WO2012085447A1 - Procédé de dosage d'anticorps dirigés contre le facteur viii - Google Patents

Procédé de dosage d'anticorps dirigés contre le facteur viii Download PDF

Info

Publication number
WO2012085447A1
WO2012085447A1 PCT/FR2011/053089 FR2011053089W WO2012085447A1 WO 2012085447 A1 WO2012085447 A1 WO 2012085447A1 FR 2011053089 W FR2011053089 W FR 2011053089W WO 2012085447 A1 WO2012085447 A1 WO 2012085447A1
Authority
WO
WIPO (PCT)
Prior art keywords
factor viii
fragments
human factor
antibody
directed against
Prior art date
Application number
PCT/FR2011/053089
Other languages
English (en)
Inventor
Jean-Luc Plantier
Original Assignee
Lfb-Biotechnologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lfb-Biotechnologies filed Critical Lfb-Biotechnologies
Publication of WO2012085447A1 publication Critical patent/WO2012085447A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • G01N33/686Anti-idiotype
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/745Assays involving non-enzymic blood coagulation factors
    • G01N2333/755Factors VIII, e.g. factor VIII C [AHF], factor VIII Ag [VWF]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the invention relates to a method for identifying a therapeutic treatment for suppressing the immune response against human factor VIII in a hemophiliac patient.
  • the invention also relates to a method of monitoring a therapeutic treatment aimed at suppressing the immune response against human factor VIII in a haemophiliac patient.
  • Hemophilia is a constitutional abnormality of blood coagulation related to a deficiency of one of the factors of coagulation. These defects are due to a deficiency of one of the following factors: XII, XI, IX or VIII, or to the presence of anticoagulants against one of these factors.
  • the clinical manifestations of the disease are proportional to the deficiency of the coagulation factor. They correspond to the haemorrhages that can reach each organ, in particular the joints (hemarthroses) and the muscles (hematomas).
  • the disease can be severe with manifestations from the first year of life or mild with very few manifestations.
  • hemophilia related to the deficit coagulation factor There are several types of hemophilia related to the deficit coagulation factor:
  • hemophilia A (classic haemophilia) corresponds to a mutation of the factor VIII gene
  • hemophilia B (or Christmas disease) corresponds to a mutation of the factor IX gene
  • Hemophilia C (or Rosenthal's Disease) is a mutation in the factor XI gene.
  • hemophilia A is due to factor VIII deficiency due to the mutation of the corresponding gene or promoter.
  • Factor VIII (or anti-hemophilic factor A) is present in the plasma as a trace, and plays a role of cofactor in the cascade of coagulation.
  • the analysis of the factor VIII molecule shows that it consists of three distinct domains A, B, C.
  • the A domain of 330 AA is made of three copies A1, A2, A3.
  • Domain B 983 AA is unique.
  • Domain C consists of two C1, C2 segments of 150 AA each.
  • the sequence of the different domains from N- to C-terminal is A1-A2-B-A3-C1-C2.
  • factor VIII inhibitory antibodies are currently either eliminated by inducing an immune tolerance protocol, which consists of injecting massive doses of factor VIII for long periods, or by purifying the patient's blood by dialysis (Astermark Thromb Res 2010 nov Guillet Brit J Haematol 2001.114 p837). Such a method is very heavy for the patient, requires time and is relatively expensive.
  • idiotypes Fulcher, Proc Natl Acad Sci USA 1985, 82 p7728.
  • idiotype is meant a conformation characteristic of the variable part of an immunoglobulin (Ig), which is specific to this Ig clone and which allows the specific recognition of an antigen.
  • the term "major factor VIII inhibitory antibody” means the inhibitory antibody present in the greatest amount or having the strongest affinity and / or specificity for factor VIII. This is why the Applicant has worked on the development of a new method for identifying a therapeutic treatment aimed at suppressing the immune response against human factor VIII in a hemophiliac patient. This method makes it possible to easily and rapidly identify inhibitory anti-factor VIII antibodies in a patient according to their idiotype; the treatment of patients is therefore greatly facilitated.
  • the subject of the present invention is therefore a method for identifying a therapeutic treatment aimed at suppressing the immune response directed against human factor VIII in a haemophiliac patient (hereinafter referred to as the "identification process"), comprising the following successive steps :
  • step b) selecting and / or preparing at least one anti-idiotypic antibody directed against at least one main inhibitory antibody identified in step b).
  • the subject of the present invention is also a method of monitoring a therapeutic treatment aimed at suppressing the immune response directed against human factor VIII in a haemophiliac patient (hereinafter the "monitoring method"), comprising a specific dosage step, in a sample of said patient, anti-idiotypic antibody obtained in step c) above.
  • antibody against human factor VIII is meant an antibody that specifically recognizes and binds to an epitope of human factor VIII.
  • human factor VIII epitope is meant the site of attachment of the antibody to human factor VIII.
  • the epitope may consist of a domain of said human factor VIII (A1, A2, A3, B, C1 or C2), at least one fragment of a domain, or at least one fragment of factor VIII.
  • the antibody against human factor VIII may be an antibody that specifically recognizes and binds to the A1 domain of human factor VIII.
  • anti-idiotypic antibody throughout the present application is meant an antibody that specifically recognizes the idiotype of a given antibody.
  • An anti-idiotypic A antibody is therefore an anti-antibody which specifically recognizes and binds to an antibody B at the characteristic conformation of its variable part, which is its own.
  • the patient sample used in the methods according to the invention is preferably a blood sample. It may consist of blood, plasma, or serum.
  • plasma blood freed of platelets, white blood cells (leucocytes) and erythrocytes.
  • serum plasma freed from fibrin.
  • the identification method according to the invention makes it possible to choose the best possible therapeutic treatment, with a view to suppressing the immune response directed against human factor VIII in a haemophiliac patient.
  • the process according to the invention is an in vitro process. It comprises a step a) of specific dosage of inhibitory antibodies against human factor VIII.
  • specific dosage of anti-human factor VIII antibodies is meant an assay which accurately quantifies, and with good affinity, the inhibitory antibodies against human factor VIII.
  • This assay is preferably an immunoassay (or immunoassay).
  • immunoassays conventionally used, with or without competition, as described for example in "The Immunoassay Handbook", David Wild, 2005.
  • the specific assay of step a) comprises, as reagents, fragments of human factor VIII.
  • Human factor VIII fragments may be selected from human A1, A2, A3, B, C1 and C2 fragments.
  • Such an assay thus comprises mixing the human factor VIII fragments with the patient's sample - which comprises the inhibitory antibodies to human factor VIII - and then revealing the complexes formed human factor VIII fragments / antibodies inhibitors anti-factor VIII human.
  • the specific assay of step a) comprises the following steps: i) the preparation of fragments of human factor VIII, said fragments being fixed covalently or by affinity on a plate or on beads, such as polystyrene beads;
  • the incubation is carried out for a time of between 30 minutes and 16 hours, and at a temperature of between 4 ° C. and 40 ° C., preferably between 20 ° and 38 ° C.
  • the labeling can be done using a radioactive compound (radiolabeling), an enzyme (enzymoimmunoassay or ELISA), fluorescence (fluoroimmunoassay), or luminescence (luminoimmunoassay).
  • the secondary antibody may be a human anti-IgG antibody, for example a goat anti-human IgG antibody.
  • the fragments prepared in step a) may carry a label which makes it possible to purify and fix them, in particular on a plate or at the bottom of a well.
  • the specific assay of step a) comprises, as reagents, anti-idiotypic antibodies directed against the inhibitory antibodies directed against human factor VIII (or "anti-human factor VIII antibody”), or fragments of these antibodies.
  • said anti-idiotypic antibodies may be present in complete form or in the form of fragments.
  • the fragments are selected from formats that include at least 6 CDRs, such as Fab, (Fab ') 2 and Fv ..
  • Said anti-idiotypic antibodies may be natural or recombinant.
  • Such an assay thus comprises mixing the anti-idiotypic antibodies, or fragments thereof, directed against the anti-human factor VIII antibodies with the patient's sample - which comprises the anti-human factor VIII antibodies - and then revealing the complexes formed.
