WO2014157397A1 - 通信制御方法、ユーザ端末、及び基地局 - Google Patents

通信制御方法、ユーザ端末、及び基地局 Download PDF

Info

Publication number
WO2014157397A1
WO2014157397A1 PCT/JP2014/058653 JP2014058653W WO2014157397A1 WO 2014157397 A1 WO2014157397 A1 WO 2014157397A1 JP 2014058653 W JP2014058653 W JP 2014058653W WO 2014157397 A1 WO2014157397 A1 WO 2014157397A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
report information
serving cell
timing
cell
Prior art date
Application number
PCT/JP2014/058653
Other languages
English (en)
French (fr)
Inventor
空悟 守田
智春 山▲崎▼
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2014157397A1 publication Critical patent/WO2014157397A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a communication control method, a user terminal, and a base station used in a mobile communication system that supports CoMP transmission.
  • CoMP transmission In CoMP transmission, antenna groups arranged at the same place are positioned as one “point”, and a plurality of points cooperate to perform data transmission.
  • a point group that performs CoMP transmission to a user terminal using one time / frequency resource is called a CoMP cooperating set.
  • a user terminal when a user terminal is located at a boundary of a plurality of cells (that is, a cell edge), the same data is simultaneously transmitted from the plurality of cells to the user terminal using the plurality of cells as a CoMP cooperating set. Thereby, data is synthesized in the user terminal, and the reception quality of the user terminal located at the cell edge can be improved.
  • the present invention provides a communication control method, a user terminal, and a base station that can appropriately perform CoMP transmission.
  • the communication control method is used in a mobile communication system that supports CoMP transmission in which a plurality of cells cooperate.
  • the communication control method includes a step A in which a user terminal that establishes connection with a serving cell included in the plurality of cells receives a plurality of radio signals composed of radio signals transmitted from the plurality of cells, and the user Step B in which a terminal transmits report information indicating each reception timing of the plurality of radio signals or a timing difference between the reception timings to the serving cell, and a base station that manages the serving cell receives the report from the user terminal Receiving step C, and step D in which the base station determines the suitability of the CoMP transmission to the user terminal based on the timing difference obtained from the report information.
  • FIG. 1 is a configuration diagram of an LTE system according to the embodiment.
  • FIG. 2 is a block diagram of the UE according to the embodiment.
  • FIG. 3 is a block diagram of the eNB according to the embodiment.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating an operating environment according to the embodiment.
  • FIG. 7 is a diagram illustrating another operating environment according to the embodiment.
  • FIG. 8 is an operation sequence diagram illustrating a specific example of the operation according to the embodiment.
  • the communication control method is used in a mobile communication system that supports CoMP transmission in which a plurality of cells cooperate.
  • the communication control method includes a step A in which a user terminal that establishes a connection with a serving cell included in the plurality of cells receives a plurality of radio signals composed of radio signals transmitted from the plurality of cells, and the user Step B in which a terminal transmits report information indicating each reception timing of the plurality of radio signals or a timing difference between the reception timings to the serving cell, and a base station that manages the serving cell receives the report from the user terminal Receiving step C, and step D in which the base station determines the suitability of the CoMP transmission to the user terminal based on the timing difference obtained from the report information.
  • the step D includes a step in which the base station performs control to apply the CoMP transmission to the user terminal when the timing difference is equal to or less than a first threshold value. Performing a control not to apply the CoMP transmission to the user terminal when the timing difference exceeds the first threshold.
  • the step D further includes a step in which the base station sets a value corresponding to a length of a guard interval included in the radio signal as the first threshold value.
  • the step D further includes a step in which the base station sets a value designated by a core network or a value determined by negotiation between base stations as the first threshold value.
  • the base station further includes a step of transmitting setting information for controlling transmission of the report information to the user terminal.
  • the step B includes a step in which the user terminal transmits the report information to the serving cell triggered by the timing difference exceeding a second threshold.
  • the step B includes a step in which the user terminal transmits the report information to the serving cell when the timing difference falls below a third threshold.
  • the step B includes a step in which the user terminal measures reception timings of n (n ⁇ 2) radio signals from the one having the higher reception power among the plurality of radio signals, and the user A terminal transmitting the report information to the serving cell based on the measured reception timing.
  • the step B includes a step of transmitting the report information to the other cell triggered by the user terminal switching the serving cell to another cell.
  • each of the serving cell and the other cell is triggered by the user terminal switching to a cell corresponding to a radio signal having the highest received power in the user terminal. Transmitting the report information including the cell identifier to the serving cell.
  • the communication control method further includes a step in which the base station adjusts a data transmission timing to the user terminal based on the timing difference obtained from the report information.
  • the user terminal establishes a connection with a serving cell included in the plurality of cells in a mobile communication system that supports CoMP transmission in which the plurality of cells cooperate.
