JP4727597B2 - Electric vehicle control device and electric vehicle control method - Google Patents

Electric vehicle control device and electric vehicle control method Download PDF

Info

Publication number
JP4727597B2
JP4727597B2 JP2007014551A JP2007014551A JP4727597B2 JP 4727597 B2 JP4727597 B2 JP 4727597B2 JP 2007014551 A JP2007014551 A JP 2007014551A JP 2007014551 A JP2007014551 A JP 2007014551A JP 4727597 B2 JP4727597 B2 JP 4727597B2
Authority
JP
Japan
Prior art keywords
torque
axis
force
load movement
movement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007014551A
Other languages
Japanese (ja)
Other versions
JP2008182827A (en
Inventor
道寛 山下
広 秦
正道 小笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2007014551A priority Critical patent/JP4727597B2/en
Publication of JP2008182827A publication Critical patent/JP2008182827A/en
Application granted granted Critical
Publication of JP4727597B2 publication Critical patent/JP4727597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電動車の各電動機を個別にトルク制御する電気車制御装置及び電気車制御方法に関する。   The present invention relates to an electric vehicle control device and an electric vehicle control method for individually controlling torque of each electric motor of an electric vehicle.

電車や電気機関車等の電気車(動力車)は車輪・レール間の接線力(粘着力ともいう。)によって加減速を行う。電動機の発生トルクが接線力以下の範囲であれば粘着走行がなされるが、接線力を超えた場合には空転又は滑走が生じる。   Electric vehicles (powered vehicles) such as trains and electric locomotives are accelerated and decelerated by tangential force (also referred to as adhesive force) between wheels and rails. If the generated torque of the electric motor is within the tangential force range, the cohesive running is performed, but if the tangential force is exceeded, idling or sliding occurs.

粘着性能の維持のためには接線力を求める必要があるが、一般的には、軸重を一定として設計した接線力係数を用いている。具体的には、軸重は、静止軸重Wに軸重移動量ΔWを加味した値(=W+ΔW)であるが、軸重移動量ΔWは、例えば以下の簡易式で算出された値が用いられている(特許文献1の(2)式と同じ。)。

Figure 0004727597
In order to maintain the adhesion performance, it is necessary to obtain a tangential force. Generally, a tangential force coefficient designed with a constant axial load is used. Specifically, the axle load is a value obtained by adding the axle load movement amount ΔW to the stationary axle load W (= W + ΔW). For the axle load movement amount ΔW, for example, a value calculated by the following simplified formula is used. (It is the same as the expression (2) in Patent Document 1).
Figure 0004727597

(1)式において正負の符号は進行方向と歯車回転方向との相対関係に応じて選択され、Fは当該軸の接線力[N]、hはレール面と牽引装置間距離[m]、lは台車内軸間距離[m]、Hはレール面と連結器間距離[m]、Lは前後台車牽引装置間距離[m]である。 In the equation (1), positive and negative signs are selected according to the relative relationship between the traveling direction and the gear rotation direction, F 1 is the tangential force [N] of the shaft, h is the distance between the rail surface and the traction device [m], l is the distance between the inner shafts of the carriage [m], H is the distance between the rail surface and the coupler [m], and L is the distance between the front and rear truck traction devices [m].

すなわち、(1)式の各諸元は車両に固有の固定値であるため、軸重移動量ΔWも固定値となる。そのため、軸重並びに接線力係数も固定値となる。
特開2005−295659号公報
That is, since each item of the equation (1) is a fixed value unique to the vehicle, the axial load movement amount ΔW is also a fixed value. Therefore, the axial weight and the tangential force coefficient are also fixed values.
JP 2005-295659 A

しかしながら、軸重移動量は電気車の力行/制動の際の各軸の電動機トルクや接線力に応じて変化する。従来の電動機トルク制御では、このリアルタイムに変化する軸重移動量が動的に考慮されていなかった。   However, the amount of axial load movement varies according to the motor torque and tangential force of each shaft during power running / braking of the electric vehicle. In conventional motor torque control, the amount of axial load movement that changes in real time is not dynamically taken into consideration.

この結果、力行/制動時には軸重移動が生じるため、例えば力行時においては動力車のうちの最も進行方向前方側の軸が空転し易く、制動時においては動力車のうちの最も進行方向後方側の軸が滑走し易くなる。空転又は滑走の発生限界は、電動車の走行性能限界とも言えるため、できるだけ空転又は滑走をさせずに電動機のトルク制御を行うことが望まれる。   As a result, shaft movement occurs during power running / braking. For example, during power running, the most forward shaft in the traveling direction of the power vehicle is likely to idle, and during braking, the rearmost traveling direction in the power vehicle. This makes it easier to slide. Since the occurrence limit of idling or gliding can be said to be the running performance limit of the electric vehicle, it is desirable to perform torque control of the electric motor without idling or gliding as much as possible.

本発明は上述した課題に鑑みて為されたものであり、その目的とするところは、リアルタイムに変化する軸重移動量を動的に考慮したトルク制御を実現することである。この目的を実現することにより、例えば力行/制動に関わらず各軸における空転又は滑走の発生確率を均一化させて、電気車の走行性能を向上させることが可能となる。   The present invention has been made in view of the above-described problems, and an object thereof is to realize torque control that dynamically considers the amount of axial load movement that changes in real time. By realizing this object, for example, it is possible to improve the running performance of the electric vehicle by equalizing the occurrence probability of idling or sliding on each axis regardless of power running / braking.

上述した課題を解決するための第1の発明は、
電動車の各電動機を個別にトルク制御する電気車制御装置であって、
各軸に対する所与の接線力係数及び各軸の加速度と所定の車両固有定数とに基づき、前記各軸の接線力係数を同等の値に補償させる所定の軸重移動補償トルク演算を行って、前記各電動機それぞれのトルク指令を算出するトルク指令演算手段を備え、
前記算出されたトルク指令に従って対応する電動機をトルク制御する電気車制御装置である。
The first invention for solving the above-described problem is as follows.
An electric vehicle control device that individually controls the torque of each electric motor of an electric vehicle,
Based on a given tangential force coefficient for each axis and acceleration of each axis and a predetermined vehicle intrinsic constant, a predetermined axial movement compensation torque calculation for compensating the tangential force coefficient of each axis to an equivalent value is performed, A torque command calculating means for calculating a torque command for each of the motors;
The electric vehicle control device performs torque control on a corresponding electric motor in accordance with the calculated torque command.

また、他の発明として、
電動車の各電動機を個別にトルク制御する電気車制御方法であって、
各軸に対する所与の接線力係数及び各軸の加速度と所定の車両固有定数とに基づき、前記各軸の接線力係数を同等の値に補償させる所定の軸重移動補償トルク演算を行って、前記各電動機それぞれのトルク指令を算出し、算出したトルク指令に従って対応する電動機をトルク制御する電気車制御方法を構成することとしてもよい。
As another invention,
An electric vehicle control method for individually controlling the torque of each electric motor of an electric vehicle,
Based on a given tangential force coefficient for each axis and acceleration of each axis and a predetermined vehicle intrinsic constant, a predetermined axial movement compensation torque calculation for compensating the tangential force coefficient of each axis to an equivalent value is performed, An electric vehicle control method may be configured in which a torque command for each of the motors is calculated and the corresponding motor is torque controlled according to the calculated torque command.

この第1の発明等によれば、軸重移動補償トルク演算により、各軸の接線力係数を同等の値とさせるトルク指令が算出され、この算出されたトルク指令に従って電動機がトルク制御される。各軸の接線力係数が同等となるようなトルク指令がなされるため、力行/制動時に関わらず、各軸の空転又は滑走の発生確率が均一化され、電気車の走行性能が向上される。   According to the first aspect of the invention, a torque command for setting the tangential force coefficient of each axis to an equivalent value is calculated by calculating the axle load movement compensation torque, and the motor is torque controlled according to the calculated torque command. Since the torque command is made so that the tangential force coefficients of the respective axes are equal, the probability of occurrence of idling or sliding of each axis is made uniform regardless of power running / braking, and the traveling performance of the electric vehicle is improved.

また、第2の発明として、第1の発明におけるトルク指令演算手段が、前記各軸それぞれについて、個別の軸重移動量数式モデルに基づいた軸重移動補償トルク演算により、当該軸のトルク指令を算出する電気車制御装置を構成することとしてもよい。   Further, as a second invention, the torque command calculating means in the first invention outputs a torque command for the axis by calculating a shaft load movement compensation torque based on an individual shaft load movement amount mathematical model for each of the axes. It is good also as comprising the electric vehicle control apparatus to calculate.

さらにこのとき、第3の発明として、第2の発明における軸重移動量数式モデルを、1)電動機トルクによって歯車の間に伝わる力の車軸伝達成分、2)電動機トルクによって歯車の間に伝わる力の台車枠の電動機支持部への伝達成分、3)2)の力による台車枠重心回り回転モーメントにより作用する力、4)接線力による台車枠重心回り回転モーメントによる軸重移動量、及び5)全軸の接線力による車体重心回り回転モーメントによる軸重移動量の5つの運動量を表す各軸それぞれ個別の数式モデルとする電気車制御装置を構成してもよい。   Further, at this time, as a third invention, the axial load movement mathematical expression model in the second invention is expressed by 1) an axle transmission component of the force transmitted between the gears by the motor torque, and 2) a force transmitted between the gears by the motor torque. Component of the bogie frame to the motor support, 3) the force acting by the rotational moment around the center of gravity of the bogie frame due to the force of 2), 4) the amount of axial movement due to the rotational moment around the center of gravity of the bogie frame due to the tangential force, and 5) You may comprise the electric vehicle control apparatus which makes each axis | shaft each independent numerical formula model showing five momentums of the axial load movement amount by the vehicle body gravity center rotation moment by the tangential force of all the axes.

この第3の発明によれば、軸重移動補償トルク演算は、軸重移動に関わる1)〜5)の運動量を表す各軸個別の軸重移動量数式モデルに基づいてなされる。このため、軸重移動に関わる各種の運動量が考慮され、より正確な軸重移動量の補償トルク演算が実現される。   According to the third aspect of the present invention, the axial load movement compensation torque calculation is performed based on an individual axial load movement amount mathematical model representing the momentum of 1) to 5) related to the axial load movement. For this reason, various momentums related to the axle load movement are taken into consideration, and more accurate compensation torque calculation of the axle load movement amount is realized.

走行状態が一定に保たれている場合、すなわち、定速の状態にある場合には、第3の発明の軸重移動量数式モデルに比べてより簡易的な数式モデルで軸重移動量の運動量を表すことができる。このため、第4の発明として、第2の発明における軸重移動量数式モデルを、a)接線力による台車枠重心回り回転モーメントによる軸重移動量、b)全軸の接線力による車体重心回り回転モーメントによる軸重移動量の運動量を表す各軸それぞれ個別の数式モデルとする電気車制御装置を構成してもよい。   When the running state is kept constant, that is, when it is in a constant speed state, the momentum of the axial load movement amount is a simple mathematical model compared to the axial load movement amount mathematical model of the third invention. Can be expressed. Therefore, as a fourth aspect of the invention, the axle weight movement amount mathematical model in the second invention is expressed as follows: a) Axle movement amount due to a rotational moment around the center of gravity of the carriage frame due to tangential force, b) Around the center of gravity of the vehicle body due to tangential force of all axes You may comprise the electric vehicle control apparatus which makes each axis | shaft each representing the momentum of the axial load movement amount by a rotational moment each numerical formula model.

また、第5の発明として、第2の発明における軸重移動量数式モデルとして、
1)電動機トルクによって歯車の間に伝わる力の車軸伝達成分、2)電動機トルクによって歯車の間に伝わる力の台車枠の電動機支持部への伝達成分、3)2)の力による台車枠重心回り回転モーメントにより作用する力、4)接線力による台車枠重心回り回転モーメントによる軸重移動量、5)全軸の接線力による車体重心回り回転モーメントによる軸重移動量の5つの運動量を表す各軸それぞれ個別の数式モデルでなる第1の軸重移動量数式モデルと、
a)接線力による台車枠重心回り回転モーメントによる軸重移動量、b)全軸の接線力による車体重心回り回転モーメントによる軸重移動量の運動量を表す各軸それぞれ個別の数式モデルでなる第2の軸重移動量数式モデルと、
の少なくとも2つの軸重移動量数式モデルを用意し、
現在の走行状態に基づいて前記複数の軸重移動量数式モデルの中から適用する軸重移動量数式モデルを択一的に選択する選択手段を備え、
前記トルク指令演算手段が、前記選択手段により選択された軸重移動量数式モデルに基づいた軸重移動補償トルク演算により、各軸のトルク指令を算出する電気車制御装置を構成してもよい。
As the fifth invention, as the axial load movement mathematical expression model in the second invention,
1) Axle transmission component of force transmitted between gears by electric motor torque, 2) Transmission component of force transmitted between gears by electric motor torque to motor support part of bogie frame, 3) Around center of carriage frame by force of 2) Forces acting by rotational moments, 4) Axle movement amount due to rotation moment around bogie frame center of gravity due to tangential force, 5) Each axis representing five momentums of axle load movement amount due to rotation moment around body center of gravity due to tangential force of all axes A first axial movement amount mathematical model, each comprising an individual mathematical model;
a) Axial movement amount due to a rotational moment around the center of gravity of the bogie frame due to a tangential force, b) A second numerical expression model consisting of an individual mathematical model representing the momentum of the axial weight movement amount due to a rotational moment around the center of gravity of the vehicle body due to a tangential force of all axes. Axis load travel formula model,
Prepare at least two mathematical formula models
A selection means for alternatively selecting an axial load movement amount mathematical model to be applied from among the plurality of axial load movement amount mathematical models based on a current running state;
The torque command calculation means may constitute an electric vehicle control device that calculates a torque command for each axis by calculating the axle load movement compensation torque based on the axle load movement amount mathematical model selected by the selection means.

この第5の発明によれば、現在の走行状態に応じた適切な軸重移動量数式モデルによる適切なトルク指令を算出できるようになる。   According to the fifth aspect of the invention, it is possible to calculate an appropriate torque command using an appropriate axial load movement amount mathematical model corresponding to the current traveling state.

本発明によれば、軸重移動補償トルク演算により、各軸の接線力係数を同等の値とさせるトルク指令が算出され、この算出されたトルク指令に従って電動機がトルク制御される。各軸の接線力係数が同等となるようなトルク指令がなされるため、力行/制動時に関わらず、各軸の空転又は滑走の発生確率が均一化され、電気車の走行性能が向上される。   According to the present invention, a torque command for setting the tangential force coefficient of each axis to an equivalent value is calculated by calculating the axial load movement compensation torque, and the electric motor is torque-controlled according to the calculated torque command. Since the torque command is made so that the tangential force coefficients of the respective axes are equal, the probability of occurrence of idling or sliding of each axis is made uniform regardless of power running / braking, and the traveling performance of the electric vehicle is improved.

以下、動輪2軸の台車を2台車備える電動車に本発明を適用した場合の実施形態について説明するが、本発明の適用可能な実施形態がこれに限られるものではない。また、各電動機の制御は個別制御(いわゆる1C1M)である。また、数式における変数及び係数のn又は添え字のnは、軸の番号(1〜4)を示し、軸の番号は進行方向側より1,2・・・とする。   Hereinafter, an embodiment in which the present invention is applied to an electric vehicle including two carriages with two axles will be described. However, embodiments to which the present invention can be applied are not limited thereto. The control of each electric motor is individual control (so-called 1C1M). Moreover, n of the variable and coefficient in the mathematical expression or the subscript n indicates the axis number (1 to 4), and the axis number is 1, 2,... From the traveling direction side.

1.原理
先ず、本実施形態の原理を説明する前に、従来制御による場合の軸重移動量及び接線力係数について簡単に説明する。
1. Principle First, before describing the principle of the present embodiment, the amount of axial load movement and the tangential force coefficient in the case of conventional control will be briefly described.

図1は、従来制御において、本実施形態の適用対象とする電気車の力行時における各軸の引張力、軸重移動量、静止軸重に対する軸重移動量の割合、接線力係数の値(何れも概略値)の一例を示したものであり、各軸の引張力がともに55,000[N]であった場合の例を示している。なお、各軸の静止軸重は約165,000[N]である。   FIG. 1 shows the values of the tensile force of each shaft, the amount of axial load movement, the ratio of the amount of axial load movement relative to the stationary shaft weight, and the value of the tangential force coefficient ( Both are examples of approximate values), and an example in which the tensile force of each axis is 55,000 [N] is shown. The stationary shaft weight of each axis is about 165,000 [N].

同図に示される通り、力行時の軸重移動量は静止軸重に対して±13%程度もあり、各軸の接線力係数の差は最大で0.09になる。この結果、従来の電動機トルク制御では、各軸の空転又は滑走の発生確率が、軸重移動によって大きく変化することが分かる。   As shown in the figure, the amount of axial load movement during power running is about ± 13% with respect to the stationary shaft weight, and the difference in the tangential force coefficient of each axis is 0.09 at the maximum. As a result, in the conventional motor torque control, it can be seen that the occurrence probability of slipping or sliding of each axis greatly changes due to the axial movement.

本実施形態の原理は、軸重移動量を考慮して各軸の引張力を適切に配分することで、各軸の接線力係数を一定に保とうとするものである。以下、本実施形態の原理について詳細に説明する。   The principle of this embodiment is to keep the tangential force coefficient of each axis constant by appropriately allocating the tensile force of each axis in consideration of the amount of axial load movement. Hereinafter, the principle of this embodiment will be described in detail.

図2は、車両に働くモーメントを説明するための図であり、図中右方向が進行方向である。台車及び各軸それぞれについて、進行方向前方(図中右側)から第1〜第2台車、第1〜第4軸と呼ぶ。   FIG. 2 is a diagram for explaining the moment acting on the vehicle, and the right direction in the figure is the traveling direction. The carriage and each axis are referred to as the first to second carriages and the first to fourth axes from the front in the traveling direction (right side in the figure).

また、力行時(加速時)における各種の運動の方向を矢印で示している。第1〜第4軸それぞれには、車輪・レール間に接線力Fl1〜Fl4が働いており、車両全体には車体重心回りの回転モーメントVMRが働き、第1,第2台車それぞれには接線力による台車枠重心回りの回転モーメントBMR1,BMR2が働いている。図2は力行時であるため軸重移動量は、第1軸及び第2軸が上方向、第3軸及び第4軸が下方向であり、第2軸より第1軸の軸重移動量が大きく、第3軸より第4軸の軸重移動量が大きくなっている。なお、制動時は逆方向になる。 Moreover, the direction of various movements during powering (acceleration) is indicated by arrows. Each the first to fourth axes, and worked tangential force F l1 to F l4 between wheels and rails, work is a vehicle body around the center of gravity of the rotational moment VMR to the entire vehicle, first, the second carriage, respectively The rotational moments BMR1 and BMR2 around the center of gravity of the carriage frame due to the tangential force are working. Since FIG. 2 is during power running, the amount of axial load movement is such that the first axis and the second axis are upward, the third axis and the fourth axis are downward, and the amount of axial load movement of the first axis from the second axis. And the amount of axial load movement of the fourth axis is larger than that of the third axis. Note that the direction is reversed during braking.

図2において、各軸に着目すると、次の5つの運動量が作用していると考えられる。すなわち、1)電動機トルクによって歯車の間に伝わる力の車軸伝達成分、2)電動機トルクによって歯車の間に伝わる力の台車枠の電動機支持部への伝達成分、3)2)の力による台車枠重心回り回転モーメントにより作用する力、4)接線力による台車枠重心回り回転モーメントによる軸重移動量、5)全軸の接線力による車体重心回り回転モーメントによる軸重移動量、の5つである。   In FIG. 2, focusing on each axis, the following five momentums are considered to be acting. That is, 1) the axle transmission component of the force transmitted between the gears by the motor torque, 2) the transmission component of the force transmitted between the gears by the motor torque to the motor support portion of the carriage frame, and 3) the cart frame by the force of 2) The force acting by the rotational moment around the center of gravity, 4) the amount of axial load movement due to the rotational moment around the center of gravity of the carriage frame due to the tangential force, and 5) the amount of axial load movement due to the rotational moment around the center of gravity of the vehicle body due to the tangential force of all axes. .

以下、5つの運動量を説明するが、具体的な諸量として吊り掛け式台車の場合の諸量を例に挙げて説明する。
1)電動機トルクによって歯車の間に伝わる力の車軸伝達成分
先ず、電動機の回転力(トルク)による小歯車が大歯車を押す力は、車軸へ直接伝達される成分と、電動機が支持されている電動機支持部へ伝達される成分とに分かれて作用する。前者の力がこの1)の力であり、後者の力が2)の力となる。具体的には、第n軸(nは1〜4)において小歯車が大歯車を押す力をFenとすると、大歯車半径R及び軸箱・ノーズ間距離aに基づく所定比率の力が、各軸の1)の力となり、(2−1)式〜(2−4)式の第1項が相当する。
Hereinafter, the five momentums will be described, and specific amounts will be described by taking the amounts in the case of a hanging cart as an example.
1) Axle transmission component of force transmitted between gears by electric motor torque First, the force that the small gear presses the large gear by the rotational force (torque) of the electric motor is directly transmitted to the axle and the electric motor is supported. It works separately from the components transmitted to the motor support. The former force is the force of 1) and the latter force is the force of 2). Specifically, when (the n 1 to 4) the n-th axis to force the small gear pushes the large gear and F en in a predetermined ratio of the force based on the large gear radius R and the journal box nose distance a is, It becomes the force of 1) of each axis, and corresponds to the first term of equations (2-1) to (2-4).

2)電動機トルクによって歯車の間に伝わる力の台車枠の電動機支持部への伝達成分
上述した通り、電動機の回転力(トルク)による小歯車が大歯車を押す力のうち、電動機支持部へ伝達される成分が、この2)の力である。例えば吊り掛け式台車の場合、電動機支持部は台車枠のノーズ受け部になる。従って、各台車において前後の軸における小歯車が大歯車を押す力Fenの差のうち、大歯車半径Rと軸箱・ノーズ間距離aとに基づく所定比率の力が、各軸の2)の力となり、(2−1)式〜(2−4)式の第2項が相当する。
2) Transmission component of the force transmitted between the gears due to the motor torque to the motor support portion of the bogie frame As described above, of the force that the small gear presses the large gear by the rotational force (torque) of the motor, it is transmitted to the motor support portion. The component to be used is the force of 2). For example, in the case of a hanging cart, the motor support is a nose receiving portion of the cart frame. Therefore, of the difference between the force F en the small gear before and after the shaft pushes the large gear in each truck, the force of a predetermined ratio based on the gear wheel radius R and the inter-axle box nose distance a, 2 of each axis) This corresponds to the second term of the equations (2-1) to (2-4).

3)2)の力による台車枠重心回り回転モーメントにより作用する力
2)の台車枠重心回り方向の力によって台車枠の重心回り回転モーメントが生じるため、この回転モーメントにより作用する力が考えられる。各台車における前後の軸の小歯車が大歯車を押す力Fenの和のうち、大歯車半径R、軸箱・ノーズ間距離a、当該台車内の車軸間距離lに基づく所定比率の力が、各軸の3)の力となり、(2−1)式〜(2−4)式の第3項が相当する。
3) Force exerted by the rotational moment around the center of gravity of the bogie frame due to the force of 2) Since the rotational moment around the center of gravity of the bogie frame is generated by the force in the direction around the center of gravity of the bogie frame of 2), the force acting by this rotational moment can be considered. Of the sum of the force F en the small gear pushes the large gear of the longitudinal axis of each truck, the large gear radius R, between the axle box nose distance a, the force of a predetermined ratio based on the inter-axle distance l in the truck The force of 3) of each axis is equivalent to the third term of equations (2-1) to (2-4).

4)接線力による台車枠重心回り回転モーメントによる軸重移動量
各台車において前後の軸の接線力により、台車枠重心回りの回転モーメントが働くため、この回転モーメントによる軸重移動が考えられる。各台車における前後の軸の接線力Flnの和のうち、車輪径D、レール頭頂面から牽引装置までの高さ距離h、台車内の車軸間距離lに基づく所定比率の力が、各軸の4)の力(軸重移動量)となり、(2−1)式〜(2−4)式の第4項が相当する。
4) Axial load movement amount due to rotation moment around the center of gravity of the bogie frame due to tangential force Since the rotation moment around the center of gravity of the bogie frame acts on each bogie due to the tangential force of the front and rear shafts, movement of the axial load due to this rotation moment can be considered. Of the sum of the tangential forces Fln of the front and rear shafts in each carriage, the force at a predetermined ratio based on the wheel diameter D, the height distance h from the rail top surface to the traction device, and the interaxle distance l in the carriage is 4) force (shaft load movement amount), which corresponds to the fourth term of equations (2-1) to (2-4).

5)全軸の接線力による車体重心回り回転モーメントによる軸重移動量
全ての軸の接線力Flnの総和による車体重心回りの車両全体の回転モーメントが働くため、この回転モーメントによる軸重移動が考えられる。各軸の接線力Flnの和のうち、レール頭頂面から連結器までの高さ距離H、レール頭頂面から牽引装置までの高さ距離h、台車中心間距離Lに基づく所定比率の力が、各軸の5)の力(軸重移動量)となり、(2−1)式〜(2−4)式の第5項が相当する。
5) Axle weight movement due to rotation moment around the center of gravity of the vehicle body due to the tangential force of all axes Since the rotation moment of the entire vehicle around the center of gravity of the vehicle body due to the sum of the tangential forces Fln of all axes acts, Conceivable. Of the sum of the tangential forces Fln of the respective axes, a predetermined ratio of force based on the height distance H from the rail top surface to the coupler, the height distance h from the rail top surface to the traction device, and the center distance L of the carriage is , 5) of each axis (shaft load movement amount), which corresponds to the fifth term of the formulas (2-1) to (2-4).

以上5つの項に基づき、正負の方向を考慮して各軸の軸重移動量の数式モデルを記述すると、以下の(2−1)〜(2−4)式となる。

Figure 0004727597
Based on the above five terms, the following equations (2-1) to (2-4) can be obtained by describing a mathematical model of the axial movement amount of each axis in consideration of positive and negative directions.
Figure 0004727597

ここで、kは大歯車半径R及び軸箱・ノーズ間距離aに基づく係数、kは大歯車半径R及び軸箱・ノーズ間距離aに基づく係数、kは大歯車半径R、軸箱・ノーズ間距離a、及び台車内の車軸間距離lに基づく係数、kは車輪径D、レール頭頂面から牽引装置までの高さ距離h、及び台車内の車軸間距離lに基づく係数、kはレール頭頂面から連結器までの高さ距離H、レール頭頂面から牽引装置までの高さ距離h、及び台車中心間距離Lに基づく係数であり、何れも車両固有の定数である。 Here, k 1 is a coefficient based on the large gear radius R and the shaft box / nose distance a, k 2 is a coefficient based on the large gear radius R and the shaft box / nose distance a, k 3 is a large gear radius R, shaft between box nose distance a, and the coefficient based on the inter-axle distance l in cart, k 4 is based on the inter-axle distance l wheel diameter D, the height distance h from the rail head surface to the traction device, and the carriage coefficient , k 5 is the height distance H, the height distance h, and the coefficient based on the bogie center distance L from the rail head surface to the traction device from the rail head surface to the coupler, both are vehicle-specific constants .

また、各係数k〜kの具体的な例を挙げると、k=R/a、k=R/2a、k=((l/2)−a)R/(l・a)、k=((D/2)−h)/l、k=(H−h)/2L、であり、値としては例えば、k=0.43617、k=0.21809、k=0.05409、k=0.024、k=0.05156が挙げられる。 Further, specific examples of the coefficients k 1 to k 5 are as follows: k 1 = R / a, k 2 = R / 2a, k 3 = ((l / 2) −a) R / (l · a ), K 4 = ((D / 2) −h) / 1, k 5 = (H−h) / 2L, and the values are, for example, k 1 = 0.43617, k 2 = 0.21809, k 3 = 0.05409, k 4 = 0.024, k 5 = 0.05156.

また、第n軸の接線力Flnは以下の(3)式で表される。

Figure 0004727597
ここで、Flnは第n軸の接線力、Fmnは第n軸の引張力、mは回転系等価慣性質量、αnは第n軸の車輪周加速度である。 Further, the tangential force F ln of the nth axis is expressed by the following equation (3).
Figure 0004727597
Here, F ln is the tangential force of the n-th axis, F mn is the tensile force of the n-th axis, m is the rotary system equivalent inertial mass, and αn is the wheel circumferential acceleration of the n-th axis.

また、第n軸において、小歯車が大歯車を押す力Fenと引張力Fmnとの関係は以下の(4)式で表される。

Figure 0004727597
ここで、rは小歯車半径、Gは大歯車と小歯車の歯車比である。 In the n-th axis, the relationship between the force F en that the small gear pushes the large gear and the tensile force F mn is expressed by the following equation (4).
Figure 0004727597
Here, r is the radius of the small gear, and G is the gear ratio between the large gear and the small gear.

(2−1)〜(2−4)式における小歯車が大歯車を押す力Fenと接線力Flnは、(3)式及び(4)式を代入することで引張力Fmnの項に置き換えることが可能である。 The force F en and the tangential force F ln in which the small gear in the equations (2-1) to (2-4) pushes the large gear are terms of the tensile force F mn by substituting the equations (3) and (4). It is possible to replace

一方、各軸の接線力係数μは以下の(5)式で表される。

Figure 0004727597
ここで、Wは第n軸の静止軸重、ΔWは第n軸の軸重移動量である。 On the other hand, the tangential force coefficient μ n of each axis is expressed by the following equation (5).
Figure 0004727597
Here, W n is a stationary axle load of the n axis, the [Delta] W n is the axle load movement amount of the n-axis.

(5)式を変形すると、第n軸の引張力Fmnは以下の(6)式で表される。

Figure 0004727597
When the equation (5) is transformed, the n-th axis tensile force F mn is expressed by the following equation (6).
Figure 0004727597

ここで、(2−1)〜(2−4)式における小歯車が大歯車を押す力Fenと接線力Flnとを(3)式及び(4)式の引張力Fmnの式に置き換え、置き換えた後の式を、(6)式の各軸の軸重移動量の項に代入することで、第1〜第4軸それぞれの引張力Fmnを用いた4つの式でなる4元連立方程式が成立する。引張力Fmn以外の係数は全て車両固有の定数である。4つの変数に対して4つの連立方程式が成立するため、各変数の値、即ち第1〜第4軸それぞれの引張力Fmnが求められる。すなわち、この4元連立方程式が、各軸の軸重移動量を補償した電動機トルク(引張力)を算出するための軸重移動補償トルク演算のための演算式である。 Here, the force F en and the tangential force F ln in which the small gears in the equations (2-1) to (2-4) push the large gears into the equations of the tensile force F mn in the equations (3) and (4). By substituting the replaced and replaced expressions in the term of the axial load movement amount of each axis in the expression (6), 4 expressions using the tensile force F mn of each of the first to fourth axes 4 The former simultaneous equations hold. All the coefficients other than the tensile force F mn are vehicle-specific constants. Since four simultaneous equations are established for the four variables, the value of each variable, that is, the tensile force F mn of each of the first to fourth axes is obtained. That is, this quaternary simultaneous equation is an arithmetic expression for calculating the axial load movement compensation torque for calculating the motor torque (tensile force) that compensates the axial load movement amount of each axis.

尚、トルク指令値τen は、例えば以下の式で引張力Fmnから求めることができる。

Figure 0004727597
The torque command value τ en * can be obtained from the tensile force F mn by the following equation, for example.
Figure 0004727597

以上の通り、(2−1)〜(2−4)式で定義した各軸個別の軸重移動量数式モデルは、力行/制動に関わらずリアルタイムに変化する軸重移動量を動的に考慮した式である。この数式モデルによって導出される引張力Fmn及びトルク指令値τen に従ったトルク制御によれば、各軸の軸重移動量の変化が考慮され、各軸の接線力係数を同等の値とさせるトルク制御が実現される。各軸の接線力係数が同等の値とされる結果、力行/制動に関わらず各軸における空転又は滑走の発生確率が均一化されることとなる。 As described above, the axle weight movement amount mathematical formula model for each axis defined by equations (2-1) to (2-4) dynamically considers the axle load movement amount that changes in real time regardless of power running / braking. It is a formula. According to the torque control in accordance with the tensile force F mn and the torque command value τ en * derived from this mathematical model, changes in the amount of axial load movement of each axis are taken into account, and the tangential force coefficient of each axis is set to an equivalent value. Torque control is realized. As a result of setting the tangential force coefficient of each axis to an equivalent value, the probability of occurrence of slipping or sliding on each axis is made uniform regardless of power running / braking.

2.実施例
図3は、本実施形態の電気車の主回路構成の概略を示すブロック図である。主回路は、第1〜第4軸それぞれについて、電動機10と、インバータ20と、電流センサ30と、速度センサ40と、ベクトル制御演算部150とを備えるとともに(図中、添え字の−nが軸の番号)、微分演算器160と、接線力係数発生器170と、トルク指令演算部180とを備えて構成される。
2. Example FIG. 3 is a block diagram showing an outline of a main circuit configuration of the electric vehicle according to the present embodiment. The main circuit includes an electric motor 10, an inverter 20, a current sensor 30, a speed sensor 40, and a vector control arithmetic unit 150 for each of the first to fourth axes (in the figure, the suffix -n is -n). Axis number), a differential calculator 160, a tangential force coefficient generator 170, and a torque command calculator 180.

このうち、ベクトル制御演算部150、トルク指令演算部180、微分演算器160、及び接線力係数発生器170は、電動機制御装置100として、CPUやROM、RAM等から構成されるコンピュータ等によって実現される。電動機制御装置100は、例えば制御ボードとして各種の制御装置の一部として実装されたり、或いは、インバータ20を含めて一体的にインバータ装置として構成されたりするものである。   Among these, the vector control calculation unit 150, the torque command calculation unit 180, the differential calculation unit 160, and the tangential force coefficient generator 170 are realized as a motor control device 100 by a computer or the like including a CPU, ROM, RAM, and the like. The The electric motor control device 100 is mounted as a part of various control devices, for example, as a control board, or is integrally configured as an inverter device including the inverter 20.

電動機10は、インバータ20から電力が供給されることで電動機軸を回転させ、小歯車及び大歯車を介して車軸を回転駆動する主電動機であり、例えば三相誘導電動機で実現される。   The electric motor 10 is a main electric motor that rotates an electric motor shaft by being supplied with electric power from an inverter 20 and rotationally drives an axle shaft via a small gear and a large gear, and is realized by, for example, a three-phase induction motor.

インバータ20には、パンタグラフ及びコンバータを介して架線の電力が供給される。そして、インバータ20は、ベクトル制御演算部150から入力されるU相、V相、W相の電圧指令値V 、V 、V に基づいて出力電圧を調整し、電動機10に印加する。 The inverter 20 is supplied with overhead power via a pantograph and a converter. The inverter 20 adjusts the output voltage based on the U-phase, V-phase, and W-phase voltage command values V u * , V v * , and V w * input from the vector control calculation unit 150, and Apply.

電流センサ30は、電動機10の入力端に設けられ、電動機10に流入するU相、V相の電流値Iu、Ivを検出する。速度センサ40は、例えば車軸の軸端部に設けられ、車軸の回転速度を検出して速度信号を微分演算器160に出力する。   The current sensor 30 is provided at the input end of the electric motor 10 and detects U-phase and V-phase current values Iu and Iv flowing into the electric motor 10. The speed sensor 40 is provided, for example, at the shaft end of the axle, detects the rotational speed of the axle, and outputs a speed signal to the differential calculator 160.

電動機制御装置100のベクトル制御演算部150は従来公知のベクトル制御演算部と同様の構成である。ベクトル制御演算部150は電流センサ30によって検出された電流値Iu、Ivから励磁電流成分とトルク電流成分Iqとを算出し、トルク指令演算部から入力されるトルク指令τen 及び不図示の電流指令演算装置から入力される磁束成分指令に基づいて、電圧指令値V 、V 、V を算出してインバータ20に出力する。 The vector control calculation unit 150 of the electric motor control device 100 has the same configuration as a conventionally known vector control calculation unit. The vector control calculation unit 150 calculates an excitation current component and a torque current component Iq from the current values Iu and Iv detected by the current sensor 30, and a torque command τ en * input from the torque command calculation unit and a current (not shown) Based on the magnetic flux component command input from the command calculation device, the voltage command values V u * , V v * , and V w * are calculated and output to the inverter 20.

以上のベクトル制御演算部150、インバータ20、電流センサ30、速度センサ40、電動機10の系統が、4軸分構成される。   The system of the vector control calculation unit 150, the inverter 20, the current sensor 30, the speed sensor 40, and the electric motor 10 is configured for four axes.

次に、微分演算器160は、各軸の速度センサ40によって各軸の回転速度を微分することで、加速度α〜αを算出してトルク指令演算部180に出力する。また、接線力係数発生器170は、従来公知の接線力係数発生器と同様の構成であり、ノッチ指令と接線力係数との対応関係を記憶しており、入力されたノッチ指令に対応する接線力係数を出力するものである。 Next, the differential calculator 160 calculates the accelerations α 1 to α 4 by differentiating the rotational speed of each axis by the speed sensor 40 of each axis, and outputs the acceleration α 1 to α 4 to the torque command calculation unit 180. The tangential force coefficient generator 170 has the same configuration as a conventionally known tangential force coefficient generator, stores the correspondence between the notch command and the tangential force coefficient, and corresponds to the input notch command. The force coefficient is output.

トルク指令演算部180は、微分演算器160から入力される各軸の加速度α〜αと、接線力係数発生器170から入力される各軸の接線力係数μ〜μとに基づいて、各軸の電動機を制御するためのトルク指令値τen を算出して各軸それぞれのベクトル制御演算部150に出力する。 The torque command calculator 180 is based on the accelerations α 1 to α 4 of each axis input from the differential calculator 160 and the tangential force coefficients μ 1 to μ 4 of each axis input from the tangential force coefficient generator 170. Thus, a torque command value τ en * for controlling the motor of each axis is calculated and output to the vector control calculation unit 150 for each axis.

このトルク指令演算部180によるトルク指令値τen の算出は、先ず第1〜第4軸それぞれの引張力Fmnに係る上述した4元連立方程式を解く(軸重移動補償トルク演算を行う)ことで、各軸で発生させるべき引張力を算出する。4元連立方程式は、コンピュータ実行可能な公知の収束演算処理により求めることができるため、ここでは詳細な説明を省略する。そして、求められた引張力を(7)式に代入演算することで、各軸のトルク指令値τen を算出する。 The calculation of the torque command value τ en * by the torque command calculation unit 180 first solves the above-described quaternary simultaneous equations relating to the tensile force F mn of each of the first to fourth axes (performs a double load compensation torque calculation). Thus, the tensile force that should be generated in each axis is calculated. Since the quaternary simultaneous equations can be obtained by a known convergence calculation process that can be executed by a computer, a detailed description thereof is omitted here. Then, the torque command value τ en * of each axis is calculated by substituting the obtained tensile force into the equation (7).

すなわち、トルク指令演算部180は現在の軸重移動量を考慮して、接線力係数発生器170により発生された各軸の接線力係数μ〜μを同等の値に補償するための各軸の引張力Fmn(或いはトルク指令値τen )を算出するといえる。 That is, the torque command calculation unit 180 considers the current amount of axial load movement, and compensates the tangential force coefficients μ 1 to μ 4 generated by the tangential force coefficient generator 170 to equivalent values. It can be said that the shaft tensile force F mn (or torque command value τ en * ) is calculated.

3.変形例
以上、本発明を適用した一実施の形態を説明したが、本発明が適用可能な実施形態が上述した実施形態に限られるわけではない。
3. Modifications Although one embodiment to which the present invention is applied has been described above, embodiments to which the present invention can be applied are not limited to the above-described embodiments.

(1)1)〜3)の運動量を省略した軸重移動量の簡易式モデル
小歯車が大歯車を押す力Fenにより、走行状態が一定に保たれている場合、すなわち、定速の状態にある場合には、1)〜3)の運動量を省略した次式(8−1)〜(8−4)の様な簡易式を適用するとしてもよい。この場合のk´の具体例としては、k´=h/lが挙げられる。

Figure 0004727597
(1) 1) axle load movement amount of the simple type model pinion omitted momentum to 3) is the force F en pushing the large gear, when the traveling state is kept constant, i.e., constant-speed state In this case, simple formulas such as the following formulas (8-1) to (8-4) in which the momentum of 1) to 3) is omitted may be applied. A specific example of k 4 ′ in this case is k 4 ′ = h / l.
Figure 0004727597

(2)軸重移動量数式モデルの切替制御
上述した1)〜5)の運動量を用いた(2−1)〜(2−4)式による軸重移動量数式モデル(以下、「第1の軸重移動量数式モデル」という。)と、(8−1)〜(8−4)式による軸重移動量数式モデル(以下、「第2の軸重移動量数式モデル」という。)とを、電動車の走行状態に応じて切り替えることとしてもよい。具体的には、トルク指令演算部が、電動車が定速の状態にある場合には、第2の軸重移動量数式モデルを用い、加速又は減速している状態にある場合には、第1の軸重移動量数式モデルを用いて各軸のトルク指令を算出する。
なお、2つの軸重移動量数式モデルに限らず、走行状態に応じた3以上の軸重移動量数式モデルを用意し、現在の走行状態に応じた軸重移動量数式モデルを択一的に選択して、各軸のトルク指令を算出することとしてもよい。
(2) Axial load movement mathematical formula model switching control Axial load movement mathematical formula model (hereinafter referred to as “first”) according to formulas (2-1) to (2-4) using the momentum of 1) to 5) described above. "Axial load movement amount mathematical model") and an axial load movement amount mathematical model (hereinafter referred to as "second axial weight movement amount mathematical model") according to equations (8-1) to (8-4). It is good also as switching according to the running state of an electric vehicle. Specifically, the torque command calculation unit uses the second axle load movement amount mathematical model when the electric vehicle is in a constant speed state, and when it is in an accelerated or decelerated state, A torque command for each axis is calculated using a single axial load movement mathematical formula model.
Not only the two axle load movement formula models but also three or more axle load movement formula models corresponding to the running state are prepared, and the axle load movement formula model according to the current running state is alternatively selected. It is good also as selecting and calculating the torque command of each axis | shaft.

(3)その他
例えば、上述の実施形態では、動輪2軸の台車を2台車備える電動車を例に挙げて説明したが、中間台車を有する3台車の電動車に本発明を適用することも勿論可能である。また、吊り掛け式の台車の諸量を用いて説明したが、カルダン式等の装架式の台車に本発明を適用することも勿論可能である。具体的には、上述の1)〜5)の運動量の式を、6軸用や装架式台車用に設計変更すればよく、当業者であれば自明の範囲内の変更である。
(3) Others For example, in the above-described embodiment, the description has been given by taking the example of the electric vehicle including two carriages with two driving wheels, but the present invention may of course be applied to a three-wheeled electric vehicle having an intermediate carriage. Is possible. Moreover, although it demonstrated using various quantities of a hanging type trolley | bogie, of course, it is also possible to apply this invention to mounting type trolley | bogies, such as a cardan type. Specifically, the above-described equations of momentum 1) to 5) may be changed in design for a six-axis or mounted carriage, which is within the obvious range for those skilled in the art.

また、図3の主回路構成として、車軸の回転速度を速度センサによって直接検出することとして説明したが、所謂速度センサレスベクトル制御で用いられる推定方法(誘導電動機の電機子電圧,電機子電流を元に回転速度を推定する方法)によって速度を得ることとし、速度センサを不要としても良いことは勿論である。その他、同様の設計変更は当業者であれば適宜なし得るものである。   Further, the main circuit configuration in FIG. 3 has been described in which the rotational speed of the axle is directly detected by the speed sensor, but the estimation method used in so-called speed sensorless vector control (based on the armature voltage and armature current of the induction motor). Of course, it is possible to obtain the speed by a method of estimating the rotation speed, and the speed sensor may be unnecessary. Other similar design changes can be appropriately made by those skilled in the art.

従来制御で電気車をトルク制御した場合の軸重移動量等の値の一例を示す図。The figure which shows an example of values, such as axial load movement amount at the time of carrying out torque control of the electric vehicle by conventional control. 車両に働くモーメントを説明するための図。The figure for demonstrating the moment which acts on a vehicle. 電気車の主回路構成の概略を示す図。The figure which shows the outline of the main circuit structure of an electric vehicle.

符号の説明Explanation of symbols

10 電動機
20 インバータ
100 電動機制御装置
150 ベクトル制御演算部
160 微分演算器
170 接線力係数発生器
180 トルク指令演算部
DESCRIPTION OF SYMBOLS 10 Electric motor 20 Inverter 100 Electric motor control apparatus 150 Vector control calculating part 160 Differential calculating element 170 Tangential force coefficient generator 180 Torque command calculating part

Claims (6)

電動車の各電動機を個別にトルク制御する電気車制御装置であって、
各軸に対する所与の接線力係数及び各軸の加速度と所定の車両固有定数とに基づき、前記各軸の接線力係数を同等の値に補償させる所定の軸重移動補償トルク演算を行って、前記各電動機それぞれのトルク指令を算出するトルク指令演算手段を備え、
前記算出されたトルク指令に従って対応する電動機をトルク制御する電気車制御装置。
An electric vehicle control device that individually controls the torque of each electric motor of an electric vehicle,
Based on a given tangential force coefficient for each axis and acceleration of each axis and a predetermined vehicle intrinsic constant, a predetermined axial movement compensation torque calculation for compensating the tangential force coefficient of each axis to an equivalent value is performed, A torque command calculating means for calculating a torque command for each of the motors;
An electric vehicle control device that performs torque control of a corresponding electric motor in accordance with the calculated torque command.
前記トルク指令演算手段は、前記各軸それぞれについて、個別の軸重移動量数式モデルに基づいた軸重移動補償トルク演算により、当該軸のトルク指令を算出する請求項1に記載の電気車制御装置。   2. The electric vehicle control device according to claim 1, wherein the torque command calculation means calculates a torque command of the shaft by a shaft load movement compensation torque calculation based on an individual shaft load movement amount mathematical model for each of the axes. . 前記軸重移動量数式モデルは、以下1)〜5)の運動量を表す前記各軸それぞれ個別の数式モデルでなる請求項2に記載の電気車制御装置。
1)電動機トルクによって歯車の間に伝わる力の車軸伝達成分
2)電動機トルクによって歯車の間に伝わる力の台車枠の電動機支持部への伝達成分
3)2)の力による台車枠重心回り回転モーメントにより作用する力
4)接線力による台車枠重心回り回転モーメントによる軸重移動量
5)全軸の接線力による車体重心回り回転モーメントによる軸重移動量
The electric vehicle control device according to claim 2, wherein the axle load movement amount mathematical model is an individual mathematical model for each of the axes representing the momentum of 1) to 5) below.
1) Axle transmission component of force transmitted between gears due to motor torque 2) Transmission component of force transmitted between gears due to motor torque to motor support portion of carriage frame 3) Rotational moment around center of gravity of cart frame due to force of 2) 4) Axle movement amount due to rotation moment around the center of gravity of the carriage frame due to tangential force 5) Axle movement amount due to rotation moment around the center of gravity of the vehicle body due to tangential force of all axes
前記軸重移動量数式モデルは、以下a)〜b)の運動量を表す前記各軸それぞれ個別の数式モデルでなる請求項2に記載の電気車制御装置。
a)接線力による台車枠重心回り回転モーメントによる軸重移動量
b)全軸の接線力による車体重心回り回転モーメントによる軸重移動量
The electric vehicle control device according to claim 2, wherein the axle load movement amount mathematical model is an individual mathematical model for each of the axes representing the momentum of the following a) to b).
a) Axle load movement amount due to rotation moment around the center of gravity of the bogie frame due to tangential force b) Axle load movement amount due to rotation moment around the center of gravity of the vehicle body due to tangential force of all axes
前記軸重移動量数式モデルとして、1)電動機トルクによって歯車の間に伝わる力の車軸伝達成分、2)電動機トルクによって歯車の間に伝わる力の台車枠の電動機支持部への伝達成分、3)2)の力による台車枠重心回り回転モーメントにより作用する力、4)接線力による台車枠重心回り回転モーメントによる軸重移動量、5)全軸の接線力による車体重心回り回転モーメントによる軸重移動量の5つの運動量を表す各軸それぞれ個別の数式モデルでなる第1の軸重移動量数式モデルと、a)接線力による台車枠重心回り回転モーメントによる軸重移動量、b)全軸の接線力による車体重心回り回転モーメントによる軸重移動量の運動量を表す各軸それぞれ個別の数式モデルでなる第2の軸重移動量数式モデルと、の少なくとも2つの軸重移動量数式モデルがあり、
現在の走行状態に基づいて前記複数の軸重移動量数式モデルの中から適用する軸重移動量数式モデルを択一的に選択する選択手段を備え、
前記トルク指令演算手段が、前記選択手段により選択された軸重移動量数式モデルに基づいた軸重移動補償トルク演算により、各軸のトルク指令を算出する請求項2に記載の電気車制御装置。
As the above-mentioned mathematical formula model for the amount of axial movement, 1) the axle transmission component of the force transmitted between the gears by the motor torque, 2) the transmission component of the force transmitted between the gears by the motor torque to the motor support part of the carriage frame, 3) 2) Force acting due to the rotational moment around the center of gravity of the carriage frame due to the force of 4) 4) Axle movement amount due to the rotational moment around the center of gravity of the carriage frame due to the tangential force 5) Axial movement due to the rotational moment around the center of gravity of the vehicle body due to the tangential force of all axes A first axial load movement mathematical formula model consisting of individual mathematical models for each axis representing five momentums of quantity, a) axial load movement amount due to rotational moment around the center of gravity of the carriage frame due to tangential force, b) tangent of all axes At least two axes of a second axle load movement formula model that is an individual formula model for each axis representing the amount of movement of the axle load movement due to the rotational moment around the center of gravity of the vehicle body due to force There is a movement amount of a mathematical model,
A selection means for alternatively selecting an axial load movement amount mathematical model to be applied from among the plurality of axial load movement amount mathematical models based on a current running state;
The electric vehicle control device according to claim 2, wherein the torque command calculation means calculates a torque command for each axis by calculating a axle load movement compensation torque based on the axle load movement amount mathematical model selected by the selection means.
電動車の各電動機を個別にトルク制御する電気車制御方法であって、
各軸に対する所与の接線力係数及び各軸の加速度と所定の車両固有定数とに基づき、前記各軸の接線力係数を同等の値に補償させる所定の軸重移動補償トルク演算を行って、前記各電動機それぞれのトルク指令を算出し、算出したトルク指令に従って対応する電動機をトルク制御する電気車制御方法。
An electric vehicle control method for individually controlling the torque of each electric motor of an electric vehicle,
Based on a given tangential force coefficient for each axis and acceleration of each axis and a predetermined vehicle intrinsic constant, a predetermined axial movement compensation torque calculation for compensating the tangential force coefficient of each axis to an equivalent value is performed, An electric vehicle control method for calculating a torque command for each of the motors and controlling the torque of the corresponding motor according to the calculated torque command.
JP2007014551A 2007-01-25 2007-01-25 Electric vehicle control device and electric vehicle control method Active JP4727597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014551A JP4727597B2 (en) 2007-01-25 2007-01-25 Electric vehicle control device and electric vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014551A JP4727597B2 (en) 2007-01-25 2007-01-25 Electric vehicle control device and electric vehicle control method

Publications (2)

Publication Number Publication Date
JP2008182827A JP2008182827A (en) 2008-08-07
JP4727597B2 true JP4727597B2 (en) 2011-07-20

Family

ID=39726295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014551A Active JP4727597B2 (en) 2007-01-25 2007-01-25 Electric vehicle control device and electric vehicle control method

Country Status (1)

Country Link
JP (1) JP4727597B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028982A (en) * 2008-07-22 2010-02-04 Railway Technical Res Inst Method for controlling electric vehicle and controller for the electric vehicle
JP5284052B2 (en) * 2008-11-17 2013-09-11 株式会社東芝 Electric vehicle control device
CN104960526B (en) 2015-07-09 2017-08-18 中车株洲电力机车研究所有限公司 A kind of power decentralized type train traction force distribution method and system
CN105539202B (en) * 2015-12-28 2018-04-03 航天重型工程装备有限公司 A kind of multiaxis mine car torque distribution method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152785B2 (en) * 1993-03-05 2001-04-03 株式会社東芝 Method and apparatus for controlling motor for vehicle
JP3347039B2 (en) * 1997-12-02 2002-11-20 三菱電機株式会社 Idling re-adhesion control device for electric vehicles
JP2000134723A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Axle load compensated type proper torque distribution operating system
JP4083697B2 (en) * 2004-03-31 2008-04-30 財団法人鉄道総合技術研究所 Electric vehicle control device and electric vehicle control method

Also Published As

Publication number Publication date
JP2008182827A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP6233420B2 (en) Electric vehicle control device and electric vehicle control method
JP6330820B2 (en) Electric vehicle control device and electric vehicle control method
CN107921885B (en) Slip control device
JP4727597B2 (en) Electric vehicle control device and electric vehicle control method
JP4850870B2 (en) Electric vehicle control method and electric vehicle control device
JP6237789B2 (en) Electric vehicle control device and electric vehicle control method
JP2010028982A (en) Method for controlling electric vehicle and controller for the electric vehicle
WO2024038710A1 (en) Design method and vehicle control device
JP2014192930A (en) Controlling device for cart in which each wheel is driven independently
JP4083697B2 (en) Electric vehicle control device and electric vehicle control method
JP2019146450A (en) Control method of electric vehicle and control device of electric vehicle
CN112104284A (en) Urban rail train adhesion control method and system based on rack control mode
WO2014156928A1 (en) Controller of independently-driven-wheel truck
WO2023013566A1 (en) Vehicle control device
CN106697048B (en) For compensating the electronic control unit and method of torque steering
CA2482916C (en) Method for electrodynamically braking a rail vehicle
JP2000134723A (en) Axle load compensated type proper torque distribution operating system
JP2005153648A (en) Power assist type mobile body
JPH0698418A (en) Estimating device for counter force of road surface, differential device for right and left wheels, control device for automobile motor torque
JP5828452B2 (en) Electric vehicle control device
JP2009240123A (en) Motor control method and motor controller
JP4495819B2 (en) Electric vehicle control device
WO2024038712A1 (en) Vehicle control device and vehicle control method
WO2024038711A1 (en) Vehicle control device and vehicle control method
CN113573941B (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3