WO2014136742A1 - 無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局 - Google Patents

無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局 Download PDF

Info

Publication number
WO2014136742A1
WO2014136742A1 PCT/JP2014/055369 JP2014055369W WO2014136742A1 WO 2014136742 A1 WO2014136742 A1 WO 2014136742A1 JP 2014055369 W JP2014055369 W JP 2014055369W WO 2014136742 A1 WO2014136742 A1 WO 2014136742A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
base station
load
wireless
control
Prior art date
Application number
PCT/JP2014/055369
Other languages
English (en)
French (fr)
Inventor
太一 熊谷
尚 二木
弘人 菅原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2014136742A1 publication Critical patent/WO2014136742A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a radio communication system, a radio parameter control method, a network management apparatus, and a radio base station.
  • a radio terminal communicates in a radio cell managed by each installed radio base station.
  • the communication carrier adjusts the radio parameters of each radio cell so that the desired communication quality is satisfied in the radio terminals in the service area.
  • coverage a cover area where communication quality sufficient for wireless terminals to communicate is maintained.
  • the radio parameters include maximum transmission power, antenna tilt angle, antenna azimuth angle, antenna pattern, antenna height, and the like.
  • coverage adjustment is performed carefully by repeatedly performing radio parameter change work and service area reception quality check work through analysis of operation information by skilled technicians and drive tests with radio measurement vehicles. .
  • coverage adjustment of coverage requires a lot of human cost and time, so that frequent adjustment is difficult.
  • Patent Literature 1 an average SINR (Signal-to-Interference plus Noise power Ratio) in a radio cell is calculated using the received power of a reference signal from each radio cell included in measurement information reported from a radio terminal. As the average SINR improves, the antenna tilt angle is gradually changed.
  • SINR Signal-to-Interference plus Noise power Ratio
  • Non-patent document 1 can be cited as another technique for adjusting the antenna tilt angle.
  • Non-Patent Document 1 discloses an algorithm for calculating an average user spectrum efficiency in a wireless cell based on SINR measured by a wireless terminal and searching for an optimum antenna tilt angle.
  • communication quality in a wireless terminal depends on not only the reception quality of radio waves such as SINR but also the load on the wireless base station.
  • the higher the load of the own radio base station the lower the probability that radio resources will be allocated to each radio terminal, and the user throughput will be reduced.
  • the higher the load on the adjacent radio base station the worse the reception quality due to an increase in the amount of radio wave interference, and the user throughput decreases.
  • Patent Document 1 the antenna tilt angle is determined based only on the SINR obtained from the received power of the reference signal without considering the load of the radio base station, and thus the set antenna tilt angle may not be appropriate. is there.
  • Non-Patent Document 1 uses SINR measured by a wireless terminal and does not consider how much load is actually present. Furthermore, since the load of each radio base station fluctuates with time, it is determined that the antenna tilt angle is appropriate when the load is low, and as a result, the setting of the antenna tilt angle may not be optimal. is there. Therefore, in order to determine an appropriate antenna tilt angle, it is necessary to control the antenna tilt angle in consideration of the loads of the own radio base station and the adjacent radio base station.
  • a problem to be solved by the present invention is to provide a technique for determining an appropriate antenna tilt angle in consideration of the loads of the own radio base station and adjacent radio base stations.
  • the present invention for solving the above-described problems is a wireless communication system, and based on measurement information reported by a wireless terminal that can communicate with a control-target wireless base station that is a wireless parameter control target, A reception quality index calculating means for calculating a reception quality index related to quality, a load index calculating means for calculating a load index related to a load in the control target radio base station and a base station adjacent to the control target radio base station, and the calculated reception Radio parameter control means for controlling the radio parameter to be controlled based on a quality index and the load index.
  • the present invention for solving the above-described problem is a radio parameter control method, and based on measurement information reported by a radio terminal communicable with a control target radio base station that is a radio parameter control target, A reception quality index calculation step for calculating a reception quality index related to radio quality, a load index calculation step for calculating a load index regarding a load in an adjacent base station of the control target radio base station and the control target radio base station, and the calculated And a radio parameter control step of controlling the radio parameter to be controlled based on a reception quality index and the load index.
  • the present invention for solving the above-described problem is a network management device, which is based on measurement information reported by a wireless terminal communicable with a control-target wireless base station that is a wireless parameter control target.
  • a reception quality index calculating means for calculating a reception quality index related to quality a load index calculating means for calculating a load index related to a load in the control target radio base station and a base station adjacent to the control target radio base station, and the calculated reception Radio parameter control means for controlling the radio parameter to be controlled based on a quality index and the load index.
  • the present invention for solving the above-mentioned problems is a radio base station, which is a reception quality for calculating a reception quality index related to radio quality in the radio terminal based on measurement information reported by a radio terminal communicable with the own station.
  • the load index calculation means for calculating the load index related to the load in the local station and the base station adjacent to the local station, the radio parameter of the local station based on the calculated reception quality index and the load index
  • a wireless parameter control means for controlling.
  • an appropriate antenna tilt angle can be determined in consideration of the loads of the own radio base station and the adjacent radio base station.
  • the basic principle of the present invention is that a wireless base station or a network management device (SON server) sets a reception quality index related to wireless quality or a wireless communication state based on measurement information reported by a wireless terminal capable of communicating with the wireless base station.
  • the calculation is to calculate a load index related to the load of the radio base station notified to the radio base station or the network management device, and to change the radio parameter based on the reception quality index and the load index.
  • the radio parameters include, for example, at least one of an antenna tilt angle, antenna azimuth angle, antenna pattern, antenna height, maximum transmission power, and CRE (Cell Range Expansion) offset in each radio cell.
  • the wireless parameter control is performed based on the first stage control for searching for the antenna tilt angle candidate value using the reception quality index and the candidate value searched for the antenna tilt angle in the first stage control using the load index. It consists of second stage control that is determined by adjustment.
  • the first stage control and the second stage control may operate with different control cycles or may operate with the same control cycle. Further, in the control of the radio parameters, the control may be performed with different change amounts or with the same change amount.
  • the control cycle is a period from when the wireless parameter control is performed until the next wireless parameter control is performed.
  • the reception quality index includes a reference signal received power (Reference Signal Received Power: RSRP), a reference signal reception quality (Reference Signal Received Quality: RSRQ), a received signal strength (Received Signal Strength Indication RSID signal).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSID signal received signal strength
  • the load index is information on the load of the radio base station calculated based on load information such as radio resource usage status, physical resource usage status, or throughput in each radio cell per unit time. Conceivable.
  • the load referred to here is, for example, a utilization rate or usage amount of a radio resource indicating a usage status of a radio resource, a utilization rate or usage amount of a physical resource indicating a usage status of a physical resource Can be considered.
  • 3GPP 3rd Description will be made assuming an LTE (Long Term Evolution) system of Generation Partnership Project.
  • GSM Global System for Mobile communications: a registered trademark
  • UMTS Universal Mobile Telecommunications System
  • CDMA2000 Code Division Multiple Access 2000
  • HRPD HRPD
  • WiMAX Worldwide Interoperability for Microwave Access
  • PRB Physical Resource Block
  • S1 TNL Load Indicator hardware load indicator
  • S1 TNL Load Indicator backhaul link load
  • Capacity information (Composite Available Capacity Group). These are notified periodically or at an arbitrary timing via the inter-base station interface (X2).
  • X2 Inter-base station interface
  • Non-Patent Document 2 (3GPP TS36.423 “X2 application protocol (X2AP)”).
  • FIG. 1 shows a configuration of a wireless communication system as an embodiment of the present invention.
  • the wireless communication system includes an external network 100, a core network 101, a wireless access network 102, a network management device 103, wireless base stations 120 and 121, and wireless terminals 130-132.
  • the external network 100 and the core network 101 are connected to each other via a wired link 110, and the core network 101 and the wireless access network 102 are connected to each other via a wired link 111.
  • the network management apparatus 103 is connected to the core network 101 and the wireless access network 102 via the wired links 112 and 113, manages the communication state of the network, and performs maintenance and operation.
  • the radio base stations 120 and 121 manage the radio cells 140 and 141, respectively.
  • the radio terminals 130, 131, and 132 are connected to the radio base stations 120 and 121 that manage the radio cells 140 and 141 to which the radio terminals are connected via radio links. Communicate.
  • the radio terminals 130, 131, and 132 have a radio quality measurement function, and measure radio quality periodically or in response to an arbitrary trigger.
  • these numbers do not need to be limited.
  • FIG. 2 shows an example of the configuration of the radio base station 120 shown in FIG.
  • the network management apparatus 103 includes a base station information storage device 200, a radio quality statistical information storage device 201, a reception quality index calculation unit 213, a radio parameter control unit 214, and a load index calculation unit 215.
  • the wireless base station 120 includes a wireless transmission / reception unit 210, a wired transmission / reception unit 211, and a measurement unit 212.
  • the measurement control unit 212 in the radio base station 120 uses the radio transmission / reception unit 210 to collect measurement information regarding radio quality or radio communication status from the radio terminal 130 and report it to the network management apparatus 103.
  • the network management apparatus 103 stores the measurement information and the base station information reported from the radio base station 120 in the radio quality statistical information storage device 201 and the base station information storage device 200, respectively.
  • the measurement information that the radio base station 120 reports to the network management apparatus 103 may be, for example, the information itself reported from the radio terminal 130 or the result of statistical processing.
  • the measurement control unit 212 in the radio base station 120 operates as follows.
  • the radio terminal 130 in communication reports measurement information, which is information on radio quality or radio communication status, via the measurement control unit 212.
  • the reported measurement information is notified to the network management device 103 and stored in the wireless quality statistical information storage device 201.
  • the network management apparatus 103 calculates a reception quality index from measurement information from one or more wireless terminals by the reception quality index calculation unit 213 periodically or in response to an arbitrary trigger.
  • measurement information includes reference signal received power (RSRP) from one or more radio cells, reference signal received quality (RSRQ), signal-to-noise interference power ratio (SINR), and reference signal received strength (RSSI).
  • RSRP reference signal received power
  • RSSI signal-to-noise interference power ratio
  • RSSI reference signal received strength
  • Including at least one of As the reception quality index for example, an average value of SINR calculated using RSRP of measurement information can be considered. Further, an average value (for example, average SINR) of information reported as measurement information may be used as a reception quality index.
  • the network management apparatus 103 calculates a load index related to the load of one or more radio base stations by the load index calculation unit 215 periodically or in response to an arbitrary trigger.
  • the load index may be, for example, an average value of PRB usage, which is a utilization rate of radio resources of the own radio cell and the adjacent radio cell.
  • the sum of the loads of each radio base station (for example, the sum of the utilization rates of radio resources) may be used as a load index.
  • the radio parameter control unit 214 changes an arbitrary radio parameter by a predetermined amount based on the reception quality index or the load index.
  • the arbitrary radio parameters include at least one of antenna tilt angle, antenna azimuth angle, antenna pattern, antenna height, maximum transmission power, and CRE offset.
  • a minimum value that can be set may be used as the predetermined amount in changing the wireless parameter.
  • the predetermined amount may be a fixed value or may vary.
  • FIG. 3 shows the contents of the base station information 300 held by the base station information storage device 200.
  • load information 320 including Cell ID 301, PRB usage 302, hardware load 303 and backhaul link load 304, Neighbor Cell ID 305, maximum transmission power 306, antenna height 307, antenna pattern 308, antenna azimuth 309 and antenna Parameter information 330 including a tilt angle 310 is defined.
  • the radio cell registered in the column of Neighbor Cell ID is, for example, a radio cell that satisfies the following conditions.
  • the quality condition is, for example, RSRP from the own radio cell and neighboring radio cell included in the measurement information reported from the radio terminal It is conceivable that the difference between the RSRPs is less than a predetermined value, the RSRP from the own radio cell is included in the measurement information that is less than the predetermined value, and the like.
  • the predetermined movement condition regarding handover of the radio terminal is that the number of handover attempts from the own radio cell is a predetermined number or more, the number of handover attempts to the own radio cell is a predetermined number or more, or a handover success For example, the number is a predetermined number or more.
  • the load information measured in each radio cell for each unit time is notified to the neighboring radio base stations or the network management apparatus 103.
  • FIG. 4 shows the content of the measurement information 400 measured by the wireless terminal 130.
  • Serving Cell ID 401 Serving Cell RSRP 402, Neighbor Cell 1 ID 403, Neighbor Cell 1 RSRP 404, Neighbor Cell 2 ID 405, and Neighbor Cell 2 RSRP 406 are defined.
  • the wireless terminal 130 reports measurement information (for example, RSRP) regarding the wireless quality or wireless communication state of one or more wireless cells.
  • the wireless cell to which the wireless terminal 130 is connected is the Serving Cell
  • the other wireless cells are Neighbor Cell1, Neighbor Cell2,..., Neighbor CellN in descending order of RSRP.
  • the control of the radio parameter includes a first step control for searching for a candidate value of the antenna tilt angle using the reception quality indicator and a second step control for determining the antenna tilt angle using the load indicator.
  • the first stage control and the second stage control may operate with different control cycles or may operate with the same control cycle.
  • the control may be performed with different change amounts or with the same change amount.
  • the wireless parameter control unit 214 operates as follows.
  • the wireless parameter control unit 214 starts processing in response to the elapse of a predetermined time or an arbitrary trigger. First, a reception quality index is acquired from the reception quality index calculation unit 213 (step S101).
  • the first stage control is performed based on the acquired reception quality index (step S102).
  • step S103 when the first stage control is completed (step S103: Yes), a load index is acquired from the load index calculation unit 215 (step S104). Based on the acquired load index, the second stage control is performed (step S105). Then, the control is repeated until the second stage control is completed (step S106: No).
  • the reception quality index calculation unit 213 operates as follows.
  • the reception quality index calculation unit 213 starts processing. First, the measurement information collected from the wireless terminal is acquired from the wireless quality statistical information storage device 201 (step S201).
  • the collected measurement information is selected one by one (step S202).
  • the SINR is calculated from the RSRP of the Serving Cell and the RSRP of one or more Neighbor Cells included in the measurement information using Equation 1 (Step S203).
  • i represents the Serving Cell
  • k represents the Neighbor Cell
  • N represents thermal noise per resource block of the reference signal
  • is a coefficient that determines the degree of interference according to the load of the adjacent radio cell.
  • is a constant value in time when calculating the reception quality index.
  • step S204 the average SINR is calculated (step S204).
  • An arbitrary value of the cumulative distribution function of SINR may be calculated instead of the average SINR.
  • the load index calculation unit 215 operates as follows. When a predetermined time elapses or load information of neighboring cells is collected, the load index calculation unit 215 starts processing. First, load information of each radio cell is acquired from the base station information storage device 200 (step S301). Next, the neighbor cell ID is acquired from the parameter information 330 of the own radio cell, and one radio cell is selected from the own radio cell and the adjacent radio cell (step S302). Next, information corresponding to the radio cell is extracted from the load information (step S303). Next, the average load of the wireless cell is calculated (step S304).
  • the average load is calculated by selecting one of the PRB usage, hardware load (Hardware Load Indicator) and backhaul link load (S1 TNL Load Indicator) included in the load information.
  • a simple average or weighted average of each load information may be used.
  • the sum of the cell throughputs of the own radio cell and the adjacent radio cell or the simple average or the weighted average of the cell throughputs of the own radio cell and the adjacent radio cell may be used.
  • a simple average of the average loads of the own radio cell and the adjacent radio cell is calculated (step S305). Note that a weighted average may be calculated instead of calculating a simple average.
  • a ratio according to the distance between the own radio cell and each adjacent radio cell is calculated, and the ratio is The weighting process is executed. Specifically, when two adjacent radio cells are registered for the own radio cell X, the distance between the own radio cell and the first adjacent radio cell, and between the own radio cell and the second adjacent radio cell If the ratio of the distances is ⁇ : ⁇ , the load index I X is as shown in Equation 3.
  • the number of handovers may be used instead of the distance between the own radio cell and the adjacent radio cell. For example, a method of increasing the weighting coefficient as the number of handovers increases can be considered. Instead of the number of handovers, the number of handover attempts, the handover success rate, etc. may be used. Further, in the calculation of the load index, cell throughput may be used instead of the load information. For example, a method of reducing the weighting coefficient as the cell throughput increases can be considered.
  • FIG. 8 and 9 show operation examples of the first stage control and the second stage control in the wireless parameter control unit 214.
  • FIG. 8 and 9 show operation examples of the first stage control and the second stage control in the wireless parameter control unit 214.
  • the average SINR before changing the antenna tilt angle is acquired from the reception quality index calculation unit 213 (step S401).
  • the antenna tilt angle is changed by a predetermined amount ⁇ (step S402).
  • the average SINR after changing the antenna tilt angle is acquired from the reception quality index calculation unit 213 (step S403).
  • the average SINR before the change of the antenna tilt angle is compared with the average SINR after the change (step S404).
  • step S404: Yes If the average SINR after the change is larger (step S404: Yes), the average SINR is held as the average SINR before the change of the antenna tilt angle (step S405), and the antenna tilt is improved while the average SINR is improved. Continue to change the angle and search for an appropriate antenna tilt angle.
  • step S404: No when the average SINR after the change is smaller (step S404: No), the first stage control is completed. In the example of FIG. 8, the first stage control is completed when the average SINR once deteriorates. However, the average SINR may be deteriorated a predetermined number of times, and the change of the antenna tilt angle may be continued. In that case, not only the average SINR before changing the antenna tilt angle but also the calculation result of the average SINR at each antenna tilt angle may be held.
  • the load index calculation unit 215 acquires the average load of the own radio cell and the adjacent radio cell serving as the load index (step S501). In addition, you may use the sum total of the load of an own radio
  • the antenna tilt angle searched in the first stage control is changed by a predetermined amount ⁇ ′ (step S502).
  • the predetermined amount ⁇ ′ may be different from the predetermined amount ⁇ , or may be the same value.
  • the average load after changing the antenna tilt angle is acquired from the load index calculation unit 215 (step S503).
  • step S504 the average load before the change of the antenna tilt angle is compared with the average load after the change. If the average load after the change is smaller (step S504: Yes), the average load is held as the average load before the antenna tilt angle is changed (step S505).
  • step S504 While the average load is decreasing, continue to change the antenna tilt angle using the same procedure, and determine an appropriate antenna tilt angle. On the other hand, when the average load after the change is larger (step S504: No), the antenna tilt angle is restored (step S506).
  • the antenna tilt angle is used as the wireless parameter to be controlled.
  • the same operation can be applied to control other wireless parameters.
  • the method of performing stepwise control while repeatedly calculating the reception quality index or load index and changing the antenna tilt angle is used.
  • the antenna tilt angle is searched by searching all candidate values for the preset antenna tilt angle.
  • a known search algorithm for example, Golden described in Non-Patent Document 1). Section Search or the like may be used.
  • the reception quality index or load index for all candidate values of the antenna tilt angle may be estimated, and the antenna tilt angle may be determined by a single control. The same applies to the following embodiments.
  • a reception quality index for example, average SINR
  • the antenna tilt angle is improved while the reception quality index is improved.
  • a load index for example, average load
  • the antenna tilt angle is determined so that this load index is minimized.
  • the network management apparatus performs all the processes associated with the control of the antenna tilt angle.
  • the wireless base station may execute the processes associated with the control of the antenna tilt angle. The same applies to the following embodiments. In such a configuration, there is an effect that the amount of signaling for transmitting measurement information from the wireless terminal to the network management apparatus from the wireless base station is reduced.
  • the basic configuration of the second embodiment is the same as that of the first embodiment. Further, the basic operation is the same as that of FIG. 5 in the first embodiment, but the radio parameter candidate values in the second stage control are set to predetermined values for the radio parameter values obtained in the first stage control. Limit to candidate values within the range.
  • the average load of the own radio cell and the adjacent radio cell is acquired from the load index calculation unit 215 (step S601).
  • a change range of the antenna tilt angle in the second stage control is set (step S602).
  • the change range may be a predetermined range centered on the antenna tilt angle obtained in the first step control, or a range that can be changed within a predetermined number of changes from the antenna tilt angle obtained in the first step control. Also good.
  • the antenna tilt angle is changed by a predetermined amount ⁇ ′ (step S603).
  • the predetermined amount ⁇ ′ may be the same value as the predetermined amount ⁇ .
  • step S604 the average load after changing the antenna tilt angle is acquired (step S604), and the average load before changing the antenna tilt angle is compared with the average load after changing (step S605).
  • step S605 Yes
  • step S606 If it is within the change range (step S606: Yes), the changed average load is held as the average load before the antenna tilt angle is changed (step S607). While the average load decreases, the antenna tilt angle is continuously changed by the same procedure. On the other hand, when the average load after the change is larger (step S605: No), or when the value obtained by changing the antenna tilt angle by the predetermined amount ⁇ ′ is out of the change range (step S606: No), the antenna tilt is changed. The corner is restored (step S608).
  • the wireless parameter candidate values in the second stage control are limited to values within a predetermined range with respect to the wireless parameter values obtained in the first stage control.
  • the second-stage control candidate in the first-stage control in advance.
  • the load index calculation unit 215 operates as follows. When a predetermined time elapses or load information of neighboring cells is collected, the load index calculation unit 215 starts processing. First, load information of each radio cell is acquired from the base station information storage device 200 (step S701). Next, the Neighbor Cell ID is acquired from the parameter information 330 of the own radio cell, and one radio cell is selected from the own radio cell and the adjacent radio cell (step S702).
  • step S703 information corresponding to the wireless cell is extracted from the load information.
  • the average load of the wireless cell is calculated (step S704).
  • either the PRB usage included in the load information, the hardware load, or the backhaul link load may be selected to obtain an average value, or a simple average of each load information or A weighted average may be used.
  • the average absolute deviation of the load on the wireless cell is calculated (step S705).
  • the calculated average absolute deviation is a deviation with respect to the temporal variation of the load of the radio cell, and it is conceivable to use a simple moving average, a weighted moving average, an exponential moving average, or the like. Further, instead of the average absolute standard deviation, variance or standard deviation may be used.
  • a simple average of the average absolute deviation for each radio cell is calculated (step S706). Note that a weighted average may be used instead of a simple average of the average absolute deviation for each radio cell, or only the average absolute deviation of the own radio cell may be used.
  • the end is determined using the average value of the calculated average absolute deviation for each radio cell (step S707).
  • step S707: Yes When the average value of the average absolute deviation is smaller than the predetermined threshold (step S707: Yes), a simple average of the average loads of the own radio cell and the adjacent radio cell is calculated (step S708). On the other hand, when the average value of the average absolute deviation is equal to or greater than the predetermined threshold (step S707: No), the control cycle in the second-stage control is extended from the default value, and the time variation of the load for each radio cell is sufficiently smoothed. Repeat the process until it is done.
  • a weighted average may be calculated instead of calculating the simple average of the load of each wireless cell, and is calculated in the same manner as in the first embodiment. Further, in the calculation of the load index, cell throughput may be used instead of the load information.
  • the control cycle of the second stage control is adjusted according to the reliability of the load index. For example, if the calculated average absolute deviation for each radio cell is greater than a predetermined threshold, the control period is lengthened. After the time variation of the load for each radio cell is sufficiently smoothed, the load index is calculated and the second stage control is performed to suppress the influence of the temporary load variation, and the appropriate antenna The tilt angle can be determined.
  • the basic configuration of the fourth embodiment includes an adjacent cell ID update unit 510 in addition to the first embodiment as shown in FIG. Although the basic operation is the same as that of FIG. 5 in the first embodiment, in this embodiment, a neighboring radio cell that further considers the load is adaptively determined. As a method for determining the neighboring wireless cell, for example, a neighboring cell ID is generated based on the measurement information, and the Neighbor Cell ID 305 in the parameter information 330 is updated.
  • the reception quality index calculation unit 213 operates as follows.
  • the reception quality index calculation unit 213 starts processing when sufficient measurement information is collected to control a predetermined time or radio parameters.
  • the measurement information collected from the wireless terminal is acquired from the wireless quality statistical information storage device 201 (step S801).
  • the collected measurement information is selected one by one (step S802). Similar to the first embodiment, SINR is calculated using RSRP of each radio cell (step S803).
  • step S804 the counter value corresponding to the Neighbor Cell ID indicating the maximum RSRP among the Neighbor Cell RSRP included in the measurement information is counted up (step S804).
  • step S802 selection is completed
  • step S805 the average SINR is calculated (step S805).
  • An arbitrary value of the cumulative distribution function of SINR may be calculated instead of the average value of SINR.
  • a predetermined number of Neighbor Cell IDs are extracted in descending order of Neighbor Cell ID counts (step S806). Based on the extracted Neighbor Cell ID, the Neighbor Cell ID 305 in the parameter information 330 is updated (step S807).
  • the weighted average is used instead of the simple average, the count number of the Neighbor Cell ID is used instead of the distance between the own radio cell and the adjacent radio cell, and the weighting coefficient increases as the count number increases. Then, a weighted average may be obtained.
  • the neighboring cell ID is generated based on the measurement information related to the radio quality or the radio communication state reported by the radio terminal, and the Neighbor Cell ID 305 in the parameter information 330 is updated.
  • the Neighbor Cell ID 305 in the parameter information 330 is updated.
  • the basic configuration of the fifth embodiment is the same as that of the fourth embodiment. Although the basic operation is the same as that of FIG. 13 in the fourth embodiment, in this embodiment, the target radio cell is limited when the Neighbor Cell ID is further updated.
  • the reception quality index calculation unit 213 operates as follows.
  • the reception quality index calculation unit 213 starts processing. First, the measurement information collected from the wireless terminal is acquired from the wireless quality statistical information storage device 201 (step S901).
  • the collected measurement information is selected one by one (step S902). Similar to the first embodiment, SINR is calculated using RSRP of each radio cell (step S903).
  • Step S904 it is determined whether Serving Cell RSRP in the measurement information is below a predetermined quality. Only when the Serving Cell RSRP is below the predetermined quality (Step S904: Yes), the counter value of the Neighbor Cell ID indicating the maximum RSRP among the Neighbor Cell RSRP included in the measurement information is counted up (Step S905). When the SINR calculation process is completed for all measurement information (step S502: selection is completed), the average SINR is calculated (step S906).
  • a predetermined number of Neighbor Cell IDs are extracted in descending order of the Neighbor Cell ID count (step S907). Based on the extracted Neighbor Cell ID, the Neighbor Cell ID 305 in the parameter information 330 is updated (step S908).
  • the weighted average when performing a weighted average instead of a simple average, the weighted average may be obtained using the count number of the Neighbor Cell ID instead of the distance between the own wireless cell and the adjacent wireless cell.
  • any value of the cumulative distribution function of SINR may be calculated and used instead of the average SINR.
  • the measurement information that the Serving RSRP is lower than the predetermined quality or the difference between the Serving Cell RSRP and the maximum Neighbor Cell RSRP has a predetermined threshold.
  • a neighbor cell ID is generated, and the Neighbor Cell ID 305 in the parameter information 330 is updated.
  • the load index can be calculated more appropriately by extracting the adjacent radio cell that is strongly affected by the change of the radio parameter in accordance with the change of the adjacency relationship of the radio cell due to the change of the radio parameter. Therefore, an appropriate antenna tilt angle can be determined.
  • a wireless communication system A reception quality index calculating means for calculating a reception quality index related to radio quality in the radio terminal based on measurement information reported by a radio terminal communicable with a control target radio base station that is a radio parameter control target; Load index calculating means for calculating a load index related to a load in an adjacent base station of the control target radio base station and the control target radio base station; Radio parameter control means for controlling the radio parameter to be controlled based on the calculated reception quality index and the load index;
  • a wireless communication system comprising:
  • the radio parameter control means includes first stage control for performing control for searching for candidate values of the radio parameter based on the reception quality index, and candidates searched for in the first stage control based on the load index. Second stage control for performing control to adjust the radio parameter based on the value;
  • the wireless parameter control means includes a second control cycle in the second stage control in which a temporal variation of the load index is within a predetermined range, and the load index is predetermined within the second control cycle.
  • the wireless communication system according to any one of appendices 1 to 6, wherein the wireless communication system is set so as to satisfy at least one of the following:
  • the adjacent base station is Satisfying a predetermined quality condition regarding the radio quality of the control target radio base station, Satisfying a predetermined movement condition regarding handover of the wireless terminal with the control target wireless base station,
  • the distance to the control target radio base station is within a predetermined range, and being in the adjacent cell list of the control target radio base station,
  • the wireless communication system according to any one of appendices 1 to 7, which satisfies at least one of the following.
  • the predetermined quality condition is: The difference between the radio quality of the radio cell of the control target radio base station and the radio quality of surrounding radio cells is less than a predetermined value, and the measurement of the radio terminal in which the radio quality of the serving radio cell is less than a predetermined quality.
  • Appendix 10 The wireless communication system according to appendix 9, wherein the surrounding wireless cell is a wireless cell having the best wireless quality among wireless cells excluding the wireless cell of the control target wireless base station.
  • the movement condition is The number of handover attempts from the radio cell of the control target radio base station is a predetermined number or more, the number of handover attempts to the serving radio cell is a predetermined number or more, and a successful handover with the serving radio cell.
  • the wireless communication system according to any one of appendices 8 to 10, wherein the number is at least one of a predetermined number or more.
  • a wireless parameter control method comprising: A reception quality index calculating step for calculating a reception quality index related to radio quality in the radio terminal based on measurement information reported by a radio terminal communicable with a control target radio base station that is a radio parameter control target; A load index calculating step for calculating a load index related to a load in an adjacent base station of the control target radio base station and the control target radio base station; A radio parameter control step for controlling the radio parameter to be controlled based on the calculated reception quality index and the load index; A wireless parameter control method comprising:
  • the radio parameter control step includes first stage control for performing control for searching for candidate values of the radio parameter based on the reception quality index, and candidate values searched for in the first stage control based on the load index. Second stage control for performing control to adjust the radio parameter based on The wireless parameter control method according to claim 11, comprising:
  • the second control cycle in the second stage control is such that a temporal variation of the load index is within a predetermined range, and the load index is predetermined within the second control cycle.
  • the adjacent base station is Satisfying a predetermined quality condition regarding the radio quality of the control target radio base station, Satisfying a predetermined movement condition regarding handover of the wireless terminal with the control target wireless base station, The distance from the control target radio base station is within a predetermined range; And being in the neighboring cell list of the control target radio base station, 19.
  • the radio parameter control method according to any one of appendices 12 to 18 that satisfies at least one of the following.
  • the predetermined quality condition is: The difference between the radio quality of the radio cell of the control target radio base station and the radio quality of surrounding radio cells is less than a predetermined value, and the measurement of the radio terminal in which the radio quality of the serving radio cell is less than a predetermined quality.
  • Appendix 21 The radio parameter control method according to appendix 20, wherein the surrounding radio cell is a radio cell having the best radio quality among radio cells excluding the radio cell of the control target radio base station.
  • the movement condition is The number of handover attempts from the serving radio cell is a predetermined number or more, the number of handover attempts to the radio cell of the control target radio base station is a predetermined number or more, and a successful handover with the serving radio cell.
  • the radio parameter control method according to any one of appendices 19 to 21, wherein the number is at least one of a predetermined number or more.
  • a network management device A reception quality index calculating means for calculating a reception quality index related to radio quality in the radio terminal based on measurement information reported by a radio terminal communicable with a control target radio base station that is a radio parameter control target; Load index calculating means for calculating a load index related to a load in an adjacent base station of the control target radio base station and the control target radio base station; Radio parameter control means for controlling the radio parameter to be controlled based on the calculated reception quality index and the load index;
  • a network management apparatus comprising:
  • the radio parameter control means includes first stage control for performing control for searching for candidate values of the radio parameter based on the reception quality index, and candidates searched for in the first stage control based on the load index. Second stage control for performing control to adjust the radio parameter based on the value;
  • the network management device comprising:
  • (Appendix 25) 25 The network management device according to appendix 23 or 24, wherein the radio parameter control means controls the radio parameter by any one of stepwise control (step-by-step), single-shot control (One-Shot), and full search. .
  • (Appendix 26) 26 The network according to any one of appendices 23 to 25, wherein the reception quality index calculation means calculates based on reception power or reception strength of a reference signal of one or more radio cells in the measurement information reported by the radio terminal. Management device.
  • (Appendix 27) 27 The network management apparatus according to any one of appendices 23 to 26, wherein the load index calculation unit calculates information related to a load based on a usage state of radio resources or physical resources in the radio base station.
  • (Appendix 28) 28 The network management device according to any one of appendices 23 to 27, wherein the wireless parameter setting candidates in the second stage control are determined from the wireless parameter setting candidates in the first stage control.
  • the wireless parameter control means includes a second control cycle in the second stage control in which a temporal variation of the load index is within a predetermined range, and the load index is predetermined within the second control cycle. 29.
  • the network management device according to any one of appendices 23 to 28, wherein the network management device is set so as to satisfy at least one of the following:
  • the adjacent base station is Satisfying a predetermined quality condition regarding the radio quality of the control target radio base station, Satisfying a predetermined movement condition regarding handover of the wireless terminal with the control target wireless base station,
  • the distance to the control target radio base station is within a predetermined range, and being in the adjacent cell list of the control target radio base station, 30.
  • the network management device according to any one of appendices 23 to 29, which satisfies at least one of the following.
  • the predetermined quality condition is: The difference between the radio quality of the radio cell of the control target radio base station and the radio quality of surrounding radio cells is less than a predetermined value, and the measurement of the radio terminal in which the radio quality of the serving radio cell is less than a predetermined quality
  • (Appendix 32) 32 The network management device according to supplementary note 31, wherein the surrounding radio cell is a radio cell having the best radio quality among radio cells excluding radio cells of the control target radio base station.
  • the movement condition is The number of handover attempts from the radio cell of the control target radio base station is a predetermined number or more, the number of handover attempts to the serving radio cell is a predetermined number or more, and a successful handover with the serving radio cell.
  • the network management device according to any one of supplementary notes 30 to 32, wherein the number is at least one of a predetermined number or more.
  • a wireless base station A reception quality index calculating means for calculating a reception quality index related to radio quality in the radio terminal based on measurement information reported by a radio terminal capable of communicating with the own station;
  • Load index calculation means for calculating a load index related to the load in the base station and the adjacent base station of the local station;
  • Radio parameter control means for controlling the radio parameters of the local station based on the calculated reception quality index and the load index;
  • a radio base station comprising:
  • the radio parameter control means includes first stage control for performing control for searching for candidate values of the radio parameter based on the reception quality index, and candidates searched for in the first stage control based on the load index. Second stage control for performing control to adjust the radio parameter based on the value;
  • the radio base station according to supplementary note 34, comprising:
  • Appendix 36 37.
  • (Appendix 37) 37 The radio according to any one of appendices 34 to 36, wherein the reception quality index calculation means calculates based on reception power or reception strength of a reference signal of one or more radio cells in the measurement information reported by the radio terminal. base station.
  • the wireless parameter control means includes a second control cycle in the second stage control in which a temporal variation of the load index is within a predetermined range, and the load index is predetermined within the second control cycle. 40.
  • the radio base station according to any one of appendices 34 to 39, which is set so as to satisfy at least one of the following:
  • the adjacent base station is Satisfying a predetermined quality condition regarding the radio quality of the control target radio base station, Satisfying a predetermined movement condition regarding handover of the wireless terminal with the control target wireless base station,
  • the distance to the control target radio base station is within a predetermined range, and being in the adjacent cell list of the control target radio base station, 41.
  • the radio base station according to any one of appendices 34 to 40, which satisfies at least one of the following.
  • the predetermined quality condition is: The difference between the radio quality of the radio cell of the control target radio base station and the radio quality of surrounding radio cells is less than a predetermined value, and the measurement of the radio terminal in which the radio quality of the serving radio cell is less than a predetermined quality 42.
  • the radio base station according to appendix 41 which is at least one of being included in the information.
  • (Appendix 43) 43 The radio base station according to appendix 42, wherein the peripheral radio cell is a radio cell having the best radio quality among radio cells excluding the radio cell of the control target radio base station.
  • the movement condition is The number of handover attempts from the radio cell of the control target radio base station is a predetermined number or more, the number of handover attempts to the serving radio cell is a predetermined number or more, and a successful handover with the serving radio cell 44.
  • the radio base station according to any one of appendices 41 to 43, wherein the number is at least one of a predetermined number or more.

Abstract

本願が解決しようとする課題は、自無線基地局及び隣接無線基地局の負荷を考慮した適切なアンテナチルト角を決定する技術を提供することにある。本願は、無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御手段とを備える。

Description

無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局
 本発明は、無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局に関する。
 一般に、セルラシステムのような無線通信システムにおいては、無線端末は敷設された各無線基地局が管理する無線セル内で通信する。通信事業者は、サービスエリア内の無線端末において、所望の通信品質が満たされるように各無線セルの無線パラメータを調整している。ここで、無線端末が通信するのに十分な通信品質が保たれているカバーエリアのことをカバレッジと呼ぶ。また、ここで無線パラメータとは最大送信電力、アンテナチルト角、アンテナ方位角、アンテナパタン、アンテナ高などである。十分な通信品質を保つためには、建造物の新規建築などによる無線環境の変化などに応じて、カバレッジを適切に調整する必要がある。通常、カバレッジの調整は、熟練の技術者による運用情報の分析と電波測定車輌によるドライブテストを通して、無線パラメータの変更作業とサービスエリアの受信品質の確認作業を繰り返し実施し、慎重に行われている。しかし、このようなカバレッジの調整には、多くの人的コストと時間を要すため、頻繁な調整は困難であった。
 そこで、自律的なカバレッジ調整の方法が検討されており、一例としてアンテナチルト角の調整方法が開示されている。特許文献1では、無線端末から報告される測定情報に含まれる各無線セルからの参照信号の受信電力を用いて、無線セル内の平均SINR(Signal-to-Interference plus Noise power Ratio)を算出し、この平均SINRが改善する間、アンテナチルト角を徐々に変更している。
 アンテナチルト角の調整方法の別の技術として、非特許文献1が挙げられる。非特許文献1では、無線端末で測定されたSINRに基づき、無線セル内の平均ユーザスペクトル効率を算出し、最適なアンテナチルト角を探索するアルゴリズムが開示されている。
 一般に、無線端末における通信品質、例えばユーザスループットは、SINR等の電波の受信品質だけでなく、無線基地局の負荷にも依存する。例えば、自無線基地局が高負荷であるほど、各無線端末に無線リソースが割り当てられる確率が減少し、ユーザスループットが減少する。一方、隣接無線基地局が高負荷であるほど、電波の干渉量の増加によって受信品質が劣化し、ユーザスループットが減少する。
 しかし、特許文献1では無線基地局の負荷を考慮せず、参照信号の受信電力から求めたSINRのみに基づいて、アンテナチルト角を決定しているため、設定したアンテナチルト角が適切でない場合がある。また、非特許文献1では、無線端末で測定されたSINRを用いており、実際に負荷がどの程度あるかを考慮していない。さらに、各無線基地局の負荷は時間的に変動するため、たまたま負荷が低い時にアンテナチルト角が適切であると判断してしまい、結果的にアンテナチルト角の設定が最適になっていない恐れがある。従って、適切なアンテナチルト角を決定するため、自無線基地局及び隣接無線基地局の負荷を考慮したアンテナチルト角の制御が必要となる。
 そこで、本発明が解決しようとする課題は、自無線基地局及び隣接無線基地局の負荷を考慮した適切なアンテナチルト角を決定する技術を提供することにある。
 上記課題を解決するための本願発明は、無線通信システムであって、無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御手段と、を備えることを特徴とする。
 上記課題を解決するための本願発明は、無線パラメータ制御方法であって、無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出ステップと、前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出ステップと、算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御ステップと、を備えることを特徴とする。
 上記課題を解決するための本願発明は、ネットワーク管理装置であって、無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御手段と、を備えることを特徴とする。
 上記課題を解決するための本願発明は、無線基地局であって、自局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、前記自局及び自局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、算出した前記受信品質指標と前記負荷指標とに基づいて、前記自局の無線パラメータを制御する無線パラメータ制御手段と、を備えることを特徴とする。
 本願発明の効果は、自無線基地局及び隣接無線基地局の負荷を考慮しつつ、適切なアンテナチルト角を決定できる。
本発明の第1から第5の実施の形態における無線通信システムの構成図である。 本発明の第1から第3の実施の形態における無線基地局の構成を示す図である。 本発明の第1から第5の実施の形態における基地局情報記憶装置が保持する基地局情報テーブルの内容例を示す図である。 本発明の第1から第5の実施の形態における無線端末からの測定情報テーブルの内容例を示す図である。 本発明の第1から第5の実施の形態における無線パラメータ制御部の動作フローを示す図である。 本発明の第1から第3の実施の形態における受信品質指標算出部の動作フローを示す図である。 本発明の第1及び第2の実施の形態における負荷指標算出部の動作フローを示す図である。 本発明の第1から第5の実施の形態における第1段階制御の動作フローを示す図である。 本発明の第1の実施の形態における第2段階制御の動作フローを示す図である。 本発明の第2の実施の形態における第2段階制御の動作フローを示す図である。 本発明の第3の実施の形態における負荷指標算出部の動作フローを示す図である。 本発明の第4及び第5の実施の形態における無線基地局の構成を示す図である。 本発明の第4の実施の形態における受信品質指標算出部の動作フローを示す図である。 本発明の第5の実施の形態における受信品質指標算出部の動作フローを示す図である。
 本発明の特徴を説明するために、以下において、図面を参照して具体的に述べる。
 本発明の基本原理は、無線基地局又はネットワーク管理装置(SONサーバ)が、無線基地局と通信可能な無線端末によって報告される測定情報に基づいて、無線品質又は無線通信状態に関する受信品質指標を算出し、無線基地局又はネットワーク管理装置に通知される無線基地局の負荷に関する負荷指標を算出し、これら受信品質指標と負荷指標に基づいて、無線パラメータを変更することである。ここで、無線パラメータは、例えば各無線セルにおけるアンテナチルト角、アンテナ方位角、アンテナパタン、アンテナ高、最大送信電力、CRE(Cell Range Expansion)オフセットの少なくとも一つを含む。
 無線パラメータの制御は、受信品質指標を用いてアンテナチルト角の候補値を探索する第1段階制御と、負荷指標を用いてアンテナチルト角を第1段階制御で探索した候補値を基に、微調整して決定する第2段階制御からなる。尚、第1段階制御と第2段階制御では、異なる制御周期で動作しても良いし、同じ制御周期で動作しても良い。さらに、無線パラメータの制御において、異なる変更量で制御しても良いし、同じ変更量で制御しても良い。尚、制御周期とは、無線パラメータ制御を行ってから、次の無線パラメータ制御を行うまでの期間のことである。
 無線パラメータの制御方法としては、例えば以下が考えられる。
・受信品質指標や負荷指標の算出と、無線パラメータの変更を繰り返しながら、適切な設定値を決定する方法(段階的制御)
・あらかじめ各候補値における受信品質指標及び負荷指標を推定し、適切な設定値を決定する方法(単発制御)
・無線パラメータを全ての候補値に変更し、各候補値に変更した場合の受信品質指標や負荷指標をそれぞれ比較して適切な設定値を決定する方法(全探索)
 ここで、受信品質指標は、参照信号の受信電力(Reference Signal Received Power:RSRP)、参照信号の受信品質(Reference Signal Received Quality:RSRQ)、受信信号強度(Received Signal Strength Indicator:RSSI)、信号電力対干渉及び雑音電力比(Signal-to-Interference plus Noise Ratio:SINR)などの無線端末からの測定情報を基に算出されるもので、例えば以下が考えられる。
・測定情報から算出したSINR又はRSRQの平均値
・測定情報の平均値から算出したSINR又はRSRQ
・無線端末から報告されるSINR又はRSRQの平均値
 尚、平均値の代わりに、例えば累積分布関数(CDF)の任意の値を使用しても良い。また、負荷指標は、単位時間当たりの各無線セルにおける無線リソースの使用状況、物理リソースの使用状況、又はスループットなどの負荷情報を基に算出される無線基地局の負荷に関する情報で、例えば以下が考えられる。
・自無線セルと隣接無線セルの平均負荷の和
・自無線セルと隣接無線セルの平均負荷の単純平均又は加重平均
・自無線セルと隣接無線セルのセルスループットの和
・自無線セルと隣接無線セルのセルスループットの単純平均又は加重平均
 ここで言う負荷は、例えば無線リソースの使用状況を示す無線リソースの利用率又は利用量や、物理リソースの使用状況を示す物理リソースの利用率又は利用量などが考えられる。
 以下では、無線通信システムの例として、3GPP(3rd
Generation Partnership Project)のLTE(Long Term Evolution)のシステムを想定して説明する。しかし、GSM(Global System for Mobile communications:登録商標)、UMTS(Universal Mobile Telecommunications System)、CDMA2000(Code Division Multiple Access 2000)及びその発展系(1xRTT、HRPD)、WiMAX(Worldwide interoperability for Microwave Access)、など他の通信システムであっても良い。尚、LTEのシステムにおいては、例えば無線リソースの使用状況はPRB(Physical Resource Block) Usageで示され、物理リソースの使用状況はハードウェア負荷(Hardware Load Indicator)、バックホールリンク負荷(S1 TNL Load Indicator)、キャパシティ情報(Composite Available Capacity Group)で示される。これらは、基地局間インターフェース(X2)を介して定期的又は任意のタイミングで通知され、例えば非特許文献2(3GPP
TS36.423 “X2 application protocol (X2AP)”)に例示されている。
(第1の実施の形態)
 本発明を実施するための第1の実施の形態について図面を参照して詳細に説明する。図1は、本発明の一実施の形態としての無線通信システムの構成を示す。図1において、無線通信システムは、外部網100、コア網101、無線アクセス網102、ネットワーク管理装置103、無線基地局120及び121、及び無線端末130~132を有する。外部網100とコア網101とは互いに有線リンク110を介して接続され、コア網101と無線アクセス網102とは互いに有線リンク111を介して接続されている。ネットワーク管理装置103はコア網101及び無線アクセス網102と有線リンク112、113を介して接続され、ネットワークの通信状態を管理し、保守及び運用を行う。無線基地局120及び121はそれぞれ無線セル140及び141を管理し、無線端末130、131及び132は当該無線端末が接続する無線セル140及び141を管理する無線基地局120及び121と無線リンクを介して通信する。無線端末130、131及び132は無線品質測定機能を備え、定期的もしくは任意のトリガに応じて無線品質を測定する。尚、無線基地局120及び121と、無線端末130、131及び132を有する構成を用いて説明するが、本発明において、これらの個数が限定される必要はない。
 図2は、図1に示す無線基地局120の構成の一例を示す。
ネットワーク管理装置103は、基地局情報記憶装置200、無線品質統計情報記憶装置201、受信品質指標算出部213、無線パラメータ制御部214及び負荷指標算出部215を有する。無線基地局120は、無線送受信部210、有線送受信部211及び測定部212を有する。無線基地局120における測定制御部212は無線送受信部210を用いて、無線端末130から無線品質又は無線通信状態に関する測定情報を収集し、ネットワーク管理装置103に報告する。ネットワーク管理装置103は、無線基地局120から報告された測定情報及び基地局情報をそれぞれ無線品質統計情報記憶装置201及び基地局情報記憶装置200に格納する。尚、無線基地局120がネットワーク管理装置103に報告する測定情報は、例えば無線端末130から報告された情報そのものでも良いし、統計的に処理をした結果でも良い。
 まず、無線基地局120における測定制御部212は次のように動作する。無線基地局120が管理する無線セル140において、測定制御部212を介して、通信中の無線端末130は無線品質又は無線通信状態に関する情報である測定情報を報告する。次に、報告された測定情報は、ネットワーク管理装置103に通知され、無線品質統計情報記憶装置201に格納される。
 次に、ネットワーク管理装置103では定期的もしくは任意のトリガに応じて、受信品質指標算出部213によって1以上の無線端末からの測定情報から受信品質指標を算出する。ここで、測定情報には1以上の無線セルからの参照信号の受信電力(RSRP)、参照信号の受信品質(RSRQ)、信号対雑音干渉電力比(SINR)、参照信号の受信強度(RSSI)の少なくとも一つを含む。受信品質指標は、例えば、測定情報のRSRPを用いて算出したSINRの平均値などが考えられる。また、測定情報として報告される情報の平均値(例えば、平均SINR)などを受信品質指標として用いても良い。同様に、ネットワーク管理装置103では定期的もしくは任意のトリガに応じて、負荷指標算出部215によって1以上の無線基地局の負荷に関する負荷指標を算出する。ここで、負荷指標は、例えば、自無線セル及び隣接無線セルの無線リソースの利用率であるPRB usageの平均値などが考えられる。また、各無線基地局の負荷の和(例えば、無線リソースの利用率の総和)を負荷指標として用いても良い。
 次に、無線パラメータ制御部214は、受信品質指標又は負荷指標に基づいて、任意の無線パラメータを所定量だけ変更する。ここで、任意の無線パラメータには、アンテナチルト角、アンテナ方位角、アンテナパタン、アンテナ高、最大送信電力、CREオフセットの少なくとも一つを含む。また、無線パラメータの変更における所定量は、例えば設定可能な最小値を用いても良い。さらに、所定量は、固定値でも良いし、変動しても良い。
 図3に、基地局情報記憶装置200が保持する基地局情報300の内容を示す。
 この例では、Cell ID301、PRB usage302、ハードウェア負荷303及びバックホールリンク負荷304を含む負荷情報320と、Neighbor Cell ID305、最大送信電力306、アンテナ高307、アンテナパタン308、アンテナ方位角309及びアンテナチルト角310を含むパラメータ情報330が規定されている。ここで、Neighbor Cell IDの欄に登録される無線セルは、例えば以下の条件を満たす無線セルである。
・自無線セルとの距離が所定範囲内に収まる全ての無線セル
・自無線セルで管理する隣接セルリストに含まれる無線セル
・自無線セルの無線品質に関する所定の品質条件を満たす無線セル
・無線端末のハンドオーバに関する所定の移動条件を自無線セルとの間で満たす無線セル
 ここで、品質条件とは、例えば無線端末から報告された測定情報に含まれる自無線セルからのRSRPと隣接無線セルからのRSRPの差が所定値未満となっていること、自無線セルからのRSRPが所定値未満である測定情報に含まれること、などが考えられる。また、無線端末のハンドオーバに関する所定の移動条件とは、自無線セルからのハンドオーバ試行回数が所定回数以上であること、自無線セルへのハンドオーバ試行回数が所定回数以上であること、或いは、ハンドオーバ成功数が所定数以上であることなどである。尚、単位時間ごとに各無線セルで測定された負荷情報は周辺の無線基地局又はネットワーク管理装置103に通知される。
 図4に、無線端末130が測定した測定情報400の内容を示す。この例では、Serving Cell ID401、Serving Cell RSRP402、Neighbor Cell1 ID403、Neighbor Cell1 RSRP404、Neighbor Cell2 ID405、Neighbor Cell2 RSRP406が規定されている。無線端末130は1以上の無線セルの無線品質又は無線通信状態に関する測定情報(例えば、RSRP)を報告する。ここで、無線端末130が接続している無線セルはServing Cellとなり、その他の無線セルはRSRPの大きい順にNeighbor Cell1、Neighbor Cell2、・・・、Neighbor CellNとなる。
 以上詳細に実施例の構成を述べたが、上記以外の無線基地局や無線端末の送受信機能は、当業者にとってよく知られており、また本発明とは直接関係しないので、その詳細な構成は省略する。
 次に、図5から図8を参照して本実施の形態の全体の動作について詳細に説明する。図5のように無線パラメータの制御は、受信品質指標を用いてアンテナチルト角の候補値を探索する第1段階制御と、負荷指標を用いてアンテナチルト角を決定する第2段階制御からなる。尚、第1段階制御と第2段階制御では、異なる制御周期で動作しても良いし、同じ制御周期で動作しても良い。さらに、無線パラメータの制御において、異なる変更量で制御しても良いし、同じ変更量で制御しても良い。ここで、制御周期及び変更量については、あらかじめデフォルトとなる値が設定されているものとする。
 図5において、無線パラメータ制御部214は次のように動作する。
 所定の時間経過又は任意のトリガに応じて、無線パラメータ制御部214は処理を開始する。まず、受信品質指標算出部213より、受信品質指標を取得する(ステップS101)。
 取得した受信品質指標に基づいて、第1段階制御を実施する(ステップS102)。
 そして、第1段階制御が完了するまで、制御を繰り返し行う(ステップS103:No)。
 次に、第1段階制御が完了したら(ステップS103:Yes)、負荷指標算出部215より、負荷指標を取得する(ステップS104)。取得した負荷指標に基づいて、第2段階制御を実施する(ステップS105)。そして、第2段階制御が完了するまで、制御を繰り返し行う(ステップS106:No)。
 図6において、受信品質指標算出部213は次のように動作する。
 所定の時間経過又は十分な測定情報が収集された場合に、受信品質指標算出部213は処理を開始する。まず、無線品質統計情報記憶装置201より、無線端末から収集した測定情報を取得する(ステップS201)。
 次に、収集した測定情報を1つずつ選択する(ステップS202)。
 測定情報に含まれるServing CellのRSRPと1以上のNeighbor CellのRSRPから数1を用いてSINRを算出する(ステップS203)。ここで、iはServing Cellを示し、kはNeighbor Cellを示し、Nは参照信号のリソースブロック当たりの熱雑音であり、αは隣接無線セルの負荷に応じた干渉度合いを決定する係数である。尚、隣接無線セルにおける負荷の時間的な変動による影響を抑制するため、受信品質指標の算出においてαは時間的に一定の値を用いる。また、SINRの代わりにRSRQを算出する場合には、数2を用いる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 全ての測定情報に対して、SINRの算出処理が完了したら(ステップS202:選択完了)、平均SINRを算出する(ステップS204)。尚、平均SINRの代わりにSINRの累積分布関数の任意の値を算出しても良い。
 図7において、負荷指標算出部215は次のように動作する。所定の時間経過又は周辺セルの負荷情報が収集された場合に、負荷指標算出部215は処理を開始する。まず、基地局情報記憶装置200より、各無線セルの負荷情報を取得する(ステップS301)。次に、自無線セルのパラメータ情報330からNeighbor Cell IDを取得し、自無線セル及び隣接無線セルから無線セルを1つずつ選択する(ステップS302)。次に、負荷情報から当該無線セルに該当する情報を抽出する(ステップS303)。次に、当該無線セルの平均負荷を算出する(ステップS304)。尚、平均負荷の算出には、負荷情報に含まれているPRB usage、ハードウェア負荷(Hardware Load Indicator)、バックホールリンク負荷(S1 TNL Load Indicator)のいずれかを選択して平均値を求めても良いし、各負荷情報の単純平均又は加重平均を用いても良い。また、平均負荷の代わりに、自無線セルと隣接無線セルのセルスループットの和又は自無線セルと隣接無線セルのセルスループットの単純平均又は加重平均を用いても良い。全ての隣接無線セルの平均負荷の算出が完了したら、自無線セル及び隣接無線セルの平均負荷の単純平均を算出する(ステップS305)。尚、単純平均を算出する代わりに加重平均を算出しても良く、加重平均を算出する場合には、自無線セルと各隣接無線セルとの距離に応じた比率を算出し、この比率に応じて重み付け処理を実行する。具体的には、自無線セルXに対して2つの隣接無線セルが登録されている場合、自無線セルと1番目の隣接無線セル間の距離と、自無線セルと2番目の隣接無線セル間の距離の比がα:βであったとすると、負荷指標Iは数3のようになる。
 尚、重み値を算出する際に、自無線セルと隣接無線セル間の距離の代わりに、ハンドオーバ回数を用いて算出しても良い。例えば、ハンドオーバ回数が多いほど重み付け係数を大きくする方法が考えられる。尚、ハンドオーバ回数の代わりに、ハンドオーバ試行回数、ハンドオーバ成功率、などを用いても良い。また、負荷指標の算出において、負荷情報の代わりにセルスループットを用いても良い。例えば、セルスループットが大きいほど重み付け係数を小さくする方法が考えられる。
Figure JPOXMLDOC01-appb-M000003
 図8及び図9を用いて、無線パラメータ制御部214における第1段階制御及び第2段階制御の動作例を示す。
 図8において、受信品質指標算出部213より、アンテナチルト角を変更する前の平均SINRを取得する(ステップS401)。
 次に、アンテナチルト角を所定量Δθ変更する(ステップS402)。
 次に、アンテナチルト角を変更した後の平均SINRを受信品質指標算出部213より取得する(ステップS403)。
 そして、アンテナチルト角を変更する前の平均SINRと変更した後の平均SINRを比較する(ステップS404)。
 変更した後の平均SINRの方が大きい場合(ステップS404:Yes)、当該平均SINRをアンテナチルト角の変更前の平均SINRとして保持しておき(ステップS405)、平均SINRが改善する間、アンテナチルト角の変更を続け、適切なアンテナチルト角を探索する。一方、変更した後の平均SINRの方が小さい場合(ステップS404:No)、第1段階制御を完了する。尚、図8の例では、平均SINRが一度劣化した時点で第1段階制御を完了しているが、所定回数だけ平均SINRの劣化を許容し、アンテナチルト角の変更を継続しても良い。また、その場合にはアンテナチルト角を変更する前の平均SINRのみならず、各アンテナチルト角における平均SINRの算出結果を保持しても良い。
 図9において、負荷指標算出部215より、負荷指標となる自無線セル及び隣接無線セルの平均負荷を取得する(ステップS501)。尚、負荷の平均値ではなく、自無線セル及び隣接無線セルの負荷の総和を用いても良い。
 次に、上記第1段階制御で探索したアンテナチルト角を所定量-Δθ’だけ変更する(ステップS502)。尚、所定量Δθ’は所定量Δθと異なる値にしても良いし、同じ値にしても良い。
 次に、アンテナチルト角を変更した後の平均負荷を負荷指標算出部215より取得するする(ステップS503)。
 次に、アンテナチルト角を変更する前の平均負荷と変更した後の平均負荷を比較する(ステップS504)。変更した後の平均負荷の方が小さい場合(ステップS504:Yes)、当該平均負荷をアンテナチルト角の変更前の平均負荷として保持する(ステップS505)。
 平均負荷が減少する間、同様の手順によりアンテナチルト角の変更を続け、適切なアンテナチルト角を決定する。一方、変更した後の平均負荷の方が大きい場合(ステップS504:No)、アンテナチルト角を元に戻す(ステップS506)。
 尚、図8及び9を用いた動作例では、制御する無線パラメータとして、アンテナチルト角を用いたが、他の無線パラメータの制御においても同様の動作が適用可能である。また、受信品質指標又は負荷指標の算出とアンテナチルト角の変更を繰り返しながら段階的に制御する方法を用いたが、あらかじめ設定されたアンテナチルト角の全ての候補値を探索して、アンテナチルト角を決定しても良いし、既知の探索アルゴリズム(例えば、非特許文献1に記載のGolden
Section Searchなど)を用いても良い。さらに、アンテナチルト角の全ての候補値における受信品質指標又は負荷指標を推定し、一度の制御でアンテナチルト角を決定しても良い。これらは、以降の実施例についても同様である。
本実施の形態では、無線端末から報告された測定情報に基づいて、無線品質又は無線通信状態に関する受信品質指標(例えば、平均SINR)を算出し、この受信品質指標が改善する間、アンテナチルト角を変更している。さらに、各無線基地局の負荷に関する負荷指標(例えば、平均負荷)を算出し、この負荷指標が最小となるようにアンテナチルト角を決定している。これにより、各無線基地局における負荷の時間的な変動の影響を抑制しつつアンテナチルト角を調整することで、ユーザスループットを極力最大化するアンテナチルト角を決定することができる。
 上記では、アンテナチルト角の制御に伴う処理は全てネットワーク管理装置が行うものとして説明したが、無線基地局が当該アンテナチルト角の制御に伴う処理を実行するようにしても良い。これは、以降の実施例についても同様である。このような構成の場合、無線基地局からネットワーク管理装置へ無線端末からの測定情報を送信するシグナリング量が減るという効果がある。
(第2の実施の形態)
 次に、本発明の第2の発明を実施するための最良の形態について詳細に説明する。
 第2の実施の形態の基本的構成は、第1の実施の形態と同様である。さらに、その基本的動作は第1の実施の形態における図5と同様であるが、第2段階制御における無線パラメータの候補値を、第1段階制御で求めた無線パラメータの値に対して、所定範囲内の候補値に限定する。
 図10において、負荷指標算出部215より自無線セル及び隣接無線セルの平均負荷を取得する(ステップS601)。尚、負荷の平均値ではなく、自無線セル及び隣接無線セルの負荷の総和を用いても良い。
 次に、現在の第1段階制御で求めたアンテナチルト角に基づき、第2段階制御におけるアンテナチルト角の変更範囲を設定する(ステップS602)。ここで、変更範囲は第1段階制御で求めたアンテナチルト角を中心にした所定の範囲としても良いし、第1段階制御で求めたアンテナチルト角から所定の変更回数以内で変更可能な範囲としても良い。
 次に、アンテナチルト角を所定量-Δθ’だけ変更する(ステップS603)。ここで、所定量Δθ’は所定量Δθと同じ値にしても良い。
 次に、アンテナチルト角を変更した後の平均負荷を取得し(ステップS604)、アンテナチルト角を変更する前の平均負荷と変更した後の平均負荷を比較する(ステップS605)。変更後の平均負荷の方が変更前の平均負荷よりも小さい場合(ステップS605:Yes)、現在のアンテナチルト角を所定量-Δθ’だけ変更した値が変更範囲内であるかどうか判定する(ステップS606)。
 変更範囲内である場合(ステップS606:Yes)、変更後の平均負荷をアンテナチルト角の変更前の平均負荷として保持する(ステップS607)。平均負荷が減少する間、同様の手順によりアンテナチルト角の変更を続ける。一方、変更した後の平均負荷の方が大きい場合(ステップS605:No)、もしくはアンテナチルト角を所定量-Δθ’だけ変更した値が変更範囲外だった場合(ステップS606:No)、アンテナチルト角を元に戻す(ステップS608)。
 本実施の形態では、第2段階制御における無線パラメータの候補値を、第1段階制御で求めた無線パラメータの値に対して所定範囲内の値に限定している。これにより、負荷を考慮することで無線端末における通信品質(例えば、ユーザスループット)と受信品質(例えば、SINR)の間に生じる乖離を回避しつつ、予め第1段階制御で第2段階制御の候補値を絞ることで適切なアンテナチルト角の探索にかかる時間及び処理を短縮することができる。
(第3の実施の形態)
 次に、本発明の第3の発明を実施するための最良の形態について詳細に説明する。第3の実施の形態の基本的構成は、第1の実施の形態と同様である。さらに、その基本的動作は第1の実施の形態における図5と同様であるが、負荷指標の信頼性に応じて第2段階制御の制御周期を調整する。
 図11において、負荷指標算出部215は次のように動作する。所定の時間経過又は周辺セルの負荷情報が収集された場合に、負荷指標算出部215は処理を開始する。まず、基地局情報記憶装置200より、各無線セルの負荷情報を取得する(ステップS701)。次に、自無線セルのパラメータ情報330からNeighbor Cell IDを取得し、自無線セル及び隣接無線セルから無線セルを1つずつ選択する(ステップS702)。
 次に、負荷情報から当該無線セルに該当する情報を抽出する(ステップS703)。
 次に、当該無線セルの平均負荷を算出する(ステップS704)。尚、平均負荷の算出には、負荷情報に含まれているPRB usage、ハードウェア負荷、バックホールリンク負荷のいずれかを選択して平均値を求めても良いし、各負荷情報の単純平均又は加重平均を用いても良い。
 次に、当該無線セルの負荷の平均絶対偏差を算出する(ステップS705)。ここで、算出した平均絶対偏差は、無線セルの負荷の時間的な変動に対する偏差であり、単純移動平均、加重移動平均、指数移動平均などを用いることが考えられる。また、平均絶対標準偏差の代わりに、分散又は標準偏差を用いても良い。全ての無線セルの平均絶対偏差の算出が完了したら、無線セル毎の平均絶対偏差の単純平均を算出する(ステップS706)。尚、無線セル毎の平均絶対偏差の単純平均の代わりに加重平均を用いても良いし、自無線セルの平均絶対偏差のみを用いても良い。次に、算出した無線セル毎の平均絶対偏差の平均値を用いて終了を判定する(ステップS707)。
 平均絶対偏差の平均値が所定閾値よりも小さい場合(ステップS707:Yes)、自無線セル及び隣接無線セルの平均負荷の単純平均を算出する(ステップS708)。一方、平均絶対偏差の平均値が所定閾値以上の場合(ステップS707:No)、第2段階制御における制御周期をデフォルト値から延長し、無線セル毎の負荷の時間的な変動が十分に平滑化されるまで、処理を繰り返す。
 尚、本実施例において、各無線セルの負荷の単純平均を算出する代わりに加重平均を算出しても良く、第1の実施の形態と同様にして算出する。また、負荷指標の算出において、負荷情報の代わりにセルスループットを用いても良い。
 本実施の形態では、負荷指標の信頼性に応じて第2段階制御の制御周期を調整する。例えば、算出した無線セル毎の平均絶対偏差の平均値が所定閾値よりも大きい場合には、制御周期を長くする。無線セル毎の負荷の時間的な変動が十分に平滑化された後、負荷指標を算出して第2段階制御を実施することで、一時的な負荷の変動による影響を抑制し、適切なアンテナチルト角を決定することができる。
(第4の実施の形態)
 次に、本発明の第4の発明を実施するための最良の形態について詳細に説明する。第4の実施の形態の基本的構成は、図12に示すように第1の実施の形態に加えて、隣接セルID更新部510を備える。基本的動作は第1の実施の形態における図5と同様であるが、本実施形態では、さらに負荷を考慮する隣接無線セルを適応的に決定する。隣接無線セルの決定方法としては、例えば測定情報を基に隣接セルIDを生成し、パラメータ情報330内のNeighbor Cell ID305を更新する。
 図13において、受信品質指標算出部213は次のように動作する。所定の時間経過又は無線パラメータを制御する為に十分な測定情報が収集された場合に、受信品質指標算出部213は処理を開始する。まず、無線品質統計情報記憶装置201より、無線端末から収集した測定情報を取得する(ステップS801)。次に、収集した測定情報を1つずつ選択する(ステップS802)。第1の実施の形態と同様にして各無線セルのRSRPを用いてSINRを算出する(ステップS803)。
 次に、測定情報に含まれるNeighbor Cell RSRPの中で最大のRSRPを示すNeighbor Cell IDに対応するカウンタ値をカウントアップする(ステップS804)。全ての測定情報に対して、SINRの算出処理が完了したら(ステップS802:選択完了)、平均SINRを算出する(ステップS805)。尚、SINRの平均値の代わりにSINRの累積分布関数の任意の値を算出しても良い。
 次に、Neighbor Cell IDのカウント数の多い順に所定数のNeighbor Cell IDを抽出する(ステップS806)。抽出したNeighbor Cell IDに基づき、パラメータ情報330内のNeighbor Cell ID305を更新する(ステップS807)。尚、負荷指標を算出する際に単純平均ではなく加重平均をする場合、自無線セルと隣接無線セル間の距離の代わりにNeighbor Cell IDのカウント数を用い、カウント数が大きいほど重み付け係数を大きくし、加重平均を求めても良い。
 本実施の形態では、無線端末が報告する無線品質又は無線通信状態に関する測定情報に基づいて、隣接セルIDを生成し、パラメータ情報330内のNeighbor Cell ID305を更新する。これにより、無線パラメータの変更に伴う無線セルの隣接関係の変化に合わせて、影響を及ぼす隣接無線セルを適応的に更新し、負荷指標を適切に算出することができるため、適切なアンテナチルト角を決定できる。
(第5の実施の形態)
 本発明の第5の発明を実施するための最良の形態について詳細に説明する。
 第5の実施の形態の基本的構成は、第4の実施の形態と同様である。基本的動作は第4の実施の形態における図13と同様であるが、本実施形態では、さらにNeighbor Cell IDを更新する際に、対象となる無線セルを限定する。
 図14において、受信品質指標算出部213は次のように動作する。
 所定の時間経過又は十分な測定情報が収集された場合に、受信品質指標算出部213は処理を開始する。まず、無線品質統計情報記憶装置201より、無線端末から収集した測定情報を取得する(ステップS901)。
 次に、収集した測定情報を1つずつ選択する(ステップS902)。第1の実施の形態と同様にして各無線セルのRSRPを用いてSINRを算出する(ステップS903)。
 次に、測定情報内のServing Cell RSRPが所定品質を下回るかどうか判定する(ステップS904)。Serving Cell RSRPが所定品質を下回る場合(ステップS904:Yes)のみ、測定情報に含まれるNeighbor Cell RSRPの中で最大のRSRPを示すNeighbor Cell IDのカウンタ値をカウントアップする(ステップS905)。全ての測定情報に対して、SINRの算出処理が完了したら(ステップS502:選択完了)、平均SINRを算出する(ステップS906)。
 次に、Neighbor Cell IDのカウント数の多い順に所定数のNeighbor Cell IDを抽出する(ステップS907)。抽出したNeighbor Cell IDに基づき、パラメータ情報330内のNeighbor Cell ID305を更新する(ステップS908)。尚、負荷指標を算出する際に単純平均ではなく加重平均をする場合、自無線セルと隣接無線セル間の距離の代わりにNeighbor Cell IDのカウント数を用いて加重平均を求めても良い。また、Serving Cell RSRPが所定品質を下回るかどうか判定する代わりに、Serving Cell RSRPと最大のNeighbor Cell RSRPとの差が所定閾値を下回るかどうかを判定しても良い。さらに、平均SINRの代わりにSINRの累積分布関数の任意の値を算出し、用いても良い。
 本実施の形態では、無線端末が報告する無線品質又は無線通信状態に関する測定情報の中で、Serving RSRPが所定品質を下回る測定情報又はServing Cell RSRPと最大のNeighbor Cell RSRPとの差が所定閾値を下回る測定情報に基づいて、隣接セルIDを生成し、パラメータ情報330内のNeighbor Cell ID305を更新する。このように、無線パラメータの変更に伴う無線セルの隣接関係の変化に合わせて、無線パラメータの変更の影響を強く受ける隣接無線セルを抽出することにより、負荷指標をさらに適切に算出することができるため、適切なアンテナチルト角を決定できる。
(付記1)
 無線通信システムであって、
 無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、
 前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、
 算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御手段と、
を備えることを特徴とする無線通信システム。
(付記2)
 前記無線パラメータ制御手段は、前記受信品質指標に基づいて前記無線パラメータの候補値を検索するための制御を行う第1段階制御と、前記負荷指標に基づいて、前記第1段階制御で検索した候補値を基に、無線パラメータを調整する制御を行う第2段階制御と、
からなる付記1に記載の無線通信システム。
(付記3)
 前記無線パラメータ制御手段は、段階的制御(step-by-step)、単発制御(One-Shot)、及び全探索のいずれかで前記無線パラメータの制御を行う付記1又は2に記載の無線通信システム。
(付記4)
 前記受信品質指標算出手段は、前記無線端末が報告する前記測定情報における1つ以上の無線セルの参照信号の受信電力又は受信強度に基づいて算出する、付記1から3のいずれかに記載に無線通信システム。
(付記5)
 前記負荷指標算出手段は、前記無線基地局における無線リソース又は物理的リソースの使用状況に基づいて負荷に関する情報を算出する、付記1から4のいずれかに記載の無線通信システム。
(付記6)
 前記第2段階制御における前記無線パラメータの設定候補が、前記第1段階制御における前記無線パラメータの設定候補の中から決定する、付記1から5のいずれかに記載の無線通信システム。
(付記7)
 前記無線パラメータ制御手段は、前記第2段階制御における第2の制御周期を、前記負荷指標の時間的変動が所定の範囲内に収まること、及び当該第2の制御周期内で前記負荷指標が所定の精度で平均化されること、の少なくとも一方を満たすように設定する、付記1から6のいずれかに記載の無線通信システム。
(付記8)
 前記隣接基地局は、
 前記制御対象無線基地局の無線品質に関する所定の品質条件を満たすこと、
 前記制御対象無線基地局との間の前記無線端末のハンドオーバに関する所定の移動条件を満たすこと、
 前記制御対象無線基地局との間の距離が所定範囲内であること、及び
 前記制御対象無線基地局の隣接セルリストに入っていること、
の少なくとも1つを満たす付記1から7のいずれかに記載の無線通信システム。
(付記9)
 前記所定の品質条件が、
 前記制御対象無線基地局の無線セルの無線品質と周辺の無線セルの無線品質の差が所定値以下となること、及び前記サービング無線セルの無線品質が所定品質以下である前記無線端末の前記測定情報に含まれること、の少なくともいずれかである、付記8に記載の無線通信システム。
(付記10)
 前記周辺の無線セルが、前記制御対象無線基地局の無線セルを除く無線セルの中で、最も無線品質が良好な無線セルである、付記9に記載の無線通信システム。
(付記11)
 前記移動条件が、
 前記制御対象無線基地局の無線セルからのハンドオーバ試行回数が所定回数以上であること、前記サービング無線セルへのハンドオーバ試行回数が所定回数以上であること、及び前記サービング無線セルとの間のハンドオーバ成功数が所定数以上であること、の少なくともいずれかである付記8から10のいずれかに記載の無線通信システム。
(付記12)
 無線パラメータ制御方法であって、
 無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出ステップと、
 前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出ステップと、
 算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御ステップと、
を備えることを特徴とする無線パラメータ制御方法。
(付記13)
 前記無線パラメータ制御ステップは、前記受信品質指標に基づいて前記無線パラメータの候補値を検索するための制御を行う第1段階制御と、前記負荷指標に基づいて前記第1段階制御で検索した候補値を基に、無線パラメータを調整する制御を行う第2段階制御と、
からなる付記11に記載の無線パラメータ制御方法。
(付記14)
 前記無線パラメータ制御ステップは、段階的制御(step-by-step)、単発制御(One-Shot)、及び全探索のいずれかで前記無線パラメータの制御を行う付記12又は13に記載の無線パラメータ制御方法。
(付記15)
 前記受信品質指標算出ステップは、前記無線端末が報告する前記測定情報における1つ以上の無線セルの参照信号の受信電力又は受信強度に基づいて算出する、付記12から14のいずれかに記載に無線パラメータ制御方法。
(付記16)
 前記負荷指標算出ステップは、前記無線基地局における無線リソース又は物理的リソースの使用状況に基づいて負荷に関する情報を算出する、付記12から15のいずれかに記載の無線パラメータ制御方法。
(付記17)
 前記第2段階制御における前記無線パラメータの設定候補が、前記第1段階制御における前記無線パラメータの設定候補の中から決定する、付記12から16のいずれかに記載の無線パラメータ制御方法。
(付記18)
 前記無線パラメータ制御ステップは、前記第2段階制御における第2の制御周期を、前記負荷指標の時間的変動が所定の範囲内に収まること、及び当該第2の制御周期内で前記負荷指標が所定の精度で平均化されること、の少なくとも一方を満たすように設定する、付記12から17のいずれかに記載の無線パラメータ制御方法。
(付記19)
 前記隣接基地局は、
 前記制御対象無線基地局の無線品質に関する所定の品質条件を満たすこと、
 前記制御対象無線基地局との間の前記無線端末のハンドオーバに関する所定の移動条件を満たすこと、
 前記制御対象無線基地局との間の距離が所定範囲内であること、
 及び前記制御対象無線基地局の隣接セルリストに入っていること、
の少なくとも1つを満たす付記12から18のいずれかに記載の無線パラメータ制御方法。
(付記20)
 前記所定の品質条件が、
 前記制御対象無線基地局の無線セルの無線品質と周辺の無線セルの無線品質の差が所定値以下となること、及び前記サービング無線セルの無線品質が所定品質以下である前記無線端末の前記測定情報に含まれること、の少なくともいずれかである、付記19に記載の無線パラメータ制御方法。
(付記21)
 前記周辺の無線セルが、前記制御対象無線基地局の無線セルを除く無線セルの中で最も無線品質が良好な無線セルである、付記20に記載の無線パラメータ制御方法。
(付記22)
 前記移動条件が、
 前記サービング無線セルからのハンドオーバ試行回数が所定回数以上であること、前記制御対象無線基地局の無線セルへのハンドオーバ試行回数が所定回数以上であること、及び前記サービング無線セルとの間のハンドオーバ成功数が所定数以上であること、の少なくともいずれかである付記19から21のいずれかに記載の無線パラメータ制御方法。
(付記23)
 ネットワーク管理装置であって、
 無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、
 前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、
 算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御手段と、
を備えることを特徴とするネットワーク管理装置。
(付記24)
 前記無線パラメータ制御手段は、前記受信品質指標に基づいて前記無線パラメータの候補値を検索するための制御を行う第1段階制御と、前記負荷指標に基づいて、前記第1段階制御で検索した候補値を基に、無線パラメータを調整する制御を行う第2段階制御と、
からなる付記23に記載のネットワーク管理装置。
(付記25)
 前記無線パラメータ制御手段は、段階的制御(step-by-step)、単発制御(One-Shot)、及び全探索のいずれかで前記無線パラメータの制御を行う付記23又は24に記載のネットワーク管理装置。
(付記26)
 前記受信品質指標算出手段は、前記無線端末が報告する前記測定情報における1つ以上の無線セルの参照信号の受信電力又は受信強度に基づいて算出する、付記23から25のいずれかに記載にネットワーク管理装置。
(付記27)
 前記負荷指標算出手段は、前記無線基地局における無線リソース又は物理的リソースの使用状況に基づいて負荷に関する情報を算出する、付記23から26のいずれかに記載のネットワーク管理装置。
(付記28)
 前記第2段階制御における前記無線パラメータの設定候補が、前記第1段階制御における前記無線パラメータの設定候補の中から決定する、付記23から27のいずれかに記載のネットワーク管理装置。
(付記29)
 前記無線パラメータ制御手段は、前記第2段階制御における第2の制御周期を、前記負荷指標の時間的変動が所定の範囲内に収まること、及び当該第2の制御周期内で前記負荷指標が所定の精度で平均化されること、の少なくとも一方を満たすように設定する、付記23から28のいずれかに記載のネットワーク管理装置。
(付記30)
 前記隣接基地局は、
 前記制御対象無線基地局の無線品質に関する所定の品質条件を満たすこと、
 前記制御対象無線基地局との間の前記無線端末のハンドオーバに関する所定の移動条件を満たすこと、
 前記制御対象無線基地局との間の距離が所定範囲内であること、及び
 前記制御対象無線基地局の隣接セルリストに入っていること、
の少なくとも1つを満たす付記23から29のいずれかに記載のネットワーク管理装置。
(付記31)
 前記所定の品質条件が、
 前記制御対象無線基地局の無線セルの無線品質と周辺の無線セルの無線品質の差が所定値以下となること、及び前記サービング無線セルの無線品質が所定品質以下である前記無線端末の前記測定情報に含まれること、の少なくともいずれかである、付記30に記載のネットワーク管理装置。
(付記32)
 前記周辺の無線セルが、前記制御対象無線基地局の無線セルを除く無線セルの中で、最も無線品質が良好な無線セルである、付記31に記載のネットワーク管理装置。
(付記33)
 前記移動条件が、
 前記制御対象無線基地局の無線セルからのハンドオーバ試行回数が所定回数以上であること、前記サービング無線セルへのハンドオーバ試行回数が所定回数以上であること、及び前記サービング無線セルとの間のハンドオーバ成功数が所定数以上であること、の少なくともいずれかである付記30から32のいずれかに記載のネットワーク管理装置。
(付記34)
 無線基地局であって、
 自局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、
 前記自局及び自局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、
 算出した前記受信品質指標と前記負荷指標とに基づいて、前記自局の無線パラメータを制御する無線パラメータ制御手段と、
を備えることを特徴とする無線基地局。
(付記35)
 前記無線パラメータ制御手段は、前記受信品質指標に基づいて前記無線パラメータの候補値を検索するための制御を行う第1段階制御と、前記負荷指標に基づいて、前記第1段階制御で検索した候補値を基に、無線パラメータを調整する制御を行う第2段階制御と、
からなる付記34に記載の無線基地局。
(付記36)
 前記無線パラメータ制御手段は、段階的制御(step-by-step)、単発制御(One-Shot)、及び全探索のいずれかで前記無線パラメータの制御を行う付記34又は35に記載の無線基地局。
(付記37)
 前記受信品質指標算出手段は、前記無線端末が報告する前記測定情報における1つ以上の無線セルの参照信号の受信電力又は受信強度に基づいて算出する、付記34から36のいずれかに記載に無線基地局。
(付記38)
 前記負荷指標算出手段は、前記無線基地局における無線リソース又は物理的リソースの使用状況に基づいて負荷に関する情報を算出する、付記34から37のいずれかに記載の無線基地局。
(付記39)
 前記第2段階制御における前記無線パラメータの設定候補が、前記第1段階制御における前記無線パラメータの設定候補の中から決定する、付記34から38のいずれかに記載の無線基地局。
(付記40)
 前記無線パラメータ制御手段は、前記第2段階制御における第2の制御周期を、前記負荷指標の時間的変動が所定の範囲内に収まること、及び当該第2の制御周期内で前記負荷指標が所定の精度で平均化されること、の少なくとも一方を満たすように設定する、付記34から39のいずれかに記載の無線基地局。
(付記41)
 前記隣接基地局は、
 前記制御対象無線基地局の無線品質に関する所定の品質条件を満たすこと、
 前記制御対象無線基地局との間の前記無線端末のハンドオーバに関する所定の移動条件を満たすこと、
 前記制御対象無線基地局との間の距離が所定範囲内であること、及び
 前記制御対象無線基地局の隣接セルリストに入っていること、
の少なくとも1つを満たす付記34から40のいずれかに記載の無線基地局。
(付記42)
 前記所定の品質条件が、
 前記制御対象無線基地局の無線セルの無線品質と周辺の無線セルの無線品質の差が所定値以下となること、及び前記サービング無線セルの無線品質が所定品質以下である前記無線端末の前記測定情報に含まれること、の少なくともいずれかである、付記41に記載の無線基地局。
(付記43)
 前記周辺の無線セルが、前記制御対象無線基地局の無線セルを除く無線セルの中で、最も無線品質が良好な無線セルである、付記42に記載の無線基地局。
(付記44)
 前記移動条件が、
 前記制御対象無線基地局の無線セルからのハンドオーバ試行回数が所定回数以上であること、前記サービング無線セルへのハンドオーバ試行回数が所定回数以上であること、及び前記サービング無線セルとの間のハンドオーバ成功数が所定数以上であること、の少なくともいずれかである付記41から43のいずれかに記載の無線基地局。
 この出願は、2013年3月6日に出願された日本出願特願2013-043739を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 外部網
101 コア網
102 無線アクセス網
103 ネットワーク監視装置
110~113 有線リンク
120~121 無線基地局
130~132 無線端末
140~141 無線セル
200 基地局情報記憶装置
201 無線品質統計情報記憶装置
210 無線送受信部
211 有線送受信部
212 測定制御部
213 受信品質指標算出部
214 無線パラメータ制御部
215 負荷指標算出部
300 基地局情報
301 Cell ID
302 PRB usage
303 ハードウェア負荷
304 バックホールリンク負荷
305 Neighbor Cell ID
306 最大送信電力
307 アンテナ高
308 アンテナパタン
309 アンテナ方位角
310 アンテナチルト角
320 負荷情報
330 パラメータ情報
400 測定情報
401 Serving Cell ID
402 Serving Cell RSRP
403 Neighbor Cell1 ID
404 Neighbor Cell1 RSRP
405 Neighbor Cell2 ID
406 Neighbor Cell2 RSRP
510 隣接セルID更新部

Claims (10)

  1.  無線通信システムであって、
     無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、
     前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、
     算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御手段と、
    を備えることを特徴とする無線通信システム。
  2.  前記無線パラメータ制御手段は、前記受信品質指標に基づいて前記無線パラメータの候補値を検索するための制御を行う第1段階制御と、前記負荷指標に基づいて、前記第1段階制御で検索した候補値を基に、無線パラメータを調整する制御を行う第2段階制御と、
    からなる請求項1に記載の無線通信システム。
  3.  前記無線パラメータ制御手段は、段階的制御(step-by-step)、単発制御(One-Shot)、及び全探索のいずれかで前記無線パラメータの制御を行う請求項1又は2に記載の無線通信システム。
  4.  前記受信品質指標算出手段は、前記無線端末が報告する前記測定情報における1つ以上の無線セルの参照信号の受信電力又は受信強度に基づいて前記受信品質指標を算出する、請求項1から3のいずれかに記載に無線通信システム。
  5.  前記負荷指標算出手段は、前記無線基地局における無線リソース又は物理的リソースの使用状況に基づいて負荷に関する情報である前記負荷指標を算出する、請求項1から4のいずれかに記載の無線通信システム。
  6.  前記第2段階制御における前記無線パラメータの設定候補が、前記第1段階制御における前記無線パラメータの設定候補の中から決定される、請求項1から5のいずれかに記載の無線通信システム。
  7.  前記隣接基地局は、
     前記制御対象無線基地局の無線品質に関する所定の品質条件を満たすこと、
     前記制御対象無線基地局との間の前記無線端末のハンドオーバに関する所定の移動条件を満たすこと、
     前記制御対象無線基地局との間の距離が所定範囲内であること、
     前記制御対象無線基地局の隣接セルリストに入っていること、
    の少なくとも1つを満たす無線セルを管理する無線基地局である請求項1から6のいずれかに記載の無線通信システム。
  8.  無線パラメータ制御方法であって、
     無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出ステップと、
     前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出ステップと、
     算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御ステップと、
    を備えることを特徴とする無線パラメータ制御方法。
  9.  ネットワーク管理装置であって、
     無線パラメータの制御対象である制御対象無線基地局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、
     前記制御対象無線基地局及び前記制御対象無線基地局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、
     算出した前記受信品質指標と前記負荷指標とに基づいて、前記制御対象の無線パラメータを制御する無線パラメータ制御手段と、
    を備えることを特徴とするネットワーク管理装置。
  10.  無線基地局であって、
     自局と通信可能な無線端末が報告する測定情報に基づいて、前記無線端末における無線品質に関する受信品質指標を算出する受信品質指標算出手段と、
     前記自局及び自局の隣接基地局における負荷に関する負荷指標を算出する負荷指標算出手段と、
     算出した前記受信品質指標と前記負荷指標とに基づいて、前記自局の無線パラメータを制御する無線パラメータ制御手段と、
    を備えることを特徴とする無線基地局。
PCT/JP2014/055369 2013-03-06 2014-03-04 無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局 WO2014136742A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013043739 2013-03-06
JP2013-043739 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014136742A1 true WO2014136742A1 (ja) 2014-09-12

Family

ID=51491259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055369 WO2014136742A1 (ja) 2013-03-06 2014-03-04 無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局

Country Status (1)

Country Link
WO (1) WO2014136742A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031123A1 (ja) * 2014-08-27 2016-03-03 日本電気株式会社 通信装置、通信システム、制御方法及び通信プログラムが格納された非一時的なコンピュータ可読媒体
WO2016088877A1 (ja) * 2014-12-04 2016-06-09 ソフトバンク株式会社 基地局装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054736A (ja) * 2010-09-01 2012-03-15 Hitachi Ltd 移動体通信システムおよび移動体通信システムにおける負荷分散方法
WO2012081150A1 (ja) * 2010-12-17 2012-06-21 日本電気株式会社 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054736A (ja) * 2010-09-01 2012-03-15 Hitachi Ltd 移動体通信システムおよび移動体通信システムにおける負荷分散方法
WO2012081150A1 (ja) * 2010-12-17 2012-06-21 日本電気株式会社 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031123A1 (ja) * 2014-08-27 2016-03-03 日本電気株式会社 通信装置、通信システム、制御方法及び通信プログラムが格納された非一時的なコンピュータ可読媒体
WO2016088877A1 (ja) * 2014-12-04 2016-06-09 ソフトバンク株式会社 基地局装置
US10349322B2 (en) 2014-12-04 2019-07-09 Softbank Corp. Base station apparatus

Similar Documents

Publication Publication Date Title
US9220017B2 (en) Radio parameter control apparatus, base station apparatus, radio parameter control method, and non-transitory computer readable medium
US20220416918A1 (en) Communication system with beam quality measurement
KR101587434B1 (ko) 부하에 기초한 핸드오버 관리
US9351213B2 (en) Method and telecommunications network for deactivating or activating a cell in such a network
CN107889145A (zh) 切换方法及装置
CN111431639A (zh) 无线通信方法和无线通信设备
WO2015182627A1 (en) Communication system and method of load balancing
WO2014136739A1 (ja) 無線通信システム、制御装置、制御方法及びプログラム
US11706642B2 (en) Systems and methods for orchestration and optimization of wireless networks
JP2017163439A (ja) ネットワーク管理装置、無線基地局、省電力制御方法及びプログラム
GB2552945A (en) Improvements in and relating to small cell discovery in a communication network
RU2576245C1 (ru) Система управления радиопараметром, устройство управления радиопараметром, базовая радиостанция, способ и программа для управления радиопараметром
JP6859960B2 (ja) 無線品質予測装置、無線基地局、無線端末、無線品質予測方法および無線品質予測プログラム
EP3488633B1 (en) Decentralized base station load balancing
WO2014136742A1 (ja) 無線通信システム、無線パラメータ制御方法、ネットワーク管理装置、および無線基地局
US20160269949A1 (en) Downlink inter-cell interference determination
WO2014103434A1 (ja) 無線パラメータ制御装置、無線パラメータ制御装置システム、無線パラメータ制御方法及びそのプログラム
WO2013154186A1 (ja) 無線基地局、予測装置、及び、予測方法
Srikantamurthy et al. A novel unified handover algorithm for LTE-A
CN114375589B (zh) 一种网络参数调整方法及网络管理设备
EP3162113B1 (en) Methods, nodes and system for enabling redistribution of cell load
JP6413487B2 (ja) 通信制御装置、無線基地局、通信制御方法、及びプログラム
EP3917201B1 (en) Communication device, communication method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP