JP6079356B2 - Control device for each wheel independent drive cart - Google Patents

Control device for each wheel independent drive cart Download PDF

Info

Publication number
JP6079356B2
JP6079356B2 JP2013063648A JP2013063648A JP6079356B2 JP 6079356 B2 JP6079356 B2 JP 6079356B2 JP 2013063648 A JP2013063648 A JP 2013063648A JP 2013063648 A JP2013063648 A JP 2013063648A JP 6079356 B2 JP6079356 B2 JP 6079356B2
Authority
JP
Japan
Prior art keywords
wheel
angular velocity
control
command
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013063648A
Other languages
Japanese (ja)
Other versions
JP2014192930A (en
Inventor
裕吾 只野
裕吾 只野
野村 昌克
昌克 野村
崇伸 吉田
崇伸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2013063648A priority Critical patent/JP6079356B2/en
Publication of JP2014192930A publication Critical patent/JP2014192930A/en
Application granted granted Critical
Publication of JP6079356B2 publication Critical patent/JP6079356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車輪(4輪ないし複数輪)の各輪が独立して回転する各輪独立駆動台車に係り、特に、各輪協調制御に関する。   The present invention relates to a wheel independent drive carriage in which each wheel (four wheels or a plurality of wheels) rotates independently, and more particularly, to each wheel cooperative control.

従来の鉄道車両駆動用台車は左右の車輪が軸で結合されており、1つの電動機により左右車輪を一括して駆動する構成を採るのが一般的であった。この構成では左右の車輪回転角速度が一致するが、曲線通過時はレール長の差により曲線の内側と外側で進行距離が異なる。このレール長の差の影響を吸収するために、レールと接触する車輪踏面に勾配を付けて、接触位置における車輪回転半径が曲線内側で小さく、曲線外側で大きくなるようにしている。   A conventional railcar driving carriage has a structure in which left and right wheels are coupled by a shaft, and the left and right wheels are collectively driven by a single electric motor. In this configuration, the left and right wheel rotational angular velocities match, but the traveling distance differs between the inside and outside of the curve due to the difference in rail length when passing through the curve. In order to absorb the influence of the difference in rail length, a gradient is given to the wheel tread that comes into contact with the rail so that the wheel turning radius at the contact position is small inside the curve and large outside the curve.

しかしながら、急曲線になると上記の踏面勾配のみではレール長の差を吸収できずに、車輪のフランジ接触やレールとのすべりを引き起こす。その結果、振動,騒音,レール・車輪の磨耗を増大させる。   However, if it becomes a steep curve, the difference in rail length cannot be absorbed only by the above-mentioned tread surface gradient, and the flange contact of the wheel and the slip with the rail are caused. As a result, vibration, noise, and wear of rails and wheels are increased.

それに対し、左右車輪間の結合軸をなくして各輪に電動機を設置し、それぞれ独立に回転駆動させることが可能な各輪独立駆動台車の構成が検討されている。この各輪独立駆動台車は、左右車輪回転角速度を個別の電動機で任意に制御できるため、曲線通過時の走行性能向上とともに、結合軸をなくすことによる低床化・省スペース化が期待できる。   On the other hand, the configuration of each wheel independent drive cart that can eliminate the connecting shaft between the left and right wheels and install an electric motor on each wheel and independently rotate the wheel can be studied. Since each wheel independent drive bogie can arbitrarily control the rotational angular velocity of the left and right wheels with individual electric motors, it can be expected to improve running performance when passing a curve and to reduce floor space and space by eliminating the coupling shaft.

一方で、各輪の電動機を協調して制御しなければスムースな走行ができない恐れもあり、その制御手法が重要な課題となる。特許文献1および特許文献2では、各輪の回転角速度を検出し、前輪左右と後輪左右のそれぞれで左右の回転角速度差を求め、左右の回転角速度差が任意の値となるように制御する方式を提案している。例えば、直線通過時は左右の回転角速度差がゼロとなるように制御することで、従来の結合軸がある構成と同様に左右の回転角速度を一致させ、直線走行時の安定性を向上させている。   On the other hand, if the electric motors of the wheels are not controlled in a coordinated manner, smooth running may not be possible, and the control method becomes an important issue. In Patent Document 1 and Patent Document 2, the rotational angular velocity of each wheel is detected, the difference between the left and right rotational angular velocities is determined for each of the front wheel left and right and the rear wheel left and right, and control is performed so that the left and right rotational angular velocity difference becomes an arbitrary value. A method is proposed. For example, by controlling so that the difference between the left and right rotational angular velocities is zero when passing through a straight line, the left and right rotational angular velocities are made to coincide with each other in the same manner as in the configuration with the conventional coupling shaft, thereby improving the stability during linear travel. Yes.

また、曲線通過時は曲線半径に応じて任意の左右回転角速度差を持つように角速度制御を行い、その結果生じる補正卜ルクを駆動トルクに加算・減算して円滑な走行を可能としている。   Further, when passing through the curve, the angular velocity control is performed so as to have an arbitrary left-right rotational angular velocity difference according to the curve radius, and the resulting correction torque is added to or subtracted from the driving torque to enable smooth running.

特開平08−242506号公報Japanese Patent Laid-Open No. 08-242506 特開平09−233613号公報JP 09-233613 A

しかしながら、 図1に示す各輪独立駆動台車で走行(台車速度や進行方向)を制御する場合、モータは台車に拘束されているため、各輪のモータによる走行制御が互いに干渉する。その結果、各輪の角速度制御が、他の車輪のモータにおける角速度制御の影響を受け、制御性能の低下が生じることとなる。   However, when the traveling (trolley speed and traveling direction) is controlled by each wheel independent drive cart shown in FIG. 1, the motor is restrained by the cart, so the traveling control by the motor of each wheel interferes with each other. As a result, the angular velocity control of each wheel is affected by the angular velocity control in the motors of the other wheels, and the control performance is degraded.

また、台車に加えられる力に対して、回転を伴わない運動と、回転運動の伝達特性は異なるため、それぞれに関して 制御系の設計を行うことが望ましいが、通常各輪に対して同じ角速度制御系となる。そのため、不安定になりやすい方の特性に合わせて制御系を調整することになり、最適な制御特性を得ることが困難であった。   In addition, since the transfer characteristics of the rotational motion and the motion without rotation differ from the force applied to the carriage, it is desirable to design a control system for each, but usually the same angular velocity control system for each wheel It becomes. Therefore, the control system is adjusted in accordance with the characteristic that tends to be unstable, and it is difficult to obtain optimum control characteristics.

以上示したようなことから、各輪独立駆動台車の制御装置において各輪のモータによる走行制御が互い干渉することを抑制し、また、それぞれの運転モードに適切な制御系を構築することが課題となる。   As described above, in the control device for each wheel independent drive cart, it is a problem to suppress the traveling control by the motors of each wheel from interfering with each other and to construct a control system suitable for each operation mode. It becomes.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、 各輪をそれぞれ独立して制御する各輪独立駆動台車の制御装置であって、各輪の検出角速度を変換行列TXにより、車両全体の運動と各車輪間の相対的な運動とを示す制御検出角速度に変数変換する検出角速度変換器と、前記制御検出角速度に基づいて算出された、車両全体の運動と、各車輪間の相対的な運動と、に寄与する制御トルク指令を、変換行列TXにより、各輪のトルク指令に逆変換するトルク指令変換器と、を備えたことを特徴とする。 The present invention has been devised in view of the above-described conventional problems. One aspect of the present invention is a control device for each wheel independent drive carriage that controls each wheel independently, and the detected angular velocity of each wheel is determined. the transformation matrix T X, and the angular velocity detected converter for variable transformation to control angular velocity detected indicating the relative movement between the movement and the wheels entire vehicle, which is calculated on the basis of the control angular velocity detected, the entire vehicle movement When the relative movement between the wheels, which contribute control torque command to, the transformation matrix T X, characterized by comprising a torque command converter for inverse conversion to a torque command for each wheel.

また、前記変換行列TXは下記(1)式としても良い。 Further, the transformation matrix T X may be expressed by the following equation (1).

Figure 0006079356
Figure 0006079356

さらに、前記制御検出角速度は、4輪の平均角速度と、前輪平均角速度と後輪平均角速度の差と、右輪平均角速度と左輪平均角速度の差と、右輪と左輪の差角速度の前後差と、前記制御トルク指令は、4輪の合計トルクと、前輪合計トルクと後輪合計トルクの差と、右輪合計トルクと後輪合計トルクの差と、右輪と左輪の差トルクの前後差と、してもよい。   Further, the control detected angular velocity includes an average angular velocity of the four wheels, a difference between the average angular velocity of the front wheels and the average angular velocity of the rear wheels, a difference between the average angular velocity of the right wheel and the average angular velocity of the left wheel, and a difference between the front and rear of the differential angular velocity of the right wheel and the left wheel. The control torque command includes the total torque of the four wheels, the difference between the front wheel total torque and the rear wheel total torque, the difference between the right wheel total torque and the rear wheel total torque, and the difference between the front and rear of the difference torque between the right wheel and the left wheel. , You may.

また、角速度制御器により、制御角速度指令と制御検出角速度との偏差に基づき角速度制御を行い、制御トルク指令を演算しても良い。   Further, the angular velocity controller may perform angular velocity control based on the deviation between the control angular velocity command and the control detected angular velocity, and calculate the control torque command.

さらに、角速度指令発生器により、各輪に対する角速度指令を前記(1)式の変換行列に基づいて、制御角速度指令に変換しても良い。   Furthermore, the angular velocity command generator may convert the angular velocity command for each wheel into a control angular velocity command based on the conversion matrix of the equation (1).

また、他の態様として、前記角速度制御器は、4輪の平均角速度と、右輪平均角速度と左輪平均角速度の差は、角速度制御を行わず、前輪平均角速度と後輪平均角速度の差と、右輪と左輪の差角速度の前後差のみ角速度制御を行い、前記角速度制御器の出力に対し、運転手の操作である4輪の合計トルクと、右輪合計トルクと左輪合計トルクの差と、を加算した値を制御トルク指令とすることを特徴とする。   Further, as another aspect, the angular velocity controller includes an average angular velocity of four wheels, a difference between an average angular velocity of a right wheel and an average angular velocity of a left wheel, without performing angular velocity control, and a difference between an average angular velocity of a front wheel and an average angular velocity of a rear wheel, The angular velocity control is performed only for the difference in angular velocity between the right wheel and the left wheel, and the difference between the total torque of the four wheels as the driver's operation and the right wheel total torque and the left wheel total torque with respect to the output of the angular speed controller, A value obtained by adding is used as a control torque command.

さらに、他の態様として、前記角速度制御器は、制御角速度指令を0として入力することを特徴とする。   Furthermore, as another aspect, the angular velocity controller inputs a control angular velocity command as zero.

本発明の各輪独立駆動台車の制御装置によれば、各輪のモータによる走行制御が互いに干渉することを抑制し、また、それぞれの運転モードに適切な制御系を構築することが可能となる。   According to the control device for each wheel independently driven carriage of the present invention, it is possible to suppress the traveling control by the motors of each wheel from interfering with each other and to construct a control system suitable for each operation mode. .

実施形態1〜3の電動車モデルを示す側面図および下面図である。It is the side view and bottom view which show the electric vehicle model of Embodiment 1-3. 実施形態1における各輪独立駆動台車の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of each wheel independent drive trolley | bogie in Embodiment 1. 実施形態2における各輪独立駆動台車の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of each wheel independent drive trolley | bogie in Embodiment 2. 実施形態3における各輪独立駆動台車の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of each wheel independent drive trolley | bogie in Embodiment 3. 本願発明の電動車モデルを示す側面図および下面図である。It is the side view and bottom view which show the electric vehicle model of this invention. 制御トルク指令と4輪の検出角速度の伝達特性を示す図である。It is a figure which shows the transmission characteristic of control torque instruction | command and the detected angular velocity of four wheels.

[実施形態1]
図1は、本実施形態1における電動車モデルを示す側面図および下面図である。図1に示すように、各輪独立駆動台車は、各輪2a〜2dに直結したモータMa〜Mdのトルクにより、各輪2a〜2dをそれぞれ独立して駆動させる。そして、このモータMa〜Mdのトルクを、図2に示す制御装置10により制御する。
[Embodiment 1]
FIG. 1 is a side view and a bottom view showing the electric vehicle model according to the first embodiment. As shown in FIG. 1, each wheel independent drive cart drives each wheel 2a-2d independently by the torque of motors Ma-Md directly connected to each wheel 2a-2d. And the torque of these motors Ma-Md is controlled by the control apparatus 10 shown in FIG.

制御装置10は、図2に示すように、角速度指令発生器11,角速度制御器12,トルク指令変換器13,インバータ14,検出角速度変換器15と、を備えている。   As shown in FIG. 2, the control device 10 includes an angular velocity command generator 11, an angular velocity controller 12, a torque command converter 13, an inverter 14, and a detected angular velocity converter 15.

制御装置10では、下記(1)式を用いて変数変換を行う。   The control device 10 performs variable conversion using the following equation (1).

Figure 0006079356
Figure 0006079356

検出角速度変換器15は、台車1(P(s))における4輪の検出角速度[ωFR,ωFL,ωRR,ωRLTを、下記(2)式のように変換行列TXを用いて、制御検出角速度[ωW,dωW,ΔωW,δωWTに変換する。 The detected angular velocity converter 15 converts the detected angular velocities [ω FR , ω FL , ω RR , ω RL ] T of the four wheels in the cart 1 (P (s)) into a transformation matrix T X as shown in the following equation (2). And converted into control detected angular velocities [ω W , dω W , Δω W , δω W ] T.

Figure 0006079356
Figure 0006079356

ただし、4輪の検出角速度はそれぞれ、ωFR:前右輪角速度,ωFL:前左輪角速度,ωRR:後右輪角速度,ωRL:後左輪角速度に、 制御検出角速度はそれぞれ、ωW:4輪の平均角速度,dωW:前輪平均角速度と後輪平均角速度の差,ΔωW:右輪平均角速度と左輪平均角速度の差,δωW:右輪と左輪の差角速度の前後差に対応する。この制御角速度[ωW,dωW,ΔωW,δωWTを制御対象として、図2に示すように角速度制御系を構成する。 However, the detected angular velocities of the four wheels are ω FR : front right wheel angular velocity, ω FL : front left wheel angular velocity, ω RR : rear right wheel angular velocity, ω RL : rear left wheel angular velocity, and control detected angular velocity respectively ω W : Corresponds to the average angular velocity of the four wheels, dω W : difference between the average angular velocity of the front wheels and the average angular velocity of the rear wheel, Δω W : difference between the average angular velocity of the right wheel and the left wheel, and δω W : difference between the front and rear of the differential angular velocity of the right and left wheels . With this control angular velocity [ω W , dω W , Δω W , δω W ] T as a control object, an angular velocity control system is configured as shown in FIG.

角速度指令は、各輪に対する角速度指令[ωFR *,ωFL *,ωRR *,ωRL *Tであっても、制御角速度としての制御角速度指令[ωW *,dωW *,ΔωW *,δωW *Tであっても良いが、各輪に対する角速度指令[ωFR *,ωFL *,ωRR *,ωRL *Tの場合は、角速度指令発生器11において変換行列TXにより、下記(3)式のように制御角速度指令[ωW *,dωW *,ΔωW *,δωW *Tに変換する。 Even if the angular velocity command is the angular velocity command [ω FR * , ω FL * , ω RR * , ω RL * ] T for each wheel, the control angular velocity command [ω W * , dω W * , Δω W as the control angular velocity is used. * , Δω W * ] T , but in the case of angular velocity commands [ω FR * , ω FL * , ω RR * , ω RL * ] T for each wheel, the transformation matrix T in the angular velocity command generator 11 X is converted into control angular velocity commands [ω W * , dω W * , Δω W * , δω W * ] T as shown in the following equation (3).

Figure 0006079356
Figure 0006079356

角速度制御器12では、制御角速度指令[ωW *,dωW *,ΔωW *,δωW *Tと制御検出角速度[ωW,dωW,ΔωW,δωWTとの角速度偏差に応じて制御トルク指令[TW *,dTW *,ΔTW *,δTW *Tの演算を行い、さらに、トルク指令変換器13において変換行列TXにより下記(4)式のように制御トルク指令[TW *,dTW *,ΔTW *,δTW *Tから各輪のトルク指令[TFR *,TFL *,TRR *,TRL *]を演算する。 In the angular velocity controller 12, the angular velocity deviation between the control angular velocity command [ω W * , dω W * , Δω W * , δω W * ] T and the control detected angular velocity [ω W , dω W , Δω W , δω W ] T is set. Accordingly, the control torque command [T W * , dT W * , ΔT W * , δT W * ] T is calculated, and the torque command converter 13 controls the following equation (4) using the conversion matrix T X. torque command [T W *, dT W * , ΔT W *, δT W *] torque command for each wheel from T [T FR *, T FL *, T RR *, T RL *] computes a.

Figure 0006079356
Figure 0006079356

この各輪のトルク指令[TFR *,TFL *,TRR *,TRL *]をトルク指令値として、インバータ14(Q(s))により台車1のモータMa〜Mdを制御する。 The motors Ma to Md of the carriage 1 are controlled by the inverter 14 (Q (s)) using the torque commands [T FR * , T FL * , T RR * , T RL * ] for each wheel as torque command values.

ここで、TFR:前右輪トルク,TFL:前左輪トルク,TRR:後右輪トルク,TRL:後左輪トルク,TW:4輪の合計トルク,dTW:前輪合計トルクと後輪合計トルクの差,ΔTW:右輪合計トルクと左輪合計トルクの差,δTW:右輪と左輪の差トルクの前後差に対応する。また、*は指令値を示す。 Here, T FR : front right wheel torque, T FL : front left wheel torque, T RR : rear right wheel torque, T RL : rear left wheel torque, T W : total torque of four wheels, dT W : front wheel total torque and rear Difference in total wheel torque, ΔT W : difference between right wheel total torque and left wheel total torque, δT W : corresponding to difference in front and rear of difference torque between right wheel and left wheel. * Indicates a command value.

図2に示す制御装置10は、各制御角速度指令[ωW *,dωW *,ΔωW *,δωW *Tに対しそれぞれに適した構成と値を設定する。例えば、角速度制御器12(C(s))を下記(5)式とすれば、台車の速度(4輪の平均角速度ωW)と進行方向(右輪平均角速度と左輪平均角速度の差ΔωW)に関してはPI制御(K1P+K1I/s,K3P+K3I/s)、他はP制御(K2,K4)とすることにより、車両全体の運動(台車速度と進行方向)を速度指令と一致させると共に、車輪間の相対的な運動(前輪平均角速度と後輪平均角速度の差dωWと、右輪と左輪の差角速度の前後差δωW)を安定化させることができる。 The control device 10 shown in FIG. 2 sets a configuration and a value suitable for each control angular velocity command [ω W * , dω W * , Δω W * , δω W * ] T. For example, if the angular velocity controller 12 (C (s)) is represented by the following equation (5), the speed of the carriage (average angular velocity ω W of the four wheels) and the traveling direction (difference Δω W between the average angular velocity of the right wheel and the average angular velocity of the left wheel) ) For PI control (K 1P + K 1I / s, K 3P + K 3I / s), and for others, P control (K 2 , K 4 ) is used to speed the movement of the entire vehicle (cart speed and traveling direction). together match the command, (the difference d [omega W of average front wheel angular velocity and the rear wheel average velocity, [delta] [omega W the differential of the difference angular velocity of the right wheel and left wheel) relative motion between the wheels can be stabilized.

Figure 0006079356
Figure 0006079356

以上示したように、本実施形態1における各輪独立駆動台車の制御装置によれば、運転モードに対応するように制御系の変数を変換して制御することにより、各輪のモータによる走行制御が互いに干渉することを抑制し、また、それぞれの運転モードに適切な制御系を構築し、高性能な角速度制御を行うことが可能となる。   As described above, according to the control device for each wheel independently driven carriage in the first embodiment, the driving control by the motor of each wheel is performed by converting the control system variable so as to correspond to the operation mode. Can be prevented from interfering with each other, and a control system suitable for each operation mode can be constructed to perform high-performance angular velocity control.

[実施形態2]
図3は、本実施形態2における各輪独立駆動台車の制御装置を示す構成図である。以下、実施形態1との相違点について説明する。
[Embodiment 2]
FIG. 3 is a block diagram showing a control device for each wheel independent drive carriage in the second embodiment. Hereinafter, differences from the first embodiment will be described.

本実施形態2は、運転手が車を操縦することを想定しており、運転手は車両全体の動き(加速度と進行方向)を制御するために、4輪の合計トルク指令TW *と、右輪合計トルクと左輪合計トルクの差指令ΔTW *を角速度制御器12の出力に加える。 In the second embodiment, it is assumed that the driver steers the vehicle. In order to control the movement (acceleration and traveling direction) of the entire vehicle, the driver controls the total torque command T W * for the four wheels, A difference command ΔT W * between the right wheel total torque and the left wheel total torque is added to the output of the angular velocity controller 12.

角速度制御器12では車両全体における4輪の平均角速度ωWと左輪平均角速度と右輪平均角速度の差ΔωWに関しては角速度制御を行わず、車輪間の相対的な運動(前輪平均角速度と後輪平均角速度との差dωWと、右輪と左輪の差角速度の前後差δωW)のみ角速度制御を行い、車輪間の相対的な運動を安定させる。なお、本実施形態2では制御角速度指令を0とする。 この場合、角速度制御器12(C(s))を下記(6)式とする。 The angular velocity controller 12 does not perform angular velocity control with respect to the average angular velocity ω W of the four wheels and the difference Δω W between the average angular velocity of the left wheel and the right wheel in the entire vehicle, but relative movement between the wheels (the average angular velocity of the front wheel and the rear wheel). Only the difference dω W with respect to the average angular velocity and the difference in angular velocity between the right wheel and the left wheel δω W ) are controlled to stabilize relative motion between the wheels. In the second embodiment, the control angular velocity command is set to zero. In this case, the angular velocity controller 12 (C (s)) is expressed by the following equation (6).

Figure 0006079356
Figure 0006079356

以上示したように、本実施形態2における各輪独立駆動台車の制御装置によれば、実施形態1の作用効果に加え、車両全体の運動(4輪の合計トルク指令TW *と、右輪合計トルクと左輪合計トルクの差指令ΔTW *)は運転手に任せ、車輪間の相対的な運動(前輪平均角速度と後輪平均角速度との差dωWと、右輪と左輪の差角速度の前後差δωW)を安定させることが可能となる。 As described above, according to the control device for each wheel independently driven carriage in the second embodiment, in addition to the effects of the first embodiment, the movement of the entire vehicle (the total torque command T W * of the four wheels, the right wheel, The difference command ΔT W * ) between the total torque and the left wheel total torque is left to the driver, and the relative motion between the wheels (the difference dω W between the average angular velocity of the front wheels and the average angular velocity of the rear wheels, the difference angular velocity of the right wheel and the left wheel) It is possible to stabilize the front-to-back difference δω W ).

[実施形態3]
図4は本実施形態3における各輪独立駆動台車の制御装置を示す構成図である。
[Embodiment 3]
FIG. 4 is a block diagram showing a control device for each wheel independent drive carriage in the third embodiment.

実施形態2では常に角速度指令を0として、例えば曲線通過時は、トルク指令変換器13の入力に対して右輪合計トルクと左輪合計トルクの差指令ΔTW *で左右のトルク差を与えて滑らかな曲線走行を実現している。それに対し、本実施形態3では、曲線に応じて角速度制御器12の出力に対し、右輪合計トルクと左輪合計トルクのトルク差指令ΔTW *を与えるのみでなく、角速度指令発生器11においても曲線通過状況に適した角速度指令値を与える。角速度指令発生器11の構成は実施形態1と同様であり、曲線情報に応じて円滑な走行に適した角速度指令値[ωW *,dωW *,ΔωW *,δωW *]を生成する。その他の構成は実施形態2と同様である。 In the second embodiment, the angular velocity command is always set to 0. For example, when passing a curve, the difference between the right and left torques is given by the difference command ΔT W * between the right wheel total torque and the left wheel total torque with respect to the input of the torque command converter 13 to smooth Realizes a curved run. On the other hand, in the third embodiment, not only the torque difference command ΔT W * between the right wheel total torque and the left wheel total torque is given to the output of the angular velocity controller 12 according to the curve, but also in the angular velocity command generator 11. The angular velocity command value suitable for the curve passing situation is given. The configuration of the angular velocity command generator 11 is the same as that of the first embodiment, and generates angular velocity command values [ω W * , dω W * , Δω W * , δω W * ] suitable for smooth running according to the curve information. . Other configurations are the same as those of the second embodiment.

本実施形態3における各輪独立駆動台車の制御装置によれば、実施形態2の作用効果に加え、走行状態(曲線等の路面状況や車両速度など)に適した各輪の制御角速度指令[ωW *,dωW *,ΔωW *,δωW *]とトルク指令[TW *,dTW *,ΔTW *,δTW *]を与えることができるため、より円滑な走行を実現することが可能となる。 According to the control device for each wheel independently driven carriage in the third embodiment, in addition to the effects of the second embodiment, the control angular velocity command [ω for each wheel suitable for the running state (road surface condition such as a curve, vehicle speed, etc.). W * , dω W * , Δω W * , δω W * ] and torque command [T W * , dT W * , ΔT W * , δT W * ] can be given, so that smoother running can be realized. Is possible.

[本願発明の原理]
ここで、本願発明の原理について説明する。
[Principle of the present invention]
Here, the principle of the present invention will be described.

図5に示す各輪独立駆動台車で走行(台車速度,進行方向)を制御する場合、モータは台車1に拘束されているため、各輪の走行制御が互いに干渉 し、各輪の角速度制御が他の車輪における角速度制御の影響を受けることとなる。また、台車1に取り付けられる4輪(2a〜2d)は幾何学的に対称な構成になるため、各輪の角速度制御は同じ構成となるのが普通である。   When the traveling (trolley speed, traveling direction) is controlled by each wheel independent drive cart shown in FIG. 5, since the motor is restrained by the cart 1, the traveling control of each wheel interferes with each other, and the angular velocity control of each wheel is controlled. It will be influenced by angular velocity control in other wheels. Further, since the four wheels (2a to 2d) attached to the carriage 1 have a geometrically symmetrical configuration, the angular velocity control of each wheel is usually the same configuration.

本願発明では、運動モードに対応するように制御系の変数を変換して制御を考えることにより、各輪における角速度制御間の干渉をなくし、また、それぞれの運転モードに適切な制御系を構築することで、高性能な角速度制御を可能とする。   In the present invention, by considering the control by changing the variables of the control system so as to correspond to the motion mode, interference between the angular velocity control in each wheel is eliminated, and a control system suitable for each driving mode is constructed. This enables high-performance angular velocity control.

ここで、各輪(4輪)独立駆動台車の運動方程式は以下の様に表すことができる。ただし、運動は2次元とし、上下の運動は考えない。また、車輪で発生する駆動力は車両速度と車輪周速度によって決まり、例えば前右輪では進行方向(x方向)に対して下記(7−1)式、y方向の力は下記(7−2)式となる(KX,KY:定数)。 Here, the equation of motion of each wheel (four wheels) independent drive cart can be expressed as follows. However, the movement is two-dimensional and does not consider vertical movement. The driving force generated at the wheel is determined by the vehicle speed and the wheel peripheral speed. For example, the front right wheel has the following equation (7-1) with respect to the traveling direction (x direction), and the y direction force is (7-2) ) (K X , K Y : constants).

Figure 0006079356
Figure 0006079356

図5に示す電動車モデルに対して運動方程式をたて、モータトルクとモータ回転角速度の関係が分かり易いように整理 すると、下記(8)〜(14)式となる。   Formulating the equation of motion for the electric vehicle model shown in FIG. 5 and arranging it so that the relationship between the motor torque and the motor rotational angular velocity is easy to understand, the following equations (8) to (14) are obtained.

4輸の平均角速度ωW,4輪の中心位置・速度(x成分)xW,uW,台車重心位置・速度(x成分)xC,uCに関する方程式は下記(8)式のようになり、4輪の平均角速度ωWは4輪の合計トルクTWにのみによって決定される。 4 transportation average angular velocity omega W, the center position and velocity (x component) of the four-wheel x W of, u W, carriage center of gravity position and velocity (x component) x C, equation for u C is as follows (8) Thus, the average angular velocity ω W of the four wheels is determined only by the total torque T W of the four wheels.

Figure 0006079356
Figure 0006079356

前輪平均角速度と後輪平均角速度の差dωW,前後軸差左右平均位置・速度(x成分)dxW,duWに関する方程式は下記(9)式となり、前輪平均角速度と後輪平均角速度の差dωWは前輪合計トルクと後輪合計トルクの差dTWによって決定される。 The difference between the front wheel average angular velocity and the rear wheel average angular velocity dω W , the front / rear axis difference left / right average position / velocity (x component) dx W , du W is the following equation (9), and the difference between the front wheel average angular velocity and the rear wheel average angular velocity: dω W is determined by the difference dT W between the front wheel total torque and the rear wheel total torque.

Figure 0006079356
Figure 0006079356

右輪平均角速度と左輪平均角速度の差ΔωW,4輪の中心位置・速度(y成分)yW,vW,台車重心位置・速度(y成分)yc,vc,4輪位置速度左右差の前後平均(x成分)ΔxW,ΔuW,台車ヨー角・角速度ηC,σCに関する方程式は下記(10)式となり、右輪平均角速度と左輪平均角速度の差ΔωWは右輪合計トルクと左輪合計トルクの差ΔTWによって決定される。 Difference of right wheel average angular velocity and left wheel average angular velocity Δω W , four wheel center position / speed (y component) y W , v W , cart center of gravity position / speed (y component) yc, vc, four wheel position speed left / right difference The equation for the longitudinal average (x component) Δx W , Δu W , cart yaw angle / angular velocity η C , σ C is the following equation (10), and the difference Δω W between the right wheel average angular velocity and the left wheel average angular velocity is the right wheel total torque It is determined by the difference ΔT W in the left wheel total torque.

Figure 0006079356
Figure 0006079356

右輪と左輪の差角速度の前後差δωW,左右位置・速度差の前後差(x成分)δxW,δuWに関する方程式は下記(11)式となり、右輪と左輪の差トルクの前後差δTWによって計算できる。 The difference between the right wheel and left wheel difference angular velocity δω W , and the difference between left and right position and speed difference (x component) δx W , δu W is the following equation (11). It can be calculated by δT W.

Figure 0006079356
Figure 0006079356

また、下記(12),(13),(14)式はモータ回転に関係しない方程式である。   The following equations (12), (13), and (14) are equations that are not related to motor rotation.

トルク前後輪差左右平均位置・速度(y成分)dyW,dvWに関する方程式を下記(12)式に示す。 Equations regarding the torque front and rear wheel difference left and right average position / speed (y component) dy W and dv W are shown in the following equation (12).

Figure 0006079356
Figure 0006079356

4輪位置速度左右差の前後平均(y成分)ΔyW,ΔvWに関する方程式を下記(13)式に示す。 The following equation (13) shows an equation related to the front-rear average (y component) Δy W , Δv W of the four wheel position speed left / right difference.

Figure 0006079356
Figure 0006079356

左右位置差・速度差の前後差(y成分)δyW,δvWに関する方程式を下記(14)式に示す。 The following equation (14) shows an equation relating to the longitudinal difference (y component) δy W , δv W of the lateral position difference / speed difference.

Figure 0006079356
Figure 0006079356

前記(8),(9),(10),(11)式から明らかなように、制御トルク指令[TW,dTW,ΔTW,δTWTに対して4輪の検出角速度[ωW,dωW,ΔωW,δωW]は1対1の関係となる。図6にこの関係を示めす。 As is apparent from the equations (8), (9), (10), and (11), the detected angular velocity [ω of the four wheels with respect to the control torque command [T W , dT W , ΔT W , δT W ] T W , dω W , Δω W , δω W ] have a one-to-one relationship. FIG. 6 shows this relationship.

以上のように、実施形態1の制御構成を適用することにより、それぞれの制御量に適した制御を実現することが可能となる。   As described above, by applying the control configuration of the first embodiment, it is possible to realize control suitable for each control amount.

また、実施形態2,3では、運転手が車両を操作する場合、車両全体の運動は運転手に任せ、前輪平均角速度と後輪平均角速度の差dωW,右輪と左輪の差角度の前後差δωWを制御することで安定した動作を実現することが可能となる。 In the second and third embodiments, when the driver operates the vehicle, the movement of the entire vehicle is left to the driver, before and after the difference dω W between the front wheel average angular velocity and the rear wheel average angular velocity, and the difference angle between the right wheel and the left wheel. By controlling the difference δω W , it is possible to realize a stable operation.

実施形態1〜3では、4輪における各輪独立駆動台車について説明したが、台車内の車輪数は4輪以外の複数輪であっても、数式等を適宜変更することにより、適用可能である。   In the first to third embodiments, each wheel independent drive bogie in four wheels has been described. However, even if the number of wheels in the bogie is a plurality of wheels other than four, it can be applied by appropriately changing mathematical formulas and the like. .

1…台車
2a〜2d…車輪
Ma〜Md…モータ
11…角速度指令発生器
12…角速度制御器
13…トルク指令変換器
14…インバータ
15…検出角速度変換器
DESCRIPTION OF SYMBOLS 1 ... Carriage 2a-2d ... Wheel Ma-Md ... Motor 11 ... Angular velocity command generator 12 ... Angular velocity controller 13 ... Torque command converter 14 ... Inverter 15 ... Detection angular velocity converter

Claims (6)

各輪をそれぞれ独立して制御する各輪独立駆動台車の制御装置であって、
各輪の検出角速度を変換行列1/4TXにより、車両全体の運動と各車輪間の相対的な運動とを示す制御検出角速度に変数変換する検出角速度変換器と、
前記制御検出角速度に基づいて算出された、車両全体の運動と各車輪間の相対的な運動とに寄与する制御トルク指令を、変換行列TXにより、各輪のトルク指令に逆変換するトルク指令変換器と、を備えたことを特徴とする各輪独立駆動台車の制御装置。
A control device for each wheel independent drive cart that controls each wheel independently,
A detection angular velocity converter for variable-converting the detected angular velocity of each wheel into a control detected angular velocity indicating a movement of the entire vehicle and a relative movement between the wheels by a conversion matrix 1 / 4T X ;
A torque command for inversely converting a control torque command, which is calculated based on the control detection angular velocity and which contributes to the motion of the entire vehicle and the relative motion between the wheels, to the torque command of each wheel using the conversion matrix T X. A control device for each wheel independent drive carriage, comprising: a converter;
前記変換行列TXは下記(1)式とし、
前記制御検出角速度は、4輪の平均角速度ωwと、前輪平均角速度と後輪平均角速度の差dωwと、右輪平均角速度と左輪平均角速度の差Δωwと、右輪と左輪の差角速度の前後差δωwと、を示し、
前記4輪の検出角速度は、前右輪角速度ωFRと、前左輪角速度ωFLと、後右輪角速度ωRRと、後左輪角速度ωRLと、を示し、
前記検出角速度変換器は、下記(2)式により、制御検出角速度を演算し、
前記制御トルク指令は、4輪合計のトルクTwと、前輪合計トルクと後輪合計トルクの差dTwと、右輪合計トルクと左輪合計トルクの差ΔTwと、右輪と左輪の差トルクの前後差δTwと、を示し、
前記各輪のトルク指令は、前右輪トルクTFRと、前左輪トルクTFLと、後右輪トルクTRRと、後左輪トルクTRLと、を示し、
前記トルク指令変換器は、下記(4)式により、各輪のトルク指令を演算することを特徴とする請求項1記載の各輪独立駆動台車の制御装置。
Figure 0006079356
Figure 0006079356
Figure 0006079356
The transformation matrix T X is represented by the following equation (1):
The control detection angular velocity includes four wheel average angular velocity ωw, front wheel average angular velocity and rear wheel average angular velocity dωw, right wheel average angular velocity and left wheel average angular velocity difference Δωw, and right and left wheel differential angular velocity difference. δωw,
The detected angular velocities of the four wheels indicate a front right wheel angular velocity ω FR , a front left wheel angular velocity ω FL , a rear right wheel angular velocity ω RR, and a rear left wheel angular velocity ω RL ,
The detected angular velocity converter calculates a control detected angular velocity according to the following equation (2):
The control torque command includes four wheel total torque Tw, front wheel total torque and rear wheel total torque difference dTw, right wheel total torque and left wheel total torque difference ΔTw, and right and left wheel differential torque difference. δTw,
The torque command for each wheel, shows the front right wheel torque T FR, front left wheel torque T FL, and the rear right wheel torque T RR, a left rear wheel torque T RL, a,
The said torque command converter calculates the torque command of each wheel by following (4) Formula, The control apparatus of each wheel independent drive trolley | bogie of Claim 1 characterized by the above-mentioned.
Figure 0006079356
Figure 0006079356
Figure 0006079356
制御角速度指令と制御検出角速度との偏差に基づき角速度制御を行い、制御トルク指令を演算する角速度制御器を備えたことを特徴とする請求項2記載の各輪独立駆動台車の制御装置。 3. The control apparatus for each wheel independent drive carriage according to claim 2, further comprising an angular velocity controller that performs angular velocity control based on a deviation between the control angular velocity command and the control detected angular velocity and calculates a control torque command. 各輪に対する角速度指令である前右輪角速度指令ω FR * ,前左輪角速度指令ω FL * ,後右輪角速度指令ω RR * ,後左輪角速度指令ω RL * を前記(1)式の変換行列に基づいて下記(3)式により、制御角速度指令である4輪の平均角速度指令ωw * と、前輪平均角速度と後輪平均角速度の差指令dωw * と、右輪平均角速度と左輪平均角速度の差指令Δωw * と、右輪と左輪の差角速度の前後差指令δωw * に変換する角速度指令発生器を備えたことを特徴とする請求項3記載の各輪独立駆動台車の制御装置。
Figure 0006079356
The front right wheel angular velocity command ω FR * , the front left wheel angular velocity command ω FL * , the rear right wheel angular velocity command ω RR * , and the rear left wheel angular velocity command ω RL * , which are angular velocity commands for each wheel , are converted into the conversion matrix of the above equation (1). On the basis of the following equation (3) , the control wheel speed command four wheel average angular speed command ωw * , front wheel average angular speed and rear wheel average angular speed difference command dωw * , right wheel average angular speed and left wheel average angular speed difference command Derutaomegadaburyu * a control device for each wheel independently driven truck according to claim 3, wherein further comprising an angular velocity command generator for converting the front and rear differential command Derutaomegadaburyu * difference angular velocity of the right wheel and the left wheel.
Figure 0006079356
前記角速度制御器は、
4輪の平均角速度と、右輪平均角速度と左輪平均角速度の差は、角速度制御を行わず、前輪平均角速度と後輪平均角速度の差と、右輪と左輪の差角速度の前後差のみ角速度制御を行い、
前記角速度制御器の出力に対し、運転手の操作である4輪の合計トルクと、右輪合計トルクと左輪合計トルクの差と、を加算した値を制御トルク指令とすることを特徴とする請求項3または4記載の各輪独立駆動台車の制御装置。
The angular velocity controller is
The average angular velocity of the four wheels, the difference between the average angular velocity of the right wheel and the average angular velocity of the left wheel is not controlled, and the angular velocity control is performed only for the difference between the average angular velocity of the front wheels and the average angular velocity of the rear wheels, and the difference between the right and left wheels. And
The control torque command is a value obtained by adding the total torque of the four wheels, which is a driver's operation, and the difference between the right wheel total torque and the left wheel total torque to the output of the angular velocity controller. Item 5. The control device for each wheel independent drive carriage according to Item 3 or 4.
前記角速度制御器は、制御角速度指令を0として入力することを特徴とする請求項5記載の各輪独立駆動台車の制御装置。   6. The control apparatus for each wheel independent drive carriage according to claim 5, wherein the angular velocity controller inputs a control angular velocity command as zero.
JP2013063648A 2013-03-26 2013-03-26 Control device for each wheel independent drive cart Expired - Fee Related JP6079356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013063648A JP6079356B2 (en) 2013-03-26 2013-03-26 Control device for each wheel independent drive cart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013063648A JP6079356B2 (en) 2013-03-26 2013-03-26 Control device for each wheel independent drive cart

Publications (2)

Publication Number Publication Date
JP2014192930A JP2014192930A (en) 2014-10-06
JP6079356B2 true JP6079356B2 (en) 2017-02-15

Family

ID=51838773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013063648A Expired - Fee Related JP6079356B2 (en) 2013-03-26 2013-03-26 Control device for each wheel independent drive cart

Country Status (1)

Country Link
JP (1) JP6079356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214938A1 (en) 2021-12-22 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating a vehicle with multiple driving axles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155674B2 (en) * 2018-07-04 2022-10-19 日産自動車株式会社 ELECTRIC VEHICLE CONTROL METHOD AND CONTROL DEVICE
CN110362112B (en) * 2019-07-22 2022-05-03 江南机电设计研究所 Introduction method for inhibiting engine interference
JP7444051B2 (en) 2020-12-25 2024-03-06 株式会社ダイフク Monitoring system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322417A (en) * 1994-05-24 1995-12-08 Mitsubishi Heavy Ind Ltd Controller of motor type multi-wheel-driven vehicle
JPH08242506A (en) * 1995-03-02 1996-09-17 Toshiba Corp Control device for left and right wheel independent drive system vehicle
JP4918787B2 (en) * 2006-01-17 2012-04-18 日産自動車株式会社 Driving force distribution device for four-wheel independent drive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214938A1 (en) 2021-12-22 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating a vehicle with multiple driving axles

Also Published As

Publication number Publication date
JP2014192930A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
RU2737640C1 (en) Electric vehicle electric motor control method and device
EP3078539B1 (en) Control device for electric vehicle and control method for electric vehicle
US10328803B2 (en) Control method and control device for electric vehicle
JP6616158B2 (en) Slip control device
WO2012111159A1 (en) Torque distribution device, torque distribution method, torque distribution value generation method, and program
JP6440971B2 (en) Drive control device with traction control function for left and right independent drive vehicles
JP6079356B2 (en) Control device for each wheel independent drive cart
JP6540716B2 (en) Vehicle control apparatus and vehicle control method
JP6237789B2 (en) Electric vehicle control device and electric vehicle control method
JP2016111834A (en) Braking/driving force control device of vehicle
JP5994705B2 (en) Each wheel motor control device for each wheel independent drive cart
JP2010028982A (en) Method for controlling electric vehicle and controller for the electric vehicle
JP6048264B2 (en) Control device for each wheel independent drive cart
JP2015195698A (en) Vehicle control device
JP5528154B2 (en) Electric vehicle control device
JP4727597B2 (en) Electric vehicle control device and electric vehicle control method
CN115243924A (en) Method for controlling electric vehicle and device for controlling electric vehicle
JP6880674B2 (en) Electric vehicle control method and electric vehicle control device
JP2008049996A (en) Motion controller of vehicle
WO2016125686A1 (en) Vehicle braking/driving torque control device
JP2022057096A (en) Vehicle control device
JP6425937B2 (en) Vehicle roll control device
JP5902041B2 (en) Electric vehicle speed control device
JP6664885B2 (en) Vehicle braking / driving torque control device
JP4495819B2 (en) Electric vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees