WO2012079659A1 - Procédé de fabrication d'une plaque bipolaire et plaque bipolaire pour une pile à combustible - Google Patents

Procédé de fabrication d'une plaque bipolaire et plaque bipolaire pour une pile à combustible Download PDF

Info

Publication number
WO2012079659A1
WO2012079659A1 PCT/EP2011/005148 EP2011005148W WO2012079659A1 WO 2012079659 A1 WO2012079659 A1 WO 2012079659A1 EP 2011005148 W EP2011005148 W EP 2011005148W WO 2012079659 A1 WO2012079659 A1 WO 2012079659A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
adhesive
cathode
anode
cathode plate
Prior art date
Application number
PCT/EP2011/005148
Other languages
German (de)
English (en)
Inventor
Christian Martin Erdmann
Arle-Stephan Koller
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2012079659A1 publication Critical patent/WO2012079659A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for producing a bipolar plate, in which an anode plate and a cathode plate are joined together.
  • the invention further relates to a bipolar plate for a fuel cell, comprising an anode plate and a cathode plate joined thereto.
  • Fuel cells and methods for their production are generally known from the prior art, wherein a fuel cell comprises a fuel cell stack, also called a fuel cell stack.
  • a fuel cell comprises a fuel cell stack, also called a fuel cell stack.
  • bipolar plates form electrodes which are each connected by a membrane, in particular a membrane-electrode unit (im
  • the bipolar plates are made of a single plate or two interconnected plates, i. H. an anode plate and a cathode plate.
  • the anode plate and cathode plate are produced in a one-off production by forming steel sheets and then joined by laser welding. It varies depending on a linear propagation of the laser radiation and a
  • Laser beam length one cycle time for the joining of the anode plate and cathode plate to the bipolar plate.
  • the invention is based on the object, an improved over the prior art method for producing a bipolar plate and an improved
  • an anode plate and a cathode plate are joined together. According to the invention is between the
  • Anode plate and the cathode plate an adhesive introduced by means of which the anode plate and the cathode plate are glued together.
  • Adhesive process reduces certain cycle times and thus the joining of the plates is significantly accelerated by means of the gluing process, so that a higher
  • Bipolar plate can be achieved.
  • the bonding takes place in such a way that the anode plate and cathode plate are in direct electrical contact.
  • the electrical contact is realized by means of the adhesive, for which purpose, according to a development of the method according to the invention, the adhesive is admixed with electrically conductive particles.
  • FIG. 1 schematically shows a bipolar plate according to the invention in a plan view
  • FIG. 2 schematically shows an anode plate
  • FIG. 3 shows schematically a cathode plate
  • FIG. 1 shows a sectional representation during a joining process
  • Fig. 5 shows schematically a detail of a first embodiment of
  • Bipolar plate according to the invention according to Figure 1 in a sectional view in a joined region
  • Fig. 6 shows schematically a detail of a second embodiment of
  • Bipolar plate according to the invention according to Figure 1 in a sectional view in a joined region.
  • FIG. 1 shows a bipolar plate 1 according to the invention.
  • Fuel cell stack with membrane electrode units also not shown alternately stacked.
  • a plurality of the fuel cell stacks formed are electrically connected in series and stacked plane-parallel one above the other and form one or more fuel cells.
  • Each of these fuel cells has electrodes in the form of Gas diffusion electrodes, an anode, a cathode and an electrolyte disposed therebetween, in particular an electrolyte membrane, which together form the membrane electrode assembly.
  • the respective bipolar plate 1 arranged between two membrane-electrode units serves in this case for the spacing of the membrane-electrode units, the distribution of reactants for the fuel cell via the adjacent membrane-electrode units and the removal of the reactants in each case provided for this purpose the membrane-electrode units open towards, shown in more detail in Figure 4
  • the bipolar plate 1 serves to dissipate the heat of reaction via a coolant conducted in separate coolant channels, not shown, and to establish an electrical connection between the anode and the cathode of adjacent membrane-electrode assemblies.
  • the reactants used are a fuel and an oxidizing agent.
  • gaseous reactants so-called reaction gases are used, wherein the reaction gases, for example, hydrogen or a hydrogen-containing gas, such as.
  • reformate gas as fuel and oxygen or an oxygen-containing gas such.
  • air as an oxidizing agent.
  • Reactants are all substances involved in the electrochemical reaction, including the reaction products P, such as. B. water or
  • the respective bipolar plate 1 consists of two plane-parallel interconnected moldings, which are formed as plates.
  • one of the plates serves as shown in detail in Figure 2 anode plate 1.1 for connection to the anode of the membrane electrode assembly and the remaining of the plates as shown in more detail in Figure 3 cathode plate 1.2 for connection to the cathode of the other membrane electrode unit.
  • Anodenplatte 1.1 are arranged according to Figure 4 formed as anode channels channels SK1 for distribution of the fuel along a membrane-electrode unit, wherein at the other membrane electrode unit facing surface of the cathode plate 1.2 formed as a cathode channels SK2 channels to distribute the Oxidizer are arranged above the other membrane electrode assembly.
  • Membrane electrode units are inserted between the bipolar plate 1 and the membrane electrode assemblies sealing elements.
  • the sealing elements are preferably formed as a form of seals.
  • FIG. 2 shows the anode plate 1.1.
  • the anode plate 1.1 is preferably made
  • Such an advantageously used stainless steel has in particular the material number 1.4404.
  • the cathode plate 1.2 is shown.
  • the cathode plate 1.2 is preferably formed of stainless steel.
  • a stainless steel which can be used advantageously has, in particular, the material number 1.4404.
  • Figure 4 shows the bipolar plate 1 according to the invention in a sectional view, wherein the anode plate 1.1 and the cathode plate 1.2 are connected to each other by means of an adhesive K.
  • the bottom elements of the channels SK1, SK2 are in the active region of the anode plate 1.1 and the cathode plate 1.2.
  • the adhesive K is applied in a manner not shown in an outer sealing region of the anode plate 1.1 and / or the cathode plate 1.2.
  • a viscosity of the adhesive K is adjusted depending on the material and a design, in particular a structure of a surface of the anode plate 1.1 and cathode plate 1.2.
  • the adhesive K is designed such that it is activated when pressure is applied and hardens.
  • the anode plate 1.1 and the cathode plate 1.2 are heated to activate and cure the adhesive K. The heating takes place in the illustrated
  • Embodiment inductively, for which purpose at least one induction coil 2 is provided.
  • the heating is carried out, for example, by radiation or in an oven, in particular a so-called continuous furnace.
  • activators are added, which are excited when exposed to heat and pressure such that the activation and curing in a short time.
  • the adhesive K is formed such that an adhesion of the adhesive K is automatically activated upon contact with the anode plate 1.1 and / or the cathode plate 1.2.
  • the adhesive K is chemically reactive to the material of
  • Anodenplatte 1.1 and cathode plate 1.2 is formed so that this in contact with the material, in particular the stainless steel with the material number 1.4404, so reacts with this, that there is a particularly rapid adhesion of the adhesive K to the anode plate 1.1 and cathode plate 1.2.
  • FIG. 5 shows a detail of a first exemplary embodiment of the bipolar plate 1 according to the invention in the joined area provided with the adhesive K
  • the anode plate 1.1 and the cathode plate 1.2 are connected to one another during the joining process such that they touch each other directly at least in sections and form a direct and electrically conductive connection between the anode plate 1.1 and the cathode plate 1.2. Between the direct
  • Touch areas of the adhesive K is arranged, by means of which the bonding of the anode plate 1.1 and the cathode plate 1.2 is generated.
  • FIG. 6 shows a section of a second exemplary embodiment of FIG.
  • Bipolar plate 1 in the joined and provided with the adhesive K region of the anode plate 1.1 and the cathode plate 1.2.
  • the adhesive K is electrically conductive.
  • the adhesive K comprises electrically conductive particles P.
  • Anodenplatte 1.1 and the cathode plate 1.2 is a large-scale connection of the anode plate 1.1 and the cathode plate 1.2 can be generated, which is characterized by a particularly low electrical resistance. This results in a high electrical performance of the bipolar plate 1. Furthermore, on the basis of the admixture of different amounts of the particles P and / or by means of a selection of the type and the material of the particles P, the desired electrical conductivity between the
  • Anode plate 1.1 and the cathode plate 1.2 variably predetermined.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une plaque bipolaire (1) dans laquelle une plaque d'anode (1.1) et une plaque de cathode (1.2) sont assemblées l'une à l'autre. Selon l'invention, il est disposé entre la plaque d'anode (1.1) et la plaque de cathode (1.2) un adhésif (K) grâce auquel la plaque d'anode (1.1) et la plaque de cathode (1.2) sont collées l'une à l'autre. L'invention concerne en outre une plaque bipolaire (1) pour une pile à combustible, comprenant une plaque d'anode (1.1) et une plaque de cathode (1.2) qui est assemblée avec celle-ci. Selon l'invention, la plaque d'anode (1.1) et la plaque de cathode (1.2) sont assemblées l'une à l'autre à l'aide d'un adhésif (K).
PCT/EP2011/005148 2010-12-18 2011-10-13 Procédé de fabrication d'une plaque bipolaire et plaque bipolaire pour une pile à combustible WO2012079659A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010055075A DE102010055075A1 (de) 2010-12-18 2010-12-18 Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine Brennstoffzelle
DE102010055075.2 2010-12-18

Publications (1)

Publication Number Publication Date
WO2012079659A1 true WO2012079659A1 (fr) 2012-06-21

Family

ID=44802025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005148 WO2012079659A1 (fr) 2010-12-18 2011-10-13 Procédé de fabrication d'une plaque bipolaire et plaque bipolaire pour une pile à combustible

Country Status (2)

Country Link
DE (1) DE102010055075A1 (fr)
WO (1) WO2012079659A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313092A (zh) * 2016-12-22 2019-10-08 许勒压力机有限责任公司 用于制造双极板的装置及方法
CN113454820A (zh) * 2018-11-12 2021-09-28 飞势生态解决方案有限公司 将两个板粘合在一起以用于燃料电池的方法,尤其是将燃料电池中的双极板胶合的方法
CN114023989A (zh) * 2021-11-02 2022-02-08 上海电气集团股份有限公司 双极板及包含其的电堆
CN114464838A (zh) * 2022-02-16 2022-05-10 安徽瑞氢动力科技有限公司 燃料电池双极板制作方法
CN115084565A (zh) * 2022-05-20 2022-09-20 苏州瀚川智能科技股份有限公司 燃料电池极板全自动点胶和压合装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022205352A1 (de) 2022-05-30 2023-11-30 Robert Bosch Gesellschaft mit beschränkter Haftung Separatorplattenhälfte, Separatorplatte, elektrochemischer Energiewandler sowie Verfahren zum Herstellen einer Separatorplattenhälfte
DE102022116561A1 (de) * 2022-07-04 2024-01-04 Mb Atech Gmbh Verfahren und Vorrichtung zum Aushärten eines Klebstoffs zwischen Elektroden-Lagen eines Elektroden-Stapels

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209150A1 (en) * 2003-04-18 2004-10-21 Rock Jeffrey A. Stamped fuel cell bipolar plate
DE102004028142A1 (de) * 2004-06-10 2006-01-12 Sartorius Ag Bipolarseparator
US7306875B2 (en) * 2004-12-16 2007-12-11 Snecma Bipolar plate for a fuel cell
US20080292916A1 (en) * 2007-05-24 2008-11-27 Newman Keith E Joining bipolar plates using localized electrical nodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209150A1 (en) * 2003-04-18 2004-10-21 Rock Jeffrey A. Stamped fuel cell bipolar plate
DE102004028142A1 (de) * 2004-06-10 2006-01-12 Sartorius Ag Bipolarseparator
US7306875B2 (en) * 2004-12-16 2007-12-11 Snecma Bipolar plate for a fuel cell
US20080292916A1 (en) * 2007-05-24 2008-11-27 Newman Keith E Joining bipolar plates using localized electrical nodes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313092A (zh) * 2016-12-22 2019-10-08 许勒压力机有限责任公司 用于制造双极板的装置及方法
CN110313092B (zh) * 2016-12-22 2022-08-16 许勒压力机有限责任公司 用于制造双极板的装置及方法
US11695124B2 (en) 2016-12-22 2023-07-04 Schuller Pressen Gmbh Device and method for producing flow field plates
CN113454820A (zh) * 2018-11-12 2021-09-28 飞势生态解决方案有限公司 将两个板粘合在一起以用于燃料电池的方法,尤其是将燃料电池中的双极板胶合的方法
CN114023989A (zh) * 2021-11-02 2022-02-08 上海电气集团股份有限公司 双极板及包含其的电堆
CN114464838A (zh) * 2022-02-16 2022-05-10 安徽瑞氢动力科技有限公司 燃料电池双极板制作方法
CN115084565A (zh) * 2022-05-20 2022-09-20 苏州瀚川智能科技股份有限公司 燃料电池极板全自动点胶和压合装置

Also Published As

Publication number Publication date
DE102010055075A1 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2012079659A1 (fr) Procédé de fabrication d'une plaque bipolaire et plaque bipolaire pour une pile à combustible
DE10121176B4 (de) Brennstoffzelle, die ein Dichtmittel aufweist, um eine Festpolymerelektrolytmembran abzudichten Brennstoffzellenstapel und Verfahren zu dessen Herstellung
EP3378117B1 (fr) Plaque bipolaire à sections d'étanchéité asymétriques et empilement de piles à combustible muni d'une telle plaque bipolaire
DE102004008231B9 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer Flachrohrbrennstoffzelle
DE102008029628B4 (de) Brennstoffzellenstapel mit Bipolarplatten-Diffusionsmedienanordnung mit niedrigem elektrischen Widerstand und Verfahren zu seiner Herstellung
DE10340215A1 (de) Polymerelektrolytmembran-Brennstoffzelle und bipolare Platte
DE102015100697A1 (de) Brennstoffzellenkassette und Verfahren zur Herstellung derselben und Brennstoffzellenstapel
WO2017220552A1 (fr) Plaque bipolaire à largeur variable des canaux à gaz de réaction dans la zone d'entrée de la zone active, empilement de cellules à combustible et système de cellules à combustible comportant de telles plaques bipolaires et véhicule
WO2015120933A1 (fr) Plaque bipolaire, pile à combustible et véhicule automobile ainsi que procédé pour la fabrication de la plaque bipolaire
WO2015144269A1 (fr) Plaque bipolaire et pile à combustible équipée de cette plaque
EP1627445A1 (fr) Cellule electrolytique ou electrochimique pourvue de coussins de pression et presentant une resistance de passage amelioree
EP1981108B1 (fr) Agencement d'interconnecteur et procédé de fabrication d'un agencement de contact pour un empilement de piles à combustible
DE102010054305A1 (de) Brennstoffzellenstapel mit mehreren Brennstoffzellen
EP3736894B1 (fr) Plaque bipolaire pour piles à combustible, empilement de piles à combustible doté de telles plaques bipolaires ainsi que véhicule doté d'un tel empilement de piles à combustible
DE102020128043A1 (de) Bipolarplatte mit integriertem Kühlmittelkanal
WO2021001216A1 (fr) Plaque bipolaire pour une pile à combustible, procédé de fabrication d'une plaque bipolaire pour une pile à combustible ainsi que pile à combustible
DE102020100341A1 (de) Verfahren zur Herstellung eines Separators für eine Brennstoffzelle
DE102010056014A1 (de) Brennstoffzellenstapel und Verfahren zur Herstellung eines Brennstoffzellenstapels
EP2174370A1 (fr) Pile à combustible individuelle pour empilement de piles à combustible
EP4150692B1 (fr) Procédé pour la manufacture d'une structure stratifiée d'un assemblage membrane-électrode contenant au moins 2 couches
DE102010056003A1 (de) Brennstoffzellenstapel
DE10243349A1 (de) Separator für eine Brennstoffzelle und Verfahren zur Herstellung desselben
DE102006058293B4 (de) Brennstoffzellenstapel
DE102020120407A1 (de) Verfahren zum Herstellen von Bipolarplatten
WO2023078653A1 (fr) Cellule électrochimique comprenant un assemblage membrane-électrodes, une couche de diffusion et une plaque de distribution, et procédé de fabrication d'une cellule électrochimique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11770380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11770380

Country of ref document: EP

Kind code of ref document: A1