  • the user terminal receives a plurality of radio signals composed of radio signals transmitted from each of the plurality of cells, and report information indicating a reception timing of each of the plurality of radio signals or a timing difference between the reception timings A transmission unit that transmits the message to the serving cell.
  • a base station manages a serving cell of a user terminal in a mobile communication system that supports CoMP transmission in which a plurality of cells cooperate.
  • the base station a receiving unit that receives, from the user terminal, report information indicating a reception timing of each of a plurality of radio signals composed of radio signals transmitted by each of the plurality of cells or a timing difference between the reception timings;
  • a control unit that determines the suitability of the CoMP transmission for the user terminal based on the report information.
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved-UMTS Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • the E-UTRAN 10 corresponds to a radio access network
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 is a mobile communication device and performs wireless communication with a serving cell.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • Each eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • “cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the EPC 20 configured by the MME / S-GW 300 accommodates the eNB 200.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer. Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. Layer 3 includes an RRC (Radio Resource Control) layer.
  • PHY Physical
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a scheduler that determines uplink / downlink transport formats (transport block size, modulation / coding scheme (MCS)) and allocated resource blocks.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connected state When there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource unit composed of one symbol and one subcarrier is referred to as a resource element (RE).
  • RE resource element
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region used mainly as a physical downlink control channel (PDCCH) for transmitting a control signal.
  • the remaining section of each subframe is an area that can be used as a physical downlink shared channel (PDSCH) mainly for transmitting user data.
  • PDSCH physical downlink shared channel
  • a reference signal such as a cell-specific reference signal (CRS) and / or a channel state information reference signal (CSI-RS) is distributed and arranged in each subframe.
  • the reference signal is composed of a predetermined orthogonal signal sequence and is arranged in a predetermined resource element.
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH) for transmitting a control signal.
  • the central portion in the frequency direction in each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting user data.
  • PUSCH physical uplink shared channel
  • the LTE system according to the present embodiment supports JP (Joint Processing) -CoMP, which is a type of CoMP transmission.
  • JP-CoMP is a method in which data to be transmitted to the UE 100 can be used at a plurality of points in the CoMP cooperating set.
  • JT Joint Transmission
  • DPS Dynamic Point Selection
  • FIG. 6 is a diagram showing an operating environment according to the present embodiment. As shown in FIG. 6, an eNB 200-1 and an eNB 200-2 adjacent to the eNB 200-1 are installed. The cell 1 of the eNB 200-1 and the cell 2 of the eNB 200-2 are the same type of cell (for example, a macro cell). The UE 100 is located in the boundary area between the cell 1 and the cell 2.
  • UE 100 is in a connected state in cell 1. That is, cell 1 is a serving cell of UE 100 (also called “anchor cell” in CoMP). Since UE100 is located in the coverage edge part (cell edge) of cell 1, it is difficult to perform favorable radio
  • the reception quality of the UE 100 can be improved by applying JP-CoMP to the UE 100.
  • the eNBs 200-1 and 200-2 transmit the same data to the UE 100 simultaneously by JT. Thereby, the data is synthesized in the UE 100, and the reception quality can be improved.
  • FIG. 7 is a diagram showing another operating environment according to the present embodiment.
  • cell 1 and cell 2 are different types of cells having different cell sizes.
  • cell 1 is a pico cell and cell 2 is a macro cell.
  • Cell 1 is provided within the coverage of cell 2.
  • cell 1 is a serving cell of UE 100.
  • the UE 100 is located at the coverage edge (cell edge) of the cell 1.
  • the propagation delay time between the eNB 200-2 and the UE 100 is significantly longer than the propagation delay time between the eNB 200-1 and the UE 100. Therefore, even if the eNBs 200-1 and 200-2 transmit the same data to the UE 100 at the same time, the reception timing of each data in the UE 100 is not uniform.
  • the difference in the reception timing of each data exceeds the guard interval length (CP length)
  • CP length guard interval length
  • the symbol becomes difficult to demodulate due to intersymbol interference, or the symbols before and after the symbol become difficult to demodulate due to intersymbol interference. Therefore, in such an operating environment, even if JP-CoMP is applied, the reception quality of the UE 100 may deteriorate instead.
  • Step A The UE 100 transmits a reference signal transmitted from the eNB 200-1 (cell 1) (hereinafter referred to as “reference signal 1”) and a reference signal transmitted from the eNB 200-2 (cell 2) (hereinafter referred to as “reference signal 2”). And).
  • Step B The UE 100 measures the reception timing difference ⁇ t between the reference signals 1 and 2, and transmits timing report information indicating the reception timing difference ⁇ t to the eNB 200-1.
  • the UE 100 measures the amount of deviation of the reception timing of the reference signal 2 as the reception timing difference ⁇ t with reference to the reception timing of the reference signal 1.
  • the eNB 200-1 may transmit report setting information for controlling transmission of timing report information to the UE 100.
  • Each of the timing report information and the report setting information can be included in an RRC layer message (RRC message).
  • Timing report information from the UE 100 to the eNB 200-1 may be periodic or an event trigger. Further, either periodic or event trigger may be designated by the report setting information. Since the event trigger can take various trigger types, the event trigger type may be specified by the report setting information. Specific examples of event trigger types will be described later.
  • Step C The eNB 200-1 receives timing report information from the UE 100.
  • Step D The eNB 200-1 determines the suitability of JP-CoMP for the UE 100 based on the reception timing difference ⁇ t indicated by the timing report information.
  • the reception timing difference ⁇ t is equal to or smaller than the first threshold
  • control is performed to apply JP-CoMP to the UE 100.
  • the reception timing difference ⁇ t exceeds the first threshold value
  • control for not applying JP-CoMP to the UE 100 is performed.
  • the eNB 200-1 sets a value corresponding to the length of the guard interval (CP length) as the first threshold value.
  • the eNB 200-1 may set a value designated by the core network (EPC 20) or a value determined by negotiation with the eNB 200-2 as the first threshold value.
  • JP-CoMP a case where it is determined whether to start JP-CoMP with the UE 100 will be mainly described. However, after starting JP-CoMP with the UE 100, it may be determined whether or not to continue JP-CoMP (whether or not to stop).
  • Event trigger type In the present embodiment, the following four event trigger types are defined as timing report information.
  • the first trigger type is a trigger type in which the reception timing difference ⁇ t exceeds the second threshold in the UE 100.
  • the UE 100 transmits timing report information to the serving cell, triggered by the reception timing difference ⁇ t exceeding the second threshold.
  • the eNB 200-1 may specify the second threshold value using the report setting information.
  • the second trigger type is a trigger type in which the reception timing difference ⁇ t has fallen below the third threshold in the UE 100.
  • the UE 100 transmits timing report information to the serving cell, triggered by the reception timing difference ⁇ t being lower than the third threshold.
  • the eNB 200-1 may specify the third threshold value by the report setting information.
  • the third trigger type is a trigger type in which the UE 100 switches the serving cell to another cell (that is, performs a handover).
  • the UE 100 transmits timing report information to a new serving cell, triggered by switching the serving cell to another cell.
  • the fourth trigger type is a trigger type in which the cell corresponding to the reference signal with the highest received power (RSRP: Reference Signal Received Power) in the UE 100 is switched to another cell.
  • the UE 100 transmits timing report information to the serving cell, triggered by the cell corresponding to the reference signal with the highest RSRP being switched to another cell.
  • UE100 may include each cell identifier of a serving cell and the said other cell (cell corresponding to a reference signal with the highest RSRP) in timing report information.
  • FIG. 8 is an operation sequence diagram showing a specific example of the operation according to the present embodiment. Here, a case where timing report information is transmitted by an event trigger is illustrated.
  • step S101 the EPC 20 transmits information indicating the first threshold value to the eNB 200-1.
  • the eNB 200-1 stores the first threshold value received from the EPC 20.
  • step S102 the UE 100 establishes an RRC connection with the cell 1 of the eNB 200-1. However, the UE 100 may be in an idle state until step S104.
  • step S103 information indicating candidates of points (cells or eNBs) constituting the CoMP cooperating set is transmitted to the eNBs 200-1 and 200-2.
  • eNBs 200-1 (cell 1) and 200-2 (cell 2) are designated as CoMP cooperating set candidates.
  • the eNB 200-1 transmits report setting information to the UE 100 to request timing difference measurement for the eNBs 200-1 (cell 1) and 200-2 (cell 2) included in the CoMP cooperating set candidates.
  • the report setting information includes the cell identifiers of the cells 1 and 2, respectively. Further, the report setting information may include information indicating the trigger type of the event trigger.
  • step S105 the UE 100 receives the reference signal 1 transmitted from the eNB 200-1 (cell 1) and the reference signal 2 transmitted from the eNB 200-2 (cell 2).
  • step S106 the UE 100 measures the reception timing difference ⁇ t between the reference signals 1 and 2.
  • the eNB 200-1 transmits information indicating the trigger type to the UE 100 as report setting information in step S107.
  • the eNB 200-1 may transmit information indicating the changed trigger type to the UE 100 as the report setting information.
  • step S110 the UE 100 transmits the timing report information to the eNB 200. To -1. The UE 100 may transmit the timing report information multiple times.
  • the eNB 200-1 determines the suitability of JP-CoMP for the UE 100 based on the reception timing difference ⁇ t indicated by the timing report information.
  • the reception timing difference ⁇ t is equal to or smaller than the first threshold value, and the eNB 200-1 performs control to apply JP-CoMP to the UE 100.
  • the eNB 200-1 negotiates with the eNB 200-2 and the EPC 20 for JP-CoMP.
  • step S112 the eNBs 200-1 and 200-2 transmit data to the UE 100 by JP-CoMP.
  • the UE 100 measures the reception timing of each of n (n ⁇ 2) reference signals from the higher RSRP among the plurality of reference signals, and excludes the remaining reference signals from the measurement targets of the reception timing. May be.
  • the eNB 200-1 may specify the value of n by the report setting information.
  • the UE 100 measures the reception timing only for the reference signal with the highest RSRP and the reference signal with the next highest RSRP even if three or more reference signals are received. . Therefore, the processing load on the UE 100 can be reduced.
  • the eNB 200-1 determines the suitability of JP-CoMP for the UE 100 based on the reception timing difference ⁇ t indicated by the timing report information.
  • the timing report information can also be used for purposes other than JP-CoMP conformity determination.
  • the timing report information can be used for adjustment of data transmission timing in the eNB 200.
  • eNB 200-1 or eNB 200-2 applies ⁇ t indicated by the timing report information to its transmission timing.
  • ⁇ t may be shared between the eNBs 200.
  • the UE 100 may transmit information indicating the reception timings of the reference signals 1 and 2.
  • the eNB 200-1 may calculate the reception timing difference ⁇ t from the reception timings of the reference signals 1 and 2.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.

Abstract

 本発明に係る通信制御方法は、複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて用いられる。通信制御方法は、複数のセルに含まれるサービングセルとの接続を確立するUE100が、複数のセルのそれぞれが送信する無線信号からなる複数の無線信号を受信するステップAと、UE100が、複数の無線信号のそれぞれの受信タイミング又は受信タイミングのタイミング差を示すタイミング報告情報をサービングセルに送信するステップBと、サービングセルを管理するeNB200が、UE100からのタイミング報告情報を受信するステップCと、eNB200が、タイミング報告情報から求められるタイミング差に基づいて、UE100に対するCoMP伝送の適合性について判断するステップDと、を含む。

Description

通信制御方法、ユーザ端末、及び基地局
 本発明は、CoMP伝送をサポートする移動通信システムにおいて用いられる通信制御方法、ユーザ端末、及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、CoMP(Coordinated Multi-Point)伝送の標準化が進められている(非特許文献1参照)。
 CoMP伝送は、同一の場所に配置されたアンテナ群を1つの「ポイント」と位置付け、複数のポイントが協調してデータ伝送を行うものである。1つの時間・周波数リソースを用いてユーザ端末に対するCoMP伝送を行うポイント群は、CoMP協働セットと称される。
 例えば、複数のセルの境界(すなわち、セルエッジ)にユーザ端末が位置する場合に、複数のセルをCoMP協働セットとして、複数のセルから同一のデータを同時にユーザ端末に送信する。これにより、ユーザ端末においてデータが合成されて、セルエッジに位置するユーザ端末の受信品質を改善できる。
3GPP技術報告 「TR36.819 V11.1.0」 2011年12月
 上述したCoMP伝送において、ユーザ端末が複数のセルからデータを受信する場合に、複数のセルからの受信タイミングが異なると、受信したデータを復号することが困難である。
 従って、複数のセルからの受信タイミングが異なるユーザ端末については、CoMP伝送を適用することで、却って受信品質が劣化してしまう問題がある。
 そこで、本発明は、CoMP伝送を適切に行うことができる通信制御方法、ユーザ端末、及び基地局を提供する。
 本発明に係る通信制御方法は、複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて用いられる。前記通信制御方法は、前記複数のセルに含まれるサービングセルとの接続を確立するユーザ端末が、前記複数のセルのそれぞれが送信する無線信号からなる複数の無線信号を受信するステップAと、前記ユーザ端末が、前記複数の無線信号のそれぞれの受信タイミング又は前記受信タイミングのタイミング差を示す報告情報を前記サービングセルに送信するステップBと、前記サービングセルを管理する基地局が、前記ユーザ端末からの前記報告情報を受信するステップCと、前記基地局が、前記報告情報から求められる前記タイミング差に基づいて、前記ユーザ端末に対する前記CoMP伝送の適合性について判断するステップDと、を含む。
図1は、実施形態に係るLTEシステムの構成図である。 図2は、実施形態に係るUEのブロック図である。 図3は、実施形態に係るeNBのブロック図である。 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、実施形態に係る動作環境を示す図である。 図7は、実施形態に係る他の動作環境を示す図である。 図8は、実施形態に係る動作の具体例を示す動作シーケンス図である。
 [実施形態の概要]
 実施形態に係る通信制御方法は、複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて用いられる。前記通信制御方法は、前記複数のセルに含まれるサービングセルとの接続を確立するユーザ端末が、前記複数のセルのそれぞれが送信する無線信号からなる複数の無線信号を受信するステップAと、前記ユーザ端末が、前記複数の無線信号のそれぞれの受信タイミング又は前記受信タイミングのタイミング差を示す報告情報を前記サービングセルに送信するステップBと、前記サービングセルを管理する基地局が、前記ユーザ端末からの前記報告情報を受信するステップCと、前記基地局が、前記報告情報から求められる前記タイミング差に基づいて、前記ユーザ端末に対する前記CoMP伝送の適合性について判断するステップDと、を含む。
 実施形態では、前記ステップDは、前記基地局が、前記タイミング差が第1の閾値以下である場合に、前記CoMP伝送を前記ユーザ端末に適用する制御を行うステップと、前記基地局が、前記タイミング差が前記第1の閾値を超える場合に、前記CoMP伝送を前記ユーザ端末に適用しない制御を行うステップと、を含む。
 実施形態では、前記ステップDは、前記基地局が、前記第1の閾値として、前記無線信号に含まれるガード区間の長さに対応する値を設定するステップをさらに含む。
 実施形態では、前記ステップDは、前記基地局が、前記第1の閾値として、コアネットワークから指定された値、又は基地局間ネゴシエーションにより決定された値を設定するステップをさらに含む。
 実施形態では、前記基地局が、前記報告情報の送信を制御するための設定情報を前記ユーザ端末に送信するステップをさらに含む。
 実施形態では、前記ステップBは、前記ユーザ端末が、前記タイミング差が第2の閾値を超えたことをトリガとして、前記報告情報を前記サービングセルに送信するステップを含む。
 実施形態では、前記ステップBは、前記ユーザ端末が、前記タイミング差が第3の閾値を下回ったことをトリガとして、前記報告情報を前記サービングセルに送信するステップを含む。
 実施形態では、前記ステップBは、前記ユーザ端末が、前記複数の無線信号のうち受信電力が高い方からn個(n≧2)の無線信号のそれぞれの受信タイミングを測定するステップと、前記ユーザ端末が、前記測定した受信タイミングに基づいて、前記報告情報を前記サービングセルに送信するステップと、を含む。
 実施形態では、前記ステップBは、前記ユーザ端末が、前記サービングセルを他のセルに切り替えたことをトリガとして、前記報告情報を前記他のセルに送信するステップを含む。
 実施形態では、前記ステップBは、前記ユーザ端末が、前記ユーザ端末における受信電力が最も高い無線信号に対応するセルが他のセルに切り替わったことをトリガとして、前記サービングセル及び前記他のセルのそれぞれのセル識別子を含んだ前記報告情報を前記サービングセルに送信するステップを含む。
 実施形態では、前記通信制御法は、前記基地局が、前記報告情報から求められる前記タイミング差に基づいて、前記ユーザ端末に対するデータ送信タイミングを調整するステップをさらに含む。
 実施形態に係るユーザ端末は、複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて、前記複数のセルに含まれるサービングセルとの接続を確立する。前記ユーザ端末は、前記複数のセルのそれぞれが送信する無線信号からなる複数の無線信号を受信する受信部と、前記複数の無線信号のそれぞれの受信タイミング又は前記受信タイミングのタイミング差を示す報告情報を前記サービングセルに送信する送信部と、を備える。
 実施形態に係る基地局は、複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて、ユーザ端末のサービングセルを管理する。前記基地局は、前記複数のセルのそれぞれが送信する無線信号からなる複数の無線信号のそれぞれの受信タイミング又は前記受信タイミングのタイミング差を示す報告情報を、前記ユーザ端末から受信する受信部と、前記報告情報に基づいて、前記ユーザ端末に対する前記CoMP伝送の適合性について判断する制御部と、を備える。
 [実施形態]
 以下、図面を参照して、3GPP規格に準拠して構成される移動通信システム(LTEシステム)にD2D通信を導入する場合の実施形態を説明する。
 (LTEシステム)
 図1は、本実施形態に係るLTEシステムの構成図である。図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10は無線アクセスネットワークに相当し、EPC20はコアネットワークに相当する。E-UTRAN10及びEPC20は、LTEシステムのネットワークを構成する。
 UE100は、移動型の通信装置であり、サービングセルとの無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。各eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、複数のMME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。MME/S-GW300により構成されるEPC20は、eNB200を収容する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、及び割当リソースブロックを決定するスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御メッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態(RRC connected state)であり、そうでない場合、UE100はアイドル状態(RRC idle state)である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアからなる無線リソース単位は、リソースエレメント(RE)と称される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主にユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。
 下りリンクにおいて、各サブフレームには、セル固有参照信号(CRS)及び/又はチャネル状態情報用参照信号(CSI-RS)等の参照信号が分散して配置される。参照信号は、所定の直交信号系列により構成され、かつ、所定のリソースエレメントに配置される。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主にユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 (実施形態に係る動作)
 本実施形態に係るLTEシステムは、CoMP伝送の一種であるJP(Joint Processing)-CoMPをサポートする。JP-CoMPは、UE100に送信するデータをCoMP協働セットにおける複数のポイントで利用可能な方式である。
 下りリンクのJP-CoMPには、2つの方式がある。一つは、複数のポイントが同一の無線リソースを使用してユーザ端末に対して一斉に送信を行うJT(Joint Transmission)である。もう一つは、複数のポイントが同一の無線リソースを確保してユーザ端末に対して選択的に送信を行うDPS(Dynamic Point Selection)である。
 (1)動作環境
 図6は、本実施形態に係る動作環境を示す図である。図6に示すように、eNB200-1と、eNB200-1と隣接するeNB200-2と、が設置されている。eNB200-1のセル1及びeNB200-2のセル2は、同種のセル(例えば、マクロセル)である。UE100は、セル1及びセル2の境界領域に位置する。
 UE100は、セル1において接続状態にある。すなわち、セル1は、UE100のサービングセル(CoMPにおいては、「アンカーセル」とも称される)である。UE100は、セル1のカバレッジ端部(セルエッジ)に位置するため、セル1との良好な無線通信を行うことが困難である。
 このような動作環境において、JP-CoMPをUE100に適用することにより、UE100の受信品質を改善できる。例えば、JTにより、eNB200-1及び200-2が同一のデータを同時にUE100に送信する。これにより、UE100においてデータが合成されて、受信品質を改善できる。
 図7は、本実施形態に係る他の動作環境を示す図である。図7に示すように、セル1及びセル2は、セルサイズの異なる異種セルである。例えば、セル1はピコセルであり、セル2はマクロセルである。セル1は、セル2のカバレッジ内に設けられる。
 UE100は、セル1において接続状態にある。すなわち、セル1は、UE100のサービングセルである。UE100は、セル1のカバレッジ端部(セルエッジ)に位置する。
 このような動作環境においては、eNB200-2とUE100との間の伝搬遅延時間は、eNB200-1とUE100との間の伝搬遅延時間に比べて大幅に長い。よって、eNB200-1及び200-2が同一のデータを同時にUE100に送信しても、UE100における各データの受信タイミングが揃わない。
 特に、各データの受信タイミング差がガード区間長(CP長)を超えると、受信したデータを復号困難になる。具体的には、シンボル間干渉により当該シンボルが復調困難になる、又はシンボル間干渉により当該シンボル前後のシンボルが復調困難になる。従って、このような動作環境においては、JP-CoMPを適用しても、却ってUE100の受信品質が劣化することがある。
 (2)動作概要
 本実施形態では、以下の手順により、JP-CoMPの適用可否を判断する。
 ステップA:UE100は、eNB200-1(セル1)が送信する参照信号(以下、「参照信号1」という)と、eNB200-2(セル2)が送信する参照信号(以下、「参照信号2」という)と、を受信する。
 ステップB:UE100は、参照信号1及び2の受信タイミング差Δtを測定し、受信タイミング差Δtを示すタイミング報告情報をeNB200-1に送信する。ここで、UE100は、例えば、参照信号1の受信タイミングを基準として、参照信号2の受信タイミングのずれ量を受信タイミング差Δtとして測定する。
 ステップBに先立ち、eNB200-1は、タイミング報告情報の送信を制御するための報告設定情報をUE100に送信してもよい。タイミング報告情報及び報告設定情報のそれぞれは、RRCレイヤのメッセージ(RRCメッセージ)に含めることができる。
 UE100からeNB200-1へのタイミング報告情報の送信は、周期的(periodic)であってもよく、イベントトリガであってもよい。また、報告設定情報により、周期的又はイベントトリガの何れかを指定してもよい。イベントトリガは様々なトリガ種別を取り得るため、報告設定情報によりイベントトリガ種別を指定してもよい。イベントトリガ種別の具体例については後述する。
 ステップC:eNB200-1は、UE100からのタイミング報告情報を受信する。
 ステップD:eNB200-1は、タイミング報告情報が示す受信タイミング差Δtに基づいて、UE100に対するJP-CoMPの適合性について判断する。本実施形態では、受信タイミング差Δtが第1の閾値以下である場合、JP-CoMPをUE100に適用する制御を行う。これに対し、受信タイミング差Δtが第1の閾値を超える場合、JP-CoMPをUE100に適用しない制御を行う。
 eNB200-1は、第1の閾値として、ガード区間の長さ(CP長)に対応する値を設定する。或いは、eNB200-1は、第1の閾値として、コアネットワーク(EPC20)から指定された値、又はeNB200-2とのネゴシエーションにより決定された値を設定してもよい。
 本実施形態では、UE100とのJP-CoMPを開始するか否かの判断を行うケースを主として説明する。但し、UE100とのJP-CoMPを開始した後、JP-CoMPを継続するか否か(中止するか否か)の判断を行ってもよい。
 このように、受信タイミングのずれ量(受信タイミング差Δt)が許容範囲内である場合にのみJP-CoMPを適用することにより、JP-CoMPによるUE100の受信品質の劣化を回避できる。
 (3)イベントトリガ種別
 本実施形態では、タイミング報告情報のイベントトリガ種別として、以下の4つを規定する。
 第1のトリガ種別は、UE100において、受信タイミング差Δtが第2の閾値を超えたというトリガ種別である。UE100は、受信タイミング差Δtが第2の閾値を超えたことをトリガとして、タイミング報告情報をサービングセルに送信する。eNB200-1は、報告設定情報により第2の閾値を指定してもよい。
 第2のトリガ種別は、UE100において、受信タイミング差Δtが第3の閾値を下回ったというトリガ種別である。UE100は、受信タイミング差Δtが第3の閾値を下回ったことをトリガとして、タイミング報告情報をサービングセルに送信する。eNB200-1は、報告設定情報により第3の閾値を指定してもよい。
 第3のトリガ種別は、UE100において、サービングセルを他のセルに切り替えた(すなわち、ハンドオーバを行った)というトリガ種別である。UE100は、サービングセルを他のセルに切り替えたことをトリガとして、タイミング報告情報を新たなサービングセルに送信する。
 第4のトリガ種別は、UE100における受信電力(RSRP;Reference Signal Received Power)が最も高い参照信号に対応するセルが他のセルに切り替わったというトリガ種別である。UE100は、RSRPが最も高い参照信号に対応するセルが他のセルに切り替わったことをトリガとして、タイミング報告情報をサービングセルに送信する。この場合、UE100は、サービングセル及び当該他のセル(RSRPが最も高い参照信号に対応するセル)のそれぞれのセル識別子をタイミング報告情報に含めてもよい。
 (4)動作シーケンス
 図8は、本実施形態に係る動作の具体例を示す動作シーケンス図である。ここでは、イベントトリガでタイミング報告情報を送信する場合を例示する。
 図8に示すように、ステップS101において、EPC20は、第1の閾値を示す情報をeNB200-1に送信する。eNB200-1は、EPC20から受信した第1の閾値を記憶する。
 ステップS102において、UE100は、eNB200-1のセル1とのRRC接続を確立する。但し、UE100は、ステップS104まではアイドル状態であってもよい。
 ステップS103において、CoMP協働セットを構成するポイント(セル又はeNB)の候補を示す情報をeNB200-1及び200-2に送信する。ここでは、eNB200-1(セル1)及び200-2(セル2)がCoMP協働セット候補として指定される。
 ステップS104において、eNB200-1は、CoMP協働セット候補に含まれるeNB200-1(セル1)及び200-2(セル2)に対するタイミング差測定を要求するために、報告設定情報をUE100に送信する。報告設定情報は、セル1及び2のそれぞれのセル識別子を含む。また、報告設定情報は、イベントトリガのトリガ種別を示す情報を含んでもよい。
 ステップS105において、UE100は、eNB200-1(セル1)が送信する参照信号1と、eNB200-2(セル2)が送信する参照信号2と、を受信する。
 ステップS106において、UE100は、参照信号1及び2の受信タイミング差Δtを測定する。
 ステップS104でトリガ種別を指定しない場合、ステップS107においてeNB200-1は、報告設定情報として、トリガ種別を示す情報をUE100に送信する。或いは、トリガ種別を変更する場合、ステップS107においてeNB200-1は、報告設定情報として、変更後のトリガ種別を示す情報をUE100に送信してもよい。
 イベントトリガ及びトリガ種別が設定されている場合(ステップS108;Yes)で、かつ、トリガ種別に対応するイベントが発生した場合(ステップS109;Yes)、ステップS110において、UE100は、タイミング報告情報をeNB200-1に送信する。UE100は、タイミング報告情報を複数回送信してもよい。
 ステップS111において、eNB200-1は、タイミング報告情報が示す受信タイミング差Δtに基づいて、UE100に対するJP-CoMPの適合性について判断する。ここでは、受信タイミング差Δtが第1の閾値以下であり、eNB200-1はJP-CoMPをUE100に適用する制御を行う。例えば、eNB200-1は、JP-CoMPのためにeNB200-2及びEPC20とのネゴシエーションを行う。
 ステップS112において、eNB200-1及び200-2は、JP-CoMPによりデータをUE100に送信する。
 [実施形態の変更例1]
 上述した実施形態では、CoMP協働セット候補が2つのeNB(2つのセル)である一例を説明したが、セル配置状況によってはCoMP協働セット候補が多数になり得る。
 よって、UE100は、複数の参照信号のうち、RSRPが高い方からn個(n≧2)の参照信号のそれぞれの受信タイミングを測定し、残りの参照信号については受信タイミングの測定対象から除外してもよい。eNB200-1は、報告設定情報により、nの値を指定してもよい。
 例えば、nの値が“2”である場合、UE100は、3つ以上の参照信号を受信しても、最もRSRPの高い参照信号と次にRSRPの高い参照信号とについてのみ受信タイミングを測定する。従って、UE100の処理負荷を削減できる。
 [実施形態の変更例2]
 上述した実施形態では、eNB200-1は、タイミング報告情報が示す受信タイミング差Δtに基づいて、UE100に対するJP-CoMPの適合性について判断していた。
 しかしながら、タイミング報告情報は、JP-CoMPの適合性判断以外の用途にも利用可能である。具体的には、タイミング報告情報は、eNB200におけるデータ送信タイミングの調整に利用できる。例えば、eNB200-1又はeNB200-2は、タイミング報告情報により示されるΔtを自らの送信タイミングに適用する。また、Δtは、eNB200間で共有されてもよい。
 [その他の実施形態]
 この開示の一部をなす記載及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 例えば、UE100は、タイミング報告情報として、参照信号1及び2の受信タイミング差Δtを示す情報を送信するのではなく、参照信号1及び2のそれぞれの受信タイミングを示す情報を送信してもよい。この場合、eNB200-1において、参照信号1及び2のそれぞれの受信タイミングから受信タイミング差Δtを算出すればよい。
 また、上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。また、上述した実施形態及び変更例は、組み合わせることが可能である。したがって、本発明の技術的範囲は、上述の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められる。
 なお、米国仮特許出願第61/805,745号(2013年3月27日出願)の全内容が、参照により、本願に組み込まれている。
 本発明によれば、CoMP伝送を適切に行うことができる通信制御方法、ユーザ端末、及び基地局を提供することができる。

Claims (13)

  1.  複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     前記複数のセルに含まれるサービングセルとの接続を確立するユーザ端末が、前記複数のセルのそれぞれが送信する無線信号からなる複数の無線信号を受信するステップAと、
     前記ユーザ端末が、前記複数の無線信号のそれぞれの受信タイミング又は前記受信タイミングのタイミング差を示す報告情報を前記サービングセルに送信するステップBと、
     前記サービングセルを管理する基地局が、前記ユーザ端末からの前記報告情報を受信するステップCと、
     前記基地局が、前記報告情報から求められる前記タイミング差に基づいて、前記ユーザ端末に対する前記CoMP伝送の適合性について判断するステップDと、を含むことを特徴とする通信制御方法。
  2.  前記ステップDは、
     前記基地局が、前記タイミング差が第1の閾値以下である場合に、前記CoMP伝送を前記ユーザ端末に適用する制御を行うステップと、
     前記基地局が、前記タイミング差が前記第1の閾値を超える場合に、前記CoMP伝送を前記ユーザ端末に適用しない制御を行うステップと、を含むことを特徴とする請求項1に記載の通信制御方法。
  3.  前記ステップDは、前記基地局が、前記第1の閾値として、前記無線信号に含まれるガード区間の長さに対応する値を設定するステップをさらに含むことを特徴とする請求項2に記載の通信制御方法。
  4.  前記ステップDは、前記基地局が、前記第1の閾値として、コアネットワークから指定された値、又は基地局間ネゴシエーションにより決定された値を設定するステップをさらに含むことを特徴とする請求項2に記載の通信制御方法。
  5.  前記基地局が、前記報告情報の送信を制御するための設定情報を前記ユーザ端末に送信するステップをさらに含むことを特徴とする請求項1に記載の通信制御方法。
  6.  前記ステップBは、前記ユーザ端末が、前記タイミング差が第2の閾値を超えたことをトリガとして、前記報告情報を前記サービングセルに送信するステップを含むことを特徴とする請求項1に記載の通信制御方法。
  7.  前記ステップBは、前記ユーザ端末が、前記タイミング差が第3の閾値を下回ったことをトリガとして、前記報告情報を前記サービングセルに送信するステップを含むことを特徴とする請求項1に記載の通信制御方法。
  8.  前記ステップBは、
     前記ユーザ端末が、前記複数の無線信号のうち受信電力が高い方からn個(n≧2)の無線信号のそれぞれの受信タイミングを測定するステップと、
     前記ユーザ端末が、前記測定した受信タイミングに基づいて、前記報告情報を前記サービングセルに送信するステップと、を含むことを特徴とする請求項1に記載の通信制御方法。
  9.  前記ステップBは、前記ユーザ端末が、前記サービングセルを他のセルに切り替えたことをトリガとして、前記報告情報を前記他のセルに送信するステップを含むことを特徴とする請求項1に記載の通信制御方法。
  10.  前記ステップBは、前記ユーザ端末が、前記ユーザ端末における受信電力が最も高い無線信号に対応するセルが他のセルに切り替わったことをトリガとして、前記サービングセル及び前記他のセルのそれぞれのセル識別子を含んだ前記報告情報を前記サービングセルに送信するステップを含むことを特徴とする請求項1に記載の通信制御方法。
  11.  前記基地局が、前記報告情報から求められる前記タイミング差に基づいて、前記ユーザ端末に対するデータ送信タイミングを調整するステップをさらに含むことを特徴とする請求項1に記載の通信制御方法。
  12.  複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて、前記複数のセルに含まれるサービングセルとの接続を確立するユーザ端末であって、
     前記複数のセルのそれぞれが送信する無線信号からなる複数の無線信号を受信する受信部と、
     前記複数の無線信号のそれぞれの受信タイミング又は前記受信タイミングのタイミング差を示す報告情報を前記サービングセルに送信する送信部と、を備えることを特徴とするユーザ端末。
  13.  複数のセルが協調するCoMP伝送をサポートする移動通信システムにおいて、ユーザ端末のサービングセルを管理する基地局であって、
     前記複数のセルのそれぞれが送信する無線信号からなる複数の無線信号のそれぞれの受信タイミング又は前記受信タイミングのタイミング差を示す報告情報を、前記ユーザ端末から受信する受信部と、
     前記報告情報に基づいて、前記ユーザ端末に対する前記CoMP伝送の適合性について判断する制御部と、を備えることを特徴とする基地局。
PCT/JP2014/058653 2013-03-27 2014-03-26 通信制御方法、ユーザ端末、及び基地局 WO2014157397A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361805745P 2013-03-27 2013-03-27
US61/805,745 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014157397A1 true WO2014157397A1 (ja) 2014-10-02

Family

ID=51624360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058653 WO2014157397A1 (ja) 2013-03-27 2014-03-26 通信制御方法、ユーザ端末、及び基地局

Country Status (1)

Country Link
WO (1) WO2014157397A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538735A (ja) * 2015-11-24 2018-12-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおけるシグナリングを管理するためのワイヤレスデバイス、無線ネットワークノード、及びそれらにおいて実行される方法
WO2022208698A1 (ja) * 2021-03-30 2022-10-06 株式会社Nttドコモ 端末及び通信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504792A (ja) * 1998-02-17 2002-02-12 ノキア ネットワークス オサケユイチア 電気通信システムにおける測定報告
JP2010258693A (ja) * 2009-04-23 2010-11-11 Sharp Corp マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
WO2012081150A1 (ja) * 2010-12-17 2012-06-21 日本電気株式会社 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体
JP2013021380A (ja) * 2011-07-07 2013-01-31 Sony Corp 通信装置、通信方法、プログラムおよび通信システム
WO2013024522A1 (ja) * 2011-08-12 2013-02-21 富士通株式会社 無線通信システム及び通信方法
JP2013048435A (ja) * 2008-12-26 2013-03-07 Sharp Corp 処理部、端末装置、端末装置の処理方法、通信システム、基地局装置及び基地局装置の処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002504792A (ja) * 1998-02-17 2002-02-12 ノキア ネットワークス オサケユイチア 電気通信システムにおける測定報告
JP2013048435A (ja) * 2008-12-26 2013-03-07 Sharp Corp 処理部、端末装置、端末装置の処理方法、通信システム、基地局装置及び基地局装置の処理方法
JP2010258693A (ja) * 2009-04-23 2010-11-11 Sharp Corp マルチキャリア送信装置、受信装置、通信システム、送信方法、受信方法及びプログラム
WO2012081150A1 (ja) * 2010-12-17 2012-06-21 日本電気株式会社 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、および非一時的なコンピュータ可読媒体
JP2013021380A (ja) * 2011-07-07 2013-01-31 Sony Corp 通信装置、通信方法、プログラムおよび通信システム
WO2013024522A1 (ja) * 2011-08-12 2013-02-21 富士通株式会社 無線通信システム及び通信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538735A (ja) * 2015-11-24 2018-12-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおけるシグナリングを管理するためのワイヤレスデバイス、無線ネットワークノード、及びそれらにおいて実行される方法
WO2022208698A1 (ja) * 2021-03-30 2022-10-06 株式会社Nttドコモ 端末及び通信方法

Similar Documents

Publication Publication Date Title
JP6295316B2 (ja) 基地局及びプロセッサ
US9781587B2 (en) Base station, user terminal, and processor
US9629057B2 (en) Mobile communication system, base station, processor, and communication control method
JP6125939B2 (ja) ユーザ端末及びプロセッサ
JP6224861B2 (ja) ユーザ端末、プロセッサ、及び方法
WO2014208559A1 (ja) 通信制御方法、基地局及びユーザ端末
US10382570B2 (en) Base station and user terminal
US9991997B2 (en) Mobile communication system, specific base station, and user terminal
JP6501711B2 (ja) 通信制御方法、ネットワーク装置、及び基地局
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
WO2014157397A1 (ja) 通信制御方法、ユーザ端末、及び基地局
WO2015046138A1 (ja) 基地局及びユーザ端末
US20160057792A1 (en) Mobile communication system, base station, and user terminal
WO2014129456A1 (ja) 通信制御方法、基地局及びユーザ端末
EP2981140A1 (en) Mobile communication system, base station, and user terminal
JP2017143565A (ja) 移動通信システム、基地局、プロセッサ及びユーザ端末
JP2014220777A (ja) 通信制御方法及びセルラ基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP