WO2012086108A1 - 隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及び非一時的なコンピュータ可読媒体 - Google Patents

隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及び非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2012086108A1
WO2012086108A1 PCT/JP2011/005116 JP2011005116W WO2012086108A1 WO 2012086108 A1 WO2012086108 A1 WO 2012086108A1 JP 2011005116 W JP2011005116 W JP 2011005116W WO 2012086108 A1 WO2012086108 A1 WO 2012086108A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
registered
cells
adjacent
list
Prior art date
Application number
PCT/JP2011/005116
Other languages
English (en)
French (fr)
Inventor
吉則 渡辺
松永 泰彦
航生 小林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN2011800618884A priority Critical patent/CN103270791A/zh
Priority to JP2012549601A priority patent/JP5942853B2/ja
Priority to EP11851273.0A priority patent/EP2658313A1/en
Priority to US13/991,777 priority patent/US20130316709A1/en
Publication of WO2012086108A1 publication Critical patent/WO2012086108A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present invention relates to autonomous optimization of a neighbor list wirelessly transmitted from a base station.
  • the neighbor list (also called the neighbor cell list) is used to control the handover of the mobile terminal in communication.
  • the neighbor list may include handover parameters such as CIO (Cell Individual Offset).
  • CIO Cell Individual Offset
  • the base station transmits the adjacency list by radio to notify the adjacency list to the mobile station connected to the cell managed by itself.
  • Listed Cell cells registered in the adjacent list
  • Detected Cell cells not registered in the adjacent list
  • a handover control entity of a serving cell such as a serving base station or a radio resource controller (RNC) generates a predetermined event. Instruct the mobile terminal to send a measurement report.
  • the predetermined event is, for example, the deterioration of the radio quality of the serving cell.
  • the measurement report generated by the mobile terminal includes the measurement results of the radio quality of the serving cell and its neighboring cells (adjacent cells).
  • the handover control entity of the serving cell upon receiving the measurement report from the mobile terminal, determines the cell (target cell) of the handover destination based on the measurement report, and starts a handover procedure including signaling with the mobile terminal and the target cell. .
  • one of the transmission events of the measurement report defined in 3GPP technical specification for Long Term Evolution (LTE) / E-UTRAN (Evolved UTRAN) is defined in 3GPP TS 36.331 V8.11.0 (2010-09).
  • the essential part of the transmission event defined in the relevant technical specification as Event A3 (Neighbour becomes offset better than serving) is represented by the following equation (1).
  • P S + O S ⁇ P T + O T (1) is a wireless quality measurement result of the serving cell
  • P T is the measurement result of the radio quality of the neighboring cell.
  • the received power of the downlink reference signals a (RSRP Reference Signal Received Power) or RSRQ (Reference Signal Received Quality).
  • RSRQ is the ratio of RSRP to total received power.
  • O S in Equation (1) is an offset value for the radio quality of the serving cell, and affects the radio quality of the downlink reference signal of the serving cell.
  • O T is the offset value for the radio quality of the neighboring cells, acting on the radio quality of the downlink reference signals of neighboring cells. That is, the neighbor list can hold a different offset O T set for each registration cell. Offset value O T is referred to as CIO (Cell Individual Offset).
  • the operating condition of equation (1) When the operating condition of equation (1) is set in the base station, the operating condition of equation (1) is notified to the mobile terminal connected to the cell managed by the base station.
  • the mobile terminal transmits a measurement report to the serving base station, triggered by the measurement result of the radio quality of the serving cell and the radio quality of the adjacent cell satisfying the condition of equation (1).
  • equation (1) can be rewritten as equations (2) and (3) below.
  • the parameter TH HO is called the handover threshold.
  • TH HO O S -O T (3)
  • TTT is a protection time from when the transmission condition of the measurement report as in the above-mentioned formulas (1) and (2) is satisfied to when the transmission of the measurement report is performed.
  • the mobile terminal transmits the measurement report when the period satisfying the condition of equation (2) continues beyond the period defined as TTT. That is, the longer the TTT, the later the start timing of the handover becomes, which makes it difficult for the handover to occur.
  • Patent Document 1 discloses reducing handover failure (Too Late Handover, Too Early Handover) by dynamically adjusting handover parameters (TTT, CIO, etc.) based on measurement reports of mobile terminals. ing.
  • TTT handover failure
  • CIO handover parameters
  • the base station adjusts the CIO of the adjacent cell included in the adjacent list to promote handover of the mobile terminal from the cell with large load to the adjacent cell. Disclose that.
  • load distribution can be performed between cells.
  • the handover control entity that has received the measurement report from the mobile terminal generally determines a target cell from among Listed Cells among adjacent cells included in the measurement report. In this case, the mobile terminal can not handover to the Detected Cell. Therefore, if there is a registration failure of the adjacent cell in the adjacent list, there is a possibility that a handover failure may occur or the communication quality may be deteriorated due to the handover to an inappropriate cell.
  • the offset value Ot for each adjacent cell is notified to the mobile terminal using the adjacent list. That is, cells that can notify the mobile terminal of the offset value Ot are limited to the adjacent cells registered in the adjacent list. For this reason, if the important neighbor cell is not registered in the neighbor list, it is not possible to notify the mobile terminal of the offset value Ot related to the important neighbor cell.
  • improvement of the handover success rate based on the adjustment of the offset value Ot (for example, patent document 1) It becomes difficult to realize load distribution (for example, non-patent document 1) and the like by handover. This problem also occurs when the handover control entity of the serving cell can select the target cell from the Detected Cells.
  • the offset value for each adjacent cell as described above can also be set for the radio quality measured by the mobile terminal at the start of communication, independently of CIO.
  • cells that can notify the mobile terminal of the offset value (qoffset) are limited to the adjacent cells registered in the adjacency list, and thus load balancing is performed if important adjacent cells are not registered in the adjacency list. It will be difficult to realize.
  • optimization of the neighbor list is important to ensure good communication quality.
  • it since there is an upper limit to the number of cells that can be registered in the adjacency list, it is necessary to preferentially register in the adjacency list important cells that are likely to contribute to improvement in communication quality.
  • Non-Patent Document 2 discloses that the neighboring list registration is preferentially performed on neighboring cells where there are many measurement reports from the mobile terminal and neighboring cells where there are many handover attempts of the mobile terminal.
  • the HetNet environment is an environment in which multiple types of cells having different coverage sizes (cell sizes), such as macro cells and pico cells, macro cells and femto cells, and pico cells and femto cells, are arranged adjacent to each other. Note that the adjacent arrangement of cells in the HetNet environment includes a hierarchical arrangement in which coverage of one of the large cell sizes completely includes the other small cell size.
  • Non-Patent Document 2 uses a common reference (specifically, the number of measurement reports and the number of handover attempts) for a plurality of adjacent cells to list cells (adjacency list) from among the plurality of adjacent cells. It is only disclosed to perform the selection of registered cells of However, in a HetNet environment including, for example, macro cells and pico cells, pico cells are less likely to be registered in the adjacency list because the number of measurement reports on macro cells and the number of handover attempts are generally larger than those of pico cells. Therefore, there is a possibility that the adjacent list can not be optimized only by selecting the listed cells according to the common criteria.
  • Non-Patent Document 1 it is preferable to register adjacent cells (mainly picocells) installed for load distribution in the adjacent list.
  • the method of Non-Patent Document 2 for selecting a cell to be registered in the adjacency list uses a common reference regardless of whether it is a macro cell or a pico cell, and it is an adjacent cell that can be easily selected as a handover destination, ie, wireless Adjacent cells with high quality are preferentially registered in the adjacency list. For this reason, there may be a case where adjacent cells with high radio quality (mainly macro cells) are registered in the adjacent list, and adjacent cells (mainly pico cells) for load distribution are not registered in the adjacent list.
  • adjacent cells with high radio quality mainly macro cells
  • adjacent cells mainly pico cells
  • the present invention has been made based on the above-mentioned findings by the inventors of the present application, and is an adjacency list optimization device capable of optimizing adjacency list suitable for HetNet (Heterogeneous Network) environment, adjacency list optimization device It is an object of the present invention to provide a list generation device, a base station device, an adjacent list optimization method, and a program.
  • HetNet Heterogeneous Network
  • a first aspect of the present invention includes an adjacency list optimization device that optimizes adjacency list wirelessly transmitted by a base station that manages a target cell.
  • the adjacent list optimization apparatus takes account of the cell type determined according to the difference in cell size, and among the plurality of other cells excluding the target cell, the plurality of registered cells registered in the adjacent list. It has a cell selection unit to select.
  • a second aspect of the invention involves an adjacency list generator.
  • the adjacency list generator is combined with the adjacency list optimizer according to the first aspect of the present invention described above, and generates an adjacency list including information on the plurality of registered cells selected by the adjacency list optimizer. It is configured to
  • a third aspect of the present invention includes a base station apparatus.
  • the base station apparatus is combined with the adjacent list generation apparatus according to the second aspect of the present invention described above, and configured to wirelessly transmit an adjacent list including information on the plurality of registered cells.
  • a fourth aspect of the present invention includes a neighbor list optimization method for optimizing a neighbor list wirelessly transmitted by a base station that manages a target cell.
  • the method includes the step of selecting a plurality of registered cells registered in the adjacent list from among a plurality of other cells excluding the target cell in consideration of a cell type determined according to a difference in cell size. Have.
  • a fifth aspect of the invention comprises a computer program.
  • the program causes the computer to perform the neighbor list optimization method according to the fourth aspect of the present invention described above by being read and executed by the computer.
  • the adjacency list suitable for the HetNet (Heterogeneous Network) environment in which cells of a plurality of types with different coverage sizes (cell sizes) are arranged adjacent to each other.
  • An adjacent list optimization device, an adjacent list generation device, a base station apparatus, an adjacent list optimization method, and a program can be provided.
  • FIG. 1 shows the structural example of the network containing the hand-over optimization system which concerns on Embodiment 1 of this invention. It is a flowchart which shows the example of the whole procedure of the adjacent list update process performed by the hand-over optimization system shown in FIG. It is a flowchart which shows the 1st example of the selection procedure of the registration cell to the adjacent list which concerns on Embodiment 1 of this invention. It is a flowchart which shows the 2nd example of the selection procedure of the registration cell to the adjacent list which concerns on Embodiment 1 of this invention. It is a flowchart which shows the 3rd example of the selection procedure of the registration cell to the adjacent list which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a diagram showing an example of the configuration of a network including the handover optimization system 1 according to the present embodiment.
  • the handover optimization system 1 performs an update process on the neighbor list related to the target cell 61.
  • the neighbor list of the target cell 61 is transmitted from the base station 2 that manages the target cell 61 using a radio channel that can be received by the mobile terminal (hereinafter, UE: User Equipment) 3.
  • UE User Equipment
  • the handover optimization system 1 includes an adjacent list optimization unit 11 and an adjacent list generation unit 12.
  • the adjacent list optimization unit 11 selects a plurality of registered cells from among the plurality of adjacent cells 62 adjacent to the target cell 61 in consideration of the cell type determined according to the difference in cell size. The selection process of the registered cell is performed by the cell selection unit 110.
  • the adjacent list optimization unit 11 optimizes the adjacent list related to the target cell 61 by selecting such a registered cell.
  • the adjacent list generation unit 12 generates an adjacent list in which information on a plurality of registered cells selected by the adjacent list optimization unit 11 is described, and supplies the generated adjacent list to the base station 2.
  • the target cell 61 is a macro cell, and only two adjacent cells 62 including one macro cell and one pico cell are shown. However, the target cell 61 may be another cell other than the macro cell. Also, the target cell 61 may have more neighboring cells.
  • the selection process of registered cells by the adjacent list optimization unit 11 is particularly effective when the total number of adjacent cells 62 is larger than the maximum registrable number NCLmax (for example, 32 in LTE) of the adjacent list.
  • the cell selection unit 110 uses neighboring cell information (cell ID and the like) on a plurality of neighboring cells 62 to select a registered cell. Neighboring cell information can be supplied to the neighbor list optimization unit 11 through various routes. For example, the neighboring cell information can be acquired by referring to the measurement report (MR: Measurement Report) generated by the UE 3 or the MR aggregation information in which the plurality of measurement reports are aggregated by the base station 2 or the like. Since the measurement report includes the measurement result of the radio quality of the adjacent cell 62 detected by the UE 3, the adjacent cell 62 can be identified.
  • MR Measurement Report
  • the different element management system Element Management System
  • NMS network management system
  • the neighboring cell information may be acquired from the network design information held by the base station 2 or the EMS or NMS that manages this.
  • the network design information includes cell layout information created by an operator or the like of a telecommunications carrier.
  • the cell selection unit 110 selects a registered cell in consideration of the cell type determined according to the difference in cell size. Therefore, the cell selection unit 110 uses cell type information on the adjacent cell 62 in order to select a registered cell.
  • the cell type information may be capable of identifying the difference in cell size of the adjacent cell 62.
  • the cell type information may be information directly indicating the cell size.
  • the cell type information may be an identifier indicating to which of the attributes divided according to the cell size of the macro cell, the micro cell, the pico cell, the femto cell, etc. the adjacent cell belongs.
  • the cell type information may be information indicating the transmission power level of the radio signal (eg, pilot signal, downlink reference signal) by the base station that manages each adjacent cell 62.
  • the cell type information is information that indicates the application of the cell, for example, information that can identify whether the cell is a normal cell or a smaller cell than a normal cell installed for load distribution. It is also good.
  • Cell type information can be supplied to the adjacent list optimization unit 11 through various routes.
  • the adjacent list optimization unit 11 may obtain the cell type information also from the measurement report (or the MR aggregated information) of the UE 3 or the network design information, or a combination thereof, similarly to the above-described adjacent cell information.
  • the cell type information may be included in the transmission signal of each base station that manages the adjacent cell 62.
  • cell type information may be acquired from a base station that manages an adjacent cell included in measurement information of UE3.
  • the cell selection unit 110 uses a cell selection index (CSI: Cell Selection Index) to select a plurality of registered cells from among the plurality of adjacent cells 62.
  • CSI Cell Selection Index
  • Typical examples of the cell selection indicator are "the number of detections by UE3 (the number of measurement reports)” and “the number of handover (HO) trials” as described in Non-Patent Document 2.
  • the “HO trial number” refers to the number of outbound handover trials from the target cell 61 to the adjacent cell 62.
  • the cell selection indicator may include "HO failure number”, “HO failure rate”, or "failure number occupancy rate”.
  • the “HO failure number” refers to the number of outbound handover failures from the target cell 61 to the adjacent cell 62.
  • HO failure rate means the ratio of the number of failures to the number of outbound handover attempts from the target cell 61 to the adjacent cell 62.
  • the “occupancy rate of the number of failures” means the ratio of the number of failures of outbound handover from the target cell 61 to the adjacent cell 62 with respect to the total number of failures of outbound handover from the target cell 61.
  • the cell selection unit 110 may preferentially select an adjacent cell 62 having a large occupancy rate of the HO failure number, the HO failure rate, or the failure number as a registered cell. As a result, it becomes possible to adjust handover parameters such as CIO for these cells, and it is possible to suppress the occurrence of handover to a neighboring cell where handover failure is expected. That is, handover failure can be reduced.
  • the cell selection unit 110 changes the reference for selecting a registered cell according to the cell type. For example, for the adjacent macro cell, a first criterion is selected to preferentially select a cell having a large first index (at least one of the number of detections by UE3 and the number of HO attempts) as a registered cell.
  • the second index eg HO number of failure, HO failure rate, or occupancy ratio of failure number
  • Adopt the criteria of The first and second indices may each include a plurality of indices.
  • the combination of indices for macro cells may be different from the combination of indices for adjacent cells of other types.
  • the cell selection unit 110 uses the same index regardless of the cell type, when selecting a registered cell, the threshold to be compared with the index may be changed according to the cell type. For example, when using "the number of detections by UE3" as a common index, a high threshold is applied for the adjacent macro cell, and a lower threshold is adopted for other adjacent cells (for example, adjacent pico cells) compared to the macro cell. Good.
  • Non-Patent Document 2 In the method of using a common reference without considering the cell type as described in Non-Patent Document 2, there is a possibility that only a specific type of cell is selected as a registered cell, and almost no other type of cell is selected. is there. However, such a defect can be avoided by changing the criteria for selecting a registered cell according to the cell type.
  • FIGS. 2A-2C are tables showing specific examples of cell selection indicators.
  • FIG. 2A shows the result of counting the number of measurement reports from UE 3 for each adjacent cell.
  • the aggregation result of the number of measurement reports is prepared by the base station 2, the handover control entity of the adjacent cell 62 (RNC (Radio Network Controller), etc.), or the EMS or NMS, etc. managing the base station 2, and the adjacent list optimization unit It may be supplied to 11. Also, the aggregation result of the number of measurement reports may be created by the handover optimization system 1 collecting measurement reports from the UE 3.
  • RNC Radio Network Controller
  • a large number of measurement reports means that the cell is a neighbor cell observed (detected) by a large number of UEs 3 connected to the target cell 61, and means a neighbor cell that is likely to cause a handover from the target cell 61. Do. In general, such adjacent cells are often cells with large coverage. Therefore, the number of measurement reports may be adopted as a selection indicator for cells with relatively large coverage. For example, when applied to a HetNet environment including macro cells and pico cells, the number of measurement reports may be adopted as a selection indicator (macro selection indicator I_M) for the macro cell.
  • FIG. 2B shows statistical information on handover. Specifically, FIG. 2B shows the number of outbound HO attempts from the target cell 61 to the adjacent cell 62 (second column), the number of outbound HO failures to the adjacent cell 62 (third column), and the adjacent cell 62. The failure rate of the Outbound HO (column 4) and the occupancy rate of the number of failures of the Outbound HO to the adjacent cell 62 (column 5) are shown.
  • the statistical information related to these handovers may be prepared by a control entity (eg, a base station or RNC) that controls the handover of the target cell 61 and the adjacent cells 62, or by the EMS or NMS, and supplied to the adjacent list optimization unit 11.
  • a control entity eg, a base station or RNC
  • the number of Outbound HO attempts to the adjacent cell 62 may be adopted as a selection index (macro selection index I_M) for the macro cell.
  • a large number of outbound HO attempts means a neighboring cell that is likely to cause a handover from the target cell 61, and such a neighboring cell is generally a macro cell in many cases.
  • the other three indices in FIG. 2B may be adopted as selection indices for pico cells (pico selection indices I_P). It is possible to reduce handover failures by preferentially registering neighboring pico cells with a high number of handover failures or failure rates in the neighboring list and adjusting CIOs for these neighboring pico cells to large values.
  • FIG. 2C shows other monitoring information on the adjacent cell 62. Specifically, FIG. 2C shows the number of reconnection of the UE to the adjacent cell 62 (second column), and the average stay time of the UE in the adjacent cell 62 (third column). These pieces of monitoring information may be created by a base station that manages the adjacent cell 62, a node that manages the base station, or the EMS or NMS, and may be supplied to the adjacent list optimization unit 11.
  • the number of reconnection of UEs to the adjacent cell 62 may be adopted as a selection indicator for macro cells (macro selection indicator I_M).
  • the large number of UE reconnections means a neighboring cell that is likely to cause a handover from the target cell 61, and such a neighboring cell is generally a macro cell in many cases.
  • the average residence time of the UE in the adjacent cell 62 may be adopted as a pico cell selection indicator (pico selection indicator I_P). Even if the UE 3 is handed over to the adjacent cell 62 whose average stay time is short, there is a high possibility that it will return to the target cell 61 immediately.
  • the cell selection unit 110 secures a part of the maximum registrable number NCLmax of the adjacent list as a registration frame (reservation frame) for at least one cell type (for example, pico cell). In other words, the cell selection unit 110 sets the registration upper limit number (the value obtained by subtracting the number of reservation slots from the maximum registrable number NCLmax of the adjacency list) in at least one cell type (for example, macro cell).
  • the cell selection unit 110 sets the registration frame for each cell type by dividing the maximum registrable number NCLmax of the adjacency list, and selects a registered cell within the range of each registration frame for each cell type. Good. According to these, even when a registered cell is selected based on a common reference regardless of the cell type, it is possible to reliably register a cell group of a plurality of cell types in the adjacent list.
  • first and second examples of registered cell selection described above may be used in combination. By combining these, it is possible to adopt a selection criterion adapted to the cell type and to reliably register a cell group of a plurality of cell types in the adjacent list.
  • the neighboring list optimization unit 11 registers a plurality of neighboring cells 62 in the neighboring list in consideration of the cell type determined according to the difference in cell size. Select the registration cell of. Therefore, according to the present embodiment, it is possible to optimize the adjacency list suitable for the HetNet environment.
  • the arrangement of the adjacent list optimization unit 11 and the adjacent list generation unit 12 is appropriately determined based on the design concept of the network architecture.
  • EPS Evolved Packet System
  • a base station evolved Node B (eNB) having a handover control function by arranging the neighbor list optimization unit 11 in the NMS 4
  • the neighbor list generator 12 may be arranged in 2).
  • the NMS 4 supplies the cell type information included in the network design information 41 to the adjacent list optimization unit 11.
  • the NMS 4 receives measurement report (MR) tally information and handover (HO) statistical information from the base station 2 and holds it as cell monitoring information 42.
  • the NMS 4 supplies the adjacent cell information and the cell selection index (CSI) included in the cell monitoring information 42 to the adjacent list optimization unit 11.
  • MR measurement report
  • HO handover statistical information
  • the neighbor list optimization unit 11 is disposed in the NMS 4 and the neighbor list generation unit 12 is provided in the RNC 5 having a handover control function. May be arranged.
  • UMTS Universal Mobile Telecommunications System
  • cell type information may be acquired from the measurement report of UE3.
  • the configuration shown in FIG. 5 may be adopted as a modification of FIG. That is, the NMS 4 may supply the neighboring cell optimization unit 11 with the neighboring cell information, the cell type information, and the cell selection index (CSI) included in the cell monitoring information 42.
  • CSI cell selection index
  • FIG. 6 is a flowchart showing an overall procedure of neighbor cell list update by the handover optimization system 1.
  • the adjacent list optimization unit 11 acquires adjacent cell information and its cell type information.
  • the adjacent list optimization unit 11 refers to a cell selection index (CSI).
  • the adjacent list optimization unit 11 selects a registered cell in consideration of the cell type. The selection of the registered cell in step S3 may be performed by any of the two examples described above or a combination of the two.
  • the adjacent list generation unit 12 generates an adjacent list including information on the plurality of registered cells selected in step S3.
  • FIGS. 7 to 11 describe the case where the plurality of adjacent cells 62 include macro cells and pico cells, they may be replaced with a combination of other cells having different cell sizes. Also, the procedures of FIGS. 7 to 11 may be applied to an environment where there is a large coverage neighboring cell group including macro cells and macro cells and a small coverage neighboring cell group including pico cells and femto cells, for example.
  • the procedure shown in FIG. 7 corresponds to the first example described above. That is, the procedure shown in FIG. 7 is characterized in that the selection criterion of the registered cell is changed according to the cell type.
  • the cell selection unit 110 initializes sets S3 and S4 as empty sets.
  • the sets S3 and S4 may be defined, for example, as array variables in a computer program.
  • step S12 the cell selection unit 110 selects a registered cell from among the plurality of adjacent cells 62 among the adjacent macro cell set S1 according to the selection criteria of the macro cell within the range of the maximum registrable number NCLmax of the adjacent list.
  • the selection criterion of the macro cell may be, for example, a criterion for performing any one threshold comparison of the macro selection indicator I_M described above.
  • the adjacent macro cell selected in step S12 is put into registered cell set S3. Further, the number of adjacent macro cells selected in step S12 is N3.
  • step S13 the cell selection unit 110 selects the neighboring pico cell set S2 of the plurality of neighboring cells 62 according to the pico cell selection criteria within the range of the remaining number of cells that can be registered in the neighboring list (that is, NCLmax-N3). Select a registration cell from.
  • the selection criterion of the pico cell may be, for example, a reference for performing any threshold comparison of the pico selection indicator I_P described above.
  • the adjacent pico cells selected in step S13 are put into registered cell set S4. Further, the number of adjacent pico cells selected in step S13 is N4.
  • step S14 the cell selection unit 110 determines the cells included in the registered cell sets S3 and S4 as registered cells. If the number of cells included in the registered cell sets S3 and S4 is smaller than the maximum registrable number NCLmax, the unselected adjacent cell 62 may be further selected as a registered cell. Also, the registration cell may be selected from the adjacent pico cell prior to the adjacent macro cell. However, in an environment where the number of adjacent picocells is larger than the maximum registrable number NCLmax, it is preferable to carry out in the order of FIG.
  • the procedure shown in FIG. 8 corresponds to the second example described above. That is, the procedure shown in FIG. 8 secures a part of the maximum registrable number NCLmax of the adjacent list as a registration frame (reservation frame) for at least one cell type (for example, pico cell). In the example of FIG. 8, the number of reservation slots for pico cells is NP. Step S21 of FIG. 8 is the same as step S11 of FIG.
  • step S22 the cell selection unit 110 selects a registered cell from among the adjacent macro cell set S1 within the range of the registration upper limit number of macro cells (NCLmax-NP).
  • the adjacent macro cell selected in step S22 is put into registered cell set S3. Further, the number of adjacent macro cells selected in step S22 is N3.
  • step S23 the cell selection unit 110 selects a registered cell from among the adjacent pico cell set S2 within the range of the number of remaining cells (NCLmax-N3) that can be registered in the adjacent list.
  • the adjacent pico cells selected in step S23 are put into registered cell set S4. Further, the number of adjacent pico cells selected in step S23 is N4.
  • the cell selection unit 110 determines the cells included in the registered cell sets S3 and S4 as registered cells.
  • the cell selection unit 710 may further select an unselected adjacent cell 62 as a registered cell.
  • the registration cell may be selected from the adjacent pico cell prior to the adjacent macro cell. In this case, the cell selection unit 110 may select a registered cell from the adjacent pico cell set S2 within the range of the number of reservation slots NP of the pico cell.
  • the procedure shown in FIG. 9 corresponds to the combination of the first and second examples described above. That is, the procedure shown in FIG. 8 changes the selection criteria of the registered cell according to the cell type, and at the same time, registers a part of the maximum registrable number NCLmax of the adjacent list for at least one cell type (eg pico cell) Secure as). Also in the example of FIG. 9, the number of reservation slots for pico cells is NP. Step S31 in FIG. 9 is the same as step S11 in FIG.
  • step S32 the cell selection unit 110 selects a registered cell from the adjacent macro cell set S1 in accordance with the selection criterion of the macro cell within the upper limit number of registered macro cells (NCLmax-NP).
  • step S33 the cell selection unit 110 selects a registered cell from among the adjacent picocell set S2 in accordance with the picocell selection criteria within the range of the remaining number (NCLmax-N3) of cells that can be registered in the adjacent list.
  • Step S34 is the same as step S24 in FIG.
  • the procedure shown in FIG. 10 is a modification of the procedure of FIG.
  • the adjacent macro cell is smaller than the upper limit number of registrations (NCLmax-NP), or the adjacent pico cell is smaller than the number of reservation slots (NP), or both the adjacent macro cell and the adjacent pico cell are both smaller.
  • the registered cell number may not reach the maximum registrable number NCLmax of the adjacent list. Therefore, the procedure in FIG. 10 shows an example in which further cell selection is performed when the number of cells included in the registered cell sets S3 and S4 falls below the maximum registrable number NCLmax.
  • step S41 in FIG. 10 the cell selection unit 110 initializes sets S3 to S6 as empty sets.
  • Steps S42 and S43 of FIG. 10 are similar to steps S32 and S33 shown in FIG.
  • step S44 it is determined whether the number of cells (N3 + N4) included in the registered cell sets S3 and S4 is less than the maximum registrable number NCLmax. If N3 + N4 is smaller than NCLmax (YES in step S44), the remaining adjacent macrocells (S1-S3) are selected according to the macrocell selection criteria within the range of the remaining number of cells (NCLmax-N3-N4) that can be registered in the adjacent list.
  • the registration cell is selected from among (step S45). Note that the macro cell selection standard here may be changed in threshold value so that the registered cell can be selected more easily than the standard in step S42.
  • the adjacent macro cell selected in step S45 is put into registered cell set S5. Further, the number of adjacent macro cells selected in step S45 is N5.
  • step S46 it is determined whether the number of cells (N3 + N4 + N5) included in the registered cell sets S3 to S5 is less than the maximum registrable number NCLmax. If N3 + N4 + N5 is smaller than NCLmax (YES in step S46), the remaining adjacent picocells (S2 ⁇ ) are selected according to the picocell selection criteria within the range of the remaining number of cells (NCLmax ⁇ N3-N4-N5) that can be registered in the adjacent list. A registered cell is selected from S4) (step S47).
  • the pico cell selection criterion here may change the threshold value so that the registered cell is more easily selected than the criterion at step S43.
  • the adjacent pico cells selected in step S47 are put into registered cell set S6. Further, the number of adjacent picocells selected in step S47 is N6.
  • step S48 the cell selection unit 110 determines the cells included in the registered cell sets S3 to S6 as registered cells.
  • the procedure in FIG. 11 introduces a common indicator (referred to as an evaluation parameter) that does not depend on the cell type for selection of a registered cell.
  • an evaluation parameter a common indicator that does not depend on the cell type for selection of a registered cell.
  • the procedure in FIG. 11 takes into account differences in cell types by making the method of determining the evaluation parameter different between macro cells and pico cells.
  • step S51 the cell selection unit 110 calculates an evaluation parameter by multiplying the first index (for example, the number of measurement reports of UE3) by the first weighting factor W1 for each cell included in the adjacent macro cell set S1. .
  • step S52 the cell selection unit 110 calculates an evaluation parameter by multiplying the second index (for example, the number of HO failures) by the second weighting factor W2 for each cell included in the adjacent picocell set S2.
  • the second index for example, the number of HO failures
  • step S53 the cell selection unit 110 selects a registered cell from the adjacent cell set (S1 + S2) in the order of the magnitudes of the evaluation parameters within the range of the maximum registrable number NCLmax of the adjacent list.
  • the cell selection indicator (CSI) described in the first embodiment of the invention is only an example. Also, a plurality of indicators may be used in combination. For example, with respect to adjacent pico cells, a selection criterion may be adopted in which cells having a large HO failure rate are selected from cells in which the number of measurement reports exceeds a threshold.
  • some cells may be statically registered in the adjacency list without setting all the registrable frames of the adjacency list as targets of dynamic cell selection by the adjacency list optimization unit 11.
  • dynamic cell selection by the adjacent list optimization unit 11 may be performed with the upper limit being the number obtained by subtracting the number of statically registered cells from the maximum registrable number NCLmax of the adjacent list.
  • the adjacent cell 62 may be any other cell than the target cell 61.
  • the other cells include cells whose coverage partially overlaps with the coverage of the target cell 62 and cells whose coverage is completely included in the coverage of the target cell 62. Also, although the overlapping relationship of coverage with the target cell 62 is not clear, the cell detected by the UE 3 connected to the target cell 62 is included in the other cells described above.
  • the embodiment has been described in which the registered cell selection process in consideration of the cell type is always performed.
  • the communication load of the target cell 61 is predetermined. It may be performed only when the threshold is exceeded. It is effective to select a cell for load distribution such as a pico cell as a registered cell as a registered cell when load distribution of the target cell 61 is desired.
  • the communication load of the target cell 61 is large, it is possible to make it easy to select a cell whose load is to be distributed, such as a pico cell, among the adjacent cells as a registered cell.
  • the registered cell selection considering the cell type is not performed, and among the adjacent cells, the macrocell having the large number of measurement reports and the number of HO trials is registered as a registered cell. It can be easily selected, and the HO quality of the macro cell can be preferentially improved.
  • the selection process of the registered cell by the cell selection unit 110 described in the first embodiment of the invention may be realized using a semiconductor processing device such as an application specific integrated circuit (ASIC) or a digital signal processor (DSP). Further, the process of selecting a registered cell by the cell selection unit 110 may be realized by causing a computer such as a microprocessor to execute a program. Specifically, a program including instructions for causing a computer to execute the algorithm shown in any of FIGS. 7 to 11 may be created, and the program may be supplied to the computer.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • Non-transitory computer readable media include tangible storage media of various types. Examples of non-transitory computer readable media are magnetic recording media (eg flexible disk, magnetic tape, hard disk drive), magneto-optical recording media (eg magneto-optical disk), CD-ROM (Read Only Memory), CD-R, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)) are included. Also, the programs may be supplied to the computer by various types of transitory computer readable media. Examples of temporary computer readable media include electrical signals, light signals, and electromagnetic waves. The temporary computer readable medium can provide the program to the computer via a wired communication path such as electric wire and optical fiber, or a wireless communication path.
  • a wired communication path such as electric wire and optical fiber, or a wireless communication path.
  • the “HO failure number”, “HO failure rate”, or “occupancy rate of failure number” from the target cell 61 to the adjacent cell 62 is used as a cell selection index. Mentioned the example used. As described above, it is possible to select a registered cell using the criteria for preferentially selecting the number of outbound handover failures from the target cell 61 to the adjacent cell 62 or a cell having a relatively high failure rate as described in Non-Patent Document 2 It is a matter that is not described.
  • the selection of the registered cell based on the number of failures of the outbound handover to the adjacent cell 62 or the failure rate as an indicator without taking into consideration the cell type defined in accordance with the difference in cell size is an essential element here.
  • a reference example for performing will be described.
  • FIG. 12 is a view showing an example of the configuration of a network including the handover optimization system 7 according to this embodiment.
  • the outline of FIG. 12 is the same as that of FIG. 1 described above. That is, the handover optimization system 7 performs the update process of the adjacent list on the target cell 61.
  • the neighbor list of the target cell 61 is transmitted from the base station 2 that manages the target cell 61 using a radio channel that can be received by the UE 3.
  • the handover optimization system 7 includes an adjacent list optimization unit 71 and an adjacent list generation unit 12.
  • the neighbor list optimization unit 71 is a criterion for preferentially selecting a cell having a relatively large number of failures or a failure rate of an outbound handover from the target cell 61 to the adjacent cell among the plurality of adjacent cells 62. Is used to select a plurality of registered cells registered in the adjacent list.
  • the adjacent list generation unit 12 generates an adjacent list in which the information of the plurality of registered cells selected by the adjacent list optimization unit 71 is described, and supplies the adjacent list to the base station 2.
  • FIG. 13 is a flow chart showing an overall procedure of neighbor cell list update by the handover optimization system 7.
  • the adjacent list optimization unit 71 acquires adjacent cell information.
  • the adjacent list optimization unit 71 refers to a cell selection index (CSI).
  • the adjacent list optimization unit 71 (that is, the cell selection unit 710) gives priority to a cell having a relatively large number of failures or failure rate of outbound handover from the target cell 61 to the adjacent cell.
  • the registration cell is selected using the criteria selected in.
  • step S104 the adjacent list generation unit 12 generates an adjacent list including information on the plurality of registered cells selected in step S103. Subsequently, three specific examples of the registration cell selection procedure in step S103 of FIG. 13 will be described in more detail with reference to flowcharts (FIGS. 14 to 16).
  • step S201 in FIG. 14 the cell selection unit 710 selects registered cells from the adjacent cell set in the order of the HO failure number or the HO failure rate within the range of the maximum registrable number NCLmax of the adjacent list.
  • step S301 the cell selection unit 710 initializes sets S3 and S4 as empty sets.
  • step S302 the cell selection unit 710 selects a registered cell from the neighboring cell set S1 in accordance with the criteria using the HO failure number or the HO failure rate within the upper limit number of registrations (NCLmax ⁇ NS2).
  • the number NS2 represents the number of registration slots (reservation slots) reserved for cells selected using other criteria described later.
  • the adjacent cells selected in step S302 are put into the registered cell set S3. Further, the number of adjacent cells selected in step S302 is N3.
  • step S303 the cell selection unit 710 sets the other criteria (for example, different from the criteria using the HO failure count or the HO failure rate) within the range of the number of remaining cells (NCLmax-N3) that can be registered in the neighbor list (for example, Based on the number of measurement reports of UE 3 as the indicator), the registered cell is selected from the remaining adjacent cells (S1-S3).
  • the adjacent cells selected in step S303 are put into registered cell set S4. Further, the number of adjacent cells selected in step S303 is N4.
  • step S304 the cell selection unit 710 determines the cells included in the registered cell sets S3 and S4 as registered cells. When the number of cells included in the registered cell sets S3 and S4 is less than the maximum registrable number NCLmax, the cell selection unit 710 may further select an unselected adjacent cell 62 as a registered cell.
  • the procedure shown in FIG. 16 is a modification of the procedure of FIG.
  • the procedure of FIG. 15 shows an example in which further cell selection is performed when the number of cells included in the registered cell sets S3 and S4 is less than the maximum registrable number NCLmax.
  • step S401 in FIG. 16 the cell selection unit 710 initializes sets S3 to S6 as empty sets.
  • Steps S402 and S403 of FIG. 16 are similar to steps S302 and S303 shown in FIG.
  • step S404 it is determined whether the number of cells (N3 + N4) included in the registered cell sets S3 and S4 is less than the maximum registrable number NCLmax. If N3 + N4 is smaller than NCLmax (YES in step S404), the remaining number of remaining cells (NCLmax-N3-N4) that can be registered in the adjacent list is determined according to the criteria using HO failure number or HO failure rate A registered cell is selected from adjacent cells (S1-S3-S4) (step S405). Note that the reference for selection of registered cells here may be changed in threshold value so that the registered cell can be selected more easily than the reference in step S402. The adjacent cells selected in step S405 are put into the registered cell set S5. Further, the number of adjacent cells selected in step S405 is N5.
  • step S406 it is determined whether the number of cells (N3 + N4 + N5) included in the registered cell sets S3 to S5 is less than the maximum registrable number NCLmax.
  • N3 + N4 + N5 is smaller than NCLmax (YES in step S406), within the range of the remaining number of cells that can be registered in the adjacent list (NCLmax-N3-N4-N5), the criteria using HO failure number or HO failure rate
  • a registered cell is selected from the remaining adjacent cells (S1-S3-S4-S5) according to other different criteria (step S407).
  • the selection criterion of the registration cell here may be changed in threshold so that the registration cell can be selected more easily than the criterion in step S403.
  • the adjacent cells selected in step S407 are put into registered cell set S6. Further, the number of adjacent cells selected in step S407 is set to N6.
  • step S408 the cell selection unit 710 determines the cells included in the registered cell sets S3 to S6 as registered cells.
  • the selection process of the registered cell by the cell selection unit 710 described in the reference example 1 may be realized using a semiconductor processing device such as an application specific integrated circuit (ASIC) or a digital signal processor (DSP). Further, the process of selecting a registered cell by the cell selection unit 710 may be realized by causing a computer such as a microprocessor to execute a program. Specifically, a program including an instruction group for causing a computer to execute the algorithm shown in any of FIGS. 14 to 16 may be created, and the program may be supplied to the computer.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • Embodiment 1 of the invention Part or all of Embodiment 1 of the invention, the other embodiments, and Reference Example 1 may be described as in the following appendices, but is not limited to the following.
  • a neighbor list optimization apparatus that optimizes a neighbor list wirelessly transmitted by a base station that manages a target cell, comprising: Among the plurality of other cells excluding the target cell, using a first criterion for preferentially selecting a cell having a relatively large number of failures or failure rates of outward handover from the target cell to the other cell, among the plurality of other cells excluding the target cell
  • An adjacent list optimization device comprising cell selection means for selecting a plurality of registered cells registered in the adjacent list.
  • the failure rate may be the ratio of the number of failures to the number of outgoing handover attempts from the target cell, or the total number of outgoing handover failures from the target cell for the outward handover to the other cell.
  • APPENDIX 4 The adjacency list optimization device according to appendix 1, wherein the proportion is the number of failures.
  • the cell type includes a first cell type, and a second cell type indicating a second cell having a different cell size from the first cell indicated by the first cell type,
  • the cell selection means From the first cell group included in the plurality of other cells, select a registered cell according to the first criterion, From the second cell group included in the plurality of other cells, select a registered cell according to a second criterion different from the first criterion,
  • the adjacency list optimization device according to any one of appendices 1 to 3.
  • the cell selection means may be configured to select one of the number of the first cells and the number of the second cells included in the plurality of other cells if the number exceeds the maximum registrable number of the adjacent list.
  • the adjacent list optimization device according to appendix 4, wherein the plurality of registered cells are selected such that the first and second cells are both registered in the adjacent list.
  • the second cell is a cell having a cell size larger than that of the first cell, and
  • the second criterion is that, among the second cell group, a cell which is predicted to cause a lot of outward handovers from the target cell to the second cell is preferentially selected as the registered cell.
  • the second cell is a cell having a cell size larger than that of the first cell, and
  • the second criterion is that among the second group of cells, the number of detections by the mobile terminal, the number of outgoing handover attempts from the target cell to the second cell, or the number of reconnection of the mobile terminal is relative.
  • the neighbor list optimization device according to any one of appendices 4 or 5, comprising preferentially selecting a large cell as the registered cell.
  • the cell selection means The registered cell is preferentially selected from the second cell group, The registered cell is selected from the first cell group within the range of the remaining number of cells that can be registered in the adjacent list. 24.
  • the adjacent list optimization device according to any one of appendices 4 to 7.
  • the cell selection means According to the first criterion, a registered cell is preferentially selected from the plurality of other cells, and The registered cell is selected from the group of unselected cells among the plurality of other cells according to a second criterion different from the first criterion within the range of the remaining number of cells that can be registered in the adjacent list , Adjacency list optimization apparatus according to appendix 1 or 2.
  • An adjacent list generation device for generating an adjacent list including information on the plurality of registered cells.
  • a base station apparatus configured to wirelessly transmit an adjacent list including information on the plurality of registered cells.
  • Handover Optimization System 1 Handover Optimization System 2 Base Station 3 Mobile Terminal 4 Network Management System (NMS) 5 RNC (Radio Network Controller) 7 handover optimization system 11 adjacent list optimization unit 12 adjacent list generation unit 41 network design information 42 cell monitoring information 61 target cell 62 adjacent cell 71 adjacent list optimization unit 110 cell selection unit 710 cell selection unit
  • NMS Network Management System
  • RNC Radio Network Controller

Abstract

 隣接リスト最適化部(11)は、対象セル(61)を管理する基地局(2)によって無線送信される隣接リストの最適化を行う。隣接リスト最適化部(11)は、セル選択部(110)を含む。セル選択部(110)は、セルサイズの違いに応じて定められたセル種別を考慮して、対象セル(61)を除く複数の他セル(62)の中から、隣接リストに登録される複数の登録セルを選択する。これにより、例えば、カバレッジの大きさ(セルサイズ)が異なる複数種別のセルが隣接配置されたHetNet(Heterogeneous Network)環境に適した隣接リストの最適化が可能となる。

Description

隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及び非一時的なコンピュータ可読媒体
 本発明は、基地局から無線送信される隣接リストの自律最適化に関する。
 隣接リスト(隣接セルリストとも呼ばれる)は、通信中の移動端末のハンドオーバの制御に使用される。隣接リストは、CIO(Cell Individual Offset)等のハンドオーバパラメータを含むことができる。基地局は、隣接リストを無線送信することで、自身の管理するセルに接続する移動局に対して隣接リストを通知する。なお以下では、隣接セル群のうち隣接リストに登録されているセルを"Listed Cell"と称し、隣接リストに登録されていないセルを"Detected Cell"と称する。
 接続先セル(サービングセルと呼ぶ)から隣接セルへの移動端末のハンドオーバを実現するために、サービング基地局又はRNC(Radio Resource Controller)等のサービングセルのハンドオーバ制御主体は、所定のイベントが発生した場合に測定報告を送信するよう移動端末に指示する。所定のイベントは、例えば、サービングセルの無線品質の劣化である。移動端末によって生成される測定報告は、サービングセル及びその隣接セル(隣接セル群)の無線品質の測定結果を含む。サービングセルのハンドオーバ制御主体は、移動端末から測定報告を受信した時点で、測定報告に基づいてハンドオーバ先のセル(ターゲットセル)を決定し、移動端末およびターゲットセルとのシグナリングを含むハンドオーバ手順を開始する。
 ここで、LTE(Long Term Evolution)/ E-UTRAN (Evolved UTRAN)に関する3GPP技術仕様 3GPP TS 36.331 V8.11.0 (2010-09)にて規定されている測定報告の送信イベントの1つを紹介する。当該技術仕様においてEvent A3 (Neighbour becomes offset better than serving)として規定された送信イベントの本質的部分は、以下の式(1)によって表わされる。
  P+O<P+O  (1)
 式(1)中のPはサービングセルの無線品質の測定結果であり、Pは、隣接セルの無線品質の測定結果である。LTEの場合、P及びPは、下りリファレンス信号の受信電力(RSRP:Reference Signal Received Power)又はRSRQ(Reference Signal Received Quality)である。RSRQは、総受信電力に対するRSRPの比率である。また、式(1)中のOは、サービングセルの無線品質に対するオフセット値であり、サービングセルの下りリファレンス信号の無線品質に作用する。一方、Oは、隣接セルの無線品質に対するオフセット値であり、隣接セルの下りリファレンス信号の無線品質に作用する。つまり、隣接リストは、登録セル毎に異なるオフセットO設定を保持することができる。オフセット値Oは、CIO(Cell Individual Offset)と呼ばれる。
 基地局に式(1)の動作条件が設定されると、その基地局が管理するセルに接続する移動端末に対して式(1)の動作条件が通知される。移動端末は、サービングセルの無線品質及び隣接セルの無線品質の測定結果が式(1)の条件を満たすことをトリガとして、測定報告をサービング基地局に送信する。
 さらに、式(1)を以下の式(2)及び(3)のように書き換えることもできる。パラメータTHHOは、ハンドオーバ閾値と呼ばれる。
-P>THHO  (2)
THHO=O-O  (3)
 上述したオフセット値Ot(CIO)やTTT(Time to Trigger)等のハンドオーバパラメータを動的に調整する技術が知られている。なお、TTTは、上述した式(1)及び(2)等のような測定報告の送信条件が成立してから測定報告の送信が行われるまでの保護時間である。例えば、移動端末は、式(2)の条件を満たす期間がTTTとして定められた期間を超えて継続した場合に、測定報告の送信を行う。つまり、TTTを長くする程、ハンドオーバの開始タイミングが遅くなり、ハンドオーバが発生し難くなる。
 例えば、特許文献1は、移動端末の測定報告に基づき、ハンドオーバパラメータ(TTT、CIO等)を動的に調節することによって、ハンドオーバ失敗(Too Late Handover,Too Early Handover)を低減することを開示している。また、非特許文献1は、セルの通信負荷が増大した場合に、基地局が隣接リストに含まれる隣接セルのCIOを調節し、負荷の大きいセルから隣接セルへの移動端末のハンドオーバを促進させることを開示している。非特許文献1の技術によれば、セル間での負荷分散を行うことができる。
 移動端末からの測定報告を受信したハンドオーバ制御主体は、一般に、測定報告に含まれる隣接セルうちのListed Cell の中からターゲットセルを決定する。この場合、移動端末は、Detected Cellにはハンドオーバできない。したがって、隣接リストに隣接セルの登録漏れがあると、ハンドオーバの失敗が発生したり、不適切なセルにハンドオーバしたために通信品質が劣化したりするおそれがある。
 さらに、上述したように、隣接セル毎のオフセット値Otは隣接リストを用いて移動端末に通知される。つまり、移動端末にオフセット値Otを通知できるセルは、隣接リストに登録された隣接セルに限られる。このため、重要な隣接セルが隣接リストに登録されていないと、この重要な隣接セルに関するオフセット値Otを移動端末に通知することができない。この場合、オフセット値Otの調節による移動端末のハンドオーバのタイミング調節ができないため、オフセット値Otの調節に基づくハンドオーバ成功率の改善(例えば特許文献1)や、セル境界付近の移動端末を隣接セルにハンドオーバさせることによる負荷分散(例えば非特許文献1)などを実現することが困難になる。なお、この問題は、サービングセルのハンドオーバ制御主体がDetected Cellsの中からターゲットセルを選択できる場合にも発生する。
 上述したような隣接セル毎のオフセット値は、CIOとは独立に、通信開始時に移動端末が測定する無線品質に対しても設定することができる。このオフセット値(qoffset)を調節することにより、通信開始時に移動端末が接続するセルを調節し、セルの通信負荷を制御することができる。しかし、CIOと同様に、移動端末にオフセット値(qoffset)を通知できるセルは、隣接リストに登録された隣接セルに限られるため、重要な隣接セルが隣接リストに登録されていないと、負荷分散を実現することが困難になる。
 以上に述べた点から明らかであるように、隣接リストの最適化は、良好な通信品質を確保するうえで重要である。特に、隣接リストに登録できるセル数には上限があるため、通信品質の向上に寄与する可能性が高い重要なセルを隣接リストに優先的に登録する必要がある。
 従来、隣接リストの最適化は、セルラ通信システムのサービスエリアにおける走行試験の結果などに基づき、専門の技術者によって行われていた。しかし、近年、セルラ通信システムの運用中に自律的に隣接リストを最適化する技術が提案されている(非特許文献2を参照)。
 非特許文献2は、移動端末からの測定報告が多い隣接セル、及び移動端末のハンドオーバ試行回数が多い隣接セルを優先的に隣接リスト登録することを開示している。
国際公開第2010/002926号
R. Kwan, et al.、"On Mobility Load Balancing for LTE Systems", in Proc. IEEE 72nd Vehicular Technology Conference VTC2010、2010年9月 D. Soldani 及び I. Ore、"Self-optimizing Neighbor Cell List for UTRA FDD Networks Using Detected Set Reporting"in Proc. IEEE 65th Vehicular Technology Conference VTC2007、2007年4月、pp. 694-698
 本願の発明者等は、HetNet(Heterogeneous Network)環境において、隣接リストの登録上限数を超える多くの隣接セルが存在する状況では、非特許文献2に記載された技術は、隣接リストの最適化を十分に行えないおそれがあることを見出した。HetNet環境とは、マクロセルとピコセル、マクロセルとフェムトセル、ピコセルとフェムトセル等の、カバレッジの大きさ(セルサイズ)が異なる複数種別のセルが互いに隣接配置された環境である。なお、HetNet環境におけるセルの隣接配置は、セルサイズの大きい一方のセルのカバレッジにセルサイズの小さい他方のセルが完全に含まれる階層化された配置を含む。以下では、本願の発明者等によって認識されたこの問題点について詳しく説明する。
 非特許文献2は、複数の隣接セルに対して共通の基準(具体的には、測定報告の数、及びハンドオーバ試行数)を用いて、これら複数の隣接セルの中からlisted cells(隣接リストへの登録セル)の選択を行うことを開示するのみである。しかしながら、例えばマクロセル及びピコセルを含むHetNet環境では、一般に、マクロセルに関する測定報告の数、ハンドオーバ試行数の方がピコセルのそれより多いため、ピコセルが隣接リストに登録されにくい。そのため、共通の基準によってlisted cellsを選択するのみでは隣接リストを最適化できないおそれがある。
 また、本願の発明者等は、特許文献1の技術を利用してハンドオーバ失敗を低減することを検討した結果、ハンドオーバ失敗数又は失敗率が高い隣接セルを隣接リストに優先的に登録することに想到した。しかし、HetNet環境において当該基準に従って登録を行うと、ハンドオーバ失敗数又は失敗率が高い隣接セル(主にピコセル)によって隣接リストが占められ、ハンドオーバ試行数が多い重要な隣接セル(主にマクロセル)が隣接リストに登録されないケースが生じる可能性がある。
 また、非特許文献1の技術を効果的に利用するためには、負荷分散のため設置された隣接セル(主にピコセル)を隣接リストに登録するとよい。しかしながら、隣接リストに登録するセルを選択するための非特許文献2の手法は、マクロセルであるかピコセルであるかに関わらず共通の基準を用いて、ハンドオーバ先として選択されやすい隣接セル、すなわち無線品質が高い隣接セルを優先的に隣接リストに登録する。このため、無線品質が高い隣接セル(主にマクロセル)が隣接リストに登録され、負荷分散のための隣接セル(主にピコセル)が隣接リストに登録されないケースが生じる可能性がある。
 本発明は、本願の発明者等による上述の知見に基づいてなされたものであって、HetNet(Heterogeneous Network)環境に適した隣接リストの最適化を行うことが可能な隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及びプログラムの提供を目的とする。
 本発明の第1の態様は、対象セルを管理する基地局によって無線送信される隣接リストの最適化を行う隣接リスト最適化装置を含む。当該隣接リスト最適化装置は、セルサイズの違いに応じて定められたセル種別を考慮して、前記対象セルを除く複数の他セルの中から、前記隣接リストに登録される複数の登録セルを選択するセル選択部を有する。
 本発明の第2の態様は、隣接リスト生成装置を含む。当該隣接リスト生成装置は、上述した本発明の第1の態様に係る隣接リスト最適化装置と結合され、前記隣接リスト最適化装置によって選択された前記複数の登録セルの情報を含む隣接リストを生成するよう構成されている。
 本発明の第3の態様は、基地局装置を含む。当該基地局装置は、上述した本発明の第2の態様に係る隣接リスト生成装置と結合され、前記複数の登録セルの情報を含む隣接リストを無線送信するよう構成されている。
 本発明の第4の態様は、対象セルを管理する基地局によって無線送信される隣接リストの最適化を行う隣接リストの最適化方法を含む。当該方法は、セルサイズの違いに応じて定められたセル種別を考慮して、前記対象セルを除く複数の他セルの中から、前記隣接リストに登録される複数の登録セルを選択するステップを有する。
 本発明の第5の態様は、コンピュータプログラムを含む。当該プログラムは、コンピュータに読み込まれて実行されることによって、上述した本発明の第4の態様に係る隣接リストの最適化方法をコンピュータに行わせる。
 上述した本発明の各態様によれば、カバレッジの大きさ(セルサイズ)が異なる複数種別のセルが隣接配置されたHetNet(Heterogeneous Network)環境に適した隣接リストの最適化を行うことが可能な隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及びプログラムを提供できる。
本発明の実施の形態1に係るハンドオーバ最適化システムを含むネットワークの構成例を示す図である。 図1に示した隣接リスト最適化部に供給されるセル選択指標(CSI)の具体例を示すテーブルである。 図1に示した隣接リスト最適化部に供給されるセル選択指標(CSI)の具体例を示すテーブルである。 図1に示した隣接リスト最適化部に供給されるセル選択指標(CSI)の具体例を示すテーブルである。 本発明の実施の形態1に係るハンドオーバ最適化システムを含むネットワークの構成例を示す図である。 本発明の実施の形態1に係るハンドオーバ最適化システムを含むネットワークの構成例を示す図である。 本発明の実施の形態1に係るハンドオーバ最適化システムを含むネットワークの構成例を示す図である。 図1に示したハンドオーバ最適化システムにより行われる隣接リスト更新処理の全体的手順の具体例を示すフローチャートである。 本発明の実施の形態1に係る隣接リストへの登録セルの選択手順の第1の例を示すフローチャートである。 本発明の実施の形態1に係る隣接リストへの登録セルの選択手順の第2の例を示すフローチャートである。 本発明の実施の形態1に係る隣接リストへの登録セルの選択手順の第3の例を示すフローチャートである。 本発明の実施の形態1に係る隣接リストへの登録セルの選択手順の第4の例を示すフローチャートである。 本発明の実施の形態1に係る隣接リストへの登録セルの選択手順の第5の例を示すフローチャートである。 参考例に係るハンドオーバ最適化システムを含むネットワークの構成例を示す図である。 図12に示したハンドオーバ最適化システムにより行われる隣接リスト更新処理の全体的手順の具体例を示すフローチャートである。 参考例に係る隣接リストへの登録セルの選択手順の第1の例を示すフローチャートである。 参考例に係る隣接リストへの登録セルの選択手順の第2の例を示すフローチャートである。 参考例に係る隣接リストへの登録セルの選択手順の第3の例を示すフローチャートである。
 以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<発明の実施の形態1>
 図1は、本実施の形態に係るハンドオーバ最適化システム1を含むネットワークの構成例を示す図である。ハンドオーバ最適化システム1は、対象セル61に関する隣接リストの更新処理を行う。対象セル61の隣接リストは、対象セル61を管理する基地局2から移動端末(以下UE:User Equipment)3が受信可能な無線チャネルを用いて送信される。
 ハンドオーバ最適化システム1は、隣接リスト最適化部11及び隣接リスト生成部12を含む。隣接リスト最適化部11は、セルサイズの違いに応じて定められたセル種別を考慮して、対象セル61に隣接する複数の隣接セル62の中から複数の登録セルを選択する。この登録セルの選択処理は、セル選択部110によって行われる。このような登録セルの選択によって、隣接リスト最適化部11は、対象セル61に関する隣接リストの最適化を行う。隣接リスト生成部12は、隣接リスト最適化部11によって選択された複数の登録セルの情報が記述された隣接リストを生成し、基地局2に供給する。
 なお、図1の例では、対象セル61をマクロセルとし、1つのマクロセル及び1つのピコセルを含む2つの隣接セル62のみを示している。しかしながら、対象セル61は、マクロセル以外の他のセルであってもよい。また、対象セル61はより多くの隣接セルを有してもよい。隣接リスト最適化部11による登録セルの選択処理は、隣接リストの最大登録可能数NCLmax(例えば、LTEでは32個)よりも隣接セル62の総数が多い場合に特に有効である。
 セル選択部110は、登録セルを選択するために、複数の隣接セル62に関する隣接セル情報(セルID等)を用いる。隣接セル情報は、様々な経路で隣接リスト最適化部11に供給可能である。例えば、隣接セル情報は、UE3によって生成される測定報告(MR:Measurement Report)、又は複数の測定報告を基地局2等が集計したMR集計情報を参照することで取得できる。測定報告は、UE3が検出した隣接セル62の無線品質の計測結果を含むため、隣接セル62を特定可能である。測定報告又はその集計情報から隣接セル情報を取得することによって、対象セル61と隣接セル62がそれぞれ通信事業者の配下にある異なるエレメント管理システム(EMS:Element Management System)又はネットワーク管理システム(NMS:Network Management System)によって管理されていて、EMS間、EMS-NMS間、又はNMS間で情報を共有できない場合にも、隣接セルについての情報を得ることができる利点がある。
 また、隣接セル情報は、基地局2又はこれを管理するEMS若しくはNMSが保持しているネットワーク設計情報から取得されてもよい。ネットワーク設計情報は、通信事業者のオペレータ等によって作成されたセルレイアウトの情報を含む。ネットワーク設計情報から隣接セル情報を取得することによって、測定報告を用いる場合の問題、すなわち、対象セル61に接続するUE3の数が少ないためにUE3の測定報告からではごく一部の隣接セル62の情報しか得られないという問題を回避できる。また、隣接セル情報は、UE3の測定報告又はその集計情報と、ネットワーク設計情報の両方から取得されてもよい。これにより、隣接セル62の情報を網羅的に得ることができる。
 また、上述したように、セル選択部110は、セルサイズの違いに応じて定められたセル種別を考慮して登録セルの選択を行う。このため、セル選択部110は、登録セルを選択するために、隣接セル62に関するセル種別情報を用いる。セル種別情報は、隣接セル62のセルサイズの違いを識別可能であればよい。例えば、セル種別情報は、セルサイズを直接的に示す情報であってもよい。また、セル種別情報は、マクロセル、マイクロセル、ピコセル、フェムトセル等のセルサイズに応じて区分された属性のいずれに隣接セルが属するかを示す識別子であってもよい。また、セル種別情報は、各隣接セル62を管理する基地局による無線信号(e.g. パイロット信号、下りリファレンス信号)の送信電力レベルを示す情報であってもよい。また、セル種別情報は、セルの用途を示す情報、例えば、通常のセルであるか、又は負荷分散のために設置された通常のセルに比べて小さいセルであるかを識別できる情報であってもよい。
 セル種別情報は、様々な経路で隣接リスト最適化部11に供給可能である。例えば、隣接リスト最適化部11は、セル種別情報についても、上述した隣接セル情報と同様に、UE3の測定報告(又はMR集計情報)若しくはネットワーク設計情報、又はこれらの組合せから取得すればよい。UE3の測定報告又はMR集計情報からセル種別情報を取得する場合、隣接セル62を管理する各基地局の送信信号にセル種別情報を含めればよい。あるいは、UE3の測定情報に含まれる隣接セルを管理する基地局から、セル種別情報を取得してもよい。
 さらに、セル選択部110は、複数の隣接セル62の中から複数の登録セルを選択するために、セル選択指標(CSI:Cell Selection Index)を用いる。セル選択指標の典型的な具体例は、非特許文献2に記載されている通り、"UE3による検出数(測定報告の数)"、及び"ハンドオーバ(HO)試行数"である。"HO試行数"は、対象セル61から隣接セル62へ向かう外向き(outbound)のハンドオーバの試行数を意味する。
 さらに、セル選択指標は、"HO失敗数"、"HO失敗率"、又は"失敗数の占有率"を含んでもよい。"HO失敗数"は、対象セル61から隣接セル62へ向かう外向き(outbound)のハンドオーバの失敗数を意味する。また、"HO失敗率"は、対象セル61から隣接セル62へのoutboundハンドオーバの試行数に対する失敗数の割合を意味する。また、"失敗数の占有率"は、対象セル61からの外向き(outbound)のハンドオーバの失敗数の総和に対する、対象セル61から隣接セル62へのoutboundハンドオーバの失敗数の割合を意味する。セル選択部110は、HO失敗数、HO失敗率、又は失敗数の占有率が大きい隣接セル62を登録セルとして優先的に選択するとよい。これによって、これらのセルに対するCIO等のハンドオーバパラメータの調整が可能となり、ハンドオーバ失敗が予想される隣接セルへのハンドオーバの発生を抑制できる。つまりハンドオーバ失敗を低減することができる。
 続いて以下では、セル種別を考慮した登録セル選択の2つの例について説明する。
(セル種別を考慮した登録セル選択の第1の例)
 セル選択部110は、セル種別によって登録セルを選択する基準を変える。例えば、隣接マクロセルについては、第1の指標(e.g. UE3による検出数及びHO試行数の少なくとも一方)が大きいセルを優先的に登録セルとして選択する第1の基準を採用する。一方、その他の種別の隣接セル(例えば隣接ピコセル)については、第2の指標(e.g.HO失敗数、HO失敗率、又は失敗数の占有率)が大きいセルを優先的に登録セルとして選択する第2の基準を採用する。なお、第1及び第2の指標は、それぞれ複数の指標を含んでもよい。この場合、マクロセル用の指標の組合せとその他の種別の隣接セル用の指標の組合せが異なっていればよい。また、セル選択部110は、セル種別に依らず同一の指標を用いるが、登録セルを選ぶ際に当該指標と比較する閾値をセル種別によって変更してもよい。例えば、共通の指標として"UE3による検出数"を用いる場合、隣接マクロセル用には高い閾値を適用し、その他の隣接セル(例えば隣接ピコセル)用には、マクロセルに比べて低い閾値を採用すればよい。
 非特許文献2に記載されているようなセル種別を考慮せずに共通の基準を用いる方法では、特定の種別のセルのみが登録セルとして選択され、他の種別のセルが殆ど選択されないおそれがある。しかしながら、セル種別によって登録セルを選択する基準を変えることによって、このような不具合を回避することができる。
 セル選択指標の例について、さらに図2A~2Cを参照して説明する。図2A~2Cは、セル選択指標の具体例を示すテーブルである。図2Aは、UE3からの測定報告数を隣接セル毎に集計した結果を示している。測定報告数の集計結果は、基地局2、隣接セル62のハンドオーバ制御主体(RNC(Radio Network Controller)など)、又は、基地局2を管理するEMS若しくはNMS等が作成し、隣接リスト最適化部11に供給すればよい。また、測定報告数の集計結果は、ハンドオーバ最適化システム1がUE3からの測定報告を収集することによって作成してもよい。
 測定報告数が多いことは、対象セル61に接続するUE3によって多く観測(検出)されている隣接セルであることを意味し、対象セル61からのハンドオーバが発生する可能性が高い隣接セルを意味する。一般に、このような隣接セルはカバレッジが大きなセルであることが多い。よって、測定報告数は、カバレッジが相対的に大きいセル用の選択指標として採用するとよい。例えば、マクロセル及びピコセルを含むHetNet環境に適用する場合、測定報告数は、マクロセル用の選択指標(マクロ選択指標I_M)として採用するとよい。
 図2Bは、ハンドオーバに関する統計情報を示している。具体的には、図2Bは、対象セル61から隣接セル62へのOutbound HOの試行数(第2列目)、隣接セル62へのOutbound HOの失敗数(第3列目)、隣接セル62へのOutbound HOの失敗率(第4列目)、隣接セル62へのOutbound HOの失敗数の占有率(第5列目)を示している。これらのハンドオーバに関する統計情報は、対象セル61及び隣接セル62のハンドオーバを制御する制御主体(e.g. 基地局、RNC)、又はEMS若しくはNMSが作成し、隣接リスト最適化部11に供給すればよい。
 マクロセル及びピコセルを含むHetNet環境に適用する場合、隣接セル62へのOutbound HOの試行数は、マクロセル用の選択指標(マクロ選択指標I_M)として採用するとよい。Outbound HOの試行数が大きいことは、対象セル61からのハンドオーバが発生する可能性が高い隣接セルを意味し、そのような隣接セルは一般にマクロセルであることが多いためである。これに対して、図2Bの他の3つの指標は、ピコセル用の選択指標(ピコ選択指標I_P)として採用するとよい。ハンドオーバ失敗数又は失敗率が高い隣接ピコセルを隣接リストに優先的に登録し、これらの隣接ピコセルに対するCIOを大きな値に調整することで、ハンドオーバ失敗を低減することができる。
 図2Cは、隣接セル62に関するその他の監視情報を示している。具体的には、図2Cは、隣接セル62へのUEの再接続数(2列目)、隣接セル62でのUEの平均滞在時間(3列目)を示している。これらの監視情報は、隣接セル62を管理する基地局、基地局を管理するノード、又はEMS若しくはNMSが作成し、隣接リスト最適化部11に供給すればよい。
 マクロセル及びピコセルを含むHetNet環境に適用する場合、隣接セル62へのUEの再接続数は、マクロセル用の選択指標(マクロ選択指標I_M)として採用するとよい。UEの再接続数が大きいことは、対象セル61からのハンドオーバが発生する可能性が高い隣接セルを意味し、そのような隣接セルは一般にマクロセルであることが多いためである。これに対して、隣接セル62でのUEの平均滞在時間は、ピコセルの選択指標(ピコ選択指標I_P)として採用するとよい。平均滞在時間が短い隣接セル62へUE3がハンドオーバをしたとしても、直ぐに対象セル61に戻ってくる可能性が高い。つまり、ハンドオーバの繰り返し(ピンポン現象)を生じる可能性が高い。あるいは、隣接セル62へハンドオーバした後、直ちに対象セル61とは別のセルにハンドオーバする可能性が高い。このような現象は、一般にカバレッジが小さなピコセルで生じる場合が多い。このため、UEの平均滞在時間が短い隣接ピコセルを隣接リストに優先的に登録し、これらの隣接ピコセルに対するCIOを大きな値に調整することで、この隣接ピコセルへのハンドオーバを抑制することができる。
(セル種別を考慮した登録セル選択の第2の例)
 続いて、セル種別を考慮した登録セル選択の第2の例を説明する。セル選択部110は、少なくとも1つのセル種別(例えばピコセル)のために、隣接リストの最大登録可能数NCLmaxの一部を登録枠(予約枠)として確保する。言い換えると、セル選択部110は、少なくとも1つのセル種別(例えばマクロセル)に登録上限数(隣接リストの最大登録可能数NCLmaxから予約枠の数を引いた値)を設定する。また、セル選択部110は、隣接リストの最大登録可能数NCLmaxを分割することでセル種別毎の登録枠を設定し、セル種別毎に各々の登録枠の範囲内で登録セルを選択してもよい。これらによれば、仮にセル種別によらずに共通の基準で登録セルを選択する場合であっても、複数のセル種別のセル群を隣接リストに確実に登録することができる。
 さらに、上述した登録セル選択の第1及び2の例は、組み合わせて用いてもよい。これらを組み合わせることで、セル種別に適応した選択基準を採用するとともに、複数のセル種別のセル群を隣接リストに確実に登録することができる。
 上述したように、本実施の形態に係る隣接リスト最適化部11は、セルサイズの違いに応じて定められたセル種別を考慮して、複数の隣接セル62の中から隣接リストに登録する複数の登録セルを選択する。このため、本実施の形態によれば、HetNet環境に適した隣接リストの最適化を行うことができる。
 ところで、隣接リスト最適化部11及び隣接リスト生成部12の配置は、ネットワークアーキテクチャの設計思想に基づいて適宜決定されるものである。例えば、本実施の形態をEPS(Evolved Packet System)に適用する場合、図3に示すように、NMS4に隣接リスト最適化部11を配置し、ハンドオーバ制御機能を有する基地局(evolved NodeB(eNB))2に隣接リスト生成部12を配置してもよい。図3の例では、NMS4は、ネットワーク設計情報41に含まれるセル種別情報を隣接リスト最適化部11に供給する。また、図3の例では、NMS4は、基地局2から測定報告(MR)集計情報、ハンドオーバ(HO)統計情報を受け取ってセル監視情報42として保持している。NMS4は、セル監視情報42に含まれる隣接セル情報及びセル選択指標(CSI)を隣接リスト最適化部11に供給する。
 また、本実施の形態をUMTS(Universal Mobile Telecommunications System)に適用する場合、図4に示すように、NMS4に隣接リスト最適化部11を配置し、ハンドオーバ制御機能を有するRNC5に隣接リスト生成部12を配置してもよい。
 また、上述したように、UE3の測定報告からセル種別情報を取得してもよい。この場合、図4の変形例として図5に示す構成を採用してもよい。つまり、NMS4は、セル監視情報42に含まれる隣接セル情報、セル種別情報、及びセル選択指標(CSI)を隣接リスト最適化部11に供給すればよい。
 以下では、ハンドオーバ最適化システム1による隣接セルリストの更新動作、特に、隣接リスト最適化部11による登録セルの選択動作の具体例について詳しく説明する。図6は、ハンドオーバ最適化システム1による隣接セルリスト更新の全体手順を示すフローチャートである。ステップS1では、隣接リスト最適化部11は、隣接セル情報及びそのセル種別情報を取得する。ステップS2では、隣接リスト最適化部11は、セル選択指標(CSI)を参照する。ステップS3では、隣接リスト最適化部11(つまり、セル選択部110)は、セル種別を考慮して登録セルを選択する。ステップS3での登録セルの選択は、上述した2つの例のいずれか又はこれら2つの組合せにより行えばよい。ステップS4では、隣接リスト生成部12は、ステップS3で選択された複数の登録セルの情報を含む隣接リストを生成する。
 続いて以下では、図6のステップS3における登録セルの選択手順の5つの具体例についてフローチャート(図7~11)を参照してさらに詳しく説明する。なお、図7~11は、複数の隣接セル62がマクロセル及びピコセルを含む場合について説明しているが、セルサイズの異なる他のセルの組合せに置き換えてもよい。また、例えばマクロセル及びマクロセルを含むカバレッジの大きな隣接セルグループと、例えばピコセル及びフェムトセルを含むカバレッジの小さな隣接セルグループとが存在する環境に、図7~11の手順を適用してもよい。
 図7に示す手順は、上述した第1の例に対応する。すなわち、図7に示す手順は、セル種別によって登録セルの選択基準を変えることを特徴とする。ステップS11では、セル選択部110は、集合S3及びS4を空集合として初期化する。集合S3及びS4は、例えばコンピュータプログラムにおける配列変数として定義すればよい。
 ステップS12では、セル選択部110は、隣接リストの最大登録可能数NCLmaxの範囲内で、マクロセルの選択基準に従って、複数の隣接セル62のうち隣接マクロセル集合S1の中から登録セルを選択する。マクロセルの選択基準は、例えば、上述したマクロ選択指標I_Mのいずれかの閾値比較を行う基準とすればよい。ステップS12で選択された隣接マクロセルは、登録セル集合S3に入れられる。また、ステップS12で選択された隣接マクロセル数をN3とする。
 ステップS13では、セル選択部110は、隣接リストに登録可能なセルの残数(つまりNCLmax-N3)の範囲内で、ピコセルの選択基準に従って、複数の隣接セル62のうち隣接ピコセル集合S2の中から登録セルを選択する。ピコセルの選択基準は、例えば、上述したピコ選択指標I_Pのいずれかの閾値比較を行う基準とすればよい。ステップS13で選択された隣接ピコセルは、登録セル集合S4に入れられる。また、ステップS13で選択された隣接ピコセル数をN4とする。
 ステップS14では、セル選択部110は、登録セル集合S3及びS4に含まれるセルを登録セルに決定する。なお、登録セル集合S3及びS4に含まれるセル数が最大登録可能数NCLmaxを下回る場合、未選択の隣接セル62をさらに登録セルに選択してもよい。また、隣接マクロセルより先に隣接ピコセルからの登録セルの選択を行ってもよい。しかしながら、隣接ピコセル数が最大登録可能数NCLmaxより多い環境では、図7の順序で行うことが好ましい。
 図8に示す手順は、上述した第2の例に対応する。すなわち、図8に示す手順は、少なくとも1つのセル種別(例えばピコセル)のために、隣接リストの最大登録可能数NCLmaxの一部を登録枠(予約枠)として確保する。図8の例では、ピコセル用の予約枠の数をNPとする。図8のステップS21は、図7のステップS11と同様である。
 ステップS22では、セル選択部110は、マクロセルの登録上限数(NCLmax-NP)の範囲内で、隣接マクロセル集合S1の中から登録セルを選択する。ステップS22で選択された隣接マクロセルは、登録セル集合S3に入れられる。また、ステップS22で選択された隣接マクロセル数をN3とする。
 ステップS23では、セル選択部110は、隣接リストに登録可能なセルの残数(NCLmax-N3)の範囲内で、隣接ピコセル集合S2の中から登録セルを選択する。ステップS23で選択された隣接ピコセルは、登録セル集合S4に入れられる。また、ステップS23で選択された隣接ピコセル数をN4とする。
 ステップS24では、セル選択部110は、登録セル集合S3及びS4に含まれるセルを登録セルに決定する。なお、登録セル集合S3及びS4に含まれるセル数が最大登録可能数NCLmaxを下回る場合、セル選択部710は、未選択の隣接セル62をさらに登録セルに選択してもよい。また、隣接マクロセルより先に隣接ピコセルからの登録セルの選択を行ってもよい。この場合、セル選択部110は、ピコセルの予約枠数NPの範囲内で、隣接ピコセル集合S2の中から登録セルを選択すればよい。
 図9に示す手順は、上述した第1及び第2の例の組合せに対応する。すなわち、図8に示す手順は、セル種別によって登録セルの選択基準を変えるとともに、少なくとも1つのセル種別(例えばピコセル)のために隣接リストの最大登録可能数NCLmaxの一部を登録枠(予約枠)として確保する。図9の例でも、ピコセル用の予約枠の数をNPとする。図9のステップS31は、図7のステップS11と同様である。
 ステップS32では、セル選択部110は、マクロセルの登録上限数(NCLmax-NP)の範囲内で、マクロセルの選択基準に従って、隣接マクロセル集合S1の中から登録セルを選択する。
 ステップS33では、セル選択部110は、隣接リストに登録可能なセルの残数(NCLmax-N3)の範囲内で、ピコセルの選択基準に従って、隣接ピコセル集合S2の中から登録セルを選択する。
 ステップS34は、図8のステップS24と同様である。
 図10に示す手順は、図9の手順の変形である。図9の手順では、隣接マクロセルが登録上限数(NCLmax-NP)より少ない、若しくは隣接ピコセルが予約枠の数(NP)より少ない、又は隣接マクロセル及び隣接ピコセルが共に少ない、のいずれかの理由によって、登録セル数が隣接リストの最大登録可能数NCLmaxに達しない場合がある。そこで、図10の手順は、登録セル集合S3及びS4に含まれるセル数が最大登録可能数NCLmaxを下回る場合に更なるセル選択を行う例を示している。
 図10のステップS41では、セル選択部110は、集合S3~S6を空集合として初期化する。図10のステップS42及びS43は、図9に示したステップS32及びS33と同様である。
 ステップS44では、登録セル集合S3及びS4に含まれるセル数(N3+N4)が最大登録可能数NCLmaxを下回るか否かを判定する。N3+N4がNCLmaxより小さい場合(ステップS44でYES)、隣接リストに登録可能なセルの残数(NCLmax-N3-N4)の範囲内で、マクロセルの選択基準に従って、残りの隣接マクロセル(S1-S3)の中から登録セルを選択する(ステップS45)。なお、ここでのマクロセル選択基準は、ステップS42での基準に比べて、登録セルが選択され易くなるように閾値を変更してもよい。ステップS45で選択された隣接マクロセルは、登録セル集合S5に入れられる。また、ステップS45で選択された隣接マクロセル数をN5とする。
 ステップS46では、登録セル集合S3~S5に含まれるセル数(N3+N4+N5)が最大登録可能数NCLmaxを下回るか否かを判定する。N3+N4+N5がNCLmaxより小さい場合(ステップS46でYES)、隣接リストに登録可能なセルの残数(NCLmax-N3-N4-N5)の範囲内で、ピコセルの選択基準に従って、残りの隣接ピコセル(S2-S4)の中から登録セルを選択する(ステップS47)。ここでのピコセル選択基準は、ステップS43での基準に比べて、登録セルが選択され易くなるように閾値を変更してもよい。ステップS47で選択された隣接ピコセルは、登録セル集合S6に入れられる。また、ステップS47で選択された隣接ピコセル数をN6とする。
 ステップS48では、セル選択部110は、登録セル集合S3~S6に含まれるセルを登録セルに決定する。
 図11の手順は、登録セルの選択のためにセル種別に依存しない共通の指標(評価パラメータと呼ぶ)を導入する。しかしながら、図11の手順は、評価パラメータの求め方をマクロセルとピコセルとで異ならせることによって、セル種別の違いを考慮する。
 ステップS51では、セル選択部110は、隣接マクロセル集合S1に含まれる各セルについて第1の指標(例えば、UE3の測定報告数)に第1の重み係数W1を乗算することによって評価パラメータを算出する。
 ステップS52では、セル選択部110は、隣接ピコセル集合S2に含まれる各セルについて第2の指標(例えば、HO失敗数)に第2の重み係数W2を乗算することによって評価パラメータを算出する。
 ステップS53では、セル選択部110は、隣接リストの最大登録可能数NCLmaxの範囲内で、評価パラメータの大きさの順序に従って、隣接セル集合(S1+S2)の中から登録セルを選択する。
<その他の実施の形態>
 発明の実施の形態1で述べたセル選択指標(CSI)は一例に過ぎない。また、複数の指標を組み合わせて用いてもよい。例えば、隣接ピコセルに関しては、測定報告数が閾値を超えているセルの中からHO失敗率の大きいものを選ぶといった選択基準を採用してもよい。
 また、隣接リストの登録可能枠の全てを隣接リスト最適化部11による動的なセル選択の対象とせずに、一部のセルを隣接リストに静的に登録するようにしてもよい。この場合、隣接リストの最大登録可能数NCLmaxから静的に登録されるセル数を減算した数を上限として、隣接リスト最適化部11による動的なセル選択を行えばよい。
 また、発明の実施の形態1では、対象セル61とこれに隣接する隣接セル62に関して説明したが、隣接セル62は、対象セル61を除く他のセルであればよい。当該他のセルは、そのカバレッジが対象セル62のカバレッジと部分的にオーバラップするセル、及びそのカバレッジが対象セル62のカバレッジに完全に包含されるセル、を含む。また、対象セル62とのカバレッジのオーバラップ関係は明確でないものの、対象セル62に接続するUE3によって検出されるセルは、上述した他のセルに含まれる。
 また、発明の実施の形態1では、セル種別を考慮した登録セル選択の処理を常に実施する形態について説明したが,セル種別を考慮したセル選択の処理は,対象セル61の通信負荷が所定の閾値を超えるときのみときのみ実施するようにしてもよい。ピコセル等の負荷分散を目的とするセルを登録セルとして選択すると効果的であるのは、対象セル61の負荷分散を実施したい場合である。ここで述べた変形によれば、対象セル61の通信負荷が大きい場合には、隣接セルのうちピコセル等の負荷分散を目的とするセルを登録セルとして選択されやすくすることができる。一方、対象セル61の通信負荷が小さく負荷分散を必要としない時にはセル種別を考慮した登録セル選択を行わないことで、隣接セルのうち、測定報告数やHO試行数が大きいマクロセルが登録セルとして選択されやすくでき、マクロセルのHO品質を優先的に改善できる。
 発明の実施の形態1で述べたセル選択部110による登録セルの選択処理は、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)等の半導体処理装置を用いて実現してもよい。また、セル選択部110による登録セルの選択処理は、マイクロプロセッサ等のコンピュータにプログラムを実行させることによって実現してもよい。具体的には、図7~11のいずれかに示したアルゴリズムをコンピュータに行わせるための命令群を含むプログラムを作成し、当該プログラムをコンピュータに供給すればよい。
 このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給される。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
<参考例1>
 上述した発明の実施の形態1では、対象セル61から隣接セル62への外向き(outbound)の"HO失敗数"、"HO失敗率"、又は"失敗数の占有率"をセル選択指標として用いる例に言及した。このように、対象セル61から隣接セル62へのoutboundハンドオーバの失敗数又は失敗率が相対的に大きいセルを優先的に選択する基準を用いて登録セルを選択することは、非特許文献2に記載されていない事項である。したがって、ここでは、セルサイズの違いに応じて定められたセル種別を考慮することを必須要素とすることなく、隣接セル62へのoutboundハンドオーバの失敗数又は失敗率を指標とした登録セルの選択を行う参考例について説明する。
 図12は、本参考例に係るハンドオーバ最適化システム7を含むネットワークの構成例を示す図である。図12の概要は、先に説明した図1と同様である。すなわち、ハンドオーバ最適化システム7は、対象セル61に関する隣接リストの更新処理を行う。対象セル61の隣接リストは、対象セル61を管理する基地局2からUE3が受信可能な無線チャネルを用いて送信される。
 ハンドオーバ最適化システム7は、隣接リスト最適化部71及び隣接リスト生成部12を含む。隣接リスト最適化部71は、複数の隣接セル62のうち、対象セル61から隣接セルへ向かう外向き(outbound)のハンドオーバの失敗数又は失敗率が相対的に大きいセルを優先的に選択する基準を用いて、隣接リストに登録される複数の登録セルを選択する。隣接リスト生成部12は、隣接リスト最適化部71によって選択された複数の登録セルの情報が記述された隣接リストを生成し、基地局2に供給する。
 このように、対象セル61から隣接セルへ向かう外向き(outbound)のハンドオーバの失敗数又は失敗率が相対的に大きいセルを優先的に選択する基準を登録セルの選択基準として採用することによって、ハンドオーバ失敗の頻度が大きい隣接セルの情報を優先的に隣接リストに加えることができる。したがって、これらのセルに対するCIO等のハンドオーバパラメータの調整が可能となり、ハンドオーバ失敗が予想される隣接セルへのハンドオーバの発生を抑制できる。つまりハンドオーバ失敗を低減することができる。
 以下では、ハンドオーバ最適化システム7による隣接セルリストの更新動作、特に、隣接リスト最適化部71による登録セルの選択動作の具体例について詳しく説明する。図13は、ハンドオーバ最適化システム7による隣接セルリスト更新の全体手順を示すフローチャートである。図13のステップS101では、隣接リスト最適化部71は、隣接セル情報を取得する。ステップS102では、隣接リスト最適化部71は、セル選択指標(CSI)を参照する。ステップS103では、隣接リスト最適化部71(つまり、セル選択部710)は、対象セル61から隣接セルへ向かう外向き(outbound)のハンドオーバの失敗数又は失敗率が相対的に大きいセルを優先的に選択する基準を用いて登録セルを選択する。ステップS104では、隣接リスト生成部12は、ステップS103で選択された複数の登録セルの情報を含む隣接リストを生成する。続いて以下では、図13のステップS103における登録セルの選択手順の3つの具体例についてフローチャート(図14~16)を参照してさらに詳しく説明する。
 図14のステップS201では、セル選択部710は、隣接リストの最大登録可能数NCLmaxの範囲内で、HO失敗数又はHO失敗率が大きい順に隣接セル集合の中から登録セルを選択する。
 次に、図15のフローについて説明する。ステップS301では、セル選択部710は、集合S3及びS4を空集合として初期化する。
 ステップS302では、セル選択部710は、登録上限数(NCLmax-NS2)の範囲内で、HO失敗数又はHO失敗率を用いた基準に従って、隣接セル集合S1の中から登録セルを選択する。ここで、数NS2は、後述する他の基準を用いて選択されるセル用に確保された登録枠(予約枠)の数を表わしている。ステップS302で選択された隣接セルは、登録セル集合S3に入れられる。また、ステップS302で選択された隣接セル数をN3とする。
 ステップS303では、セル選択部710は、隣接リストに登録可能なセルの残数(NCLmax-N3)の範囲内で、HO失敗数又はHO失敗率を用いた基準とは異なる他の基準(例えば、UE3の測定報告数を指標とする基準)の従って、残りの隣接セル(S1-S3)の中から登録セルを選択する。ステップS303で選択された隣接セルは、登録セル集合S4に入れられる。また、ステップS303で選択された隣接セル数をN4とする。
 ステップS304では、セル選択部710は、登録セル集合S3及びS4に含まれるセルを登録セルに決定する。なお、登録セル集合S3及びS4に含まれるセル数が最大登録可能数NCLmaxを下回る場合、セル選択部710は、未選択の隣接セル62をさらに登録セルに選択してもよい。
 図16に示す手順は、図15の手順の変形である。図15の手順は、登録セル集合S3及びS4に含まれるセル数が最大登録可能数NCLmaxを下回る場合に更なるセル選択を行う例を示している。
 図16のステップS401では、セル選択部710は、集合S3~S6を空集合として初期化する。図16のステップS402及びS403は、図15に示したステップS302及びS303と同様である。
 ステップS404では、登録セル集合S3及びS4に含まれるセル数(N3+N4)が最大登録可能数NCLmaxを下回るか否かを判定する。N3+N4がNCLmaxより小さい場合(ステップS404でYES)、隣接リストに登録可能なセルの残数(NCLmax-N3-N4)の範囲内で、HO失敗数又はHO失敗率を用いた基準に従って、残りの隣接セル(S1-S3-S4)の中から登録セルを選択する(ステップS405)。なお、ここでの登録セルの選択基準は、ステップS402での基準に比べて、登録セルが選択され易くなるように閾値を変更してもよい。ステップS405で選択された隣接セルは、登録セル集合S5に入れられる。また、ステップS405で選択された隣接セル数をN5とする。
 ステップS406では、登録セル集合S3~S5に含まれるセル数(N3+N4+N5)が最大登録可能数NCLmaxを下回るか否かを判定する。N3+N4+N5がNCLmaxより小さい場合(ステップS406でYES)、隣接リストに登録可能なセルの残数(NCLmax-N3-N4-N5)の範囲内で、HO失敗数又はHO失敗率を用いた基準とは異なる他の基準に従って、残りの隣接セル(S1-S3-S4-S5)の中から登録セルを選択する(ステップS407)。ここでの登録セルの選択基準は、ステップS403での基準に比べて、登録セルが選択され易くなるように閾値を変更してもよい。ステップS407で選択された隣接セルは、登録セル集合S6に入れられる。また、ステップS407で選択された隣接セル数をN6とする。
 ステップS408では、セル選択部710は、登録セル集合S3~S6に含まれるセルを登録セルに決定する。
 参考例1で述べたセル選択部710による登録セルの選択処理は、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)等の半導体処理装置を用いて実現してもよい。また、セル選択部710による登録セルの選択処理は、マイクロプロセッサ等のコンピュータにプログラムを実行させることによって実現してもよい。具体的には、図14~16のいずれかに示したアルゴリズムをコンピュータに行わせるための命令群を含むプログラムを作成し、当該プログラムをコンピュータに供給すればよい。
 上記の発明の実施の形態1、その他の実施の形態、及び参考例1の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
 (付記1)
 対象セルを管理する基地局によって無線送信される隣接リストの最適化を行う隣接リスト最適化装置であって、
 前記対象セルを除く複数の他セルのうち、前記対象セルから前記他セルへの外向きのハンドオーバの失敗数又は失敗率が相対的に大きいセルを優先的に選択する第1の基準を用いて、前記隣接リストに登録される複数の登録セルを選択するセル選択手段を備える、隣接リスト最適化装置。
(付記2)
 前記失敗率は、前記対象セルからの外向きのハンドオーバの試行数に対する失敗数の割合、又は前記対象セルからの外向きのハンドオーバの失敗数の総和に対する、前記他セルへの外向きのハンドオーバの失敗数の割合である、付記1に記載の隣接リスト最適化装置。
(付記3)
 前記セル選択手段は、さらに、セルサイズの違いに応じて定められたセル種別を考慮して、前記複数の登録セルを選択する、付記1又は2に記載の隣接リスト最適化装置。
(付記4)
 前記セル種別は、第1のセル種別と、前記第1のセル種別で示される第1のセルとはセルサイズの異なる第2のセルを示す第2のセル種別とを含み、
 前記セル選択手段は、
 前記複数の他セルに含まれる前記第1のセル群の中から、前記第1の基準に従って登録セルを選択し、
 前記複数の他セルに含まれる前記第2のセル群の中から、前記第1の基準とは異なる第2の基準に従って登録セルを選択する、
付記1~3のいずれか1項に記載の隣接リスト最適化装置。
(付記5)
 前記セル選択手段は、前記複数の他セルに含まれる前記第1のセルの数及び前記第2のセルの数のうちいずれか一方が前記隣接リストの最大登録可能数を超える場合であっても、前記第1及び第2のセルが共に前記隣接リストに登録されるように、前記複数の登録セルを選択する、付記4に記載の隣接リスト最適化装置。
(付記6)
 前記第2のセルは、前記第1のセルよりセルサイズの大きいセルであって、
 前記第2の基準は、前記第2のセル群のうち、前記対象セルから前記第2のセルへの外向きのハンドオーバが多く発生すると予測されるセルを前記登録セルとして優先的に選択することを含む、付記4又は5に記載の隣接リスト最適化装置。
(付記7)
 前記第2のセルは、前記第1のセルよりセルサイズの大きいセルであって、
 前記第2の基準は、前記第2のセル群のうち、移動端末による検出数、前記対象セルから前記第2のセルへの外向きのハンドオーバの試行数、又は移動端末の再接続数が相対的に大きいセルを前記登録セルとして優先的に選択することを含む、付記4又は5のいずれか1項に記載の隣接リスト最適化装置。
(付記8)
 前記セル選択手段は、
 前記第2のセル群の中から登録セルを優先的に選択し、
 前記隣接リストに登録できるセルの残数の範囲内で、前記第1のセル群の中から登録セルを選択する、
付記4~7のいずれか1項に記載の隣接リスト最適化装置。
(付記9)
 前記セル選択手段は、
 前記第1の基準に従って、前記複数の他セルの中から登録セルを優先的に選択するとともに、
 前記隣接リストに登録可能なセルの残数の範囲内で、前記第1の基準とは異なる第2の基準に従って、前記複数の他セルのうち未選択のセル群の中から登録セルを選択する、
付記1又は2に記載の隣接リスト最適化装置。
(付記10)
 前記セル選択手段は、前記隣接リストの最大登録可能数より小さい所定数の範囲内で、前記第1の基準に基づく登録セルの選択を行う、付記9に記載の隣接リスト最適化装置。
(付記11)
 付記1~10のいずれか1項に記載の隣接リスト最適化装置と結合され、
 前記複数の登録セルの情報を含む隣接リストを生成する隣接リスト生成装置。
(付記12)
 付記11に記載の隣接リスト生成装置と結合され、
 前記複数の登録セルの情報を含む隣接リストを無線送信するよう構成された基地局装置。
 この出願は、2010年12月21日に出願された日本出願特願2010-284624を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 ハンドオーバ最適化システム
2 基地局
3 移動端末
4 ネットワーク管理システム(NMS: Network Management System)
5 RNC(Radio Network Controller)
7 ハンドオーバ最適化システム
11 隣接リスト最適化部
12 隣接リスト生成部
41 ネットワーク設計情報
42 セル監視情報
61 対象セル
62 隣接セル
71 隣接リスト最適化部
110 セル選択部
710 セル選択部

Claims (37)

  1.  対象セルを管理する基地局によって無線送信される隣接リストの最適化を行う隣接リスト最適化装置であって、
     セルサイズの違いに応じて定められたセル種別を考慮して、前記対象セルを除く複数の他セルの中から、前記隣接リストに登録される複数の登録セルを選択するセル選択手段を備える、隣接リスト最適化装置。
  2.  前記セル種別は、第1のセル種別と、前記第1のセル種別で示される第1のセルとはセルサイズの異なる第2のセルを示す第2のセル種別とを含む、請求項1に記載の隣接リスト最適化装置。
  3.  前記セル選択手段は、前記複数の他セルに含まれる前記第1のセルの数及び前記第2のセルの数のうちいずれか一方が前記隣接リストの最大登録可能数を超える場合であっても、前記第1及び第2のセルが共に前記隣接リストに登録されるように、前記複数の登録セルを選択する、請求項2に記載の隣接リスト最適化装置。
  4.  前記セル選択手段は、
     前記複数の他セルに含まれる前記第1のセル群の中から、第1の基準に従って登録セルを選択し、
     前記複数の他セルに含まれる前記第2のセル群の中から、前記第1の基準とは異なる第2の基準に従って登録セルを選択する、
    請求項2又は3に記載の隣接リスト最適化装置。
  5.  前記第2のセルは、前記第1のセルよりセルサイズの小さいセルであって、
     前記第2の基準は、前記第2のセル群のうち、前記対象セルから前記第2のセルへの外向きのハンドオーバの失敗数又は失敗率が相対的に大きいセルを前記登録セルとして優先的に選択することを含む、請求項4に記載の隣接リスト最適化装置。
  6.  前記失敗率は、前記対象セルからの外向きのハンドオーバの試行数に対する失敗数の割合、又は前記対象セルからの外向きのハンドオーバの失敗数の総和に対する、前記第2のセルへの外向きのハンドオーバの失敗数の割合である、請求項5に記載の隣接リスト最適化装置。
  7.  前記第2のセルは、前記第1のセルよりセルサイズの小さいセルであって、
     前記第2の基準は、前記第2のセル群のうち、移動端末の平均的な滞在時間が相対的に短いセルを前記登録セルとして優先的に選択することを含む、請求項4に記載の隣接リスト最適化装置。
  8.  前記第1のセルは、前記第2のセルよりセルサイズの大きいセルであって、
     前記第1の基準は、前記第1のセル群のうち、前記対象セルから前記第1のセルへの外向きのハンドオーバが多く発生すると予測されるセルを前記登録セルとして優先的に選択することを含む、請求項4~7のいずれか1項に記載の隣接リスト最適化装置。
  9.  前記第1のセルは、前記第2のセルよりセルサイズの大きいセルであって、
     前記第1の基準は、前記第1のセル群のうち、移動端末による検出数、前記対象セルから前記第1のセルへの外向きのハンドオーバの試行数、又は移動端末の再接続数が相対的に大きいセルを前記登録セルとして優先的に選択することを含む、請求項4~7のいずれか1項に記載の隣接リスト最適化装置。
  10.  前記セル選択手段は、
     前記第1のセル群の中から登録セルを優先的に選択し、
     前記隣接リストに登録できるセルの残数の範囲内で、前記第2のセル群の中から登録セルを選択する、
    請求項2~9のいずれか1項に記載の隣接リスト最適化装置。
  11.  前記セル選択手段は、前記隣接リストの最大登録可能数より小さい所定数の範囲内で、前記第1のセル群の中から登録セルを選択する、請求項10に記載の隣接リスト最適化装置。
  12.  前記第1のセル群からの登録セルの選択は、移動端末による検出数が多いセルから順に選択することを含む、請求項10又は11に記載の隣接リスト最適化装置。
  13.  前記隣接リストは、前記対象セルから前記登録セルへの外向きのハンドオーバ、又は通信開始時に接続するセルの選択を制御するために設定される、前記登録セル毎の制御パラメータを含む、請求項1~12のいずれか1項に記載の隣接リスト最適化装置。
  14.  前記制御パラメータは、移動端末によって測定される前記登録セルの受信電力または信号対干渉波比に対して付加されるオフセット値を含む、請求項13に記載の隣接リスト最適化装置。
  15.  前記セル選択手段は、前記対象セルの通信負荷が閾値以上の場合に、前記セル種別を考慮したセル選択処理を行う、請求項1~14のいずれか1項に記載の隣接リスト最適化装置。
  16.  請求項1~15のいずれか1項に記載の隣接リスト最適化装置と結合され、
     前記複数の登録セルの情報を含む隣接リストを生成する隣接リスト生成装置。
  17.  請求項16に記載の隣接リスト生成装置と結合され、
     前記複数の登録セルの情報を含む隣接リストを無線送信するよう構成された基地局装置。
  18.  対象セルを管理する基地局によって無線送信される隣接リストの最適化を行う隣接リストの最適化方法であって、
     セルサイズの違いに応じて定められたセル種別を考慮して、前記対象セルを除く複数の他セルの中から、前記隣接リストに登録される複数の登録セルを選択することを備える、隣接リストの最適化方法。
  19.  前記セル種別は、第1のセル種別と、前記第1のセル種別で示される第1のセルとはセルサイズの異なる第2のセルを示す第2のセル種別とを含む、請求項18に記載の方法。
  20.  前記登録セルの選択は、前記複数の他セルに含まれる前記第1のセルの数及び前記第2のセルの数のうちいずれか一方が前記隣接リストの最大登録可能数を超える場合であっても、前記第1及び第2のセルが共に前記隣接リストに登録されるように、前記複数の登録セルを選択することを含む、請求項19に記載の方法。
  21.  前記登録セルの選択は、
     前記複数の他セルに含まれる前記第1のセル群の中から、第1の基準に従って登録セルを選択し、
     前記複数の他セルに含まれる前記第2のセル群の中から、前記第1の基準とは異なる第2の基準に従って登録セルを選択すること、
    を含む請求項19又は20に記載の方法。
  22.  前記第2のセルは、前記第1のセルよりセルサイズの小さいセルであって、
     前記第2の基準は、前記第2のセル群のうち、前記対象セルから前記第2のセルへの外向きのハンドオーバの失敗数又は失敗率が相対的に大きいセルを前記登録セルとして優先的に選択することを含む、請求項21に記載の方法。
  23.  前記失敗率は、前記対象セルからの外向きのハンドオーバの試行数に対する失敗数の割合、又は前記対象セルからの外向きのハンドオーバの失敗数の総和に対する、前記第2のセルへの外向きのハンドオーバの失敗数の割合である、請求項22に記載の方法。
  24.  前記第2のセルは、前記第1のセルよりセルサイズの小さいセルであって、
     前記第2の基準は、前記第2のセル群のうち、移動端末の平均的な滞在時間が相対的に短いセルを前記登録セルとして優先的に選択することを含む、請求項21に記載の方法。
  25.  前記第1のセルは、前記第2のセルよりセルサイズの大きいセルであって、
     前記第1の基準は、前記第1のセル群のうち、前記対象セルから前記第1のセルへの外向きのハンドオーバが多く発生すると予測されるセルを前記登録セルとして優先的に選択することを含む、請求項21~24のいずれか1項に記載の方法。
  26.  前記第1のセルは、前記第2のセルよりセルサイズの大きいセルであって、
     前記第1の基準は、前記第1のセル群のうち、移動端末による検出数、前記対象セルから前記第1のセルへの外向きのハンドオーバの試行数、又は移動端末の再接続数が相対的に大きいセルを前記登録セルとして優先的に選択することを含む、請求項21~25のいずれか1項に記載の方法。
  27.  前記登録セルの選択は、
     前記第1のセル群の中から登録セルを優先的に選択し、
     前記隣接リストに登録できるセルの残数の範囲内で、前記第2のセル群の中から登録セルを選択すること、
    を含む請求項19~25のいずれか1項に記載の方法。
  28.  前記登録セルの選択は、前記隣接リストの最大登録可能数より小さい所定数の範囲内で、前記第1のセル群の中から登録セルを選択することを含む、請求項27に記載の方法。
  29.  隣接リストの最適化方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記最適化方法は、セルサイズの違いに応じて定められたセル種別を考慮して、前記隣接リストを送信する基地局によって管理される対象セルを除く複数の他セルの中から、前記隣接リストに登録される複数の登録セルを選択することを備える、
    非一時的なコンピュータ可読媒体。
  30.  前記セル種別は、第1のセル種別と、前記第1のセル種別で示される第1のセルとはセルサイズの異なる第2のセルを示す第2のセル種別とを含む、請求項29に記載の非一時的なコンピュータ可読媒体。
  31.  前記登録セルの選択は、前記複数の他セルに含まれる前記第1のセルの数及び前記第2のセルの数のうちいずれか一方が前記隣接リストの最大登録可能数を超える場合であっても、前記第1及び第2のセルが共に前記隣接リストに登録されるように、前記複数の登録セルを選択することを含む、請求項30に記載の非一時的なコンピュータ可読媒体。
  32.  前記登録セルの選択は、
     前記複数の他セルに含まれる前記第1のセル群の中から、第1の基準に従って登録セルを選択し、
     前記複数の他セルに含まれる前記第2のセル群の中から、前記第1の基準とは異なる第2の基準に従って登録セルを選択すること、
    を含む請求項30又は31に記載の非一時的なコンピュータ可読媒体。
  33.  前記第2のセルは、前記第1のセルよりセルサイズの小さいセルであって、
     前記第2の基準は、前記第2のセル群のうち、前記対象セルから前記第2のセルへの外向きのハンドオーバの失敗数又は失敗率が相対的に大きいセルを前記登録セルとして優先的に選択することを含む、請求項32に記載の非一時的なコンピュータ可読媒体。
  34.  前記第2のセルは、前記第1のセルよりセルサイズの小さいセルであって、
     前記第2の基準は、前記第2のセル群のうち、移動端末の平均的な滞在時間が相対的に短いセルを前記登録セルとして優先的に選択することを含む、請求項32に記載の非一時的なコンピュータ可読媒体。
  35.  前記第1のセルは、前記第2のセルよりセルサイズの大きいセルであって、
     前記第1の基準は、前記第1のセル群のうち、前記対象セルから前記第1のセルへの外向きのハンドオーバが多く発生すると予測されるセルを前記登録セルとして優先的に選択することを含む、請求項32~34のいずれか1項に記載の非一時的なコンピュータ可読媒体。
  36.  前記第1のセルは、前記第2のセルよりセルサイズの大きいセルであって、
     前記第1の基準は、前記第1のセル群のうち、移動端末による検出数、前記対象セルから前記第1のセルへの外向きのハンドオーバの試行数、又は移動端末の再接続数が相対的に大きいセルを前記登録セルとして優先的に選択することを含む、請求項32~35のいずれか1項に記載の非一時的なコンピュータ可読媒体。
  37.  前記登録セルの選択は、
     前記第1のセル群の中から登録セルを優先的に選択し、
     前記隣接リストに登録できるセルの残数の範囲内で、前記第2のセル群の中から登録セルを選択すること、
    を含む請求項30~36のいずれか1項に記載の非一時的なコンピュータ可読媒体。
PCT/JP2011/005116 2010-12-21 2011-09-12 隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及び非一時的なコンピュータ可読媒体 WO2012086108A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800618884A CN103270791A (zh) 2010-12-21 2011-09-12 邻居列表优化装置、邻居列表生成装置、基站装置、邻居列表优化方法和非临时性计算机可读介质
JP2012549601A JP5942853B2 (ja) 2010-12-21 2011-09-12 隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及びプログラム
EP11851273.0A EP2658313A1 (en) 2010-12-21 2011-09-12 Adjacency list optimization device, adjacency list generation device, base station device, optimization method of adjacency list, and non-transitory computer-readable medium
US13/991,777 US20130316709A1 (en) 2010-12-21 2011-09-12 Neighbor list optimization apparatus, neighbor list generation apparatus, base station apparatus, neighbor list optimization method, and non-transitory computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-284624 2010-12-21
JP2010284624 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012086108A1 true WO2012086108A1 (ja) 2012-06-28

Family

ID=46313403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005116 WO2012086108A1 (ja) 2010-12-21 2011-09-12 隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及び非一時的なコンピュータ可読媒体

Country Status (5)

Country Link
US (1) US20130316709A1 (ja)
EP (1) EP2658313A1 (ja)
JP (1) JP5942853B2 (ja)
CN (1) CN103270791A (ja)
WO (1) WO2012086108A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203620A1 (ja) * 2013-06-19 2014-12-24 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
CN104412652A (zh) * 2012-06-29 2015-03-11 日本电气株式会社 移交优化系统、移交优化控制设备以及移交参数调整设备
JP2015146541A (ja) * 2014-02-04 2015-08-13 富士通株式会社 移動無線装置、移動通信システム、及びセル選択制御プログラム
JP2015207898A (ja) * 2014-04-21 2015-11-19 ソフトバンク株式会社 基地局、ハンドオーバ管理装置、移動通信システム及びハンドオーバ制御方法
JP2016220045A (ja) * 2015-05-20 2016-12-22 株式会社Nttドコモ 無線基地局
JPWO2015141187A1 (ja) * 2014-03-18 2017-04-06 日本電気株式会社 基地局及び基地局の制御方法
JP2022158831A (ja) * 2021-03-31 2022-10-17 スターライト テクノロジーズ リミテッド ハンドオーバーおよびターゲットセル選択のためのユーザー機器識別方法
JP2022158832A (ja) * 2021-03-31 2022-10-17 スターライト テクノロジーズ リミテッド オープン無線アクセスネットワーク環境におけるリアルタイムハンドオーバートリガーのためのユーザー機器識別方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031791A1 (ja) * 2011-09-01 2013-03-07 日本電気株式会社 管理方法、管理ノード、通信システム、およびプログラムの記録媒体
CN105075159B (zh) * 2013-03-22 2018-04-10 Lg电子株式会社 在无线通信系统中执行干扰协调的方法和设备
KR20150014038A (ko) * 2013-07-26 2015-02-06 삼성전자주식회사 무선통신 시스템에서 부하 분산 방법 및 장치
US20150181477A1 (en) * 2013-12-24 2015-06-25 Wipro Limited Method and system for automatically updating a neighbor list
TWI555423B (zh) * 2014-09-11 2016-10-21 國立交通大學 資源分配方法、基地台、資源請求方法及使用者設備
US9538422B2 (en) 2015-03-19 2017-01-03 Cisco Technology, Inc. Blind mobility load balancing between source and target cells
US10798599B2 (en) * 2015-07-30 2020-10-06 Futurewei Technologies, Inc. System and method for controlling user equipment offloading
CN105246088B (zh) * 2015-10-27 2018-09-25 京信通信系统(中国)有限公司 一种基站、邻区列表配置方法
KR102447859B1 (ko) * 2016-04-26 2022-09-27 삼성전자 주식회사 무선 통신 시스템에서 핸드오버를 지원하는 방법 및 장치
WO2018152735A1 (zh) * 2017-02-23 2018-08-30 华为技术有限公司 一种小区搜索的方法及装置
US11184232B2 (en) * 2018-11-26 2021-11-23 Eagle Technology, Llc Radio frequency (RF) communication system providing enhanced RF equipment configuration updates for mobile vehicles based upon reward matrices and related methods
US20210360474A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Methods and apparatus for network load balancing optimization
CN113473507B (zh) * 2021-09-06 2022-01-28 中兴通讯股份有限公司 小区优化方法、装置、存储介质和电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524789A (ja) * 1997-11-21 2001-12-04 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 距離に基づくセル識別
WO2007057977A1 (ja) * 2005-11-21 2007-05-24 Mitsubishi Denki Kabushiki Kaisha 無線通信システム、基地局、移動機、およびハンドオーバ制御サーバ
WO2008041573A1 (fr) * 2006-09-28 2008-04-10 Kyocera Corporation ProcÉDÉ de recherche de cellule et station de base
JP2009506704A (ja) * 2005-08-29 2009-02-12 ケイティーフリーテル カンパニー リミテッド 非同期式wcdma網における隣接リストの自動最適化方法及び装置
JP2009506703A (ja) * 2005-08-29 2009-02-12 ケイティーフリーテル カンパニー リミテッド 同期式cdma網における隣接リストの自動最適化方法及び装置
JP2009302954A (ja) * 2008-06-13 2009-12-24 Nec Corp 移動通信システム、保守端末装置、隣接セル情報最適化方法、プログラムと記録媒体
WO2010002926A1 (en) 2008-06-30 2010-01-07 Qualcomm Incorporated Method and apparatus for automatic handover optimization
JP2010284624A (ja) 2009-06-15 2010-12-24 Dojo Kankyo Process Kenkyusho:Kk 高圧水を用いた土壌と水の混合物の製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014565A (en) * 1998-05-29 2000-01-11 Motorola, Inc. Method for service planning in a radio telephone system
CN101662816B (zh) * 2003-02-03 2014-03-05 索尼株式会社 无线通信系统,无线通信设备和无线通信方法及计算机程序
CN101536585A (zh) * 2006-11-17 2009-09-16 艾利森电话股份有限公司 特殊邻居小区列表的传输
US20080318576A1 (en) * 2007-06-20 2008-12-25 Tricci So Handover Between Wireless Cellular Network and Private Network in Wireless Communications
US8588759B2 (en) * 2007-08-14 2013-11-19 Telefonaktiebolaget Lm Ericsson (Publ) Cell identifier conflict avoidance
US9204349B2 (en) * 2009-02-10 2015-12-01 Qualcomm Incorporated Method and apparatus for facilitating a hand-in of user equipment to femto cells
US8599768B2 (en) * 2009-08-24 2013-12-03 Intel Corporation Distributing group size indications to mobile stations
US8451784B2 (en) * 2009-11-06 2013-05-28 At&T Mobility Ii Llc Virtual neighbor objects for managing idle mode mobility in a wireless network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524789A (ja) * 1997-11-21 2001-12-04 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 距離に基づくセル識別
JP2009506704A (ja) * 2005-08-29 2009-02-12 ケイティーフリーテル カンパニー リミテッド 非同期式wcdma網における隣接リストの自動最適化方法及び装置
JP2009506703A (ja) * 2005-08-29 2009-02-12 ケイティーフリーテル カンパニー リミテッド 同期式cdma網における隣接リストの自動最適化方法及び装置
WO2007057977A1 (ja) * 2005-11-21 2007-05-24 Mitsubishi Denki Kabushiki Kaisha 無線通信システム、基地局、移動機、およびハンドオーバ制御サーバ
WO2008041573A1 (fr) * 2006-09-28 2008-04-10 Kyocera Corporation ProcÉDÉ de recherche de cellule et station de base
JP2009302954A (ja) * 2008-06-13 2009-12-24 Nec Corp 移動通信システム、保守端末装置、隣接セル情報最適化方法、プログラムと記録媒体
WO2010002926A1 (en) 2008-06-30 2010-01-07 Qualcomm Incorporated Method and apparatus for automatic handover optimization
JP2010284624A (ja) 2009-06-15 2010-12-24 Dojo Kankyo Process Kenkyusho:Kk 高圧水を用いた土壌と水の混合物の製造装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.331 V8.11.0, September 2010 (2010-09-01)
D. SOLDANI; I. ORE: "Self-optimizing Neighbor Cell List for UTRA FDD Networks Using Detected Set Reporting", PROC. IEEE 65TH VEHICULAR TECHNOLOGY CONFERENCE VTC2007, April 2007 (2007-04-01), pages 694 - 698
R. KWAN ET AL.: "On Mobility Load Balancing for LTE Systems", PROC. IEEE 72ND VEHICULAR TECHNOLOGY CONFERENCE VTC2010, September 2010 (2010-09-01)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412652A (zh) * 2012-06-29 2015-03-11 日本电气株式会社 移交优化系统、移交优化控制设备以及移交参数调整设备
WO2014203620A1 (ja) * 2013-06-19 2014-12-24 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
US9661507B2 (en) 2013-06-19 2017-05-23 Sony Corporation Communication control device, communication control method, and terminal device
US10244533B2 (en) 2013-06-19 2019-03-26 Sony Corporation Communication control device, communication control method, and terminal device
US10499397B2 (en) 2013-06-19 2019-12-03 Sony Corporation Communication control device, communication control method, and terminal device
US10660099B2 (en) 2013-06-19 2020-05-19 Sony Corporation Communication control device, communication control method, and terminal device
JP2015146541A (ja) * 2014-02-04 2015-08-13 富士通株式会社 移動無線装置、移動通信システム、及びセル選択制御プログラム
JPWO2015141187A1 (ja) * 2014-03-18 2017-04-06 日本電気株式会社 基地局及び基地局の制御方法
JP2015207898A (ja) * 2014-04-21 2015-11-19 ソフトバンク株式会社 基地局、ハンドオーバ管理装置、移動通信システム及びハンドオーバ制御方法
JP2016220045A (ja) * 2015-05-20 2016-12-22 株式会社Nttドコモ 無線基地局
JP2022158831A (ja) * 2021-03-31 2022-10-17 スターライト テクノロジーズ リミテッド ハンドオーバーおよびターゲットセル選択のためのユーザー機器識別方法
JP2022158832A (ja) * 2021-03-31 2022-10-17 スターライト テクノロジーズ リミテッド オープン無線アクセスネットワーク環境におけるリアルタイムハンドオーバートリガーのためのユーザー機器識別方法

Also Published As

Publication number Publication date
EP2658313A1 (en) 2013-10-30
CN103270791A (zh) 2013-08-28
JP5942853B2 (ja) 2016-06-29
JPWO2012086108A1 (ja) 2014-05-22
US20130316709A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
WO2012086108A1 (ja) 隣接リスト最適化装置、隣接リスト生成装置、基地局装置、隣接リストの最適化方法、及び非一時的なコンピュータ可読媒体
JP5907074B2 (ja) ハンドオーバ制御方法、制御装置、調整装置、及びプログラム
US8942745B2 (en) Methods and apparatus for dynamic carrier selection for cell base stations
EP2636245B1 (en) Configuring unscheduled periods to enable interference reduction in heterogeneous networks
EP2974454B1 (en) Methods and apparatuses for handling a handover event
JP5862569B2 (ja) 無線通信システムと方法並びに無線端末、無線局、及び運用管理サーバ装置
EP2589248B1 (en) System and method for self-organized inter-cell interference coordination
US8515353B2 (en) Method and arrangement in a radio base station, in a radio communications network
WO2012081150A1 (ja) 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体
US20140213255A1 (en) Methods and apparatuses for handling a handover event
US10231188B1 (en) Dynamic uplink transmit power control
WO2016052066A1 (ja) 無線基地局、移動局、無線通信システム、無線基地局の制御方法および記録媒体
US20140036714A1 (en) NODEB Self-Tuning
WO2015069161A1 (en) Downlink inter-cell interference determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549601

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011851273

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13991777

Country of ref document: US