WO2012084425A1 - Amplificateur laser à conducteur plat et ensemble laser pourvu d'un amplificateur laser à conducteur plat - Google Patents

Amplificateur laser à conducteur plat et ensemble laser pourvu d'un amplificateur laser à conducteur plat Download PDF

Info

Publication number
WO2012084425A1
WO2012084425A1 PCT/EP2011/071240 EP2011071240W WO2012084425A1 WO 2012084425 A1 WO2012084425 A1 WO 2012084425A1 EP 2011071240 W EP2011071240 W EP 2011071240W WO 2012084425 A1 WO2012084425 A1 WO 2012084425A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
discharge space
stripline
laser amplifier
electrodes
Prior art date
Application number
PCT/EP2011/071240
Other languages
German (de)
English (en)
Inventor
Hermann Hage
Jörg Porath
Original Assignee
Rofin-Sinar Laser Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rofin-Sinar Laser Gmbh filed Critical Rofin-Sinar Laser Gmbh
Publication of WO2012084425A1 publication Critical patent/WO2012084425A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers

Definitions

  • the invention relates to a stripline laser amplifier and a laser arrangement with a stripline laser amplifier.
  • a band conductor or slab laser oscillator is a laser oscillator known, for example, from EP 0305893 A2 or US Pat. No. 4,719,639 A, whose resonator is a combination of a waveguide resonator and an unstable resonator of the positive or negative branch. In such a band conductor laser oscillator is located
  • Carbon dioxide containing CO 2 gas mixture in a narrow discharge formed between two flat plate-shaped electrodes formation space By applying a high-frequency electromagnetic field, the gas mixture located between the electrodes is excited.
  • a resonator mirror is arranged in each case opposite the end faces of the narrow parallelepiped discharge space formed in this way.
  • the resonator mirrors form in a direction parallel to the narrow side of the Entla ⁇ dung space unstable confocal resonator with a free beam propagation. Transversely to this direction, the propagation conditions of the electromagnetic radiation arising within the discharge space are determined by the waveguide properties of the electrodes.
  • Such shaped discharge space can also be used as a laser amplifier when are ⁇ arranged on the front sides of the discharge space instead of resonator mirrors folding mirrors, which deflect an incoming parallel at the edge of the discharge space to the long side into the discharge space laser beam zigzag so that it repeatedly the Traversing the discharge space and experiencing a gain.
  • a laser arrangement in which a strip laser amplifier is connected downstream of a laser oscillator is known, for example, from DE 10 2009 024 360 A1.
  • the invention is based on the object to provide a Bandlei ⁇ ter laser amplifier with which a high gain can be achieved with a compact design.
  • the invention is based on the object to provide a laser array with a ribbon conductor laser amplifier, with which it is possible to achieve a high performance in a likewise compact structure.
  • the object is achieved according to the invention solved by the features of the Patenanspru ⁇ ches 1.
  • the Bandleiter- laser amplifier comprises a plurality of stacked arranged areally extended and with their flat sides of opposed electrodes between which a narrow discharge chamber is formed, in which a
  • Carbon dioxide CO 2 containing laser gas is.
  • a folding mirror is arranged in each case on the end sides of each ⁇ discharge space and discharge spaces are connected with a coupling Spie ⁇ gelan extract optically behind the other.
  • a high gain with technologically controllable electrode surfaces can be achieved with a compact construction of the stripline laser amplifier in accordance with the number of discharge spaces stacked one above the other.
  • a resonator surrounding Vakuumge ⁇ fäß must be only slightly enlarged in its height corresponding to the number of superposed in the stack electrodes.
  • the necessary for holding the resonator substructure need not be increased, as would be the case in next ⁇ each other or arranged one behind another laser amplifiers.
  • a particularly compact construction is achieved if adjacent discharge spaces are spatially separated from each other by a common electrode.
  • a further advantage of such an arrangement is also that the intermediate electrodes experience a symmetrical thermal load, ie both flat sides are thermally loaded in the same way, so that a bending caused by different thermal load ⁇ bending of these electrodes can no longer occur.
  • the laser arrangement comprises a first and at least one second discharge space, each of which is stacked between two stacked and flat electrodes and opposite to each other, in which a laser gas containing carbon dioxide CO 2 is located.
  • a resonator mirror being ⁇ assigns that form an unstable resonator in a direction parallel to the flat sides oriented direction, wherein at the end faces of the at least one second discharge space depending ⁇ wells a folding mirror is arranged, and first and second discharge space with a coupling mirror arrangement optically mitei- are coupled together.
  • the first Entla ⁇ formation space forms a strip conductor laser oscillator, together with the resonator mirrors, which is used during at least an overlying second discharge space as Bandleiter- laser amplifier.
  • FIG. 4 shows a laser arrangement according to the invention also in a schematic view on the longitudinal side
  • Lasergas is located.
  • a laser beam LSi n is coupled to an end face 8a, which is generated by an external laser oscillator, not shown in the figure and propagates parallel to the longitudinal side of the discharge ⁇ space 6a.
  • two discharge spaces b are arranged one above the other. In principle, however, such discharge spaces can be arranged one above the other.
  • the mirror surfaces of both folding mirrors 10a are arranged obliquely to a system axis 14 extending in the longitudinal direction parallel to the flat sides of the electrodes 4a, b.
  • the mirror surface of one of the two folding mirrors 10a may be arranged perpendicular to this system axis 14. It is only important that the mirror surfaces of the two folding mirrors 10a are not arranged parallel to one another but slightly inclined relative to one another or at an angle to one another.
  • folding mirrors with slightly concave or convexly curved mirror surfaces can also be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

L'invention concerne un amplificateur laser à conducteur plat qui contient une pluralité d'électrodes (4 a-c) étendues à plat, disposées empilées les unes sur les autres et avec leurs côtés plats opposés les uns aux autres, entre lesquelles est formé un étroit espace de décharge (6a, b) dans lequel se trouve un gaz laser contenant du dioxyde de carbone CO2, un miroir pliant (10a, b) étant disposé sur les côtés frontaux (8a, b) de chaque espace de décharge (6a, b) et les espaces de décharge (6a, b) étant optiquement commutés l'un derrière l'autre par un ensemble de miroir de couplage (12).
PCT/EP2011/071240 2010-12-23 2011-11-29 Amplificateur laser à conducteur plat et ensemble laser pourvu d'un amplificateur laser à conducteur plat WO2012084425A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010064147 DE102010064147B4 (de) 2010-12-23 2010-12-23 Bandleiter-Laserverstärker und Laseranordnung mit einem Bandleiter-Laserverstärker
DE102010064147.2 2010-12-23

Publications (1)

Publication Number Publication Date
WO2012084425A1 true WO2012084425A1 (fr) 2012-06-28

Family

ID=45375284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/071240 WO2012084425A1 (fr) 2010-12-23 2011-11-29 Amplificateur laser à conducteur plat et ensemble laser pourvu d'un amplificateur laser à conducteur plat

Country Status (2)

Country Link
DE (1) DE102010064147B4 (fr)
WO (1) WO2012084425A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180212397A1 (en) * 2015-07-22 2018-07-26 Academy Of Opto-Electronics, Chinese Academy Of Sciences Excimer laser systems with a ring cavity structure
EP3550678A1 (fr) * 2018-04-04 2019-10-09 Kern Technologies, LLC Laser à guide d'ondes bi-dimensionnel plié
WO2021095099A1 (fr) * 2019-11-11 2021-05-20 三菱電機株式会社 Amplificateur laser à gaz, dispositif laser à gaz, générateur de lumière euv et dispositif d'exposition euv

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012014856B4 (de) * 2012-07-29 2017-01-26 Keming Du Optische Verstärker-Anordnungen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719639A (en) 1987-01-08 1988-01-12 John Tulip Carbon dioxide slab laser
EP0305893A2 (fr) 1987-08-31 1989-03-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Laser de haute puissance à guide d'onde en forme de bande
DE4102079A1 (de) * 1990-01-24 1991-08-01 Hitachi Ltd Hochdruck-gaslaservorrichtung
DE19609851A1 (de) * 1996-03-13 1997-09-18 Rofin Sinar Laser Gmbh Bandleiterlaser
CN2370594Y (zh) * 1998-10-23 2000-03-22 北京理工大学 板条型波导气体激光器
DE102009024360A1 (de) 2008-06-12 2010-01-07 Gigaphoton, Inc. Slab-Typ-Laser-Vorrichtung
DE102010000032A1 (de) * 2009-01-14 2010-08-05 Gigaphoton, Inc Laserstrahl-Verstärker und Laservorrichtung unter Benutzung desselben

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3937489A1 (de) * 1989-11-10 1991-05-16 Deutsche Forsch Luft Raumfahrt Quergestroemter gasentladungslaser mit mikrowellenanregung
US5684821A (en) * 1995-05-24 1997-11-04 Lite Jet, Inc. Microwave excited laser with uniform gas discharge
US7756186B2 (en) * 2007-02-23 2010-07-13 Coherent, Inc. Unstable resonator with variable output coupling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719639A (en) 1987-01-08 1988-01-12 John Tulip Carbon dioxide slab laser
US4719639B1 (en) 1987-01-08 1994-06-28 Boreal Laser Inc Carbon dioxide slab laser
EP0305893A2 (fr) 1987-08-31 1989-03-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Laser de haute puissance à guide d'onde en forme de bande
DE4102079A1 (de) * 1990-01-24 1991-08-01 Hitachi Ltd Hochdruck-gaslaservorrichtung
DE19609851A1 (de) * 1996-03-13 1997-09-18 Rofin Sinar Laser Gmbh Bandleiterlaser
CN2370594Y (zh) * 1998-10-23 2000-03-22 北京理工大学 板条型波导气体激光器
DE102009024360A1 (de) 2008-06-12 2010-01-07 Gigaphoton, Inc. Slab-Typ-Laser-Vorrichtung
DE102010000032A1 (de) * 2009-01-14 2010-08-05 Gigaphoton, Inc Laserstrahl-Verstärker und Laservorrichtung unter Benutzung desselben

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180212397A1 (en) * 2015-07-22 2018-07-26 Academy Of Opto-Electronics, Chinese Academy Of Sciences Excimer laser systems with a ring cavity structure
EP3550678A1 (fr) * 2018-04-04 2019-10-09 Kern Technologies, LLC Laser à guide d'ondes bi-dimensionnel plié
US10811838B2 (en) 2018-04-04 2020-10-20 Kern Technologies, Llc Folded slab laser
US11942753B2 (en) 2018-04-04 2024-03-26 Kern Technologies, Llc Folded slab laser
WO2021095099A1 (fr) * 2019-11-11 2021-05-20 三菱電機株式会社 Amplificateur laser à gaz, dispositif laser à gaz, générateur de lumière euv et dispositif d'exposition euv
JPWO2021095099A1 (fr) * 2019-11-11 2021-05-20
JP7258178B2 (ja) 2019-11-11 2023-04-14 三菱電機株式会社 ガスレーザ増幅器、ガスレーザ装置、euv光発生装置およびeuv露光装置

Also Published As

Publication number Publication date
DE102010064147B4 (de) 2013-09-12
DE102010064147A1 (de) 2012-06-28

Similar Documents

Publication Publication Date Title
DE3729053C2 (fr)
EP1145390B1 (fr) Systeme d'amplification laser
EP1252687B1 (fr) Systeme d'amplification laser
DE931294C (de) Mit ineinandergreifenden Kaemmen ausgebildete Verzoegerungsleitung zur Verwendung in einer Wanderwellenroehre
DE112005001820T5 (de) Dielektrisch gekoppelter CO2-Plattenlaser
EP0886896B1 (fr) Laser a ruban
EP2240984B1 (fr) Structure laser à diodes destinée à la production de faisceaux laser ayant un produit de paramètres de faisceau optimisé quant au couplage de fibres
EP0355757B1 (fr) Système laser à guide d'ondes
WO2012084425A1 (fr) Amplificateur laser à conducteur plat et ensemble laser pourvu d'un amplificateur laser à conducteur plat
EP2917985B1 (fr) Amplificateur optique slab à pompage par extrémité avec modules de pompage distribués
EP1252688B1 (fr) Systeme d'amplification laser
DE4191708C1 (de) Festkörperlaser
DE60037962T2 (de) Aktives Element für eine Laser-Quelle und Anwendung in einer Laser-Quelle
DE4008225C2 (de) Laserdiodengepumpter Festkörperlaser
EP3707787B1 (fr) Procédé d'amplification de laser
EP2691804A1 (fr) Dispositif servant à dévier un rayonnement laser et dispositif à laser comportant un tel dispositif
DE112011105360B4 (de) Gaslaser-vorrichtung
DE19645093C2 (de) Wellenleiter-Lasersystem
EP0152570B1 (fr) Laser à gaz, en particulier à excitation transversale
EP1497896B1 (fr) Laser a guide en ruban
EP2550710A1 (fr) Système laser
DE102007040369A1 (de) Laserverstärkersystem
DE2943322A1 (de) Instabiler laserresonator
DE3726279A1 (de) Laser mit einem laseraktiven festkoerpermedium und mehreren pumpquellen
DE19824661A1 (de) Laserdiodenarray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11799255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11799255

Country of ref document: EP

Kind code of ref document: A1