  • anti-idiotypic antibodies or their fragments / antibodies to human factor VIII Preferably, the specific assay of step a) comprises the following steps: i) the preparation of the anti-idiotypic antibodies, or their fragments, directed against the anti-human factor VIII antibodies, said anti-idiotypic antibodies or their fragments being covalently or affinity attached to a plate or beads, such as polystyrene beads;
  • the incubation is carried out for a time of between 30 minutes and 24 hours, and at a temperature of between 4 ° C. and 40 ° C., preferably between 20 ° and 38 ° C.
  • the secondary antibody may be a human anti-IgG antibody, for example a goat anti-human IgG antibody.
  • the assay performed in step a) is an ELISA assay.
  • the ELISA assay uses as the labeling enzyme an enzyme selected from alkaline phosphatase, peroxidase, ⁇ -galactosidase and glucose 6-phosphate dehydrogenase.
  • step a) the amount of each human anti-factor VIII antibody is determined.
  • step b) the antibody or antibodies directed against the human factor VIII said "principal (s)".
  • the patient may indeed present a single main antibody, or several main antibodies.
  • major antibody identified in step b) is meant a human anti-factor VIII antibody which is present in greater in the sample of said patient or having the strongest affinity and / or specificity.
  • the affinity of an antibody for an antigen is defined by the equilibrium constant K, which is the ratio (concentration of antigen / antibody complexes) / [(concentration of antibody) * (antigen concentration)].
  • K concentration of antigen / antibody complexes
  • the specificity of an antibody for an antigen corresponds to the property that an antibody has to bind to that antigen, taking into account the possible cross-reactivity of said antibody for other antigens. The lower the cross-reactivity, the stronger the specificity. It is from this main antibody against factor VI II that an anti-idiotypic antibody can be selected
  • the anti-idiotypic antibody directed against this main antibody is selected.
  • the preparation of the anti-idiotypic antibody has been made according to standard techniques well known to those skilled in the art, for example by injection into the mouse of the Fab domain of the main antibody in the presence of adjuvants and by generation of monoclonal antibodies directed against this idiotype.
  • Anti-idiotypes from each of the factor VI domains will have been previously screened for their ability to block inhibitors in number and quality (Giles et al Blood 2004, 103 p2618).
  • anti-idiotypic antibodies that can be used according to the invention, mention may be made of:
  • the antibodies described in the application WO 2007/051926 which are directed against the inhibitory antibodies of the C2 domain of human factor VI I.
  • the EMAB565 antibody which may be produced by the clone R565, deposited on October 25, 2005 under the number -351 0, is used in the National Collection of Culture of Microorganisms (GNCM, 25 rue du Dondel Roux, 75724 Paris cedex 1 5);
  • the antibodies described in application EP 1 749 537 which are directed against the inhibitory antibodies of the A2 domain of human factor VI II.
  • the antibody which may be produced by clone 30D1 deposited under the number 1-3450 is used in the National Collection of Culture of Microorganisms (GNCM, 25 rue du Dondel Roux, 75724 Paris cedex 1 5), or again
  • the antibodies described in patent application WO 2007/096536 which are directed against the inhibitory antibodies of the C1 domain of human factor VI II.
  • the 18B6 antibody which can be produced by clone 18B6, deposited on January 24, is used. 2008, under number 1-3559 at the. National Collection of Culture of Croorganisms (CNC, 25 rue du Dondel Roux, 75724 Paris cedex 15).
  • the identification method according to the invention makes it possible to select the anti-idiotypic antibody adapted to each patient, and thus to personalize the treatment in order to lighten it.
  • the present invention also relates to the monitoring method. This method makes it possible to control the bioavailability of the anti-idiotypic antibody administered to the patient.
  • the invention also relates to the use of the anti-idiotypic antibody obtained in the identification process for the treatment of hemophilia.
  • the assay of this anti-idiotypic antibody in the monitoring method comprises, as reagents, whole anti-human factor VIII antibodies or anti-human factor VIII antibody fragments, such as Fabs directed against factor VIII human.
  • the anti-human factor VIII antibody fragments are chosen in particular from the formats which comprise at least the 6 CDRs, such as the Fab, (Fab ') 2 and Fv.
  • Said anti-human factor VIII antibodies and their fragments may be natural or recombinant. They may include a label that allows in particular to purify them. They can be produced in a prokaryotic or eukaryotic system.
  • Fab is meant an antibody whose constant region, including the hinge region, has been enzymatically cleaved, or which has been produced without this region; Fab retains one of two antigen binding sites.
  • the Fab fragments consist of a light chain that is covalently linked to a portion of the heavy chain called Fd.
  • Fab against human factor VIII is meant an Fab that specifically recognizes and binds to an epitope of human factor VIII.
  • Fv is meant the N-terminal portion of a Fab fragment consisting of the variable domains of a heavy chain and a light chain.
  • Such an assay thus comprises the mixture of whole anti-human factor VIII antibodies or Fabs directed against human factor VIII with the sample of the patient being treated. - which includes the anti-idiotypic antibodies -, then the revelation of complexes formed antibody or Fab anti-human factor VIII / anti-idiotypic antibodies.
  • the specific assay of the anti-idiotypic antibodies comprises the following steps:
  • the incubation is carried out for a time of between 30 minutes and 24 hours, and at a temperature of between 4 ° C. and 40 ° C., preferably between 20 ° and 38 ° C.
  • the labeling can be done using a radioactive compound (radiolabeling), an enzyme (enzymoimmunoassay or ELISA), fluorescence (fluoroimmunoassay), or luminescence (luminoimmunoassay).
  • the secondary antibody may be a human anti-IgG antibody, for example a goat anti-human IgG antibody.
  • Fragments of FVIII (25 ng / well) were fixed overnight in 50 mM CAPS pH 9.5. The wells were blocked with 2% Tween-20 for 1 h. Dilutions of plasma depleted in FVIII (Stago) and reconstituted with an anti-FVIII antibody (100 UB / ml final) are incubated for 2 hours at room temperature and the ELISA is revealed after incubation with an anti-mouse IgG antibody coupled to the peroxidase.
  • FIGS 3 and 4 Schematic representation of the 4 expression plasmids pCep4 fragment FVIII
  • Figures 5 and 6 Recognition of factor VIII fragments by hemophilia A plasmas with inhibitors (20 and 21 UB / ml)
  • Fragments of FVIII (50 ng / well) were fixed overnight in 50 mM CAPS pH 9.5. The wells were blocked with 2% Tween-20 for 1 h. Plasma dilutions of hemophilia A with inhibitors (20 and 21 UB / ml) are incubated for 2 hours at room temperature and the ELISA is revealed after incubation with a human anti-IgG antibody coupled to peroxidase. Antibody dilutions are given in Bethesda units.
  • Expression vectors are constructed to produce the different domains of FVIII (A1, A2, A3C1 and C2) in the HEK293 FreeStyle (Invitrogen) line. These expression vectors will be constructed on a pCEP4 vector base (reference vector for the HEK293 line, Invitrogen), see FIGS. 3 and 4.
  • the MB7 signal peptide (WO 201 1/1 14063) is added upstream of the sequences. coding to potentiate the expression.
  • Two labels are added downstream of the domains, one to facilitate the purification (6xHIS) and the other to facilitate in particular the presentation (STREP tag) of each domain of FVIII. Both labels are separated by a TEV protein cleavage site.
  • the A1, A3C1 and C2 domains (of protein sequence SEQ ID NO: 1, 3 and 4 respectively, and of nucleic sequence SEQ ID NO: 5, 7 and 8 respectively) are cloned between the XhoI and BamHI sites.
  • the A2 domain (of protein sequence SEQ ID NO: 2, and of nucleic sequence SEQ ID NO: 6) is cloned between the HindIII and XhoI sites.
  • the PCRs are performed with a HiFidelity Taq according to the supplier's indications in 15 cycles maximum and using 100 ng of plasmid.
  • the PCR fragments (1275 bases for A1, 1263 bases for A2, 1731 bases for A3C1, 639 bases for C2) were inserted by ligation into the pCEP4 vector opened by the corresponding restriction enzymes and then transformed into TOP10 bacteria (Invitrogen). .
  • the bacteria were then plated on LB agar plates containing ampicillin to only amplify vector-containing bacteria. expression.
  • the bacterial clones containing an insert of interest encoding an FVIII domain were screened by PCR with primers CMV1 / and T2-MB7 which amplify a 262bp amplicon.
  • PCR-positive clones were sequenced at the domain-encoding cDNA sequence. All the sequences retained were in accordance with the theoretical sequence except for a silent polymorphism which was found in the A1 domain.
  • the fragments were produced in the HEK293 FreeStyle (InVitrogen) line.
  • the line is maintained in F17 medium in the presence of 8 mM L-Glutamine (InVitrogen).
  • the day before transfection the cells are subcultured at 7 ⁇ 10 5 cells / ml.
  • the cells (about 17x10 5 cells / ml) are transfected with 25 kD linear PEI (Sigma) prediluted in Opti-MEM medium (Gibco).
  • the vector / PEI complexes in Opti-MEM are formed by incubation for 20-30 min at room temperature after moderate vortex shaking. The complex is then added to the cells, which are then incubated with shaking at 37 ° C.
  • the supernatants are harvested at D + 5, centrifuged at 1700 rpm / min and filtered at 0.2 ⁇ . If necessary, these filtered supernatants are concentrated by tan filtration using Millipack (Millipore) before being filtered again in a sterilizing manner at 0.2 ⁇ .
  • the proteins are purified on AKTA (GE Healthcare).
  • a volume of 5X sample solution buffer (100 mM phosphate buffer, 2.47M NaCl, 27 mM KCl, 150 mM imidazole, pH 7.4) is added to 4 volumes of concentrated-filtered culture supernatant. .
  • This solution is deposited on a 1 ml HiTrap-Chelating HP (GEHealtcare) column and then the column is washed with equilibration buffer (20 mM phosphate buffer, 495 mM NaCl, 5 mM KCl, 30 mM imidazole, pH 7 , 4) until the return of the baseline in optical density (about 15 column volumes).
  • the fixed proteins are then eluted with the elution buffer (20 mM phosphate buffer, 495 mM NaCl, 5 mM KCl, 500 mM imidazole, pH 7.4).
  • the elution buffer 20 mM phosphate buffer, 495 mM NaCl, 5 mM KCl, 500 mM imidazole, pH 7.4.
  • the fractions containing the purified fragments the latter are analyzed by ELISA and by migration in SDS-PAGE. An aliquot of the fractions was diluted in CAPS buffer 50 mM pH 9.5 and incubated overnight at 4 ⁇ C.
  • the fractions containing the fragments are revealed by ELISA using a sheep anti-factor VIII polyclonal antibody prepared in sheep ( Cedarlane). Fractions containing the fragments are visualized in SDS-PAGE and Page-Blue staining (Thermo Scientific). A mixture of the most concentrated fractions of Factor VIII fragment is made before storage at -80
  • the samples are heated with 5 ⁇ l of Laemmli (4X) loading buffer in a maximum volume of 25 ⁇ l at 100 ° C. for 5 minutes.
  • the samples are deposited on preceeded 4-12% acrylamide gradient gels (NuPage Bis-Tris gel, InVitrogen) and then migrated in MOPS buffer at 200V. After migration, the gel is stained in Blue or transferred to nitrocellulose membrane (Hybond C extra, GE Healthcare) at 42 mA per membrane for 120 min.
  • the membranes are then immunoblot after blocking overnight in PBT buffer (PBS-BSA 1% -Tween 20 0.05%).
  • the antibodies are then added to the optimal PBT dilutions.
  • the blot is revealed in chemiluminescence with a Super Signal West Pico kit (Pierce).
  • the fragments are fixed at 25 ng / well in 50 mM CAPS buffer pH 9.5 overnight at 4 ° C.
  • the wells is saturated with PBS-2% Tween-20 for 1 h at 37 ⁇ C.
  • Monoclonal antibodies (GMA012 (Abcam); ESH4 (American Diagnostica)) or polyclonal (anti-FVIII sheep; Cedarlane) diluted in PBS -Tween-20 0.05% and incubated for 2h at room temperature.
  • the secondary antibody coupled to the peroxidase is incubated for 1 h 30 at room temperature.
  • the signal is revealed by adding TMB (Pierce) and stopped with H 2 S0 4 2M. The reading is performed at 450 nm on a Tecan plate reader.
  • fragment ELISA A protocol identical to the fragment characterization ELISA is used to validate the response of plasmas on the recombinant fragments. Plasmas are used at various concentrations.
  • PCR fragments coding for the factor VIII domains were obtained by enzymatic amplification and recombined with each other following the protocol described in scheme 1.
  • the coding sequences of the fragments were inserted into the pCEP4 expression vector by directional cloning.
  • the coding sequences for the 4 factor VIII fragments with the MB7 signal peptide and carrying the two labels (StrepTag and 6XHis) at 3 'of the construct were obtained and validated by their complete sequencing. Only the sequence of the A1 domain has been found to carry a silent polymorphism (T / A), already described in the public databases.
  • the vectors were then transfected into the suspension line HEK293 Freestyle.
  • the transient transfection rate was monitored by transfection of the pmax-GFP control reporter vector (AMAXA Kit, Lonza). At the time of transfection, cell viability was greater than 95% for all assays. Transfection rates under normal conditions are around 24-29%. Transfection of FVIII fragments does not induce a significant increase in cell mortality since the plasmid-free control shows 95.2% viability at D + 5 while the cells expressing the fragments are between 91 and 93%. .
  • HEK293 cells are transfected with 25kD PEI as described in the material and methods. At day 5, living cells are counted and their viability is calculated. The concentration of the fragments in the culture supernatant is measured by anti-6xHis ELISA. The data are representative of 3 different experiences. The production rates of the fragments, however, remain variable between the different productions but in a close relationship.
  • the culture supernatants are passed through a Ni-NTA column according to the protocol described in the material and methods.
  • the eluted fractions are analyzed by ELISA (not shown) then the positive fractions are separated by SDS-PAGE and stained with Coomassie blue.
  • the purifications of the A2, A3C1 and C2 domains show a majority band at the expected molecular weight (data not shown).
  • the A1 fragment was found in many fractions, including in the column wash fractions. The A1 fragment was therefore diluted to restore the conditions of the load and then ironed on a column.
  • the concentrations of the fragments are measured by reading the direct optical density at 280 nm. The values obtained are presented in Table 3 and correspond to the intensities of the products visualized on gels.
  • the optical densities of the eluates are indicated as well as the volumes of the different pools.
  • the concentrations of the fragments in the pools are indicated following the OD measurement as well as the total amount of fragment obtained.
  • the pools of fragments are separated again by SDS-PAGE and then immunoblot with either an anti-FVIII polyclonal antibody (sheep antibody, Cedarlane) or with two anti-monoclonal antibodies.
  • A2 domain GMA-012; Abcam
  • C2 domain antigen ESH4, American Diagnostica
  • the polyclonal antibody recognizes all the fragments but it preferentially recognizes the A3C1 domain. It should be noted that the contaminating proteins of the A1 domain are not revealed, which demonstrates the specificity of the polyclonal antibody.
  • the two monoclonal antibodies preferentially recognize the domain against which they are directed, but nevertheless give a background noise on other domains of FVIII.
  • the anti-A2 partially recognizes the domain C2, and the anti-domain C2, the domain A1.
  • the generated and purified fragments thus correspond well to the fragments of FVIII expected. They are recognized by anti-FVIII antibodies and migrate to the expected molecular weights.
  • the contaminating products of the A1 domain are not recognized by the polyclonal antibody.
  • this ELISA is (i) to be able to identify in the plasma the presence of VIII inhibitory antibodies, (ii) to characterize the FVIII domains against which they are directed, and (iii) to quantify the presence of these antibodies. .
  • FVIII depleted plasma (Stago) is reconstituted with a polyclonal anti-FVIII sheep antibody (Cedarlane) with a final activity of 100 Bethesda Units / ml. Functional inhibitory activity is previously validated and quantified (data not shown). Cascade dilutions of this reconstituted plasma are then incubated on recombinant fragments of FVIII (25 ng / well) and revealed with sheep anti-lgG antibody coupled to peroxidase.
  • Plasmas have an inhibitory activity of 20 (plasmas 1) and 21 units of Bethesda / ml (plasma 2), respectively.
  • the plasmas were diluted and then deposited on the various fragments previously fixed to the bottom of a 96-well plate.
  • the fixed human antibodies were then detected with peroxidase-coupled human anti-IgG IgG ( Figures 5 and 6). While both plasmas recognize purified recombinant FVIII (Helixate, CSL-Behring) identically, two distinct profiles are obtained on recombinant fragments of FVIII.
  • plasma 1 modestly recognizes fragments A3C1 and A1 while fragments A2, and C2 give a signal similar to albumin, nonspecific.
  • plasma 2 very distinctly recognizes the domains A3C1, A1 and C2.
  • the A2 domain is not better recognized than albumin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention se rapporte à un procédé d'identification et de suivi d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile, comprenant respectivement, le dosage spécifique, dans un échantillon dudit patient, des anticorps inhibiteurs dirigés contre le facteur VIII humain, et le dosage spécifique, dans un échantillon dudit patient, de l'anticorps anti-idiotypique correspondant.

Description

Procédé de dosage d'anticorps dirigés contre le facteur VIII
L'invention concerne un procédé d'identification d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile. L'invention se rapporte également à un procédé de suivi d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile.
L'hémophilie est une anomalie constitutionnelle de la coagulation sanguine en rapport avec un déficit d'un des facteurs de la coagulation. Ces défauts sont dus à une déficience d'un des facteurs suivants : XII, XI, IX ou VIII, ou à la présence d'anticoagulants contre l'un de ces facteurs.
Les manifestations cliniques de la maladie sont proportionnelles au déficit du facteur de la coagulation. Elles correspondent aux hémorragies qui peuvent atteindre chaque organe, en particulier les articulations (hémarthroses) et les muscles (hématomes). La maladie peut être sévère avec manifestations dès la première année de vie ou légère avec très peu de manifestations.
Il existe plusieurs types d'hémophilie en rapport avec le facteur de coagulation déficitaire :
• l'hémophilie A (hémophilie classique) correspond à une mutation du gène du facteur VIII
• l'hémophilie B (ou Christmas disease) correspond à une mutation du gène du facteur IX
• l'hémophilie C (ou Maladie de Rosenthal) correspond à une mutation du gène du facteur XI.
En particulier, l'hémophilie A est due à une déficience en facteur VIII du fait de la mutation du gène ou du promoteur correspondant. Le facteur VIII (ou facteur anti-hémophilique A) est présent dans le plasma à l'état de traces, et joue un rôle de cofacteur dans la cascade de la coagulation. L'analyse de la molécule facteur VIII montre qu'elle est constituée de trois domaines distincts A, B, C. Le domaine A de 330 AA est fait de trois exemplaires A1 , A2, A3. Le domaine B de 983 AA est unique. Le domaine C fait de deux segments C1 , C2 de 150 AA chacun. La séquence des différents domaines, de N- en C-terminal, est A1 -A2- B-A3-C1 -C2. Les traitements actuels de l'hémophilie A ne guérissent pas, mais consistent en l'administration par voie intraveineuse de facteur VIII (FV III) humain permettant d'obtenir une activité coagulante suffisante pour arrêter, voire prévenir, l'hémorragie. Cependant, les injections répétées de facteur VIII chez un patient induisent la production d'alloanticorps qui inhibent l'action du facteur VIII, aussi appelés « inhibiteurs de facteur VIII » ou « anticorps inhibiteurs de facteur VIII » (Sahud et al, Haemophilia 2007, 13, 317- 322, ELISA System for détection of immune responses to factor VIII : a study of 246 samples and corrélation with the Bethesda assay). Ces anticorps inhibiteurs de facteur VIII sont actuellement éliminés soit en induisant un protocole de tolérance immune, qui consiste en l'injection de doses massives de facteur VIII durant des périodes longues, soit en épurant le sang du patient par dialyse (Astermark Thromb Res 2010 nov ; Guillet Brit J Haematol 2001 . 1 14 p837). Une telle méthode est très lourde pour le patient, nécessite du temps et est relativement coûteuse.
Il existe donc un besoin de disposer d'une méthode alternative d'élimination des anticorps inhibiteurs de facteur VIII, qui soit efficace, facile à mettre en place, rapide, et moins invasive pour le patient. Par ailleurs, pour qu'un traitement soit efficace, il est judicieux que ce dernier soit adapté au patient.
On sait que les anticorps inhibiteurs de facteur VI II développés par un même patient sont de plusieurs idiotypes (Fulcher, Proc. Natl. Acad. Sci. USA 1985. 82 p7728). Par idiotype, on entend une conformation caractéristique de la partie variable d'une immunoglobuline (Ig), qui est propre à ce clone d'Ig et qui permet la reconnaissance spécifique d'un antigène.
Aussi, il est intéressant de connaître la nature précise du ou des principaux anticorps inhibiteur(s) de facteur VIII chez un patient donné, afin de traiter ce dernier de façon personnalisée, i.e. avec le ou les anticorps anti-idiotypique(s) dirigé(s) contre le principal anticorps inhibiteur ou les principaux anticorps inhibiteurs de facteur VIII. Comme indiqué ci-après, on entend par « principal anticorps inhibiteur de facteur VIII », l'anticorps inhibiteur présent en quantité la plus grande ou qui possède l'affinité et/ou la spécificité la plus forte pour le facteur VIII. C'est pourquoi la Demanderesse s'est attachée à la mise au point d'un nouveau procédé d'identification d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile. Ce procédé permet d'identifier facilement et rapidement les anticorps inhibiteurs anti-facteur VIII chez un patient selon leur idiotype ; le traitement des patients s'en trouve donc grandement facilité.
La présente invention a donc pour objet un procédé d'identification d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile (ci-après « procédé d'identification »), comprenant les étapes successives suivantes :
a) le dosage spécifique, dans un échantillon dudit patient, des anticorps inhibiteurs dirigés contre le facteur VIII humain ;
b) l'identification du ou des anticorps inhibiteurs principaux dirigés contre le facteur VIII humain ; et
c) la sélection et/ou la préparation d'au moins un anticorps anti-idiotypique dirigé contre au moins un anticorps inhibiteur principal identifié à l'étape b).
Par « étapes successives », on entend que les étapes a), b) et c) ci-dessus se déroulent dans un ordre chronologique ; cela n'exclut pas l'introduction d'étape(s) supplémentaire(s) intercalaire(s).
La présente invention a également pour objet un procédé de suivi d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile (ci-après « procédé de suivi »), comprenant une étape de dosage spécifique, dans un échantillon dudit patient, de l'anticorps anti-idiotypique obtenu à l'étape c) ci-dessus.
Par « anticorps dirigé contre le facteur VIII humain », on entend un anticorps qui reconnaît et se fixe spécifiquement à un épitope du facteur VIII humain. Par « épitope du facteur VIII humain », on entend le site de fixation de l'anticorps au facteur VIII humain. L'épitope peut être constitué d'un domaine dudit facteur VIII humain (A1 , A2, A3, B, C1 ou C2), d'au moins un fragment d'un domaine, ou d'au moins un fragment du facteur VIII. Par exemple, l'anticorps dirigé contre le facteur VIII humain peut être un anticorps qui reconnaît et se fixe spécifiquement au domaine A1 du facteur VIII humain. Par « anticorps anti-idiotypique » dans l'ensemble de la présente demande, on entend un anticorps qui reconnaît spécifiquement l'idiotype d'un anticorps donné. Un anticorps anti- idiotypique A est donc un anticorps anti-anticorps qui reconnaît et se fixe de façon spécifique, à un anticorps B au niveau de la conformation caractéristique de sa partie variable, qui lui est propre.
L'échantillon de patient utilisé dans les procédés selon l'invention est de préférence un échantillon sanguin. Il peut être constitué de sang, de plasma, ou de sérum.
Par plasma, on entend le sang débarrassé de ses plaquettes, de ses globules blancs (leucocytes) et de ses érythrocytes.
Par sérum, on entend le plasma débarrassé de la fibrine.
Le procédé d'identification selon l'invention permet de choisir le meilleur traitement thérapeutique possible, en vue de supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile. Bien évidemment, le procédé selon l'invention est un procédé in vitro. Il comprend une étape a) de dosage spécifique des anticorps inhibiteurs anti-facteur VIII humain. Par « dosage spécifique » des anticorps anti-facteur VIII humain, on entend un dosage qui quantifie précisément et avec une bonne affinité les anticorps inhibiteurs anti-facteur VIII humain.
Ce dosage est de préférence un dosage immunologique (ou immunodosage).
Parmi les dosages immunologiques utilisables, on peut citer les immunodosages classiquement utilisés, avec ou sans compétition, comme décrits par exemple dans « The Immunoassay Handbook », David Wild, 2005.
De préférence, le dosage spécifique de l'étape a) comprend, comme réactifs, des fragments de facteur VIII humain. Les fragments de facteur VIII humain peuvent être choisis parmi les fragments A1 , A2, A3, B, C1 et C2 humains.
Un tel dosage comprend ainsi le mélange des fragments de facteur VIII humain avec l'échantillon du patient - qui comprend les anticorps inhibiteurs anti-facteur VIII humain -, puis la révélation des complexes formés fragments de facteur VIII humain/anticorps inhibiteurs anti-facteur VIII humain. De façon préférée, le dosage spécifique de l'étape a) comprend les étapes suivantes : i) la préparation de fragments de facteur VIII humain, lesdits fragments étant fixés de manière covalente ou par affinité sur une plaque ou sur des billes, telles que des billes de polystyrène ;
ii) l'addition d'un échantillon de patient sur les fragments fixés en i) ;
iii) l'incubation du mélange obtenu en ii) pendant un temps et à une température suffisants pour obtenir des complexes fragments de facteur VIII humain/anticorps inhibiteurs antifacteur VIII humain. De préférence, l'incubation se fait pendant un temps compris entre 30 min et 16h, et à une température comprise entre 4°C et 40°C, de préférence comprise entre 20 ^ et 38^ ;
iv) le lavage des complexes formés en iii) ;
v) la révélation de la quantité de complexes obtenus en iv) par l'addition d'un anticorps secondaire marqué. Le marquage peut se faire à l'aide d'un composé radioactif (radiomarquage), par une enzyme (enzymoimmunoassay ou ELISA), par fluorescence (fluoroimmunoassay), ou par luminescence (luminoimmunoassay). L'anticorps secondaire peut être un anticorps anti-lgG humain, par exemple un anticorps de chèvre anti-lgG humain.
Selon un mode de réalisation de l'invention, les fragments préparés à l'étape a) peuvent être porteurs d'une étiquette qui permet de les purifier et de les fixer, notamment sur une plaque ou au fond d'un puits.
Alternativement, le dosage spécifique de l'étape a) comprend, comme réactifs, des anticorps anti-idiotypiques dirigés contre les anticorps inhibiteurs dirigés contre le facteur VIII humain (ou « anticorps anti-facteur VIII humain »), ou des fragments de ces anticorps. En effet, lesdits anticorps anti-idiotypiques peuvent être présents sous forme complète ou sous forme de fragments. Les fragments sont choisis parmi les formats qui comprennent au moins les 6 CDR, tels que les Fab, (Fab')2 et Fv.. Lesdits anticorps anti-idiotypiques peuvent être naturels ou recombinants.
Un tel dosage comprend ainsi le mélange des anticorps anti-idiotypiques, ou leurs fragments, dirigés contre les anticorps anti-facteur VIII humain avec l'échantillon du patient - qui comprend les anticorps anti-facteur VIII humain -, puis la révélation des complexes formés anticorps anti-idiotypiques ou leurs fragments/anticorps anti-facteur VIII humain. De façon préférée, le dosage spécifique de l'étape a) comprend les étapes suivantes : i) la préparation des anticorps anti-idiotypiques, ou leurs fragments, dirigés contre les anticorps anti-facteur VIII humain, lesdits anticorps anti-idiotypiques ou leurs fragments étant fixés de manière covalente ou par affinité sur une plaque ou sur des billes, telles que des billes de polystyrène ;
ii) l'addition d'un échantillon de patient sur les anticorps anti-idiotypiques ou leurs fragments fixés en i) ;
iii) l'incubation du mélange obtenu en ii) pendant un temps et à une température suffisants pour obtenir des complexes anticorps anti-idiotypiques ou leurs fragments/anticorps anti- facteur VIII humain. De préférence, l'incubation se fait pendant un temps compris entre 30 min et 24h, et à une température comprise entre 4°C et 40°C, de préférence comprise entre 20 ^ et 38^ ;
iv) le lavage des complexes formés en iii) ;
v) la révélation de la quantité de complexes obtenus en iv) par l'addition d'un anticorps secondaire marqué. Le marquage peut se faire à l'aide d'un composé radioactif
(radiomarquage), par une enzyme (enzymoimmunoassay ou ELISA), par fluorescence (fluoroimmunoassay), ou par luminescence (luminoimmunoassay). L'anticorps secondaire peut être un anticorps anti-lgG humain, par exemple un anticorps de chèvre anti-lgG humain.
De préférence, le dosage réalisé dans l'étape a) est un dosage ELISA. De préférence, le dosage ELISA utilise comme enzyme de marquage une enzyme choisie parmi la phosphatase alcaline, la péroxydase, la P-galactosidase et la glucose 6-phosphate déshydrogénase.
A la fin de l'étape a), la quantité de chaque anticorps anti-facteur VIII humain est déterminée. On obtient donc un profil, pour chaque patient, des différents anticorps antifacteur VIII. A partir de ce profil, on identifie dans l'étape b) le ou les anticorps dirigé(s) contre le facteur VIII humain dit « principal(aux) ». Le patient peut en effet présenter un seul anticorps principal, ou plusieurs anticorps principaux. Par anticorps principal identifié à l'étape b), on entend un anticorps anti-facteur VIII humain qui est présent en quantité la plus grande dans l'échantillon dudit patient ou qui possède l'affinité et/ou la spécificité la plus forte.
L'affinité d'un anticorps pour un antigène est définie par la constante d'équilibre K, qui est le rapport (concentration des complexes antigène/anticorps) / [(concentration d'anticorps)*(concentration d'antigène)]. La spécificité d'un anticorps pour un antigène correspond à la propriété que possède un anticorps de se lier à cet antigène, en tenant compte de l'éventuelle réactivité croisée dudit anticorps pour d'autres antigènes. Plus la réactivité croisée est faible, plus la spécificité est forte. C'est à partir de cet anticorps principal, dirigé contre le facteur VI II, qu'un anticorps anti- idiotypique va pouvoir être sélectionné
En effet, une fois l'anticorps principal identifié, l'anticorps anti-idiotypique dirigé contre cet anticorps principal est sélectionné. La préparation de l'anticorps anti-idiotypique aura été faite selon des techniques classiques bien connues de l'homme du métier, par exemple par injection chez la souris du domaine Fab de l'anticorps principal en présence d'adjuvants et par génération d'anticorps monoclonaux dirigés contre cet idiotype. Des anti-idiotypes de chacun des domaines du facteur VI I I auront été préalablement sélectionnés sur leur capacité à bloquer les inhibiteurs en nombre et en qualité (Giles et al Blood 2004, 1 03 p2618).
A titre d'anticorps anti-idiotypiques utilisables selon l'invention, on peut citer :
- les anticorps décrits dans la demande WO 2007/051926, qui sont dirigés contre les anticorps inhibiteurs du domaine C2 du facteur VI I I humain. De préférence, on utilise l'anticorps EMAB565, qui est susceptible d'être produit par le clone R565, déposé le 25 octobre 2005 sous le numéro -351 0 à la Collection Nationale de Culture des Microorganismes (GNCM, 25 rue du Docteur Roux, 75724 Paris cedex 1 5) ;
- les anticorps décrits dans la demande EP 1 749 537, qui sont dirigés contre les anticorps inhibiteurs du domaine A2 du facteur VI II humain. De préférence, on utilise l'anticorps susceptible d'être produit par le clone 30D1 , déposé sous le numéro 1-3450 à la Collection Nationale de Culture des Microorganismes (GNCM, 25 rue du Docteur Roux, 75724 Paris cedex 1 5} ; ou encore
- les anticorps décrits dans la demande WO 2007/096536, qui sont dirigés contre les anticorps inhibiteurs du domaine C1 du facteur VI I I humain. De préférence, on utilise l'anticorps 18B6, qui est susceptible d'être produit par le clone 18B6, déposé le 24 janvier 2008, sous le numéro 1-3559 à la. Collection Nationale de Culture des croorganismes (CNC , 25 rue du Docteur Roux, 75724 Paris cedex 15).
Le procédé d'identification selon l'invention permet de sélectionner l'anticorps anti- idiotypique adapté à chaque patient, et ainsi de personnaliser le traitement afin de l'alléger.
La présente invention a également pour objet le procédé de suivi. Ce procédé permet de contrôler la biodisponibilité de l'anticorps anti-idiotypique administré au patient.
L'invention a également pour objet l'utilisation de l'anticorps anti-idiotypique obtenu dans le procédé d'identification pour le traitement de l'hémophilie.
De préférence, le dosage de cet anticorps anti-idiotypique dans le procédé de suivi comprend, comme réactifs, des anticorps entiers anti-facteur VIII humain ou des fragments d'anticorps anti-facteur VIII humain, tels que des Fab dirigés contre le facteur VIII humain. Les fragments d'anticorps anti-facteur VIII humain sont notamment choisis parmi les formats qui comprennent au moins les 6 CDR, tels que les Fab, (Fab')2 et Fv. Lesdits anticorps anti-facteur VIII humain et leurs fragments peuvent être naturels ou recombinants. Ils peuvent comprendre une étiquette qui permet notamment de les purifier. Ils peuvent être produits en système procaryote ou eucaryote.
Par « Fab », on entend un anticorps dont la région constante, y compris la région charnière, a été enzymatiquement clivée, ou qui a été produit sans cette région ; le Fab conserve un des deux sites de liaison à l'antigène. Les fragments Fab consistent en une chaîne légère qui est liée de façon covalente à une portion de la chaîne lourde appelée Fd.
Par « Fab dirigé contre le facteur VIII humain », on entend un Fab qui reconnaît et se fixe spécifiquement à un épitope du facteur VIII humain.
Par « Fv », on entend la portion N-terminale d'un fragment Fab consistant en les domaines variables d'une chaîne lourde et d'une chaîne légère.
Un tel dosage comprend ainsi le mélange des anticorps entiers anti-facteur VIII humain ou des Fab dirigés contre le facteur VIII humain avec l'échantillon du patient sous traitement - qui comprend les anticorps anti-idiotypiques -, puis la révélation des complexes formés anticorps ou Fab anti-facteur VIII humain/anticorps anti-idiotypiques.
De façon préférée, le dosage spécifique des anticorps anti-idiotypiques comprend les étapes suivantes :
i) la préparation des anticorps entiers anti-facteur VIII humain ou des Fab dirigés contre le facteur VIII humain, lesdits anticorps entiers ou Fab étant fixés de manière covalente sur une plaque ou sur des billes, les billes étant de préférence des billes de polystyrène ; ii) l'addition d'un échantillon de patient sur les anticorps entiers ou les Fab fixés en i) ; iii) l'incubation du mélange obtenu en ii) pendant un temps et à une température suffisants pour obtenir des complexes anticorps entiers ou Fab anti-facteur VIII humain/anticorps anti-idiotypiques. De préférence, l'incubation se fait pendant un temps compris entre 30 min et 24h, et à une température comprise entre 4°C et 40°C, de préférence comprise entre 20 ^ et 38^ ;
iv) le lavage des complexes formés en iii) ;
v) la révélation de la quantité de complexes obtenus en iv) par l'addition d'un anticorps secondaire marqué. Le marquage peut se faire à l'aide d'un composé radioactif (radiomarquage), par une enzyme (enzymoimmunoassay ou ELISA), par fluorescence (fluoroimmunoassay), ou par luminescence (luminoimmunoassay). L'anticorps secondaire peut être un anticorps anti-lgG humain, par exemple un anticorps de chèvre anti-lgG humain.
La présente invention est illustrée à l'aide des exemples ci-dessous, qui ne sont nullement limitatifs. Figure 1 : Reconnaissance des fragments du facteur VIII par des plasmas de sujets sains
Les fragments de FVIII (25 ng/puits) ont été fixés sur la nuit dans du CAPS 50 mM pH 9,5. Les puits ont été bloqués par du Tween-20 2% pendant 1 h. Des dilutions (au 5eme ou au 25eme) de plasma de sujets sains (N °3-12) sont incubées 2h à température ambiante puis les IgG humaines sont révélées après incubation avec un anticorps anti-lgG humaines couplé à la peroxydase. Figure 2 : Reconnaissance des fragments du facteur VIII par un plasma hémophile avec inhibiteurs (100 UB/ml) reconstitué
Les fragments de FVIII (25 ng/puits) ont été fixés sur la nuit dans du CAPS 50 mM pH 9,5. Les puits ont été bloqués par du Tween-20 2% pendant 1 h. Des dilutions de plasma dépiété en FVIII (Stago) et reconstitué par un anticorps anti-FVIII (100 UB/ml final) sont incubées 2h à température ambiante puis l'ELISA est révélée après incubation avec un anticorps anti-lgG de mouton couplé à la peroxydase.
Figures 3 et 4 : Représentation schématique des 4 plasmides d'expression pCep4 fragment FVIII
Figures 5 et 6 : Reconnaissance des fragments du facteur VIII par des plasmas d'hémophile A avec inhibiteurs (20 et 21 UB/ml)
Les fragments de FVIII (50 ng/puit) ont été fixés sur la nuit dans du CAPS 50 mM pH 9,5. Les puits ont été bloqués par du Tween-20 2% pendant 1 h. Des dilutions de plasma d'hémophile A avec inhibiteurs (20 et 21 UB/ml) sont incubées 2h à température ambiante puis l'ELISA est révélée après incubation avec un anticorps anti-lgG humaines couplé à la peroxydase. Les dilutions d'anticorps sont données en unités Bethesda.
Exemple :
Matériels et Méthodes 1.1. Préparation de fragments recombinants de facteur VIII
1 .1 .1 . Principe
On procède à la construction de vecteurs d'expression pour produire dans la lignée HEK293 FreeStyle (Invitrogen) les différents domaines du FVIII (A1 , A2, A3C1 et C2). Ces vecteurs d'expression seront construits sur une base de vecteur pCEP4 (vecteur de référence pour la lignée HEK293, Invitrogen), voir les figures 3 et 4. Le peptide signal MB7 (WO 201 1/1 14063) est ajouté en amont des séquences codantes pour potentialiser l'expression. Deux étiquettes sont ajoutées en aval des domaines, une pour faciliter la purification (6xHIS) et l'autre pour faciliter notamment la présentation (STREP tag) de chaque domaine du FVIII. Les deux étiquettes sont séparées par un site de clivage protéique TEV.
1 .1 .2. Clonage des fragments
Les séquences codantes des domaines A1 , A2, A3C1 et C2 du facteur VIII humain ont été utilisées (Jacquemin et al. Blood 1998 vol. 92 p496-506). Une série de PCR d'assemblage a été réalisée pour insérer la séquence du peptide signal MB7 et les étiquettes suivant le schéma 1 :
Figure imgf000012_0001
Schéma 1 : Stratégie de clonage des fragments du facteur VIII
Les séquences des amorces utilisées pour obtenir les fragments PCR sont indiquées dans le tableau 1 ci-dessous : Tableau 1 : amorces utilisées pour la PCR
Figure imgf000013_0001
Les domaines A1 , A3C1 et C2 (de séquence protéique SEQ ID NO : 1 , 3 et 4 respectivement ; et de séquence nucléique SEQ ID NO : 5, 7 et 8 respectivement) sont clonés entre les sites Xhol et BamHI . Le domaine A2 (de séquence protéique SEQ ID NO :2, et de séquence nucléique SEQ ID NO : 6) est cloné entre les sites Hindlll et Xhol. Les PCR sont réalisées avec une Taq HiFidelity suivant les indications du fournisseur en 15 cycles maximum et en utilisant 100 ng de plasmide. Pour les vecteurs pCEP4-FVIII- A2 et pCEP4-FVIII-A3C1 , n'arrivant pas à obtenir de clones corrects avec la technique de PCR d'assemblage, les inventeurs ont opté pour la technique Infusion (Clontech ; 40ng PCR FVIII ; 4ng PCR MB7; 4ng PCR TAG; Tampon 5X; Enzyme infusion ; 15 min à 37°C; 15 min à 55 °C puis mise à 4°C et ajout de 40μί H20) avant transformation. 1 .1 .3. Génération des vecteurs
Les fragments de PCR (1275 bases pour A1 , 1263 bases pour A2, 1731 bases pour A3C1 , 639 bases pour C2) ont été insérés par ligation dans le vecteur pCEP4 ouvert par les enzymes de restriction correspondantes puis transformés dans des bactéries TOP10 (Invitrogen). Les bactéries ont ensuite été étalées sur des plaques de LB agar contenant de l'ampicilline pour uniquement amplifier les bactéries contenant un vecteur d'expression. Les clones bactériens contenant un insert d'intérêt codant un domaine de FVIII ont été criblés par PCR avec les amorces CMV1/ et T2-MB7 qui amplifient un amplicon de 262pb. Les clones positifs en PCR ont été séquencés au niveau de la séquence d'ADNc codant les domaines. Toutes les séquences retenues été conformes à la séquence théorique à l'exception d'un polymorphisme silencieux qui a été retrouvé dans le domaine A1 .
1 .1 .4. Production des fragments
Les fragments ont été produits dans la lignée HEK293 FreeStyle (InVitrogen). La lignée est maintenue en milieu F17 en présence de 8 mM L-Glutamine (InVitrogen). La veille de la transfection les cellules sont repiquées à 7x105 cellules/ml. Le jour de transfection, les cellules (env. 17x105 cellules/ml) sont transfectées avec du PEI linéaire 25 kD (Sigma) prédilué en milieu Opti-MEM (Gibco). Les complexes vecteurs/PEl en Opti-MEM sont formés par incubation 20-30 min à température ambiante après agitation modérée par vortex Le complexe est ensuite ajouté aux cellules qui sont ensuite incubées sous agitation à 37°C et 8% C02. Les surnageants sont récoltés à J+5, centrifugés à 1700 rpm/min et filtrés à 0,2 μηι. Le cas échant ces surnageants filtrés sont concentrés par filtration tangeantielle à l'aide de Millipack (Millipore) avant d'être à nouveau filtrés de façon stérilisante à 0,2μηι.
1 .2. Purification des fragments
Les protéines sont purifiées sur AKTA (GE-Healthcare). Un volume de tampon 5X de mise en solution de l'échantillon (tampon phosphate 100 mM, NaCI 2,47 M, KCI 27 mM, imidazole 150 mM, pH 7,4) est ajouté pour 4 volumes de surnageant de culture concentré-filtré. Cette solution est déposée sur une colonne HiTrap-Chelating HP (GE- Healtcare) de 1 ml puis la colonne est lavée avec du tampon d'équilibration (tampon phosphate 20 mM, NaCI 495 mM, KCI 5 mM, imidazole 30 mM, pH 7,4) jusqu'au retour de la ligne de base en densité optique (environ 15 volumes de colonne). Les protéines fixées sont ensuite éluées par le tampon d'élution (tampon phosphate 20 mM, NaCI 495 mM, KCI 5 mM, imidazole 500 mM, pH 7,4). Afin de déterminer les fractions contenant les fragments purifiés, ces dernières sont analysées en ELISA et par migration en SDS- PAGE. Un aliquot des fractions est dilué en tampon CAPS 50 mM pH 9,5 puis incubé sur la nuit à 4<C. Les fractions contenant les fragments sont révélées en ELISA grâce à un anticorps polyclonal de mouton anti-facteur VIII établi chez le mouton (Cedarlane). Les fractions contenant les fragments sont visualisées en SDS-PAGE et coloration en Page-Blue (Thermo Scientific). Un mélange des fractions les plus concentrées en fragment de facteur VIII est réalisé avant stockage à -80 °C.
2. Caractérisation des fragments 2.1 . Immunoblotting
Les échantillons sont chauffés avec 5μΙ de tampon de charge Laemmli (4X) dans un volume maximal de 25 μΙ à l OO 'C durant 5 min. Les échantillons sont déposés sur des gels précoulés en gradient d'acrylamide à 4-12 % (NuPage Bis-Tris gel, InVitrogen) puis mis à migrer en tampon MOPS à 200V. Après migration, le gel est coloré en Page-Blue ou transféré sur membrane de nitrocellulose (Hybond C extra, GE Healthcare) à 42 mA par membrane durant 120 min. Les membranes sont ensuite immunoblottées après blocage une nuit en tampon PBT (PBS-BSA 1 %-Tween 20 0,05%). Les anticorps sont ensuite ajoutés aux dilutions optimales en PBT. Le blot est révélé en chimioluminescence avec un kit Super Signal West Pico (Pierce).
2.2. ELISA de caractérisation des fragments
Les fragments sont fixés à 25 ng/puits en tampon CAPS 50 mM pH 9,5 sur la nuit à 4°C. Le puits est saturé en PBS-Tween-20 2% durant 1 h à 37<C. Les anticorps monoclonaux (GMA012 (Abcam) ; ESH4 (American Diagnostica)) ou polyclonaux (Anti-FVIII de mouton ; Cedarlane) sont dilués en PBS-Tween-20 0,05 % et incubés durant 2h à température ambiante. L'anticorps secondaire couplé à la peroxydase est incubé durant 1 h30 à température ambiante. Le signal est révélé par ajout du TMB (Pierce) et arrêté par du H2S04 2M. La lecture est réalisée à 450 nm sur un lecteur de plaque Tecan. 2.3. Quantification des protéines étiquetées 6xHis par ELISA
Le kit commercial de dosage des protéines marquées au 6xHis fourni par Cell Biolabs est utilisé suivant les indications du fournisseur.
3. Validation du test : ELISA sur fragments Un protocole identique à l'ELISA de caractérisation des fragments est utilisé pour valider la réponse des plasmas sur les fragments recombinants. Les plasmas sont utilisés à des concentrations variées.
Résultats
1. Obtention des fragments recombinants
Différents fragments PCR, codant pour les domaines du facteur VIII, ont été obtenus par amplification enzymatique et recombinés entre eux en suivant le protocole décrit au schéma 1 . Les séquences codantes des fragments ont été insérées dans le vecteur d'expression pCEP4 par clonage directionnel. Les séquences codantes pour les 4 fragments de facteur VIII avec le peptide signal MB7 et portant les deux étiquettes (StrepTag et 6XHis) en 3' de la construction ont été obtenues et validées par leur séquençage complet. Seule la séquence du domaine A1 a été retrouvée porteuse d'un polymorphisme silencieux (T/A), déjà décrit dans les bases de données publiques.
Les vecteurs ont ensuite été transfectés dans la lignée suspensive HEK293 Freestyle. Le taux de transfection transitoire a été suivi par la transfection du vecteur rapporteur contrôle pmax-GFP (Kit AMAXA, Lonza). Au moment de la transfection, la viabilité cellulaire était supérieure à 95% pour tous les essais. Les taux de transfection dans des conditions normales s'établissent autour de 24-29%. La transfection des fragments du FVIII n'induit pas d'augmentation significative de la mortalité cellulaire puisque le contrôle sans plasmide montre une viabilité à 95.2% à J+5 alors que les cellules exprimant les fragments sont dans une proportion comprise entre 91 et 93%.
Les productions des fragments étiquetés dans les surnageants de culture sont réalisées et rapportées dans le tableau 2.
Figure imgf000017_0001
Tableau 2 : Expression transitoire des fragments du facteur VIII
Les cellules HEK293 sont transfectées par du PEI 25kD comme décrit dans le matériel et méthodes. Au jour 5, les cellules vivantes sont comptées et leur viabilité est calculée. La concentration des fragments dans le surnageant de culture est mesurée par ELISA anti- 6xHis. Les données sont représentatives de 3 expériences différentes. Les taux de production des fragments restent cependant variables entre les différentes productions mais dans un rapport proche.
2. Purification des fragments recombinants
Afin de purifier les fragments exprimés, les surnageants de culture sont passés sur une colonne Ni-NTA suivant le protocole décrit dans le matériel et méthodes. Les fractions éluées sont analysées en ELISA (non montré) puis les fractions positives sont séparées par SDS-PAGE et colorées au bleu de Coomassie. Les purifications des domaines A2, A3C1 et C2 font apparaître une bande majoritaire au poids moléculaire attendu (données non montrées). En revanche, le fragment A1 a été retrouvé dans de nombreuses fractions, y compris dans les fractions de lavage de la colonne. Le fragment A1 a donc été dilué pour rétablir les conditions de la charge puis repassé sur colonne. Il a été lavé avec une concentration de 25 mM d'imidazole puis avec le tampon d'élution classique contenant 500 mM d'imidazole. Le domaine A1 est retrouvé dans ces deux fractions (25 mM et 500 mM imidazole). Ces deux fractions seront utilisées pour la caractérisation du domaine A1 mais seule la fraction éluée à forte concentration d'imidazole sera utilisée en présence de plasma.
Les concentrations des fragments sont mesurées par lecture de la densité optique directe à 280 nm. Les valeurs obtenues sont présentées dans le tableau 3 et correspondent aux intensités des produits visualisés sur gels.
Figure imgf000018_0001
Les volumes de milieu de culture utilisés pour les purifications des fragments sont indiqués (sgt=surnageant) ainsi que le volume de tampon (tp) rajouté. Les densités optiques des éluats sont indiquées ainsi que les volumes des différents pools. Les concentrations des fragments dans les pools sont indiquées suite à la mesure de DO ainsi que la quantité totale de fragment obtenue.
* : la concentration du domaine A 1 en densité optique mesure aussi les taux importants de contaminant d'où cette valeur élevée. 3. Caractérisation des fragments recombinants
Afin de confirmer que les produits observés correspondent bien à des fragments de FVIII, les pools de fragments sont séparés à nouveau par SDS-PAGE puis immunoblottés soit avec un anticorps polyclonal anti-FVIII (Anticorps de mouton ; Cedarlane) soit avec deux anticorps monoclonaux anti-domaine A2 (GMA-012 ; Abcam) ou anti-domaine C2 (ESH4, American Diagnostica) (données non montrées).
L'anticorps polyclonal reconnaît tous les fragments mais il reconnaît préférentiellement le domaine A3C1 . Il est à noter que les protéines contaminantes du domaine A1 ne sont pas révélées, ce qui démontre la spécificité de l'anticorps polyclonal. Les deux anticorps monoclonaux reconnaissent préférentiellement le domaine contre lequel ils sont dirigés mais donnent cependant un bruit de fond sur d'autres domaines du FVIII. Ainsi l'anti-A2 reconnaît partiellement le domaine C2, et l'anti-domaine C2, le domaine A1 . Les fragments générés et purifiés correspondent donc bien aux fragments de FVIII attendu. Ils sont reconnus par des anticorps anti-FVIII et migrent aux poids moléculaires attendus.
Les produits contaminants du domaine A1 ne sont pas reconnus par l'anticorps polyclonal.
4. Validation de l'essai
4.1 . Détermination du bruit de fond de l'essai
Le but du présent ELISA est (i) de pouvoir identifier dans le plasma la présence d'anticorps inhibiteurs du VIII, (ii) de caractériser les domaines du FVIII contre lesquels ils sont dirigés, et (iii) de quantifier la présence de ces anticorps.
Dans un premier temps, afin d'évaluer le bruit de fond d'un tel ELISA, un panel de 10 plasmas de sujets sains a été incubé à différentes dilutions (5eme ou 25eme) sur les fragments de FVIII immobilisés (« coating » en figure 1 ). Les anticorps ont ensuite été révélés avec un anticorps secondaire anti-lgG humaine couplé à la peroxydase. Les résultats sont présentés figure 1 . Ils démontrent un bruit de fond limité lors de l'utilisation des plasmas humains sains sur les fragments du FVIII et un effet dose-réponse sur les dilutions de plasma utilisées.
La majorité des plasmas permet d'obtenir un signal modéré aux deux dilutions utilisées, indiquant que ce réactif pourrait être utilisé sur les fragments de facteur VIII fixés au fond des puits. De plus aucun signal spécifique ne semble émerger vis-à-vis des différents fragments. Certains plasmas (N °4&N °5) donnent toutefois un signal plus fort (UDO=0,4- 0,55) que la moyenne visible en dilution au 5ème. Il est toutefois décrit dans la littérature que des anticorps reconnaissant le FVIII circulant y compris chez des sujets sains peuvent être retrouvés à une fréquence assez élevée (Moreau A et al. Blood. 2000 95(1 1 ): p3435-41 ). 4.2. Validation de l'essai par des plasmas avec inhibiteurs reconstitués ou par des plasmas d'hémophile A avec inhibiteurs
Un plasma dépiété en FVIII (Stago) est reconstitué avec une dose d'anticorps polyclonal de mouton anti-FVIII (Cedarlane) possédant une activité finale de 100 Unité Bethesda/ml. L'activité inhibitrice fonctionnelle est préalablement validée et quantifiée (données non montrées). Des dilutions en cascade de ce plasma reconstitué sont ensuite incubées sur les fragments recombinants de FVIII (25 ng/puit) et révélées avec un anticorps anti-lgG de mouton couplé à la peroxydase.
Les résultats sont présentés figure 2. Le plasma reconstitué avec l'anticorps polyclonal reconnaît tous les fragments du FVIII avec un signal beaucoup plus fort pour le domaine A3C1 . Les trois autres domaines sont reconnus de manière identique par l'anticorps polyclonal. Ces données confirment les résultats obtenus en immunoblot avec ce même anticorps et démontrent la faisabilité du test envisagé.
Afin de poursuivre la validation de cet essai, deux plasmas (plasma 1 et plasma 2) distincts d'hémophiles A avec inhibiteurs ont été achetés (Cryopep). Les plasmas ont une activité inhibitrice de 20 (plasmas 1 ) et 21 unités Bethesda/ml (plasma 2), respectivement. Les plasmas ont été dilués puis déposés sur les différents fragments préalablement fixés au fond d'une plaque 96 puits. Les anticorps humains fixés ont ensuite été détectés avec une IgG anti-lgG humaine couplée à la peroxydase (figures 5 et 6). Alors que les deux plasmas reconnaissent le FVIII recombinant purifié (Helixate, CSL-Behring) de manière identique, deux profils distincts sont obtenus sur les fragments recombinants de FVIII. Ainsi le plasma 1 reconnaît modestement les fragments A3C1 et A1 alors que les fragments A2, et C2 donnent un signal similaire à l'albumine, non spécifique.
En revanche, le plasma 2 reconnaît très distinctement les domaines A3C1 , A1 et C2. Le domaine A2 n'est lui pas mieux reconnu que l'albumine.
Ces données montrent :
(i) qu'il est possible de distinguer différents plasmas d'hémophiles A avec inhibiteurs, et que
(ii) les domaines préférentiellement reconnus par les plasmas peuvent être identifiés.
Cet essai montre qu'il est possible d'identifier les sites du facteur VIII reconnus par les inhibiteurs et d'orienter le traitement des hémophiles A notamment sur la pertinence à débuter un protocole de tolérance immune.

Claims

REVENDICATIONS
1 . Procédé d'identification d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile, comprenant les étapes successives suivantes :
a) le dosage spécifique, dans un échantillon dudit patient, des anticorps inhibiteurs dirigés contre le facteur VIII humain ;
b) l'identification des anticorps inhibiteurs principaux dirigés contre le facteur VIII humain ; et
c) la sélection et/ou la préparation d'au moins un anticorps anti-idiotypique dirigé contre au moins un anticorps inhibiteur principal identifié à l'étape b).
2. Procédé selon la revendication 1 , caractérisé en ce que le dosage spécifique de l'étape a) est un dosage immunologique.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le dosage spécifique de l'étape a) comprend, comme réactifs, des fragments de facteur VIII humain.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dosage spécifique de l'étape a) comprend les étapes suivantes :
i) la préparation de fragments de facteur VIII humain, lesdits fragments étant fixés de manière covalente ou par affinité sur une plaque ou sur des billes, telles que des billes de polystyrène ;
ii) l'addition d'un échantillon de patient sur les fragments fixés en i) ;
iii) l'incubation du mélange obtenu en ii) pendant un temps et à une température suffisants pour obtenir des complexes fragments de facteur VIII humain/anticorps inhibiteurs dirigés contre le facteur VIII humain ;
iv) le lavage des complexes formés en iii) ;
v) la révélation de la quantité de complexes obtenus en iv) par l'addition d'un anticorps secondaire marqué.
5. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le dosage spécifique de l'étape a) comprend, comme réactifs, des anticorps anti-idiotypiques dirigés contre les anticorps inhibiteurs dirigés contre le facteur VIII humain ou des fragments de ces anticorps.
6. Procédé selon l'une quelconque des revendications 1 , 2 ou 5, caractérisé en ce que le dosage spécifique de l'étape a) comprend les étapes suivantes :
i) la préparation des anticorps anti-idiotypiques, ou leurs fragments, dirigés contre les anticorps inhibiteurs dirigés contre le facteur VIII humain, lesdits anticorps anti- idiotypiques ou leurs fragments étant fixés de manière covalente ou par affinité sur une plaque ou sur des billes, telles que des billes de polystyrène ;
ii) l'addition d'un échantillon de patient sur les anticorps anti-idiotypiques ou leurs fragments fixés en i) ;
iii) l'incubation du mélange obtenu en ii) pendant un temps et à une température suffisants pour obtenir des complexes anticorps anti-idiotypiques ou leurs fragments /anticorps inhibiteurs dirigés contre le facteur VIII humain ;
iv) le lavage des complexes formés en iii) ;
v) la révélation de la quantité de complexes obtenus en iv) par l'addition d'un anticorps secondaire marqué.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'anticorps principal de l'étape b) est l'anticorps inhibiteur dirigé contre le facteur VIII humain présent en quantité la plus grande dans l'échantillon dudit patient ou qui possède l'affinité et/ou la spécificité la plus forte.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le dosage spécifique de l'étape a) est un ELISA.
9. Procédé de suivi d'un traitement thérapeutique visant à supprimer la réponse immunitaire dirigée contre le facteur VIII humain chez un patient hémophile, comprenant une étape de dosage spécifique, dans un échantillon dudit patient, de l'anticorps anti- idiotypique obtenu à l'étape c) selon l'une quelconque des revendications 1 à 8.
10. Anticorps anti-idiotypique obtenu à l'étape c) selon l'une quelconque des revendications 1 à 8 pour son utilisation pour le traitement de l'hémophilie.
PCT/FR2011/053089 2010-12-22 2011-12-20 Procédé de dosage d'anticorps dirigés contre le facteur viii WO2012085447A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1061017A FR2969761A1 (fr) 2010-12-22 2010-12-22 Procede de dosage d'anticorps diriges contre le facteur viii
FR1061017 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012085447A1 true WO2012085447A1 (fr) 2012-06-28

Family

ID=44247006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/053089 WO2012085447A1 (fr) 2010-12-22 2011-12-20 Procédé de dosage d'anticorps dirigés contre le facteur viii

Country Status (2)

Country Link
FR (1) FR2969761A1 (fr)
WO (1) WO2012085447A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007918A1 (fr) * 1999-07-21 2001-02-01 Institut National De La Sante Et De La Recherche Medicale (Inserm) Allo-anticorps catalytiques du facteur viii
EP1749537A1 (fr) * 2005-08-04 2007-02-07 Laboratoire Français du Fractionnement et des Biotechnologies Anticorps anti-idiotypique neutralisant l'activité inhibitrice d'un anticorps inhibiteur du facteur VIII
WO2007051926A1 (fr) * 2005-11-02 2007-05-10 Lfb Biotechnologies Anticorps cytotoxiques diriges contre des anticorps inhibiteurs de facteur viii
WO2007096536A1 (fr) * 2006-02-24 2007-08-30 Lfb Biotechnologies Anticorps anti-idiotypiques neutralisant l'activite inhibitrice d'un anticorps inhibiteur dirige contre le domaine c1 du facteur viii
WO2009024653A1 (fr) * 2007-08-23 2009-02-26 Lfb Biotechnologies Anticorps anti-idiotypigues neutralisant l'activite inhibitrice d'un anticorps inhibiteur dirige contre le domaine c1 du facteur viii

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007918A1 (fr) * 1999-07-21 2001-02-01 Institut National De La Sante Et De La Recherche Medicale (Inserm) Allo-anticorps catalytiques du facteur viii
EP1749537A1 (fr) * 2005-08-04 2007-02-07 Laboratoire Français du Fractionnement et des Biotechnologies Anticorps anti-idiotypique neutralisant l'activité inhibitrice d'un anticorps inhibiteur du facteur VIII
WO2007051926A1 (fr) * 2005-11-02 2007-05-10 Lfb Biotechnologies Anticorps cytotoxiques diriges contre des anticorps inhibiteurs de facteur viii
WO2007096536A1 (fr) * 2006-02-24 2007-08-30 Lfb Biotechnologies Anticorps anti-idiotypiques neutralisant l'activite inhibitrice d'un anticorps inhibiteur dirige contre le domaine c1 du facteur viii
WO2009024653A1 (fr) * 2007-08-23 2009-02-26 Lfb Biotechnologies Anticorps anti-idiotypigues neutralisant l'activite inhibitrice d'un anticorps inhibiteur dirige contre le domaine c1 du facteur viii

Also Published As

Publication number Publication date
FR2969761A1 (fr) 2012-06-29

Similar Documents

Publication Publication Date Title
JP2024028750A (ja) 共有抗原を標的とする抗原結合タンパク質
JP6469052B2 (ja) 抗体の物性を改善させる方法
JP2021500852A (ja) 共有抗原を標的にする抗原結合タンパク質
US11098302B2 (en) Identification of polynucleotides associated with a sample
EP2337796B1 (fr) Proteines recombinantes a activite hemostatique capables d&#39;induire l&#39;agregation plaquett aire
JP2014523742A (ja) リン酸化タウ凝集体に対する抗体
JP6702877B2 (ja) 凝固第viii因子(fviii)機能代替活性を有する物質を中和する抗体
JP6900051B2 (ja) Claudin 5抗体、及びその抗体を含有する医薬
TW201942136A (zh) Her3抗原結合分子
CN110023339A (zh) 凝血因子结合蛋白及其应用
TW202045543A (zh) 抗trem2抗體及其使用方法
JP2017503796A (ja) 化合物の共有結合性コンジュゲーションのためのmTG基質
EP3724221A1 (fr) Variants avec fragment fc ayant une affinité augmentée pour fcrn et une affinité augmentée pour au moins un récepteur du fragment fc
RU2752595C2 (ru) Способ измерения реактивности fviii
WO2006132272A1 (fr) Procédé de production d&#39;un anticorps
TW202210523A (zh) 用於調節骨髓樣細胞發炎表型之抗vsig4組合物及方法以及其用途
EP1749537B1 (fr) Anticorps anti-idiotypique neutralisant l&#39;activité inhibitrice d&#39;un anticorps inhibiteur du facteur VIII
Fabra-García et al. Highly potent, naturally acquired human monoclonal antibodies against Pfs48/45 block Plasmodium falciparum transmission to mosquitoes
JP5696316B2 (ja) 細胞表面に発現したタンパク質に対する抗体作製法
WO2012085447A1 (fr) Procédé de dosage d&#39;anticorps dirigés contre le facteur viii
WO2014207402A1 (fr) Anticorps dirigés contre le canal sodique nav1.9 humain et leurs utilisations en diagnostic
Hopp et al. Plasmodium falciparum-specific IgM B cells dominate in children, expand with malaria and produce parasite inhibitory IgM
JP2010539232A (ja) 酸化還元反応によりモノクローナル抗体の結合特異性を改変させる方法
RU2815960C2 (ru) Антитела, которые связываются с расщепленной формой мутантного кальретикулина, и средство для диагностики, профилактики или лечения миелопролиферативного новообразования
TWI837109B (zh) 靶向共有抗原之抗原結合蛋白

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11815466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11815466

Country of ref document: EP

Kind code of ref document: A1