fx2’=ΔFx2 …(100b)
∂Fx3’=ΔFx3 …(100c)
∂Fx4’=ΔFx4 …(100d)
ただしこのとき、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4は各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から駆動力補正量マップを参照して求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図17のフローチャートに基づいて求める場合には、ステップ500において、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**から車両挙動感度マップを参照して各輪の駆動力変化に対する車両前後方向力,車両横方向力,ヨーモーメントそれぞれの感度Kix,Kiy,KiMを求める。また、各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を図18のフローチャートに基づいて求める場合には、ステップ700で、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**における各輪の駆動力変化に対するタイヤ横力の感度k1,k2,k3,k4を求めるようにする。
∂Fx 1 '= ΔFx 1 (100a)
∂Fx 2 '= ΔFx 2 (100b)
∂Fx 3 '= ΔFx 3 (100c)
∂Fx 4 '= ΔFx 4 (100d)
However, at this time, the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of the wheels 1 to 4 are the driving force target values Fx 1 **, Fx 2 **, Fx 3 ** of the wheels 1 to 4, respectively. , Fx 4 ** by referring to the driving force correction amount map. In addition, when the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 of each wheel 1 to 4 are obtained based on the flowchart of FIG. Refers to the vehicle behavior sensitivity map from Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 **, and the sensitivity of the vehicle longitudinal force, vehicle lateral force, and yaw moment for each wheel driving force change Find K ix , K iy , and K iM . When the driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , and ΔFx 4 for each wheel 1 to 4 are obtained based on the flowchart of FIG. The tire lateral force sensitivities k 1 , k 2 , k 3 , and k 4 with respect to the driving force change of each wheel at Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** are obtained.

このように、第4実施形態(請求項9に記載の発明)では、四輪を独立に駆動可能な車両において、車両の車両前後方向力の目標値Fx**、車両横方向力の目標値Fy**を車両挙動の目標値として決定し(図24のステップ62参照)、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を設定し(図24のステップ72参照)、この設定された各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##を車両挙動の基本値として演算し(図24のステップ82参照)、前記車両挙動の目標値Fx**,Fy**とこの演算された車両挙動の基本値Fx##,Fy##との誤差ΔFx,ΔFyを車両挙動の誤差として演算し(図24のステップ92参照)、この演算された車両挙動の誤差ΔFx,ΔMを小さくする各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を演算し(図25のステップ100参照)、各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##とこの演算された駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4との和で各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を決定し(図25のステップ110参照)、この決定された各輪1〜4の駆動力目標値が得られるように各輪1〜4の駆動力を制御している(図24のステップ61参照)。すなわち、第4実施形態(請求項9に記載の発明)によれば、ヨーモーメントMについて目標値M**を設定せず、車両前後方向力Fxと車両横方向力Fyについてのみ目標値Fx**,Fy**を決定し、この2つの目標値Fx**,Fy**を実現する各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**を求める構成としたので、ヨーモーメントMの目標値を設計すること及びヨーモーメントMの目標値をコントローラ8に保持することが必要でなくなり、この設計工数の低減と車載コンピューターのメモリ消費量を引き下げによって車両価格を低減することできる。 As described above, in the fourth embodiment (the invention according to claim 9), in a vehicle capable of independently driving four wheels, the target value Fx ** of the vehicle longitudinal force and the target value of the vehicle lateral force are determined. Fy ** is determined as a target value of the vehicle behavior (see step 62 in FIG. 24), and the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1-4. (See step 72 in FIG. 24), and the vehicle front and rear realized by the set driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 The basic value Fx ## of the directional force and the basic value Fy ## of the vehicle lateral force are calculated as the basic values of the vehicle behavior (see step 82 in FIG. 24), and the target values Fx ** and Fy ** of the vehicle behavior are calculated. And errors ΔFx and ΔFy between the calculated vehicle behavior basic values Fx ## and Fy ## are calculated as vehicle behavior errors (see step 92 in FIG. 24). The computed vehicle behavior of the error DerutaFx, driving force correction amount DerutaFx 1 for the wheels 1 to 4 to reduce the ΔM, ΔFx 2, ΔFx 3, calculates the ΔFx 4 (see step 100 in FIG. 25), each wheel 1 Is the sum of the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## to 4 and the calculated driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 The driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the wheels 1 to 4 are determined (see step 110 in FIG. 25), and the determined wheels 1 to 4 are determined. The driving force of each of the wheels 1 to 4 is controlled so as to obtain the driving force target value (see step 61 in FIG. 24). That is, according to the fourth embodiment (the invention described in claim 9), the target value M ** is not set for the yaw moment M, and only the target value Fx * for the vehicle longitudinal force Fx and the vehicle lateral force Fy. *, Fy ** are determined, and the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx of the wheels 1 to 4 that realize these two target values Fx **, Fy ** 4 Because ** is determined, it is no longer necessary to design the target value of yaw moment M and hold the target value of yaw moment M in controller 8, reducing the design man-hours and memory consumption of in-vehicle computer The vehicle price can be reduced by reducing the amount.

第3実施形態の効果で述べた通り、車両横方向力FyとヨーモーメントMとの間に自由度があることから、第4実施形態(請求項12に記載の発明)によれば、ヨーモーメントMについてもその目標値M**に近づける各輪1〜4の駆動力再補正量、つまりヨーモーメントMをゼロから所定量∂Mの誤差の範囲内で変化させる各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’を演算し(図25のステップ113参照)、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**にこの演算された駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’を加算した値を改めて各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**として再設定する(図25のステップ114参照)ので、ヨーモーメントMをこの自由度の範囲でドライバーにとって好適となるヨーモーメントの目標値M**に近づけることが可能となり、運転性の向上が期待できる。 As described in the effect of the third embodiment, since there is a degree of freedom between the vehicle lateral force Fy and the yaw moment M, according to the fourth embodiment (the invention according to claim 12), the yaw moment For M, the driving force recorrection amount of each wheel 1 to 4 that approaches the target value M **, that is, the driving force of each wheel 1 to 4 that changes the yaw moment M within a range of error from zero to a predetermined amount ∂M. Re-correction amounts ∂Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′, and ∂Fx 4 ′ are calculated (see step 113 in FIG. 25), and the driving force target values Fx 1 **, Fx of the wheels 1 to 4 are calculated. The value obtained by adding the calculated driving force re-correction amounts ∂Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′ and ∂Fx 4 ′ to 2 **, Fx 3 **, Fx 4 ** again for each wheel 1-4 the driving force target value Fx 1 **, Fx 2 **, Fx 3 **, reconfigure as Fx 4 ** because (see step 114 in FIG. 25), Yomo Can be brought close to cement M to the target value M ** of the yaw moment is suitable for the driver in the range of the degrees of freedom and will be expected to improve drivability.

第4実施形態(請求項13に記載の発明)では、各輪1〜4の駆動力最大値Fxmax1,Fxmax2,Fxmax3,Fxmax4を設定し(図26のステップ4020参照)、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**とこの設定された駆動力最大値Fxmax1,Fxmax2,Fxmax3,Fxmax4とに基づいて、ゼロから所定量∂Mの誤差の範囲内でヨーモーメントMを変化させることが可能な量∂Mreal(=Ψ’×∂M)を演算し(図26のステップ4030〜4050参照)、ヨーモーメントMをこの量∂Mreal変化させる各輪1〜4の駆動力補正量ΔFx1,ΔFx2,ΔFx3,ΔFx4を各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’として設定している(図25のステップ114参照)。すなわち、第4実施形態(請求項13に記載の発明)によれば、各輪1〜4の駆動力目標値Fx1**,Fx2**,Fx3**,Fx4**が各輪1〜4の駆動力最大値Fxmax1,Fxmax2,Fxmax3,Fxmax4に対してあとどれだけ駆動力を変化させられるのかその駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を求め、この駆動力余裕代Fmx1,Fmx2,Fmx3,Fmx4を用いることによってヨーモーメントMをどれだけ目標値M**に漸近させられるのかを求める構成としたので、各輪1〜4の駆動力の制限を越えることなくヨーモーメントMをドライバーにとって好適となる目標値M**に近づけることが可能となり、運転性の向上が期待できる。 In the fourth embodiment (the invention described in claim 13), the driving force maximum values Fxmax 1 , Fxmax 2 , Fxmax 3 , and Fxmax 4 of the wheels 1 to 4 are set (see step 4020 in FIG. 26). Based on the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, Fx 4 ** of 1 to 4 and the set driving force maximum values Fxmax 1 , Fxmax 2 , Fxmax 3 , Fxmax 4 Then, an amount ∂Mreal (= Ψ ′ × ∂M) that can change the yaw moment M within a range of error from zero to a predetermined amount ∂M is calculated (see steps 4030 to 4050 in FIG. 26), and the yaw moment M is calculated. The driving force correction amounts ΔFx 1 , ΔFx 2 , ΔFx 3 , ΔFx 4 for changing the moment M by this amount ∂Mreal are changed to the driving force recorrection amounts ∂Fx 1 ′, ∂Fx 2 for each wheel 1-4. It is set as', ∂Fx 3 ', ∂Fx 4 ' (Figure 25, step 114). That is, according to the fourth embodiment (the invention described in claim 13), the driving force target values Fx 1 **, Fx 2 **, Fx 3 **, and Fx 4 ** of the respective wheels 1 to 4 are respectively set. driving force maximum value Fxmax 1 ring 1~4, Fxmax 2, Fxmax 3, Fxmax whether is varied how much driving force after against 4 the driving force margin Fmx 1, Fmx 2, Fmx 3 , the Fmx 4 Since the driving force margin Fmx 1 , Fmx 2 , Fmx 3 , Fmx 4 is used to determine how much the yaw moment M can be asymptotic to the target value M **, each wheel 1 to 4 is obtained. It is possible to bring the yaw moment M close to the target value M ** that is suitable for the driver without exceeding the limit of the driving force, and improvement in drivability can be expected.

図27は第5実施形態のフローチャートで、第3実施形態の図20、図21においてステップ81からステップ110までに置き換わるものである。第2実施形態の図16と同一部分には同一のステップ番号を付している。   FIG. 27 is a flowchart of the fifth embodiment, which replaces steps 81 to 110 in FIGS. 20 and 21 of the third embodiment. The same step number is attached | subjected to the part same as FIG. 16 of 2nd Embodiment.

図27においてステップ201、211の操作は図20のステップ81、91と同じである。すなわち、ステップ201で各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両挙動の基本値(車両前後方向力の基本値Fx##,ヨーモーメントの基本値M##)を推定し、ステップ211では車両挙動の目標値(車両前後方向力の動的目標値Fx**,ヨーレートの動的目標値γ**)と、ステップ201で求めている車両挙動の基本値(車両前後方向力の基本値Fx##,ヨーモーメントの基本値M##)との誤差ΔFx,ΔMを次の式(101)、式(102)によりそれぞれ求める。 27, operations in steps 201 and 211 are the same as steps 81 and 91 in FIG. That is, in step 201, the basic value of the vehicle behavior realized by the basic driving force values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 (the basic value of the vehicle longitudinal force). Fx ##, the basic value M ## of the yaw moment) is estimated, and in step 211, the target value of the vehicle behavior (the dynamic target value Fx ** of the vehicle longitudinal force, the dynamic target value γ ** of the yaw rate) and , Errors ΔFx and ΔM from the basic values of the vehicle behavior obtained in step 201 (basic value Fx ## of the vehicle longitudinal force and basic value M ## of the yaw moment) are expressed by the following equations (101) and (102 ) Respectively.

ΔFx=Fx**−Fx## …(101)
ΔM=M**−M## …(102)
車両横方向力の動的目標値Fy**、車両横方向力の基本値Fy##は求めていないので、車両横方向力の動的目標値Fy**と車両横方向力の基本値Fy##との誤差ΔFyとして次の式(103)のようにゼロを設定する。
ΔFx = Fx ** − Fx ## (101)
ΔM = M ** − M ## (102)
Since the dynamic target value Fy ** of the vehicle lateral force and the basic value Fy ## of the vehicle lateral force are not obtained, the dynamic target value Fy ** of the vehicle lateral force and the basic value Fy of the vehicle lateral force are determined. As an error ΔFy from ##, zero is set as in the following equation (103).

ΔFy=0 …(103)
ステップ251では、図22のフローチャートに従って各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4を求め、ステップ252でこの各輪1〜4の駆動力再補正量∂Fx1,∂Fx2,∂Fx3,∂Fx4を各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##に加算した値を、改めて各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##として、つまり次の式(104a)〜式(104d)により各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を再設定する。
ΔFy = 0 (103)
In step 251, the driving force recorrection amounts ∂Fx 1 , xFx 2 , ∂Fx 3 , and ∂Fx 4 of each wheel 1 to 4 are obtained according to the flowchart of FIG. Re-correction amounts ∂Fx 1 , ∂Fx 2 , ∂Fx 3 , ∂Fx 4 are added to the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1-4 The obtained values are again set as the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4, that is, according to the following equations (104a) to (104d). The driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 are reset.

Fx1##←Fx1##+∂Fx1 …(104a)
Fx2##←Fx2##+∂Fx2 …(104b)
Fx3##←Fx3##+∂Fx3 …(104c)
Fx4##←Fx4##+∂Fx4 …(104d)
図28は第6実施形態のフローチャートで、第4実施形態の図24、図25においてステップ82からステップ110までに置き換わるものである。第2実施形態の図16と同一部分には同一のステップ番号を付している。
Fx 1 ## ← Fx 1 ## + ∂Fx 1 (104a)
Fx 2 ## ← Fx 2 ## + ∂Fx 2 (104b)
Fx 3 ## ← Fx 3 ## + ∂Fx 3 (104c)
Fx 4 ## ← Fx 4 ## + ∂Fx 4 (104d)
FIG. 28 is a flowchart of the sixth embodiment, which replaces steps 82 to 110 in FIGS. 24 and 25 of the fourth embodiment. The same step number is attached | subjected to the part same as FIG. 16 of 2nd Embodiment.

図28においてステップ202、212の操作は図24のステップ82、92と同じである。すなわち、ステップ202で各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##によって実現する車両挙動の基本値(車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##)を推定し、ステップ212では車両挙動の目標値(車両前後方向力の動的目標値Fx**,車両横方向力の動的目標値Fy**)と、ステップ202で求めている車両挙動の基本値(車両前後方向力の基本値Fx##,車両横方向力の基本値Fy##)との誤差ΔFx,ΔFyを次の式(105)、式(106)により求める。ヨーモーメントの誤差ΔMについては次の式(83)のようにゼロを設定する。 In FIG. 28, operations in steps 202 and 212 are the same as steps 82 and 92 in FIG. That is, in step 202, the basic value of the vehicle behavior realized by the basic driving force values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of each wheel 1 to 4 (the basic value of the vehicle longitudinal force). Fx ##, the vehicle lateral force basic value Fy ##) is estimated. In step 212, the vehicle behavior target value (vehicle longitudinal force dynamic target value Fx **, vehicle lateral force dynamic target value). Fy **) and errors ΔFx and ΔFy between the basic values of the vehicle behavior obtained in step 202 (the basic value Fx ## of the vehicle longitudinal force and the basic value Fy ## of the vehicle lateral force) are expressed by the following equations: (105) and Equation (106). The yaw moment error ΔM is set to zero as shown in the following equation (83).

ΔFx=Fx**−Fx## …(105)
ΔFy=Fy**−Fy## …(106)
ヨーモーメントの動的目標値M**、ヨーモーメントの基本値Fy##は求めていないので、ヨーモーメントの動的目標値M**とヨーモーメントの基本値M##との誤差ΔMとして次の式(107)のようにゼロを設定する。
ΔFx = Fx ** − Fx ## (105)
ΔFy = Fy ** − Fy ## (106)
Since the dynamic target value M ** of the yaw moment and the basic value Fy ## of the yaw moment are not obtained, the error ΔM between the dynamic target value M ** of the yaw moment and the basic value M ## of the yaw moment is as follows: As shown in equation (107), zero is set.

ΔM=0 …(107)
ステップ253において図26のフローチャートに従って各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’を求め、ステップ254でこの各輪1〜4の駆動力再補正量∂Fx1’,∂Fx2’,∂Fx3’,∂Fx4’を各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##に加算した値を、改めて各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##として、つまり次の式(108a)〜式(108d)により各輪1〜4の駆動力基本値Fx1##,Fx2##,Fx3##,Fx4##を再設定する。
ΔM = 0 (107)
In step 253, the driving force recorrection amounts ∂Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′, ∂Fx 4 ′ of the respective wheels 1 to 4 are obtained in accordance with the flowchart of FIG.力 Fx 1 ′, ∂Fx 2 ′, ∂Fx 3 ′, and ∂Fx 4 ′ are the basic values of the driving force Fx 1 ##, Fx 2 ##, Fx 3 ## , Fx 4 ##, the driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 are renewed, that is, the following equation (108a) The driving force basic values Fx 1 ##, Fx 2 ##, Fx 3 ##, Fx 4 ## of the wheels 1 to 4 are reset by the formula (108d).

Fx1##←Fx1##+∂Fx1’ …(108a)
Fx2##←Fx2##+∂Fx2’ …(108b)
Fx3##←Fx3##+∂Fx3’ …(108c)
Fx4##←Fx4##+∂Fx4’ …(108d)
本発明は、図1に示す車両だけでなく、後輪を前輪とは違う角度で転舵できる車両や、ステアリング5の操舵量θと独立して各輪1〜4の舵角δ1,δ2,δ3,δ4を制御できる車両等、ステアバイワイヤを装備した車両にも適用可能である。
Fx 1 ## ← Fx 1 ## + ∂Fx 1 '(108a)
Fx 2 ## ← Fx 2 ## + ∂Fx 2 '(108b)
Fx 3 ## ← Fx 3 ## + ∂Fx 3 '(108c)
Fx 4 ## ← Fx 4 ## + ∂Fx 4 '(108d)
The present invention is not limited to the vehicle shown in FIG. 1 but a vehicle in which the rear wheels can be steered at an angle different from the front wheels, and the steering angles δ 1 , δ of the wheels 1 to 4 independently of the steering amount θ of the steering 5. The present invention is also applicable to vehicles equipped with steer-by-wire, such as vehicles that can control 2 , δ 3 and δ 4 .

請求項1に記載の車両挙動目標値決定手段の機能は図6のステップ60により、駆動力基本値設定手段の機能は図6のステップ70により、車両挙動基本値演算手段の機能は図6のステップ80により、車両挙動誤差演算手段の機能は図6のステップ90により、駆動力補正量演算手段の機能は図7のステップ100により、駆動力目標値決定手段の機能は図7のステップ110により、各輪駆動力制御手段の機能は図6のステップ120によりそれぞれ果たされている。   The function of the vehicle behavior target value determining means according to claim 1 is the function of step 60 in FIG. 6, the function of the driving force basic value setting means is the step 70 of FIG. 6, and the function of the vehicle behavior basic value calculating means is the function of FIG. In step 80, the function of the vehicle behavior error calculating means is in step 90 of FIG. 6, the function of the driving force correction amount calculating means is in step 100 of FIG. 7, and the function of the driving force target value determining means is in step 110 of FIG. The function of each wheel driving force control means is performed by step 120 in FIG.

請求項8に記載の車両挙動目標値決定手段の機能は図20のステップ61により、駆動力基本値設定手段の機能は図20のステップ71により、車両挙動基本値演算手段の機能は図20のステップ81により、車両挙動誤差演算手段の機能は図20のステップ91により、駆動力補正量演算手段の機能は図21のステップ100により、駆動力目標値決定手段の機能は図21のステップ110により、各駆動力制御手段の機能は図21のステップ120によりそれぞれ果たされている。   The function of the vehicle behavior target value determining means according to claim 8 is the function of step 61 in FIG. 20, the function of the driving force basic value setting means is the step 71 of FIG. 20, and the function of the vehicle behavior basic value calculating means is the function of FIG. In step 81, the function of the vehicle behavior error calculating means is in step 91 in FIG. 20, the function of the driving force correction amount calculating means is in step 100 in FIG. 21, and the function of the driving force target value determining means is in step 110 in FIG. The function of each driving force control means is fulfilled by step 120 in FIG.

請求項9に記載の車両挙動目標値決定手段の機能は図24のステップ62により、駆動力基本値設定手段の機能は図24のステップ72により、車両挙動基本値演算手段の機能は図24のステップ82により、車両挙動誤差演算手段の機能は図24のステップ92により、駆動力補正量演算手段の機能は図25のステップ100により、駆動力目標値決定手段の機能は図25のステップ110により、各駆動力制御手段の機能は図25のステップ120によりそれぞれ果たされている。   The function of the vehicle behavior target value determining means according to claim 9 is the function of step 62 in FIG. 24, the function of the driving force basic value setting means is the step of FIG. 24, and the function of the vehicle behavior basic value calculating means is the function of FIG. 24, the function of the vehicle behavior error calculating means is according to step 92 in FIG. 24, the function of the driving force correction amount calculating means is according to step 100 in FIG. 25, and the function of the driving force target value determining means is according to step 110 in FIG. The function of each driving force control means is fulfilled by step 120 in FIG.

本発明の第1実施形態の四輪独立駆動車の概略構成図。The schematic block diagram of the four-wheel independent drive vehicle of 1st Embodiment of this invention. 四輪独立駆動車における各輪の制駆動力、タイヤ横力、舵角等を表した図。The figure showing the braking / driving force, tire lateral force, steering angle, etc. of each wheel in a four-wheel independent drive vehicle. ある一輪における制駆動力とタイヤ横力とその合力であるタイヤ力を表した図。The figure showing the braking / driving force, tire lateral force, and tire force which is the resultant force in a certain wheel. 駆動力とタイヤ横力との関係を表すタイヤ特性図。The tire characteristic view showing the relationship between driving force and tire lateral force. 各輪について駆動力とタイヤ横力との非線形な関係を考慮しながら、車両前後方向力の目標値,車両横方向力の目標値,ヨーモーメントの目標値を実現する各輪の駆動力目標値をフィードフォワードで求める手法を説明するための波形図。Considering the non-linear relationship between the driving force and the tire lateral force for each wheel, the target value for the vehicle longitudinal force, the target value for the vehicle lateral force, and the target value for the yaw moment are achieved. The wave form diagram for demonstrating the method of calculating | requiring by feedforward. 第1実施形態のトルク配分制御を説明するためのフローチャート。The flowchart for demonstrating the torque distribution control of 1st Embodiment. 第1実施形態のトルク配分制御を説明するためのフローチャート。The flowchart for demonstrating the torque distribution control of 1st Embodiment. 目標駆動力の特性図。The characteristic diagram of a target driving force. 目標制動力の特性図。The characteristic figure of target braking force. 車両横方向力の静的目標値の特性図。The characteristic figure of the static target value of vehicle lateral force. ヨーレートの静的目標値の特性図。The characteristic figure of the static target value of a yaw rate. 各輪の駆動力静的目標値の特性図。The characteristic figure of the driving force static target value of each wheel. 横すべり角に対応して変化する駆動力とタイヤ横力との関係を表すタイヤ特性図。The tire characteristic figure showing the relationship between the driving force and tire lateral force which change corresponding to a side slip angle. 横すべり角と路面摩擦係数(または輪荷重)とに対応して変化する駆動力とタイヤ横力との関係を表すタイヤ特性図。The tire characteristic view showing the relationship between the driving force and tire lateral force which change corresponding to a side slip angle and a road surface friction coefficient (or wheel load). 各輪の駆動力補正量の特性図。The characteristic diagram of the driving force correction amount of each wheel. 第2実施形態の各輪の駆動力目標値の求め方を説明するためのフローチャート。The flowchart for demonstrating how to obtain | require the driving force target value of each wheel of 2nd Embodiment. 各輪の駆動力補正量の求め方を説明するためのフローチャート。The flowchart for demonstrating how to obtain | require the driving force correction amount of each wheel. 各輪の駆動力補正量の求め方を説明するためのフローチャート。The flowchart for demonstrating how to obtain | require the driving force correction amount of each wheel. 左前輪についての駆動力変化に対する車両前後方向力の感度、車両横方向力の感度、ヨーモーメントの感度の各特性図。FIG. 6 is a characteristic diagram of vehicle longitudinal force sensitivity, vehicle lateral force sensitivity, and yaw moment sensitivity with respect to changes in driving force for the left front wheel. 第3実施形態のトルク配分制御を説明するためのフローチャート。The flowchart for demonstrating the torque distribution control of 3rd Embodiment. 第3実施形態のトルク配分制御を説明するためのフローチャート。The flowchart for demonstrating the torque distribution control of 3rd Embodiment. 第3実施形態の各輪の駆動力再補正量の求め方を説明するためのフローチャート。The flowchart for demonstrating how to obtain | require the driving force recorrection amount of each wheel of 3rd Embodiment. モータ温度とモータ過熱を抑えることができる最大出力との関係を表す特性図。The characteristic view showing the relationship between motor temperature and the maximum output which can suppress motor overheating. 第4実施形態のトルク配分制御を説明するためのフローチャート。The flowchart for demonstrating the torque distribution control of 4th Embodiment. 第4実施形態のトルク配分制御を説明するためのフローチャート。The flowchart for demonstrating the torque distribution control of 4th Embodiment. 第4実施形態の各輪の駆動力再補正量の求め方を説明するためのフローチャート。The flowchart for demonstrating how to obtain | require the driving force recorrection amount of each wheel of 4th Embodiment. 第6実施形態の各輪の駆動力目標値の求め方を説明するためのフローチャート。The flowchart for demonstrating how to obtain | require the driving force target value of each wheel of 6th Embodiment. 第7実施形態の各輪の駆動力目標値の求め方を説明するためのフローチャート。The flowchart for demonstrating how to obtain | require the driving force target value of each wheel of 7th Embodiment.

符号の説明Explanation of symbols

1〜4 車輪
8 コントローラ
11〜14 モータ(アクチュエータ)
1 to 4 wheels 8 controller 11 to 14 motor (actuator)

Claims (13)

四輪を独立に駆動可能な車両において、
車両の車両前後方向力の目標値,車両横方向力の目標値,ヨーモーメントの目標値を車両挙動目標値として決定する車両挙動目標値決定手段と、
各輪の駆動力基本値を設定する駆動力基本値設定手段と、
この設定された各輪の駆動力基本値によって実現する車両前後方向力の基本値,車両横方向力の基本値,ヨーモーメントの基本値を車両挙動の基本値として演算する車両挙動基本値演算手段と、
前記車両挙動の目標値とこの演算された車両挙動の基本値との誤差を車両挙動の誤差として演算する車両挙動誤差演算手段と、
この演算された車両挙動の誤差を小さくする各輪の駆動力補正量を演算する駆動力補正量演算手段と、
前記駆動力基本値とこの演算された駆動力補正量との和で各輪の駆動力目標値を決定する駆動力目標値決定手段と、
この決定された各輪の駆動力目標値が得られるように各輪の駆動力を制御する各輪駆動力制御手段と
を備えることを特徴とする四輪独立駆動車の駆動力配分装置。
In vehicles that can drive all four wheels independently,
Vehicle behavior target value determining means for determining a vehicle longitudinal force target value, a vehicle lateral force target value, and a yaw moment target value as a vehicle behavior target value;
Driving force basic value setting means for setting the driving force basic value of each wheel;
Vehicle behavior basic value calculation means for calculating the basic value of the vehicle longitudinal force, the basic value of the lateral force of the vehicle, and the basic value of the yaw moment as the basic values of the vehicle behavior realized by the set basic driving force value of each wheel. When,
Vehicle behavior error calculating means for calculating an error between the target value of the vehicle behavior and the calculated basic value of the vehicle behavior as an error of the vehicle behavior;
Driving force correction amount calculating means for calculating the driving force correction amount of each wheel for reducing the error of the calculated vehicle behavior;
Driving force target value determining means for determining a driving force target value of each wheel by the sum of the driving force basic value and the calculated driving force correction amount;
A driving force distribution device for a four-wheel independent driving vehicle, comprising: wheel driving force control means for controlling the driving force of each wheel so as to obtain the determined driving force target value of each wheel.
前記駆動力目標値決定手段は、
前記駆動力補正量と前記駆動力基本値との和を各輪の駆動力仮値として演算する駆動力仮値演算手段と、
この演算された駆動力仮値によって実現する車両前後方向力の基本値,車両横方向力の基本値,ヨーモーメントの基本値を車両挙動の基本値として再び演算する車両挙動基本値再演算手段と、
前記車両挙動の目標値とこの再び演算された車両挙動の基本値との誤差を車両挙動の誤差として再び演算する車両挙動誤差再演算手段と、
この再び演算された車両挙動の誤差を小さくする各輪の駆動力補正量を再び演算する駆動力補正量再演算手段と、
前記駆動力仮値とこの再び演算された駆動力補正量との和を前記駆動力目標値として置き換えることにより車両挙動の誤差を補償する処理を行う車両挙動誤差補償処理手段と
を備えることを特徴とする請求項1に記載の四輪独立駆動車の駆動力配分装置。
The driving force target value determining means includes
A driving force temporary value calculating means for calculating the sum of the driving force correction amount and the driving force basic value as a driving force temporary value of each wheel;
Vehicle behavior basic value recalculation means for calculating again the basic value of the vehicle longitudinal force, the basic value of the lateral force of the vehicle, and the basic value of the yaw moment as the basic value of the vehicle behavior realized by the calculated driving force temporary value; ,
Vehicle behavior error recalculation means for calculating again an error between the vehicle behavior target value and the recalculated vehicle behavior basic value as a vehicle behavior error;
Driving force correction amount recalculating means for calculating again the driving force correction amount of each wheel that reduces the error of the vehicle behavior calculated again;
Vehicle behavior error compensation processing means for performing processing for compensating for an error in vehicle behavior by replacing the sum of the driving force temporary value and the recalculated driving force correction amount with the driving force target value. The driving force distribution device for a four-wheel independent drive vehicle according to claim 1.
各輪についての駆動力変化に対する車両前後方向力の感度,車両横方向力の感度,ヨーモーメントの感度を車両挙動変化の感度として演算する車両挙動変化感度演算手段を備え、前記駆動力補正量演算手段は、この演算された車両挙動変化の感度に基づいて、前記駆動力補正量を演算することを特徴とする請求項1または2に記載の四輪独立駆動車の駆動力配分装置。   Vehicle behavior change sensitivity calculating means for calculating the sensitivity of the vehicle longitudinal direction force, the vehicle lateral force sensitivity, and the yaw moment sensitivity with respect to the driving force change for each wheel as the vehicle behavior change sensitivity is provided. The driving force distribution device for a four-wheel independent drive vehicle according to claim 1 or 2, wherein the means calculates the driving force correction amount based on the calculated sensitivity of the vehicle behavior change. 各輪についての駆動力変化に対するタイヤ横力の感度を推定するタイヤ横力感度推定手段を備え、前記駆動力補正量演算手段は、この推定されたタイヤ横力の感度に基づいて、前記駆動力補正量を演算することを特徴とする請求項1または2に記載の四輪独立駆動車の駆動力配分装置。   Tire lateral force sensitivity estimation means for estimating the sensitivity of the tire lateral force with respect to the driving force change for each wheel is provided, and the driving force correction amount calculating means is configured to determine the driving force based on the estimated tire lateral force sensitivity. The driving force distribution device for a four-wheel independent drive vehicle according to claim 1 or 2, wherein a correction amount is calculated. 各輪の舵角を検出する舵角検出手段を備え、前記車両挙動基本値演算手段は、この検出された各輪の舵角に基づいて前記車両挙動の基本値を演算し、また前記駆動力補正量演算手段は、この検出された各輪の舵角に基づいて前記駆動力補正量を演算することを特徴とする請求項1または2に記載の四輪独立駆動車の駆動力配分装置。   Steering angle detection means for detecting the steering angle of each wheel, wherein the vehicle behavior basic value calculation means calculates the basic value of the vehicle behavior based on the detected steering angle of each wheel, and the driving force The driving force distribution device for a four-wheel independent driving vehicle according to claim 1 or 2, wherein the correction amount calculating means calculates the driving force correction amount based on the detected steering angle of each wheel. 各輪の輪荷重を推定または検出する輪荷重推定・検出手段を備え、前記車両挙動基本値演算手段は、この推定または検出された各輪の輪荷重に基づいて前記車両挙動の基本値を演算し、また前記駆動力補正量演算手段は、この推定または検出された各輪の輪荷重に基づいて前記駆動力補正量を演算することを特徴とする請求項1または2に記載の四輪独立駆動車の駆動力配分装置。   Wheel load estimation / detection means for estimating or detecting the wheel load of each wheel is provided, and the vehicle behavior basic value calculation means calculates the basic value of the vehicle behavior based on the estimated or detected wheel load of each wheel. The four-wheel independent vehicle according to claim 1, wherein the driving force correction amount calculating means calculates the driving force correction amount based on the estimated or detected wheel load of each wheel. Driving force distribution device for driving vehicles. 各輪の路面摩擦係数を推定する路面摩擦係数推定手段を備え、前記車両挙動基本値演算手段は、この推定された各輪の路面摩擦係数に基づいて前記車両挙動の基本値を演算し、また前記駆動力補正量演算手段は、この推定された各輪の路面摩擦係数に基づいて前記駆動力補正量を演算することを特徴とする請求項1または2に記載の四輪独立駆動車の駆動力配分装置。   Road surface friction coefficient estimating means for estimating the road surface friction coefficient of each wheel, and the vehicle behavior basic value calculating means calculates the basic value of the vehicle behavior based on the estimated road surface friction coefficient of each wheel; The drive of a four-wheel independent drive vehicle according to claim 1 or 2, wherein the driving force correction amount calculating means calculates the driving force correction amount based on the estimated road surface friction coefficient of each wheel. Power distribution device. 四輪を独立に駆動可能な車両において、
車両の車両前後方向力の目標値、ヨーモーメントの目標値を車両挙動の目標値として決定する車両挙動目標値決定手段と、
各輪の駆動力基本値を設定する駆動力基本値設定手段と、
この設定された各輪の駆動力基本値によって実現する車両前後方向力の基本値,ヨーモーメントの基本値を車両挙動の基本値として演算する車両挙動基本値演算手段と、
前記車両挙動の目標値とこの演算された車両挙動の基本値との誤差を車両挙動の誤差として演算する車両挙動誤差演算手段と、
この演算された車両挙動の誤差を小さくする各輪の駆動力補正量を演算する駆動力補正量演算手段と、
前記駆動力基本値とこの演算された駆動力補正量との和で各輪の駆動力目標値を決定する駆動力目標値決定手段と、
この決定された各輪の駆動力目標値が得られるように各輪の駆動力を制御する各駆動力制御手段と
を備えることを特徴とする四輪独立駆動車の駆動力配分装置。
In vehicles that can drive all four wheels independently,
Vehicle behavior target value determining means for determining a target value of the vehicle longitudinal force of the vehicle and a target value of the yaw moment as a target value of the vehicle behavior;
Driving force basic value setting means for setting the driving force basic value of each wheel;
Vehicle behavior basic value calculation means for calculating the basic value of the vehicle longitudinal force and the basic value of the yaw moment, which are realized by the set driving force basic value of each wheel, as the basic value of the vehicle behavior;
Vehicle behavior error calculating means for calculating an error between the target value of the vehicle behavior and the calculated basic value of the vehicle behavior as an error of the vehicle behavior;
Driving force correction amount calculating means for calculating the driving force correction amount of each wheel for reducing the error of the calculated vehicle behavior;
Driving force target value determining means for determining a driving force target value of each wheel by the sum of the driving force basic value and the calculated driving force correction amount;
A driving force distribution device for a four-wheel independent drive vehicle, comprising: driving force control means for controlling the driving force of each wheel so as to obtain the determined driving force target value of each wheel.
四輪を独立に駆動可能な車両において、
車両の車両前後方向力の目標値、車両横方向力の目標値を車両挙動の目標値として決定する車両挙動目標値決定手段と、
各輪の駆動力基本値を設定する駆動力基本値設定手段と、
この設定された各輪の駆動力基本値によって実現する車両前後方向力の基本値,車両横方向力の基本値を車両挙動の基本値として演算する車両挙動基本値演算手段と、
前記車両挙動の目標値とこの演算された車両挙動の基本値との誤差を車両挙動の誤差として演算する車両挙動誤差演算手段と、
この演算された車両挙動の誤差を小さくする各輪の駆動力補正量を演算する駆動力補正量演算手段と、
前記駆動力基本値とこの演算された駆動力補正量との和で各輪の駆動力目標値を決定する駆動力目標値決定手段と、
この決定された各輪の駆動力目標値が得られるように各輪の駆動力を制御する各駆動力制御手段と
備えることを特徴とする四輪独立駆動車の駆動力配分装置。
In vehicles that can drive all four wheels independently,
Vehicle behavior target value determining means for determining a target value of the vehicle longitudinal force of the vehicle and a target value of the vehicle lateral force as a target value of the vehicle behavior;
Driving force basic value setting means for setting the driving force basic value of each wheel;
Vehicle behavior basic value calculation means for calculating the basic value of the vehicle longitudinal force realized by the set driving force basic value of each wheel and the basic value of the vehicle lateral force as the basic value of the vehicle behavior;
Vehicle behavior error calculating means for calculating an error between the target value of the vehicle behavior and the calculated basic value of the vehicle behavior as an error of the vehicle behavior;
Driving force correction amount calculating means for calculating the driving force correction amount of each wheel for reducing the error of the calculated vehicle behavior;
Driving force target value determining means for determining a driving force target value of each wheel by the sum of the driving force basic value and the calculated driving force correction amount;
A drive force distribution device for a four-wheel independent drive vehicle, comprising: drive force control means for controlling the drive force of each wheel so that the determined drive force target value of each wheel is obtained.
車両横方向力をゼロから所定量の誤差の範囲内で変化させる各輪の駆動力再補正量を演算する駆動力再補正量演算手段と、
前記駆動力目標値にこの演算された駆動力再補正量を加算した値を、改めて前記駆動力目標値として再設定する駆動力目標値再設定手段と
を備えることを特徴とする請求項8に記載の四輪独立駆動車の駆動力配分装置。
A driving force recorrection amount calculating means for calculating a driving force recorrection amount of each wheel that changes the vehicle lateral force within a range of a predetermined amount of error from zero;
9. A driving force target value resetting unit for resetting a value obtained by adding the calculated driving force recorrection amount to the driving force target value as the driving force target value again. The drive power distribution device for the four-wheel independent drive vehicle described.
前記駆動力再補正量演算手段は、
各輪の駆動力最大値を設定する駆動力最大値設定手段と、
前記駆動力目標値とこの設定された駆動力最大値とに基づいて、ゼロから前記所定量の範囲内で車両横方向力を変化させることが可能な量を演算する車両横方向力変化可能量演算手段と、
車両横方向力をこの量変化させる各輪の駆動力補正量を前記駆動力再補正量として設定する駆動力再補正量設定手段と
を有することを特徴とする請求項10に記載の四輪独立駆動車の駆動力配分装置。
The driving force recorrection amount calculating means includes
Driving force maximum value setting means for setting the driving force maximum value of each wheel;
A vehicle lateral force changeable amount that calculates an amount by which the vehicle lateral force can be changed within a range of the predetermined amount from zero based on the driving force target value and the set driving force maximum value. Computing means;
11. The four-wheel independent vehicle according to claim 10, further comprising: a driving force recorrection amount setting unit that sets a driving force correction amount of each wheel that changes the lateral force of the vehicle as the driving force recorrection amount. Driving force distribution device for driving vehicles.
ヨーモーメントをゼロから所定量の範囲内で変化させる各輪の駆動力再補正量を演算する駆動力再補正量演算手段と、
前記駆動力目標値にこの演算された駆動力再補正量を加算した値を、改めて前記駆動力目標値として再設定する駆動力目標値再設定手段と
を備えることを特徴とする請求項9に記載の四輪独立駆動車の駆動力配分装置。
Driving force recorrection amount calculating means for calculating a driving force recorrection amount of each wheel that changes the yaw moment within a range of a predetermined amount from zero;
The driving force target value resetting means which resets a value obtained by adding the calculated driving force recorrection amount to the driving force target value as the driving force target value again. The drive power distribution device for the four-wheel independent drive vehicle described.
前記駆動力再補正量演算手段は、
各輪の駆動力最大値を設定する駆動力最大値設定手段と、
前記駆動力目標値とこの設定された駆動力最大値とに基づいて、ゼロから前記所定量の範囲内でヨーモーメントを変化させることが可能な量を演算するヨーモーメント変化可能量演算手段と、
ヨーモーメントをこの量変化させる各輪の駆動力補正量を前記駆動力再補正量として設定する駆動力再補正量設定手段と
を有することを特徴とする請求項12に記載の四輪独立駆動車の駆動力配分装置。
The driving force recorrection amount calculating means includes
Driving force maximum value setting means for setting the driving force maximum value of each wheel;
Based on the driving force target value and the set driving force maximum value, a yaw moment changeable amount calculating means for calculating an amount capable of changing the yaw moment within a range of the predetermined amount from zero;
The four-wheel independent drive vehicle according to claim 12, further comprising driving force recorrection amount setting means for setting a driving force correction amount of each wheel that changes the yaw moment as the driving force recorrection amount. Drive power distribution device.
JP2006005713A 2005-04-15 2006-01-13 Driving force distribution device for four-wheel independent drive vehicle Expired - Fee Related JP4892983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005713A JP4892983B2 (en) 2005-04-15 2006-01-13 Driving force distribution device for four-wheel independent drive vehicle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005117954 2005-04-15
JP2005117954 2005-04-15
JP2006005713A JP4892983B2 (en) 2005-04-15 2006-01-13 Driving force distribution device for four-wheel independent drive vehicle

Publications (2)

Publication Number Publication Date
JP2006315661A true JP2006315661A (en) 2006-11-24
JP4892983B2 JP4892983B2 (en) 2012-03-07

Family

ID=37536699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005713A Expired - Fee Related JP4892983B2 (en) 2005-04-15 2006-01-13 Driving force distribution device for four-wheel independent drive vehicle

Country Status (1)

Country Link
JP (1) JP4892983B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210392A (en) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd Driving force distribution device of four-wheel independent drive vehicle
JP2008230370A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Drive control device
JP2008230371A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Drive control device
JP2009035047A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Turning behavior control method and device for vehicle
JP2014036532A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Vehicular drive force control device
JP2016178758A (en) * 2015-03-19 2016-10-06 富士重工業株式会社 Vehicle control device and vehicle control method
US11529948B2 (en) * 2019-04-23 2022-12-20 GM Global Technology Operations LLC Architecture and methodology of limit handling intended driver command interpreter to achieve maximum lateral grip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133007A (en) * 1988-11-09 1990-05-22 Aisin Aw Co Ltd Motor-driven vehicle
JPH04146819A (en) * 1990-10-09 1992-05-20 Mitsubishi Motors Corp Drive force controller
JP2005020830A (en) * 2003-06-24 2005-01-20 Nissan Motor Co Ltd Yawing behavior of vehicle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133007A (en) * 1988-11-09 1990-05-22 Aisin Aw Co Ltd Motor-driven vehicle
JPH04146819A (en) * 1990-10-09 1992-05-20 Mitsubishi Motors Corp Drive force controller
JP2005020830A (en) * 2003-06-24 2005-01-20 Nissan Motor Co Ltd Yawing behavior of vehicle control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210392A (en) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd Driving force distribution device of four-wheel independent drive vehicle
JP2008230370A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Drive control device
JP2008230371A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Drive control device
JP2009035047A (en) * 2007-07-31 2009-02-19 Nissan Motor Co Ltd Turning behavior control method and device for vehicle
JP2014036532A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp Vehicular drive force control device
JP2016178758A (en) * 2015-03-19 2016-10-06 富士重工業株式会社 Vehicle control device and vehicle control method
US11529948B2 (en) * 2019-04-23 2022-12-20 GM Global Technology Operations LLC Architecture and methodology of limit handling intended driver command interpreter to achieve maximum lateral grip

Also Published As

Publication number Publication date
JP4892983B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
Yamaguchi et al. Adaptive control for virtual steering characteristics on electric vehicle using steer-by-wire system
CN107709085B (en) Vehicle attitude control device
US7845218B2 (en) Tire state estimator and tire state estimation method
US20180362022A1 (en) Systems and methods for holistic vehicle control with collaborative steering, electronic limited slip differential (elsd), powertrain and braking
JP4892983B2 (en) Driving force distribution device for four-wheel independent drive vehicle
Velenis et al. Steady-state cornering equilibria and stabilisation for a vehicle during extreme operating conditions
CN107848526B (en) Vehicle turning control device
Hashemi et al. Vehicle stability control: Model predictive approach and combined-slip effect
JP2011183904A (en) Vehicular motion controller
CN107848527B (en) Vehicle turning control device
JP2004249971A (en) Vehicle control method and vehicle control device
Chae et al. Dynamic handling characteristics control of an in-wheel-motor driven electric vehicle based on multiple sliding mode control approach
CN110239499B (en) Vehicle control device and vehicle control method
JP2008062687A (en) Driving force distribution controller for vehicle
Yim Integrated chassis control with four-wheel independent steering under constraint on front slip angles
JP5351814B2 (en) Vehicle motion control device
JP5540641B2 (en) Tire condition estimation device
JP4961751B2 (en) Vehicle driving force distribution device
CN117644775A (en) Torque vector control method and device, storage medium and vehicle
Chen et al. Robust vehicle longitudinal motion control subject to in-wheel-motor driving torque variations
Antunes et al. Torque vectoring for a formula student prototype
JP4844148B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP4918787B2 (en) Driving force distribution device for four-wheel independent drive vehicle
JP5071154B2 (en) Vehicle attitude control device and vehicle attitude control method
JPH1178826A (en) Controller for assisting driving operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees