WO2012081150A1 - 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体 - Google Patents

無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2012081150A1
WO2012081150A1 PCT/JP2011/005205 JP2011005205W WO2012081150A1 WO 2012081150 A1 WO2012081150 A1 WO 2012081150A1 JP 2011005205 W JP2011005205 W JP 2011005205W WO 2012081150 A1 WO2012081150 A1 WO 2012081150A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
radio
radio parameter
value
pico
Prior art date
Application number
PCT/JP2011/005205
Other languages
English (en)
French (fr)
Inventor
航生 小林
弘人 菅原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP11848721.4A priority Critical patent/EP2654335B1/en
Priority to CN201180060747.0A priority patent/CN103262595B/zh
Priority to JP2012548613A priority patent/JP5907071B2/ja
Priority to US13/991,737 priority patent/US9220017B2/en
Publication of WO2012081150A1 publication Critical patent/WO2012081150A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to control of radio parameters applied to a radio base station, and more particularly to control of radio parameters capable of changing cell coverage.
  • a wide service area is configured by combining a large number of small zones called cells. These cells are usually managed by one radio base station in units of 1 to 6 cells. In addition, adjacent cells generally have an overlap (overlap) in coverage so that communication can continue even when the terminal moves across cells.
  • the operator of the wireless communication network implements cell coverage design in order to provide high-quality wireless communication services to subscribers.
  • a vehicle equipped with a dedicated measuring instrument performs a driving test (Drive-test) to measure the area, where the wireless quality is insufficient (Coverage hole), or where there is strong interference from many cells Investigate (Pilot ⁇ ⁇ pollution).
  • an operator adjusts the radio
  • the radio parameters that can change the cell coverage are, for example, transmission power such as pilot signals and reference signals from the base station, and tilt angle of the base station antenna.
  • the cell coverage changes due to changes in the surrounding environment, for example, installation of a new base station and construction of a building. Therefore, the operator needs to perform coverage design periodically even after the installation of the radio base station.
  • Patent Documents 1 and 2 In order to reduce the cost for such coverage design, techniques for autonomously optimizing cell coverage have been proposed (for example, Patent Documents 1 and 2).
  • a control device arranged in a network including a cell measures the radio quality of the cell (specifically, the reception power of a pilot signal that defines cell coverage). Is collected from the mobile station, and the ratio of the measurement reports indicating that the radio quality is below the threshold is calculated. Then, the transmission power of the pilot signal is adjusted so that the ratio becomes a predetermined value. For example, as a result of aggregating a plurality of measurement reports from the mobile station group, when the ratio of measurement information whose radio quality is equal to or less than a threshold is relatively low, the control device determines that there is insufficient overlap with neighboring cells. Increase the transmission power of the pilot signal. Conversely, when the ratio of measurement information whose radio quality is equal to or lower than the threshold is high, the control device determines that the overlap with neighboring cells is excessive (interference has occurred) and determines the transmission power of the pilot signal. Lower.
  • the base station collects reports including the number of neighboring cells detected at the cell edge of the own cell from the mobile station, and the number of neighboring cells detected at the cell edge is three.
  • the downlink transmission power of the own cell is adjusted so that That is, when the number of neighboring cells detected at the cell edge is 2 or less, the base station determines that the overlap between the own cell and the neighboring cells is insufficient and increases the downlink transmission power. Conversely, if the number of neighboring cells detected at the cell edge is four or more, the base station determines that the overlap between the own cell and the neighboring cells is excessive, and lowers the downlink transmission power.
  • the inventors of the present application when using the methods disclosed in Patent Documents 1 and 2, use a mobile station (hereinafter referred to as a cell edge mobile station or a cell edge UE) located at a cell edge by adjusting cell coverage (that is, adjusting downlink transmission power). ) was found to increase. Since cell quality is generally low at the cell edge, an increase in the cell edge UE is not preferable. For example, consider a case where the technique of Patent Document 1 is applied to a cell having a mobile station distribution in which mobile stations are densely located only near the center of the cell. In this case, the ratio of measurement reports indicating that the radio quality is low is extremely low. Therefore, adjustment is performed to increase downlink transmission power until the ratio of measurement information with low radio quality reaches a predetermined value, and cell coverage is expanded. That is, by adjusting the transmission power, cell edge UEs with low radio quality are increased.
  • the present invention has been made in view of the above problems, and its purpose is to provide a radio parameter control apparatus, a base station apparatus, a radio parameter control method, and a radio parameter control apparatus capable of suppressing an increase in the number of cell edge UEs with low radio quality, and Is to provide a program.
  • the first aspect of the present invention includes a wireless parameter control device.
  • the radio parameter control device includes a measurement report collection unit and a radio parameter determination unit.
  • the measurement report collection unit collects a plurality of measurement reports generated by at least one mobile station, each including a measurement result of the radio quality of the first cell managed by the base station.
  • the radio parameter determination unit is configured to reduce the number of cell edge mobile stations that are considered to be located at a cell edge between the first cell and a neighboring cell based on the plurality of measurement reports.
  • the update value of the radio parameter that can change the coverage of the radio is determined.
  • the update value of the wireless parameter may be a wireless parameter value (absolute value) after the update, or a relative value indicating a change amount of the wireless parameter from before the update.
  • the second aspect of the present invention includes a base station apparatus.
  • the base station apparatus includes the above-described radio parameter control apparatus according to the first aspect of the present invention and a radio communication unit configured to be communicable with a mobile station and controlled based on the update value.
  • a third aspect of the present invention includes a radio parameter control method.
  • the method includes the following steps (a) and (b). (A) collecting a plurality of measurement reports generated by at least one mobile station each including a measurement result of radio quality of the first cell managed by the base station; and (b) the plurality of the plurality of measurement reports Based on the measurement report, update of radio parameters capable of changing the coverage of the first cell so that the number of cell edge mobile stations considered to be located at the cell edge between the first cell and neighboring cells is reduced To determine the value.
  • the fourth aspect of the present invention includes a computer program.
  • the program is read and executed by a computer to cause the computer to perform the above-described wireless parameter control method according to the third aspect of the present invention.
  • FIG. 6 is a flowchart showing a first specific example of a procedure for determining a radio parameter by the radio parameter control apparatus shown in FIG. 1. It is a graph which shows an example of the relationship between the pico cell received power in a mobile station position, and neighboring cell received power. It is a histogram which shows an example of distribution of the difference of RSRP based on a measurement report. It is a histogram which shows an example of the present value and predicted value of the number of cell edge UEs. It is a table
  • 7 is a flowchart showing a second specific example of a procedure for determining a radio parameter by the radio parameter control apparatus shown in FIG. 1.
  • 7 is a flowchart showing a third specific example of a procedure for determining a radio parameter by the radio parameter control apparatus shown in FIG. 1.
  • It is a histogram which shows the relationship between the number of samples of the measurement report from a mobile station, and picocell received power.
  • It is a block diagram which shows the structural example of the pico base station which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a diagram illustrating a configuration example of a network including a wireless parameter control device 1 according to the present embodiment.
  • a macro base station (macro BS) 2 forms a macro cell 61 and performs bidirectional wireless communication with the mobile station 3.
  • the mobile station 3 that communicates by connecting to the macro cell 61 is referred to as a macro mobile station (macro UE: User Equipment).
  • the macro BS2 is connected to an upper network (not shown), and relays traffic between the macro UE3 and the upper network.
  • the upper network includes a radio access network and a core network.
  • the pico base station (pico BS) 4 is arranged in the macro cell 61, forms a pico cell 62 having a smaller cell size than the macro cell 61, and performs two-way wireless communication with the mobile station 5.
  • the mobile station 5 that communicates by connecting to the pico cell 62 is referred to as a pico mobile station (pico UE).
  • the pico BS 4 is connected to an upper network (not shown), and relays traffic between the pico UE 5 and the upper network.
  • the macro cell 61 and the pico cell 62 form a hierarchical cell structure. That is, the pico cell 62 is included in the coverage of the macro cell 61.
  • the radio parameter control device 1 acquires a plurality of measurement reports (Measurement Report) generated by at least one pico UE 5.
  • the radio parameter control device 1 may receive the measurement report via the pico BS 4.
  • the measurement report includes the measurement result of the radio quality of the pico cell 62. Further, the measurement report may include a measurement result of the radio quality of the neighboring cell (that is, the macro cell 61 in the example of FIG. 1).
  • a typical example of the radio quality of the cell measured by the pico UE 5 is the received signal quality of a radio signal (downlink signal) transmitted from the base station.
  • the received signal quality is, for example, received power of a pilot signal / reference signal or the like, SINR (Signal-to-Noise-Interference-Ratio).
  • the radio quality of a cell may be the reception power (CPICH RSCP: Signal Code Power) of the common pilot channel (CPICH: Common Pilot Channel) or Ec / No of CPICH.
  • the radio quality of a cell is the received power (RSRP: Reference Signal Received Power) of the downlink reference signal (Downlink Reference Signal) or the received quality (RSRQ: Reference Signal Received Quality) That's fine.
  • the pico UE 5 may measure uplink or downlink throughput (data transfer rate) as the radio quality of the cell and report the measurement result of the throughput.
  • the radio parameter control device 1 Based on the acquired plurality of measurement reports, the radio parameter control device 1 reduces the number of cell edge UEs considered to be located at the cell edge between the target cell (pico cell 62) and the neighboring cell (macro cell 61). An update value of a radio parameter capable of changing the coverage of the pico cell 62 is determined. Then, the radio parameter control apparatus 1 adjusts the coverage of the pico cell 62 by applying the determined update value to the radio communication unit of the pico BS 4. Specific examples of radio parameters that can change the cell coverage are the transmission power of the downlink signal (pilot signal, reference signal, etc.) of the pico BS 4 and the tilt angle of the antenna of the pico BS 4.
  • the update value of the wireless parameter may be a wireless parameter value (absolute value) after update or a relative value indicating the amount of change of the wireless parameter from before the update.
  • a cell individual power offset value for the surrounding macro cell 61 may be used as a radio parameter capable of changing the cell coverage.
  • CIO Cell Individual Offset
  • the CIO is notified from the base station to the UE together with a list of cells to be measured.
  • the CIO is a parameter related to handover, and is used as an offset with respect to the reception power of the neighboring cell when the UE triggers the handover based on the measurement value of the reception power of the neighboring cell.
  • CIO from a neighboring cell (macro cell 61) to a target cell (pico cell 62) may be used as a radio parameter capable of changing cell coverage. If the CIO for the target cell (pico cell 62) is set large, a handover from the neighboring cell (macro cell 61) to the target cell (pico cell 62) is likely to occur, which is similar to expanding the coverage of the target cell (pico cell 62). An effect is obtained.
  • the radio parameter control device 1 may obtain the number of cell edge UEs using a plurality of measurement reports. One measurement report sample can be considered to correspond to one UE. For this reason, the radio parameter control apparatus 1 may regard the number of measurement edge samples as the number of UEs and estimate the number of cell edge UEs. Note that, when estimating the number of cell edge UEs, the radio parameter control apparatus 1 does not allow the duplication of the transmission source UEs and simply aggregates the measurement report samples. The number of samples (strict number of UEs) may be totaled.
  • an ID for example, CRNTI (Connection Radio Radio Network Temporary Identifier), TMSI (Temporary Mobile Subscriber Identity), IMSI (International Mobile Subscriber Identity), etc.
  • the source UE may be identified by the ID included in the measurement report. Further, by limiting the number of measurement report reports of each UE within the measurement report collection period by the radio parameter control device 1 to, for example, one, the overlap of the source UE may be excluded.
  • the radio parameter control apparatus 1 refers to a plurality of measurement reports generated by the UE (pico UE 5 or macro UE 3), and is located at the cell edge between the pico cell 62 and the macro cell 61. Then, an update value of a radio parameter capable of changing the coverage of the pico cell 62 is determined so that the number of cell edge UEs considered to be decreased. In other words, the radio parameter control apparatus 1 adjusts radio parameters related to the pico cell 62 so that a place where the number of UEs is small becomes a cell edge. For this reason, according to this Embodiment, the increase in the number of cell edge UEs with low radio
  • the arrangement of the wireless parameter control device 1 is appropriately determined based on the design concept of the network architecture.
  • the mobile communication system according to the present embodiment is an EPS (Evolved Packet System)
  • the function of the radio parameter control device 1 is not arranged in the core network 150, but is managed by radio resource management.
  • pico BS pico eNB (PeNB) 4 which has a function.
  • the function of the radio parameter control device 1 may be arranged in an RNC (Radio Network Controller) 151 as shown in FIG. .
  • the RNC 151 performs radio resource management of the macro cell 61 and the pico cell 62 and control of inter-cell movement of the macro UE 3 and the pico UE 5.
  • the function of the wireless parameter control device 1 may be arranged in the management server 152 in the core network 150.
  • FIG. 4 shows the case of UMTS, but the same applies to other mobile communication systems such as EPS.
  • the functions of the radio parameter control device 1 may be separately arranged in the mobile communication system.
  • measurement report acquisition, radio parameter determination and adjustment functions are arranged in the RNC 151, and radio quality distribution analysis (calculation of the number of cell edge UEs) of the pico cell 62 is arranged in the management server 152. May be.
  • FIG. 5 is a block diagram illustrating a configuration example of the wireless parameter control device 1.
  • the measurement report collection unit 10 acquires a plurality of measurement reports generated by at least one pico UE 5.
  • the measurement report collection unit 10 may collect measurement reports from a plurality of pico UEs 5.
  • the measurement report collection part 10 may acquire the measurement report produced
  • the measurement report acquired by the measurement report collection unit 10 includes at least the measurement result of the radio quality of the pico cell 62.
  • the measurement report may include a measurement result of the radio quality of the surrounding macro cell 61.
  • the measurement report collection unit 10 may collect the measurement results by each UE within the same period. By collecting the radio quality of the pico UE 5 measured within the same period, it is possible to obtain a snapshot of UE arrangement in that period. Further, when the number of pico UEs 5 is small, for example, when acquiring a plurality of measurement reports from only one pico UE 5, the measurement report collection unit 10 collects a plurality of measurement results obtained at different times and different locations. That's fine.
  • the radio parameter determination unit 11 refers to a plurality of measurement reports, and obtains the current value of the number of cell edge UEs based on the radio quality distribution of the pico cell 62. Further, the radio parameter determination unit 11 determines the update value of the radio parameter so that the current value of the number of cell edge UEs decreases. In the following description, it is assumed that the radio parameter is the transmission power of the pico BS 4 (transmission power of the pilot signal or reference signal). The radio parameter determination unit 11 adjusts the transmission power of the pico BS 4 according to the updated value of the radio parameter (transmission power of the pico BS 4).
  • FIG. 6 is a block diagram illustrating a configuration example of the pico BS 4.
  • the wireless communication unit 40 performs bidirectional wireless communication with the pico UE 5.
  • the radio communication unit 40 transmits, to the pico UE 5, a downlink radio signal in which control data and user data are encoded. Further, the radio communication unit 40 receives an uplink radio signal transmitted from the pico UE 5 and decodes received data from the uplink radio signal.
  • the communication unit 41 transmits / receives information to / from an upper network such as the core network 150.
  • the communication unit 41 may support an inter-base station interface (LTE X2 interface or the like), and may transmit / receive information to / from other base stations.
  • LTE X2 interface inter-base station interface
  • the measurement report included in the received data from the pico UE 5 is sent to the radio parameter control device 1.
  • the wireless parameter control device 1 acquires a measurement report via the communication unit 41, and transmits a wireless parameter (here) of the wireless communication unit 40 via the communication unit 41. Then, transmission power) may be controlled.
  • the radio parameter control device 1 is arranged integrally with the pico BS 4, the radio parameter control device 1 acquires a measurement report from the reception data decoded by the radio communication unit 40 and directly sets the transmission power of the radio communication unit 40. Can be controlled automatically.
  • the measurement condition of the cell radio quality and the report condition of the measurement report by the pico UE 5 may be notified to the pico UE 5 from the radio parameter control device 1, the pico BS 4 or a device in the upper network in advance.
  • the measurement conditions of the radio quality are a measurement cycle, a measurement trigger condition (such as when communication is started), a measurement time, a measurement time, a radio quality of a measurement target, a cell to be measured (which cell is measured), and the like.
  • the reporting conditions for measurement reports are the reporting period, reporting trigger conditions (communication start, after handover, etc.), reporting time, reporting target radio quality, reporting target cell (to which cell is reported), and the like.
  • the radio parameter control device 1 has the number of radio quality samples of the pico cell 62 (the number of reports by the UE) currently in the radio quality distribution of the pico cell 62 grasped by using a plurality of measurement reports.
  • the update value of the radio parameter is determined so that a smaller number of positions becomes the cell edge. More specifically, the radio parameter control apparatus 1 assumed that the current value of the number of cell edge UEs and the transmission power of the pico BS 4 were changed using the measurement report by the pico UE 5 without using the measurement report by the macro UE 3. In this case, a predicted value of the number of cell edge UEs is obtained. And the radio
  • FIG. 7 is a flowchart showing a first specific example.
  • the radio parameter determination unit 11 of the radio parameter control device 1 sets the transmission power of the pico BS 4 to a maximum value within an allowable range.
  • the measurement report collection unit 10 notifies the radio condition measurement condition and the measurement report report condition to the pico UE 5 via the pico BS4. Further, the measurement report collection unit 10 may notify the macro UE 3 of the radio quality measurement condition and the measurement report report condition in the hope that the macro UE 3 moves into the pico cell 62 and becomes the pico UE 5.
  • the macro UE 3 moves into the pico cell 62 and transitions to the pico UE 5, and then, based on the radio quality measurement conditions and the measurement report report conditions received at the time of the macro UE 3, as the pico UE 5, Report should be carried out.
  • steps S101 and S102 may be performed by a device other than the wireless parameter control device 1 (for example, the pico BS 4).
  • the measurement report collection unit 10 acquires a plurality of measurement reports generated by the pico UE 5 via the pico BS 4.
  • the measurement report collection unit 10 may continue collecting measurement reports until a predetermined number of samples (number of reports) is reached, or may collect measurement reports within a predetermined period.
  • step S104 the radio parameter determination unit 11 of the radio parameter control apparatus 1 calculates a current value and a predicted value of the number of cell edge UEs using a plurality of measurement reports. A specific example of the calculation method of the current value and the predicted value of the number of cell edge UEs will be described later.
  • step S105 the radio parameter determination unit 11 determines the transmission power value of the pico BS 4 that gives a predicted value of the number of cell edge UEs smaller than the current value of the number of cell edge UEs as an update value.
  • step S101 in FIG. 7 the initial value of the transmission power is set to the maximum value, but any transmission power other than the maximum value may be set as the initial value.
  • cell edge (may be referred to as cell boundary or cell border) refers to a region far from a base station (eg, pico BS4) where radio quality deteriorates, or a boundary region between cells. means.
  • an area where the radio quality of the target cell (pico cell 62) is equal to or lower than a predetermined value, or an area where the radio quality difference between the target cell (pico cell 62) and the neighboring cell (macro cell 61) is equal to or lower than a predetermined threshold is “cell edge” Can be considered.
  • FIG. 8A is a graph showing an example of the relationship between the RSRP (Ps) of the pico cell 62 and the RSRP (Pn) of the neighboring cell (macro cell 61).
  • RSRP is an LTE term and means the received power of a reference signal transmitted from a base station.
  • a region where the difference between Ps and Pn is equal to or smaller than a predetermined threshold value TH1 may be defined as a cell edge.
  • the “cell edge” includes a cell edge on the target cell side (pico cell 62 side) and a cell edge on the peripheral cell side (macro cell 61 side).
  • FIG. 8B shows the frequency of radio quality (here, RSRP difference) obtained by calculating the difference (Ps ⁇ Pn) between the RSRP of the pico cell 62 and the RSRP of the macro cell 61 for each of a plurality of measurement report samples collected from the UE. It is a histogram which shows distribution.
  • RSRP difference the frequency of radio quality obtained by calculating the difference (Ps ⁇ Pn) between the RSRP of the pico cell 62 and the RSRP of the macro cell 61 for each of a plurality of measurement report samples collected from the UE. It is a histogram which shows distribution.
  • the “predicted value” of the number of cell edge UEs on the target cell (pico cell 62) side can also be estimated by using the histogram of FIG. 8B.
  • the transmission power of the reference signal by the pico BS 4 increases, the value of Ps increases by the increase of the transmission power. Therefore, it can be considered that the entire histogram of FIG. 8B shifts to the right by the increase in transmission power.
  • the transmission power of the reference signal by the pico BS 4 decreases, it can be considered that the entire histogram of FIG. 8B shifts to the left by the decrease of the transmission power.
  • FIG. 8C is a histogram showing estimation results of “current value” and “predicted value” of the number of cell edge UEs on the target cell (pico cell 62) side.
  • the horizontal axis in FIG. 8C represents the transmission power of the pico BS 4 that is a radio parameter.
  • the radio parameter control device 1 may set the pico BS transmission power (TPo) that gives the minimum value among the current value and the predicted value of the number of cell edge UEs on the target cell side as the “update value” of the radio parameter.
  • TPo pico BS transmission power
  • the radio parameter control device 1 does not necessarily have to select the transmission power that gives the minimum value as the update value. That is, the radio parameter control device 1 may use any transmission power that gives a predicted value smaller than the current value of the number of cell edge UEs on the target cell side as the update value of the radio parameter.
  • the case where RSRP is used as the radio quality and the number of cell edge UEs on the target cell (pico cell 62) side is estimated as the number of cell edge UEs has been introduced.
  • another quality index different from RSRP may be used as the radio quality.
  • the number of cell edge UEs on both cell sides including the neighboring cell side may be estimated as the number of cell edge UEs.
  • FIG. 9 shows five examples of calculation conditions for the predicted value of the number of cell edge UEs on the target cell (pico cell 62) side.
  • Example 1 in FIG. 9 shows a condition using a difference in RSRP, and corresponds to the specific example described using FIGS. 8A, 8B, and 8C. That is, in Example 1 of FIG. 9, the total number of measurement report samples that satisfy the following expression (1) is set as the predicted value of the number of cell edge UEs.
  • D [dB] in equation (1) is the amount of change in transmission power. 0 ⁇ Ps ⁇ Pn + D ⁇ TH1 (1)
  • Example 2 in FIG. 9 obtains a predicted RSRQ value (Qs ′) of the target cell (picocell 62) that is expected when the transmission power is changed, and the total of measurement report samples in which Qs ′ is equal to or less than a predetermined threshold TH2.
  • the number is a predicted value of the number of cell edge UEs.
  • the definition of RSRQ is defined in 3GPP technical specification 3GPP TS 36.214 V9.2.0 (2010-06), and is expressed by the following equation (2).
  • RSRQ N ⁇ RSRP / (E-UTRA carrier RSSI) (2)
  • N in Equation (2) is the number of resource blocks in the measurement band of the E-UTRA carrier Received Signal Strength Indicator (RSSI).
  • E-UTRA carrier RSSI is the total received power in the measurement band over N resource blocks.
  • the E-UTRA carrier RSSI of the denominator of equation (2) and the RSRP of the numerator of equation (2) are the amount of change D in the transmission power of the pico BS4 D What is necessary is just to calculate on the assumption that it changes by the amount corresponding to [dB].
  • the change of the traffic load of the pico cell 62 and the macro cell 61 caused by the change of the transmission power of the pico BS 4 may be predicted, and the result may be reflected in the calculation of the RSSI after the change of the transmission power of the pico BS 4.
  • Example 3 in FIG. 9 obtains the predicted SINR value (Rs ′) of the target cell (pico cell 62) that is expected when the transmission power is changed, and the total of measurement report samples in which Rs ′ is equal to or less than a predetermined threshold value TH3.
  • the number is a predicted value of the number of cell edge UEs.
  • Example 4 of FIG. 9 the total number of measurement report samples that satisfy both the conditions of Example 1 and Example 2 of FIG. 9 is used as the predicted value of the number of cell edge UEs.
  • 9 uses the total number of measurement report samples that satisfy both the conditions of Example 1 and Example 3 of FIG. 9 as the predicted value of the number of cell edge UEs.
  • FIG. 10 shows three examples of calculation conditions for the predicted value of the number of cell edge UEs on both cell sides (the pico cell 62 side and the macro cell 61 side).
  • the total number of measurement report samples that satisfy the following expression (3) is set as the predicted value of the number of cell edge UEs.
  • the RSRP difference (Ps ⁇ Pn) takes a negative value
  • the number of cell edge UEs on both cell sides including the cell edge on the macro cell 61 side can be estimated. 0 ⁇
  • Example 7 in FIG. 10 corresponds to Example 4 in FIG. That is, in Example 7 of FIG. 10, the total number of measurement report samples that satisfies both the RSRP condition shown in Example 6 and the RSRQ condition similar to Example 2 is used as the predicted value of the number of cell edge UEs.
  • Qn ′ is a predicted value of RSRQ of the neighboring cell (macro cell 61) after changing the transmission power of the target cell (pico cell 62) by D [dB].
  • (Ps ⁇ Pn + D) is a positive value, even if the transmission power of the target cell (pico cell 62) is changed by D [dB], the target cell (pico cell 62) remains at the point where the measurement report sample is obtained.
  • Example 8 in FIG. 10 corresponds to Example 5 in FIG. That is, in Example 8 of FIG. 10, the total number of measurement report samples that satisfies both the RSRP condition shown in Example 6 and the same SINR condition as Example 3 is used as the predicted value of the number of cell edge UEs.
  • Rn ′ is the predicted SINR value of the neighboring cell (macro cell 61).
  • the determination is made using the predicted SINR value (Rs ′) of the target cell (picocell 62).
  • (Ps ⁇ Pn + D) is a negative value
  • the neighboring cell (macro cell 61) is obtained at the point where the measurement report sample is obtained. )
  • the neighboring cells to be taken into account in the calculation of the number of cell edge UEs may be selected as follows. For example, for each measurement report, one cell having the highest radio quality (for example, RSRP) among a plurality of neighboring cells may be selected as a neighboring cell to be taken into consideration in the calculation of the number of cell edge UEs. Further, one peripheral cell among a plurality of peripheral cells may be selected in advance.
  • RSRP radio quality
  • a neighboring cell in which a UE handover occurs most with the target cell (pico cell 62), (2) a neighboring cell closest to the target cell (pico cell 62), or (3) a target cell What is necessary is just to select beforehand the surrounding cell detected most by several UE which connects to (picocell 62) and communicates.
  • the radio parameter control device 1 obtains the current value of the number of cell edge UEs using the measurement report by the pico UE 5 without using the measurement report by the macro UE 3. Then, each time the radio parameter is changed, the radio parameter control device 1 obtains the “current value” of the number of cell edge UEs, and obtains the “current value” of the “past value” of the number of cell edge UEs (that is, the previous radio parameter value). And the number of cell edge UEs in (1) and (2) determine the value of the radio parameter that provides a smaller number of cell edge UEs.
  • FIG. 11 is a flowchart showing a second specific example. Steps S101 to S103 in FIG. 11 are the same as S101 to S103 in FIG.
  • the radio parameter determination unit 11 calculates the current value (N1) of the number of cell edge UEs using a plurality of measurement reports.
  • the current value of the number of cell edge UEs may be calculated by any of the methods described with reference to FIGS. 8A, 8B, 8C, 9, and 10.
  • the transmission power change amount D may be set to zero.
  • the radio parameter determination unit 11 holds the calculated value N1 as a past value for comparison with the updated value (N2) of the transmission power of the pico BS4.
  • step S205 the radio parameter determination unit 11 decreases the transmission power of the pico BS 4 by ⁇ P.
  • the radio parameter determination unit 11 determines a value obtained by subtracting the current value of the transmission power of the pico BS 4 by ⁇ P as an update value of the transmission power of the pico BS 4.
  • the measurement report collection unit 10 acquires a plurality of measurement reports generated by the pico UE 5 after performing an update that decreases the transmission power of the pico BS 4 by ⁇ P.
  • step S204 the radio parameter determination unit 11 calculates the current value (N2) of the number of cell edge UEs using a plurality of measurement reports.
  • step S208 the radio parameter determination unit 11 compares the current value (N2) and the past value (N1) of the number of cell edge UEs. When the current value (N2) of the number of cell edge UEs is smaller than the past value (N2), the radio parameter determination unit 11 holds the current value (N2) as a new past value (N1), and repeats the processing from step S205 onward. (Step S209). On the other hand, when the current value (N2) of the number of cell edge UEs is equal to or greater than the past value (N2), the radio parameter determination unit 11 increases the transmission power of the pico BS 4 by ⁇ P and ends the process (step S210).
  • step S101 of FIG. 11 the initial value of the transmission power is set as the maximum value, but any transmission power other than the maximum value may be set as the initial value.
  • the procedure of FIG. 11 may be modified to obtain the transmission power that gives the minimum number of cell edge UEs using a known local search algorithm (sequential improvement algorithm) such as a hill-climbing method and an annealing method.
  • the coverage of the pico cell 62 is actually changed (that is, the transmission power of the pico BS 4 is actually changed). Then, an optimal solution of the radio parameter (the transmission power of the pico BS 4) is obtained by a trial and error algorithm.
  • the local search algorithm is adopted, there is a possibility that the minimum value cannot be obtained by converging to the minimum value as a problem of the algorithm.
  • an optimal solution can be obtained compared to the first specific example. There is a possibility. Note that without using a local search algorithm, the transmission power of the pico BS 4 is actually changed between all the maximum values and the minimum values, and measurement reports are collected to obtain the transmission power value that minimizes the number of cell edge UEs. Also good.
  • the first specific example and the second specific example described above may be combined. For example, after obtaining the transmission power update value according to the first specific example, the transmission power may be finely adjusted according to the second specific example.
  • the transmission power may be finely adjusted according to the second specific example.
  • FIG. 12 is a flowchart showing a third specific example.
  • the radio parameter determination unit 11 sets the transmission power of the pico BS 4 to an initial value.
  • the initial value may be any value within the allowable transmission power range of the pico BS 4.
  • the measurement report collection unit 10 notifies the radio condition measurement condition and the measurement report report condition to the pico UE 5 and the macro UE 3.
  • the notification to the macro UE3 may be performed using a radio signal transmitted from the pico BS4. Further, the notification to the macro UE3 may be performed via the macro BS2. In this case, the notification to the macro UE 3 may be supplied to the macro BS 2 using a control interface that can be used between the radio parameter control device 1 and the macro BS 2.
  • a control interface between base stations may be used, or a control interface (UMTS) with a host device (RNC or the like). Or a lub interface or the like).
  • the measurement report collection unit 10 acquires a plurality of measurement reports generated by the pico UE 5 and the macro UE 3.
  • the pico BS 4 may acquire a measurement report from the macro UE 3 by the following method.
  • a measurement report including the radio quality of the pico cell 62 measured by the macro UE 3 while connected to the macro cell 61 is transmitted to the pico BS 4 when the macro UE 3 connects to the pico cell 62 by handover / cell reselection.
  • the pico BS 4 may receive a measurement report transmitted from the macro UE 3 to the macro BS 2 from the macro BS 2 using a control interface between base stations (LTE X2 interface or the like).
  • Steps S104 and S105 in FIG. 12 are the steps shown in FIG. 7 except that the measurement report samples from not only the pico UE 5 but also the macro UE 3 are used for calculating the number of cell edge UEs between the macro cell 61 and the pico cell 62. It may be the same as S104 and S105.
  • the calculation of the current value and the predicted value of the number of cell edge UEs in step S104 in FIG. 12 may be performed using any of the specific examples described with reference to FIGS. 8A, 8B, 8C, 9, and 10. Further, instead of these specific examples, the current value and the predicted value of the number of cell edge UEs may be calculated by the following method.
  • FIG. 13 is a histogram showing the distribution of measurement report samples from the pico UE 5 and the macro UE 3.
  • the horizontal axis in FIG. 13 is the RSRP (Ps) of the pico cell.
  • Ps the RSRP of the pico cell.
  • the number of measurement report samples from the pico UE 5 and the number of measurement report samples from the macro UE 3 The closest point may be regarded as a cell edge. Then, the total number of measurement report samples at the cell edge may be regarded as the “current value” of the number of cell edge UEs.
  • the connection destination cell of the pico UE 5 and the macro UE 3 when it is assumed that the transmission power of the pico BS 4 is changed based on the conditions of UE handover / cell reselection.
  • the change may be predicted for each measurement report sample. For example, when it is assumed that the transmission power of the pico BS 4 is changed for each measurement report sample, the RSRP of the pico cell is predicted, and when the RSRP of the pico cell is larger than the RSRP of the macro cell, the measurement report sample is obtained from the pico UE. Consider it a thing.
  • the number of measurement report samples from the pico UE 5 and the number of measurement report samples from the macro UE 3 are the most.
  • a close point is regarded as a cell edge, and the total number of measurement report samples at the cell edge is calculated as a “predicted value” of the number of cell edge UEs.
  • the number of cell edge UEs can be evaluated more accurately.
  • the flowchart of FIG. 12 is shown as a modification of the first specific example (FIG. 7) for obtaining the predicted value of the number of cell edge UEs.
  • using the measurement report from the macro UE 3 in addition to the measurement report from the pico UE 5 may be applied to the trial and error control described in the second specific example.
  • the radio parameter control apparatus 7 further considers the traffic load of the cell and determines the update value of the radio parameter in the same manner as the radio parameter control apparatus 1 described above.
  • the traffic load of the cell for example, the usage rate of the LTE resource block, the ratio of the used power to the maximum transmission power of the uplink or the downlink, the number of occurrences of communication within a predetermined time may be used.
  • FIG. 14 is a block diagram illustrating a configuration example of the wireless parameter control device 7.
  • a network configuration example including the wireless parameter control device 7 is the same as that shown in FIGS.
  • the functions and operations of the measurement report collection unit 10 in FIG. 14 are the same as the corresponding reference numerals shown in FIG.
  • the load acquisition unit 72 acquires the traffic load information of the neighboring cell (macro cell 61), the traffic load information of the target cell (pico cell 62), or the load information of both cells. Acquisition of cell load information by the load acquisition unit 72 may be performed from a base station that manages the cell via an upper network, or may be performed using a control interface between the base stations.
  • the radio parameter determination unit 71 considers the traffic load of the cell when determining the update value of the radio parameter so that the current value of the number of cell edge UEs decreases. For example, if the coverage of the target cell (pico cell 62) is reduced when the traffic load of the neighboring cell (macro cell 61) is high, there is a risk of causing traffic congestion in the neighboring cell. Therefore, as an example, the radio parameter determination unit 71 may perform radio parameter adjustment to reduce the coverage of the target cell (pico cell 62) on condition that the traffic load of the neighboring cell (macro cell 61) is low.
  • FIG. 15 is a flowchart showing a modification of the procedure for determining the update value of the wireless parameter shown in FIG.
  • step S400 is inserted.
  • step S400 it is determined whether the traffic load of the surrounding macro cell 61 is below a predetermined threshold value. Then, on condition that the traffic load of the neighboring macro cell 61 is equal to or less than a predetermined threshold (YES in step S400), the update value of the transmission power of the pico BS 4 that may reduce the coverage of the pico cell 62 is determined. (Steps S104 and S105).
  • the radio parameter determination unit 71 may change the coverage of the pico cell 62 when the traffic load of the target cell (pico cell 62) is equal to or less than a predetermined threshold.
  • the radio parameter determination unit 71 may use both the traffic load of the target cell (pico cell 62) and the traffic load of the neighboring cell (macro cell 61).
  • the radio parameter determination unit 71 may change the coverage of the pico cell 62 when the sum of the traffic load of the pico cell 62 and the traffic load of the macro cell 61 is equal to or less than a predetermined threshold.
  • FIG. 16 is a flowchart illustrating a specific example of a procedure for selecting one candidate from a plurality of candidates in consideration of the traffic load of the cell. Steps S101 to S104 in FIG. 16 are the same as steps S101 to S104 with the same reference numerals shown in FIG.
  • the radio parameter determination unit 71 selects a transmission power value of the pico BS 4 that gives a predicted value of the number of cell edge UEs smaller than the current value of the number of cell edge UEs as a candidate value. For example, as shown in FIG. 17, the radio parameter determination unit 71 determines that the difference between the candidate value (candidate # 1) that gives the minimum value Nmin among the current value and the predicted value of the number of cell edge users and the minimum value is predetermined. Other candidate values (candidates # 2 and # 3) that are within the value H may be selected.
  • the radio parameter determination unit 71 may determine that one candidate value as an update value of the radio parameter (step S507).
  • the radio parameter determination unit 71 determines whether the traffic load of the neighboring cell (macro cell 61) is equal to or less than a predetermined threshold (step). S508). If the traffic load of the macro cell 61 is equal to or less than the threshold (YES in step S508), the radio parameter determination unit 71 sets the candidate value with the smallest transmission power of the pico BS 4 (the coverage of the pico cell 62 is within the plurality of candidate values).
  • the smallest candidate value is determined as an update value (step S509).
  • the radio parameter determination unit 71 sets the candidate value with the maximum transmission power of the pico BS 4 among the plurality of candidate values (the coverage of the pico cell 62 is the highest).
  • a candidate value that increases) is determined as an update value (step S509).
  • the radio parameter determination unit 71 estimates the number of cell edge UEs using the measurement report from the UE, the measurement report (measurement result) measured in the time zone in which the traffic load of the target cell (pico cell 62) satisfies a predetermined condition You may use only.
  • the radio parameter determination unit 71 analyzes the distribution of the radio quality using only the measurement result in the time zone in which the traffic load of the pico cell 62 is relatively high, estimates the number of cell edge UEs, and determines the update value of the radio parameter Good. Thereby, it is possible to perform coverage design adapted to the peak time of traffic.
  • the radio parameter may be the tilt angle or CIO of the antenna of the base station.
  • the amount of change in radio quality corresponding to the change in tilt angle may be statistically modeled in advance. Thereby, the adjustment of the antenna tilt angle can be handled in the same manner as the adjustment of the transmission power described above.
  • the lower limit value is set for the transmission power of the base station that manages the target cell, and the radio parameter determination unit 11 adjusts the transmission power within a range that does not fall below the lower limit value. May be.
  • the lower limit value of the transmission power may be set to a transmission power value that is necessary so as not to cause a coverage hole.
  • the lower limit value of the transmission power may be set to a transmission power value required for ensuring the minimum user throughput in the target cell.
  • the radio parameter control apparatuses 1 and 7 divide and aggregate a plurality of measurement reports based on the time zone in which the measurement of the radio quality is performed. You may determine the update value of a separate radio
  • the UE may report only measurement information that satisfies the condition. For example, consider a case where the number of cell edge UEs is counted under the condition of 0 ⁇ Ps ⁇ Pn ⁇ TH1 in the trial and error control described as the (second specific example) in the first embodiment of the invention.
  • the radio parameter control apparatus 1 may instruct the UE to report only the measurement reports satisfying the condition from the UE, instead of counting the number of measurement report samples satisfying the condition.
  • the hierarchical cell environment (Heterogeneous Network environment) of the macro cell 61 and the pico cell 62 has been specifically described.
  • Embodiments 1 and 2 of the invention can be applied to other hierarchical cell environments such as a macro cell and a micro cell, a macro cell and a femto cell, and a micro cell and a femto cell.
  • the first and second embodiments of the present invention are not a strict hierarchical cell environment in which cells with small coverage are completely covered with cells with large coverage, but also in environments in which adjacent cells have partial overlap. Applicable.
  • Embodiments 1 and 2 of the invention can be applied to an environment in which cells having the same degree of coverage (for example, macro cells) are arranged adjacent to each other. Embodiments 1 and 2 of the invention can contribute to a reduction in the number of cell edge UEs even in these cell environments.
  • the update processing of the wireless parameters by the wireless parameter control devices 1 and 7 described in the first and second embodiments of the invention is realized by using a semiconductor processing device such as ASIC (Application Specific Integrated Circuit), DSP (Digital Signal Processor) or the like. May be.
  • the wireless parameter update processing by the wireless parameter control devices 1 and 7 may be realized by causing a computer such as a microprocessor to execute a program. Specifically, a program including an instruction group for causing a computer to execute the algorithm shown in any of FIGS. 7, 11, 12, 15, or 16 may be created and the program may be supplied to the computer.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Radio parameter controller 2 Macro base station (macro BS) 3 Macro mobile station (macro UE) 4 Pico Base Station (Pico BS) 5 Pico Mobile Station (Pico UE) 7 Radio Parameter Control Device 10 Measurement Report Collection Unit 11 Radio Parameter Determination Unit 40 Wireless Communication Unit 41 Communication Unit 61 Macro Cell 62 Pico Cell 71 Radio Parameter Determination Unit 72 Load Acquisition Unit 150 Core Network 151 RNC (Radio Network Controller) 152 Management Server

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線パラメータ制御装置(1)は、測定報告収集部(10)および無線パラメータ決定部(11)を有する。測定報告収集部(10)は、基地局(4)によって管理される第1のセル(62)の無線品質の測定結果を各々が含むとともに、少なくとも1つの移動局(5)によって生成される複数の測定報告を収集する。無線パラメータ決定部(11)は、複数の測定報告に基づいて、第1のセル(62)と周辺セル(61)との間のセルエッジに位置するとみなされるセルエッジ移動局の数が減少するように、第1のセル(62)のカバレッジを変更可能な無線パラメータの更新値を決定する。

Description

無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体
 本発明は、無線基地局に適用する無線パラメータの制御、特にセルカバレッジを変更可能な無線パラメータの制御に関する。
 携帯電話網に代表されるセルラ方式の無線通信網では、セルと呼ばれる小ゾーンを多数組み合わせることによって、広域なサービスエリアが構成される。これらのセルは、通常、1つから6つのセルを単位として1つの無線基地局によって管理される。また、セルを跨って端末が移動した際にも継続して通信が行えるように、隣接するセルはカバレッジに重なり(オーバラップ)を持つのが一般的である。
 無線通信網のオペレータは、加入者に対して高品質な無線通信サービスを提供するために、セルのカバレッジ設計を実施する。通常、専用の測定器を搭載した車両でエリア内を測定する走行試験(Drive-test)を行い、無線品質が不十分な場所(Coverage hole)や、多数のセルから強い干渉を受けている場所(Pilot pollution)などを調査する。そして、オペレータは、調査で判明した不具合を解消するように、無線基地局のセルカバレッジを変更可能な無線パラメータを調節する。セルカバレッジを変更可能な無線パラメータは、例えば、基地局からのパイロット信号・リファレンス信号等の送信電力、基地局アンテナのチルト角である。セルカバレッジは、周辺環境の変化、例えば、新規基地局の設置及びビルの建設などによって変化する。そのため、オペレータは、無線基地局の設置後も定期的にカバレッジ設計を行う必要がある。こうしたカバレッジ設計にかかるコストを削減するために、セルのカバレッジを自律的に最適化する技術が提案されている(例えば特許文献1及び2)。
 特許文献1に開示された手法によれば、セルを含むネットワーク内に配置された制御装置は、当該セルの無線品質(具体的には、セルカバレッジを規定するパイロット信号の受信電力)の測定結果を含む測定報告を移動局から収集し、無線品質が閾値以下であることを示す測定報告の割合を算出する。そして、当該割合が所定値となるように、パイロット信号の送信電力を調整する。例えば、移動局群からの複数の測定報告を集計した結果、無線品質が閾値以下となる測定情報の割合が相対的に低い場合、制御装置は、周辺セルとのオーバラップが不足と判断してパイロット信号の送信電力を上げる。逆に、無線品質が閾値以下となる測定情報の割合が高い場合には、制御装置は、周辺セルとのオーバラップが過剰(干渉が発生している)と判断してパイロット信号の送信電力を下げる。
 特許文献2に開示された手法によれば、基地局は、自セルのセルエッジにおいて検出された周辺セルの数を含む報告を移動局から収集し、セルエッジにて検出される周辺セルの数が3つとなるように自セルのダウンリンク送信電力を調整する。すなわち、セルエッジにて検出される周辺セルの数が2以下の場合、基地局は、自セルと周辺セルとのオーバラップが不足と判断してダウンリンク送信電力を上げる。逆に、セルエッジにて検出される周辺セルの数が4以上の場合、基地局は、自セルと周辺セルとのオーバラップが過剰と判断してダウンリンク送信電力を下げる。
国際公開第03/036815号 国際公開第2009/152978号
 本願の発明者等は、特許文献1及び2に開示された手法を用いると、セルカバレッジの調整(つまりダウンリンク送信電力の調整)によってセルエッジに位置する移動局(以下、セルエッジ移動局又はセルエッジUE)が増加するおそれがあることを見出した。セルエッジでは一般的に無線品質が低いため、セルエッジUEの増加は好ましくない。例えば、セルの中心付近のみに移動局が密集している移動局分布を持つセルに特許文献1の手法を適用した場合を考える。この場合、無線品質が低いことを示す測定報告の割合が極端に低くなる。したがって、無線品質が低い測定情報の割合が所定値に達するまでダウンリンク送信電力を上げる調整が行われ、セルカバレッジが拡大する。すなわち、送信電力の調整によって、かえって無線品質の低いセルエッジUEを増やしてしまう。
 この問題は、広域なエリアをカバーするマクロセルの中に、局所的なエリアをカバーするスモールセル(マイクロセル、ピコセル、フェムトセルなど)が配置される階層的なセル環境において特に生じやすい。階層的なセル環境においては、マクロセルとスモールセルとのオーバラップは十分に確保されている場合が多い。しかしながら、特許文献1及び2の手法では、スモールセルにおいて無線品質が低いことを示す測定報告の割合が少ない場合に(あるいは周辺セルの検出数が少ない場合に)、セル間のオーバラップが不足していると判断してしまい、スモールセルのカバレッジの拡大によって無駄な品質劣化(セルエッジUEの増加)を招いてしまう。
 本発明は上記課題を鑑みてなされたものであって、その目的は、無線品質が低いセルエッジUE数の増加を抑制することが可能な無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、およびプログラムを提供することである。
 本発明の第1の態様は、無線パラメータ制御装置を含む。当該無線パラメータ制御装置は、測定報告収集部および無線パラメータ決定部を有する。前記測定報告収集部は、基地局によって管理される第1のセルの無線品質の測定結果を各々が含むとともに、少なくとも1つの移動局によって生成される複数の測定報告を収集する。前記無線パラメータ決定部は、前記複数の測定報告に基づいて、前記第1のセルと周辺セルとの間のセルエッジに位置するとみなされるセルエッジ移動局の数が減少するように、前記第1のセルのカバレッジを変更可能な無線パラメータの更新値を決定する。なお、無線パラメータの更新値は、更新後の無線パラメータ値(絶対値)であってもよいし、更新前からの無線パラメータの変化量を示す相対値であってもよい。
 本発明の第2の態様は、基地局装置を含む。当該基地局装置は、上述した本発明の第1の態様に係る無線パラメータ制御装置と、移動局と通信可能に構成されるとともに、前記更新値に基づいて制御される無線通信部とを有する。
 本発明の第3の態様は、無線パラメータ制御方法を含む。当該方法は、以下のステップ(a)及び(b)を含む。
(a)基地局によって管理される第1のセルの無線品質の測定結果を各々が含むとともに、少なくとも1つの移動局によって生成される複数の測定報告を収集すること、及び
(b)前記複数の測定報告に基づいて、前記第1のセルと周辺セルとの間のセルエッジに位置するとみなされるセルエッジ移動局の数が減少するように、前記第1のセルのカバレッジを変更可能な無線パラメータの更新値を決定すること。
 本発明の第4の態様は、コンピュータプログラムを含む。当該プログラムは、コンピュータに読み込まれて実行されることによって、上述した本発明の第3の態様に係る無線パラメータ制御方法をコンピュータに行わせる。
 上述した本発明の各態様によれば、無線品質が低いセルエッジUE数の増加を抑制することが可能な無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、およびプログラムを提供できる。
本発明の実施の形態1にかかる無線パラメータ制御装置を含むネットワークの構成例を示す図である。 本発明の実施の形態1にかかる無線パラメータ制御装置を含むネットワークの構成例を示す図である。 本発明の実施の形態1にかかる無線パラメータ制御装置を含むネットワークの構成例を示す図である。 本発明の実施の形態1にかかる無線パラメータ制御装置を含むネットワークの構成例を示す図である。 図1に示した無線パラメータ制御装置の構成例を示すブロック図である。 図1に示したピコ基地局の構成例を示すブロック図である。 図1に示した無線パラメータ制御装置による無線パラメータの決定手順の第1の具体例を示すフローチャートである。 移動局位置におけるピコセル受信電力と周辺セル受信電力の関係の一例を示すグラフである。 測定報告に基づくRSRPの差の分布の一例を示すヒストグラムである。 セルエッジUE数の現在値および予測値の一例を示すヒストグラムである。 セルエッジUE数の予測値の算出条件の具体例を示す表である。 セルエッジUE数の予測値の算出条件の具体例を示す表である。 図1に示した無線パラメータ制御装置による無線パラメータの決定手順の第2の具体例を示すフローチャートである。 図1に示した無線パラメータ制御装置による無線パラメータの決定手順の第3の具体例を示すフローチャートである。 移動局からの測定報告のサンプル数とピコセル受信電力との関係を示すヒストグラムである。 本発明の実施の形態2に係るピコ基地局の構成例を示すブロック図である。 図14に示した無線パラメータ制御装置による無線パラメータの決定手順の第1の具体例を示すフローチャートである。 図14に示した無線パラメータ制御装置による無線パラメータの決定手順の第2の具体例を示すフローチャートである。 セルエッジUE数の現在値および予測値の一例を示すヒストグラムである。
 以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<発明の実施の形態1>
 図1は、本実施の形態に係る無線パラメータ制御装置1を含むネットワークの構成例を示す図である。マクロ基地局(マクロBS:base station)2は、マクロセル61を形成し、移動局3との間で双方向の無線通信を行う。以下では、マクロセル61に接続して通信を行う移動局3をマクロ移動局(マクロUE:User Equipment)と呼ぶ。マクロBS2は、上位ネットワーク(不図示)に接続されており、マクロUE3と上位ネットワークとの間でトラフィックを中継する。上位ネットワークは、無線アクセスネットワーク及びコアネットワークを含む。
 ピコ基地局(ピコBS)4は、マクロセル61内に配置され、マクロセル61に比べてセルサイズの小さいピコセル62を形成し、移動局5との間で双方向の無線通信を行う。以下では、ピコセル62に接続して通信を行う移動局5をピコ移動局(ピコUE)と呼ぶ。ピコBS4は、上位ネットワーク(不図示)に接続されており、ピコUE5と上位ネットワークとの間でトラフィックを中継する。図1の例では、マクロセル61及びピコセル62は、階層化セル構造を形成している。すなわち、ピコセル62は、マクロセル61のカバレッジに含まれている。
 無線パラメータ制御装置1は、少なくとも1つのピコUE5によって生成される複数の測定報告(Measurement Report)を取得する。無線パラメータ制御装置1は、ピコBS4を介して当該測定報告を受信すればよい。当該測定報告は、ピコセル62の無線品質の測定結果を含む。さらに、当該測定報告は、周辺セル(すなわち図1の例ではマクロセル61)の無線品質の測定結果を含んでもよい。ピコUE5によって測定されるセルの無線品質の典型的な例は、基地局から送信される無線信号(ダウンリンク信号)の受信信号品質である。受信信号品質は、例えば、パイロット信号・リファレンス信号等の受信電力、SINR(Signal to Noise Interference Ratio)である。W-CDMAの場合、セルの無線品質は、共通パイロットチャネル(CPICH:Common Pilot Channel)の受信電力(CPICH RSCP: Received Signal Code Power)、又はCPICHのEc/Noとすればよい。また、LTE(Long Term Evolution)の場合、セルの無線品質は、下りリファレンス信号(Downlink Reference Signal)の受信電力(RSRP: Reference Signal Received Power)、又は受信品質(RSRQ: Reference Signal Received Quality)とすればよい。また、ピコUE5は、セルの無線品質として、アップリンク又はダウンリンクのスループット(データ転送レート)を計測し、スループットの測定結果を報告してもよい。
 無線パラメータ制御装置1は、取得した複数の測定報告に基づいて、対象セル(ピコセル62)と周辺セル(マクロセル61)との間のセルエッジに位置するとみなされるセルエッジUEの数が減少するように、ピコセル62のカバレッジを変更可能な無線パラメータの更新値を決定する。そして、無線パラメータ制御装置1は、決定した更新値をピコBS4の無線通信部に適用し、ピコセル62のカバレッジを調整する。セルカバレッジを変更可能な無線パラメータの具体例は、ピコBS4の下り信号(パイロット信号、リファレンス信号など)の送信電力、ピコBS4のアンテナのチルト角である。また、無線パラメータの更新値は、更新後の無線パラメータ値(絶対値)であってもよいし、更新前からの無線パラメータの変化量を示す相対値であってもよい。
 また、セルカバレッジを変更可能な無線パラメータとして、周辺のマクロセル61に対するセル個別電力オフセット値(CIO:Cell Individual Offset)を用いてもよい。W-CDMA及びLTEでは、CIOは、測定対象のセルのリストとともに基地局からUEへと通知される。CIOは、ハンドオーバに関するパラメータであり、UEが周辺セルの受信電力の測定値に基づいてハンドオーバをトリガする際に、周辺セルの受信電力に対するオフセットとして使用される。対象セル(ピコセル62)から周辺セル(マクロセル61)に設定されるCIOが大きいほど、対象セル(ピコセル62)から周辺セル(マクロセル61)へのハンドオーバが発生しやすくなる。このため、周辺セル(マクロセル61)に対するCIOを大きくすることは、対象セル(ピコセル62)のカバレッジを縮小するのと同様の効果がある。また、セルカバレッジを変更可能な無線パラメータとして、周辺セル(マクロセル61)から対象セル(ピコセル62)へのCIOを用いてもよい。対象セル(ピコセル62)に対するCIOを大きく設定すると、周辺セル(マクロセル61)から対象セル(ピコセル62)へのハンドオーバが発生しやすくなり、対象セル(ピコセル62)のカバレッジを拡大するのと同様の効果が得られる。
 無線パラメータ制御装置1は、複数の測定報告を用いてセルエッジUE数を求めればよい。1つの測定報告のサンプルは1つのUEに対応するとみなすことができる。このため、無線パラメータ制御装置1は、測定報告のサンプル数をUE数とみなしてセルエッジUE数を推定すればよい。なお、セルエッジUE数を推定する際、無線パラメータ制御装置1は、送信元UEの重複を許容して測定報告のサンプルを単純に集計することに代えて、送信元UEの重複を除外した厳密なサンプル数(厳密なUE数)を集計してもよい。例えば、UEを識別可能なID(例えば、CRNTI(Connection Radio Network Temporary Identifier)、TMSI(Temporary Mobile Subscriber Identity)、IMSI(International Mobile Subscriber Identity)等)を測定報告に含めるようにし、無線パラメータ制御装置1は、測定報告に含まれるIDによって送信元UEを識別すればよい。また、無線パラメータ制御装置1による測定報告の収集期間内における各UEの測定報告の報告回数を例えば1回に制限することで、送信元UEの重複を除外してもよい。
 上述したように、本実施の形態に係る無線パラメータ制御装置1は、UE(ピコUE5又はマクロUE3)によって生成された複数の測定報告を参照し、ピコセル62とマクロセル61との間のセルエッジに位置するとみなされるセルエッジUEの数が減少するように、ピコセル62のカバレッジを変更可能な無線パラメータの更新値を決定する。言い換えると、無線パラメータ制御装置1は、UEが少ない場所がセルエッジとなるようにピコセル62に関する無線パラメータを調整する。このため、本実施の形態によれば、無線品質が低いセルエッジUE数の増加を抑制することができる。
 ところで、無線パラメータ制御装置1の配置は、ネットワークアーキテクチャの設計思想に基づいて適宜決定されるものである。例えば、本実施の形態の移動通信システムがEPS(Evolved Packet System)である場合、図2に示すように、無線パラメータ制御装置1の機能は、コアネットワーク150に配置するのではなく、無線リソース管理機能を有するピコBS(ピコeNB(PeNB))4と一体的に配置してもよい。
 また、本実施の形態の移動通信システムがUMTS(Universal Mobile Telecommunications System)である場合、図3に示すように、無線パラメータ制御装置1の機能をRNC(Radio Network Controller)151に配置してもよい。図2の例では、RNC151は、マクロセル61及びピコセル62の無線リソース管理、マクロUE3及びピコUE5のセル間移動の制御を行う。
 また、図4に示すように、コアネットワーク150内の管理サーバ152に無線パラメータ制御装置1の機能を配置してもよい。図4は、UMTSの場合を示しているが、EPS等の他の移動通信システムの場合も同様である。
 また、無線パラメータ制御装置1が有する機能は、移動通信システム内に分離して配置されてもよい。例えば、図4の例において、測定報告の取得、無線パラメータの決定及び調整機能をRNC151に配置し、ピコセル62の無線品質の分布解析(セルエッジUE数の計算)の機能を管理サーバ152に配置してもよい。
 以下では、無線パラメータ制御装置1の構成および無線パラメータ決定動作の具体例について詳しく説明する。図5は、無線パラメータ制御装置1の構成例を示すブロック図である。測定報告収集部10は、少なくとも1つのピコUE5によって生成された複数の測定報告を取得する。測定報告収集部10は、複数のピコUE5から測定報告を収集してもよい。また、測定報告収集部10は、ピコUE5に加えて、マクロUE3によって生成された測定報告を取得してもよい。測定報告収集部10が取得する測定報告は、少なくともピコセル62の無線品質の測定結果を含む。当該測定報告は、周辺のマクロセル61の無線品質の測定結果を含んでもよい。
 複数の測定報告を複数のUEから取得する場合、測定報告収集部10は、同一期間内での各UEによる測定結果を収集するとよい。同一期間内で測定されたピコUE5の無線品質を収集することによって、その期間におけるUE配置のスナップショットを得ることができる。また、ピコUE5の数が少ない場合、例えば、複数の測定報告を1つのピコUE5のみから取得する場合、測定報告収集部10は、異なる時刻及び異なる場所で得られた複数の測定結果を収集すればよい。
 無線パラメータ決定部11は、複数の測定報告を参照し、ピコセル62の無線品質の分布に基づいてセルエッジUE数の現在値を求める。さらに、無線パラメータ決定部11は、セルエッジUE数の現在値が減少するように、無線パラメータの更新値を決定する。以下では、無線パラメータが、ピコBS4の送信電力(パイロット信号又はリファレンス信号の送信電力)であるとして説明を行う。無線パラメータ決定部11は、無線パラメータ(ピコBS4の送信電力)の更新値によってピコBS4の送信電力を調整する。
 図6は、ピコBS4の構成例を示すブロック図である。図6において、無線通信部40は、ピコUE5との間で双方向の無線通信を行う。無線通信部40は、ピコUE5に対して、制御データおよびユーザデータがエンコードされたダウンリンク無線信号を送信する。また、無線通信部40は、ピコUE5から送信されるアップリンク無線信号を受信し、上りリンク無線信号から受信データをデコードする。
 通信部41は、コアネットワーク150等の上位ネットワークとの間で情報の送受信を行う。なお、通信部41は、基地局間インタフェース(LTEのX2インタフェース等)をサポートし、他の基地局との間で情報の送受信を行ってもよい。
 ピコUE5からの受信データに含まれる測定報告は、無線パラメータ制御装置1に送られる。無線パラメータ制御装置1がピコBS4の外部に配置される場合、無線パラメータ制御装置1は、通信部41を介して測定報告を取得し、通信部41を介して無線通信部40の無線パラメータ(ここでは送信電力)を制御すればよい。無線パラメータ制御装置1がピコBS4と一体的に配置される場合、無線パラメータ制御装置1は、無線通信部40によってデコードされた受信データから測定報告を取得し、無線通信部40の送信電力を直接的に制御すればよい。ピコUE5によるセルの無線品質の測定条件および測定報告の報告条件は、予め無線パラメータ制御装置1、ピコBS4、又は上位ネットワーク内の装置からピコUE5に通知すればよい。無線品質の測定条件は、測定周期、測定のトリガ条件(通信開始時など)、測定時刻、測定時間、測定対象の無線品質、測定対象のセル(どのセルを測定するか)等である。測定報告の報告条件は、報告周期、報告のトリガ条件(通信開始時、ハンドオーバ後など)、報告時刻、報告対象の無線品質、報告対象のセル(どのセルに報告するか)等である。
 続いて以下では、本実施の形態に係る無線パラメータ制御装置1による無線パラメータ更新値の決定手順に関するいくつかの具体例について説明する。
(第1の具体例)
 第1の具体例では、無線パラメータ制御装置1は、複数の測定報告を用いて把握されるピコセル62の無線品質の分布において、ピコセル62の無線品質のサンプル数(UEによる報告数)が現在に比べて少ない位置がセルエッジとなるように、無線パラメータの更新値を決定する。より具体的に述べると、無線パラメータ制御装置1は、マクロUE3による測定報告を用いることなくピコUE5による測定報告を用いて、セルエッジUE数の現在値およびピコBS4の送信電力を変更したと仮定した場合のセルエッジUE数の予測値を求める。そして、無線パラメータ制御装置1は、セルエッジUE数の現在値よりも小さいセルエッジUE数の予測値を与える無線パラメータ(ここではピコBS4の送信電力)を、無線パラメータの更新値として決定する。
 図7は、第1の具体例を示すフローチャートである。ステップS101では、無線パラメータ制御装置1の無線パラメータ決定部11は、ピコBS4の送信電力を許容された範囲内での最大値に設定する。ステップS102では、測定報告収集部10は、無線品質の測定条件および測定報告の報告条件を、ピコBS4を介してピコUE5に通知する。さらに、測定報告収集部10は、マクロUE3がピコセル62内に移動してピコUE5になることを期待して、無線品質の測定条件および測定報告の報告条件をマクロUE3に通知しても良い。この場合、当該マクロUE3は、ピコセル62内に移動してピコUE5へと遷移した後に、マクロUE3時に受信した無線品質の測定条件および測定報告の報告条件に基づき、ピコUE5として無線品質の測定および報告を実施すればよい。なお、ステップS101及びS102は、無線パラメータ制御装置1以外の他の装置(例えばピコBS4)が行ってもよい。ステップS103では、測定報告収集部10は、ピコUE5によって生成された複数の測定報告を、ピコBS4を介して取得する。測定報告収集部10は、所定量のサンプル数(報告数)に達するまで測定報告の収集を続けてもよいし、所定の期間内において測定報告を収集してもよい。ステップS104では、無線パラメータ制御装置1の無線パラメータ決定部11は、複数の測定報告を用いてセルエッジUE数の現在値及び予測値を計算する。セルエッジUE数の現在値及び予測値の計算手法の具体例については後述する。ステップS105では、無線パラメータ決定部11は、セルエッジUE数の現在値よりも小さいセルエッジUE数の予測値を与えるピコBS4の送信電力値を更新値として決定する。なお、図7のステップS101では、送信電力の初期値を最大値としているが、最大値以外の任意の送信電力を初期値としてもよい。
 続いて以下では、セルエッジUE数の現在値と、ピコBS4の送信電力を変更した場合に想定されるセルエッジUEの予測値の計算手法の具体例について説明する。本明細書における"セルエッジ(セルバウンダリやセルボーダーと言ってもよい)"との用語は、基地局(例えばピコBS4)から遠方であって無線品質が劣化する領域、又はセル間の境界領域を意味する。従って、対象セル(ピコセル62)の無線品質が所定値以下となる領域、あるいは対象セル(ピコセル62)と周辺セル(マクロセル61)との無線品質差が所定の閾値以下となる領域を"セルエッジ"とみなすことができる。
 図8Aは、ピコセル62のRSRP(Ps)と周辺セル(マクロセル61)のRSRP(Pn)の関係の一例を示すグラフである。なお、RSRPは、LTEの用語であり、基地局から送信されるリファレンス信号の受信電力を意味する。図8Aに示すように、PsとPnの差が所定の閾値TH1以下となる領域をセルエッジと定義してもよい。このように定義した場合、図8Aに示すように、"セルエッジ"は、対象セル側(ピコセル62側)のセルエッジと、周辺セル側(マクロセル61側)のセルエッジを含む。
 図8Bは、UEから収集した複数の測定報告サンプルの各々についてピコセル62のRSRPとマクロセル61のRSRPの差(Ps-Pn)を計算することによって得られる無線品質(ここではRSRPの差)の度数分布を示すヒストグラムである。図8Aの定義に従う場合、RSRPの差(Ps-Pn)が0以上であり閾値TH1以下であるサンプル数、つまり図8Bのハッチングされた範囲内のサンプル数、を集計することで、対象セル(ピコセル62)側のセルエッジUE数の"現在値"を見積もることができる。
 さらに、図8Bのヒストグラムを用いることで、対象セル(ピコセル62)側のセルエッジUE数の"予測値"を見積もることもできる。ピコBS4によるリファレンス信号の送信電力が増加した場合、送信電力の増加分だけPsの値が大きくなる。よって、送信電力の増加分だけ図8Bのヒストグラム全体が右方向にシフトするとみなすことができる。逆に、ピコBS4によるリファレンス信号の送信電力が減少した場合、送信電力の減少分だけ図8Bのヒストグラム全体が左方向にシフトするとみなすことができる。したがって、ピコBS4の送信電力を変更したと仮定した場合に、RSRPの差(Ps-Pn)が0以上であり閾値TH1であるサンプル数を集計することで、対象セル側のセルエッジUE数の"予測値"を見積もることができる。
 図8Cは、対象セル(ピコセル62)側のセルエッジUE数の"現在値"および"予測値"の見積もり結果を示すヒストグラムである。図8Cの横軸は、無線パラメータであるピコBS4の送信電力である。図7に示した手順のように、送信電力を最大値にして無線品質測定が行われた場合、送信電力の最大値(TPmax)に対する見積もり結果が "現在値"に相当し、その他の見積もり結果が"予測値"に相当する。例えば、無線パラメータ制御装置1は、対象セル側のセルエッジUE数の現在値および予測値の中で最小値を与えるピコBS送信電力(TPo)を、無線パラメータの"更新値"とすればよい。最小値を選択することで、最も効果的にセルエッジUE数を削減できる可能性が高い。しかしながら、無線パラメータ制御装置1は、必ずしも最小値を与える送信電力を更新値として選択しなくてもよい。つまり、無線パラメータ制御装置1は、対象セル側のセルエッジUE数の現在値に比べて小さい予測値を与える任意の送信電力を無線パラメータの更新値としてもよい。
 以上の図8A、8B、及び8Cを参照した説明では、無線品質としてRSRPを使用し、セルエッジUE数として対象セル(ピコセル62)側のセルエッジUE数を見積もる場合について紹介した。しかしながら、図9の一覧表に示すように、無線品質としてRSRPとは異なる他の品質指標を用いてもよい。また、図10の一覧表に示すように、セルエッジUE数として周辺セル側をさらに含む両セル側のセルエッジUE数を見積もってもよい。
 図9は、対象セル(ピコセル62)側のセルエッジUE数の予測値の算出条件の5つの例を示している。図9の例1は、RSRPの差を用いた条件を示しており、図8A、8B、及び8Cを用いて説明した具体例に対応する。つまり、図9の例1では、以下の式(1)の条件を満たす測定報告サンプルの合計数をセルエッジUE数の予測値とする。式(1)のD[dB]は、送信電力の変更量である。
  0<Ps-Pn+D<TH1   (1)
 図9の例2は、送信電力を変更した場合に予想される対象セル(ピコセル62)のRSRQの予測値(Qs´)を求め、Qs´が所定の閾値TH2以下である測定報告サンプルの合計数をセルエッジUE数の予測値とする。RSRQの定義は、3GPPの技術仕様 3GPP TS 36.214 V9.2.0 (2010-06) に規定されており、以下の式(2)で表わされる。
  RSRQ=N×RSRP/(E-UTRA carrier RSSI)  (2)
 式(2)のNは、E-UTRA carrier Received Signal Strength Indicator(RSSI)の測定帯域内のリソースブロック数である。E-UTRA carrier RSSIは、N個のリソースブロックにわたる測定帯域での総受信電力(total received power)である。RSRQの予測値(Qs´)を求める場合、最も簡便には、(2)式の分母のE-UTRA carrier RSSIと、(2)式の分子のRSRPが、ピコBS4の送信電力の変更量D[dB]に相当する分だけ変化すると仮定して計算すればよい。また、ピコBS4の送信電力の変更によって生じるピコセル62およびマクロセル61のトラフィック負荷の変化を予測し、その結果をピコBS4の送信電力の変更後のRSSIの計算に反映させても良い。
 図9の例3は、送信電力を変更した場合に予想される対象セル(ピコセル62)のSINRの予測値(Rs´)を求め、Rs´が所定の閾値TH3以下である測定報告サンプルの合計数をセルエッジUE数の予測値とする。SINRの予測値(Rs´)を求める場合、最も簡便には、ピコセル62からの無線信号の受信電力がピコBS4の送信電力の変更量D[dB]だけ変化すると仮定して計算すればよい。
 図9の例4は、図9の例1の条件および例2の条件を共に満足する測定報告サンプルの合計数をセルエッジUE数の予測値とする。また、図9の例5は、図9の例1の条件および例3の条件を共に満足する測定報告サンプルの合計数をセルエッジUE数の予測値とする。
 図10は、両セル側(ピコセル62側及びマクロセル61側)のセルエッジUE数の予測値の算出条件の3つの例を示している。図10の例6では、以下の式(3)の条件を満たす測定報告サンプルの合計数をセルエッジUE数の予測値とする。RSRPの差(Ps-Pn)が負の値になる場合も考慮することで、マクロセル61側のセルエッジを含む両セル側のセルエッジUE数を見積もることが可能となる。
  0<|Ps-Pn+D|<TH1   (3)
 図10の例7は、図9の例4に対応している。すなわち、図10の例7は、例6に示したRSRPに関する条件と、例2と同様のRSRQに関する条件を共に満足する測定報告サンプルの合計数をセルエッジUE数の予測値とする。なお、Qn´は、対象セル(ピコセル62)の送信電力をD[dB]だけ変更した後の周辺セル(マクロセル61)のRSRQの予測値である。(Ps-Pn+D)が正の値である場合、対象セル(ピコセル62)の送信電力をD[dB]だけ変更した後も、当該測定報告サンプルが得られた地点では対象セル(ピコセル62)に接続すると予測できるため、対象セル(ピコセル62)のRSRQの予測値(Qs´)を用いて判定する。一方、(Ps-Pn+D)が負の値である場合、対象セル(ピコセル62)の送信電力をD[dB]だけ変更した後は、当該測定報告サンプルが得られた地点では周辺セル(マクロセル61)に接続すると予測できるため、周辺セル(マクロセル61)のRSRQの予測値(Qn´)を用いて判定する。
 図10の例8は、図9の例5に対応している。すなわち、図10の例8は、例6に示したRSRPに関する条件と、例3と同様のSINRに関する条件を共に満足する測定報告サンプルの合計数をセルエッジUE数の予測値とする。なお、Rn´は、周辺セル(マクロセル61)のSINRの予測値である。(Ps-Pn+D)が正の値である場合、対象セル(ピコセル62)の送信電力をD[dB]だけ変更した後も、当該測定報告サンプルが得られた地点では対象セル(ピコセル62)に接続すると予測できるため、対象セル(ピコセル62)のSINRの予測値(Rs´)を用いて判定する。一方、(Ps-Pn+D)が負の値である場合、対象セル(ピコセル62)の送信電力をD[dB]だけ変更した後は、当該測定報告サンプルが得られた地点では周辺セル(マクロセル61)に接続すると予測できるため、周辺セル(マクロセル61)のSINRの予測値(Rn´)を用いて判定する。
 なお、ネットワークの構成によっては、周辺セルが複数存在することが考えられる。この場合、セルエッジUE数の計算で考慮に入れる周辺セルを以下のようにして選択すればよい。例えば、測定報告毎に、複数の周辺セルの中で最も無線品質(例えばRSRP)が高い1つのセルを、セルエッジUE数の計算で考慮に入れる周辺セルとして選択すればよい。また、複数の周辺セルのうち1つの周辺セルを予め選択しておいてもよい。例えば、(1)対象セル(ピコセル62)との間でUEのハンドオーバが最も発生している周辺セル、(2)対象セル(ピコセル62)から距離が最も近い周辺セル、又は(3)対象セル(ピコセル62)に接続して通信を行う複数のUEによって最も多く検出されている周辺セル、を予め選択すればよい。
(第2の具体例)
 以下では、無線パラメータ制御装置1による無線パラメータ更新値の決定手順に関する第2の具体例について説明する。第2の具体例では、無線パラメータ制御装置1は、マクロUE3による測定報告を用いることなくピコUE5による測定報告を用いて、セルエッジUE数の現在値を求める。そして、無線パラメータ制御装置1は、無線パラメータを変更するたびにセルエッジUE数の"現在値"を求め、その"現在値"をセルエッジUE数の"過去値"(すなわち、以前の無線パラメータのもとでのセルエッジUE数)と比較することで、より少ないセルエッジUE数が得られる無線パラメータの値を決定する。
 図11は、第2の具体例を示すフローチャートである。図11のステップS101~S103は、図7のS101~S103と同様である。ステップS204では、無線パラメータ決定部11は、複数の測定報告を用いてセルエッジUE数の現在値(N1)を計算する。セルエッジUE数の現在値は、図8A、8B、8C、9、及び10を用いて説明したいずれかの手法によって計算すればよい。図9及び10の例1~8のいずれかを利用してセルエッジUE数の現在値を求める場合、送信電力の変更量Dをゼロとすればよい。無線パラメータ決定部11は、ピコBS4の送信電力の更新後の値(N2)と比較するための過去値として、計算された値N1を保持する。
 ステップS205では、無線パラメータ決定部11は、ピコBS4の送信電力をΔPだけ減少させる。言い換えると、無線パラメータ決定部11は、ピコBS4の送信電力の現在値をΔPだけ減じた値を、ピコBS4の送信電力の更新値に決定する。ステップS206では、測定報告収集部10は、ピコBS4の送信電力をΔPだけ減少させる更新を行った後にピコUE5によって生成された複数の測定報告を取得する。ステップS204では、無線パラメータ決定部11は、複数の測定報告を用いてセルエッジUE数の現在値(N2)を計算する。
 ステップS208では、無線パラメータ決定部11は、セルエッジUE数の現在値(N2)と過去値(N1)を比較する。セルエッジUE数の現在値(N2)が過去値(N2)より小さい場合、無線パラメータ決定部11は、現在値(N2)を新たな過去値(N1)として保持し、ステップS205以降の処理を繰り返す(ステップS209)。一方、セルエッジUE数の現在値(N2)が過去値(N2)以上である場合、無線パラメータ決定部11は、ピコBS4の送信電力をΔPだけ増加させて処理を終了する(ステップS210)。
 図11のステップS101では、送信電力の初期値を最大値としているが、最大値以外の任意の送信電力を初期値としてもよい。また、図11の手順を変形し、山登り法、及び焼きなまし法などの公知の局所探索アルゴリズム(逐次改善アルゴリズム)を用いて、セルエッジUE数の極小を与える送信電力を求めてもよい。
 第2の具体例は、無線パラメータを変更した場合に想定されるセルエッジUE数を予測する代わりに、ピコセル62のカバレッジを実際に変更しながら(つまりピコBS4の送信電力を実際に変更しながら)、試行錯誤的なアルゴリズムによって無線パラメータ(ピコBS4の送信電力)の最適解を求める。局所探索アルゴリズムを採用する場合、当該アルゴリズムの問題として極小値に収束して最小値を得られない可能性がある。しかしながら、現在の無線パラメータのもとでのセルエッジユーザ数のみを用い、無線パラメータの変更に伴う無線品質の変化を予測する必要がないため、第1の具体例よりも最適な解を得られる可能性もある。なお、局所探索アルゴリズムを用いることなく、全ての最大値から最小値の間でピコBS4の送信電力を実際に変更して測定報告を収集し、セルエッジUE数が最小となる送信電力値を求めてもよい。
 上述した第1の具体例と第2の具体例を組み合わせてもよい。例えば、第1の具体例に従って送信電力の更新値を求めた後に、第2の具体例に従って送信電力の微調整を行ってもよい。第1及び第2の具体例の組合せによって、より最適な(つまり、セルエッジUE数をより減少させることが可能な)無線パラメータの更新値を得ることができる。
(第3の具体例)
 上述した第1及び第2の具体例では、マクロUE3による測定報告を用いることなくピコUE5による測定報告を用いて、マクロセル61とピコセル62との間のセルエッジUE数を求める例を紹介した。本具体例では、ピコUE5による測定報告及びマクロUE3による測定報告を用いて、マクロセル61とピコセル62との間のセルエッジUE数を求める例を示す。
 図12は、第3の具体例を示すフローチャートである。ステップS301では、無線パラメータ決定部11は、ピコBS4の送信電力を初期値に設定する。当該初期値は、ピコBS4の送信電力の許容範囲内における任意の値であればよい。ステップS302では、測定報告収集部10は、無線品質の測定条件および測定報告の報告条件をピコUE5及びマクロUE3に通知する。マクロUE3への通知は、ピコBS4から送信される無線信号を用いて行ってもよい。また、マクロUE3への通知は、マクロBS2を介して行ってもよい。この場合、無線パラメータ制御装置1とマクロBS2との間で利用可能な制御インタフェースを使用して、マクロUE3への通知をマクロBS2に供給すればよい。例えば、無線パラメータ制御装置1がピコBS4に配置される場合には、基地局間の制御インタフェース(LTEのX2インタフェース等)を用いてもよいし、上位装置(RNC等)との制御インタフェース(UMTSのlubインタフェース等)を用いてもよい。
 ステップS303では、測定報告収集部10は、ピコUE5及びマクロUE3によって生成された複数の測定報告を取得する。無線パラメータ制御装置1がピコBS4に配置される場合、ピコBS4は以下の方法によってマクロUE3からの測定報告を取得すればよい。第1の方法として、マクロセル61に接続している最中にマクロUE3が測定したピコセル62の無線品質を含む測定報告を、ハンドオーバ/セル再選択によってマクロUE3がピコセル62に接続した際にピコBS4に対して報告させればよい。また、第2の方法として、ピコBS4は、マクロUE3がマクロBS2に送信した測定報告を、基地局間の制御インタフェース(LTEのX2インタフェース等)を用いてマクロBS2から受信してもよい。
 図12のステップS104及びS105は、マクロセル61とピコセル62との間のセルエッジUE数の計算にピコUE5だけでなくマクロUE3からの測定報告サンプルも利用する点を除いて、図7に示したステップS104及びS105と同様とすればよい。図12のステップS104におけるセルエッジUE数の現在値及び予測値の計算は、図8A、8B、8C、9、及び10を参照して説明したいずれかの具体例を用いて行えばよい。また、これらの具体例に代えて、以下に示す手法によってセルエッジUE数の現在値及び予測値の計算を行ってもよい。
 図13は、ピコUE5及びマクロUE3からの測定報告サンプルの分布を示すヒストグラムである。図13の横軸は、ピコセルのRSRP(Ps)である。UE数が十分に多く、測定報告サンプルが十分に多く得られる場合、ピコセル62とマクロセル61とのセルエッジでは、ピコUE5からの測定報告サンプル数とマクロUE3からの測定報告サンプル数が互いに近づくと考えられる。したがって、図13に示すように、測定報告を用いて把握される無線品質(図13の例ではピコセルのRSRP)の分布において、ピコUE5からの測定報告サンプル数とマクロUE3からの測定報告サンプル数が最も近い点をセルエッジとみなしてもよい。そして、セルエッジでの測定報告サンプル数の合計をセルエッジUE数の"現在値"とみなせばよい。
 さらに、セルエッジUE数の予測値を得るためには、UEのハンドオーバ/セル再選択の条件に基づいて、ピコBS4の送信電力を変更したと仮定した場合のピコUE5及びマクロUE3の接続先セルの変更を測定報告サンプル毎に予測すればよい。例えば、測定報告サンプル毎にピコBS4の送信電力を変更したと仮定した場合のピコセルのRSRPを予測し、ピコセルのRSRPがマクロセルのRSRPよりも大きい場合に、当該測定報告サンプルはピコUEから得られるものとみなす。そして、接続先セルの変更が行われたと仮定した場合のピコUE5及びマクロUE3の測定報告サンプルの予測結果を用いて、ピコUE5からの測定報告サンプル数とマクロUE3からの測定報告サンプル数が最も近い点をセルエッジとみなし、当該セルエッジでの測定報告サンプル数の合計をセルエッジUE数の"予測値"として算出する。
 第3の具体例によれば、複数のマクロUE3のうち、マクロセル61とピコセル62との間のセルエッジに位置するUEも考慮できるため、セルエッジUE数をより正確に評価できる。なお図12のフローチャートは、セルエッジUE数の予測値を求める第1の具体例(図7)の変形として示した。しかしながら、ピコUE5からの測定報告に加えてマクロUE3からの測定報告を利用することは、第2の具体例で説明した試行錯誤的な制御に適用してもよい。
<発明の実施の形態2>
 本実施の形態では、上述した発明の実施の形態1の変形について説明する。具体的には、本実施の形態に係る無線パラメータ制御装置7は、セルのトラフィック負荷をさらに考慮し、上述した無線パラメータ制御装置1と同様に無線パラメータの更新値を決定する。セルのトラフィック負荷としては、例えば、LTEのリソースブロックの使用率、アップリンク又はダウンリンクの最大送信電力に対する使用電力の比率、所定時間内の通信発生回数などを用いればよい。
 図14は、無線パラメータ制御装置7の構成例を示すブロック図である。なお、無線パラメータ制御装置7を含むネットワーク構成例は、図1~4等と同様である。図14中の測定報告収集部10の機能及び動作は、図5に示した対応する符号の要素と同様である。負荷取得部72は、周辺セル(マクロセル61)のトラフィック負荷情報、若しくは対象セル(ピコセル62)のトラフィック負荷情報、又はこれら両方のセルの負荷情報を取得する。負荷取得部72によるセルの負荷情報の取得は、当該セルを管理する基地局から上位ネットワークを経由して行われてもよいし、基地局間の制御インタフェースを用いて行われてもよい。
 無線パラメータ決定部71は、セルエッジUE数の現在値が減少するように無線パラメータの更新値を決定するに際して、セルのトラフィック負荷を考慮する。例えば、周辺セル(マクロセル61)のトラフィック負荷が高いときに対象セル(ピコセル62)のカバレッジを縮小すると、周辺セルのトラフィック輻輳を招くおそれがある。そこで、一例として、無線パラメータ決定部71は、周辺セル(マクロセル61)のトラフィック負荷が低いことを条件として、対象セル(ピコセル62)のカバレッジを縮小する無線パラメータ調整を行うこととしてもよい。
 図15は、図7に示した無線パラメータの更新値の決定手順の変形を示すフローチャートである。図15の例では、ステップS400が挿入されている。ステップS400では、周辺のマクロセル61のトラフィック負荷が所定の閾値以下であるかを判定する。そして、周辺のマクロセル61のトラフィック負荷が所定の閾値以下であることを条件として(ステップS400でYES)、ピコセル62のカバレッジを縮小する可能性のあるピコBS4の送信電力の更新値の決定を行う(ステップS104及びS105)。
 また、他の例として、無線パラメータ決定部71は、対象セル(ピコセル62)のトラフィック負荷が所定の閾値以下である場合に、ピコセル62のカバレッジを変更するようにしてもよい。また、さらに他の例として、無線パラメータ決定部71は、対象セル(ピコセル62)のトラフィック負荷及び周辺セル(マクロセル61)のトラフィック負荷の両方を用いてもよい。例えば、無線パラメータ決定部71は、ピコセル62のトラフィック負荷とマクロセル61のトラフィック負荷の和が所定の閾値以下である場合に、ピコセル62のカバレッジを変更するようにしてもよい。
 さらに、無線パラメータ決定部71は、セルエッジUE数を減少させることが可能な無線パラメータ更新値の候補が複数存在する場合に、セルのトラフィック負荷を考慮して複数の候補から1つの候補を選択してもよい。図16は、セルのトラフィック負荷を考慮して複数の候補から1つの候補を選択する手順の具体例を示すフローチャートである。図16のステップS101~S104は、図7に示した同一符号のステップS101~S104と同様である。
 ステップS505では、無線パラメータ決定部71は、セルエッジUE数の現在値よりも小さいセルエッジUE数の予測値を与えるピコBS4の送信電力値を候補値として選択する。例えば、無線パラメータ決定部71は、図17に示すように、セルエッジユーザ数の現在値及び予測値の中で最小値Nminを与える候補値(候補#1)と、最小値との差が所定値H以内である他の候補値(候補#2及び#3)を選択してもよい。
 ステップS505で選択された候補値が1つのみである場合(ステップS506でNO)、無線パラメータ決定部71は、その1つの候補値を無線パラメータの更新値として決定すればよい(ステップS507)。一方、ステップS505において複数の候補値が選択された場合(ステップS506でYES)、無線パラメータ決定部71は、周辺セル(マクロセル61)のトラフィック負荷が所定の閾値以下であるかを判定する(ステップS508)。そして、マクロセル61のトラフィック負荷が閾値以下である場合(ステップS508でYES)、無線パラメータ決定部71は、複数の候補値のうちでピコBS4の送信電力が最小の候補値(ピコセル62のカバレッジが最も小さくなる候補値)を更新値として決定する(ステップS509)。また、マクロセル61のトラフィック負荷が閾値を超える場合(ステップS508でNO)、無線パラメータ決定部71は、複数の候補値のうちでピコBS4の送信電力が最大の候補値(ピコセル62のカバレッジが最も大きくなる候補値)を更新値として決定する(ステップS509)。
 図16の手順によれば、周辺セルのトラフィック負荷が大きい場合に、対象セルのカバレッジの縮小を抑制することができる。よって、周辺セルのトラフィック輻輳の発生を抑制できる。
 セルのトラフィック負荷のさらに他の利用方法について以下に述べる。無線パラメータ決定部71は、UEからの測定報告を用いてセルエッジUE数を見積もる際に、対象セル(ピコセル62)のトラフィック負荷が所定の条件を満たす時間帯に測定された測定報告(測定結果)のみを用いてもよい。例えば、無線パラメータ決定部71は、ピコセル62のトラフィック負荷が相対的に高い時間帯の測定結果のみを用いて無線品質の分布を解析し、セルエッジUE数を見積もり、無線パラメータの更新値を決定するとよい。これにより、トラフィックのピーク時に適合したカバレッジ設計を行うことができる。
<その他の実施の形態>
 発明の実施の形態1及び2では、セルカバレッジを変更可能な無線パラメータの具体例として基地局の送信電力を調整する場合について詳しく説明した。しかしながら、既に述べたように、無線パラメータは、基地局のアンテナのチルト角やCIOであってもよい。アンテナチルト角を調整する場合、チルト角の変更に応じた無線品質の変化量を予め統計的にモデル化しておけばよい。これにより、アンテナチルト角の調整を上述した送信電力の調整と同様に取り扱うことができる。
 発明の実施の形態1及び2では、対象セルを管理する基地局の送信電力の送信電力に下限値を設定し、無線パラメータ決定部11は、当該下限値を下回らない範囲で送信電力を調整してもよい。例えば、送信電力の下限値は、カバレッジホールを生じないために必要とされる送信電力値に設定すればよい。また、送信電力の下限値は、対象セル内で最低限のユーザスループットを確保するために必要とされる送信電力値に設定してもよい。
 また、セル内でのUE分布は時間帯によって変化することが多い。このため、発明の実施の形態1及び2において、無線パラメータ制御装置1及び7は、複数の測定報告を無線品質の測定が行われた時間帯に基づいて分割して集計し、複数の時間帯毎に別々の無線パラメータの更新値を決定してもよい。これにより、時間帯毎に適した無線パラメータ(つまりセルカバレッジ)を決定でき、セルエッジUE数を効果的に削減できる。例えば、昼間の時間帯と夜間の時間帯に分けてもよい。この場合、昼間の時間帯に適した無線パラメータを決定する際には、昼間に測定された無線品質の測定結果の分布に基づいてセルエッジUE数を求め、無線パラメータを決定すればよい。
 また、セルエッジUEの条件を満たす測定報告の数を無線パラメータ制御装置1及び7にて集計する代わりに、当該条件を満たす測定情報のみをUEが報告するようにしても良い。例えば、発明の実施の形態1にて(第2の具体例)として述べた試行錯誤的な制御において、セルエッジUE数を0<Ps-Pn<TH1という条件にて集計する場合について考える。この場合、無線パラメータ制御装置1は、当該条件を満たす測定報告のサンプル数を集計する代わりに、当該条件を満たす測定報告のみをUEから報告するようにUEに対して指示をしても良い。
 また、発明の実施の形態1及び2では、マクロセル61及びピコセル62の階層化セル環境(Heterogeneous Network環境)に関して具体的に説明した。しかしながら、発明の実施の形態1及び2は、例えば、マクロセルとマイクロセル、マクロセルとフェムトセル、マイクロセルとフェムトセル等の他の階層化セル環境にも適用可能である。また、発明の実施の形態1及び2は、カバレッジの小さいセルがカバレッジの大きいセルに完全に覆われる厳密な階層化セル環境でなく、隣接するセル同士が部分的なオーバラップを持つ環境にも適用可能である。さらにまた、発明の実施の形態1及び2は、同程度のカバレッジを持つセル同士(例えばマクロセル同士)が隣接配置された環境にも適用可能である。発明の実施の形態1及び2は、これらのセル環境においても、セルエッジUE数の減少に寄与できる。
 発明の実施の形態1及び2で述べた無線パラメータ制御装置1及び7による無線パラメータの更新処理は、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)等の半導体処理装置を用いて実現してもよい。また、無線パラメータ制御装置1及び7による無線パラメータの更新処理は、マイクロプロセッサ等のコンピュータにプログラムを実行させることによって実現してもよい。具体的には、図7、11、12、15、又は16のいずれかに示したアルゴリズムをコンピュータに行わせるための命令群を含むプログラムを作成し、当該プログラムをコンピュータに供給すればよい。
 このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給される。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
 この出願は、2010年12月17日に出願された日本出願特願2010-281430を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 無線パラメータ制御装置
2 マクロ基地局(マクロBS)
3 マクロ移動局(マクロUE)
4 ピコ基地局(ピコBS)
5 ピコ移動局(ピコUE)
7 無線パラメータ制御装置
10 測定報告収集部
11 無線パラメータ決定部
40 無線通信部
41 通信部
61 マクロセル
62 ピコセル
71 無線パラメータ決定部
72 負荷取得部
150 コアネットワーク
151 RNC(Radio Network Controller)
152 管理サーバ

Claims (24)

  1.  基地局によって管理される第1のセルの無線品質の測定結果を各々が含むとともに、少なくとも1つの移動局によって生成される複数の測定報告を収集する測定報告収集手段と、
     前記複数の測定報告に基づいて、前記第1のセルと周辺セルとの間のセルエッジに位置するとみなされるセルエッジ移動局の数が減少するように、前記第1のセルのカバレッジを変更可能な無線パラメータの更新値を決定する無線パラメータ決定手段と、
    を備える無線パラメータ制御装置。
  2.  前記無線パラメータ決定手段は、前記セルエッジ移動局の数の現在値を求め、前記セルエッジ移動局の数の現在値が減少するように前記更新値を決定する、請求項1に記載の無線パラメータ制御装置。
  3.  前記無線パラメータ決定手段は、前記無線パラメータを変更したと仮定した場合のセルエッジ移動局の数の予測値を求め、前記現在値よりも小さい予測値を与える無線パラメータを前記更新値として決定する、請求項2に記載の無線パラメータ制御装置。
  4.  前記無線パラメータ決定手段は、前記無線パラメータを変更したと仮定した場合に最小の予測値を与える無線パラメータを前記更新値として決定する、請求項3に記載の無線パラメータ制御装置。
  5.  前記無線パラメータ決定手段は、前記セルエッジ移動局の数の過去値と前記現在値を比較し、前記セルエッジ移動局の数が小さくなる方向に前記無線パラメータの現在値を変更することによって前記更新値を決定する、請求項2に記載の無線パラメータ制御装置。
  6.  前記無線パラメータ決定手段は、前記複数の測定報告を用いて把握される前記第1のセルの無線品質の分布において、前記第1のセルの無線品質のサンプル数が現在に比べて少ない位置が前記セルエッジとなるように、前記更新値を決定する、請求項2に記載の無線パラメータ制御装置。
  7.  前記無線パラメータ決定手段は、前記セルエッジ移動局の数を求める際に、前記複数の測定報告の送信元移動局を識別することで、同一の移動局によって生成された測定報告サンプルの重複カウントを除外する、請求項2~6のいずれか1項に記載の無線パラメータ制御装置。
  8.  前記複数の測定報告の各々は、前記周辺セルの無線品質の測定結果をさらに含む、請求項1~7のいずれか1項に記載の無線パラメータ制御装置。
  9.  前記セルエッジは、前記第1のセル側の第1のセルエッジ及び前記周辺セル側の第2のセルエッジを含み、
     前記無線パラメータ決定手段は、前記第1及び第2のセルエッジに位置するセルエッジ移動局の数が減少するように、前記更新値を決定する、請求項8に記載の無線パラメータ制御装置。
  10.  前記セルエッジ移動局の数は、前記第1のセルの無線品質と前記周辺セルの無線品質の差を用いて判定される、請求項8又は9に記載の無線パラメータ制御装置。
  11.  前記無線パラメータ決定手段は、前記第1のセルの無線品質の測定時間に基づいて、複数の時間帯毎に別々の更新値を決定する、請求項1~10のいずれか1項に記載の無線パラメータ制御装置。
  12.  前記第1のセル及び前記周辺セルのうち少なくとも一方のトラフィック負荷を示す負荷情報を取得する負荷取得手段をさらに備え、
     前記無線パラメータ決定手段は、前記負荷情報をさらに用いて前記更新値を決定する、請求項1~11のいずれか1項に記載の無線パラメータ制御装置。
  13.  前記無線パラメータ決定手段は、前記周辺セルのトラフィック負荷が所定の基準より小さいことを条件として、前記無線パラメータの更新を行う、請求項12に記載の無線パラメータ制御装置。
  14.  前記無線パラメータ決定手段は、前記第1のセルのトラフィック負荷が所定の基準より小さいことを条件として、前記無線パラメータの更新を行う、請求項12に記載の無線パラメータ制御装置。
  15.  前記無線パラメータ決定手段は、前記第1のセル及び前記周辺セルのトラフィック負荷の合計が所定の基準より小さいことを条件として、前記無線パラメータの更新を行う、請求項12に記載の無線パラメータ制御装置。
  16.  前記無線パラメータ決定手段は、前記セルエッジUE数を減少させることが可能な前記無線パラメータの複数の候補が存在する場合に、前記第1のセル及び前記周辺セルの少なくとも一方のトラフィック負荷を考慮して前記複数の候補から1つの候補を選択する、請求項12に記載の無線パラメータ制御装置。
  17.  前記無線パラメータ決定手段は、
     前記周辺セルのトラフィック負荷が所定の基準を超える場合、前記セルエッジ移動局数を減少させることが可能な前記無線パラメータの複数の候補の中から、前記第1のセルのカバレッジが最も大きくなる候補を前記更新値として選択し、
     前記周辺セルのトラフィック負荷が所定の基準を下回る場合、前記複数の候補の中から、前記第1のセルのカバレッジが最も小さくなる候補を前記更新値として選択する、請求項16に記載の無線パラメータ制御装置。
  18.  前記複数の測定報告は、前記第1のセルに接続した移動局によって生成される測定報告、及び前記周辺セルに接続した移動局によって生成される測定報告を含む、請求項1~17のいずれか1項に記載の無線パラメータ制御装置。
  19.  前記無線パラメータは、前記基地局のダウンリンク送信電力、前記基地局が備えるアンテナのチルト角、セル個別オフセットのうち少なくとも1つを含む、請求項1~18のいずれか1項に記載の無線パラメータ制御装置。
  20.  前記無線品質は、共通パイロットチャネル(CPICH:Common Pilot Channel)の受信電力(CPICH RSCP: Received Signal Code Power)、共通パイロットチャネルの受信品質(CPICH Ec/No)、下りリファレンス信号(Downlink Reference Signal)の受信電力(RSRP: Reference Signal Received Power)、下りリファレンス信号の受信品質(RSRQ: Reference Signal Received Quality)のうち少なくとも1つを含む、請求項1~19のいずれか1項に記載の無線パラメータ制御装置。
  21.  前記第1のセル及び前記周辺セルは、前記第1のセルが前記周辺セル内に配置される階層化セル構造を形成する、請求項1~20のいずれか1項に記載の無線パラメータ制御装置。
  22.  請求項1~21のいずれか1項に記載の無線パラメータ制御装置と、
     移動局と通信可能に構成され、前記更新値に基づいて制御される無線通信手段と、
    を備える基地局装置。
  23.  基地局によって管理される第1のセルの無線品質の測定結果を各々が含むとともに、少なくとも1つの移動局によって生成される複数の測定報告を収集すること、及び
     前記複数の測定報告に基づいて、前記第1のセルと周辺セルとの間のセルエッジに位置するとみなされるセルエッジ移動局の数が減少するように、前記第1のセルのカバレッジを変更可能な無線パラメータの更新値を決定すること、
    を備える無線パラメータ制御方法。
  24.  無線パラメータ制御方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記無線パラメータ制御方法は、
     基地局によって管理される第1のセルの無線品質の測定結果を各々が含むとともに、少なくとも1つの移動局によって生成される複数の測定報告を収集すること、及び
     前記複数の測定報告に基づいて、前記第1のセルと周辺セルとの間のセルエッジに位置するとみなされるセルエッジ移動局の数が減少するように、前記第1のセルのカバレッジを変更可能な無線パラメータの更新値を決定すること、
    を備える、
    プログラムを格納した非一時的なコンピュータ可読媒体。
PCT/JP2011/005205 2010-12-17 2011-09-15 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体 WO2012081150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11848721.4A EP2654335B1 (en) 2010-12-17 2011-09-15 Wireless parameter control device, base station device, method of controlling wireless parameter, and non-transitory computer readable medium
CN201180060747.0A CN103262595B (zh) 2010-12-17 2011-09-15 无线参数控制装置、基站装置、控制无线参数的方法和非瞬时计算机可读介质
JP2012548613A JP5907071B2 (ja) 2010-12-17 2011-09-15 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、およびプログラム
US13/991,737 US9220017B2 (en) 2010-12-17 2011-09-15 Radio parameter control apparatus, base station apparatus, radio parameter control method, and non-transitory computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010281430 2010-12-17
JP2010-281430 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012081150A1 true WO2012081150A1 (ja) 2012-06-21

Family

ID=46244270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005205 WO2012081150A1 (ja) 2010-12-17 2011-09-15 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体

Country Status (5)

Country Link
US (1) US9220017B2 (ja)
EP (1) EP2654335B1 (ja)
JP (1) JP5907071B2 (ja)
CN (1) CN103262595B (ja)
WO (1) WO2012081150A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033287A (ja) * 2012-08-02 2014-02-20 Sharp Corp 端末、基地局、通信方法および集積回路
JP2014072633A (ja) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp 屋内基地局、無線通信システムおよび無線通信システムの制御方法
JP2014096711A (ja) * 2012-11-09 2014-05-22 Hitachi Ltd 無線基地局装置及び送信電力制御方法
WO2014103978A1 (ja) * 2012-12-27 2014-07-03 株式会社Nttドコモ 無線基地局装置、無線通信システム及び無線通信方法
JP2014154964A (ja) * 2013-02-06 2014-08-25 Toshiba Corp 制御装置、代表基地局、無線通信システム及び基地局制御方法
WO2014136742A1 (ja) * 2013-03-06 2014-09-12 日本電気株式会社 無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局
WO2014157397A1 (ja) * 2013-03-27 2014-10-02 京セラ株式会社 通信制御方法、ユーザ端末、及び基地局
JP2015534358A (ja) * 2012-09-13 2015-11-26 クアルコム,インコーポレイテッド スモールセルネットワークにおけるパイロット汚染の緩和のための集中型管理
EP2954734A1 (en) * 2013-02-07 2015-12-16 Qualcomm Incorporated Apparatus and methods of joint transmit power and resource management
JP2016502810A (ja) * 2012-12-10 2016-01-28 株式会社日立製作所 無線通信システム、無線通信方法、動的関連制御装置及び動的関連制御方法
CN105393577A (zh) * 2013-05-13 2016-03-09 日本电气株式会社 无线电通信系统中的用于估计通信负载的方法和设备、无线电站和上层装置
JP2016509817A (ja) * 2013-02-07 2016-03-31 クアルコム,インコーポレイテッド セル間干渉協調のための装置および方法
CN105519162A (zh) * 2013-03-29 2016-04-20 华为技术有限公司 一种调整小区覆盖范围的方法及装置
WO2016093166A1 (ja) * 2014-12-08 2016-06-16 日本電気株式会社 無線リソース制御システム、無線基地局、中継装置、無線リソース制御方法およびプログラム
JPWO2014073133A1 (ja) * 2012-11-09 2016-09-08 日本電気株式会社 無線リソース設定方法、基地局、無線リソース設定システム及びプログラム
JP2017022784A (ja) * 2012-07-27 2017-01-26 インテル コーポレイション インターratハンドオーバ測定値を用いたカバレッジホールの識別
JP2017515437A (ja) * 2014-05-08 2017-06-08 華為技術有限公司Huawei Technologies Co.,Ltd. ソフトハンドオーバ率を制御するための機器および方法
US9826421B2 (en) 2014-05-12 2017-11-21 Nec Corporation Wireless base station, communication system, wireless-parameter optimization method, and storage medium
JP2019176203A (ja) * 2018-03-26 2019-10-10 Kddi株式会社 情報処理装置、情報処理方法、及びプログラム
JP2022503344A (ja) * 2018-04-10 2022-01-12 ジュニパー ネットワークス,インコーポレイティド コンピュータネットワークの測定メトリック
US12126504B2 (en) 2018-04-10 2024-10-22 Juniper Networks, Inc. Measuring metrics of a computer network

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025484B (zh) * 2011-12-22 2017-05-17 Lg电子株式会社 在无线接入系统中测量无线通信状态的方法及其设备
US9060289B2 (en) * 2012-04-23 2015-06-16 Wildfire.Exchange, Inc. Interference management and network performance optimization in small cells
CN104584616B (zh) * 2012-08-24 2018-04-27 埃克提克斯有限责任公司 用于蜂窝通信网络中的联合和协调负载均衡以及覆盖和容量优化的方法
US8818351B1 (en) * 2012-10-30 2014-08-26 Onasset Intelligence, Inc. Method and apparatus for tracking a transported item while accommodating communication gaps
EP2918100A4 (en) * 2012-11-12 2015-12-09 Ericsson Telefon Ab L M METHOD AND NETWORK NODE FOR CELL CONFIGURATION OF A LOW POWER NODE
KR101465245B1 (ko) * 2012-11-12 2014-11-26 주식회사 케이티 신호 처리 시스템, 디지털 신호 처리 장치 및 그 시스템에서의 송신 전력 제어 방법
GB2509948B (en) * 2013-01-18 2015-05-13 Broadcom Corp Measurement reporting
JP6406242B2 (ja) * 2013-02-22 2018-10-17 ソニー株式会社 通信制御装置、通信制御方法及び無線通信装置
CN104754617B (zh) * 2013-12-30 2018-05-08 中国移动通信集团湖北有限公司 一种无线网络的优化方法及装置
JP6545182B2 (ja) * 2014-02-07 2019-07-17 シグニファイ ホールディング ビー ヴィ ネットワーク中心位置の特定
US10327159B2 (en) * 2014-12-09 2019-06-18 Futurewei Technologies, Inc. Autonomous, closed-loop and adaptive simulated annealing based machine learning approach for intelligent analytics-assisted self-organizing-networks (SONs)
US10382979B2 (en) 2014-12-09 2019-08-13 Futurewei Technologies, Inc. Self-learning, adaptive approach for intelligent analytics-assisted self-organizing-networks (SONs)
WO2016095158A1 (en) * 2014-12-18 2016-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for manipulating uplink service area of access node in wireless network
CN104581781B (zh) * 2014-12-25 2020-12-15 珠海世纪鼎利科技股份有限公司 实现lte空口数据分析的云计算系统
KR101643130B1 (ko) * 2014-12-30 2016-08-11 주식회사 이노와이어리스 셀 자원의 효율적 사용을 위한 스몰셀의 커버리지 조절 방법
US10368320B2 (en) * 2015-04-07 2019-07-30 Nokia Solutions And Networks Oy Initial setting and configuration of E-UTRAN for energy-efficient IOPS
JP2018148248A (ja) * 2015-07-28 2018-09-20 シャープ株式会社 端末装置、基地局装置および方法
CN105307258B (zh) * 2015-09-23 2019-01-25 上海华为技术有限公司 一种调整导频参考信号发射功率的方法及基站
CN106937306B (zh) * 2015-12-30 2019-10-15 中国移动通信集团上海有限公司 一种网络质量评估方法及装置
CN107466043B (zh) * 2016-06-03 2020-11-27 中国移动通信集团河北有限公司 一种确定基站天线的方位角的方法和设备
CN107517469A (zh) * 2016-06-17 2017-12-26 华为技术有限公司 小区调整的方法和装置
FR3060933A1 (fr) * 2016-12-15 2018-06-22 Orange Procede de controle d'un signal radio emis par une passerelle, passerelle et programme d'ordinateur correspondants
US10979932B2 (en) 2018-06-06 2021-04-13 The Board Of Regents Of The University Of Oklahoma Enhancement of capacity and user quality of service (QoS) in mobile cellular networks
US20210360474A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Methods and apparatus for network load balancing optimization
US11445379B2 (en) * 2020-09-29 2022-09-13 At&T Intellectual Property I, L.P. Facilitating heterogeneous network analysis and resource planning for advanced networks
CN112469060B (zh) * 2020-12-08 2023-05-16 中国联合网络通信集团有限公司 一种天线参数确定方法及装置
US11956672B2 (en) * 2021-05-18 2024-04-09 Microsoft Technology Licensing, Llc Techniques for adaptively determining cell boundary in wireless communications
US12004013B2 (en) 2021-05-18 2024-06-04 Microsoft Technology Licensing, Llc Techniques for adaptively allocating resources in a cloud-computing environment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036815A1 (en) 2001-10-22 2003-05-01 Nokia Corporation Pilot channel power autotuning
JP2009290494A (ja) * 2008-05-28 2009-12-10 Kyocera Corp 無線通信システム、基地局、シミュレータ、およびアンテナ制御方法
WO2009152978A1 (en) 2008-06-18 2009-12-23 Alcatel Lucent Method for picocell power control and corresponding base station
WO2010128576A1 (ja) * 2009-05-08 2010-11-11 日本電気株式会社 網管理システム、無線カバレッジ調節方法および無線カバレッジ調節用プログラム
JP2010281430A (ja) 2009-06-08 2010-12-16 Ntn Corp 等速自在継手用連結構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054635B1 (en) * 1998-11-09 2006-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Cellular communications network and method for dynamically changing the size of a cell due to speech quality
US7840221B1 (en) * 2001-11-19 2010-11-23 At&T Intellectual Property Ii, L.P. WLAN having load balancing by beacon power adjustments
KR20100017215A (ko) 2007-04-27 2010-02-16 가부시키가이샤 엔티티 도코모 이동통신 시스템, 기지국 제어장치, 기지국장치, 이동국장치, 및, 기지국 무선 파라미터 제어방법
KR101498048B1 (ko) * 2008-05-02 2015-03-03 엘지전자 주식회사 협력적 mimo를 사용하는 셀 경계 사용자를 위한 자원할당 방법
JP5200701B2 (ja) * 2008-07-02 2013-06-05 富士通株式会社 基地局装置、周波数割当て方法、移動通信システム、及び通信装置
EP2342925A1 (en) * 2008-09-30 2011-07-13 Spidercloud Wireless, Inc. Methods and apparatus for generating, reporting and/or using interference cancellation information
GB2470891B (en) * 2009-06-05 2013-11-27 Picochip Designs Ltd A method and device in a communication network
US8923844B2 (en) * 2009-08-14 2014-12-30 Futurewei Technologies, Inc. Coordinated beam forming and multi-user MIMO

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036815A1 (en) 2001-10-22 2003-05-01 Nokia Corporation Pilot channel power autotuning
JP2009290494A (ja) * 2008-05-28 2009-12-10 Kyocera Corp 無線通信システム、基地局、シミュレータ、およびアンテナ制御方法
WO2009152978A1 (en) 2008-06-18 2009-12-23 Alcatel Lucent Method for picocell power control and corresponding base station
WO2010128576A1 (ja) * 2009-05-08 2010-11-11 日本電気株式会社 網管理システム、無線カバレッジ調節方法および無線カバレッジ調節用プログラム
JP2010281430A (ja) 2009-06-08 2010-12-16 Ntn Corp 等速自在継手用連結構造

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022784A (ja) * 2012-07-27 2017-01-26 インテル コーポレイション インターratハンドオーバ測定値を用いたカバレッジホールの識別
US9820173B2 (en) 2012-08-02 2017-11-14 Sharp Kabushiki Kaisha Terminal, base station, communication method, and integrated circuit
JP2014033287A (ja) * 2012-08-02 2014-02-20 Sharp Corp 端末、基地局、通信方法および集積回路
JP2015534358A (ja) * 2012-09-13 2015-11-26 クアルコム,インコーポレイテッド スモールセルネットワークにおけるパイロット汚染の緩和のための集中型管理
JP2014072633A (ja) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp 屋内基地局、無線通信システムおよび無線通信システムの制御方法
JP2014096711A (ja) * 2012-11-09 2014-05-22 Hitachi Ltd 無線基地局装置及び送信電力制御方法
JPWO2014073133A1 (ja) * 2012-11-09 2016-09-08 日本電気株式会社 無線リソース設定方法、基地局、無線リソース設定システム及びプログラム
JP2016502810A (ja) * 2012-12-10 2016-01-28 株式会社日立製作所 無線通信システム、無線通信方法、動的関連制御装置及び動的関連制御方法
US9801093B2 (en) 2012-12-10 2017-10-24 Hitachi, Ltd. Wireless communication system and method, and dynamic association control apparatus and method
JP2014127961A (ja) * 2012-12-27 2014-07-07 Ntt Docomo Inc 無線基地局装置、無線通信システム及び無線通信方法
WO2014103978A1 (ja) * 2012-12-27 2014-07-03 株式会社Nttドコモ 無線基地局装置、無線通信システム及び無線通信方法
JP2014154964A (ja) * 2013-02-06 2014-08-25 Toshiba Corp 制御装置、代表基地局、無線通信システム及び基地局制御方法
EP2954734A1 (en) * 2013-02-07 2015-12-16 Qualcomm Incorporated Apparatus and methods of joint transmit power and resource management
JP2016509816A (ja) * 2013-02-07 2016-03-31 クアルコム,インコーポレイテッド 共同送信電力およびリソース管理の装置および方法
JP2016509817A (ja) * 2013-02-07 2016-03-31 クアルコム,インコーポレイテッド セル間干渉協調のための装置および方法
WO2014136742A1 (ja) * 2013-03-06 2014-09-12 日本電気株式会社 無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局
WO2014157397A1 (ja) * 2013-03-27 2014-10-02 京セラ株式会社 通信制御方法、ユーザ端末、及び基地局
CN105519162A (zh) * 2013-03-29 2016-04-20 华为技术有限公司 一种调整小区覆盖范围的方法及装置
US9998937B2 (en) 2013-05-13 2018-06-12 Nec Corporation Method and device for estimating communication load, radio station and upper-level apparatus in radio communication system
CN105393577A (zh) * 2013-05-13 2016-03-09 日本电气株式会社 无线电通信系统中的用于估计通信负载的方法和设备、无线电站和上层装置
CN105393577B (zh) * 2013-05-13 2019-06-14 日本电气株式会社 通信系统中估计负载的方法、设备、无线电站和上层装置
JP2017515437A (ja) * 2014-05-08 2017-06-08 華為技術有限公司Huawei Technologies Co.,Ltd. ソフトハンドオーバ率を制御するための機器および方法
US10187839B2 (en) 2014-05-08 2019-01-22 Huawei Technologies Co., Ltd. Apparatus and method for controlling soft handover rate
US9826421B2 (en) 2014-05-12 2017-11-21 Nec Corporation Wireless base station, communication system, wireless-parameter optimization method, and storage medium
JPWO2016093166A1 (ja) * 2014-12-08 2017-09-14 日本電気株式会社 無線リソース制御システム、無線基地局、中継装置、無線リソース制御方法およびプログラム
WO2016093166A1 (ja) * 2014-12-08 2016-06-16 日本電気株式会社 無線リソース制御システム、無線基地局、中継装置、無線リソース制御方法およびプログラム
JP2019176203A (ja) * 2018-03-26 2019-10-10 Kddi株式会社 情報処理装置、情報処理方法、及びプログラム
JP2022503344A (ja) * 2018-04-10 2022-01-12 ジュニパー ネットワークス,インコーポレイティド コンピュータネットワークの測定メトリック
JP7201702B2 (ja) 2018-04-10 2023-01-10 ジュニパー ネットワークス,インコーポレイティド コンピュータネットワークの測定メトリック
US11595273B2 (en) 2018-04-10 2023-02-28 Juniper Networks, Inc. Measuring metrics of a computer network
US12126504B2 (en) 2018-04-10 2024-10-22 Juniper Networks, Inc. Measuring metrics of a computer network

Also Published As

Publication number Publication date
CN103262595B (zh) 2016-09-07
EP2654335B1 (en) 2019-08-28
EP2654335A4 (en) 2016-08-31
JPWO2012081150A1 (ja) 2014-05-22
US9220017B2 (en) 2015-12-22
JP5907071B2 (ja) 2016-04-20
CN103262595A (zh) 2013-08-21
US20130252620A1 (en) 2013-09-26
EP2654335A1 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5907071B2 (ja) 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、およびプログラム
JP5967254B2 (ja) 通信品質予測装置、無線基地局、通信品質予測方法、およびプログラム
US8725079B2 (en) System and method for determining the severity of interference in different areas of a cellular radio network and coordinating radio resource management features in response
KR101507529B1 (ko) 무선 통신 시스템, 기지국 장치, 기지국 제어 장치, 기지국의 송신 전력 제어 방법, 및 컴퓨터 판독 가능 매체
JP5862569B2 (ja) 無線通信システムと方法並びに無線端末、無線局、及び運用管理サーバ装置
KR20130080851A (ko) 이종 네트워크에서 간섭을 감소시키는 스케줄링되지 않은 기간 설정
EP2880889B1 (en) Method and apparatus for use in a mobile communication network
CN104412668B (zh) 方法和设备
JP6465032B2 (ja) 無線パラメータ制御装置、無線パラメータ制御方法、無線基地局および無線パラメータ制御プログラム
JP2011182009A (ja) 基地局、無線通信システム及び干渉基準のハンドオーバ制御方法
US20130242744A1 (en) Signalling for Interference Management in HETNETs
US10716040B2 (en) Wireless device and method for triggering cell reselection
RU2576245C1 (ru) Система управления радиопараметром, устройство управления радиопараметром, базовая радиостанция, способ и программа для управления радиопараметром
JP5928687B2 (ja) 無線パラメータ制御システム、無線パラメータ制御装置、無線基地局、無線パラメータ制御方法及びプログラム
RU2583047C1 (ru) Система управления радиопараметром, устройство управления радиопараметром, базовая радиостанция, радиотерминал, способ управления радиопараметром и программа
JP2013225944A (ja) 基地局、無線通信システム
KR20120087423A (ko) 통신 시스템에서 기지국 간 정보 교환을 통한 간섭 제어 장치 및 방법
GB2490311A (en) Communication between a user equipment and a multimode base station
JP6409768B2 (ja) 無線ネットワーク制御方法およびシステム、ネットワーク運用管理装置ならびに無線局
KR20160046643A (ko) 간섭 제어 장치 및 이를 이용한 간섭 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548613

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991737

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE