WO2012077573A1 - 電極構成、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機エレクトロルミネッセンス画素、および、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を備えた装置、並びに、有機太陽電池 - Google Patents

電極構成、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機エレクトロルミネッセンス画素、および、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を備えた装置、並びに、有機太陽電池 Download PDF

Info

Publication number
WO2012077573A1
WO2012077573A1 PCT/JP2011/077840 JP2011077840W WO2012077573A1 WO 2012077573 A1 WO2012077573 A1 WO 2012077573A1 JP 2011077840 W JP2011077840 W JP 2011077840W WO 2012077573 A1 WO2012077573 A1 WO 2012077573A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
self
assembled
layer
organic
Prior art date
Application number
PCT/JP2011/077840
Other languages
English (en)
French (fr)
Inventor
恭崇 葛本
青森 繁
勝一 香村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012077573A1 publication Critical patent/WO2012077573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers

Definitions

  • the present invention includes an electrode configuration, an organic thin film transistor having the electrode configuration and a manufacturing method thereof, an organic electroluminescence pixel having the organic thin film transistor, an organic electroluminescence element, an apparatus having the organic electroluminescence element, and
  • the present invention relates to an organic solar cell.
  • a thin film transistor In a thin display device using an organic electroluminescence element (organic EL element) or liquid crystal, a thin film transistor (TFT) is used as an element for driving a pixel.
  • organic EL element organic electroluminescence element
  • TFT thin film transistor
  • an organic thin film transistor (organic TFT) using an organic semiconductor is expected to be manufactured using a simpler and cheaper manufacturing method than a TFT using an inorganic semiconductor.
  • an injection barrier for injecting holes, which are carriers, from the source electrode into the p-type organic semiconductor layer is an energy difference between the work function of the source electrode and the work function of the p-type organic semiconductor. is there.
  • FIG. 25 is a cross-sectional view showing the configuration of an organic TFT 700 manufactured by the technique disclosed in Patent Document 2
  • FIG. 26 is an enlarged cross-sectional view showing a circle portion shown in FIG.
  • the organic TFT 700 includes a gate electrode 702, a gate insulating film 703, a source electrode 704, a drain electrode 705, a SAM 706, and an organic semiconductor layer 707.
  • the SAM 706 is formed by adsorbing one type of organic monomolecule to the electrode surface.
  • Patent Document 3 discloses a technique for controlling the surface density of the self-assembled monolayer in order to more suitably control the work function of the electrode.
  • FIG. 27 is an enlarged view showing the configuration of the SAM 706 in the organic TFT 700 manufactured by the technique disclosed in Patent Document 2.
  • the SAM 706 is composed of two types of monomolecules: a first organic monomolecule 706a having a dipole moment and a second organic monomolecule 706b having no dipole moment. Thereby, the surface density of the first organic single molecule 706a having a dipole moment is controlled.
  • an organic EL element in which an organic layer having a light emitting layer is disposed between a first electrode (anode) that is a transparent electrode and a second electrode (cathode) that is a reflective electrode.
  • a voltage of several volts between the first electrode and the second electrode of the organic EL element having such a configuration holes injected from the first electrode into the organic layer, and from the second electrode to the organic layer Recombined with electrons injected into the light emitting layer.
  • holes and electrons recombine in the light emitting layer, excitons are generated, and light is emitted when the excitons return to the ground state.
  • An organic EL element is an element that emits light by such a mechanism.
  • Organic EL elements have various excellent characteristics such as self-light emission, wide viewing angle, and high-speed response, and thus are mounted on various devices such as display devices and light source devices.
  • the resistance between the electrode and the organic semiconductor layer is an important factor directly related to the performance of the organic TFT.
  • the inventors have determined that the resistance between the electrode and the organic semiconductor layer is not only the above-described carrier injection barrier between the electrode and the organic semiconductor layer, but also the physical resistance between the electrode and the organic semiconductor layer. I found out that a lot of resistance was involved. That is, when the electrode injects carriers into the organic semiconductor layer, the self-assembled layer existing between them acts as a resistance layer to inhibit carrier injection, thereby degrading the performance of the organic TFT.
  • the present inventors have precisely controlled the work function of the electrode to reduce the carrier injection barrier and the physical between the electrode and the organic semiconductor layer. We thought it important to achieve both reduction in resistance.
  • the work function of the electrode is controlled by controlling the surface density of the first organic single molecule 706a having a dipole moment.
  • a solution in which this is mixed with the second organic single molecule 706b is applied to the surface of the electrode and adsorbed until it is saturated over a sufficient time. Therefore, the entire surface of the source electrode 704 is covered with the SAM 706. Therefore, also in the organic TFT produced by patent document 3, the physical resistance value between an electrode and an organic-semiconductor layer is large, and the performance of organic TFT cannot be improved effectively.
  • the above problems also apply to the organic EL element described above. That is, in the conventionally known organic EL element, the luminous efficiency is poor due to the resistance between the electrode and the organic layer (light emitting layer). The same applies to organic solar cells. In other words, conventionally known organic solar cells have poor carrier extraction efficiency due to the resistance between the electrode and the organic layer (light emitting layer).
  • the present invention has been made in view of the above problems, and its purpose is to precisely control the work function of the electrode to reduce the carrier injection barrier, and to physically connect the electrode and the organic layer.
  • the electrode configuration of the present invention is An electrode, an organic layer formed on the electrode, and a self-assembled layer formed of a self-assembled monomolecule having a dipole formed between the electrode and the organic layer.
  • the electrode is composed of a mixed material in which two or more kinds of electrode materials are mixed so that a surface made of each electrode material appears on the surface of the electrode,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more types of electrode materials among the mixed materials on the surface of the electrode, and to one or more types of other electrode materials. Is characterized by not being combined.
  • a configuration is realized in which a self-assembled monomolecule is bonded to a portion made of a certain electrode material and no self-assembled monomolecule is bonded to a portion made of another electrode material.
  • the surface density of the self-assembled layer on the electrode is controlled by the proportion of the electrode material in the mixed material constituting the electrode. Therefore, a self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material. This makes it possible to precisely control the work function of the electrode and reduce the carrier injection barrier between the electrode and the organic layer.
  • the organic layer is formed on a portion made of an electrode material to which the self-assembled monomolecule is not bonded, on the surface of the electrode, through a gap where the self-assembled monomolecule does not exist in the self-assembled layer. It is possible to touch. Thereby, the physical resistance between the electrode and the organic layer can be reduced.
  • an organic thin film transistor having the above electrode configuration, A substrate, A gate electrode formed on the substrate; A gate insulating film formed on the gate electrode; A source electrode and a drain electrode formed on the gate insulating film; An organic semiconductor layer continuously formed on the source electrode and the drain electrode, and in the gap between the electrodes; Comprising the self-assembled layer formed between at least one of the source electrode and the drain electrode and the organic semiconductor layer;
  • the at least one electrode is composed of the mixed material,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more types of electrode materials among the mixed materials on the surface of the at least one electrode, and one or more types of other molecules are combined. It is characterized by not being bonded to the electrode material.
  • a self-assembled monomolecule is bonded to a portion made of an electrode material, and a self-assembled monomolecule is bonded to a portion made of another electrode material. Not done.
  • a self-assembled layer is formed on at least one electrode by self-assembled monomolecules bonded to a certain electrode material. That is, the surface density of the self-assembled layer on at least one electrode is controlled by the ratio of the electrode material in the mixed material constituting the electrode. For this reason, a self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material during the production of the organic thin film transistor according to the present invention. This makes it possible to precisely control the work function of at least one of the electrodes and reduce the carrier injection barrier in the electrode.
  • an organic semiconductor layer is formed on at least one of the electrodes via a self-assembled layer.
  • the organic semiconductor layer can be in contact with a portion of the surface of the electrode made of an electrode material to which the self-assembled monomolecule does not bind by passing through a gap where the self-assembled monomolecule does not exist in the self-assembled layer. It is. Thereby, the physical resistance between the electrode and the organic semiconductor layer can be reduced.
  • the work function of the electrode is precisely controlled to reduce the carrier injection barrier, and the physical resistance between the electrode and the organic semiconductor layer is reduced. It is possible to achieve both. Therefore, it is possible to realize a high-performance organic thin film transistor that can ensure a large current without increasing the voltage.
  • the organic electroluminescence pixel according to the present invention preferably includes any one of the organic thin film transistors described above. According to the said structure, an organic electroluminescent pixel with favorable luminous efficiency can be provided.
  • the organic electroluminescence device is An organic electroluminescent element having the above electrode configuration, wherein the organic layer having the above electrode configuration includes an organic layer including a light emitting layer between the first electrode and the second electrode.
  • the at least one electrode is composed of the mixed material such that a surface made of each electrode material appears on the surface of the electrode,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more types of electrode materials among the mixed materials on the surface of the at least one electrode, and one or more types of other molecules are combined. It is characterized by not being bonded to the electrode material.
  • the self-assembled monomolecule is bonded to a portion made of a certain electrode material on the electrode surface of the first electrode and / or the second electrode, and the self-assembled monomolecule is attached to a portion made of another electrode material. Are not joined.
  • a self-assembled layer is formed on at least one electrode by self-assembled monomolecules bonded to a certain electrode material. That is, the surface density of the self-assembled layer on at least one electrode is controlled by the ratio of the electrode material in the mixed material constituting the electrode. For this reason, the self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material during the production of the organic electroluminescence device according to the present invention. This makes it possible to precisely control the work function of at least one of the electrodes and reduce the carrier injection barrier in the electrode.
  • an organic layer including a light emitting layer is formed on at least one of the electrodes via a self-assembled layer. For this reason, the organic layer can come into contact with a portion of the surface of the electrode made of an electrode material to which the self-assembled monomolecule is not bonded, through a gap where no self-assembled monomolecule exists in the self-assembled layer. It is. Thereby, the physical resistance between the electrode and the organic layer can be reduced.
  • the organic electroluminescence device it is possible to reduce the barrier by precisely controlling the work function of the electrode and to reduce the physical resistance between the electrode and the organic layer. It is possible to make it. For this reason, an organic electroluminescent element with favorable luminous efficiency can be realized.
  • the present invention also includes an apparatus provided with the above-described organic electroluminescence element. According to the above configuration, since the organic electroluminescence element has good light emission efficiency, various devices such as a display device and a light source device that exhibit high luminance with low power consumption can be realized.
  • an organic solar cell having the above electrode configuration, wherein the organic layer includes an organic layer including a photoelectric conversion layer as the organic layer of the electrode configuration between the first electrode and the second electrode. Because The self-organized layer formed between at least one of the first electrode and the second electrode and an organic layer including the photoelectric conversion layer;
  • the at least one electrode is composed of the mixed material such that a surface made of each electrode material appears on the surface of the electrode,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more types of electrode materials among the mixed materials on the surface of the at least one electrode, and one or more types of other molecules are combined. It is characterized by not being bonded to the electrode material.
  • the self-assembled monomolecule is bonded to a portion made of a certain electrode material on the electrode surface of the first electrode and / or the second electrode, and the self-assembled monomolecule is attached to a portion made of another electrode material. Are not joined.
  • a self-assembled layer is formed on at least one electrode by self-assembled monomolecules bonded to a certain electrode material. That is, the surface density of the self-assembled layer on at least one electrode is controlled by the ratio of the electrode material in the mixed material constituting the electrode. For this reason, the self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material during the production of the organic solar cell according to the present invention. This makes it possible to precisely control the work function of at least one of the electrodes and reduce the carrier injection barrier in the electrode.
  • an organic layer including a photoelectric conversion layer is formed on at least one of the electrodes via a self-assembled layer. For this reason, the organic layer can come into contact with a portion of the surface of the electrode made of an electrode material to which the self-assembled monomolecule is not bonded, through a gap where no self-assembled monomolecule exists in the self-assembled layer. It is. Thereby, the physical resistance between the electrode and the organic layer can be reduced.
  • the organic solar cell according to the present invention it is possible to reduce the barrier by precisely controlling the work function of the electrode and to reduce the physical resistance between the electrode and the organic layer. It is possible. For this reason, the organic solar cell which raised the taking-out efficiency of a carrier is realizable.
  • the manufacturing method of the electrode configuration of the present invention is as follows.
  • a method of manufacturing an electrode configuration Forming the electrode by mixing two or more kinds of electrode materials such that a surface made of each electrode material appears on the surface of the electrode, and Applying a self-assembled monomolecule that binds to one or more electrode materials of the two or more electrode materials and does not bond to one or more other electrode materials; Removing from the electrode self-assembled single molecules that do not bind to other electrode materials; It is characterized by including.
  • an organic thin film transistor capable of securing a large current without increasing the voltage can be suitably manufactured.
  • a method for producing an organic thin film transistor includes: A substrate, A gate electrode formed on the substrate; A gate insulating film formed on the gate electrode; A source electrode and a drain electrode formed on the gate insulating film; An organic semiconductor layer continuously formed on the source electrode and the drain electrode, and in the gap between the electrodes; A method for producing an organic thin film transistor comprising a self-assembled layer formed of a self-assembled monomolecule having a dipole, formed between at least one of the source electrode and the drain electrode and the organic semiconductor layer Because Forming the at least one electrode by mixing two or more kinds of electrode materials such that a surface made of each electrode material appears on the surface of the electrode, and On the at least one electrode, a self-assembled monomolecule that is bonded to one or more of the two or more electrode materials and not bonded to one or more of the other electrode materials is applied. Process, And washing the at least one electrode to remove the self-assembled monomolecule applied on the other electrode material from the electrode.
  • an organic thin film transistor capable of securing a large current without increasing the voltage can be suitably manufactured.
  • an electrode configuration in which the work function of the electrode is precisely controlled to reduce the carrier injection barrier and the physical resistance between the electrode and the organic layer is reduced, and
  • an organic thin film transistor including the electrode configuration and a manufacturing method thereof, an organic EL pixel and an organic EL element including the organic thin film transistor, a device including the organic EL element, and an organic solar battery. Can do.
  • FIG. 1 It is sectional drawing which shows the structure of the source electrode in the organic TFT which concerns on Example 2 of this invention, a drain electrode, and a self-organization layer. It is a figure which shows the band diagram for demonstrating the carrier injection
  • FIG. It is sectional drawing which shows the structure of the source electrode in the organic TFT which concerns on Example 3 of this invention, a drain electrode, and a self-organization layer. It is a figure which shows the band diagram for demonstrating the carrier injection
  • FIG. 1 It is sectional drawing which shows the structure of the source electrode in the organic TFT which concerns on Example 4 of this invention, a drain electrode, and a self-organization layer. It is a figure which shows the band diagram for demonstrating the carrier injection
  • FIG. 18 is a circuit diagram schematically showing an organic EL pixel including the organic EL element shown in FIG. 17.
  • FIG. 21 is a circuit diagram schematically showing an organic EL display in which the organic EL pixels shown in FIG. 20 are arranged.
  • FIG. 1 is a cross-sectional view of the electrode configuration of the present embodiment.
  • the electrode configuration 600 of this embodiment includes an electrode 602 and an organic layer 604 formed on the electrode 602.
  • the electrode 602 has an electrode material layer 605 and a self-assembled layer 606 composed of self-assembled monomolecules having a dipole.
  • the self-assembled layer 606 is formed between the electrode material layer 605 and the organic layer 604.
  • the electrode material layer 605 is composed of a mixed material in which two or more types of electrode materials 605a and 605b are mixed so that a surface made of each electrode material appears on the surface on the self-assembled layer 606 side.
  • the self-assembled monomolecule constituting the self-assembled layer 606 is bonded to the electrode material 605a of the mixed material on the surface of the electrode material layer 605, and is bonded to the other electrode material 605b. Absent.
  • the electrode configuration 600 of the present embodiment having the above configuration can be manufactured by the following manufacturing method. Specifically, the step of forming the electrode material layer 605 by mixing two or more kinds of electrode materials 605a and 605b so that the surface of each electrode material appears on the surface of the electrode material layer 605, and the electrode A step of applying a self-assembled monomolecule that is bonded to the material 605a and not bonded to the other electrode material 605b; and a self-assembled single molecule that is not bonded to the other electrode material 605b is applied to the electrode material layer 605 (specifically Specifically, a method including a step of removing from other electrode material 605b) and a step of forming organic layer 604 may be employed.
  • the electrode materials 605a and 605b, the self-assembled layer 606, and the organic layer 604 of the electrode material layer 605 can be configured using conventionally known materials. For example, what was illustrated after Embodiment 2 mentioned later can be used.
  • the electrode material to which the self-assembled single molecule binds is not limited to one type, and may be a plurality of types of electrode materials. Further, the electrode material to which the self-assembled monomolecule does not bind is not limited to one type, and may be a plurality of types of electrode materials.
  • the electrode configuration 600 of the present embodiment By configuring the electrode configuration 600 of the present embodiment as described above, a self-organized monomolecule is bonded to a portion made of a certain electrode material, and a self-assembled monomolecule is bonded to a portion made of another electrode material. An uncoupled configuration is realized.
  • the surface density of the self-assembled layer on the electrode 602 is controlled by the ratio of the electrode material in the mixed material constituting the electrode material layer 605 of the electrode 602. Therefore, a self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material.
  • the work function of the electrode 602 can be precisely controlled, and the carrier injection barrier between the electrode 602 and the organic layer 604 can be reduced.
  • the organic layer 604 is formed from the electrode material 605b to which the self-assembled monomolecule does not bind out of the surface of the electrode 602 by passing through the gap where the self-assembled monomolecule does not exist in the self-assembled layer 606. Can be touched. Thereby, the physical resistance between the electrode 602 and the organic layer 604 can be reduced.
  • Electrode configuration of the first embodiment is applied to the source electrode and the drain electrode.
  • organic thin film transistor (organic TFT) 100 First, a schematic configuration of the organic thin film transistor (organic TFT) 100 according to the present embodiment will be described with reference to FIG.
  • FIG. 3 is a cross-sectional view showing the layer structure of the organic TFT 100 according to this embodiment.
  • the organic TFT 100 includes a substrate 1, a gate electrode 2, a gate insulating film 3, a source electrode 4, a drain electrode 5, a self-assembled layer 6, and an organic semiconductor layer 7 (organic layer). .
  • a gate electrode 2 and a gate insulating film 3 are formed on the substrate 1, and a source electrode 4 and a drain electrode 5 are separately formed on the gate insulating film 3.
  • a region between the source electrode 4 and the drain electrode 5 is referred to as a channel portion 20.
  • a source-side self-assembled layer (first self-assembled layer) 6 a is formed on the source electrode 4, and a drain-side self-assembled layer (second self-assembled layer) 6 b is formed on the drain electrode 5.
  • first self-assembled layer 6 a
  • second self-assembled layer 6 b
  • the self-assembled layer 6 is formed at least in a portion in contact with the channel portion 20 in each of the source electrode 4 and the drain electrode 5.
  • the source electrode 4 is composed of a mixed material 4b including a material 4a that can bind to the self-assembled monomolecules constituting the source-side self-assembled layer 6a and a material that cannot bind to the self-assembled monomolecules.
  • the drain electrode 5 is made of a mixed material including a material 5a to which the self-assembled monomolecule constituting the drain-side self-assembled layer 6b can be bonded and a material 5b to which the self-assembled monomolecule cannot be bonded.
  • the self-assembled monomolecule constituting the source-side self-assembled layer 6a is bonded to a portion of the surface of the source electrode 4 made of the material 4a to which the self-assembled monomolecule can be bonded.
  • the self-assembled monomolecule constituting the drain-side self-assembled layer 6b is bonded to the portion of the surface of the drain electrode 5 made of the material 5a to which the self-assembled monomolecule can be bonded.
  • the organic semiconductor layer 7 is in direct contact with the source electrode 4 and the drain electrode 5 through a gap in which no self-assembled monomolecule exists in the self-assembled layer 6.
  • the self-assembled layer may be formed on the channel portion 20.
  • a self-assembled layer is formed on the channel portion 20
  • carrier traps at the interface of the channel portion 20 interface between the organic semiconductor layer 7 and the gate insulating film 3 can be suppressed, thereby securing a large amount of current. be able to.
  • the size of the dipole of the self-assembled monomolecule constituting the self-assembled layer formed on the channel portion 20 is as small as possible in order to suppress carrier traps more effectively.
  • the self-assembled layer (other self-assembled layer) formed on the channel portion 20 is the same type as the self-assembled monomolecule that constitutes the source-side self-assembled layer 6 a formed on the source electrode 4. As long as it is composed of self-assembled single molecules. Or you may be comprised from the self-organization single molecule of a different kind from this. Alternatively, the self-assembled layer formed on the channel portion 20 is composed of the same kind of self-assembled monomolecule as the self-assembled monomolecule that constitutes the drain-side self-assembled layer 6 b formed on the drain electrode 5. It only has to be done. Or you may be comprised from the self-organization single molecule of a different kind from this.
  • the substrate 1 can be selected from various materials. For example, an insulator such as glass or quartz, or a semiconductor material such as silicon can be used. When the flexible organic TFT 100 is manufactured, the substrate 1 is a thin film metal made of SUS, aluminum, or the like, or polycarbonate, polymethyl methacrylate, polyethersulfone (PES), polyethylene naphthalate (PEN), polyether. Plastic materials such as ether ketone (PEEK) or polyimide (PI) can be used.
  • PES polyethersulfone
  • PEN polyethylene naphthalate
  • PEEK ether ketone
  • PI polyimide
  • the gate electrode 2 is made of a metal material such as gold, silver, copper, titanium, or aluminum, an alloy containing these materials, a conductive oxide material such as indium tin oxide (ITO) or indium zinc oxide (IZO), Various conductive materials such as silicon, gallium arsenide, various semiconductor materials in which dopants such as boron and phosphorus are implanted at a high concentration into these materials to increase conductivity, or conductive organic materials such as PEDOT: PSS and polythiophene, or Mixtures or compounds of these can be used.
  • a gate electrode having a multilayer structure such as a two-layer structure of a material having good adhesion to the substrate 1 and a gate electrode material may be used.
  • Examples of a method for forming the gate electrode 2 include a method of forming a target electrode material on the substrate 1 by physical vapor deposition such as resistance heating, electron beam evaporation, or sputtering. Further, it can be formed by a printing technique such as an inkjet method or a gravure printing method. In addition, it can be formed by patterning using a metal mask or photolithography as appropriate.
  • a low-resistance silicon substrate into which impurities are implanted at a high concentration may be used as the substrate 1, and the substrate itself may be used as a gate electrode.
  • Gate insulation film 3 For the gate insulating film 3, an oxide insulating material such as a metal such as silicon, aluminum, or titanium, or an organic insulating material such as polyimide can be used.
  • Examples of the method for forming the gate insulating film 3 include a thermal oxidation method, a chemical vapor deposition method, a sputtering method, and a spin coating method.
  • the characteristics of the organic TFT 100 can be improved by treating the surface in contact with the channel portion 20 in the gate insulating film 3 with a self-assembled monomolecular film such as hexamethyldisilazane or octadecyltrichlorosilane. Therefore, after the formation of the gate insulating film 3, it is preferable to perform the above self-assembled monolayer surface treatment.
  • a self-assembled monomolecular film such as hexamethyldisilazane or octadecyltrichlorosilane. Therefore, after the formation of the gate insulating film 3, it is preferable to perform the above self-assembled monolayer surface treatment.
  • the source electrode 4 and the drain electrode 5 are each composed of a mixed material of various conductive materials.
  • Various conductive materials include metal materials such as gold, silver, copper, titanium, and aluminum, alloys containing them, and conductive oxides such as indium tin oxide (ITO) or indium zinc oxide (IZO). Examples of such materials include silicon, gallium arsenide, various semiconductor materials in which dopants such as boron and phosphorus are implanted at a high concentration in these materials to improve conductivity, or conductive organic materials such as PEDOT: PSS.
  • the self-assembled single layer of the self-assembled layer 6 on each electrode is used. What is necessary is just to select suitably from the material which a molecule
  • a physical vapor deposition method such as a multi-source simultaneous vacuum deposition method or a multi-source sputtering method using a metal mask in a vacuum state under an inert atmosphere such as nitrogen or argon.
  • the method of forming by is mentioned.
  • a printing method such as an ink jet method or a screen printing method, and is baked in an inert atmosphere. You may form by doing.
  • mixing in the mixed material constituting each of the source electrode 4 and the drain electrode 5 is preferably in a state where the particles of each conductive material are appropriately mixed. Moreover, the mixing degree of each electroconductive material should just be the grade which the surface which consists of each electroconductive material appears in the surface of each electrode.
  • the self-assembled layer 6 is composed of a self-assembled monolayer (SAM) formed by collecting self-assembled monomolecules.
  • SAM self-assembled monolayer
  • the self-assembled monomolecule of the self-assembled layer 6 can be combined with one or more materials among the mixed materials constituting the source electrode 4 or the drain electrode 5, and one or more materials Selected from those that cannot be combined.
  • the self-assembled layer 6 can be bonded to gold and cannot be bonded to silicon. It can be selected from silane coupling agent molecules that cannot be bonded.
  • the self-assembled layer 6 is selected from phosphonic acid molecules that can bind to aluminum and cannot bond to silver. Can do.
  • the word “can be bonded” or the word “cannot be bonded” does not necessarily have an absolute meaning for the bond between the self-assembled single molecule and the electrode material. Specifically, at the time of manufacturing the organic TFT 100, after applying a material composed of self-assembled monomolecules on each of the source electrode 4 and the drain electrode 5, can the material be removed from the electrode by a common cleaning process? Or can be determined based on whether it cannot be removed. Examples of the “bond” between the self-assembled single molecule and the electrode material include a chemical bond.
  • the self-assembled monomolecules constituting the self-assembled layer 6 will be described in detail later, but reduce the carrier injection barrier between the source electrode 4 or drain electrode 5 and the organic semiconductor layer 7. It is preferable to have a dipole moment.
  • FIG. 6 is a band diagram showing energy levels that define the work functions of the source electrode 4 and the drain electrode 5 and energy levels of molecular orbitals related to hole injection in the organic semiconductor layer 7.
  • FIG. 6A shows an organic TFT according to a conventional example in which a self-assembled layer is not formed
  • FIG. 6B shows an example of the organic TFT according to this embodiment.
  • the injection barrier for injecting holes from the source electrode into the organic semiconductor layer is determined by the difference between the work function of the source electrode and the work function of the organic semiconductor.
  • the self-assembled monomolecule of the source-side self-assembled layer 6a has a dipole moment that has a positive charge on the source electrode 4 side and a negative charge on the organic semiconductor layer 7 side.
  • the work function of the source electrode 4 increases due to the effect of the electric double layer by the source-side self-assembled layer 6a.
  • the work function of the source electrode 4 approaches the work function of the organic semiconductor layer 7, so that the carrier injection barrier on the source electrode 4 side is reduced.
  • the barrier for moving holes from the organic semiconductor layer 7 to the drain electrode 5 is determined by the energy difference between the work function of the drain electrode and the work function of the organic semiconductor layer. In most cases, the energy difference is less than or equal to zero, and increasing the absolute value facilitates carrier injection.
  • the self-assembled monomolecule of the drain-side self-assembled layer 6b is opposite to that of the source-side self-assembled layer 6a. It is preferable to have a dipole moment that has a negative charge on the drain electrode 5 side and a positive charge on the organic semiconductor layer 7 side.
  • the self-assembled monomolecule of the drain-side self-assembled layer 6b has a dipole in the opposite direction to the preferred direction, the barrier on the drain electrode 5 side increases. ing.
  • the degree of reduction or increase of the carrier injection barrier is proportional to the magnitude of the dipole moment of the self-assembled monomolecule, the density of the self-assembled monomolecule, and the dielectric constant of the self-assembled layer 6. In consideration of these parameters, it is necessary to select a self-assembled single molecule that can reduce the energy barrier.
  • the self-assembled monomolecule constituting the self-assembled layer 6 may be selected based on the viewpoint of the influence of the self-assembled layer 6 on the organic semiconductor layer 7.
  • the carrier mobility in the organic TFT 100 is generally higher when the grain size of the constituent material of the organic semiconductor layer 7 is larger, and this grain size is generally larger when the surface energy of the self-assembled layer 6 is smaller. If the self-organized layer 6 is not provided, the grain size of the organic semiconductor layer 7 becomes small. This is one of the advantages of using the self-organized layer 6.
  • the material of the self-assembled layer 6 is preferably a material having a small surface energy.
  • thiol molecules such as n-octadecanethiol, perfluorobenzenethiol, and fluorobenzenethiol, octadecyltrichlorosilane, and hexamethyldithiol, which have many functional groups such as a fluoro group, a chloro group, and a methyl group.
  • silane coupling agent molecules such as silazane
  • phosphonic acid molecules such as n-octadecylphosphonic acid.
  • the material of the self-assembled layer 6 is not limited to the specific examples given in the present specification, and can be appropriately selected.
  • a method for forming the self-assembled layer 6 for example, a method of repeatedly washing the substrate 1 after applying a solution of the material of the self-assembled layer 6 to the substrate 1 on which the source electrode 4 and the drain electrode 5 are formed.
  • the coating method include a dipping method in which the substrate 1 is directly immersed in a solution, and a coating / printing method using a dispenser or an inkjet.
  • the material of the self-assembled layer 6 is bonded to a portion of the source electrode 4 and the drain electrode 5 that can be firmly bonded to form a self-assembled film.
  • the portion that cannot be firmly bonded is removed by a simple method such as washing.
  • patterning may be performed by casting a solution of the material of the self-assembled layer 6 through a metal mask having a fluorine coating or the like, and then repeating washing.
  • Organic semiconductor layer 7 The material of the organic semiconductor layer 7 is roughly classified into a low molecular system and a high molecular system.
  • organic semiconductor materials are p-type, and representative examples thereof include pentacene and rubrene in low molecular weight systems, and polythiophene and polyphenylene vinylene in high molecular weight systems.
  • examples of the n-type organic semiconductor material include C60 fullerene, perylene and derivatives thereof, and perfluoropentacene and hexagonal which are converted into an n-type material by introducing a fluorine group into a p-type organic semiconductor material such as pentacene or phthalocyanine.
  • Examples include decafluorozinc phthalocyanine.
  • the method of forming the organic semiconductor layer 7 often differs depending on whether the material is a low molecular organic semiconductor or a high molecular organic semiconductor.
  • low molecular weight organic semiconductor molecules have a lower boiling point than high molecular weight organic semiconductor molecules and are difficult to dissolve in a solvent. Therefore, it is preferable to form a film by a vacuum evaporation method using a resistance heating method.
  • a high molecular organic semiconductor layer often has a property of being easily dissolved in a solvent, it is preferably formed by a printing technique such as an inkjet method.
  • the source electrode 4 and the drain electrode 5 are made of a mixed material of an electrode material that can bond a self-assembled monomolecule having a dipole and an electrode material that cannot bond. Therefore, by adjusting the mixing ratio, the surface density of the self-assembled layer 6 formed on the electrode surface can be controlled. That is, it is not necessary to adjust complicated parameters of SAM coupling. For this reason, the surface density of the self-assembled layer 6 can be easily controlled, and the work function of the electrode can be precisely controlled.
  • the organic semiconductor layer 7 enters the portion where the self-assembled layer 6 is not bonded on the electrode and directly contacts the electrode, the physical resistance between the electrode and the organic semiconductor layer 7 can be suppressed. .
  • both the reduction of the carrier injection barrier by precisely controlling the work function of the electrode and the reduction of the physical resistance between the electrode and the organic semiconductor layer can be achieved.
  • the performance of the organic TFT can be preferably improved.
  • Embodiment 2 of the present invention will be described in more detail based on Examples 1 to 6, but the present invention is not limited to the following examples.
  • examples of organic TFTs using pentacene, which is a p-type organic semiconductor material will be described.
  • the basic configuration of the organic TFT according to Examples 1 to 6 is the same as the configuration of the organic TFT 200 shown in FIG.
  • FIG. 2 is an enlarged cross-sectional view showing the source electrode 4 and the source-side self-assembled layer 6a in the organic TFT 200.
  • FIG. 2 is an enlarged cross-sectional view showing the source electrode 4 and the source-side self-assembled layer 6a in the organic TFT 200.
  • the source electrode 4 is composed of a material 4a capable of firmly bonding a self-assembled single molecule (referred to as a binding material) 4a and a material capable of firmly bonding the self-assembled single molecule (referred to as a non-bonded material). ) 4b. Therefore, a self-assembled monomolecule is bonded to a portion of the surface of the source electrode 4 made of the binding material 4a, thereby forming a source-side self-assembled layer 6a. On the other hand, no self-assembled monomolecule is bonded to the portion made of the non-binding material 4b. For this reason, the organic semiconductor layer 7 is in contact with a portion made of the non-bonding material 4 b on the surface of the source electrode 4. Therefore, the source electrode 4 can directly inject carriers into the organic semiconductor layer 7 through the surface made of the non-bonding material 4b.
  • the drain electrode 5 and the drain side self-assembled layer 6b are not shown, but have the same configuration as the source electrode 4 and the source side self-assembled layer 6a.
  • the drain electrode 5 is composed of a binding material 5a to which self-assembled monomolecules of the drain-side self-assembled layer 6b are bonded and a non-bonding material 5b that cannot be bonded.
  • the self-assembled monomolecule of the source-side self-assembled layer 6a and the self-assembled monomolecule of the drain-side self-assembled layer 6b have a positive charge on the electrode side and the organic semiconductor layer 7 side. It has a dipole moment with a negative charge. For this reason, the source-side self-assembled layer 6 a has a function of improving carrier injection characteristics from the source electrode 4 to the organic semiconductor layer 7.
  • FIG. 5 is a cross-sectional view showing process steps in the method for manufacturing the organic TFT 200.
  • an N-type single crystal silicon substrate is used as the substrate 11 that also serves as the gate electrode, and a silicon thermal oxide film is formed on the substrate 11 as a gate insulating film 3 with a film thickness of 100 nm. Formed.
  • a hexamethyldisilazane solution was dropped on the substrate 11 and treated in an oven at 120 ° C. for 30 minutes, and then immersed in an acetone solution for 5 minutes. Subsequently, after the substrate 11 is immersed in an isopropyl alcohol solution for 5 minutes and then dried by nitrogen blowing, the channel portion 20 is modified with a self-assembled monolayer of hexamethyldisilazane molecules having a low surface energy (see FIG. Not shown).
  • gold (Au) that becomes the bonding materials 4a and 5a and indium tin oxide (ITO) that becomes the non-binding materials 4b and 5b are formed by binary simultaneous sputtering.
  • a thin film 13 made of gold and ITO was formed to a thickness of 60 nm.
  • the ratio of gold and ITO was 0.7: 0.3.
  • a thin film 13 having a gold / ITO ratio of 0.5: 0.5 was also produced.
  • the substrate was immersed in a pentafluorobenzenethiol solution (an absolute ethanol solvent) having a concentration of 10 mM under a nitrogen atmosphere.
  • a pentafluorobenzenethiol solution an absolute ethanol solvent having a concentration of 10 mM under a nitrogen atmosphere.
  • the process of rinsing the substrate with ethanol and immersing in ethanol solvent for 5 minutes is repeated three times, and finally the step of drying with nitrogen blow is performed, so that the gold electrode portion is pentafluorobenzene.
  • Modification was performed with a self-assembled layer 6 made of a self-assembled monolayer of thiol (PFBT) (FIG. 5 (d)).
  • the self-assembled monomolecular film of pentafluorobenzenethiol has a dipole moment having a positive charge on the source electrode 4 side and a negative charge on the organic semiconductor layer 7 side.
  • the work function of the source electrode 4 and the drain electrode 5 was measured by photoelectron spectroscopy. Further, the surface density of the self-assembled layer 6 covering the surfaces of the source and drain electrodes was measured by the ATR method. As a result, the ratio of gold to ITO is about 70% in the example of 0.7: 0.3, and the ratio of gold to ITO is about 50% in the other example of 0.5: 0.5. It was. This means that the surface density of the self-assembled layer 6 on the electrode surface can be controlled by adjusting the composition ratio of the electrode material.
  • an organic semiconductor layer 7 of 100 nm was formed using a p-type organic semiconductor material pentacene.
  • the organic semiconductor layer 7 was formed by vacuum deposition through a mask having an opening surrounding the channel portion 20 and the self-assembled layer 6 under the condition of a substrate temperature of 50 ° C.
  • the same material is used for the bonding material 4a and the bonding material 5a, and the non-bonding material 4b and the non-bonding material 5b.
  • different materials may be used.
  • Comparative Example 1 As Comparative Example 1, an organic TFT in which each material of the source electrode 4, the drain electrode 5, and the self-assembled layer 6 was different from that in Example 1 was produced. Specifically, in the organic TFT according to Comparative Example 1, the source electrode 4 and the drain electrode 5 are formed by EB vapor deposition using gold as a material, and the self-assembled layer 6 is formed by pentafluorobenzenethiol (PFBT) and benzene. It formed by the method similar to Example 1 except having formed from the mixture of thiol (BT). The ratio of pentafluorobenzenethiol and benzenethiol was set to 0.7: 0.3.
  • the self-assembled layer 6 was formed on the entire surface of the source electrode 4 and the drain electrode 5.
  • Comparative Example 2 As Comparative Example 2, an organic TFT in which the material of each of the source electrode 4 and the drain electrode 5 was different from that in Example 1 was produced. Specifically, the organic TFT according to Comparative Example 2 was manufactured by the same method as in Example 1 except that the source electrode 4 and the drain electrode 5 were formed by sputtering using ITO as a material.
  • Table 1 shows the work function of the source electrode 4 in each example of Example 1 manufactured by the above method.
  • the SAM layer means the source-side self-assembled layer 6a.
  • Example 1 the work function of the source electrode 4 is increased after the formation than before the self-assembled layer 6 is formed.
  • FIG. 6 is a band diagram showing energy levels that define the work functions of the source electrode 4 and the drain electrode 5 and energy levels of molecular orbitals related to carrier injection of the organic semiconductor layer 7.
  • 6A shows an organic TFT according to Comparative Example 2
  • FIG. 6B shows an organic TFT 200 according to Example 1.
  • Example 1 the work function of the source electrode 4 increases compared to Comparative Example 2, so that the value approaches the work function value of the organic semiconductor layer 7. ing. For this reason, in Example 1, the carrier injection barrier between the source electrode 4 and the organic semiconductor layer 7 is reduced.
  • Example 1 the ratio of gold: ITO was 0.7: 0.3 than that of 0.5: 0.5, and the source electrode 4 Work function is increasing. Therefore, by changing the ratio of the binding material 4a and the non-bonding material 4b with respect to the material of the source electrode 4, the surface density of the source-side self-assembled layer 6a formed thereon can be adjusted. It was confirmed that the work function of the source electrode 4 can be precisely controlled.
  • Table 2 shows the work function of the source electrode and the current value (on-current value) flowing between the source electrode and the drain electrode when the organic TFT according to Example 1 and Comparative Examples 1 and 2 are turned on.
  • Comparative Example 1 since the self-assembled layer 6 is formed on the source electrode 4, the work function of the source electrode 4 is a comparative example that does not have the self-assembled layer 6. Compared to 2.
  • the work function of the source electrode in Comparative Example 1 has substantially the same value as the example shown in the lower part of Example 1.
  • Example 1 and Comparative Example 1 are compared, the on-current of Example 1 is improved over the on-current value of Comparative Example 1. This is presumably because, in Comparative Example 1, physical resistance for carrier injection exists because the entire surface of the source electrode 4 and the drain electrode 5 is covered with the self-assembled layer 6.
  • Comparative Example 2 is a sample that does not have the self-assembled layer 6, it is considered that the physical resistance value is small, but the amount of current is smaller than that of Comparative Example 1.
  • the organic TFT according to Example 1 has a larger amount of current measured even when the same voltage as in Comparative Examples 1 and 2 is applied. For this reason, in the organic TFT according to Example 1, the physical density for carrier injection is adjusted by adjusting the surface density of the source-side self-assembled layer 6a, that is, the electrode coverage by the source-side self-assembled layer 6a. It can be seen that static resistance is suppressed.
  • the drain-side self-assembled layer 6b having the same configuration as the source-side self-assembled layer 6a is provided on the drain electrode 5 side in Example 1.
  • the work function of the drain electrode 5 is increased.
  • the increase or decrease in the barrier when carriers move from the organic semiconductor layer 7 to the drain electrode 5 is opposite to the increase or decrease in the carrier injection barrier on the source electrode 4 side.
  • the barrier at the time of a hole moving from the organic-semiconductor layer 7 to the drain electrode 5 is increasing rather.
  • the performance improvement of the organic TFT 200 the carrier injection efficiency on the source electrode 4 side has a greater influence than the drain electrode 5 side.
  • physical resistance is also suppressed in the drain-side self-assembled layer 6b by adjusting the electrode coverage. Therefore, in Example 1, the performance of the organic TFT 200 is improved as a whole.
  • Examples 2 to 6 having configurations different from those of Example 1 will be described below.
  • physical resistance is suppressed by adjusting the coverage of the source electrode 4 and the drain electrode 5 by the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b, respectively. Since this is the same as that of the first embodiment, the description regarding this point is omitted.
  • FIG. 7 is a cross-sectional view illustrating the configuration of the TFT 200 according to the second embodiment and the self-assembled layer 6 in each of the source electrode 4 and the drain electrode 5.
  • the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b are formed of different materials.
  • the self-assembled monomolecule of the source-side self-assembled layer 6a has a dipole moment having a positive charge on the source electrode 4 side and a negative charge on the organic semiconductor layer 7 side, as in Example 1. is doing.
  • the self-assembled monomolecule of the drain-side self-assembled layer 6b has a dipole moment (a dipole moment of the source-side self-assembled layer 6a) having a negative charge on the drain electrode 5 side and a positive charge on the organic semiconductor layer 7 side. In the opposite direction).
  • the source electrode 4 is composed of a binding material 4a to which the self-assembled monomolecule of the source side self-assembled layer 6a is bonded and a non-bonding material 4b that cannot be bonded.
  • the drain electrode 5 is composed of a bonding material 5a to which the self-assembled monomolecule of the drain-side self-assembled layer 6b is bonded and a non-bonding material 5b that cannot be bonded. It is assumed that the bonding material 4a and the bonding material 5a, and the non-bonding material 4b and the non-bonding material 5b are the same material.
  • Example 2 is different from Example 1 in that self-assembled monomolecules constituting each of the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b have dipole moments opposite to each other. .
  • the substrate 11 was covered with a fluorine-coated metal mask having an opening on the upper surface portion of the source electrode 4.
  • a pentafluorobenzenethiol solution anhydrous ethanol solvent having a concentration of 10 mM was added dropwise to the opening portion of the metal mask under a nitrogen atmosphere, and left still for 10 minutes.
  • the metal mask was removed, the substrate was rinsed with ethanol, and the work of immersing in an ethanol solvent for 5 minutes was repeated three times.
  • the source electrode 4 was modified with a source-side self-assembled layer 6a made of a self-assembled monomolecular film of pentafluorobenzenethiol (PFBT) through a step of drying with nitrogen blowing.
  • PFBT pentafluorobenzenethiol
  • the substrate 11 was covered with a fluorine-coated metal mask having an opening on the upper surface portion of the drain electrode 5.
  • a solution of 4-methylbenzenethiol (an absolute ethanol solvent) having a dipole moment opposite to that of pentafluorobenzenethiol at a concentration of 10 mM in a nitrogen atmosphere was dropped onto the opening of the metal mask and left as it was. Let stand for a minute. Thereafter, the metal mask was removed, the substrate was rinsed with ethanol, and the work of immersing in an ethanol solvent for 5 minutes was repeated three times. Finally, a process of drying by nitrogen blowing was performed to modify the drain electrode 5 with a drain side self-assembled layer 6b made of a self-assembled monolayer of 4-methylbenzenethiol (FIG. 5D).
  • an organic semiconductor layer 7 of 100 nm was formed using a p-type organic semiconductor material pentacene.
  • the organic semiconductor layer 7 was formed by a vacuum deposition method through a mask having an opening surrounding the channel portion 20 and the self-assembled layer 6 under the condition of a substrate temperature of 50 ° C.
  • the TFT 200 according to Example 2 was fabricated by the above method.
  • Table 3 shows ON currents in the organic TFT 200 according to each of Example 1 and Example 2.
  • Example 2 As shown in Table 3, the sample of Example 2 was able to obtain a larger on-current value than the sample of Example 1.
  • FIG. 8 is a band diagram showing energy levels that define the work functions of the source electrode 4 and the drain electrode 5 and energy levels of molecular orbitals related to carrier injection of the organic semiconductor layer 7.
  • 8A shows an organic TFT 200 according to the first embodiment
  • FIG. 8B shows an organic TFT 200 according to the second embodiment.
  • Example 2 As shown in FIGS. 8A and 8B, on the source electrode 4 side in Example 2, as in Example 1, the work density of the source electrode 4 is adjusted by adjusting the surface density of the source-side self-assembled layer 6a. The function is precisely controlled. Therefore, the carrier injection barrier between the source electrode 4 and the organic semiconductor layer 7 is reduced.
  • the self-assembled monomolecule of the drain-side self-assembled layer 6b is opposite to the self-assembled monomolecule of the source-side self-assembled layer 6a.
  • the barrier on the drain electrode 5 side can be reduced.
  • the carrier injection characteristics on the source electrode 4 side can be improved, so that a larger amount of current can be obtained with the same voltage than in the first embodiment. be able to.
  • FIG. 9 is a cross-sectional view illustrating the configuration of the TFT 200 according to the third embodiment and the self-assembled layer 6 in each of the source electrode 4 and the drain electrode 5.
  • Example 3 the self-assembled monomolecules constituting each of the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b are on the source electrode 4 side as in Example 1. And has a dipole moment having a negative charge on the organic semiconductor layer 7 side.
  • Example 3 the composition ratio of the binding material 4a / non-bonding material 4b in the source electrode 4 and the composition ratio of the binding material 5a / non-bonding material 5b in the drain electrode 5 are different.
  • the mixed material of the source electrode 4 has the same composition ratio as that of the first embodiment, but the mixed material of the drain electrode 5 has a smaller proportion of the bonding material 5a than that of the first embodiment.
  • the ratio of the non-bonding material 5b is increased.
  • Example 3 is different from Example 1 in that the dipole effect in the drain side self-assembled layer 6b is weakened by reducing the surface density of the drain side self-assembled layer 6b.
  • a metal mask having an opening in the portion where the source electrode 4 is formed and having no opening in the upper surface portion of the drain electrode 5 is used. Covering the substrate 11, gold (Au) as the bonding material 4 a and indium tin oxide (ITO) as the non-bonding material 4 b have a ratio of 0.7: 0.3 by binary simultaneous sputtering. A thin film was formed. After removing the metal mask, the substrate 11 is covered with a metal mask that has an opening in the portion where the drain electrode 5 is to be formed and does not have an opening in the upper surface portion of the source electrode 4, and serves as a bonding material 5a. (Au) and indium tin oxide (ITO) serving as the non-bonding material 5b were formed at a ratio of 0.3: 0.7 by binary simultaneous sputtering.
  • a lift-off process is performed in which the substrate 11 is immersed in an N-methylpyrrolidone solvent in order to remove the photoresist film 12, and is made of unnecessary ITO and gold laminated on the photoresist film 12.
  • the thin film 13 was removed.
  • the source electrode 4 and the drain electrode 5 having different composition ratios of gold and ITO were formed on the gate insulating film 3.
  • the TFT 200 according to Example 3 was fabricated by the above method.
  • Table 4 shows ON currents in the organic TFT 200 according to each of Example 1 and Example 3.
  • Example 3 As shown in Table 4, the sample of Example 3 was able to obtain a larger on-current value than the sample of Example 1.
  • FIG. 10 is a band diagram showing energy levels that define the work functions of the source electrode 4 and the drain electrode 5 and energy levels of molecular orbitals related to carrier injection of the organic semiconductor layer 7.
  • FIG. 10A shows the organic TFT 200 according to the first embodiment
  • FIG. 10B shows the organic TFT 200 according to the third embodiment.
  • the work function of the source electrode 4 can be increased by adjusting the surface density of the self-assembled layer 6a. It is precisely controlled. Therefore, the carrier injection barrier between the source electrode 4 and the organic semiconductor layer 7 is reduced.
  • Example 3 On the drain electrode 5 side in Example 3, as in Example 1, the barrier between the organic semiconductor layer 7 and the drain electrode 5 is greater than that in Comparative Example 2. However, in Example 3, the effect of the self-assembled monomolecular dipole is weakened by reducing the surface density of the drain-side self-assembled layer 6b. For this reason, the barrier between the organic semiconductor layer 7 and the drain electrode 5 is reduced as compared with the first embodiment.
  • Example 3 the dipole directions in the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b are the same, but the organic semiconductor layer 7 is connected to the drain electrode 5 as compared with Example 1. Carrier injection characteristics can be improved.
  • Example 3 by using the same material for the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b, these can be produced at the same time, so that the production cost can be reduced.
  • FIG. 11 is a cross-sectional view illustrating the configuration of the TFT 200 according to the third embodiment and the self-assembled layer 6 in each of the source electrode 4 and the drain electrode 5.
  • the source electrode 4 and the drain electrode 5 are formed of a common mixed material.
  • the mixed material of each of the source electrode 4 and the drain electrode 5 is a mixture of the first electrode material 8a and the second electrode material 8b.
  • the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b are formed from self-assembled monomolecules that bind to different partners. Specifically, the self-assembled monomolecule of the source-side self-assembled layer 6a can be bonded to the first electrode material 8a and cannot be bonded to the second electrode material 8b. The self-assembled monomolecule of the drain side self-assembled layer 6b cannot be bonded to the first electrode material 8a, but can be bonded to the second electrode material 8b.
  • Example 4 the self-assembled monomolecules of the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b have dipole moments in directions opposite to each other, It has a dipole moment in a direction suitable for reducing the barrier of carrier transfer with the semiconductor layer 7.
  • each of the self-assembled monomolecules of the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b is made to have a suitable bipolar for each electrode by making the chemical bonding group different from each electrode. It differs from Example 1 in that the material having the child is properly used.
  • the ratio of gold as the first electrode material 8a and ITO as the second electrode material 8b was set to 0.5: 0.5.
  • the substrate 11 was covered with a metal mask having an opening on the upper surface portion of the source electrode 4. Subsequently, a pentafluorobenzenethiol solution (an absolute ethanol solvent) having a concentration of 10 mM was dropped onto the opening portion of the metal mask with a dispenser under a nitrogen atmosphere. Thereafter, the metal mask was removed, the substrate was rinsed with ethanol, and the work of immersing in an ethanol solvent for 5 minutes was repeated three times.
  • a pentafluorobenzenethiol solution an absolute ethanol solvent
  • a gold electrode portion of the source electrode 4 was modified with a source-side self-assembled layer 6a made of a self-assembled monomolecular film of pentafluorobenzenethiol (PFBT) through a step of drying with nitrogen blowing.
  • PFBT pentafluorobenzenethiol
  • the substrate 11 was covered with a metal mask having an opening on the upper surface portion of the drain electrode 5.
  • an aminophenyltrimethoxysilane (APhS) solution having a concentration of 10 mM was dropped onto the opening portion of the metal mask with a dispenser under a nitrogen atmosphere.
  • the metal mask is removed and the work of immersing in acetone solvent for 5 minutes is repeated three times.
  • the ITO electrode portion of the drain electrode 5 is self-organized with aminophenyltrimethoxysilane through a process of drying with nitrogen blowing. It modified with the drain side self-organization layer 6b which consists of a structure monomolecular film (refer FIG.5 (d)).
  • the TFT 200 according to Example 4 was fabricated by the above method.
  • Table 5 shows ON currents in the organic TFT 200 according to each of Example 1 and Example 4.
  • Example 4 As shown in Table 5, the sample of Example 4 was able to obtain a larger on-current value than the sample of Example 1.
  • FIG. 12 is a band diagram showing energy levels that define the work functions of the source electrode 4 and the drain electrode 5 and energy levels of molecular orbitals related to carrier injection of the organic semiconductor layer 7.
  • 12A shows an organic TFT 200 according to the first embodiment
  • FIG. 12B shows an organic TFT 200 according to the fourth embodiment.
  • Example 4 As shown in FIGS. 12A and 12B, on the source electrode 4 side in Example 4, as in Example 1, the work of the source electrode 4 is adjusted by adjusting the surface density of the source-side self-assembled layer 6a. The function is precisely controlled. Therefore, the carrier injection barrier between the source electrode 4 and the organic semiconductor layer 7 is reduced.
  • Example 4 unlike Example 1, the self-assembled monomolecule of the drain-side self-assembled layer 6b is a dipole in the direction opposite to the self-assembled monomolecule of the source-side self-assembled layer 6a. It has a moment (similar to Example 2). Therefore, in the fourth embodiment, unlike the first embodiment, the barrier on the drain electrode 5 side can be reduced.
  • the fourth embodiment not only the carrier injection characteristics on the source electrode 4 side but also the carrier injection characteristics on the drain electrode 5 side can be improved, so that a larger amount of current can be obtained with the same voltage than in the first embodiment. be able to.
  • Example 4 since the source electrode 4 and the drain electrode 5 can be manufactured at the same time, the manufacturing cost can be reduced.
  • Example 4 aminophenyltrimethoxysilane was used as the self-assembled monomolecule of the drain side self-assembled layer 6b.
  • a self-assembled monomolecule having a smaller surface energy of the terminal functional group on the surface is used. It is more desirable to use. This is because, generally, the grain size of the organic semiconductor layer 7 deposited on the surface having a small surface energy tends to increase, and the organic semiconductor layer 7 having a large grain size tends to increase the amount of current.
  • Specific examples of the self-assembled monomolecule having a smaller surface energy of the terminal functional group are exemplified in the above section (Self-assembled layer 6).
  • the ratio of the first electrode material 8a and the second electrode material 8b is set to 0.5: 0.5 for each material of the source electrode 4 and the drain electrode 5, but an appropriate ratio is appropriately set. It can be set.
  • FIG. 13 is a cross-sectional view showing the configuration of the TFT 200 according to Example 5 and the self-assembled layer 6 in each of the source electrode 4 and the drain electrode 5.
  • the mixed material of each of the source electrode 4 and the drain electrode 5 is a mixture of the first electrode material 8a and the second electrode material 8b, as in Example 4. Suppose there is.
  • Example 5 as in Example 4, the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b are formed of self-assembled monomolecules that bind to different partners. Specifically, the self-assembled monomolecule of the source-side self-assembled layer 6a can be bonded to the first electrode material 8a and cannot be bonded to the second electrode material 8b. The self-assembled monomolecule of the drain side self-assembled layer 6b cannot be bonded to the first electrode material 8a, but can be bonded to the second electrode material 8b.
  • the fifth embodiment is different from the fourth embodiment in the following two points.
  • each of the self-assembled monomolecules of the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b has dipole moments in opposite directions.
  • Example 5 has a dipole moment in the same direction.
  • the dipole direction in the fifth embodiment is a direction in which the barrier on the source electrode 4 side decreases, but the barrier on the drain electrode 5 side increases.
  • Example 4 the ratio of the first electrode material 8a and the second electrode material 8b is the same, whereas in Example 5, the ratio of the second electrode material 8b rather than the first electrode material 8a. Is made smaller. That is, the ratio of the second electrode material 8b to which the self-assembled monomolecule of the drain side self-assembled layer 6b is bonded is the ratio of the first electrode material 8a to which the self-assembled monomolecule of the drain side self-assembled layer 6b is not bonded. Smaller than. Thereby, in Example 5, the surface density of the drain side self-assembled layer 6b is made lower than that in Example 1, thereby reducing the effect of the dipole in the drain side self-assembled layer 6b.
  • the ratio of gold as the first electrode material 8a and ITO as the second electrode material 8b was set to 0.7: 0.3.
  • the substrate 11 was covered with a metal mask having an opening on the upper surface portion of the source electrode 4. Subsequently, a pentafluorobenzenethiol solution (an absolute ethanol solvent) having a concentration of 10 mM was dropped onto the opening portion of the metal mask with a dispenser under a nitrogen atmosphere. Thereafter, the metal mask was removed, the substrate was rinsed with ethanol, and the work of immersing in an ethanol solvent for 5 minutes was repeated three times.
  • a pentafluorobenzenethiol solution an absolute ethanol solvent
  • a gold electrode portion of the source electrode 4 was modified with a source-side self-assembled layer 6a made of a self-assembled monomolecular film of pentafluorobenzenethiol (PFBT) through a step of drying with nitrogen blowing.
  • PFBT pentafluorobenzenethiol
  • the substrate 11 was covered with a metal mask having an opening on the upper surface portion of the drain electrode 5.
  • a (4-perfluoromethylbenzene) triethoxysilane (PFMBS) solution having a concentration of 10 mM was dropped onto the opening portion of the metal mask with a dispenser under a nitrogen atmosphere.
  • the metal mask is removed, and the work of immersing in acetone solvent for 5 minutes is repeated three times.
  • the ITO electrode portion of the drain electrode 5 is (4-perfluoromethylbenzene) through a process of drying by nitrogen blowing. Modification was performed with a drain side self-assembled layer 6b made of a self-assembled monolayer of triethoxysilane (PFMBS) (see FIG. 5D).
  • the TFT 200 according to Example 5 was fabricated by the above method.
  • Comparative Example 3 Comparative Example 3 was performed in the same manner as in Example 5 except that the drain-side self-assembled layer 6b made of a self-assembled monolayer of (4-perfluoromethylbenzene) triethoxysilane (PFMBS) was not formed. An organic thin film transistor was formed.
  • the drain-side self-assembled layer 6b made of a self-assembled monolayer of (4-perfluoromethylbenzene) triethoxysilane (PFMBS) was not formed.
  • PMBS (4-perfluoromethylbenzene) triethoxysilane
  • Table 6 shows on-currents in the organic TFT 200 according to each of Examples 1 and 5 and Comparative Example 3.
  • Example 5 As shown in Table 6, the sample of Example 5 was able to obtain a larger on-current value than that of Example 1. Further, the sample of Example 5 was able to obtain a larger on-current value than that of Comparative Example 3.
  • FIG. 14 is a band diagram showing energy levels that define the work functions of the source electrode 4 and the drain electrode 5 and energy levels of molecular orbitals related to carrier injection of the organic semiconductor layer 7.
  • FIG. 14A shows the organic TFT 200 according to the first embodiment
  • FIG. 14B shows the organic TFT 200 according to the fifth embodiment.
  • the work density of the source electrode 4 is adjusted by adjusting the surface density of the source-side self-assembled layer 6a.
  • the function is precisely controlled. Therefore, the carrier injection barrier between the source electrode 4 and the organic semiconductor layer 7 is reduced.
  • Example 5 On the drain electrode 5 side in Example 5, as in Example 1, the barrier between the organic semiconductor layer 7 and the drain electrode 5 is increased. However, in Example 5, the effect of the self-assembled monomolecular dipole is weakened by reducing the surface density of the drain-side self-assembled layer 6b. For this reason, the barrier between the organic semiconductor layer 7 and the drain electrode 5 is reduced as compared with the first embodiment.
  • Example 5 the dipole directions in the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b are the same, but from the organic semiconductor layer 7 to the drain electrode 5 as compared with Example 1. Carrier injection characteristics can be improved.
  • Example 5 since the same material is used for the source electrode 4 and the drain electrode 5, these can be manufactured at the same time, so that the manufacturing cost can be reduced.
  • the grain size of the organic semiconductor layer 7 on the drain electrode 5 was measured by AFM observation. As a result, it was confirmed that the grain size of the organic semiconductor layer 7 in Example 5 was larger than that of Comparative Example 3.
  • Example 5 it was found that having the drain-side self-assembled layer 6b is also a factor in increasing the amount of current (the same applies to other Examples 1 to 4).
  • FIG. 15 is a cross-sectional view showing the configuration of the TFT 200 according to Example 6 and the source-side self-assembled layer 6a.
  • the source-side self-assembled layer 6a is composed of the first self-assembled monomolecule 6a-1 and the second self-assembled monomolecule 6a-2. Yes.
  • the source electrode 4 is composed of three types of electrode materials. Specifically, the source electrode 4 includes two kinds of binding materials 4a to which the self-assembled monomolecules can bind (the binding material 4a-1 to which the first self-assembled monomolecule 6a-1 can bind, and the second It consists of a binding material 4a-2) to which the self-assembled monomolecule 6a-2 can bind and a non-bonding material 4b to which no self-assembled monomolecule can bind.
  • Example 6 the first self-assembled monomolecule 6a-1 and the second self-assembled monomolecule 6a-2 are bonded to the surface of the source electrode 4, respectively, and thereby the source-side self-molecules An organized layer 6a is formed.
  • drain electrode 5 and the drain side self-organization layer 6b are not illustrated, it shall have the structure similar to the source electrode 4 and the source side self-organization layer 6a.
  • the gold electrode portion is modified with a self-assembled layer (for example, 6a-1) made of a self-assembled monolayer of pentafluorobenzenethiol, and the aluminum electrode portion is n-octadecylphosphonic. Modification was performed with a self-assembled layer (for example, 6a-2) composed of an acid self-assembled monolayer (FIG. 5 (d)).
  • a pentacene organic thin film transistor 200 was formed by forming a 100 nm organic semiconductor layer 7 using a p-type organic semiconductor material pentacene.
  • the TFT 200 according to Example 6 was fabricated by the above method.
  • Example 6 the source electrode 4 is composed of three types of electrode materials. By adjusting the mixing ratio of these materials, the overall surface density of the source-side self-assembled layer 6a and the composition ratios of the two types of source-side self-assembled layers 6a-1 and 6a-2 are both controlled. ing.
  • the source-side self-assembled layer 6a is composed of two types of self-assembled monomolecules having different functions, and the composition ratio of these two types of self-assembled monomolecules is controlled. ing.
  • These two types of self-assembled monomolecules are a self-assembled monomolecule for controlling the work function and a self-assembled monomolecule having a small surface energy that can increase the grain of the organic semiconductor layer 7.
  • the organic semiconductor layer 7 is formed on a material having a small surface energy, the crystal grain of the organic semiconductor layer 7 generally increases, and when the grain of the organic semiconductor layer 7 is large, the amount of current generally increases. Therefore, the amount of current can be further increased by controlling the composition ratio of these two types of self-assembled monomolecules to a preferable value.
  • Example 6 the work function of the source electrode 4 can be improved while suppressing the physical resistance for carrier injection, and the grain of the organic semiconductor layer can be increased. A large amount of current can be obtained while suppressing.
  • each of the source electrode 4 and the drain electrode 5 is made of three kinds of materials, but the present invention is not limited to this, and may be made of more kinds of materials. Accordingly, each of the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b may be composed of more than two types of self-assembled monomolecules. Further, the self-assembled monomolecules constituting the source-side self-assembled layer 6a and the drain-side self-assembled layer 6b can be appropriately selected based on a desired function.
  • the first to sixth embodiments described above are merely examples, and the work function of the electrode can be controlled to a desired value by appropriately combining the configurations shown in these.
  • an organic TFT using a p-type organic semiconductor layer is mainly described.
  • the present invention is not limited to this, and an organic TFT using an n-type organic semiconductor layer is used. Is also applicable.
  • the carrier injection barrier can be reduced by using a self-assembled monomolecule having a dipole moment that has a charge opposite to that of the p-type. Can do.
  • the self-assembled layer 6 is formed on each of the source electrode 4 and the drain electrode 5, but the present invention is not limited to this, and the self-assembled layer is formed on at least one of the electrodes. It is sufficient that the layer 6 is formed.
  • FIG. 16 is a circuit diagram of an organic EL pixel 300 using the organic thin film transistor of the second embodiment.
  • the organic EL pixel 300 includes a switching transistor 31, a capacitance 32, a driving transistor 33, and an organic EL element 34, and is connected to the data line 21, the scan line 22, the capacitance line 23, the cathode power supply line 24, and the anode power supply line 25. Has been.
  • the switching transistor 31 and the driving transistor 33 have the same configuration as the organic TFT 200 described above.
  • the organic EL pixel 300 since the amount of current flowing through the switching transistor 31 and the driving transistor 33 can be increased, the luminance of the organic EL element 34 can be further improved even with the same voltage as the conventional one. Can do.
  • an organic EL display with improved performance can be provided.
  • Embodiment 4 The electrode configuration of Embodiment 1 described above can also be applied to an organic EL element. Therefore, in the present embodiment, an embodiment of the organic EL element according to the present invention and an embodiment of an organic EL pixel and an organic EL display including the organic EL element will be described.
  • FIG. 17 is a cross-sectional view of the organic EL element 400 of the present embodiment.
  • the organic EL element 400 of this embodiment includes a transparent substrate 41, an anode (first electrode) 42 that is a transparent electrode to which the electrode configuration of Embodiment 1 is applied, a cathode (second electrode) 43 that is a reflective electrode, An organic layer 44 having a light emitting layer is provided between the anode 42 and the cathode 43.
  • the organic EL element 400 of this embodiment is a bottom emission type in which light emitted from the organic layer (light emitting layer) is extracted from the anode and the transparent substrate side.
  • the present invention is not limited to this, and may be a top emission type in which light emitted from the organic layer (light emitting layer) is extracted from the cathode side.
  • the organic layer may have a hole transport layer, an electron transport layer, and the like.
  • FIG. 18 is an enlarged cross-sectional view of the anode 42 portion of FIG.
  • the anode 42 has a two-layer structure of an electrode material layer 45 and a self-assembled layer 46.
  • the electrode material layer 45 is an electrode material to which the surface on the organic layer 44 side can bind the self-assembled monomolecule constituting the self-assembled layer 46. 45a and a mixed material including an electrode material 45b to which the self-assembled monomolecule cannot be bonded.
  • the self-assembled monomolecule constituting the self-assembled layer 46 is bonded to a portion of the surface of the anode 42 made of the material 45a to which the self-assembled monomolecule can be bonded.
  • the self-assembled monomolecule of the self-assembled layer 46 does not exist in the portion made of the material 45b to which the self-assembled monomolecule cannot bind. Therefore, the organic layer 44 is in direct contact with the electrode material layer 45 (specifically, the electrode material 45b) through a gap in which no self-assembled monomolecule exists in the self-assembled layer 46.
  • the present invention is not limited to this, and the electrode configuration of Embodiment 1 is applied to the cathode. Alternatively, it can be applied to both the anode and the cathode.
  • the transparent substrate 41 can use the same material as the substrate 1 of the second embodiment described above.
  • an insulator such as glass or quartz can be used.
  • the transparent substrate 41 is made of polycarbonate, polymethyl methacrylate, polyethersulfone (PES), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), or polyimide ( A plastic material such as PI) can be used.
  • the anode 42 has a two-layer structure of the electrode material layer 45 and the self-assembled layer 46.
  • the electrode material layer 45 can be made of the same material as that of the source electrode 4 and the drain electrode 5 of the second embodiment described above.
  • the electrode material layer 45 is composed of a mixed material of various conductive materials.
  • Various conductive materials include metal materials such as gold, silver, copper, titanium, and aluminum, alloys containing them, and conductive oxides such as indium tin oxide (ITO) or indium zinc oxide (IZO). Examples of such materials include silicon, gallium arsenide, various semiconductor materials in which dopants such as boron and phosphorus are implanted at a high concentration in these materials to improve conductivity, or conductive organic materials such as PEDOT: PSS.
  • the combination of the material capable of binding the self-assembled monomolecule of the self-assembled layer 6 on each electrode What is necessary is just to select suitably from the material which cannot be performed.
  • a metal mask is used in a vacuum state in an inert atmosphere such as nitrogen or argon, as in the method for forming the source electrode 4 and the drain electrode 5 of the second embodiment.
  • the method include a physical vapor deposition method such as a multi-component simultaneous vacuum deposition method or a multi-source sputtering method.
  • a printing method such as an ink jet method or a screen printing method, and is baked in an inert atmosphere. You may form by doing.
  • mixing in the mixed material constituting the electrode material layer 45 is preferably in a state where particles of each conductive material are appropriately mixed. Moreover, the mixing degree of each electroconductive material should just be the grade which the surface which consists of each electroconductive material appears in the surface of each electrode.
  • the self-assembled layer 46 can be made of the same material as the self-assembled layer 6 of Embodiment 2 described above, and can be formed by the same formation method.
  • the cathode 43 can be composed of the same mixed material as the anode 42.
  • the present invention is not limited to this, and the plurality of materials constituting the mixed material may be different from those of the anode 42, or may be composed of another single electrode material instead of the mixed material. May be.
  • the organic layer 44 has at least an organic light emitting layer (light emitting layer) made of an organic light emitting material.
  • the organic light emitting layer may be a single organic light emitting layer or a multilayer structure of an organic light emitting layer and a charge transport layer. Specifically, the organic light emitting layer has a structure as shown in the following 1) to 9). It can be illustrated. 1) Organic light emitting layer 2) Hole transport layer / organic light emitting layer 3) Organic light-emitting layer / electron transport layer 4) Hole transport layer / organic light emitting layer / electron transport layer 5) Hole injection layer / hole transport layer / organic light emitting layer / electron transport layer 6) Hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / electron injection layer 7) Hole injection layer / hole transport layer / organic light emitting layer / hole prevention layer / electron transport layer 8) Hole injection layer / hole transport layer / organic light emitting layer / hole prevention layer / electron transport layer / electron injection layer 9) Hole injection layer / hole transport layer / electron prevention layer / organic light emitting layer / hole prevention layer
  • the organic light emitting layer may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally, a hole transport material, an electron transport material, and an additive
  • An agent (donor, acceptor, etc.) or the like may be included, and these materials may be dispersed in a polymer material (binding resin) or an inorganic material. From the viewpoint of luminous efficiency and lifetime, those in which a luminescent dopant is dispersed in a host material are preferable.
  • the organic light emitting material a known light emitting material for organic EL can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present invention is not limited to these materials.
  • the light-emitting material may be classified into a fluorescent material, a phosphorescent material, and the like. From the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material having high light emission efficiency.
  • low-molecular organic light-emitting material examples include aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 5-methyl-2- [2- [4- ( Oxadiazole compounds such as 5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole, 3- (4-biphenylyl) -4-phenyl-5-t-butylphenyl-1,2,4- Fluorescence of triazole derivatives such as triazole (TAZ), styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, etc.
  • polymer light emitting material examples include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N-triethylammonium) ethoxy]. -1,4-phenyl-alt-1,4-phenyllene] dibromide (PPP-NEt3 +), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4-phenylenevinylene] (MEH— PPV), poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylene vinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) -1,4-phenylene Polyphenylene vinylene derivatives such as-(1-cyanovinylene)] (CN-PPV), and polyspiro derivatives such as poly (9,9-dioctylfluorene) (PDAF) It is
  • a known dopant material for organic EL can be used as a luminescent dopant arbitrarily contained in the organic light emitting layer.
  • dopant materials include luminescent materials such as styryl derivatives, perylene, iridium complexes, coumarin derivatives, lumogen F red, dicyanomethylenepyran, phenoxazone, and porphyrin derivatives, bis [(4,6-difluorophenyl)- Pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), tris (2-phenylpyridyl) iridium (III) (Ir (ppy) 3 ), tris (1-phenylisoquinoline) iridium (III) (Ir (piq And phosphorescent organic metal complexes such as 3 ).
  • luminescent materials such as styryl derivatives, perylene, iridium complexes, coumarin derivatives, lum
  • a host material when using a dopant a known host material for organic EL can be used.
  • host materials include the low-molecular light-emitting materials, polymer light-emitting materials, 4,4′-bis (carbazole) biphenyl, 9,9-di (4-dicarbazole-benzyl) fluorene (CPF), etc. And carbazole derivatives.
  • the charge injection / transport layer is classified into a charge injection layer and a charge transport layer for the purpose of more efficiently injecting charges (holes, electrons) from the electrode and transporting (injection) to the organic light emitting layer. It may be composed only of the charge injecting and transporting material exemplified in the above, and may optionally contain additives (donor, acceptor, etc.), etc., and these materials are in a polymer material (binding resin) or an inorganic material. The configuration may be distributed in a distributed manner.
  • charge injection / transport material known charge transport materials for organic EL and organic photoconductors can be used. Such charge injecting and transporting materials are classified into hole injecting and transporting materials and electron injecting and transporting materials. Specific examples of these materials are given below, but the present invention is not limited to these materials.
  • the hole injection / hole transport material examples include oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 ), inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), etc.
  • oxides such as vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 2 )
  • inorganic p-type semiconductor materials examples include porphyrin compounds, N, N′-bis (3 -Methylphenyl) -N, N′-bis (phenyl) -benzidine (TPD), N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPD), etc
  • Low molecular weight materials such as tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds, polyaniline (PANI), polyaniline-camphor sulfonic acid (PANI-CSA), 3,4-polyethylenedioxythiophene / polystyrene sulfonate ( PEDOT / PSS), poly (triphenylamine) derivative (Poly-TPD), polyvinylcarbazole (PVC) z), polymer materials such as poly (p-phenylene vinylene) (PPV), poly (p-naphthalene vinylene) (PNV), and the like.
  • PANI polyaniline
  • PANI-CSA polyaniline-camphor sulfonic acid
  • PEDOT / PSS poly (triphenylamine) derivative
  • PVC polyvinylcarbazole
  • polymer materials such as poly (p-phenylene vinylene) (PPV), poly (p-naphthalene
  • the highest occupied molecular orbital (HOMO) is better than the hole injection and transport material used for the hole transport layer in terms of more efficient injection and transport of holes from the anode. It is preferable to use a material having a low energy level, and as the hole transport layer, it is preferable to use a material having higher hole mobility than the hole injection transport material used for the hole injection layer.
  • the hole injection / transport material In order to further improve the hole injection / transport property, it is preferable to dope the hole injection / transport material with an acceptor.
  • an acceptor a known acceptor material for organic EL can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  • Acceptor materials include Au, Pt, W, Ir, POCl 3 , AsF 6 , Cl, Br, I, vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 2 ) and other inorganic materials, TCNQ (7, 7 , 8,8, -tetracyanoquinodimethane), TCNQF 4 (tetrafluorotetracyanoquinodimethane), TCNE (tetracyanoethylene), HCNB (hexacyanobutadiene), DDQ (dicyclodicyanobenzoquinone), etc.
  • TNF trinitrofluorenone
  • DNF dinitrofluorenone
  • organic materials such as fluoranyl, chloranil and bromanyl.
  • compounds having a cyano group such as TCNQ, TCNQF 4 , TCNE, HCNB, DDQ and the like are more preferable because they can increase the carrier concentration more effectively.
  • Electron injection / electron transport materials include, for example, inorganic materials that are n-type semiconductors, oxadiazole derivatives, triazole derivatives, thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, diphenoquinone derivatives, fluorenone derivatives, benzodifuran derivatives And low molecular weight materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS).
  • examples of the electron injection material include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), and oxides such as lithium oxide (Li 2 O).
  • the material used for the electron injection layer is a material having a higher energy level of the lowest unoccupied molecular orbital (LUMO) than the electron injection and transport material used for the electron transport layer, in order to more efficiently inject and transport electrons from the cathode. It is preferable to use a material having a higher electron mobility than the electron injecting and transporting material used for the electron injecting layer.
  • LUMO lowest unoccupied molecular orbital
  • the electron injection / transport material In order to further improve the electron injection / transport property, it is preferable to dope the electron injection / transport material with a donor.
  • a donor a known donor material for organic EL can be used. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  • Donor materials include inorganic materials such as alkali metals, alkaline earth metals, rare earth elements, Al, Ag, Cu, and In, anilines, phenylenediamines, benzidines (N, N, N ′, N′-tetraphenyl) Benzidine, N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl- Benzidine, etc.), triphenylamines (triphenylamine, 4,4′4 ′′ -tris (N, N-diphenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N-3- Methylphenyl-N-phenyl-amino) -triphenylamine, 4,4′4 ′′ -tris (N- (1-naphthyl) -
  • the film thickness of the organic layer 44 is usually about 1 to 1000 nm, preferably 10 to 200 nm.
  • the film thickness is less than 10 nm, it is difficult to obtain physical properties (charge injection characteristics, transport characteristics, confinement characteristics) that are originally required. In addition, pixel defects due to foreign matters such as dust may occur.
  • the film thickness exceeds 200 nm, the drive voltage increases due to the resistance component of the organic layer 44, leading to an increase in power consumption.
  • FIG. 19 is a band diagram showing the energy levels that define the work function of each of the anodes 42 and the energy levels of molecular orbitals related to carrier injection in the organic layer 44.
  • FIG. 19A shows an organic EL element according to a conventional example in which a self-assembled layer is not formed
  • FIG. 19B shows an example of the organic EL element according to this embodiment.
  • the injection barrier for injecting carriers (holes) from the anode 42 to the organic layer 44 is determined by the difference between the work function of the anode and the work function of the organic layer.
  • the self-assembled monomolecule of the self-assembled layer 46 has a dipole moment such that the electrode material layer 45 has a positive charge and the organic layer 44 has a negative charge. For this reason, the work function of the electrode material layer 45 increases due to the effect of the electric double layer by the self-assembled layer 46. As a result, as shown in FIG. 19B, the work function of the electrode material layer 45 approaches the work function of the organic layer 44, so the carrier injection barrier on the electrode material layer 45 side decreases.
  • the degree of reduction or increase in the carrier injection barrier is proportional to the magnitude of the dipole moment of the self-assembled monomolecule, the density of the self-assembled monomolecule, and the dielectric constant of the self-assembled layer 46. In consideration of these parameters, it is necessary to select a self-assembled single molecule that can reduce the energy barrier.
  • the self-assembled monomolecule constituting the self-assembled layer 46 may be selected based on the viewpoint of the influence of the self-assembled layer 46 on the organic layer 44.
  • the material of the self-assembled layer 46 is not limited to the specific examples of the self-assembled layer 6 described in the present specification, and can be appropriately selected. Further, the same formation method as that of the self-assembled layer 6 can be used.
  • the barrier between the anode and the organic layer is reduced, and in addition, the resistance of this portion can be kept small, so that the carrier injection efficiency is improved.
  • FIG. 20A is a circuit diagram of an organic EL pixel 410 using the organic EL element 400 of the present embodiment.
  • the circuit configuration of FIG. 20A is the same as the circuit configuration of FIG.
  • the organic EL pixel 410 includes a switching transistor 31, a capacitance 32, a driving transistor 33, and an organic EL element 400, and includes a data line 21, a scan line 22, a capacitance line 23, a cathode power supply line 24, and an anode power supply line 25. It is connected.
  • the switching transistor 31 and the driving transistor 33 have the same configuration as the organic TFT 200 (for example, FIG. 7) of the second embodiment described above.
  • FIG. 20 (b) is a partial cross-sectional view of the portion indicated by the dashed line in FIG. 20 (a).
  • the driving transistor 33 is shown on the left side, and the organic EL element 400 of this embodiment is shown on the right side.
  • the driving transistor 33 and the organic EL element 400 of this embodiment share the transparent substrate 41.
  • the organic EL pixel 410 according to the present embodiment, not only the light emission efficiency of the organic EL element 400 is high, but also the amount of current flowing through the switching transistor 31 and the driving transistor 33 can be increased. However, the luminance of the organic EL element 400 can be further improved.
  • FIG. 21 shows a circuit configuration of the organic EL display (device) of this embodiment.
  • FIG. 21 has a display formed by connecting a large number of organic EL pixels 410 according to the present embodiment. By providing this display, an organic EL display with improved performance can be provided.
  • Example 7 the glass substrate as the transparent substrate 41 shown in FIG. 17 is a material in which the light semi-transmissive gold, which is a material capable of binding the self-assembled monomolecule, and the self-assembled monomolecule cannot be bonded.
  • ITO was formed into a film by binary simultaneous sputtering to form an electrode material layer 45 of the anode 42.
  • PEBT pentafluorobenzenethiol
  • triphinyldiamine TPD
  • 8-quinolinolato Alq3
  • An organic layer 44 in which a transport layer and a light emitting layer / electron transport layer were laminated was formed.
  • Comparative Example 4 As Comparative Example 4, instead of the anode 42 of Example 7, an electrode material layer made of only gold was formed from a mixture of pentafluorobenzenethiol (PFBT) and benzenethiol (BT) as a self-assembled monomolecular material. Except for the above, it was formed by the same method as in Example 7. The ratio of pentafluorobenzenethiol and benzenethiol was set to 0.7: 0.3.
  • PFBT pentafluorobenzenethiol
  • BT benzenethiol
  • Comparative Example 5 As Comparative Example 5, it was produced by the same method as in Example 7 except that instead of the anode 42 of Example 7, an electrode material layer made of only ITO was used.
  • Example 7 shows a result of comparing the work function of the anode in Example 7 manufactured by the above method and the current value when 10 V of the organic EL element was applied.
  • Example 7 As shown in Table 7, the work functions of Example 7 and Comparative Example 4 are almost equivalent, but the current value of Example 7 is larger than the current value of Comparative Example 4. In Comparative Example 4, since the entire surface of the electrode material layer is covered with the self-organized layer, it is considered that there is a physical resistance for carrier injection.
  • Example 7 in Example 7 and Comparative Example 5, it is considered that the physical resistance value is small in Comparative Example 5 because it does not have a self-assembled layer, but the current value is small.
  • Example 7 not only the physical resistance is suppressed by adjusting the anode coverage of the self-assembled layer, but also the work function is controlled to reduce the injection barrier to the organic layer. it is conceivable that.
  • Example 8 In Example 8, the element structure shown in FIG. In Example 8, not only the anode of the organic EL element on the right side of FIG. 20B, but also the source electrode and drain electrode of the driving transistor 33 on the left side are characteristic electrodes of the present invention. The structure is adopted, and the electrode material layer and the self-assembled layer are provided. The manufacturing method of the driving transistor 33 is the same as that of the first embodiment.
  • Embodiment 5 The electrode configuration of Embodiment 1 described above can also be applied to organic solar cells. Therefore, in this embodiment, an embodiment of the organic solar battery according to the present invention will be described.
  • FIG. 22 is a cross-sectional view of an organic solar cell 500 in which the electrode configuration of Embodiment 1 described above is applied to the anode.
  • an anode 52, an organic layer 54 constituting a photoelectric conversion layer, and a cathode 53 are sequentially laminated on one surface of a substrate 51.
  • FIG. 23 is an enlarged cross-sectional view of the anode 52 portion of FIG.
  • the anode 52 has a two-layer structure of an electrode material layer 55 and a self-assembled layer 56.
  • the electrode material layer 55 is an electrode material to which the surface on the organic layer 54 side can bind the self-assembled monomolecule constituting the self-assembled layer 56. 55a and a mixed material including an electrode material 55b to which the self-assembled single molecule cannot be bonded.
  • the self-assembled monomolecule constituting the self-assembled layer 56 is bonded to a portion of the surface of the anode 52 made of the electrode material 55a to which the self-assembled single molecule can be bonded.
  • the self-assembled monomolecule of the self-assembled layer 56 does not exist in the portion made of the electrode material 55b to which the self-assembled monomolecule cannot be bonded. Therefore, the organic layer 54 is in direct contact with the anode 52 through a gap in which no self-assembled monomolecule exists in the self-assembled layer 56.
  • the present invention is not limited to this, and the electrode configuration of Embodiment 1 is applied to the cathode. Alternatively, it can be applied to both the anode and the cathode.
  • the substrate 51 is a member that holds the anode 12, the organic layer 54, and the cathode 53 that are sequentially stacked.
  • a glass substrate or a resin substrate is used.
  • substrate 11 is not essential, for example, the organic solar cell 500 may be comprised by forming the anode 12 and the cathode 13 on both surfaces of the organic layer 54 which has a photoelectric conversion part.
  • the organic layer 54 has an organic photoelectric conversion layer made of at least an organic photoelectric conversion material.
  • This organic photoelectric conversion layer may be a single layer of an organic photoelectric conversion layer or a multilayer structure of an organic photoelectric conversion layer and a charge transport layer.
  • a simple configuration can be exemplified. 1) Organic photoelectric conversion layer 2) Hole transport layer / organic photoelectric conversion layer 3) Organic photoelectric conversion layer / electron transport layer 4) Hole transport layer / organic photoelectric conversion layer / electron transport layer
  • the present invention is limited to this. Is not to be done.
  • Each layer of the organic photoelectric conversion layer, the hole transport layer, and the electron transport layer may have a single layer structure or a multilayer structure.
  • the organic photoelectric conversion layer for example, a pn junction type in which a p layer made of a p-type semiconductor material and an n layer made of an n-type semiconductor material are sequentially stacked, or a semiconductor having both p layers and n layers between the p layer and the n layer
  • a pin-type type in which an i layer formed by mixing materials is introduced
  • a bulk heterojunction type in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the organic photoelectric conversion layer may be composed of only the organic photoelectric conversion material exemplified below, and may optionally contain a hole transport material, an electron transport material, an additive (donor, acceptor, etc.) and the like. Alternatively, a configuration in which these materials are dispersed in a polymer material (binding resin) or an inorganic material may be employed.
  • organic photoelectric conversion material known photoelectric conversion materials for organic solar cells can be used. Such photoelectric conversion materials are classified into low-molecular organic photoelectric conversion materials, polymer organic photoelectric conversion materials, and the like. Although these specific compounds are illustrated below, this invention is not limited to these materials.
  • Examples of the low-molecular organic photoelectric conversion material include phthalocyanine compounds such as copper phthalocyanine, pentacene derivatives, perylene derivatives, fullerenes such as C60 and C70, and fullerene derivatives such as phenyl C61 butyric acid methyl ester (PCBM).
  • Examples of the polymer organic photoelectric conversion material include thiophene derivatives such as poly (3-hexylthiophene) (P3HT), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4-phenylenevinylene] ( And polyphenylene vinylene derivatives such as MEH-PPV).
  • the charge transport layer is used for the purpose of more efficiently transporting (injecting) charges (holes, electrons) from the organic photoelectric conversion layer and taking them out from the electrodes (injecting into the electrodes).
  • the charge transport layer may be composed only of the charge transport material exemplified below, and may optionally contain additives (donor, acceptor, etc.), and these materials are polymer materials (binding resin). ) Or a structure dispersed in an inorganic material.
  • charge transport material known charge transport materials for organic solar cells can be used. Such a charge transport material is classified into a hole transport material and an electron transport material, and specific compounds thereof are exemplified below, but the present invention is not limited to these materials.
  • Examples of the hole transport material include poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid copolymer (PEDOT: PSS).
  • Examples of the electron transport material include TiOx, ZnO, and naphthalenetetracarboxylic acid. An acid dianhydride (NTCDA) etc. are mentioned.
  • a hole blocking layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer may be included.
  • the film thickness of the organic layer 54 can be about 5 to 5000 nm, but is preferably 50 to 1000 nm. When the film thickness is less than 50 nm, sunlight cannot be sufficiently absorbed. On the other hand, if the film thickness exceeds 1000 nm, the efficiency decreases due to the resistance component of the organic layer 54.
  • the anode 52 has a two-layer structure of the electrode material layer 55 and the self-assembled layer 56.
  • the electrode material layer 55 can be made of the same material as that of the source electrode 4 and the drain electrode 5 of the second embodiment described above.
  • the electrode material layer 55 is composed of a mixed material of various conductive materials.
  • Various conductive materials include metal materials such as gold, silver, copper, titanium, and aluminum, alloys containing them, and conductive oxides such as indium tin oxide (ITO) or indium zinc oxide (IZO). Examples of such materials include silicon, gallium arsenide, various semiconductor materials in which dopants such as boron and phosphorus are implanted at a high concentration in these materials to improve conductivity, or conductive organic materials such as PEDOT: PSS.
  • a metal mask is used in a vacuum state in an inert atmosphere such as nitrogen or argon, as in the method for forming the source electrode 4 and the drain electrode 5 of the second embodiment.
  • the method include a physical vapor deposition method such as a multi-component simultaneous vacuum deposition method or a multi-source sputtering method.
  • a printing method such as an ink jet method or a screen printing method, and is baked in an inert atmosphere. You may form by doing.
  • mixing in the mixed material constituting the electrode material layer 55 is preferably in a state where the particles of each conductive material are appropriately mixed. Moreover, the mixing degree of each electroconductive material should just be the grade which the surface which consists of each electroconductive material appears in the surface of each electrode.
  • the self-assembled layer 56 can be made of the same material as the self-assembled layer 6 of Embodiment 2 described above, and can be formed by the same formation method.
  • the cathode 53 can be composed of the same mixed material as the anode 52.
  • the present invention is not limited to this, and the plurality of materials constituting the mixed material may be different from that of the anode 52, or may be composed of another single electrode material instead of the mixed material. May be.
  • FIG. 24 is a band diagram showing the energy levels that define the work function of each of the anodes 52 and the energy levels of molecular orbitals related to carrier injection in the organic layer 54.
  • FIG. 24A shows a configuration according to a conventional example in which a self-organized layer is not formed
  • FIG. 24B shows an example of a configuration according to the present embodiment.
  • the barrier for taking out carriers (holes) from the organic layer 54 to the anode 52 is determined by the difference between the work function of the anode and the work function of the organic layer.
  • the self-assembled monomolecule of the self-assembled layer 56 has a dipole moment such that the electrode material layer 55 has a negative charge and the organic layer 54 has a positive charge. For this reason, the work function of the electrode material layer 55 is reduced by the effect of the electric double layer by the self-assembled layer 56. Thereby, as shown in FIG. 24B, the carrier injection barrier from the organic layer 54 to the electrode material layer 55 is reduced.
  • the degree of reduction or increase of the carrier injection barrier is proportional to the magnitude of the dipole moment of the self-assembled monomolecule, the density of the self-assembled monomolecule, and the dielectric constant of the self-assembled layer 56. In consideration of these parameters, it is necessary to select a self-assembled single molecule that can reduce the energy barrier.
  • the self-assembled monomolecule constituting the self-assembled layer 56 may be selected based on the viewpoint of the influence of the self-assembled layer 56 on the organic layer 54.
  • the material of the self-assembled layer 56 is not limited to the specific examples of the self-assembled layer 6 described in the present specification, and can be appropriately selected. Further, the same formation method as that of the self-assembled layer 6 can be used.
  • the barrier between the anode and the organic layer is reduced, and in addition, the resistance of this portion can be kept small, so that the carrier injection efficiency is improved.
  • Example 9 In Example 9, gold, which is a material capable of binding self-assembled monomolecules, and gold, which is a material which cannot bind self-assembled monomolecules, to a glass substrate as the substrate 51 shown in FIG. A film was formed by co-sputtering to form an electrode material layer 55 of the anode 52.
  • a self-assembled layer 46 of dimethylaminobenzenethiol (DABT), which is a self-assembled monomolecular material, is immersed in a substrate 51 on which the electrode material layer 55 is formed in an ethanol solution of PFBT.
  • DABT dimethylaminobenzenethiol
  • PEBT pentafluorobenzenethiol
  • Comparative Example 6 As Comparative Example 4, instead of the anode 52 of Example 9, an electrode material layer made only of gold was formed from a mixture of dimethylaminobenzenethiol (DABT) and benzenethiol (BT) as a self-assembled monomolecular material. Except for the above, it was formed by the same method as in Example 9. The ratio of dimethylaminobenzenethiol to benzenethiol was 0.7: 0.3.
  • DABT dimethylaminobenzenethiol
  • BT benzenethiol
  • Comparative Example 7 As Comparative Example 7, it was produced in the same manner as in Example 9 except that instead of the anode 52 of Example 9, an electrode material layer made of only ITO was used.
  • Table 8 shows the result of comparison of the work function of the anode in Example 9 manufactured by the above method and the amount of short-circuit current of the organic solar cell.
  • Example 9 As shown in Table 8, the work functions of Example 9 and Comparative Example 6 are almost the same, but the current value of Example 9 is larger than the current value of Comparative Example 6.
  • Comparative Example 6 the entire surface of the electrode material layer is covered with the self-assembled layer, and thus it is considered that there is a physical resistance for carrier extraction.
  • Example 9 in Example 9 and Comparative Example 7, it is considered that the physical resistance value is small in Comparative Example 7 because it does not have a self-assembled layer, but the current value is small.
  • the work function is controlled to reduce the extraction barrier with the p-type semiconductor layer. This is probably because of this.
  • the electrode configuration of the present invention is as described above.
  • the electrode is composed of a mixed material in which two or more kinds of electrode materials are mixed so that a surface made of each electrode material appears on the surface of the electrode,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more types of electrode materials among the mixed materials on the surface of the electrode, and to one or more types of other electrode materials. Is characterized by not being combined.
  • the electrode surface of the source electrode and / or the drain electrode is applied to a portion made of an electrode material.
  • a structure is realized in which self-assembled monomolecules are bonded, and no self-assembled monomolecule is bonded to a portion made of another electrode material.
  • the surface density of the self-assembled layer on the electrode is controlled by the proportion of the electrode material in the mixed material constituting the electrode. Therefore, a self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material. This makes it possible to precisely control the work function of the electrode and reduce the carrier injection barrier between the electrode and the organic layer.
  • the organic layer is formed on a portion made of an electrode material to which the self-assembled monomolecule is not bonded, on the surface of the electrode, through a gap where the self-assembled monomolecule does not exist in the self-assembled layer. It is possible to touch. Thereby, the physical resistance between the electrode and the organic layer can be reduced.
  • the electrode configuration of the present invention is employed in an organic thin film transistor, the work function of the electrode is precisely controlled to reduce the carrier injection barrier, and the physical structure between the electrode and the organic layer (organic semiconductor layer) is reduced. It is possible to achieve both reduction in resistance. Therefore, it is possible to provide a high-performance organic thin film transistor that can secure a large current without increasing the voltage.
  • the organic thin film transistor according to the present invention is as described above.
  • An organic thin film transistor having the above electrode configuration A substrate, A gate electrode formed on the substrate; A gate insulating film formed on the gate electrode; A source electrode and a drain electrode formed on the gate insulating film; An organic semiconductor layer continuously formed on the source electrode and the drain electrode, and in the gap between the electrodes;
  • a self-assembled layer composed of a self-assembled monomolecule having a dipole formed between at least one of the source electrode and the drain electrode and the organic semiconductor layer;
  • the at least one electrode is composed of a mixed material in which two or more kinds of electrode materials are mixed so that a surface made of each electrode material appears on the surface of the electrode,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more kinds of electrode materials among the mixed materials on the surface of the at least one electrode, and one or more kinds of other molecules It is characterized by not being bonded to the electrode material.
  • a self-assembled monomolecule is bonded to a portion made of an electrode material, and a self-assembled monomolecule is bonded to a portion made of another electrode material. Not done.
  • a self-assembled layer is formed on at least one electrode by self-assembled monomolecules bonded to a certain electrode material. That is, the surface density of the self-assembled layer on at least one electrode is controlled by the ratio of the electrode material in the mixed material constituting the electrode. For this reason, a self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material during the production of the organic thin film transistor according to the present invention. This makes it possible to precisely control the work function of at least one of the electrodes and reduce the carrier injection barrier in the electrode.
  • an organic semiconductor layer is formed on at least one of the electrodes via a self-assembled layer.
  • the organic semiconductor layer can be in contact with a portion of the surface of the electrode made of an electrode material to which the self-assembled monomolecule does not bind by passing through a gap where the self-assembled monomolecule does not exist in the self-assembled layer. It is. Thereby, the physical resistance between the electrode and the organic semiconductor layer can be reduced.
  • the work function of the electrode is precisely controlled to reduce the carrier injection barrier, and the physical resistance between the electrode and the organic semiconductor layer is reduced. It is possible to achieve both. Therefore, it is possible to realize a high-performance organic thin film transistor that can ensure a large current without increasing the voltage.
  • one form of the organic thin-film transistor which concerns on this invention is
  • the source electrode and the drain electrode are each composed of the mixed material
  • the self-assembled layer includes a first self-assembled layer formed between the source electrode and the organic semiconductor layer, and a second self-assembled layer formed between the drain electrode and the organic semiconductor layer.
  • the self-assembled monomolecule of the first self-assembled layer and the self-assembled monomolecule of the second self-assembled layer preferably have the same or different dipole directions.
  • the dipole directions are the same
  • Costs can be reduced.
  • the direction of the dipole reduces the carrier injection barrier on the source electrode side
  • the carrier injection barrier increases on the drain electrode side, but the overall performance of the organic thin film transistor can be improved.
  • the first self-assembled layer and the second self-assembled layer when the directions of the dipoles are different from each other, the direction of reducing the energy barrier between the organic semiconductor layer on each side of the source electrode and the drain electrode The dipoles (opposite to each other) can be used. Thereby, the performance of the organic thin film transistor can be further improved.
  • the direction of the dipole in the first self-assembled layer is preferably such that a positive charge is located on the source electrode side and a negative charge is located on the semiconductor layer side.
  • the negative charge is located on the drain electrode side and the positive charge is located on the semiconductor layer side.
  • the positive and negative are opposite to those of the p-type.
  • the mixed material constituting the source electrode and the mixed material constituting the drain electrode are mixed with an electrode material not bonded to an electrode material to which the self-assembled monomolecule is bonded.
  • the ratios are preferably different from one another.
  • the work function of each electrode can be controlled by adjusting the surface density of the self-assembled layer in each of the source electrode and the drain electrode.
  • the carrier injection barrier in both electrodes can be suitably reduced, and the performance of the organic thin film transistor can be further improved.
  • one form of the organic thin-film transistor which concerns on this invention is
  • the first self-assembled layer and the second self-assembled layer are composed of self-assembled monomolecules having the same dipole orientation
  • the ratio of the electrode material to which the self-assembled single molecule is bonded is larger than the ratio of the electrode material to which the self-assembled single molecule is not bonded
  • the ratio of the electrode material to which the self-assembled monomolecule is bonded is preferably smaller than the ratio of the electrode material to which the self-assembled monomolecule is not bonded.
  • the manufacturing cost can be reduced by configuring the first self-assembled layer and the second self-assembled layer from the same material. Moreover, according to the said structure, it adjusts so that the surface density of the 2nd self-organization layer in a drain electrode may become low. For this reason, when the direction of the dipole in the first self-assembled layer and the second self-assembled layer is to reduce the carrier injection barrier on the source electrode side, the increase in the carrier injection barrier on the drain electrode side is suppressed. The overall performance of the organic thin film transistor can be further improved.
  • one form of the organic thin-film transistor which concerns on this invention is The mixed material constituting the source electrode and the drain electrode, respectively, A first electrode material to which the self-assembled monomolecule of the first self-assembled layer is bonded and the self-assembled monomolecule of the second self-assembled layer is not bonded; It is preferable that the self-assembled monomolecule of the first self-assembled layer is not bonded and the second electrode material is bonded to the self-assembled monomolecule of the second self-assembled layer.
  • the first self-assembled layer and the second self-assembled layer are formed on the source electrode and the drain electrode using the self-assembled monomolecule having a dipole suitable for each electrode. Can do. It is also possible to manufacture the source electrode and the drain electrode from a common material.
  • a self-assembled monomolecule having a dipole in a direction (reverse to each other) that reduces the carrier injection barrier for each of the source electrode and the drain electrode while manufacturing the source electrode and the drain electrode from a common material. can be used. Accordingly, the performance of the organic thin film transistor can be further improved while suppressing the manufacturing cost.
  • one form of the organic thin-film transistor which concerns on this invention is
  • the first self-assembled layer and the second self-assembled layer are composed of self-assembled monomolecules having the same dipole orientation,
  • the ratio of the first electrode material is preferably larger than the ratio of the second electrode material.
  • the manufacturing cost can be reduced by configuring the source electrode and the drain electrode from a common material. Moreover, according to the said structure, it adjusts so that the surface density of the 2nd self-organization layer in a drain electrode may become low. For this reason, when the direction of the dipole in the first self-assembled layer and the second self-assembled layer is to reduce the carrier injection barrier on the source electrode side, the increase in the carrier injection barrier in the drain electrode is suppressed. The overall performance of the organic thin film transistor can be further improved.
  • one form of the organic thin-film transistor which concerns on this invention is
  • the self-assembled layer formed on the at least one electrode is composed of two or more types of self-assembled monomolecules, In the mixed material, an electrode material to which each self-assembled monomolecule is bonded and an electrode material to which any self-assembled monomolecule is not bonded may be mixed.
  • a self-assembled layer can be formed by using a combination of self-assembled single molecules having different functions.
  • the work function of the electrode can be controlled while controlling the work function of the organic semiconductor layer. Grain can be enlarged.
  • the organic thin film transistor according to the present invention can secure a larger amount of current while suppressing the voltage.
  • one form of the organic thin-film transistor which concerns on this invention is Another self-assembled layer composed of self-assembled monomolecules formed between at least one of the electrodes and the organic semiconductor layer at least in a gap portion between the source electrode and the drain electrode; It is preferable to provide.
  • the self-assembled layer and the other self-assembled layer may be composed of the same type of self-assembled monomolecules, or may be composed of different types of self-assembled monomolecules. It may be.
  • the organic EL pixel according to the present invention preferably includes any one of the organic thin film transistors described above. According to the above configuration, an organic EL pixel with good light emission efficiency can be provided.
  • the organic electroluminescence device is as described above.
  • An organic electroluminescent element having the above electrode configuration wherein the organic layer having the above electrode configuration includes an organic layer including a light emitting layer between the first electrode and the second electrode.
  • the at least one electrode is composed of a mixed material in which two or more kinds of electrode materials are mixed so that a surface made of each electrode material appears on the surface of the electrode,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more kinds of electrode materials among the mixed materials on the surface of the at least one electrode, and one or more kinds of other molecules It is characterized by not being bonded to the electrode material.
  • the self-assembled monomolecule is bonded to a portion made of a certain electrode material on the electrode surface of the first electrode and / or the second electrode, and the self-assembled monomolecule is attached to a portion made of another electrode material. Are not joined.
  • a self-assembled layer is formed on at least one electrode by self-assembled monomolecules bonded to a certain electrode material. That is, the surface density of the self-assembled layer on at least one electrode is controlled by the ratio of the electrode material in the mixed material constituting the electrode. For this reason, the self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material during the production of the organic electroluminescence device according to the present invention. This makes it possible to precisely control the work function of at least one of the electrodes and reduce the carrier injection barrier in the electrode.
  • an organic layer including a light emitting layer is formed on at least one of the electrodes via a self-assembled layer. For this reason, the organic layer can come into contact with a portion of the surface of the electrode made of an electrode material to which the self-assembled monomolecule is not bonded, through a gap where no self-assembled monomolecule exists in the self-assembled layer. It is. Thereby, the physical resistance between the electrode and the organic layer can be reduced.
  • the organic electroluminescence device it is possible to reduce the barrier by precisely controlling the work function of the electrode and to reduce the physical resistance between the electrode and the organic layer. It is possible to make it. For this reason, an organic electroluminescent element with favorable luminous efficiency can be realized.
  • the present invention also includes an apparatus provided with the above-described organic electroluminescence element. According to the above configuration, since the organic electroluminescence element has good light emission efficiency, various devices such as a display device and a light source device that exhibit high luminance with low power consumption can be realized.
  • the organic solar cell according to the present invention is as described above.
  • a self-assembled layer composed of a self-assembled monomolecule having a dipole formed between at least one of the first electrode and the second electrode and the organic layer;
  • the at least one electrode is composed of a mixed material in which two or more kinds of electrode materials are mixed so that a surface made of each electrode material appears on the surface of the electrode,
  • the self-assembled monomolecule constituting the self-assembled layer is bonded to one or more kinds of electrode materials among the mixed materials on the surface of the at least one electrode, and one or more kinds of other molecules It is characterized by not being bonded to the electrode material.
  • the self-assembled monomolecule is bonded to a portion made of a certain electrode material on the electrode surface of the first electrode and / or the second electrode, and the self-assembled monomolecule is attached to a portion made of another electrode material. Are not joined.
  • a self-assembled layer is formed on at least one electrode by self-assembled monomolecules bonded to a certain electrode material. That is, the surface density of the self-assembled layer on at least one electrode is controlled by the ratio of the electrode material in the mixed material constituting the electrode. For this reason, the self-assembled layer having a desired surface density can be easily formed by adjusting the composition of the mixed material during the production of the organic solar cell according to the present invention. This makes it possible to precisely control the work function of at least one of the electrodes and reduce the carrier injection barrier in the electrode.
  • an organic layer including a photoelectric conversion layer is formed on at least one of the electrodes via a self-assembled layer. For this reason, the organic layer can come into contact with a portion of the surface of the electrode made of an electrode material to which the self-assembled monomolecule is not bonded, through a gap where no self-assembled monomolecule exists in the self-assembled layer. It is. Thereby, the physical resistance between the electrode and the organic layer can be reduced.
  • the organic solar cell according to the present invention it is possible to reduce the barrier by precisely controlling the work function of the electrode and to reduce the physical resistance between the electrode and the organic layer. It is possible. For this reason, the organic solar cell which raised the taking-out efficiency of a carrier is realizable.
  • the manufacturing method of the electrode configuration of the present invention is as follows.
  • a method of manufacturing an electrode configuration Forming the electrode by mixing two or more kinds of electrode materials such that a surface made of each electrode material appears on the surface of the electrode, and Applying a self-assembled monomolecule that binds to one or more electrode materials of the two or more electrode materials and does not bond to one or more other electrode materials; Removing from the electrode self-assembled single molecules that do not bind to other electrode materials; It is characterized by including.
  • an organic thin film transistor capable of securing a large current without increasing the voltage can be suitably manufactured.
  • a method for producing an organic thin film transistor includes: A substrate, A gate electrode formed on the substrate; A gate insulating film formed on the gate electrode; A source electrode and a drain electrode formed on the gate insulating film; An organic semiconductor layer continuously formed on the source electrode and the drain electrode, and in the gap between the electrodes; A method for producing an organic thin film transistor comprising a self-assembled layer formed of a self-assembled monomolecule having a dipole, formed between at least one of the source electrode and the drain electrode and the organic semiconductor layer Because Forming the at least one electrode by mixing two or more kinds of electrode materials such that a surface made of each electrode material appears on the surface of the electrode, and On the at least one electrode, a self-assembled monomolecule that is bonded to one or more of the two or more electrode materials and not bonded to one or more of the other electrode materials is applied. Process, And washing the at least one electrode to remove the self-assembled monomolecule applied on the other electrode material from the electrode.
  • an organic thin film transistor capable of securing a large current without increasing the voltage can be suitably manufactured.
  • the present invention can be suitably used for an organic EL display or the like.
  • Substrate 2 Gate electrode 3 Gate insulating film 4 Source electrode (electrode) 4a Binding material (electrode material to which self-assembled single molecules bind) 4b Non-bonded material (electrode material to which self-assembled single molecules do not bind) 5 Drain electrode (electrode) 5a Binding material (electrode material to which self-assembled single molecules bind) 5b Non-bonded material (electrode material that does not bind self-assembled single molecules) 6 Self-assembled layer 6a Source-side self-assembled layer (first self-assembled layer) 6b Drain side self-assembled layer (second self-assembled layer) 7 Organic semiconductor layer (organic layer) 8a First electrode material 8b Second electrode material 11 Substrate 12 Photoresist film 13 Thin film 20 Channel portion 21 Data line 22 Scan line 23 Capacitance line 24 Cathode power supply line 25 Anode power supply line 31 Switching transistor 32 Capacitance 33 Driving transistor 34 Organic EL element 41 Transparent substrate 42

Abstract

 本発明の一形態の電極構成(600)は、電極(602)と、電極(602)の上に形成された有機層(604)と、電極(602)と有機層(604)との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層(606)とを備えており、電極(602)は、電極(602)の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料(605a,605b)が混合された混合材料から構成されており、上記自己組織化単分子は、電極(602)の表面において、上記混合材料のうち、1種類以上の電極材料(605a)に結合しており、かつ、1種類以上の他の(電極材料605b)には結合していない。

Description

電極構成、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機エレクトロルミネッセンス画素、および、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を備えた装置、並びに、有機太陽電池
 本発明は、電極構成、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機エレクトロルミネッセンス画素、および、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を備えた装置、並びに、有機太陽電池に関するものである。
 有機エレクトロルミネッセンス素子(有機EL素子)や液晶を用いた薄型表示装置では、画素を駆動する素子として、薄膜トランジスタ(TFT)が使用されている。その中でも、有機半導体を用いた有機薄膜トランジスタ(有機TFT)は、無機半導体を用いたTFTよりも、簡単で安価な製造方法を用いて製造できることが期待されている。
 有機TFTでは、電極と有機半導体層との間に、キャリア注入障壁に起因する抵抗が存在する。例えば、p型有機薄膜トランジスタの場合、キャリアであるホールを、ソース電極からp型有機半導体層へ注入するための注入障壁は、ソース電極の仕事関数とp型有機半導体の仕事関数とのエネルギー差である。
 有機TFTにおいてキャリア注入障壁が大きいと、電極による有機半導体層へのキャリア注入を容易に行うことができず、有機TFTの性能低下につながる。そこで、電極の仕事関数を制御することにより、電極と有機半導体層との間のキャリア注入障壁を低減させる方法が開発されている。
 例えば、特許文献1及び2には、電極上に双極子モーメントを有する自己組織化単分子膜(Self-Assembled Monolayer;SAM)を形成することによって、双極子モーメントが生じる電位差を利用し、電極の仕事関数を制御する技術が開示されている。図25は、特許文献2に開示された技術により作製された有機TFT700の構成を示す断面図であり、図26は、図25に示す円の部分を拡大して示す断面図である。図25および図26に示すように、有機TFT700は、ゲート電極702、ゲート絶縁膜703、ソース電極704、ドレイン電極705、SAM706、有機半導体層707を備えている。ここで、SAM706は、1種類の有機単分子を電極表面へ吸着させることによって形成されている。
 また、特許文献3には、電極の仕事関数をより好適に制御するために、自己組織化単分子膜の面密度を制御する技術が開示されている。図27は、特許文献2に開示された技術により作製された有機TFT700におけるSAM706の構成を拡大して示す図である。図27に示すように、SAM706は、双極子モーメントを有する第1有機単分子706aと、双極子モーメントを有さない第2有機単分子706bという、2種類の単分子から構成されている。これによって、双極子モーメントを有する第1有機単分子706a面密度が制御されている。
 また、透明電極である第一電極(陽極)と、反射電極である第二電極(陰極)との間に発光層を有する有機層を配した有機EL素子が知られている。このような構成の有機EL素子の第一電極と第二電極との間に数ボルトの電圧を印加することによって、第一電極から有機層に注入された正孔と、第二電極から有機層に注入された電子とが発光層内で再結合する。発光層内で正孔と電子とが再結合すると、エキシトンが生成され、当該エキシトンが基底状態に戻る際に発光する。有機EL素子はこのようなメカニズムで発光する素子である。有機EL素子は、自発光、広視野角、および高速応答性等の種々の優れた特性を有することから、表示装置や光源装置などの種々の装置に実装されている。
日本国公開特許公報「特開2002-270369号公報(2002年9月20日公開)」 日本国公開特許公報「特開2005-294785号公報(2005年10月20日公開)」 日本国公開特許公報「特開2009-218244号公報(2009年9月24日公開)」
 上述したように、電極と有機半導体層との間の抵抗は、有機TFTの性能に直結する重要な要素である。ここで、本発明者らは、電極と有機半導体層との間の抵抗が、上述した電極と有機半導体層との間のキャリア注入障壁だけではなく、電極と有機半導体層との間における物理的な抵抗が関わっていることを見出した。すなわち、電極が有機半導体層にキャリア注入を行う際、それらの間に存在する自己組織化層が抵抗層としてキャリア注入を阻害することによって、有機TFTの性能を低下させると考えた。
 そこで、本発明者らは、有機TFTの性能を向上させるためには、電極の仕事関数を精密に制御してキャリア注入障壁を低減させることと、電極と有機半導体層との間における物理的な抵抗を減少させることとを両立させることが重要であると考えた。
 しかしながら、特許文献1及び2に開示された方法では、図26に示すように、1種類の有機単分子をソース電極704の表面へ吸着させているため、当該吸着を十分に時間をかけて行うことによりSAM706の面密度を最大に到達させることはできても、所望の値に制御することは困難である。また、電極上の全面にSAM706が存在することによって、電極と有機半導体層との間における物理的な抵抗値が大きい。
 一方、特許文献3に開示された方法では、図27に示すように、双極子モーメントを有する第1有機単分子706aの面密度を制御することによって電極の仕事関数を制御している。しかしながら、第1有機単分子706aの面密度を制御するために、これと第2有機単分子706bとを混ぜ合わせた溶液を電極の表面に塗布し、十分な時間をかけて飽和するまで吸着させているため、ソース電極704表面の全てがSAM706で覆われてしまう。よって、特許文献3により作製される有機TFTにおいても、電極と有機半導体層との間における物理的な抵抗値が大きく、有機TFTの性能を効果的に向上させることはできない。
 以上の課題は、上述した有機EL素子にも当てはまる。すなわち、従来公知の有機EL素子では、電極と有機層(発光層)との間の抵抗により、発光効率が悪い。同じく、有機太陽電池にも当てはまる。すなわち、従来公知の有機太陽電池では、電極と有機層(発光層)との間の抵抗により、キャリア取り出し効率が悪い。
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、電極の仕事関数を精密に制御してキャリア注入障壁を低減させることと、電極と有機層との間における物理的な抵抗を減少させることとを両立させた電極構成とその製造方法、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機EL画素および有機EL素子、並びに、当該有機EL素子を備えた装置、並びに、有機太陽電池を提供することにある。
 本発明の電極構成は、上記の課題を解決するために、
 電極と、当該電極の上に形成された有機層と、上記電極と上記有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えており、
 上記電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料が混合された混合材料から構成されており、
 上記自己組織化層を構成する自己組織化単分子は、上記電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記の構成によれば、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない構成が実現される。このように、電極上における自己組織化層の面密度が、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、電極の仕事関数を精密に制御し、電極と有機層との間におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、有機層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機層との間における物理的な抵抗を減少させることができる。
 本発明に係る有機薄膜トランジスタは、上記の課題を解決するために、
 上記電極構成を有する有機薄膜トランジスタであって、
 基板と、
 上記基板上に形成されたゲート電極と、
 上記ゲート電極上に形成されたゲート絶縁膜と、
 上記ゲート絶縁膜上に形成されたソース電極およびドレイン電極と、
 上記ソース電極上および上記ドレイン電極上、ならびに両電極の間隙部分に連続的に形成された有機半導体層と、
 上記ソース電極および上記ドレイン電極のうち少なくとも一方の電極と上記有機半導体層との間に形成された上記自己組織化層とを備えており、
 上記少なくとも一方の電極は、上記混合材料から構成されており、
 上記自己組織化層を構成する上記自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記構成において、ソース電極および/またはドレイン電極の電極表面のうち、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない。
 上記構成によれば、少なくとも一方の電極上には、ある電極材料に結合した自己組織化単分子によって自己組織化層が構成されている。すなわち、少なくとも一方の電極上における自己組織化層の面密度は、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、本発明に係る有機薄膜トランジスタの製造時、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、少なくとも一方の電極の仕事関数を精密に制御し、当該電極におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、少なくとも一方の電極上には、自己組織化層を介して有機半導体層が形成されている。このため、有機半導体層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機半導体層との間における物理的な抵抗を減少させることができる。
 したがって、本発明に係る有機薄膜トランジスタによれば、電極の仕事関数を精密に制御してキャリア注入障壁を低減させることと、電極と有機半導体層との間における物理的な抵抗を減少させることとを両立させることが可能である。このため、電圧を増加させることなく大きな電流を確保できる高性能な有機薄膜トランジスタを実現することができる。
 本発明に係る有機エレクトロルミネッセンス画素は、上述したいずれかの有機薄膜トランジスタを備えることが好ましい。上記構成によれば発光効率の良好な有機エレクトロルミネッセンス画素を提供することができる。
 本発明に係る有機エレクトロルミネッセンス素子は、上記の課題を解決するために、
 上記の電極構成を備えた有機エレクトロルミネッセンス素子であって、上記の電極構成の上記有機層としての、発光層を含む有機層を、第一電極と第二電極との間に有している有機エレクトロルミネッセンス素子であって、
 上記第一電極および上記第二電極のうち少なくとも一方の電極と上記発光層を含む有機層との間に形成された上記自己組織化層を備えており、
 上記少なくとも一方の電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、上記混合材料から構成されており、
 上記自己組織化層を構成する上記自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記構成において、第一電極および/または第二電極の電極表面のうち、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない。
 上記構成によれば、少なくとも一方の電極上には、ある電極材料に結合した自己組織化単分子によって自己組織化層が構成されている。すなわち、少なくとも一方の電極上における自己組織化層の面密度は、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、本発明に係る有機エレクトロルミネッセンス素子の製造時、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、少なくとも一方の電極の仕事関数を精密に制御し、当該電極におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、少なくとも一方の電極上には、自己組織化層を介して、発光層を含む有機層が形成されている。このため、当該有機層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機層との間における物理的な抵抗を減少させることができる。
 したがって、本発明に係る有機エレクトロルミネッセンス素子によれば、電極の仕事関数を精密に制御して障壁を低減させることと、電極と有機層との間における物理的な抵抗を減少させることとを両立させることが可能である。このため、発光効率の良好な有機エレクトロルミネッセンス素子を実現することができる。
 また、本発明には、上述した有機エレクトロルミネッセンス素子を備える装置も含まれる。上記構成によれば、有機エレクトロルミネッセンス素子は発光効率が良好であるため、低消費電力で高輝度を呈する表示装置や光源装置などの種々の装置を実現することができる。
 本発明に係る有機太陽電池は、上記の課題を解決するために、
 上記の電極構成を備えた有機太陽電池であって、電極構成の上記有機層としての、光電変換層を含む有機層を、第一電極と第二電極との間に有している有機太陽電池であって、
 上記第一電極および上記第二電極のうち少なくとも一方の電極と上記光電変換層を含む有機層との間に形成された上記自己組織化層とを備えており、
 上記少なくとも一方の電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、上記混合材料から構成されており、
 上記自己組織化層を構成する上記自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記構成において、第一電極および/または第二電極の電極表面のうち、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない。
 上記構成によれば、少なくとも一方の電極上には、ある電極材料に結合した自己組織化単分子によって自己組織化層が構成されている。すなわち、少なくとも一方の電極上における自己組織化層の面密度は、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、本発明に係る有機太陽電池の製造時、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、少なくとも一方の電極の仕事関数を精密に制御し、当該電極におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、少なくとも一方の電極上には、自己組織化層を介して、光電変換層を含む有機層が形成されている。このため、当該有機層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機層との間における物理的な抵抗を減少させることができる。
 したがって、本発明に係る有機太陽電池によれば、電極の仕事関数を精密に制御して障壁を低減させることと、電極と有機層との間における物理的な抵抗を減少させることとを両立させることが可能である。このため、キャリアの取り出し効率を高めた有機太陽電池を実現することができる。
 また本発明の、電極構成の製造方法は、
 電極と、当該電極の上に形成された有機層と、上記電極と上記有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えた電極構成の製造方法であって、
 上記電極を、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料を混合することにより形成する工程と、
 上記2種類以上の電極材料のうち、1種類以上の電極材料と結合し、かつ、1種類以上の他の電極材料とは結合しない自己組織化単分子を塗布する工程と、
 他の電極材料とは結合しない自己組織化単分子を当該電極から除去する工程と、
を含むことを特徴としている。
 上記の構成によれば、電圧を増加させることなく大きな電流を確保できる有機薄膜トランジスタを好適に製造することができる。
 また、本発明に係る有機薄膜トランジスタの製造方法は、
 基板と、
 上記基板上に形成されたゲート電極と、
 上記ゲート電極上に形成されたゲート絶縁膜と、
 上記ゲート絶縁膜上に形成されたソース電極およびドレイン電極と、
 上記ソース電極上および上記ドレイン電極上、ならびに両電極の間隙部分に連続的に形成された有機半導体層と、
 上記ソース電極およびドレイン電極のうち少なくとも一方の電極と上記有機半導体層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備える有機薄膜トランジスタの製造方法であって、
 上記少なくとも一方の電極を、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料を混合することにより形成する工程と、
 上記少なくとも一方の電極上に、上記2種類以上の電極材料のうち、1種類以上の電極材料と結合し、かつ、1種類以上の他の電極材料とは結合しない自己組織化単分子を塗布する工程と、
 上記少なくとも一方の電極を洗浄することにより、上記他の電極材料上に塗布された上記自己組織化単分子を当該電極から除去する工程とを含むことを特徴としている。
 上記方法によれば、電圧を増加させることなく大きな電流を確保できる有機薄膜トランジスタを好適に製造することができる。
 本発明によれば、電極の仕事関数を精密に制御してキャリア注入障壁を低減させることと、電極と有機層との間における物理的な抵抗を減少させることとを両立させた電極構成とその製造方法、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機EL画素および有機EL素子、並びに、当該有機EL素子を備えた装置、並びに、有機太陽電池を提供することができる。
本発明の電極構成の一形態の断面図である。 本発明の実施例1に係る有機TFTにおけるソース電極および自己組織化層の構成を示す断面図である。 本発明の有機TFTの一実施形態に係る有機TFTの構成を概略的に示す断面図である。 図3に示す有機TFTの他の例による構成を概略的に示す断面図である。 (a)~(e)は、図4に示す有機TFTの製造方法を説明するための断面図である。 有機TFTにおけるキャリア注入障壁を説明するためのバンドダイアグラムを示す図であり、(a)は従来例を示し、(b)は実施例1を示している。 本発明の実施例2に係る有機TFTにおけるソース電極、ドレイン電極および自己組織化層の構成を示す断面図である。 有機TFTにおけるキャリア注入障壁を説明するためのバンドダイアグラムを示す図であり、(a)は実施例1を示し、(b)は実施例2を示している。 本発明の実施例3に係る有機TFTにおけるソース電極、ドレイン電極および自己組織化層の構成を示す断面図である。 有機TFTにおけるキャリア注入障壁を説明するためのバンドダイアグラムを示す図であり、(a)は実施例1を示し、(b)は実施例3を示している。 本発明の実施例4に係る有機TFTにおけるソース電極、ドレイン電極および自己組織化層の構成を示す断面図である。 有機TFTにおけるキャリア注入障壁を説明するためのバンドダイアグラムを示す図であり、(a)は実施例1を示し、(b)は実施例4を示している。 本発明の実施例5に係る有機TFTにおけるソース電極、ドレイン電極および自己組織化層の構成を示す断面図である。 有機TFTにおけるキャリア注入障壁を説明するためのバンドダイアグラムを示す図であり、(a)は実施例1を示し、(b)は実施例5を示している。 本発明の実施例6に係る有機TFTにおけるソース電極および自己組織化層の構成を示す断面図である。 本発明の一実施形態に係る有機EL画素を概略的に示す回路図である。 本発明の一実施形態に係る有機EL素子を概略的に示す断面図である。 図17に示した有機EL素子の部分拡大図である。 図17に示した有機EL素子のキャリア注入障壁を説明するためのバンドダイアグラムを示す図である。 図17に示した有機EL素子を備えた有機EL画素を概略的に示す回路図である。 図20に示した有機EL画素を配列してなる有機ELディスプレイを概略的に示す回路図である。 本発明の一実施形態に係る有機太陽電池を概略的に示す断面図である。 図22に示した有機太陽電池の部分拡大図である。 図22に示した有機太陽電池のキャリア注入障壁を説明するためのバンドダイアグラムを示す図である。 従来例に係る有機TFTの構成を概略的に示す断面図である。 図25に示す有機TFTにおける自己組織化層の構成を示す断面図である。 他の従来例に係る有機TFTにおける自己組織化層の構成を示す断面図である。
 〔実施形態1〕
 本発明の電極構成の一形態について図1に基づいて説明する。図1は、本実施形態の電極構成の断面図である。
 本実施形態の電極構成600は、電極602と、電極602の上に形成された有機層604とを備えている。
 電極602は、電極材料層605と、双極子を有する自己組織化単分子から構成される自己組織化層606とを有している。この自己組織化層606は、電極材料層605と有機層604との間に形成されたかたちとなっている。
 そして電極材料層605は、自己組織化層606側の表面に、各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料605a,605bが混合された混合材料から構成されている。自己組織化層606を構成する自己組織化単分子は、電極材料層605の表面において、上記混合材料のうちの電極材料605aに結合しており、かつ、他の電極材料605bには結合していない。
 以上の構成を具備する本実施形態の電極構成600は、以下の製造方法によって製造することができる。具体的には、電極材料層605を、電極材料層605の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料605a,605bを混合することにより形成する工程と、電極材料605aと結合し、かつ、他の電極材料605bとは結合しない自己組織化単分子を塗布する工程と、他の電極材料605bとは結合しない自己組織化単分子を当該電極材料層605(具体的には他の電極材料605b)から除去する工程と、有機層604を形成する工程とを含む方法を採用することができる。
 電極材料層605の各電極材料605a,605b、自己組織化層606、および有機層604については従来周知の材料を用いて構成することができる。また例えば後述する実施形態2以降に例示したものを用いることができる。
 ここで、自己組織化単分子が結合する電極材料は1種類に限定されるものではなく、複数種類の電極材料であってもよい。また、自己組織化単分子が結合しない電極材料も1種類に限定されるものではなく、複数種類の電極材料であってもよい。
 本実施形態の電極構成600は、以上のように構成することにより、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない構成を実現している。このように、電極602上における自己組織化層の面密度が、電極602の電極材料層605を構成する混合材料中の当該電極材料の割合によって制御される。このため、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、電極602の仕事関数を精密に制御し、電極602と有機層604との間におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、有機層604は、自己組織化層606において自己組織化単分子が存在しない間隙を介することによって、電極602の表面のうち、自己組織化単分子が結合しない電極材料605bからなる部分に接触可能である。これによって、電極602と有機層604との間における物理的な抵抗を減少させることができる。
 〔実施形態2〕
 本発明の有機薄膜トランジスタの一実施形態について図2~14に基づいて説明すると以下の通りである。本実施形態の有機薄膜トランジスタは、ソース電極とドレイン電極とに、上記実施形態1の電極構成を適用している。
 まず、図3に基づいて、本実施形態における有機薄膜トランジスタ(有機TFT)100の概略構成について説明する。
 図3は、本実施形態に係る有機TFT100の層構成を示す断面図である。図3に示すように、有機TFT100は、基板1、ゲート電極2、ゲート絶縁膜3、ソース電極4、ドレイン電極5、自己組織化層6、および有機半導体層7(有機層)を備えている。
 基板1上には、ゲート電極2とゲート絶縁膜3とが形成され、ゲート絶縁膜3上には、ソース電極4とドレイン電極5とが分離されて形成されている。ソース電極4とドレイン電極5との間の領域をチャネル部20と称する。
 また、ソース電極4上にはソース側自己組織化層(第1自己組織化層)6aが形成されており、ドレイン電極5上にはドレイン側自己組織化層(第2自己組織化層)6bが形成されている(6aと6bを併せて単に自己組織化層6と称する場合がある)。なお、自己組織化層6は、ソース電極4およびドレイン電極5の各々において、少なくともチャネル部20に接している部分に形成されていれば足りる。
 ここで、ソース電極4は、ソース側自己組織化層6aを構成する自己組織化単分子が結合できる材料4aと、当該自己組織化単分子が結合できない材料とを含んだ混合材料4bから構成される。同様に、ドレイン電極5は、ドレイン側自己組織化層6bを構成する自己組織化単分子が結合できる材料5aと、当該自己組織化単分子が結合できない材料5bとを含んだ混合材料から構成される。
 すなわち、ソース側自己組織化層6aを構成する自己組織化単分子は、ソース電極4の表面のうち、当該自己組織化単分子が結合できる材料4aからなる部分に結合している。同様に、ドレイン側自己組織化層6bを構成する自己組織化単分子は、ドレイン電極5の表面のうち、自己組織化単分子が結合できる材料5aからなる部分に結合している。一方、ソース電極4およびドレイン電極5の各々の表面のうち、自己組織化単分子が結合できない材料4b、5bからなる部分には、自己組織化層6の自己組織化単分子が存在しない。よって、有機半導体層7は、自己組織化層6における自己組織化単分子が存在しない間隙を介して、ソース電極4およびドレイン電極5に直接接触している。
 なお、自己組織化層は、チャネル部20上に形成されていてもよい。チャネル部20上に自己組織化層が形成される場合、チャネル部20の界面(有機半導体層7とゲート絶縁膜3との界面)でのキャリアトラップが抑えられ、これによって大きな電流量を確保することができる。ここで、チャネル部20上に形成される自己組織化層を構成する自己組織化単分子の双極子の大きさは、キャリアトラップをより効果的に抑えるために、できるだけ小さいことが望ましい。
 なお、チャネル部20上に形成される自己組織化層(他の自己組織化層)は、ソース電極4上に形成されるソース側自己組織化層6aを構成する自己組織化単分子と同じ種類の自己組織化単分子から構成されていれば良い。あるいは、これとは別の種類の自己組織化単分子から構成されていてもよい。または、チャネル部20上に形成される自己組織化層は、ドレイン電極5上に形成されるドレイン側自己組織化層6bを構成する自己組織化単分子と同じ種類の自己組織化単分子から構成されていれば良い。あるいは、これとは別の種類の自己組織化単分子から構成されていてもよい。
 以下、各部材の詳細について説明する。
 (基板1)
 基板1は、種々の材料から選択することができる。例えば、ガラスもしくは石英などの絶縁物、またはシリコン等の半導体材料を用いることができる。また、フレキシブルな有機TFT100を作製する場合には、基板1は、SUSやアルミニウムなどから成る薄膜金属、または、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリエーテルエーテルケトン(PEEK)、もしくはポリイミド(PI)等のプラスチック材料等を用いることができる。
 (ゲート電極2)
 ゲート電極2は、金、銀、銅、チタン、もしくはアルミニウム等の金属材料やこれらを含む合金、インジウム・スズ酸化物(ITO)もしくはインジウム・亜鉛酸化物(IZO)等の導電性酸化物材料、シリコン、ガリウム砒素やこれら材料にホウ素やリン等のドーパントを高濃度で注入し導電性を高めるなどした各種の半導体材料、またはPEDOT:PSSやポリチオフェン等の導電性有機材料など、各種導電性材料またはこれらの混合物もしくは化合物を用いることができる。また、基板1との密着性を向上させるために、基板1と良好な密着性を有する材料とゲート電極用材料との二層構造とするなど、多層構造からなるゲート電極を用いてもよい。
 ゲート電極2の形成方法としては、例えば抵抗加熱法、電子ビーム蒸着法、またはスパッタリング法といった物理気相成長法によって、基板1上に目的の電極材料を形成する方法が挙げられる。また、インクジェット法またはグラビア印刷法といった印刷技術によって形成することが可能である。また、適宜、メタルマスクやフォトリソグラフィを用いたパターニングによって形成することも可能である。
 なお、図4に示すように、基板1とゲート電極2とが同一材料から一体的に形成された基板11を用いてもよい。この場合、例えば、基板1として不純物を高濃度に注入した低抵抗シリコン基板を用い、これ自体をゲート電極として利用してもよい。
 (ゲート絶縁膜3)
 ゲート絶縁膜3は、シリコン、アルミニウム、チタン等の金属等の酸化物絶縁材料や、ポリイミドのような有機絶縁材料を用いることができる。
 ゲート絶縁膜3の形成方法としては、熱酸化法、化学気相成長法、スパッタリング法、およびスピンコート法などを挙げることができる。
 なお、ゲート絶縁膜3においてチャネル部20に接する表面に対して、ヘキサメチルジシラザンやオクタデシルトリクロロシランなどの自己組織化単分子膜を処理することにより、有機TFT100の特性を向上することができる。そこで、ゲート絶縁膜3の形成後には、上記の自己組織化単分子膜表面処理を行うことが好ましい。
 (ソース電極4およびドレイン電極5)
 ソース電極4およびドレイン電極5は、それぞれ、各種導電性材料の混合材料から構成される。各種導電性材料としては、金、銀、銅、チタン、もしくはアルミニウム等の金属材料やこれらを含む合金、インジウム・スズ酸化物(ITO)、もしくはインジウム・亜鉛酸化物(IZO)等の導電性酸化物材料、シリコンもしくはガリウム砒素やこれら材料にホウ素やリン等のドーパントを高濃度で注入し導電性を高めるなどした各種の半導体材料、または、PEDOT:PSS等の導電性有機材料などが挙げられる。
 なお、ソース電極4およびドレイン電極5の各々を構成する混合材料として、いずれの材料を組み合わせたものを用いるかについては、後述するように、各電極上の自己組織化層6の自己組織化単分子が結合可能である材料と、結合できない材料とから適宜選択すればよい。
 ソース電極4およびドレイン電極5の形成方法としては、例えば、窒素やアルゴン等の不活性雰囲気下の真空状態で、メタルマスクを用いた多元同時真空蒸着法または多元スパッタリング法等の物理気相成長法によって形成する方法が挙げられる。また、例えば、各電極材料からなるナノ粒子を作製し、これらを混ぜて混合電極材料インクを調整した後、インクジェット法またはスクリーン印刷法等の印刷法で塗布し、不活性雰囲気下で焼成処理を行うことによって形成してもよい。
 なお、ソース電極4およびドレイン電極5の各々を構成する混合材料における「混合」とは、各導電性材料の粒子が適度に混ざり合っている状態であることが好ましい。また、各導電性材料の混合程度は、各電極の表面において、各導電性材料からなる表面が現れている程度であればよい。
 (自己組織化層6)
 自己組織化層6は、自己組織化単分子が集まって形成された自己組織化単分子膜(SAM:Self-Assembled Monolayers)から構成される。ここで、自己組織化層6の自己組織化単分子は、ソース電極4またはドレイン電極5を構成する混合材料のうち、1つ以上の材料と結合可能であり、かつ、1つ以上の材料と結合できないものから選択される。
 例えば、ソース電極4およびドレイン電極5が、金とシリコンの混合物から構成される場合、自己組織化層6は金と結合でき、かつシリコンと結合できないチオール分子や、シリコンと結合でき、かつ金と結合できないシランカップリング剤分子等から選択することができる。また別の例では、ソース電極4およびドレイン電極5がそれぞれアルミニウムと銀の混合物から構成される場合、自己組織化層6はアルミニウムと結合でき、かつ銀と結合できないホスホン酸分子等から選択することができる。
 なお、自己組織化単分子と電極材料との結合について、「結合できる」なる文言、または「結合できない」なる文言は、絶対的な意味ではなくともよい。具体的には、有機TFT100の製造時、ソース電極4およびドレイン電極5の各電極上に自己組織化単分子からなる材料を塗布した後、共通する洗浄工程によって、電極から当該材料を除去できるか、又は、除去できないかに基づいて定めることができる。また、自己組織化単分子と電極材料との「結合」としては、例えば化学結合が挙げられる。
 また、自己組織化層6を構成する自己組織化単分子は、後述にて詳細を説明するが、ソース電極4またはドレイン電極5と有機半導体層7との間におけるキャリア注入障壁を低減させるような、双極子モーメントを有することが好ましい。
 ここで、p型の有機TFTを例にして、キャリアであるホールがソース電極4から有機半導体層7へ注入される際のキャリア注入障壁について、図6を参照して説明する。
 図6は、ソース電極4、ドレイン電極5の各々の仕事関数を規定するエネルギー準位、ならびに有機半導体層7のホール注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。図6(a)は、自己組織化層が形成されていない従来例に係る有機TFTを示しており、(b)は、本実施形態に係る有機TFTの一例を示している。
 図6(a)(b)に示すように、ホールをソース電極から有機半導体層へ注入するための注入障壁は、ソース電極の仕事関数と、有機半導体の仕事関数の差によって定まる。
 本実施形態の一例では、ソース側自己組織化層6aの自己組織化単分子が、ソース電極4側に正の電荷、有機半導体層7側に負の電荷を持つような双極子モーメントを有する。このため、ソース側自己組織化層6aによる電気2重層の効果によって、ソース電極4の仕事関数が増加する。これによって、図6(b)に示すように、ソース電極4の仕事関数が有機半導体層7の仕事関数に近づくため、ソース電極4側のキャリア注入障壁は減少する。
 また、ホールを有機半導体層7からドレイン電極5へ移動するための障壁は、ドレイン電極の仕事関数と、有機半導体層の仕事関数とのエネルギー差によって定まる。大抵の場合、当該エネルギー差はゼロ以下になり、その絶対値を大きくすることによりキャリアを注入し易くなる。この場合、ドレイン電極5と有機半導体層7との間における障壁を低減させるためには、ドレイン側自己組織化層6bの自己組織化単分子が、ソース側自己組織化層6aのものとは逆の向き、すなわち、ドレイン電極5側に負の電荷、有機半導体層7側に正の電荷を持つような双極子モーメントを有することが好ましい。ただし、図6(b)において、ドレイン側自己組織化層6bの自己組織化単分子は、好ましい向きとは逆の向きの双極子を有しているため、ドレイン電極5側の障壁は増加している。
 なお、キャリア注入障壁の減少または増大の程度は、自己組織化単分子の持つ双極子モーメントの大きさ、自己組織化単分子の密度、及び自己組織化層6の誘電率に比例する。これらのパラメータを考慮して、エネルギー障壁を低減できるような自己組織化単分子を選択する必要がある。
 また、自己組織化層6を構成する自己組織化単分子は、自己組織化層6が有機半導体層7に与える影響の観点に基づいて選んでもよい。有機TFT100におけるキャリア移動度は、一般に有機半導体層7の構成材料のグレインサイズが大きい方が高くなり、このグレインサイズは、一般に自己組織化層6の表面エネルギーが小さい方が大きくなる。なお、自己組織化層6がない場合には有機半導体層7のグレインサイズは小さくなってしまうため、これは自己組織化層6を用いる利点の一つとなる。
 そこで、有機半導体層7のグレインサイズを大きくするために、自己組織化層6の材料は表面エネルギーが小さい材料であることが好ましい。具体的には、例えばフルオロ基、クロロ基、またはメチル基などの官能基を数多く有する、n-オクタデカンチオール、パーフルオロベンゼンチオール、およびフルオロベンゼンチオール等のチオール分子、オクタデシルトリクロロシラン、およびヘキサメチルジシラザン等のシランカップリング剤分子、ならびにn-オクタデシルフォスフォニックアシッド等のホスホン酸分子が挙げられる。
 なお、自己組織化層6の材料は、本明細書に挙げた具体例に限定されることなく、適宜選択可能である。
 自己組織化層6の形成方法としては、例えば、ソース電極4およびドレイン電極5を形成した基板1に対して、自己組織化層6の材料による溶液を塗布した後、基板1の洗浄を繰り返す方法が挙げられる。塗布方法としては、基板1を溶液に直接浸漬するディップ法や、ディスペンサまたはインクジェット等による塗布・印刷法が挙げられる。自己組織化層6の形成方法において、自己組織化層6の材料は、ソース電極4およびドレイン電極5のうち、強固に結合可能な材料の部分に対して結合し、自己組織化膜を形成するが、強固に結合できない部分からは洗浄などの簡便な手法によって取り除かれる。また、例えばフッ素コーティング等を施したメタルマスクを介して自己組織化層6の材料による溶液をキャストし、その後洗浄を繰り返すことによってパターニング形成してもよい。
 (有機半導体層7)
 有機半導体層7の材料は、低分子系と高分子系に大別される。一般的に、有機半導体材料にはp型のものが多く、その代表として、低分子系ではペンタセンやルブレン等が挙げられ、高分子系ではポリチオフェンやポリフェニレンビニレン等が挙げられる。
 一方、n型の有機半導体材料としては、C60フラーレン、ペリレン及びその誘導体、ならびにペンタセンやフタロシアニン等のp型である有機半導体材料にフッ素基を導入することでn型材料化したパーフルオロペンタセンおよびヘキサデカフルオロ亜鉛フタロシアニン等が挙げられる。
 有機半導体層7の成膜手法は、その材料が低分子系有機半導体であるか高分子系有機半導体であるかにより異なる場合が多い。一般に、低分子系有機半導体分子は、高分子系有機半導体分子に比べて沸点が低く、また溶媒に溶解し難い性質を持つことから、抵抗加熱法による真空蒸着法によって成膜することが好ましい。一方、高分子系有機半導体層は溶媒に溶解し易い性質を持つものが多いため、インクジェット法等による印刷技術によって形成することが好ましい。
 以上の構成によれば、本実施形態に係る有機TFTでは、ソース電極4およびドレイン電極5を、双極子を有する自己組織化単分子が結合できる電極材料と、結合できない電極材料との混合材料から形成するため、この混合比率を調節することによって、電極表面に形成される自己組織化層6の面密度を制御することができる。すなわち、SAM結合の複雑なパラメータを調整する必要がない。このため、自己組織化層6の面密度を容易に制御することができ、電極の仕事関数の精密な制御を行うことが可能である。
 また、電極上において自己組織化層6が結合しない部分には、有機半導体層7が入り込んで直接電極と接触するため、電極と有機半導体層7との間における物理的な抵抗を抑えることができる。
 したがって、本実施形態によれば、電極の仕事関数を精密に制御してキャリア注入障壁を低減させることと、電極と有機半導体層との間における物理的な抵抗を減少させることとを両立させることができ、有機TFTの性能を好適に向上させることができる。
 (実施形態2の実施例)
 以下、実施例1~6に基づいて本発明の実施形態2をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例1~6では、p型の有機半導体材料であるペンタセンを用いた有機TFTの実施例について説明する。また、実施例1~6に係る有機TFTの基本的な構成は、図4に示す有機TFT200の構成と同様である。
 (実施例1)
 まず、実施例1により作製される有機TFT200の構成について、図2を参照して示す。図2は、有機TFT200におけるソース電極4およびソース側自己組織化層6aを拡大して示す断面図である。
 図2に示すように、ソース電極4は、自己組織化単分子が強固に結合可能な材料(結合材料と称する)4aと、自己組織化単分子が強固に結合できない材料(非結合材料と称する)4bとから構成されている。よって、ソース電極4の表面のうち、結合材料4aからなる部分には自己組織化単分子が結合し、これによってソース側自己組織化層6aが形成されている。一方、非結合材料4bからなる部分には自己組織化単分子が結合していない。このため、有機半導体層7は、ソース電極4の表面のうち非結合材料4bからなる部分に接している。したがって、ソース電極4は、非結合材料4bからなる表面を介して、有機半導体層7にキャリアを直接注入することができる。
 なお、ドレイン電極5およびドレイン側自己組織化層6bは、図示していないが、ソース電極4およびソース側自己組織化層6aと同様の構成を有しているものとする。例えば、ドレイン電極5は、ドレイン側自己組織化層6bの自己組織化単分子が結合する結合材料5aと、結合できない非結合材料5bとから構成されている。
 また、ソース側自己組織化層6aの自己組織化単分子と、ドレイン側自己組織化層6bの自己組織化単分子とは、同様に、電極側に正の電荷を、有機半導体層7側に負の電荷を持つ双極子モーメントを有している。このため、ソース側自己組織化層6aは、ソース電極4から有機半導体層7へのキャリア注入特性を向上させる機能を有する。
 以下に実施例1に係る有機TFT200の製造方法の例について図5を参照して説明する。図5は、有機TFT200の製造方法におけるプロセス工程を示す断面図である。
 まず、図5(a)に示すように、ゲート電極を兼ねた基板11としてN型の単結晶シリコン基板を用い、この基板11上にゲート絶縁膜3としてシリコンの熱酸化膜を膜厚100nmで形成した。
 次に、チャネル部の界面処理を行うため、ヘキサメチルジシラザン溶液を基板11上に滴下して120℃オーブン中で30分処理した後、アセトン溶液中に5分間浸した。続いて、基板11をイソプロピルアルコール溶液中に5分間浸した後、窒素ブローで乾燥させる工程によって、チャネル部20を表面エネルギーの低いヘキサメチルジシラザン分子の自己組織化単分子膜によって修飾した(図示せず)。
 続いて、ゲート絶縁膜3上にソース電極4およびドレイン電極5を作製するために、開口部を有するフォトレジスト膜12を作製した。
 次に、図5(b)に示すように、結合材料4a、5aとなる金(Au)と、非結合材料4b、5bとなるインジウム・スズ酸化物(ITO)とを、二元同時スパッタリングによって金およびITOからなる薄膜13を膜厚60nmで成膜した。金とITOの比率は0.7:0.3とした。また、実施例1の他の例として、薄膜13における金とITOの比率を0.5:0.5としたものも作製した。
 その後、フォトレジスト膜12を除去するため、N-メチルピロリドン溶媒中に基板11を浸漬するリフトオフ工程を行い、フォトレジスト膜12上に積層されていた不要なITO及び金からなる薄膜13を除去した。これにより、図5(c)に示すように、ゲート絶縁膜3上に、ソース電極4およびドレイン電極5を形成した。
 続いて、窒素雰囲気下で10mMの濃度のペンタフルオロベンゼンチオール溶液(無水エタノール溶媒)中に基板を浸した。3時間静置した後、エタノールで基板をリンスし、エタノール溶媒中に5分浸漬する作業を3回繰り返して、最後に窒素ブローで乾燥させる工程を経ることで、金の電極部分をペンタフルオロベンゼンチオール(PFBT)の自己組織化単分子膜からなる自己組織化層6で修飾した(図5(d))。なお、ペンタフルオロベンゼンチオールの自己組織化単分子膜は、ソース電極4側に正の電荷を、有機半導体層7側に負の電荷を持つ双極子モーメントを有する。
 ここで、ソース電極4およびドレイン電極5について、光電子分光法によって、仕事関数を測定した。また、ソース及びドレイン電極の表面を覆う自己組織化層6の面密度を、ATR法により測定した。結果、金とITOの比率が0.7:0.3である例において約70%であり、金とITOの比率が0.5:0.5の他の例において約50%であると求められた。これは、電極材料の構成比率を調整することにより、電極表面における自己組織化層6の面密度を制御できることを意味している。
 最後に、図5(e)に示すように、p型の有機半導体材料ペンタセンを用いて100nmの有機半導体層7を形成した。有機半導体層7は、基板温度50℃の条件で、チャネル部20と自己組織化層6とを囲む開口部を有するマスクを介し、真空蒸着法によって形成した。
 なお、上述した方法では、結合材料4aと結合材料5a、および、非結合材料4bと非結合材料5bには、それぞれ同じ材料を用いているが、異なる材料を用いてもよい。
 (比較例1)
 比較例1として、ソース電極4、ドレイン電極5、および自己組織化層6の各々の材料が実施例1とは異なる有機TFTを作製した。具体的には、比較例1に係る有機TFTは、ソース電極4およびドレイン電極5を、金を材料としてEB蒸着法によって形成し、自己組織化層6を、ペンタフルオロベンゼンチオール(PFBT)とベンゼンチオール(BT)の混合物から形成したこと以外は、実施例1と同様の方法により形成した。なお、ペンタフルオロベンゼンチオールとベンゼンチオールの比率は、0.7:0.3とした。
 比較例1に係る有機TFTでは、ペンタフルオロベンゼンチオールとベンゼンチオールは共に金と結合するため、ソース電極4およびドレイン電極5における表面全面に自己組織化層6が形成された。
 (比較例2)
 比較例2として、ソース電極4およびドレイン電極5の各々の材料が実施例1とは異なる有機TFTを作製した。具体的には、比較例2に係る有機TFTは、ソース電極4およびドレイン電極5を、ITOを材料として、スパッタ法により形成したこと以外は、実施例1と同様の方法により作製した。
 比較例2に係る有機TFTでは、ペンタフルオロベンゼンチオール分子がITOと結合しないため、自己組織化層6が形成されなかった。
 (実施例1の効果)
 以上の方法によって作製された実施例1の各例におけるソース電極4の仕事関数を表1に示す。なお、表1において、SAM層とは、ソース側自己組織化層6aを意味している。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1では、ソース電極4の仕事関数が、自己組織化層6の形成前よりも形成後において増加している。
 ここで、実施例1におけるキャリア注入障壁について図6を参照して説明する。図6は、ソース電極4、ドレイン電極5の各々の仕事関数を規定するエネルギー準位、ならびに有機半導体層7のキャリア注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。また、図6(a)は比較例2に係る有機TFTを示しており、図6(b)は実施例1に係る有機TFT200を示している。
 図6(a)(b)に示すように、実施例1では、比較例2よりも、ソース電極4の仕事関数が増加することによって、その値は有機半導体層7の仕事関数の値に近づいている。このため、実施例1では、ソース電極4と有機半導体層7との間におけるキャリア注入障壁が減少している。
 また、表1によれば、実施例1では、金:ITOの比率が、0.5:0.5であるものよりも、0.7:0.3であるものの方が、ソース電極4の仕事関数が増加している。このため、ソース電極4の材料について、結合材料4aと非結合材料4bとの比率を変えることによって、その上部に形成するソース側自己組織化層6aの面密度を調節することができ、これによってソース電極4の仕事関数を精密に制御できることが確認できた。
 次に、実施例1および比較例1、2に係る有機TFTついて、ソース電極の仕事関数、およびオン時にソース電極-ドレイン電極間に流れる電流値(オン電流値)を表2に示す。なお、オン電流値は、VD=-40V、VG=-30Vの時に、ソース電極-ドレイン電極間に流れる電流値を測定したものである。
Figure JPOXMLDOC01-appb-T000002
 表2によれば、実施例1において、ソース電極4の仕事関数を精密に制御することによって、上段よりも下段に示す例の方が、キャリア注入障壁を低減させていると考えられる。
 また、表2によれば、比較例1では、ソース電極4上に自己組織化層6が形成されているため、そのソース電極4の仕事関数が、自己組織化層6を有さない比較例2と比べて向上している。比較例1におけるソース電極の仕事関数は、実施例1の下段に示す例とほぼ同等の値を有する。
 ここで、実施例1と比較例1とを比較すると、実施例1のオン電流の方が、比較例1のオン電流値よりも向上している。これは、比較例1では、ソース電極4およびドレイン電極5の表面全面が自己組織化層6により覆われていることにより、キャリア注入のための物理的な抵抗が存在するためと考えられる。
 また、比較例2は、自己組織化層6を有さないサンプルであるため、物理的な抵抗値が小さいと考えられるが、その電流量は比較例1と比べても小さい。
 一方、実施例1に係る有機TFTは、比較例1、2と同じ電圧がかかっていても、より大きな電流量が測定されている。このため、実施例1に係る有機TFTでは、ソース側自己組織化層6aの面密度、すなわち、ソース側自己組織化層6aによる電極の被覆率が調節されることによって、キャリア注入のための物理的な抵抗が抑制されていることが分かる。
 なお、図6(a)(b)に示すように、実施例1におけるドレイン電極5側において、ソース側自己組織化層6aと同様の構成を有するドレイン側自己組織化層6bが設けられることにより、ドレイン電極5の仕事関数が増加している。しかしながら、有機半導体層7からドレイン電極5に対してキャリアが移動する際の障壁の増減は、ソース電極4側におけるキャリア注入障壁の増減とは逆である。このため、比較例2と比べると、実施例1では有機半導体層7からドレイン電極5へホールが移動する際の障壁がむしろ増大している。
 ただし、有機TFT200の性能向上に関しては、ドレイン電極5側よりも、ソース電極4側におけるキャリア注入効率の方が大きな影響を有する。また、ドレイン側自己組織化層6bにおいても電極の被覆率を調節することによって、物理的な抵抗が抑制されている。したがって、実施例1では、全体として有機TFT200の性能が向上している。
 以下、実施例1と異なる構成を有する実施例2~6について説明する。なお、実施例2~6は、ソース側自己組織化層6aおよびドレイン側自己組織化層6bの各々によるソース電極4およびドレイン電極5の被覆率を調節することによって物理的な抵抗を抑制している点において、実施例1と同様であるため、この点に関する説明を省略する。
 (実施例2)
 次に、実施例2により作製されるTFT200の構成について、図7を参照して説明する。図7は、実施例2に係るTFT200の構成と、ソース電極4およびドレイン電極5の各々における自己組織化層6とを、それぞれ示す断面図である。
 図7に示すように、実施例2では、ソース側自己組織化層6aとドレイン側自己組織化層6bとが、互いに異なる材料から形成されている。具体的には、ソース側自己組織化層6aの自己組織化単分子は、実施例1と同様に、ソース電極4側に正、有機半導体層7側に負の電荷を持つ双極子モーメントを有している。一方、ドレイン側自己組織化層6bの自己組織化単分子は、ドレイン電極5側に負、有機半導体層7側に正の電荷を持つ双極子モーメント(ソース側自己組織化層6aの双極子モーメントとは逆方向)を有している。
 また、ソース電極4は、ソース側自己組織化層6aの自己組織化単分子が結合する結合材料4aと、結合できない非結合材料4bとから構成されている。同様に、ドレイン電極5は、ドレイン側自己組織化層6bの自己組織化単分子が結合する結合材料5aと、結合できない非結合材料5bとから構成されている。なお、結合材料4aと結合材料5a、および、非結合材料4bと非結合材料5bは、それぞれ同じ材料であるとする。
 すなわち、実施例2は、ソース側自己組織化層6aおよびドレイン側自己組織化層6bの各々を構成する自己組織化単分子が、互いに逆の双極子モーメントを有する点において、実施例1と異なる。
 以下に、実施例2に係る有機TFT200の製造方法の例について図5を参照して説明する。なお、図5(c)に示すソース電極4とドレイン電極5を形成する工程まで実施例1と同様であるため、当該工程までの説明を省略する。なお、結合材料4a、5aとなる金と、非結合材料4b、5bとなるITOとの比率は、0.3:0.7とした。
 ソース電極4とドレイン電極5を形成した後、ソース電極4の上面部分に開口部を有する、フッ素コーティングされたメタルマスクによって基板11を覆った。続いて、窒素雰囲気下で10mMの濃度のペンタフルオロベンゼンチオール溶液(無水エタノール溶媒)をメタルマスクの開口部分に滴下し、そのまま10分間静置した。その後、メタルマスクを取り外し、エタノールで基板をリンスし、エタノール溶媒中に5分浸漬する作業を3回繰り返した。最後に窒素ブローで乾燥させる工程を経ることで、ソース電極4上をペンタフルオロベンゼンチオール(PFBT)の自己組織化単分子膜からなるソース側自己組織化層6aで修飾した。
 次に、ドレイン電極5の上面部分に開口部を有する、フッ素コーティングされたメタルマスクによって基板11を覆った。続いて、窒素雰囲気下で10mMの濃度の、ペンタフルオロベンゼンチオールと逆向きの双極子モーメントを有する4-メチルベンゼンチオールの溶液(無水エタノール溶媒)を、メタルマスクの開口部分に滴下し、そのまま10分間静置した。その後、メタルマスクを取り外し、エタノールで基板をリンスし、エタノール溶媒中に5分浸漬する作業を3回繰り返した。最後に窒素ブローで乾燥させる工程を経ることで、ドレイン電極5上を4-メチルベンゼンチオールの自己組織化単分子膜からなるドレイン側自己組織化層6bで修飾した(図5(d))。
 最後に、図5(e)に示すように、p型の有機半導体材料ペンタセンを用いて100nmの有機半導体層7を形成した。有機半導体層7は、基板温度50℃の条件で、チャネル部20と自己組織化層6を囲う開口部を有するマスクを介し、真空蒸着法によって形成した。
 以上の方法によって実施例2に係るTFT200が作製された。
 (実施例2の効果)
 実施例1および実施例2の各々に係る有機TFT200におけるオン電流を表3に示す。なお、オン電流値は、VD=-40V、VG=-30Vの時に、ソース電極-ドレイン電極間に流れる電流値を測定したものである。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例2のサンプルは、実施例1のサンプルよりもさらに大きなオン電流値を得ることができた。
 この理由について図8を参照して説明する。図8は、ソース電極4、ドレイン電極5の各々の仕事関数を規定するエネルギー準位、ならびに有機半導体層7のキャリア注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。また、図8(a)は実施例1に係る有機TFT200を示しており、図8(b)は実施例2に係る有機TFT200を示している。
 図8(a)(b)に示すように、実施例2におけるソース電極4側では、実施例1と同様、ソース側自己組織化層6aの面密度を調節することにより、ソース電極4の仕事関数が精密に制御されている。よって、ソース電極4と有機半導体層7との間におけるキャリア注入障壁が減少している。
 一方、実施例2におけるドレイン電極5側では、実施例1とは異なり、ドレイン側自己組織化層6bの自己組織化単分子が、ソース側自己組織化層6aの自己組織化単分子とは逆の方向の双極子モーメントを有している。このため、実施例2では、実施例1とは異なり、ドレイン電極5側における障壁を減少させることができる。
 したがって、実施例2では、ソース電極4側のキャリア注入特性だけでなく、ドレイン電極5側のキャリア注入特性についても向上させることができるため、実施例1よりも同じ電圧でより大きな電流量を得ることができる。
 (実施例3)
 次に、実施例3により作製されるTFT200の構成について図9を参照して説明する。図9は、実施例3に係るTFT200の構成と、ソース電極4およびドレイン電極5の各々における自己組織化層6とを、それぞれ示す断面図である。
 図9に示すように、実施例3では、ソース側自己組織化層6aおよびドレイン側自己組織化層6bの各々を構成する自己組織化単分子が、実施例1と同様に、ソース電極4側に正、有機半導体層7側に負の電荷を持つ双極子モーメントを有している。
 一方、実施例3では、ソース電極4における結合材料4a/非結合材料4bの組成比と、ドレイン電極5における結合材料5a/非結合材料5bの組成比とが異なっている。具体的には、ソース電極4の混合材料は、実施例1と同様の組成比を有しているが、ドレイン電極5の混合材料は、実施例1と比べて、結合材料5aの割合が少なく、非結合材料5bの割合が多くなっている。
 すなわち、実施例3は、ドレイン側自己組織化層6bの面密度を低減させることによって、ドレイン側自己組織化層6bにおける双極子の効果を弱めている点において、実施例1と異なる。
 以下に、実施例3に係る有機TFT200の製造方法の例について、図5を参照して説明する。なお、図5(a)に示すゲート絶縁膜3上に開口部を有するフォトレジスト膜12を形成する工程までは実施例1と同様であるため、当該工程までの説明を省略する。
 図5(a)に示すフォトレジスト膜12を形成した後、ソース電極4の成膜する部分に開口部を有し、かつ、ドレイン電極5の上面部分には開口部を有さないメタルマスクによって基板11を覆い、結合材料4aとなる金(Au)と、非結合材料4bとなるインジウム・スズ酸化物(ITO)とを、二元同時スパッタリングによって比率が0.7:0.3となるように薄膜を形成した。メタルマスクを取り外した後、ドレイン電極5の成膜する部分に開口部を有し、かつソース電極4の上面部分に開口部を有さないメタルマスクによって基板11を覆い、結合材料5aとなる金(Au)と、非結合材料5bとなるインジウム・スズ酸化物(ITO)とを、二元同時スパッタリングによって0.3:0.7の比率で成膜した。
 メタルマスクを取り外した後、フォトレジスト膜12を除去するため、N-メチルピロリドン溶媒中に基板11を浸漬するリフトオフ工程を行い、フォトレジスト膜12上に積層されていた不要なITO及び金からなる薄膜13を除去した。これにより、図5の(c)に示すように、ゲート絶縁膜3上に、金とITOの組成比がそれぞれ異なるソース電極4とドレイン電極5とを形成した。
 以下、図5(d)以降に示す自己組織化層6および有機半導体層7を形成する工程は実施例1と同様であるため、ここでは省略する。
 以上の方法によって実施例3に係るTFT200が作製された。
 (実施例3の効果)
 実施例1および実施例3の各々に係る有機TFT200におけるオン電流を表4に示す。なお、オン電流値は、VD=-40V、VG=-30Vの時に、ソース電極-ドレイン電極間に流れる電流値を測定したものである。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例3のサンプルは、実施例1のサンプルよりもさらに大きなオン電流値を得ることができた。
 この理由について図10を参照して説明する。図10は、ソース電極4、ドレイン電極5の各々の仕事関数を規定するエネルギー準位、ならびに有機半導体層7のキャリア注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。また、図10(a)は実施例1に係る有機TFT200を示しており、図10(b)は実施例3に係る有機TFT200を示している。
 図10(a)(b)に示すように、実施例3におけるソース電極4側では、実施例1と同様、自己組織化層6aの面密度を調節することにより、ソース電極4の仕事関数が精密に制御されている。よって、ソース電極4と有機半導体層7との間におけるキャリア注入障壁が減少している。
 また、実施例3におけるドレイン電極5側では、実施例1と同様、有機半導体層7とドレイン電極5との間における障壁が比較例2よりも増加している。しかしながら、実施例3では、ドレイン側自己組織化層6bの面密度を減少させることによって、自己組織化単分子の双極子の効果を弱めている。このため、有機半導体層7とドレイン電極5との間における障壁は、実施例1よりも減少している。
 したがって、実施例3では、ソース側自己組織化層6aとドレイン側自己組織化層6bにおける双極子の向きが同じでありつつ、実施例1と比べて、有機半導体層7からドレイン電極5へのキャリア注入特性を改善することができる。
 また、実施例3によれば、ソース側自己組織化層6aとドレイン側自己組織化層6bとに同じ材料を用いることで、これらを同時に作製できるため、作製コストを減らすことができる。
 (実施例4)
 次に、実施例4により作製されるTFT200の構成について図11を参照して説明する。図11は、実施例3に係るTFT200の構成と、ソース電極4およびドレイン電極5の各々における自己組織化層6とを、それぞれ示す断面図である。
 図11に示すように、実施例4では、ソース電極4とドレイン電極5とが共通の混合材料から形成されている。ここでは、ソース電極4およびドレイン電極5の各々の混合材料が、第1電極材料8aと第2電極材料8bとを混合したものであるとする。
 また、実施例4では、ソース側自己組織化層6aと、ドレイン側自己組織化層6bとが、互いに異なる相手に結合する自己組織化単分子から形成されている。具体的には、ソース側自己組織化層6aの自己組織化単分子は、第1電極材料8aに結合でき、かつ、第2電極材料8bには結合できない。ドレイン側自己組織化層6bの自己組織化単分子は、第1電極材料8aに結合できず、かつ、第2電極材料8bに結合できる。
 また、実施例4においては、ソース側自己組織化層6aと、ドレイン側自己組織化層6bの各々の自己組織化単分子は、互いに逆の方向の双極子モーメントであって、各電極と有機半導体層7との間におけるキャリア転送の障壁を低減させるために適した方向の双極子モーメントを有している。
 すなわち、実施例4では、ソース側自己組織化層6aおよびドレイン側自己組織化層6bの各々の自己組織化単分子について、各電極に対する化学結合基を異ならせることにより、各電極に適した双極子を有する材料を使い分けている点において、実施例1と異なる。
 以下に、実施例4に係る有機TFT200の製造方法の例について図5を参照して説明する。
 まず、図5(c)に示すソース電極4およびドレイン電極5を形成する工程までは実施例1と同様に行った。ここで、ソース電極4およびドレイン電極5を形成する材料について、第1電極材料8aとしての金と、第2電極材料8bとしてのITOの比率を0.5:0.5にした。
 ソース電極4とドレイン電極5を形成した後、ソース電極4の上面部分に開口部を有するメタルマスクによって基板11を覆った。続いて、ディスペンサによって窒素雰囲気下で10mMの濃度のペンタフルオロベンゼンチオール溶液(無水エタノール溶媒)をメタルマスクの開口部分に滴下した。その後、メタルマスクを取り外し、エタノールで基板をリンスし、エタノール溶媒中に5分浸漬する作業を3回繰り返した。最後に窒素ブローで乾燥させる工程を経ることで、ソース電極4の金電極部分をペンタフルオロベンゼンチオール(PFBT)の自己組織化単分子膜からなるソース側自己組織化層6aで修飾した。
 次に、ドレイン電極5の上面部分に開口部を有するメタルマスクによって基板11を覆った。続いて、ディスペンサによって窒素雰囲気下で10mMの濃度のアミノフェニルトリメトキシシラン(APhS)溶液を、メタルマスクの開口部分に滴下した。その後、メタルマスクを取り外し、アセトン溶媒中に5分浸漬する作業を3回繰り返し、最後に窒素ブローで乾燥させる工程を経ることで、ドレイン電極5のITO電極部分をアミノフェニルトリメトキシシランの自己組織化単分子膜からなるドレイン側自己組織化層6bで修飾した(図5(d)参照)。
 以下、図5(e)以降に示す有機半導体層7を形成する工程は実施例1と同様であるため、ここでは省略する。
 以上の方法によって実施例4に係るTFT200が作製された。
 (実施例4の効果)
 実施例1および実施例4の各々に係る有機TFT200におけるオン電流を表5に示す。なお、オン電流値は、VD=-40V、VG=-30Vの時に、ソース電極-ドレイン電極間に流れる電流値を測定したものである。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例4のサンプルは、実施例1のサンプルよりもさらに大きなオン電流値を得ることができた。
 この理由について図12を参照して説明する。図12は、ソース電極4、ドレイン電極5の各々の仕事関数を規定するエネルギー準位、ならびに有機半導体層7のキャリア注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。また、図12(a)は実施例1に係る有機TFT200を示しており、図12(b)は実施例4に係る有機TFT200を示している。
 図12(a)(b)に示すように、実施例4におけるソース電極4側では、実施例1と同様、ソース側自己組織化層6aの面密度を調節することにより、ソース電極4の仕事関数が精密に制御されている。よって、ソース電極4と有機半導体層7との間におけるキャリア注入障壁が減少している。
 一方、実施例4では、実施例1とは異なり、ドレイン側自己組織化層6bの自己組織化単分子が、ソース側自己組織化層6aの自己組織化単分子とは逆の方向の双極子モーメントを有している(実施例2と同様)。このため、実施例4では、実施例1とは異なり、ドレイン電極5側における障壁を減少させることができる。
 したがって、実施例4では、ソース電極4側のキャリア注入特性だけでなく、ドレイン電極5側のキャリア注入特性についても向上させることができるため、実施例1よりも同じ電圧でより大きな電流量を得ることができる。
 また、実施例4では、ソース電極4及びドレイン電極5を同時に作製可能であるため、製造コストを抑えることができる。
 なお、実施例4では、ドレイン側自己組織化層6bの自己組織化単分子として、アミノフェニルトリメトキシシランを用いたが、表面となる末端官能基の表面エネルギーがより小さい自己組織化単分子を用いることがより望ましい。なぜならば、一般に、表面エネルギーが小さい表面上に堆積した有機半導体層7のグレインサイズは大きくなる傾向にあり、グレインサイズが大きい有機半導体層7は、電流量が大きくなる傾向にあるためである。末端官能基の表面エネルギーがより小さい自己組織化単分子の具体例については、上記(自己組織化層6)の項に例示されている。
 また、実施例4では、ソース電極4およびドレイン電極5の各材料について、第1電極材料8aと第2電極材料8bとの比率を0.5:0.5としているが、適切な比率を適宜設定可能である。
 (実施例5)
 次に、実施例5により作製されるTFT200の構成について、図13を参照して説明する。図13は、実施例5に係るTFT200の構成と、ソース電極4およびドレイン電極5の各々における自己組織化層6とを、それぞれ示す断面図である。
 図13に示すように、実施例5では、実施例4と同様に、ソース電極4およびドレイン電極5の各々の混合材料は、第1電極材料8aと第2電極材料8bとを混合したものであるとする。
 また、実施例5では、実施例4と同様に、ソース側自己組織化層6aと、ドレイン側自己組織化層6bとは、互いに異なる相手に結合する自己組織化単分子から形成されている。具体的には、ソース側自己組織化層6aの自己組織化単分子は、第1電極材料8aに結合でき、かつ、第2電極材料8bには結合できない。ドレイン側自己組織化層6bの自己組織化単分子は、第1電極材料8aに結合できず、かつ、第2電極材料8bに結合できる。
 ここで、実施例5は、以下の2つの点で実施例4と異なる。
 第1に、実施例4では、ソース側自己組織化層6aとドレイン側自己組織化層6bの各々の自己組織化単分子が、互いに逆の方向の双極子モーメントを有しているのに対して、実施例5では、同じ方向の双極子モーメントを有している。実施例5における双極子の方向は、実施例1と同様に、ソース電極4側のキャリア注入障壁は減少するが、ドレイン電極5側の障壁が増加する方向である。
 第2に、実施例4では、第1電極材料8aと第2電極材料8bとの割合が同じであるのに対し、実施例5では、第1電極材料8aよりも第2電極材料8bの割合を小さくしている。すなわち、ドレイン側自己組織化層6bの自己組織化単分子が結合する第2電極材料8bの割合が、ドレイン側自己組織化層6bの自己組織化単分子が結合しない第1電極材料8aの割合よりも小さくなる。これによって、実施例5では、ドレイン側自己組織化層6bの面密度を実施例1よりも低くしており、これによって、ドレイン側自己組織化層6bにおける双極子の効果を弱めている。
 以下に、実施例5に係る有機TFT200の製造方法の例について、図5を参照して説明する。
 まず、図5(c)に示すソース電極4およびドレイン電極5を形成する工程までは実施例1と同様に行った。ここで、ソース電極4およびドレイン電極5を形成する材料について、第1電極材料8aとしての金と、第2電極材料8bとしてのITOの比率を0.7:0.3にした。
 ソース電極4とドレイン電極5を形成した後、ソース電極4の上面部分に開口部を有するメタルマスクによって基板11を覆った。続いて、ディスペンサによって窒素雰囲気下で10mMの濃度のペンタフルオロベンゼンチオール溶液(無水エタノール溶媒)をメタルマスクの開口部分に滴下した。その後、メタルマスクを取り外し、エタノールで基板をリンスし、エタノール溶媒中に5分浸漬する作業を3回繰り返した。最後に窒素ブローで乾燥させる工程を経ることで、ソース電極4の金電極部分をペンタフルオロベンゼンチオール(PFBT)の自己組織化単分子膜からなるソース側自己組織化層6aで修飾した。
 次に、ドレイン電極5の上面部分に開口部を有するメタルマスクによって基板11を覆った。続いて、ディスペンサによって窒素雰囲気下で10mMの濃度の(4-パーフルオロメチルベンゼン)トリエトキシシラン(PFMBS)溶液を、メタルマスクの開口部分に滴下した。その後、メタルマスクを取り外し、アセトン溶媒中に5分浸漬する作業を3回繰り返し、最後に窒素ブローで乾燥させる工程を経ることで、ドレイン電極5のITO電極部分を(4-パーフルオロメチルベンゼン)トリエトキシシラン(PFMBS)の自己組織化単分子膜からなるドレイン側自己組織化層6bで修飾した(図5(d)参照)。
 以下、図5(e)以降に示す有機半導体層7を形成する工程は実施例1と同様であるため、ここでは省略する。
 以上の方法によって実施例5に係るTFT200が作製された。
 (比較例3)
 (4-パーフルオロメチルベンゼン)トリエトキシシラン(PFMBS)の自己組織化単分子膜からなるドレイン側自己組織化層6bを形成しなかったこと以外は、実施例5と同様にして、比較例3の有機薄膜トランジスタを形成した。
 (実施例5の効果)
 実施例1、5、および比較例3の各々に係る有機TFT200におけるオン電流を表6に示す。なお、オン電流値は、VD=-40V、VG=-30Vの時に、ソース電極-ドレイン電極間に流れる電流値を測定したものである。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例5のサンプルが実施例1よりも大きなオン電流値を得ることができた。また、実施例5のサンプルは比較例3と比べてもより大きなオン電流値を得ることができた。
 この理由について図14を参照して説明する。図14は、ソース電極4、ドレイン電極5の各々の仕事関数を規定するエネルギー準位、ならびに有機半導体層7のキャリア注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。また、図14(a)は実施例1に係る有機TFT200を示しており、図14(b)は実施例5に係る有機TFT200を示している。
 図14(a)(b)に示すように、実施例5におけるソース電極4側では、実施例1と同様、ソース側自己組織化層6aの面密度を調節することにより、ソース電極4の仕事関数が精密に制御されている。よって、ソース電極4と有機半導体層7との間におけるキャリア注入障壁が減少している。
 また、実施例5におけるドレイン電極5側では、実施例1と同様、有機半導体層7とドレイン電極5との間における障壁が増加している。しかしながら、実施例5では、ドレイン側自己組織化層6bの面密度を減少させることによって、自己組織化単分子の双極子の効果を弱めている。このため、有機半導体層7とドレイン電極5との間における障壁は、実施例1よりも減少している。
 したがって、実施例5では、ソース側自己組織化層6aとドレイン側自己組織化層6bにおける双極子の向きが同じでありつつ、実施例1と比べて、有機半導体層7からドレイン電極5へのキャリア注入特性を改善することができる。
 また、実施例5では、ソース電極4およびドレイン電極5に同じ材料を用いることで、これらを同時に作製できるため、作製コストを減らすことができる。
 次に、実施例5に係る有機TFT200と比較例3に係る有機TFTについて、ドレイン電極5上の有機半導体層7のグレインサイズをAFM観察により測定した。その結果、実施例5における有機半導体層7のグレインサイズの方が、比較例3のものよりも大きいことを確認した。
 これは、ドレイン電極5上に直接でなく、自己組織化層6上に有機半導体層7が堆積することにより、有機半導体層7のグレインサイズが大きくなっていると考えられる。これは電流量を大きくできる効果がある。よって、実施例5では、ドレイン側自己組織化層6bを有することも、電流量増大の要因になっていることが分かった(他の実施例1~4も同様)。
 (実施例6)
 次に、実施例6により作製されるTFT200の構成について、図15を参照して説明する。図15は、実施例6に係るTFT200の構成と、ソース側自己組織化層6aとを、それぞれ示す断面図である。
 図15に示すように、実施例6では、ソース側自己組織化層6aは、第1の自己組織化単分子6a-1と、第2の自己組織化単分子6a-2とから構成されている。
 また、実施例6では、ソース電極4が、3種類の電極材料から構成されている。具体的には、ソース電極4は、自己組織化単分子が結合できる2種の結合材料4a(第1の自己組織化単分子6a-1が結合できる結合材料4a-1、および、第2の自己組織化単分子6a-2が結合できる結合材料4a-2)と、いずれの自己組織化単分子も結合できない非結合材料4bからなる。
 すなわち、実施例6では、ソース電極4の表面に対して、第1の自己組織化単分子6a-1と第2の自己組織化単分子6a-2とがそれぞれ結合し、これによってソース側自己組織化層6aが形成されている。
 なお、ドレイン電極5およびドレイン側自己組織化層6bの構成は、図示していないが、ソース電極4およびソース側自己組織化層6aと同様の構成を有するものとする。
 以下に、実施例6に係る有機TFT200の製造方法の例について、図5を参照して説明する。なお、図5(a)に示すゲート絶縁膜3上に開口部を有するフォトレジスト膜12を形成する工程までは実施例1と同様であるため、当該工程までの説明を省略する。
 図5(a)に示すフォトレジスト膜12を形成した後、金、インジウム・スズ酸化物(ITO)、およびアルミニウムを、三元同時スパッタリングによって、比率が0.6:0.3:0.1となるように薄膜を形成した。
 その後、フォトレジスト膜12を除去するため、窒素雰囲気中でN-メチルピロリドン溶媒中に基板11を浸漬するリフトオフ工程を行い、フォトレジスト膜12上に積層されていた不要なITO及び金からなる薄膜13を除去した。これにより、図5の(c)に示すように、ゲート絶縁膜3上に、ソース電極4およびドレイン電極5を形成した。
 続いて、窒素雰囲気下で、ペンタフルオロベンゼンチオールおよびn-オクタデシルフォスフォニックアシッドを10mMの濃度でそれぞれ含む溶液(無水エタノール溶媒)を作製し、この中に基板を浸した。3時間静置した後、エタノールで基板をリンスし、エタノール溶媒中に5分浸漬する作業を3回繰り返して、最後に窒素ブローで乾燥させた。これらの工程を経ることで、金の電極部分をペンタフルオロベンゼンチオールの自己組織化単分子膜からなる自己組織化層(例えば6a-1)で修飾し、アルミニウムの電極部分をn-オクタデシルフォスフォニックアシッドの自己組織化単分子膜からなる自己組織化層(例えば6a-2)で修飾した(図5(d))。
 最後に図5(e)に示すように、p型の有機半導体材料ペンタセンを用いて100nmの有機半導体層7を形成することで、ペンタセンの有機薄膜トランジスタ200を作製した。
 以上の方法によって実施例6に係るTFT200が作製された。
 (実施例6の効果)
 実施例6では、ソース電極4が3種類の電極材料から構成されている。これらの材料の混合比を調節することよって、ソース側自己組織化層6aの全体の面密度と、2種類のソース側自己組織化層6a-1、6a-2の組成比とを共に制御している。
 特に、実施例6では、ソース側自己組織化層6aを、異なる機能を持った2種類の自己組織化単分子から構成しており、これら2種類の自己組織化単分子の組成比を制御している。これら2種類の自己組織化単分子とは、仕事関数を制御するための自己組織化単分子、および、有機半導体層7のグレインを大きくできるような表面エネルギーの小さな自己組織化単分子である。ここで、表面エネルギーが小さいものの上に有機半導体層7が形成されると一般に有機半導体層7の結晶グレインは大きくなり、また、有機半導体層7のグレインが大きいと一般に電流量が増える。よって、これら2種類の自己組織化単分子の組成比を好ましい値に制御することによって、電流量をさらに大きくすることができる。
 したがって、実施例6によれば、キャリア注入のための物理的な抵抗を抑えつつ、ソース電極4の仕事関数を向上させることができ、さらに有機半導体層のグレインを大きくすることができるため、電圧を抑えたまま、大きな電流量を得ることができる。
 なお、実施例6において、ソース電極4およびドレイン電極5の各々は3種の材料から構成されるが、本発明はこれに限られず、より多くの種類の材料から構成されてもよい。これに伴い、ソース側自己組織化層6aおよびドレイン側自己組織化層6bの各々を、2種類よりも多くの種類の自己組織化単分子から構成してもよい。また、ソース側自己組織化層6aおよびドレイン側自己組織化層6bをそれぞれ構成する自己組織化単分子についても、所望の機能に基づいて適宜選択可能である。
 (その他)
 なお、上述した実施例1~6はあくまで例示的なものであり、これらに示した構成を適宜組み合わせることによって、電極の仕事関数を所望の値に制御することが可能である。
 また、上述の実施形態では、主にp型の有機半導体層を用いた有機TFTについて説明しているが、本発明はこれに限られず、n型の有機半導体層を用いた有機TFTに対しても適用可能である。
 例えば、有機TFT100がn型有機薄膜トランジスタの場合、キャリアである電子を、ソース電極4から有機半導体層7へと注入する。このため、有機TFT100がn型有機薄膜トランジスタの場合においては、上記p型の場合と逆の電荷を持つような双極子モーメントを有する自己組織化単分子を用いることによって、キャリア注入障壁を減少することができる。
 また、上述の実施形態では、ソース電極4およびドレイン電極5の各々の上に自己組織化層6が形成されているが、本発明はこれに限られず、少なくも一方の電極上に自己組織化層6が形成されていればよい。
 〔実施形態3〕
 図16は、上記実施形態2の有機薄膜トランジスタを用いた有機EL画素300の回路図である。有機EL画素300は、スイッチング用トランジスタ31、キャパシタンス32、駆動用トランジスタ33、有機EL素子34から構成され、データライン21、スキャンライン22、キャパシタンスライン23、カソード電源ライン24、アノード電源ライン25と接続されている。
 本実施形態に係る有機EL画素300において、スイッチング用トランジスタ31と駆動用トランジスタ33は、上述した有機TFT200と同様の構成を有するものである。他の構成部材については、一般的な有機EL画素において用いられるものと同様の構成である。
 本実施形態に係る有機EL画素300によれば、スイッチング用トランジスタ31および駆動用トランジスタ33に流れる電流量を大きくできるため、従来と同じ電圧であっても有機EL素子34の輝度をより向上させることができる。
 また、本実施形態に係る有機EL画素300を多数接続することによって、性能を向上させた有機ELディスプレイなどを提供することができる。
 〔実施形態4〕
 上述した実施形態1の電極構成は、有機EL素子にも応用可能である。そこで、本実施形態では、本発明に係る有機EL素子の一形態と、それを備えた有機EL画素および有機ELディスプレイの一形態を説明する。
 (有機EL素子の構成)
 図17は、本実施形態の有機EL素子400の断面図である。
 本実施形態の有機EL素子400は、透明基板41と、実施形態1の電極構成を適用した透明電極である陽極(第一電極)42と、反射電極である陰極(第二電極)43と、陽極42と陰極43との間に配された、発光層を有した有機層44とを有している。
 このような構成の有機EL素子400の陽極42と陰極43との間に数ボルトの電圧を印加することによって、陽極42から有機層に注入された正孔と、陰極43から有機層に注入された電子とが発光層内で再結合する。発光層内で正孔と電子とが再結合すると、エキシトンが生成され、当該エキシトンが基底状態に戻る際に発光する。
 なお、本実施形態の有機EL素子400は、有機層(発光層)が発した光を、陽極および透明基板側から取り出すタイプはボトムエミッション型である。しかしながら、本発明はこれに限定されるものではなく、有機層(発光層)が発した光を陰極側から取り出すトップエミッション型であってもよい。
 有機層には、発光層以外に、正孔輸送層、および電子輸送層等を有していてもよい。
 図18は、図17の陽極42部分の拡大断面図である。本実施形態の有機EL素子400は、図17および図18に示すように、陽極42が、電極材料層45と、自己組織化層46との2層構造となっている。
 電極材料層45は、上述した実施形態2のソース電極4(図2)と同様に、その有機層44側の表面が、自己組織化層46を構成する自己組織化単分子が結合できる電極材料45aと、当該自己組織化単分子が結合できない電極材料45bとを含んだ混合材料から構成される。
 すなわち、自己組織化層46を構成する自己組織化単分子は、陽極42の表面のうち、当該自己組織化単分子が結合できる材料45aからなる部分に結合している。
 陽極42の表面のうち、自己組織化単分子が結合できない材料45bからなる部分には、自己組織化層46の自己組織化単分子が存在しない。よって、有機層44は、自己組織化層46における自己組織化単分子が存在しない間隙を介して、電極材料層45(具体的には電極材料45b)に直接接触している。
 なお、本実施形態では、陽極42に本実施形態1の電極構成を採用した形態について説明するが、本発明はこれに限定されるものではなく、本実施形態1の電極構成を陰極に適用してもよく、あるいは、陽極と陰極の双方に適用することも可能である。
 以下、各部材の詳細について説明する。
 (透明基板41)
 透明基板41は、上述した実施形態2の基板1と同じ材料を用いることができる。例えば、ガラスもしくは石英などの絶縁物を用いることができる。また、フレキシブルな有機EL素子を作製する場合には、透明基板41は、ポリカーボネート、ポリメチルメタクリレート、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリエーテルエーテルケトン(PEEK)、もしくはポリイミド(PI)等のプラスチック材料等を用いることができる。
 (陽極42)
 陽極42は、上述したように、電極材料層45と、自己組織化層46との2層構造となっている。
 電極材料層45は、上述した実施形態2のソース電極4およびドレイン電極5と同一の材料を用いることができる。
 電極材料層45は、各種導電性材料の混合材料から構成される。各種導電性材料としては、金、銀、銅、チタン、もしくはアルミニウム等の金属材料やこれらを含む合金、インジウム・スズ酸化物(ITO)、もしくはインジウム・亜鉛酸化物(IZO)等の導電性酸化物材料、シリコンもしくはガリウム砒素やこれら材料にホウ素やリン等のドーパントを高濃度で注入し導電性を高めるなどした各種の半導体材料、または、PEDOT:PSS等の導電性有機材料などが挙げられる。
 なお、電極材料層45を構成する混合材料として、いずれの材料を組み合わせたものを用いるかについては、各電極上の自己組織化層6の自己組織化単分子が結合可能である材料と、結合できない材料とから適宜選択すればよい。
 電極材料層45の形成方法としては、上述した実施形態2のソース電極4およびドレイン電極5の形成方法と同じく、例えば、窒素やアルゴン等の不活性雰囲気下の真空状態で、メタルマスクを用いた多元同時真空蒸着法または多元スパッタリング法等の物理気相成長法によって形成する方法が挙げられる。また、例えば、各電極材料からなるナノ粒子を作製し、これらを混ぜて混合電極材料インクを調整した後、インクジェット法またはスクリーン印刷法等の印刷法で塗布し、不活性雰囲気下で焼成処理を行うことによって形成してもよい。
 なお、電極材料層45を構成する混合材料における「混合」とは、各導電性材料の粒子が適度に混ざり合っている状態であることが好ましい。また、各導電性材料の混合程度は、各電極の表面において、各導電性材料からなる表面が現れている程度であればよい。
 自己組織化層46は、上述した実施形態2の自己組織化層6と同じ材料を用いることができ、同じ形成方法にて形成することができる。
 (陰極43)
 陰極43は、陽極42と同じ混合材料から構成することができる。しかしながら、本発明はこれに限定されるものではなく、混合材料を構成する複数の材料が、陽極42のそれと異なるものであってもよいし、混合材料ではなく別の単一の電極材料から構成してもよい。
 (有機層44)
 有機層44は、少なくとも有機発光材料からなる有機発光層(発光層)を有している。
 この有機発光層は、有機発光層単層であっても、有機発光層と電荷輸送層の多層構造であってもよく、具体的には、下記の1)~9) に示すような構成を例示することができる。
1) 有機発光層
2) 正孔輸送層/有機発光層
3) 有機発光層/電子輸送層
4) 正孔輸送層/有機発光層/電子輸送層
5) 正孔注入層/正孔輸送層/有機発光層/電子輸送層
6) 正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層
7) 正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層
8) 正孔注入層/正孔輸送層/有機発光層/正孔防止層/電子輸送層/電子注入層
9) 正孔注入層/正孔輸送層/電子防止層/有機発光層/正孔防止層/電子輸送層/電子注入層
 しかし、本発明はこれらにより限定されるものではない。また、有機発光層、正孔注入層、正孔輸送層、正孔防止層、電子防止層、電子輸送層、および、電子注入層の各層は、単層構造でも多層構造でもよい。
 有機発光層は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよく、また、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。発光効率・寿命の観点からは、ホスト材料中に発光性のドーパントが分散されたものが好ましい。
 有機発光材料としては、有機EL用の公知の発光材料を用いることができる。このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。また、上記発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点で、発光効率の高い燐光材料を用いることが好ましい。
 ここで、具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 低分子有機発光材料としては、例えば、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物、5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物、3-(4-ビフェニルイル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体、1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体等の蛍光性有機材料、および、アゾメチン亜鉛錯体、(8-ヒドロキシキノリナト)アルミニウム錯体(Alq)等の蛍光発光有機金属錯体等が挙げられる。
 高分子発光材料としては、例えば、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)、ポリ[2,5-ビス-[2-(N,N,N-トリエチルアンモニウム)エトキシ]-1,4-フェニル-アルト-1,4-フェニルレン]ジブロマイド(PPP-NEt3+)、ポリ[2-(2’-エチルヘキシルオキシ)-5-メトキシ-1,4-フェニレンビニレン](MEH-PPV)、ポリ[5-メトキシ-(2-プロパノキシサルフォニド)-1,4-フェニレンビニレン](MPS-PPV)、ポリ[2,5-ビス-(ヘキシルオキシ)-1,4-フェニレン-(1-シアノビニレン)](CN-PPV)等のポリフェニレンビニレン誘導体、ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体が挙げられる。
 有機発光層に任意に含まれる発光性のドーパントとしては、有機EL用の公知のドーパント材料を用いることができる。このようなドーパント材料としては、例えば、スチリル誘導体、ペリレン、イリジウム錯体、クマリン誘導体、ルモーゲンFレッド、ジシアノメチレンピラン、フェノキザゾン、ポリフィリン誘導体等の蛍光発光材料、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2‘]ピコリネート イリジウム(III)(FIrpic)、トリス(2-フェニルピリジル)イリジウム(III)(Ir(ppy))、トリス(1-フェニルイソキノリン)イリジウム(III)(Ir(piq))等の燐光発光有機金属錯体等が挙げられる。
 また、ドーパントを用いる時のホスト材料としては、有機EL用の公知のホスト材料を用いることができる。このようなホスト材料としては、上述した低分子発光材料、高分子発光材料、4,4‘-ビス(カルバゾール)ビフェニル、9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)等のカルバゾール誘導体等が挙げられる。
 また、電荷注入輸送層は、電荷(正孔、電子)の電極からの注入と有機発光層への輸送(注入)をより効率よく行う目的で、電荷注入層と電荷輸送層に分類され、以下に例示する電荷注入輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)又は無機材料中に分散された構成であってもよい。
 電荷注入輸送材料としては、有機EL用、有機光導電体用の公知の電荷輸送材料を用いることができる。このような電荷注入輸送材料は、正孔注入輸送材料および電子注入輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 正孔注入・正孔輸送材料としては、例えば、酸化バナジウム(V)、酸化モリブデン(MoO)等の酸化物、無機p型半導体材料、ポルフィリン化合物、N,N’-ビス(3-メチルフェニル)-N,N’-ビス(フェニル)-ベンジジン(TPD)、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、ポリアニリン-樟脳スルホン酸(PANI-CSA)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDOT/PSS)、ポリ(トリフェニルアミン)誘導体(Poly-TPD)、ポリビニルカルバゾール(PVCz)、ポリ(p-フェニレンビニレン)(PPV)、ポリ(p-ナフタレンビニレン)(PNV)等の高分子材料等が挙げられる。
 また、陽極からの正孔の注入・輸送をより効率よく行う点で、正孔注入層として用いる材料としては、正孔輸送層に使用する正孔注入輸送材料より最高被占分子軌道(HOMO)のエネルギー準位が低い材料を用いることが好ましく、正孔輸送層としては、正孔注入層に使用する正孔注入輸送材料より正孔の移動度が、高い材料を用いることが好ましい。
 また、より正孔の注入・輸送性を向上させるため、上記正孔注入・輸送材料にアクセプターをドープすることが好ましい。アクセプターとしては、有機EL用の公知のアクセプター材料を用いることができる。これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 アクセプター材料としては、Au、Pt、W,Ir、POCl、AsF、Cl、Br、I、酸化バナジウム(V)、酸化モリブデン(MoO)等の無機材料、TCNQ(7,7,8,8,-テトラシアノキノジメタン)、TCNQF (テトラフルオロテトラシアノキノジメタン)、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル、クロラニル、ブロマニル等の有機材料が挙げられる。この内、TCNQ、TCNQF、TCNE、HCNB、DDQ等のシアノ基を有する化合物がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。
 電子注入・電子輸送材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、ベンゾジフラン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料が挙げられる。特に、電子注入材料としては、特にフッ化リチウム(LiF)、フッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等が挙げられる。
 電子の陰極からの注入・輸送をより効率よく行う点で、電子注入層として用いる材料としては、電子輸送層に使用する電子注入輸送材料より最低空分子軌道(LUMO)のエネルギー準位が高い材料を用いることが好ましく、電子輸送層として用いる材料としては、電子注入層に使用する電子注入輸送材料より電子の移動度が高い材料を用いることが好ましい。
 また、より電子の注入・輸送性を向上させるため、上記電子注入・輸送材料にドナーをドープすることが好ましい。ドナーとしては、有機EL用の公知のドナー材料を用いることができる。これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 ドナー材料としては、アルカリ金属、アルカリ土類金属、希土類元素、Al、Ag、Cu、In等の無機材料、アニリン類、フェニレンジアミン類、ベンジジン類(N,N,N’,N’-テトラフェニルベンジジン、N,N’-ビス-(3-メチルフェニル)-N,N’-ビス-(フェニル)-ベンジジン、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン等)、トリフェニルアミン類(トリフェニルアミン、4,4’4''-トリス(N,N-ジフェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-3-メチルフェニル-N-フェニル-アミノ)-トリフェニルアミン、4,4’4''-トリス(N-(1-ナフチル)-N-フェニル-アミノ)-トリフェニルアミン等)、トリフェニルジアミン類(N,N’-ジ-(4-メチル-フェニル)-N,N’-ジフェニル-1,4-フェニレンジアミン)等の芳香族3級アミンを骨格にもつ化合物、フェナントレン、ピレン、ペリレン、アントラセン、テトラセン、ペンタセン等の縮合多環化合物(ただし、縮合多環化合物は置換基を有してもよい)、TTF(テトラチアフルバレン)類、ジベンゾフラン、フェノチアジン、カルバゾール等の有機材料がある。この内特に、芳香族3級アミンを骨格にもつ化合物、縮合多環化合物、アルカリ金属がよりキャリア濃度を効果的に増加させることが可能であるためより好ましい。
 有機層44の膜厚は、通常1~1000nm程度であるが、10~200nmが好ましい。膜厚が10nm未満であると、本来必要とされる物性(電荷の注入特性、輸送特性、閉じ込め特性)を得ることが困難である。また、ゴミ等の異物による画素欠陥が生じるおそれがある。また、膜厚が200nmを超えると有機層44の抵抗成分により駆動電圧の上昇が生じ、消費電力の上昇に繋がる。
 ここで、図19に基づいて、キャリアである正孔が陽極42から有機層44へ注入される際のキャリア注入障壁について説明する。
 図19は、陽極42の各々の仕事関数を規定するエネルギー準位、ならびに有機層44のキャリア注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。図19(a)は、自己組織化層が形成されていない従来例に係る有機EL素子を示しており、(b)は、本実施形態に係る有機EL素子の一例を示している。
 図19(a)(b)に示すように、キャリア(正孔)を陽極42から有機層44へ注入するための注入障壁は、陽極の仕事関数と、有機層の仕事関数の差によって定まる。
 本実施形態の一例では、自己組織化層46の自己組織化単分子が、電極材料層45に正の電荷、有機層44側に負の電荷を持つような双極子モーメントを有する。このため、自己組織化層46による電気2重層の効果によって、電極材料層45の仕事関数が増加する。これによって、図19(b)に示すように、電極材料層45の仕事関数が有機層44の仕事関数に近づくため、電極材料層45側のキャリア注入障壁は減少する。
 なお、キャリア注入障壁の減少または増大の程度は、自己組織化単分子の持つ双極子モーメントの大きさ、自己組織化単分子の密度、及び自己組織化層46の誘電率に比例する。これらのパラメータを考慮して、エネルギー障壁を低減できるような自己組織化単分子を選択する必要がある。
 また、自己組織化層46を構成する自己組織化単分子は、自己組織化層46が有機層44に与える影響の観点に基づいて選んでもよい。
 なお、自己組織化層46の材料は、本明細書に挙げた自己組織化層6の具体例に限定されることなく、適宜選択可能である。また形成方法も自己組織化層6と同じ形成方法を用いることができる。
 以上の構成によれば、陽極と有機層との間の障壁が減少し、加えて、この部分の抵抗も小さく抑えられるため、キャリア注入効率が向上する。
 (有機EL画素の構成)
 図20の(a)は、本実施形態の有機EL素子400を用いた有機EL画素410の回路図である。図20の(a)の回路構成は、図16の回路構成と同じである。
 上記有機EL画素410は、スイッチング用トランジスタ31、キャパシタンス32、駆動用トランジスタ33、有機EL素子400から構成され、データライン21、スキャンライン22、キャパシタンスライン23、カソード電源ライン24、アノード電源ライン25と接続されている。
 なお、有機EL画素410において、スイッチング用トランジスタ31と駆動用トランジスタ33は、上述した実施形態2の有機TFT200(例えば図7)と同様の構成を有するものである。
 また、図20の(b)は、図20の(a)の破線囲みで示した部分の部分断面図である。図20の(b)では、左側に駆動用トランジスタ33、右側に本実施形態の有機EL素子400を示している。駆動用トランジスタ33と本実施形態の有機EL素子400とは、透明基板41を共用している。
 本実施形態に係る有機EL画素410によれば、有機EL素子400の発光効率が高いだけでなく、スイッチング用トランジスタ31および駆動用トランジスタ33に流れる電流量を大きくできるため、従来と同じ電圧であっても有機EL素子400の輝度をより向上させることができる。
 (有機ELディスプレイの構成)
 本実施形態の有機ELディスプレイ(装置)の回路構成を、図21に示す。図21では、本実施形態に係る有機EL画素410を多数接続してなるディスプレイを有している。このディスプレイを具備することによって、性能を向上させた有機ELディスプレイを提供することができる。
 (実施形態4の実施例)
 以下、実施例7に基づいて本発明の実施形態4をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例7)
 本実施例7では、図17に示す透明基板41としてのガラス基板に、自己組織化単分子が結合可能な材料である光半透過性の金と、自己組織化単分子が結合できない材料であるITOとを、二元同時スパッタリングによって成膜し、陽極42の電極材料層45を形成した。
 この電極材料層45の上に、自己組織化単分子材料であるペンタフルオロベンゼンチオール(PEBT)の自己組織化層46を、PFBTのエタノール溶液中に電極材料層45を形成した基板41を浸すことで形成して、電極材料層45と自己組織化層46とを有する陽極42を完成させた。
 この陽極42の上に、正孔輸送層としてトリフィニルジアミン(TPD)を、発光層兼電子輸送層としてトリス(8-キノリノラト)アルミニウム(Alq3)を、この順でそれぞれ真空蒸着し、正孔輸送層、発光層兼電子輸送層が積層した有機層44を成膜した。
 最後に真空蒸着により、陰極43としてアルミニウムを成膜した。以上により、本実施例7の有機EL素子400を完成させた。
 (比較例4)
 比較例4として、実施例7の陽極42に変えて、金のみからなる電極材料層とし、自己組織化単分子材料としてペンタフルオロベンゼンチオール(PFBT)とベンゼンチオール(BT)の混合物から形成したこと以外は、実施例7と同様の方法により形成した。なお、ペンタフルオロベンゼンチオールとベンゼンチオールの比率は、0.7:0.3とした。
 比較例4に係る有機EL素子では、ペンタフルオロベンゼンチオールとベンゼンチオールは共に金と結合するため、陽極(電極材料層)における表面全面に自己組織化層46が形成された。
 (比較例5)
 比較例5として、実施例7の陽極42に変えて、ITOのみからなる電極材料層としたこと以外は、実施例7と同様の方法により作製した。
 比較例5に係る有機EL素子では、ペンタフルオロベンゼンチオール分子がITOと結合しないため、自己組織化層46が形成されなかった。
 (実施例7の効果)
 以上の方法によって作製された実施例7における陽極の仕事関数、及び、有機EL素子の10V印加時の電流値を比較した結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例7と比較例4の仕事関数はほぼ同等であるが、実施例7の電流値のほうが比較例4の電流値より大きい。比較例4では電極材料層の表面全体が自己組織化層に覆われているため、キャリア注入のための物理的な抵抗が存在するためと考えられる。
 また表7に示すように、実施例7と比較例5では、比較例5では自己組織化層を有さないため物理的な抵抗値が小さいと考えられるが、電流値は小さい。実施例7では自己組織化層の陽極被覆率が調整されることにより物理的な抵抗が抑制されることに加え、仕事関数が有機層への注入障壁を減少させる形に制御されているためだと考えられる。
 (実施例8)
 実施例8では、図20の(b)に示す素子構造を作製した。なお、本実施例8では、図20の(b)の右側にある有機EL素子の陽極だけでなく、左側にある駆動用トランジスタ33のソース電極とドレイン電極にも、本発明の特徴的な電極構造を採用し、電極材料層と自己組織化層とを備えた構成とした。駆動用トランジスタ33の作製方法は、上記実施例1と同じである。
 〔実施形態5〕
 上述した実施形態1の電極構成は、有機太陽電池にも応用可能である。そこで、本実施形態では、本発明に係る有機太陽電池の一形態を説明する。
 図22は、上述した実施形態1の電極構成を陽極に適用した有機太陽電池500の断面図である。
 有機太陽電池500は、基板51の一方面上に、陽極52、光電変換層を構成する有機層54、陰極53が順次積層されている。
 図23は、図22の陽極52部分の拡大断面図である。本実施形態では、図22および図23に示すように、陽極52が、電極材料層55と、自己組織化層56との2層構造となっている。
 電極材料層55は、上述した実施形態2のソース電極4(図2)と同様に、その有機層54側の表面が、自己組織化層56を構成する自己組織化単分子が結合できる電極材料55aと、当該自己組織化単分子が結合できない電極材料55bとを含んだ混合材料から構成される。
 すなわち、自己組織化層56を構成する自己組織化単分子は、陽極52の表面のうち、当該自己組織化単分子が結合できる電極材料55aからなる部分に結合している。
 陽極52の表面のうち、自己組織化単分子が結合できない電極材料55bからなる部分には、自己組織化層56の自己組織化単分子が存在しない。よって、有機層54は、自己組織化層56における自己組織化単分子が存在しない間隙を介して、陽極52に直接接触している。
 なお、本実施形態では、陽極52に本実施形態1の電極構成を採用した形態について説明するが、本発明はこれに限定されるものではなく、本実施形態1の電極構成を陰極に適用してもよく、あるいは、陽極と陰極の双方に適用することも可能である。
 (基板51)
 上記基板51は、順次積層された陽極12、有機層54及び陰極53を保持する部材である。例えば、ガラス基板や樹脂基板等が用いられる。なお、この基板11は、必須ではなく、例えば、光電変換部を有する有機層54の両面に陽極12及び陰極13を形成することで有機太陽電池500が構成されてもよい。
 (有機層54)
 有機層54は、少なくとも有機光電変換材料からなる有機光電変換層を有している。この有機光電変換層は、有機光電変換層単層であっても、有機光電変換層と電荷輸送層の多層構造であってもよく、具体的には、下記の1)~4)に示すような構成を例示することができる。
1)有機光電変換層
2)正孔輸送層/有機光電変換層
3)有機光電変換層/電子輸送層
4)正孔輸送層/有機光電変換層/電子輸送層
 しかし、本発明はこれに限定されるものではない。また、有機光電変換層、正孔輸送層、電子輸送層の各層は、単層構造でも、多層構造でもよい。
 有機光電変換層として、例えば、p型半導体材料からなるp層と、n型半導体材料からなるn層を順次積層したpn接合型や、p層とn層の間にp層n層両方の半導体材料を混合してなるi層を導入するpin型、p型半導体材料とn型半導体材料を一様に混合したバルクヘテロジャンクション型がある。
 また、有機光電変換層は、以下に例示する有機光電変換材料のみから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよく、また、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。
 有機光電変換材料としては、有機太陽電池用の公知の光電変換材料を用いることができる。このような光電変換材料は、低分子有機光電変換材料、高分子有機光電変換材料等に分類される。これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 低分子有機光電変換材料としては、例えば、銅フタロシアニン等のフタロシアニン化合物、ペンタセン誘導体、ペリレン誘導体、C60やC70等のフラーレン類、フェニルC61ブチリックアシッドメチルエステル(PCBM)等のフラーレン誘導体が挙げられ、高分子有機光電変換材料としては、例えば、ポリ(3-ヘキシルチオフェン)(P3HT)等のチオフェン誘導体、ポリ[2-(2´-エチルヘキシルオキシ)-5-メトキシ-1,4-フェニレンビニレン](MEH-PPV)等のポリフェニレンビニレン誘導体、が挙げられる。
 電荷輸送層は、電荷(正孔、電子)の有機光電変換層からの輸送(注入)と、電極からの取り出し(電極への注入)をより効率よく行う目的で用いられる。電荷輸送層は、以下に例示する電荷輸送材料のみから構成されていてもよく、任意に添加剤(ドナー、アクセプター等)等を含んでいてもよく、これらの材料が高分子材料(結着用樹脂)または無機材料中に分散された構成であってもよい。
 電荷輸送材料としては、有機太陽電池用の公知の電荷輸送材料を用いることができる。このような電荷輸送材料は、正孔輸送材料および電子輸送材料に分類され、これらの具体的な化合物を以下に例示するが、本発明はこれらの材料に限定されるものではない。
 正孔輸送材料としては、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸共重合体(PEDOT:PSS)等が挙げられ、電子輸送材料としては、例えば、TiOx、ZnO、ナフタレンテトラカルボン酸二無水物(NTCDA)等が挙げられる。
 図22において、基板51を介して陽極52から入射された光は、有機層54における光電変換層(電子受容体あるいは電子供与体)で吸収され、エキシトンが生成される。このエキシトンが電子供与体と電子受容体の界面に移動して、正孔と電子のペアに分離する(電荷分離状態)。発生した電荷は内部電界によって、電子は電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。
 なお、図22には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。
 有機層54の膜厚は、5~5000nm程度とすることができるが、50~1000nmが好ましい。膜厚が50nm未満であると、太陽光を十分に吸収することができない。また、膜厚が1000nmを超えると、有機層54の抵抗成分により、効率が低下してしまう。
 (陽極52)
 陽極52は、上述したように、電極材料層55と、自己組織化層56との2層構造となっている。
 電極材料層55は、上述した実施形態2のソース電極4およびドレイン電極5と同一の材料を用いることができる。
 電極材料層55は、各種導電性材料の混合材料から構成される。各種導電性材料としては、金、銀、銅、チタン、もしくはアルミニウム等の金属材料やこれらを含む合金、インジウム・スズ酸化物(ITO)、もしくはインジウム・亜鉛酸化物(IZO)等の導電性酸化物材料、シリコンもしくはガリウム砒素やこれら材料にホウ素やリン等のドーパントを高濃度で注入し導電性を高めるなどした各種の半導体材料、または、PEDOT:PSS等の導電性有機材料などが挙げられる。
 なお、電極材料層55を構成する混合材料として、いずれの材料を組み合わせたものを用いるかについては、各電極上の自己組織化層6の自己組織化単分子が結合可能である材料と、結合できない材料とから適宜選択すればよい。
 電極材料層55の形成方法としては、上述した実施形態2のソース電極4およびドレイン電極5の形成方法と同じく、例えば、窒素やアルゴン等の不活性雰囲気下の真空状態で、メタルマスクを用いた多元同時真空蒸着法または多元スパッタリング法等の物理気相成長法によって形成する方法が挙げられる。また、例えば、各電極材料からなるナノ粒子を作製し、これらを混ぜて混合電極材料インクを調整した後、インクジェット法またはスクリーン印刷法等の印刷法で塗布し、不活性雰囲気下で焼成処理を行うことによって形成してもよい。
 なお、電極材料層55を構成する混合材料における「混合」とは、各導電性材料の粒子が適度に混ざり合っている状態であることが好ましい。また、各導電性材料の混合程度は、各電極の表面において、各導電性材料からなる表面が現れている程度であればよい。
 自己組織化層56は、上述した実施形態2の自己組織化層6と同じ材料を用いることができ、同じ形成方法にて形成することができる。
 (陰極53)
 陰極53は、陽極52と同じ混合材料から構成することができる。しかしながら、本発明はこれに限定されるものではなく、混合材料を構成する複数の材料が、陽極52のそれと異なるものであってもよいし、混合材料ではなく別の単一の電極材料から構成してもよい。
 ここで、図24に基づいて、キャリアである正孔が陽極52から有機層54へ注入される際のキャリア注入障壁について説明する。
 図24は、陽極52の各々の仕事関数を規定するエネルギー準位、ならびに有機層54のキャリア注入に係る分子軌道のエネルギー準位を示すバンドダイアグラムである。図24(a)は、自己組織化層が形成されていない従来例に係る構成を示しており、(b)は、本実施形態に係る構成の一例を示している。
 図24(a)(b)に示すように、キャリア(正孔)を有機層54から陽極52に取り出すための障壁は、陽極の仕事関数と、有機層の仕事関数の差によって定まる。
 本実施形態の一例では、自己組織化層56の自己組織化単分子が、電極材料層55に負の電荷、有機層54側に正の電荷を持つような双極子モーメントを有する。このため、自己組織化層56による電気2重層の効果によって、電極材料層55の仕事関数が減少する。これによって、図24(b)に示すように、有機層54から電極材料層55側へのキャリア注入障壁は減少する。
 なお、キャリア注入障壁の減少または増大の程度は、自己組織化単分子の持つ双極子モーメントの大きさ、自己組織化単分子の密度、及び自己組織化層56の誘電率に比例する。これらのパラメータを考慮して、エネルギー障壁を低減できるような自己組織化単分子を選択する必要がある。
 また、自己組織化層56を構成する自己組織化単分子は、自己組織化層56が有機層54に与える影響の観点に基づいて選んでもよい。
 なお、自己組織化層56の材料は、本明細書に挙げた自己組織化層6の具体例に限定されることなく、適宜選択可能である。また形成方法も自己組織化層6と同じ形成方法を用いることができる。
 以上の構成によれば、陽極と有機層との間の障壁が減少し、加えて、この部分の抵抗も小さく抑えられるため、キャリア注入効率が向上する。
 (実施形態5の実施例)
 (実施例9)
 本実施例9では、図22に示す基板51としてのガラス基板に、自己組織化単分子が結合可能な材料である金と、自己組織化単分子が結合できない材料である金とを、二元同時スパッタリングによって成膜し、陽極52の電極材料層55を形成した。
 この電極材料層55の上に、自己組織化単分子材料であるジメチルアミノベンゼンチオール(DABT)の自己組織化層46を、PFBTのエタノール溶液中に電極材料層55を形成した基板51を浸すことで形成して、電極材料層55と自己組織化層56とを有する陽極52を完成させた。なお、ジメチルアミノベンゼンチオール(DABT)は、実施例1や8などで用いているペンタフルオロベンゼンチオール(PEBT)とは双極子の向きが反対である。
 この陽極52の上に、p型有機半導体として銅フタロシアニンを、n型有機半導体としてC60フラーレンをこの順でそれぞれ真空蒸着し、p型有機半導体とn型有機半導体とが積層した有機層54を成膜した。
 最後に真空蒸着により、陰極53として光半透過性のアルミニウムを真空蒸着で成膜した。以上により、本実施例8の有機太陽電池500を完成させた。
 (比較例6)
 比較例4として、実施例9の陽極52に変えて、金のみからなる電極材料層とし、自己組織化単分子材料としてジメチルアミノベンゼンチオール(DABT)とベンゼンチオール(BT)の混合物から形成したこと以外は、実施例9と同様の方法により形成した。なお、ジメチルアミノベンゼンチオールとベンゼンチオールの比率は、0.7:0.3とした。
 比較例6に係る有機太陽電池では、ジメチルアミノベンゼンチオールとベンゼンチオールは共に金と結合するため、陽極(電極材料層)における表面全面に自己組織化層56が形成された。
 (比較例7)
 比較例7として、実施例9の陽極52に変えて、ITOのみからなる電極材料層としたこと以外は、実施例9と同様の方法により作製した。
 比較例7に係る有機太陽電池では、ジメチルアミノベンゼンチオールがITOと結合しないため、自己組織化層56が形成されなかった。
 (実施例9の効果)
 以上の方法によって作製された実施例9における陽極の仕事関数、及び、有機太陽電池の短絡電流量を比較した結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、実施例9と比較例6の仕事関数はほぼ同等であるが、実施例9の電流値のほうが比較例6の電流値より大きい。比較例6では電極材料層の表面全体が自己組織化層に覆われているため、キャリア取り出しのための物理的な抵抗が存在するためと考えられる。
 また表8に示すように、実施例9と比較例7では、比較例7では自己組織化層を有さないため物理的な抵抗値が小さいと考えられるが、電流値は小さい。実施例9では自己組織化層の陽極被覆率が調整されることにより物理的な抵抗が抑制されることに加え、仕事関数がp型半導体層との取り出し障壁を減少させる形に制御されているためだと考えられる。
 なお、本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。すなわち、発明の詳細な説明の項においてなされた具体的な実施形態は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 (本発明の総括)
 本発明の電極構成は、以上のように、
 電極と当該電極の上に形成された有機層と、上記電極と上記有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えており、
 上記電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料が混合された混合材料から構成されており、
 上記自己組織化層を構成する自己組織化単分子は、上記電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記の構成を具備する電極構成を、例えば有機トランジスタのソース電極およびドレイン電極の少なくとも一方の電極に採用することにより、ソース電極および/またはドレイン電極の電極表面のうち、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない構成が実現される。このように、電極上における自己組織化層の面密度が、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、電極の仕事関数を精密に制御し、電極と有機層との間におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、有機層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機層との間における物理的な抵抗を減少させることができる。
 したがって、本発明の電極構成を有機薄膜トランジスタに採用すれば、電極の仕事関数を精密に制御してキャリア注入障壁を低減させることと、電極と有機層(有機半導体層)との間における物理的な抵抗を減少させることとを両立させることが可能である。このため、電圧を増加させることなく大きな電流を確保できる高性能な有機薄膜トランジスタを提供することができる。
 また、本発明に係る有機薄膜トランジスタは、以上のように、
 上記電極構成を有する有機薄膜トランジスタであって、
 基板と、
 上記基板上に形成されたゲート電極と、
 上記ゲート電極上に形成されたゲート絶縁膜と、
 上記ゲート絶縁膜上に形成されたソース電極およびドレイン電極と、
 上記ソース電極上および上記ドレイン電極上、ならびに両電極の間隙部分に連続的に形成された有機半導体層と、
 上記ソース電極および上記ドレイン電極のうち少なくとも一方の電極と上記有機半導体層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えており、
 上記少なくとも一方の電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料が混合された混合材料から構成されており、
 上記自己組織化層を構成する自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記構成において、ソース電極および/またはドレイン電極の電極表面のうち、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない。
 上記構成によれば、少なくとも一方の電極上には、ある電極材料に結合した自己組織化単分子によって自己組織化層が構成されている。すなわち、少なくとも一方の電極上における自己組織化層の面密度は、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、本発明に係る有機薄膜トランジスタの製造時、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、少なくとも一方の電極の仕事関数を精密に制御し、当該電極におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、少なくとも一方の電極上には、自己組織化層を介して有機半導体層が形成されている。このため、有機半導体層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機半導体層との間における物理的な抵抗を減少させることができる。
 したがって、本発明に係る有機薄膜トランジスタによれば、電極の仕事関数を精密に制御してキャリア注入障壁を低減させることと、電極と有機半導体層との間における物理的な抵抗を減少させることとを両立させることが可能である。このため、電圧を増加させることなく大きな電流を確保できる高性能な有機薄膜トランジスタを実現することができる。
 また、本発明に係る有機薄膜トランジスタの一形態は、上記の構成に加えて、
 上記ソース電極および上記ドレイン電極はそれぞれ上記混合材料から構成され、
 上記自己組織化層は、上記ソース電極と上記有機半導体層との間に形成された第1自己組織化層と、上記ドレイン電極と上記有機半導体層との間に形成された第2自己組織化層とを備えており、
 上記第1自己組織化層の自己組織化単分子と、上記第2自己組織化層の自己組織化単分子とは、上記双極子の向きが互いに同じ、または互いに異なることが好ましい。
 例えば、第1自己組織化層および第2自己組織化層において、双極子の向きが互いに同じである場合、第1自己組織化層および第2自己組織化層を同じ材料から構成することによって、コストを削減することもできる。また、当該双極子の向きがソース電極側においてキャリア注入障壁を低減させるものであれば、ドレイン電極側においてキャリア注入障壁は増加してしまうが、有機薄膜トランジスタの全体としての性能を向上させることができる。
 一方、第1自己組織化層および第2自己組織化層において、双極子の向きが互いに異なる場合、ソース電極およびドレイン電極の各々の側において、有機半導体層との間のエネルギー障壁を低減させる向きの(互いに逆向きの)双極子を利用することができる。これによって、有機薄膜トランジスタの性能をより向上させることができる。
 なお、p型の有機薄膜トランジスタの場合、第1自己組織化層における双極子の向きは、正の電荷がソース電極側に位置し、負の電荷が半導体層側に位置することが好ましく、第2自己組織化層における双極子の向きは、負の電荷がドレイン電極側に位置し、正の電荷が半導体層側に位置することが好ましい。一方、n型の有機薄膜トランジスタの場合には、p型の場合と正負が逆であることが好ましい。
 また、本発明に係る有機薄膜トランジスタにおいて、上記ソース電極を構成する混合材料と、上記ドレイン電極を構成する混合材料とは、上記自己組織化単分子が結合する電極材料と結合しない電極材料との混合比率が、互いに異なることが好ましい。
 上記構成によれば、ソース電極とドレイン電極との各々において、自己組織化層の面密度を調節することによって、各電極の仕事関数をそれぞれ制御することができる。これによって、両電極におけるキャリア注入障壁を好適に低減させ、有機薄膜トランジスタの性能をより向上させることができる。
 また、本発明に係る有機薄膜トランジスタの一形態は、上記の構成に加えて、
 上記第1自己組織化層および上記第2自己組織化層は、上記双極子の向きが互いに同じ自己組織化単分子から構成され、
 上記ソース電極を構成する上記混合材料では、上記自己組織化単分子が結合する電極材料の割合が、当該自己組織化単分子が結合しない電極材料の割合よりも大きく、
 上記ドレイン電極を構成する上記混合材料では、上記自己組織化単分子が結合する電極材料の割合が、当該自己組織化単分子が結合しない電極材料の割合よりも小さいことが好ましい。
 上記構成によれば、第1自己組織化層および第2自己組織化層を同じ材料から構成することによって、製造コストを削減することができる。また、上記構成によれば、ドレイン電極における第2自己組織化層の面密度が低くなるように調節される。このため、第1自己組織化層および第2自己組織化層における双極子の向きがソース電極側においてキャリア注入障壁を低減させるものである場合に、ドレイン電極側におけるキャリア注入障壁の増加を抑制することができ、有機薄膜トランジスタの全体としての性能をより向上させることができる。
 また、本発明に係る有機薄膜トランジスタの一形態は、上記の構成に加えて、
 上記ソース電極および上記ドレイン電極をそれぞれ構成する上記混合材料は、
 上記第1自己組織化層の自己組織化単分子が結合し、かつ、上記第2自己組織化層の自己組織化単分子が結合しない第1電極材料と、
 上記第1自己組織化層の自己組織化単分子が結合せず、かつ、上記第2自己組織化層の自己組織化単分子が結合する第2電極材料とを含んで成ることが好ましい。
 上記構成によれば、ソース電極およびドレイン電極に対して、それぞれの電極に適した双極子を有する自己組織化単分子を用いて第1自己組織化層および第2自己組織化層を形成することができる。また、ソース電極およびドレイン電極を共通の材料から製造することも可能である。
 例えば、ソース電極およびドレイン電極を共通の材料から製造しつつ、ソース電極およびドレイン電極の各々に対して、キャリア注入障壁を低減させる向きの(互いに逆向きの)双極子を有する自己組織化単分子を利用することができる。これによって、製造コストを抑えつつ、有機薄膜トランジスタの性能をより向上させることができる。
 また、本発明に係る有機薄膜トランジスタの一形態は、上記の構成に加えて、
 上記第1自己組織化層および上記第2自己組織化層は、上記双極子の向きが互いに同じ自己組織化単分子から構成され、
 上記各混合材料において、上記第1電極材料の割合は、上記第2電極材料の割合よりも大きいことが好ましい。
 上記構成によれば、ソース電極およびドレイン電極を共通の材料から構成することによって、製造コストを削減することができる。また、上記構成によれば、ドレイン電極における第2自己組織化層の面密度が低くなるように調節される。このため、第1自己組織化層および第2自己組織化層における双極子の向きがソース電極側においてキャリア注入障壁を低減させるものである場合に、ドレイン電極におけるキャリア注入障壁の増加を抑制することができ、有機薄膜トランジスタの全体としての性能をより向上させることができる。
 また、本発明に係る有機薄膜トランジスタの一形態は、上記の構成に加えて、
 上記少なくとも一方の電極上に形成された上記自己組織化層は、2種類以上の自己組織化単分子から構成され、
 上記混合材料は、各自己組織化単分子が結合する電極材料と、いずれの自己組織化単分子も結合しない電極材料とが混合されていてもよい。
 上記構成によれば、異なる機能を有する自己組織化単分子を組み合わせて用いることにより、自己組織化層を構成することができる。例えば、電極の仕事関数を制御するために好適な自己組織化単分子と、表面エネルギーの小さな自己組織化単分子とを組み合わせて用いることによって、電極の仕事関数を制御しつつ、有機半導体層のグレインを大きくすることができる。これによって、本発明に係る有機薄膜トランジスタは、電圧を抑えたまま、より大きな電流量を確保することができる。
 また、本発明に係る有機薄膜トランジスタの一形態は、上記の構成に加えて、
 上記少なくとも一方の電極と上記有機半導体層との間のうち、少なくとも上記ソース電極と上記ドレイン電極との間隙部分に形成された、自己組織化単分子から構成される他の自己組織化層をさらに備えていることが好ましい。
 上記構成によれば、電極間のチャネル部分に他の自己組織化層が形成されるため、チャネル界面(有機半導体層とゲート絶縁膜の界面)でのキャリアトラップが抑えられ、これによって大きな電流量を確保することができる。ここで、他の自己組織化層を構成する自己組織化単分子の双極子の大きさは、キャリアトラップをより効果的に抑えるために、できるだけ小さいことが望ましい。なお、上記自己組織化層と、上記他の自己組織化層とは、互いに同じ種類の自己組織化単分子から構成されていてもよく、または、互いに異なる種類の自己組織化単分子から構成されていてもよい。
 本発明に係る有機EL画素は、上述したいずれかの有機薄膜トランジスタを備えることが好ましい。上記構成によれば発光効率の良好な有機EL画素を提供することができる。
 本発明に係る有機エレクトロルミネッセンス素子は、以上のように、
 上記の電極構成を備えた有機エレクトロルミネッセンス素子であって、上記の電極構成の上記有機層としての、発光層を含む有機層を、第一電極と第二電極との間に有している有機エレクトロルミネッセンス素子であって、
 上記第一電極および上記第二電極のうち少なくとも一方の電極と上記発光層を含む有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えており、
 上記少なくとも一方の電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料が混合された混合材料から構成されており、
 上記自己組織化層を構成する自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記構成において、第一電極および/または第二電極の電極表面のうち、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない。
 上記構成によれば、少なくとも一方の電極上には、ある電極材料に結合した自己組織化単分子によって自己組織化層が構成されている。すなわち、少なくとも一方の電極上における自己組織化層の面密度は、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、本発明に係る有機エレクトロルミネッセンス素子の製造時、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、少なくとも一方の電極の仕事関数を精密に制御し、当該電極におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、少なくとも一方の電極上には、自己組織化層を介して、発光層を含む有機層が形成されている。このため、当該有機層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機層との間における物理的な抵抗を減少させることができる。
 したがって、本発明に係る有機エレクトロルミネッセンス素子によれば、電極の仕事関数を精密に制御して障壁を低減させることと、電極と有機層との間における物理的な抵抗を減少させることとを両立させることが可能である。このため、発光効率の良好な有機エレクトロルミネッセンス素子を実現することができる。
 また、本発明には、上述した有機エレクトロルミネッセンス素子を備える装置も含まれる。上記構成によれば、有機エレクトロルミネッセンス素子は発光効率が良好であるため、低消費電力で高輝度を呈する表示装置や光源装置などの種々の装置を実現することができる。
 本発明に係る有機太陽電池は、以上のように、
 上記の電極構成を備えた有機太陽電池であって、電極構成の上記有機層としての、光電変換層を含む有機層を、第一電極と第二電極との間に有している有機太陽電池であって、
 上記第一電極および上記第二電極のうち少なくとも一方の電極と上記有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えており、
 上記少なくとも一方の電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料が混合された混合材料から構成されており、
 上記自己組織化層を構成する自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴としている。
 上記構成において、第一電極および/または第二電極の電極表面のうち、ある電極材料からなる部分には自己組織化単分子が結合し、他の電極材料からなる部分には自己組織化単分子が結合していない。
 上記構成によれば、少なくとも一方の電極上には、ある電極材料に結合した自己組織化単分子によって自己組織化層が構成されている。すなわち、少なくとも一方の電極上における自己組織化層の面密度は、当該電極を構成する混合材料中の当該電極材料の割合によって制御される。このため、本発明に係る有機太陽電池の製造時、混合材料の組成を調節することによって、所望の面密度を有する自己組織化層を容易に形成することができる。これによって、少なくとも一方の電極の仕事関数を精密に制御し、当該電極におけるキャリア注入障壁を低減させることが可能である。
 また、上記構成において、少なくとも一方の電極上には、自己組織化層を介して、光電変換層を含む有機層が形成されている。このため、当該有機層は、自己組織化層において自己組織化単分子が存在しない間隙を介することによって、上記電極の表面のうち、自己組織化単分子が結合しない電極材料からなる部分に接触可能である。これによって、電極と有機層との間における物理的な抵抗を減少させることができる。
 したがって、本発明に係る有機太陽電池によれば、電極の仕事関数を精密に制御して障壁を低減させることと、電極と有機層との間における物理的な抵抗を減少させることとを両立させることが可能である。このため、キャリアの取り出し効率を高めた有機太陽電池を実現することができる。
 また本発明の、電極構成の製造方法は、
 電極と、当該電極の上に形成された有機層と、上記電極と上記有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えた電極構成の製造方法であって、
 上記電極を、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料を混合することにより形成する工程と、
 上記2種類以上の電極材料のうち、1種類以上の電極材料と結合し、かつ、1種類以上の他の電極材料とは結合しない自己組織化単分子を塗布する工程と、
 他の電極材料とは結合しない自己組織化単分子を当該電極から除去する工程と、
を含むことを特徴としている。
 上記の構成によれば、電圧を増加させることなく大きな電流を確保できる有機薄膜トランジスタを好適に製造することができる。
 また、本発明に係る有機薄膜トランジスタの製造方法は、
 基板と、
 上記基板上に形成されたゲート電極と、
 上記ゲート電極上に形成されたゲート絶縁膜と、
 上記ゲート絶縁膜上に形成されたソース電極およびドレイン電極と、
 上記ソース電極上および上記ドレイン電極上、ならびに両電極の間隙部分に連続的に形成された有機半導体層と、
 上記ソース電極およびドレイン電極のうち少なくとも一方の電極と上記有機半導体層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備える有機薄膜トランジスタの製造方法であって、
 上記少なくとも一方の電極を、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料を混合することにより形成する工程と、
 上記少なくとも一方の電極上に、上記2種類以上の電極材料のうち、1種類以上の電極材料と結合し、かつ、1種類以上の他の電極材料とは結合しない自己組織化単分子を塗布する工程と、
 上記少なくとも一方の電極を洗浄することにより、上記他の電極材料上に塗布された上記自己組織化単分子を当該電極から除去する工程とを含むことを特徴としている。
 上記方法によれば、電圧を増加させることなく大きな電流を確保できる有機薄膜トランジスタを好適に製造することができる。
 本発明は、有機ELディスプレイなどに好適に利用することができる。
 1  基板
 2  ゲート電極
 3  ゲート絶縁膜
 4  ソース電極(電極)
 4a 結合材料(自己組織化単分子が結合する電極材料)
 4b 非結合材料(自己組織化単分子が結合しない電極材料)
 5  ドレイン電極(電極)
 5a 結合材料(自己組織化単分子が結合する電極材料)
 5b 非結合材料(自己組織化単分子が結合しない電極材料)
 6  自己組織化層
 6a ソース側自己組織化層(第1自己組織化層)
 6b ドレイン側自己組織化層(第2自己組織化層)
 7  有機半導体層(有機層)
 8a 第1電極材料
 8b 第2電極材料
 11 基板
 12 フォトレジスト膜
 13 薄膜
 20 チャネル部
 21 データライン
 22 スキャンライン
 23 キャパシタンスライン
 24 カソード電源ライン
 25 アノード電源ライン
 31 スイッチング用トランジスタ
 32 キャパシタンス
 33 駆動用トランジスタ
 34 有機EL素子
 41 透明基板
 42 陽極
 43 陰極
 44 有機層
 45 電極材料層
 45a 電極材料(自己組織化単分子が結合する電極材料)
 45b 電極材料(自己組織化単分子が結合しない電極材料)
 46 自己組織化層
 51 基板
 52 陽極
 53 陰極
 54 有機層
 55 電極材料層
 55a 電極材料(自己組織化単分子が結合する電極材料)
 55b 電極材料(自己組織化単分子が結合しない電極材料)
 56 自己組織化層
 100、200 有機薄膜トランジスタ
 300、410 有機EL画素
 400 有機EL素子
 500 有機太陽電池
 600 電極構成
 602 電極
 604 有機層
 605 電極材料層
 605a 電極材料(自己組織化単分子が結合する電極材料)
 605b 電極材料(自己組織化単分子が結合しない電極材料)
 606 自己組織化層

Claims (15)

  1.  電極と、当該電極の上に形成された有機層と、上記電極と上記有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えており、
     上記電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料が混合された混合材料から構成されており、
     上記自己組織化層を構成する自己組織化単分子は、上記電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴とする電極構成。
  2.  請求項1に記載の電極構成を有する有機薄膜トランジスタであって、
     基板と、
     上記基板上に形成されたゲート電極と、
     上記ゲート電極上に形成されたゲート絶縁膜と、
     上記ゲート絶縁膜上に形成されたソース電極およびドレイン電極と、
     上記ソース電極上および上記ドレイン電極上、ならびに両電極の間隙部分に連続的に形成された有機半導体層と、
     上記ソース電極および上記ドレイン電極のうち少なくとも一方の電極と上記有機半導体層との間に形成された上記自己組織化層とを備えており、
     上記少なくとも一方の電極は、上記混合材料から構成されており、
     上記自己組織化層を構成する上記自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴とする有機薄膜トランジスタ。
  3.  上記ソース電極および上記ドレイン電極は、それぞれ上記混合材料から構成され、
     上記自己組織化層は、上記ソース電極と上記有機半導体層との間に形成された第1自己組織化層と、上記ドレイン電極と上記有機半導体層との間に形成された第2自己組織化層とを備えており、
     上記第1自己組織化層の自己組織化単分子と、上記第2自己組織化層の自己組織化単分子とは、上記双極子の向きが互いに同じ、または互いに異なることを特徴とする請求項2に記載の有機薄膜トランジスタ。
  4.  上記ソース電極を構成する混合材料と、上記ドレイン電極を構成する混合材料とは、上記自己組織化単分子が結合する電極材料と結合しない電極材料との混合比率が、互いに異なることを特徴とする請求項3に記載の有機薄膜トランジスタ。
  5.  上記第1自己組織化層および上記第2自己組織化層は、上記双極子の向きが互いに同じ自己組織化単分子から構成され、
     上記ソース電極を構成する上記混合材料では、上記自己組織化単分子が結合する電極材料の割合が、当該自己組織化単分子が結合しない電極材料の割合よりも大きく、
     上記ドレイン電極を構成する上記混合材料では、上記自己組織化単分子が結合する電極材料の割合が、当該自己組織化単分子が結合しない電極材料の割合よりも小さいこと
    を特徴とする請求項4に記載の有機薄膜トランジスタ。
  6.  上記ソース電極および上記ドレイン電極をそれぞれ構成する上記混合材料は、
      上記第1自己組織化層の自己組織化単分子が結合し、かつ、上記第2自己組織化層の自己組織化単分子が結合しない第1電極材料と、
      上記第1自己組織化層の自己組織化単分子が結合せず、かつ、上記第2自己組織化層の自己組織化単分子が結合する第2電極材料とを含んで成ること
    を特徴とする請求項3または4に記載の有機薄膜トランジスタ。
  7.  上記第1自己組織化層および上記第2自己組織化層は、上記双極子の向きが互いに同じ自己組織化単分子から構成され、
     上記各混合材料において、上記第1電極材料の割合は、上記第2電極材料の割合よりも大きいこと
    を特徴とする請求項6に記載の有機薄膜トランジスタ。
  8.  上記少なくとも一方の電極上に形成された上記自己組織化層は、2種類以上の自己組織化単分子から構成され、
     上記混合材料は、上記2種類以上の自己組織化単分子がそれぞれ結合する各電極材料と、上記2種類以上の自己組織化単分子がいずれも結合しない電極材料とが混合されてなることを特徴とする請求項2~7のいずれか1項に記載の有機薄膜トランジスタ。
  9.  上記ソース電極と上記ドレイン電極との間隙部分に形成された、自己組織化単分子から構成される他の自己組織化層をさらに備えていることを特徴とする請求項2~8のいずれか1項に記載の有機薄膜トランジスタ。
  10.  請求項2~9のいずれか1項に記載の有機薄膜トランジスタを備えることを特徴とする有機エレクトロルミネッセンス画素。
  11.  請求項1に記載の電極構成を備えた有機エレクトロルミネッセンス素子であって、上記有機層としての、発光層を含む有機層を、第一電極と第二電極との間に有している有機エレクトロルミネッセンス素子であって、
     上記第一電極および上記第二電極のうち少なくとも一方の電極と上記発光層を含む有機層との間に形成された上記自己組織化層を備えており、
     上記少なくとも一方の電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、上記混合材料から構成されており、
     上記自己組織化層を構成する上記自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴とする有機エレクトロルミネッセンス素子。
  12.  請求項11に記載の有機エレクトロルミネッセンス素子を備えることを特徴とする装置。
  13.  請求項1に記載の電極構成を備えた有機太陽電池であって、上記有機層としての、光電変換層を含む有機層を、第一電極と第二電極との間に有している有機太陽電池であって、
     上記第一電極および上記第二電極のうち少なくとも一方の電極と上記光電変換層を含む有機層との間に形成された上記自己組織化層とを備えており、
     上記少なくとも一方の電極は、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、上記混合材料から構成されており、
     上記自己組織化層を構成する上記自己組織化単分子は、上記少なくとも一方の電極の表面において、上記混合材料のうち、1種類以上の電極材料に結合しており、かつ、1種類以上の他の電極材料には結合していないことを特徴とする有機太陽電池。
  14.  電極と、当該電極の上に形成された有機層と、上記電極と上記有機層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備えた電極構成の製造方法であって、
     上記電極を、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料を混合することにより形成する工程と、
     上記2種類以上の電極材料のうち、1種類以上の電極材料と結合し、かつ、1種類以上の他の電極材料とは結合しない自己組織化単分子を塗布する工程と、
     他の電極材料とは結合しない自己組織化単分子を当該電極から除去する工程と、
    を含むことを特徴とする電極構成の製造方法。
  15.  基板と、
     上記基板上に形成されたゲート電極と、
     上記ゲート電極上に形成されたゲート絶縁膜と、
     上記ゲート絶縁膜上に形成されたソース電極およびドレイン電極と、
     上記ソース電極上および上記ドレイン電極上、ならびに両電極の間隙部分に連続的に形成された有機半導体層と、
     上記ソース電極およびドレイン電極のうち少なくとも一方の電極と上記有機半導体層との間に形成された、双極子を有する自己組織化単分子から構成される自己組織化層とを備える有機薄膜トランジスタの製造方法であって、
     上記少なくとも一方の電極を、当該電極の表面に各電極材料からなる表面がそれぞれ現れるように、2種類以上の電極材料を混合することにより形成する工程と、
     上記少なくとも一方の電極上に、上記2種類以上の電極材料のうち、1種類以上の電極材料と結合し、かつ、1種類以上の他の電極材料とは結合しない自己組織化単分子を塗布する工程と、
     上記少なくとも一方の電極を洗浄することにより、上記他の電極材料上に塗布された上記自己組織化単分子を当該電極から除去する工程とを
    含むことを特徴とする有機薄膜トランジスタの製造方法。
PCT/JP2011/077840 2010-12-08 2011-12-01 電極構成、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機エレクトロルミネッセンス画素、および、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を備えた装置、並びに、有機太陽電池 WO2012077573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-273971 2010-12-08
JP2010273971 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077573A1 true WO2012077573A1 (ja) 2012-06-14

Family

ID=46207063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077840 WO2012077573A1 (ja) 2010-12-08 2011-12-01 電極構成、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機エレクトロルミネッセンス画素、および、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を備えた装置、並びに、有機太陽電池

Country Status (1)

Country Link
WO (1) WO2012077573A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006700A1 (ja) * 2012-07-04 2014-01-09 シャープ株式会社 有機薄膜の製造方法
WO2014080575A1 (en) * 2012-11-20 2014-05-30 Sharp Kabushiki Kaisha Method for treating metal surface with thiol
WO2016152090A1 (ja) * 2015-03-25 2016-09-29 凸版印刷株式会社 薄膜トランジスタ、薄膜トランジスタの製造方法及び薄膜トランジスタを用いた画像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294785A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 有機半導体装置
JP2008091680A (ja) * 2006-10-03 2008-04-17 Hitachi Ltd 単分子膜を利用した有機トランジスタ
JP2009158691A (ja) * 2007-12-26 2009-07-16 Sharp Corp 有機デバイスおよびその製造方法
JP2009218244A (ja) * 2008-03-07 2009-09-24 Hitachi Ltd 有機薄膜トランジスタおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294785A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 有機半導体装置
JP2008091680A (ja) * 2006-10-03 2008-04-17 Hitachi Ltd 単分子膜を利用した有機トランジスタ
JP2009158691A (ja) * 2007-12-26 2009-07-16 Sharp Corp 有機デバイスおよびその製造方法
JP2009218244A (ja) * 2008-03-07 2009-09-24 Hitachi Ltd 有機薄膜トランジスタおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. KAWASAKI ET AL.: "Reduction of Contact Resistance between Organic Semiconductor and Electrodes with Thiol-Based Self-Assembled Monolayer in Low-Density and Lying-Down Phase", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 47, 8 August 2008 (2008-08-08), pages 6247 - 6250, XP001521261, DOI: doi:10.1143/JJAP.47.6247 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006700A1 (ja) * 2012-07-04 2014-01-09 シャープ株式会社 有機薄膜の製造方法
WO2014080575A1 (en) * 2012-11-20 2014-05-30 Sharp Kabushiki Kaisha Method for treating metal surface with thiol
WO2016152090A1 (ja) * 2015-03-25 2016-09-29 凸版印刷株式会社 薄膜トランジスタ、薄膜トランジスタの製造方法及び薄膜トランジスタを用いた画像表示装置
CN107408510A (zh) * 2015-03-25 2017-11-28 凸版印刷株式会社 薄膜晶体管、薄膜晶体管的制造方法及使用了薄膜晶体管的图像显示装置
EP3270408A4 (en) * 2015-03-25 2018-03-21 Toppan Printing Co., Ltd. Thin film transistor, thin film transistor manufacturing method, and image display device using thin film transistor
US10312375B2 (en) 2015-03-25 2019-06-04 Toppan Printing Co., Ltd. Thin-film transistor, method for producing thin-film transistor and image display apparatus using thin-film transistor
TWI677104B (zh) * 2015-03-25 2019-11-11 日商凸版印刷股份有限公司 薄膜電晶體、薄膜電晶體之製造方法及使用薄膜電晶體之影像顯示裝置

Similar Documents

Publication Publication Date Title
Liu et al. Organic light‐emitting field‐effect transistors: device geometries and fabrication techniques
Seo et al. Solution‐processed organic light‐emitting transistors incorporating conjugated polyelectrolytes
US7365360B2 (en) Organic electronic device
JP5182775B2 (ja) トランジスタ素子及びその製造方法、電子デバイス、発光素子並びにディスプレイ
JP4915650B2 (ja) 有機エレクトロルミネッセンス素子
Muccini et al. Organic light-emitting transistors: towards the next generation display technology
US10170729B2 (en) Electrically conductive polymers
US8101230B2 (en) Method for producing electronic device and coating solutions suitable for the production method
KR101183041B1 (ko) 유기 반도체 소자, 유기 태양 전지 및 표시 패널
KR101437271B1 (ko) 세슘카보네이트가 블랜딩된 산화아연 전자주입·수송층이 구비된 양자점 발광 다이오드 및 그의 제조방법
WO2009130858A1 (ja) 有機エレクトロルミネッセンス素子
US8927972B2 (en) Current-amplifying transistor device and current-amplifying, light-emitting transistor device
Vu et al. Ultrathin PVK charge control layer for advanced manipulation of efficient giant CdSe@ ZnS/ZnS quantum dot light-emitting diodes
Ganesan et al. En Route to Wide Area Emitting Organic Light‐Emitting Transistors for Intrinsic Drive‐Integrated Display Applications: A Comprehensive Review
WO2012077573A1 (ja) 電極構成、当該電極構成を備えた有機薄膜トランジスタとその製造方法、当該有機薄膜トランジスタを備えた有機エレクトロルミネッセンス画素、および、有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子を備えた装置、並びに、有機太陽電池
CN101919082B (zh) 有机电致发光元件
JP2004311182A (ja) 導電性液晶材料を用いた有機エレクトロルミネッセンス素子、薄膜トランジスタおよびその製造方法
US8384067B2 (en) Hybrid organic/nanoparticle devices
JP5282045B2 (ja) トランジスタ素子、電子デバイス、発光素子及びディスプレイ
JP2009087907A (ja) 有機半導体発光装置
WO2011024346A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス表示装置、および有機エレクトロルミネッセンス照明装置
Li et al. Efficient and Stable OLEDs with Inverted Device Structure Utilizing Solution‐Processed ZnO‐Based Electron Injection Layer
JP2012144456A (ja) 有機薄膜、有機薄膜の製造方法、電界効果トランジスタ、有機発光素子、太陽電池、表示装置用アレイ及び表示装置
WO2014006700A1 (ja) 有機薄膜の製造方法
Tomova et al. Organic light-emitting diodes (OLEDs)–the basis of next generation light-emitting dеvices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP