WO2012077365A1 - ラジアルタービン - Google Patents

ラジアルタービン Download PDF

Info

Publication number
WO2012077365A1
WO2012077365A1 PCT/JP2011/058418 JP2011058418W WO2012077365A1 WO 2012077365 A1 WO2012077365 A1 WO 2012077365A1 JP 2011058418 W JP2011058418 W JP 2011058418W WO 2012077365 A1 WO2012077365 A1 WO 2012077365A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet
passage
main
radial
turbine wheel
Prior art date
Application number
PCT/JP2011/058418
Other languages
English (en)
French (fr)
Inventor
東森 弘高
雅幸 川見
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/392,609 priority Critical patent/US8425182B2/en
Priority to CN2011800035429A priority patent/CN102667063B/zh
Priority to KR1020127005048A priority patent/KR101204631B1/ko
Priority to EP11818938.0A priority patent/EP2597256A4/en
Publication of WO2012077365A1 publication Critical patent/WO2012077365A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • F01D1/08Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially having inward flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/60Application making use of surplus or waste energy
    • F05D2220/62Application making use of surplus or waste energy with energy recovery turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present invention relates to a radial turbine.
  • a radial turbine is a single unit that converts the swirling energy of a flow from a swirling fluid that flows into a turbine wheel with a radial velocity component as a main component into rotational power, and discharges the released energy in the axial direction.
  • the turbine wheel is equipped.
  • Radial turbines convert medium-low-temperature, high-temperature, and high-pressure fluid energy into rotational power, and are used for power recovery of exhaust energy discharged from various industrial plants using high-temperature, high-pressure fluid. Further, the radial turbine is used for exhaust heat recovery of a system that obtains power through a thermal cycle of a power source for ships and vehicles. In addition, it is widely used in power recovery of binary cycle power generation using medium and low temperature heat sources such as geothermal and OTEC.
  • a plurality of turbines that is, one turbine is used for each one pressure source.
  • two turbine wheels may be provided on the same shaft.
  • turbines for example radial turbines, are designed for optimum conditions for each pressure of the fluid.
  • the radial radius R of the radial turbine is determined by a relationship of g ⁇ H ⁇ U 2 where g is the acceleration of gravity, H is the head, and U is the peripheral speed of the turbine wheel inlet. That is, assuming that the rotational speed of the turbine wheel is N (rpm), the inlet radius R is set to a value in the vicinity of R ⁇ U / 2 ⁇ ⁇ / (N / 60).
  • an object of the present invention is to provide a radial turbine in which a fluid having a plurality of pressures is handled by a single or integral turbine wheel, and the number of parts is reduced to reduce the cost.
  • the present invention employs the following means. That is, the present invention includes a main passage that gradually increases in blade height while curving from the radial direction to the axial direction, and swirling from the main inlet located on the outer peripheral side to the main passage with the radial flow as a main component.
  • a radial turbine including a turbine wheel that converts turning energy of an inflowing fluid into rotational power and discharges the fluid that releases the turning energy in an axial direction, wherein the turbine wheel is radially inward of the main inlet.
  • a secondary passage that branches off from the hub surface of the main passage and extends toward the back side of the main passage, and has a radial position different from the main inlet at the outer peripheral end of the secondary passage, A secondary inlet to which a fluid having a pressure different from the pressure of the fluid supplied from the primary inlet is supplied is formed. Between the primary inlet and the secondary inlet, the turbine wheel constituting the primary passage is formed. A radial turbine which are separated by a gap that is adjusted between the plate and the casing.
  • fluid is introduced from the main inlet to the outer peripheral end of the main passage of the turbine wheel.
  • the fluid introduced from the main inlet is discharged from the turbine wheel while being gradually reduced in pressure through the main passage where the blade height is gradually increased while curving from the radial direction to the axial direction.
  • a fluid having a pressure different from the pressure of the fluid supplied from the main inlet is introduced from the slave inlet to the outer peripheral end of the slave passage.
  • This fluid is supplied from the hub surface of the main passage to the main passage through the sub passage and is mixed with the fluid introduced from the main inlet.
  • the mixed fluid flows out of the turbine wheel while reducing the pressure sequentially, and generates power on the rotating shaft to which the turbine wheel is attached.
  • the slave inlet is installed at a radial position where the pressures of the fluids to be mixed substantially coincide.
  • the main inlet and the secondary inlet are separated by a gap that is adjusted between the back plate of the turbine wheel and the casing constituting the main passage, so that the main inlet and the secondary inlet can be clearly distinguished to reduce fluid leakage. it can.
  • a fluid having a plurality of pressures can be taken out as rotational power by a single turbine wheel. Thereby, a number of parts can be reduced and manufacturing cost can be reduced.
  • the “radial turbine” referred to in the present invention is a fluid that flows mainly in the radial direction, that is, a fluid in which the radial velocity component of the fluid at the inlet to the turbine wheel is at least larger than the axial velocity component.
  • the concept includes a so-called mixed flow turbine in which the hub surface is inclined with respect to the rotational axis and the blade leading edge is inclined with respect to the rotational axis.
  • the fluid introduced into the main inlet and the sub inlet may be swirled using a nozzle or a scroll composed of a plurality of blades arranged at intervals in the circumferential direction.
  • the secondary passage is formed by extending the wings forming the main passage across the back plate.
  • the circumferential wall that constitutes the secondary passage and functions as the blade of the secondary passage is formed by extending the blade that constitutes the primary passage in the hub direction.
  • the blades constituting the main passage and the blades constituting the secondary passage are configured by the same blade at the turbine wheel outlet, the main passage and the secondary passage are formed continuously. The fluid passing through these passages can be mixed smoothly.
  • the slave inlet is inclined with respect to the rotation axis.
  • the fluid introduced from the sub inlet will move in the radial direction, so that the fluid needs to be turned in the axial direction in order to join the main passage. is there.
  • the fluid introduced from the slave inlet since the slave inlet is inclined with respect to the rotation axis, the fluid introduced from the slave inlet has a velocity component in the axial direction from the time of introduction. For this reason, since the part for turning to an axial direction can be made small compared with the slave inlet along a rotating shaft, the axial direction length of a turbine wheel can be made small.
  • the secondary passage includes a plurality of through passages provided in a circumferential position corresponding to the main passage so as to penetrate the hub of the turbine wheel in the axial direction, and the through flow And a second turbine wheel arranged on the upstream side of the road.
  • the shape of the wing may be complicated.
  • the blades have a three-dimensional structure.
  • the turbine wheel is manufactured by casting.
  • the secondary passage is formed by a through passage provided so as to pass through the hub of the turbine wheel, and a second turbine wheel disposed upstream of the through passage.
  • the turbine wheel can be made substantially the same as the structure of a conventional ordinary turbine wheel, it can be manufactured by machining as in the conventional case. Further, since the through passage is a substantially straight rectangular duct-like space, it can be easily processed from the rear surface of the turbine wheel by a ball end mill or the like. Since the second turbine wheel may have a relatively simple blade shape, it can be manufactured by machining as in the conventional case. In this way, since all the members that make up the turbine are manufactured by machining, the surface roughness of the main passage and the secondary passage can be processed more smoothly than those produced by casting, and the efficiency of the turbine can be prevented from decreasing. can do.
  • the second turbine wheel is fixedly attached to the turbine wheel.
  • the surface of the blade of the second turbine wheel is smoothly connected to the wall surface at the joint between both wall surfaces in the circumferential direction of the through passage that acts as the blade surface of the turbine wheel and the blade of the second turbine wheel. Can be.
  • the turbine wheel is provided with the secondary passage branched from the hub surface of the main passage at a position radially inward of the main inlet and extending toward the rear side of the turbine wheel, and the outer peripheral end of the secondary passage.
  • a sub-inlet is formed at a radial position different from that of the main inlet and is supplied with a fluid having a pressure different from the pressure of the fluid supplied from the main inlet. It can be taken out as rotational power by one or an integral turbine wheel. Thereby, a number of parts can be reduced and manufacturing cost can be reduced.
  • FIG. 3 is a projection view onto a cylindrical surface when the blade of FIG. 2 is viewed from the outside in the radial direction. It is a fragmentary sectional view which shows another embodiment of the radial turbine concerning 1st embodiment of this invention. It is a fragmentary sectional view which shows another embodiment of the radial turbine concerning 1st embodiment of this invention. It is a fragmentary sectional view which shows another embodiment of the radial turbine concerning 1st embodiment of this invention. It is a block diagram which shows another structure of the binary power generation system in which the expansion turbine concerning 1st embodiment of this invention is used.
  • FIG. 1 It is a block diagram which shows the structure of the plant system in which the expansion turbine concerning 1st embodiment of this invention is used. It is a fragmentary sectional view showing a radial turbine concerning a second embodiment of the present invention. It is a fragmentary sectional view which shows another embodiment of the radial turbine concerning 2nd embodiment of this invention.
  • FIG. 1 is a block diagram showing a configuration of a binary power generation system in which an expansion turbine according to a first embodiment of the present invention is used.
  • FIG. 2 is a partial cross-sectional view in which a radial turbine 100 is applied to the expansion turbine 1 of FIG.
  • FIG. 3 is a projection view onto a cylindrical surface of the wing of FIG.
  • Binary power generation system 3 is used, for example, as a system for performing geothermal power generation.
  • the binary power generation system 3 includes a heat source section 5 having a plurality of heat sources, two binary cycles 7A and 7B, an expansion turbine 1, and a generator 9 that generates electric power by the rotational power of the expansion turbine 1. Is provided.
  • the heat source unit 5 supplies steam and hot water heated by geothermal heat to the binary cycles 7A and 7B.
  • the heat source unit 5 is configured to supply two kinds of steam and hot waters T1 and T2 having different temperatures.
  • the binary cycles 7A and 7B are constituted by Rankine cycles in which a low boiling point medium (fluid) that is a working fluid is circulated.
  • a low boiling point medium for example, an organic medium such as isobutane, chlorofluorocarbon, alternative chlorofluorocarbon, or a mixed fluid of ammonia, ammonia and water, or the like is used.
  • the low boiling point medium is heated by the high-temperature steam or hot water supplied from the heat source unit 5 to become a high-pressure fluid and supplied to the expansion turbine 1.
  • the low boiling point medium discharged from the expansion turbine 1 is returned to the binary cycles 7A and 7B, heated again by high-temperature steam or hot water, and this is sequentially repeated.
  • the same low boiling point medium is used in the two binary cycles 7A and 7B. Since the temperatures of the high-temperature steam and hot water supplied to the binary cycles 7A and 7B are different, the pressures P1 and P2 of the low-boiling-point media supplied from them to the expansion turbine 1 are different. Below, the case where the pressure P1 is larger than the pressure P2 is demonstrated.
  • the radial turbine 100 includes a casing 11, a rotating shaft 13 that is rotatably supported by the casing 11, and a radial turbine wheel 15 that is attached to the outer periphery of the rotating shaft 13.
  • the radial turbine wheel 15 is composed of a hub 17 attached to the outer periphery of the rotating shaft 13 and a plurality of blades 19 provided on the outer peripheral surface of the hub 17 at radially spaced intervals in the circumferential direction.
  • a main inlet 27 that is substantially parallel to the rotary shaft 13 is formed over the entire circumference at the position of the radius R ⁇ b> 1.
  • An inlet channel 31 that is an annular space is formed on the outer peripheral side of the main inlet 27.
  • the inlet channel 31 is provided with a nozzle 33 composed of a plurality of blades arranged at intervals in the circumferential direction.
  • the radial turbine wheel 15 is formed with a main passage 23 that is curved from the radial direction to the axial direction so that the flow flows out from the main inlet 27 toward the turbine wheel outlet 21.
  • the main passage 23 is provided with a secondary passage 25 extending toward the back side.
  • the main passage 23 and the sub passage 25 are joined at a joining portion 47 that is an imaginary line on the hub surface of the main passage 23 indicated by a one-dot chain line.
  • the secondary passage 25 is formed so as to be branched from the joining portion 47 and extend toward the back side of the main passage 23.
  • a sub inlet 35 is formed over the entire circumference at a position of a radius R 2 different from that of the main inlet 27.
  • An inlet channel 39 which is an annular space is formed on the outer peripheral side of the secondary inlet 35 installed at the position of the radius R2.
  • the inlet channel 39 is provided with a nozzle 41 composed of a plurality of blades arranged at intervals in the circumferential direction.
  • the main inlet 27 and the secondary inlet 35 are configured to be substantially parallel to the rotating shaft 13.
  • the radius R1 of the main inlet 27 and the radius R2 of the sub inlet 35 are set as follows, where the turbine wheel inlet peripheral speed of the main inlet 27 is U1, and the turbine wheel inlet peripheral speed of the sub inlet 35 is U2. Is done. A relationship of g ⁇ H1 ⁇ U1 2, g ⁇ H2 ⁇ U2 2 for each of the inlet pressure P1 and P2 and the head H1 and H2.
  • the radius R1 of the main inlet 27 and the radius R2 of the sub inlet 35 are R1 ⁇ U1 / 2 ⁇ ⁇ / (N / 60), R2 ⁇ U2 / 2 ⁇ It is set to a value in the vicinity of ⁇ / (N / 60). Since the pressure P2 is smaller than the pressure P1, the radius R2 of the sub inlet 35 is provided at a position smaller than the radius R1 of the main inlet 27.
  • the secondary passage 25 joins the main passage 23 at the junction 47, and the flow rate G1 flowing through the main passage 23 and the flow rate G2 flowing through the secondary passage 25 are mixed and flow out from the turbine wheel outlet 21.
  • the turbine wheel outlet 21 has a trailing edge consisting of a substantially radial line. The trailing edge may be inclined so that the flow flows out with a radially inward component.
  • the vane 19 of the radial turbine wheel 15 is formed with a branch passage wall 20 that branches off at the junction 47 and divides the circumferential direction of the sub passage 25.
  • a back plate 26 is provided on the back surface of the blade 19 from the main inlet 27 to the junction 47 and on the shroud side of the branch passage wall 20.
  • a main passage 23 is formed by the adjacent wings 19, the hub 17, the back plate 26, and the casing 11.
  • a secondary passage 25 is formed by the branch passage wall 20 of the adjacent blades 19, the hub 17, and the radially inward surface of the back plate 26.
  • the blade 19 has a radial blade shape at substantially the same angle with respect to the rotary shaft 13 at the main inlet 27, and toward the turbine wheel outlet 21 of the radial turbine wheel 15.
  • the wing shape is such that the centerline XL of the wing increases in a parabolic shape. This turning point is in the vicinity of the junction 47.
  • the branch passage wall 20 is installed at a position where the blade 19 located at the merge portion 47 is extended to the hub side in order to receive the centrifugal force of the main inlet portion and the back plate 26 which are portions of the blade 19 on the main inlet 27 side, The angle is configured to substantially coincide with the wing 19 at the main inlet.
  • the branch passage wall 20 has a radial wing shape with substantially the same angle with respect to the rotating shaft 13. If the stress acting on the branch passage wall 20 of the blade 19 due to centrifugal force is sufficiently small, the angle of the main inlet of the blade 19 and the angle of the branch passage wall 20 may be different.
  • the main passage 23 and the sub passage 25 are configured such that the height of the blades 19 of the main passage 23 and the height of the branch passage wall 20 of the sub passage 25 both increase toward the turbine wheel outlet 21.
  • the low-boiling-point medium stream 49 flowing through 23 and the low-boiling-point medium stream 51 flowing through the secondary passage 25 are gradually reduced in pressure while increasing in flow volume toward the turbine wheel outlet 21.
  • a constant pressure line of the fluid passing through the radial turbine wheel 15 is indicated by a one-dot chain line.
  • the radius R ⁇ b> 2 is set so that the pressure of the fluid that is supplied from the secondary inlet 35 and reaches the junction 47 is substantially the same as the pressure of the fluid that passes through the junction 47 of the main passage 23.
  • the casing wall 53 is adjusted so that one surface forms a passage wall of the inlet channel 39 between the main inlet 27 and the sub inlet 35, and the other surface is small so that the gap with the back plate 26 is small. Is provided.
  • the flow rate and flow rate of the low boiling point medium having the pressure P1 supplied from the binary cycle 7A is adjusted from the main inflow path 29 through the inlet flow path 31 by the nozzle 33, and the low boiling point medium having the flow rate G1 is supplied from the main inlet 27 to the main path. 23.
  • the pressure of the low boiling point medium supplied to the radial turbine wheel 15 is PN1.
  • the low boiling point medium of this pressure PN1 flows out of the radial turbine wheel 15 while the pressure continuously decreases to the outlet pressure Pd of the radial turbine wheel 15, and gives rotational power to the rotary shaft 13 to which the radial turbine wheel 15 is attached. generate.
  • the flow rate and flow rate of the low boiling point medium having the pressure P2 supplied from the binary cycle 7B are adjusted by the nozzle 41 through the inlet flow path 37 through the inlet flow path 39, and the low boiling point medium having the flow rate G2 is adjusted to the secondary inlet 35.
  • the pressure PN2 of the low boiling point medium supplied from the slave inlet 35 to the slave passage 25 is reduced while the low boiling point medium flows through the slave passage 25, and substantially coincides with the pressure at the position of the junction 47 in the main passage 23.
  • a casing wall 53 is provided between the main inlet 27 and the sub inlet 35 so that the clearance is adjusted so that the clearance between the main inlet 27 and the back plate 26 of the main passage 23 is small.
  • the low-boiling-point medium having a high pressure from the main inlet 27 can be prevented from leaking toward the sub inlet 35, and leakage can be reduced.
  • the low boiling point medium having the flow rate G ⁇ b> 2 flowing from the sub inlet 35 in the junction 47 is mixed with the low boiling point medium having the flow rate G ⁇ b> 1 supplied from the main inlet 27. Since the main passage 23 and the sub passage 25 are continuously formed by the wings 19, the fluid passing through these passages can be mixed smoothly.
  • the mixed low boiling point medium flows out from the turbine wheel outlet 21 of the radial turbine wheel 15.
  • a low boiling point medium having a flow rate that is a combination of the flow rate G1 and the flow rate G2 generates rotational power on the rotary shaft 13 via the radial turbine wheel 15.
  • the generator 9 generates electric power by rotating the rotary shaft 13.
  • the low-boiling point media having different pressures from the binary cycles 7A and 7B are supplied to the main inlet 27 and the sub inlet 35 of the radial turbine wheel 15, respectively, and are taken out as rotational power by the single radial turbine wheel 15. be able to.
  • the radial turbine 100 concerning this embodiment can reduce a number of parts compared with the expansion turbine provided with a some expansion turbine or a some radial turbine wheel, and can reduce manufacturing cost. it can.
  • the radial turbine wheel 15 is not provided with a shroud, but a shroud may be attached if necessary. If it does in this way, the leakage loss of the low boiling-point medium in the main channel
  • the sub inlet 35 is configured substantially parallel to the rotation shaft 13 as in the first embodiment, the low boiling point medium introduced from the sub inlet 35 moves in the radial direction.
  • the sub inlet 35 may be inclined with respect to the rotation axis.
  • the low boiling point medium introduced from the slave inlet 35 has an axial velocity component from the time of introduction. Become.
  • the part for turning in an axial direction can be made small compared with the sub inlet 35 along the rotating shaft 13, the axial direction length of the sub passage 45 can be made small, and the expansion turbine 1 can be reduced. Can be miniaturized.
  • the hub surfaces of the main inlet 27 and the secondary inlet 35 are configured as surfaces that are substantially perpendicular to the rotating shaft 13, but are not limited thereto.
  • the hub surface may be inclined with respect to the rotating shaft 13, and in addition to that, the blade leading edge may be inclined with respect to the rotating shaft.
  • the sub inlet 35 is more radial than the main inlet 27. It is provided inside.
  • the positional relationship between the sub inlet 35 and the main inlet 27 in the radial direction is not limited to this.
  • the sub inlet 35 may be provided radially outside the main inlet 27 as shown in FIG. In this case, the gap of the casing wall 53 is adjusted so that one surface of the casing wall 53 faces the outer wall surface of the main passage 23 and the back plate 26 and the other surface has a small clearance from the blade tip of the secondary passage 25. Has been.
  • the use of the expansion turbine 1 is not limited to this.
  • the present invention can be applied to a binary power generation system 3 having one binary cycle 7C. This takes out low-boiling-point media having different pressures from the binary cycle 7 ⁇ / b> C and recovers power by the expansion turbine 1.
  • the expansion turbine 1 may be used in the plant system 2 shown in FIG.
  • the plant system 2 for example, in a boiler plant 4, a plurality of, for example, three steams (fluids) having different pressures are taken out and the power is recovered by the expansion turbine 1.
  • the plant system 2 is various industrial plants, and may be used, for example, in a mixing process of a process in which separation or mixing is performed in a chemical plant.
  • FIG. 8 is a partial cross-sectional view showing the radial turbine 100 according to the second embodiment of the present invention.
  • the secondary passage 55 includes a through passage 69 and a second radial turbine wheel (second turbine wheel) 59 provided in the first radial turbine wheel (turbine wheel) 57 combined in the axial direction. It is formed by a passage 74 between the wings 73 formed in the above.
  • the radial turbine wheel 15 in the first embodiment is divided into the first radial turbine wheel 57 and the second radial turbine wheel 59.
  • the first radial turbine wheel 57 corresponds to a region up to the turbine wheel outlet 21 including the back plate 26 of the main passage 23 in the radial turbine wheel 15 of the first embodiment, and the second radial turbine wheel 59 is otherwise It corresponds to the area.
  • the first radial turbine wheel 57 includes a hub 61 attached to the outer periphery of the rotary shaft 13 and a plurality of blades 63 provided on the outer peripheral surface of the hub 61 at radial intervals.
  • the blades 63 are configured so as to increase in height sequentially from the main inlet 27 toward the turbine wheel outlet 65, and are erected linearly in the radial direction at the turbine wheel outlet 65.
  • the turbine wheel outlet 65 may be configured to be inclined so that the flow flows out with a radially inward component.
  • the shape of the blades 63 projected onto the cylindrical surface has a radial blade shape at substantially the same angle with respect to the rotary shaft 13 at the main inlet 27, toward the turbine wheel outlet 65 of the first radial turbine wheel 57,
  • the wing shape is such that the center line of the wing increases parabolically with respect to the rotation shaft 13. The position where the angle increases starts from around position A as indicated by equidistant lines along the blade surface in FIG.
  • the wing 63 has the same structure as a radial wing often used conventionally.
  • a main passage 67 is formed by the adjacent wings 63, the hub 61, the back plate 26, and the casing 11. Similar to the first embodiment, a main inlet 27 is formed over the entire circumference at the outer peripheral end of the main passage 67, and a low boiling point medium having a pressure P1 supplied from the binary cycle 7A is introduced.
  • a plurality of through passages 69 extending from the back plate 26 to the main passage 67 are formed in the hub 61 at positions corresponding to the respective main passages 67 at intervals in the circumferential direction.
  • the through passage 69 is a substantially straight rectangular duct-shaped space, and the longitudinal direction is substantially the axial direction.
  • the through passage 69 opens to the main passage 67 by a hub imaginary line 70 indicating an extension of the hub surface without the blades 63.
  • the second radial turbine wheel 59 is composed of a hub 71 attached to the outer periphery of the rotary shaft 13 and a plurality of blades 73 provided radially spaced from the outer peripheral surface of the hub 71 in the circumferential direction.
  • the wings 73 are configured to increase in height sequentially from the sub inlet 35 toward the downstream, and are erected in a straight line in the radial direction at the outlet.
  • the passage 74 formed by the adjacent wings 73, the hub 71, and the inner peripheral surface of the back plate 26 becomes higher as it goes downstream.
  • the wings 73 are formed at positions where the passages 74 communicate with the respective through passages 69.
  • the passage 74 and the through passage 69 constitute an integrated passage, that is, the sub passage 55.
  • the hub 71 is structured to be combined with the hub 61 by an inlay portion 82 and is arranged at a predetermined position. Thereby, the concentricity of the hub 71 and the hub 61 can be ensured.
  • the hub 73 may be configured not to use the spigot portion 82 by, for example, adopting a saddle-eye structure on the rotating shaft 13.
  • the hub 71 is fixedly attached to the hub 61 with bolts 75.
  • the second radial turbine wheel 59 is firmly attached to a predetermined position of the first radial turbine wheel 57 and integrated.
  • a slave inlet 35 is formed over the entire circumference at the outer peripheral end of the blade 73, and a low boiling point medium having a pressure P2 supplied from the binary cycle 7B is introduced.
  • the number of blades 73 is the same as the number of radial blades 63. Further, at the joint between the blades 73 of the second radial turbine wheel 59 and the circumferential wall surfaces of the through passage 69 acting as the blade surface of the first radial turbine wheel 57, the blade surfaces are connected smoothly. ,It is formed.
  • the low-boiling point medium is eliminated from the second radial turbine wheel 59 because the low-boiling point medium does not have a step or a leading edge that opposes the flow at the portion where the low-boiling point medium flows from the second radial turbine wheel 59 to the first radial turbine wheel 57.
  • the radial turbine wheel 59 smoothly flows into the flow path of the first radial turbine wheel 57.
  • the number of radial blades 73 and the number of radial blades 63 may be different.
  • the structure of the 1st radial turbine wheel 57 can be made substantially the same as the structure of the normal radial turbine wheel conventionally used, it can be manufactured by machining similarly to the past. Since the through passage 69 is a substantially straight rectangular duct-like space, it can be easily processed from the back surface of the first radial turbine wheel 57 by a ball end mill or the like. Since the second radial turbine wheel 59 has a relatively simple blade shape, the second radial turbine wheel 59 can be manufactured by machining as in the conventional case. Thereby, since the roughness of the surface of the main channel
  • the flow rate and flow velocity of the low boiling point medium having the pressure P2 supplied from the binary cycle 7B are adjusted by the nozzle 41, and the low boiling point medium having the flow rate G2 is supplied from the secondary inlet 35 to the second radial turbine wheel 59, that is, the secondary passage. 55 is supplied.
  • the supplied low boiling point medium is depressurized by the second radial turbine wheel 59 and flows into the through flow passage 69.
  • the low boiling point medium that has flowed into the through passage 69 is further decompressed, supplied to the main passage 57, and mixed with the low boiling point medium supplied from the main inlet 27 that passes through the main passage 67.
  • the mixed low boiling point medium flows out from the turbine wheel outlet 65 of the first radial turbine wheel 57.
  • a low boiling point medium having a flow rate that is the sum of the flow rates passing through both passages generates rotational power on the rotary shaft 13 via the first radial turbine wheel 57.
  • the generator 9 generates electric power by rotating the rotary shaft 13.
  • the gap between the main inlet 27 and the sub inlet 35 is adjusted so that the clearance between the back plate portion 26 of the main passage 57 and the casing wall 53 is reduced, so that the pressure is reduced. Even if a different low boiling point medium is used, the low boiling point medium having a high pressure from the main inlet 27 can be prevented from leaking toward the sub inlet 35 and leakage can be reduced.
  • the radial turbine 100 concerning 2nd embodiment can reduce a number of parts compared with the expansion turbine provided with several expansion turbines or several radial turbine wheels, and can reduce manufacturing cost. Can do.
  • the low boiling point medium flowing through the sub passage 55 is substantially an axis at the junction of the low boiling point medium flowing through the main passage 67 and the low boiling point medium flowing through the sub passage 55.
  • the low-boiling point medium flowing in the direction and flowing through the main passage 67 flows in a direction inclined inward. For this reason, both low boiling-point media may collide and a mixing loss may generate
  • the inclination of the hub 61 is reduced at the joining portion so that the angle ⁇ formed by the surface of the hub 61 and the radially outer surface of the through passage 59 is reduced. It may be.
  • the position where the main passage 67 and the through passage 69 merge may be located downstream in the axial direction of the main radial turbine wheel 57, and the angle ⁇ may be reduced. In this case, the deviation in the flow direction between the low boiling point medium flowing through the main passage 67 and the low boiling point medium flowing through the sub passage 55 is reduced, so that the mixing loss associated with the collision can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

複数の圧力を持つ流体を単一あるいは一体のタービンホイールで取扱い、部品点数を削減して低コスト化したタービンを提供する。翼高さが順次高くなる主通路(23)を備え、外周側に位置する主入口(27)から主通路(23)に半径方向の流速を主成分として旋回して流入する流体を軸方向に吐出するラジアルタービンホイール(15)を備えるエキスパンジョンタービン(1)であって、ラジアルタービンホイール(15)には、主入口(27)よりも半径方向内側位置における主通路(23)のハブ(17)側面から分岐され、主通路(23)の背面側に向かい延在する従通路(25)が備えられ、従通路(25)の外周端には、主入口(27)と異なる半径方向位置とされ、主入口(27)から供給される流体の圧力とは異なる圧力の流体が供給される従入口(35)が形成され、主入口(27)と従入口(35)との間は、主通路(23)あるいは従通路(25)との間で間隙調整された背板部(26)で区切られている。

Description

ラジアルタービン
 本発明は、ラジアルタービンに関するものである。
 ラジアルタービンは、半径方向の流速成分を主要成分として持ってタービンホイールに流入する旋回する流体から、流れの旋回エネルギーを回転動力に変換し、そのエネルギーを放出した流れを軸方向に吐出する単一のタービンホイールを備えている。ラジアルタービンは、中低温・高温、高圧の流体のエネルギーを回転動力に変換するものであり、各種産業用プラントから高温、高圧の流体で排出される排出エネルギーの動力回収に用いられている。また、ラジアルタービンは、船舶や車両用の動力源等の熱サイクルを経由して動力を得るシステムの排熱回収に用いられている。また、地熱・OTEC等の中低温熱源を利用するバイナリーサイクル発電の動力回収等において広く用いられている。
 各種エネルギー源が複数の圧力を有する場合には、たとえば、特許文献1に示されるように、複数のタービン、すなわち、それぞれの1つの圧力源に対して1つのタービンが用いられている。あるいは、同一軸に2つのタービンホイールを設ける場合もある。
 これは、タービン、たとえば、ラジアルタービンが流体のそれぞれの圧力に対し最適な条件に設計されるからである。たとえば、ラジアルタービンの入口半径Rは、重力加速度をg、ヘッドをH、タービンホイール入口周速をUとすると、g・H≒Uの関係で決まる。すなわち、タービンホイールの回転数をN(rpm)とすると、入口半径Rは、R≒U/2・π/(N/60)の近傍の値が設定される。
 また、流量変動の大きな流体を扱うラジアルタービンでは、たとえば、特許文献2に示されるように、1個の入口流路を隔壁で仕切って、分割するものが知られている。これは、一方の入口流路が、翼のハブ側に流体を供給するようにされている。
 しかしながら、これは両方の入口流路が同一圧力の流体を扱うものである。また、両方の入口流路が隣接して設けられ、隔壁によって区切られているだけのものであるので、異なる圧力の流体を取り扱う場合、高圧の流体が低圧の流体の方へ漏れ、タービン効率を低下させる。
特開平1-285607号公報 特表2008-503685号公報
 ところで、特許文献1に示されるように複数のラジアルタービンを用いるものは、製造コストが大きくなるし、設置スペースが大きくなる。
 また、同一軸に複数のタービンホイールを設ける場合、タービン部品点数が多く、構造が複雑となるし、製造コストが大きくなる。
 本発明は、このような事情に鑑み、複数の圧力を持つ流体を単一あるいは一体のタービンホイールで取扱い、部品点数を削減して低コスト化したラジアルタービンを提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 すなわち、本発明は、半径方向から軸方向に湾曲しつつ順次翼高さが高くなる主通路を備え、外周側に位置する主入口から前記主通路に半径方向の流れを主成分として旋回して流入する流体の旋回エネルギーを回転動力に変換し、その旋回エネルギーを放出した流体を軸方向に吐出するタービンホイールを備えるラジアルタービンであって、前記タービンホイールは、前記主入口よりも半径方向内側の位置に、前記主通路のハブ面から分岐され前記主通路の背面側に向かって延在する従通路を備え、該従通路の外周端には、前記主入口と異なる半径方向位置とされ、前記主入口から供給される流体の圧力とは異なる圧力の流体が供給される従入口が形成され、前記主入口と前記従入口との間は、前記主通路を構成する前記タービンホイールの背板とケーシングとの間で調整された間隙で区切られているラジアルタービンである。
 本発明によると、流体は、主入口からタービンホイールの主通路の外周端に導入される。主入口から導入された流体は、半径方向から軸方向に湾曲しつつ順次翼高さが高くなる主通路を通って順次圧力を低減されつつタービンホイールから吐出され、タービンホイールが取り付けられている回転軸に動力を発生させる。
 主入口から供給される流体の圧力とは異なる圧力の流体が、従入口から従通路の外周端に導入される。この流体は、従通路を通って主通路のハブ面から主通路に供給され、主入口から導入された流体と混合される。混合された流体は、順次圧力を低減されつつタービンホイールから流出し、タービンホイールが取り付けられている回転軸に動力を発生させる。
 このとき、従入口は、混合される流体の圧力が、略一致するような半径位置に設置されるのが好適である。
 主入口と従入口との間は、主通路を構成するタービンホイールの背板とケーシングとの間で調整された間隙で区切られているので、明確に区別され、流体の漏出を低減することができる。
 このように、複数の圧力を有する流体を、単一のタービンホイールによって回転動力として取り出すことができる。これにより、部品点数を低減することができ、製造コストを低減することができる。
 なお、本発明にいう「ラジアルタービン」は、半径方向の流れを主成分として流入する流体、すなわち、タービンホイールへの入口部における流体の半径方向速度成分が少なくとも軸方向速度成分よりも大きい流体を処理するタービンを意味している。したがって、タービンホイールの構造に於いて、ホイール入口のハブ面が回転軸に対してほぼ垂直の面で構成されている、いわゆるラジアルタービン、ハブ面が回転軸に対して傾斜してなるラジアルタービン、および、ハブ面が回転軸に対して傾斜してなり、且つ、翼前縁が回転軸に対して傾斜してなる、いわゆる斜流タービンを含む概念である。
 また、主入口および従入口に導入される流体は、周方向に間隔を空けて配置された複数の翼から構成されるノズルまたはスクロールを用いて旋回させられていてもよい。
 本発明の第1の態様では、前記従通路は、前記主通路を形成する翼が前記背板をまたいで延長して形成されていている。言い換えれば、前記従通路を構成し前記従通路の翼として作用する周方向の壁は、前記主通路を構成する翼をハブ方向に延長して形成されている。
 このようにすると、タービンホイール出口部において、主通路を構成する翼と従通路を構成する翼とが同一の翼で構成されるため、主通路と従通路とは、連続して形成されるので、これらの通路を通る流体は滑らかに混合することができる。
 本発明の第2の態様では、前記従入口は、回転軸に対し傾斜されていている。
 従入口が回転軸にほぼ平行に構成されていると、従入口から導入される流体は半径方向に移動することになるので、流体は主通路に合流するために軸方向に転向される必要がある。
 本発明の第2の態様では、従入口は、回転軸に対し傾斜されているので、従入口から導入される流体は、導入時から軸方向の速度成分を有していることになる。このため、回転軸に沿っている従入口に比べて、軸方向に転向するための部分が小さくできるので、タービンホイールの軸方向長さを小さくすることができる。
 本発明の第3の態様では、前記従通路は、前記主通路に対応する周方向位置に前記タービンホイールのハブを軸方向に貫通するように設けられた複数の貫通流路と、該貫通流路の上流側に配置された第二のタービンホイールと、で構成される。
 主通路および従通路を単一の翼で形成する場合、翼の形状が複雑となる可能性がある。また、タービン効率を考慮すると、翼が3次元的な構造とされることが考えられる。この場合、ボールエンドミル等の機械加工は困難となる場合があるので、タービンホイールは鋳造によって製造されることになる。鋳造で製造すると、通路の表面の粗さを機械加工ほどには滑らかにすることが難しいので、流体の流動抵抗が増加し、タービンの効率が低下する恐れがある。
 本発明の第3の態様では、従通路は、タービンホイールのハブを貫通するように設けられた貫通流路と、貫通流路の上流側に配置された第二のタービンホイールと、で形成されるようにしたので、上記態様の構造が2分割された構成となる。したがって、タービンホイールは従来の通常のタービンホイールの構造と略同一とできるので、従来と同様に機械加工で製造することができる。また、貫通通路はほぼ直線の矩形ダクト状の空間であるので、タービンホイールの背面からボールエンドミル等によって容易に加工することができる。第二のタービンホイールは、比較的単純な翼形状でよいので、従来と同様に機械加工で製造することができる。
 このように、タービンを構成する部材が全て機械加工で製造されるので、鋳造によって製造されるものに比べて主通路および従通路の表面の粗さを滑らかに加工でき、タービンの効率低下を抑制することができる。
 本発明の第4の態様では、前記第二のタービンホイールは、前記タービンホイールに固定して取り付けられている。
 このようにすると、タービンホイールの翼面として作用する貫通流路の周方向の両壁面と第二のタービンホイールの翼の繋ぎ目において、第二のタービンホイールの翼の表面が壁面に滑らかに繋がるようにすることができる。
 本発明によれば、タービンホイールには、主入口よりも半径方向内側位置における主通路のハブ面から分岐され、タービンホイールの背面側に向かい延在する従通路が備えられ、従通路の外周端には、主入口と異なる半径方向位置とされ、主入口から供給される流体の圧力とは異なる圧力の流体が供給される従入口が形成されているので、複数の圧力を有する流体を、単一あるいは一体のタービンホイールによって回転動力として取り出すことができる。これにより、部品点数を低減することができ、製造コストを低減することができる。
本発明の第一実施形態にかかるエキスパンジョンタービンが用いられているバイナリー発電システムの構成を示すブロック図である。 図1のエキスパンジョンタービンにラジアルタービンを適用した部分断面図である。 図2の翼を半径方向外側から見た円筒面への投影図である。 本発明の第一実施形態にかかるラジアルタービンの別の実施態様を示す部分断面図である。 本発明の第一実施形態にかかるラジアルタービンのまた別の実施態様を示す部分断面図である。 本発明の第一実施形態にかかるエキスパンジョンタービンが用いられているバイナリー発電システムの別の構成を示すブロック図である。 本発明の第一実施形態にかかるエキスパンジョンタービンが用いられているプラントシステムの構成を示すブロック図である。 本発明の第二実施形態にかかるラジアルタービンを示す部分断面図である。 本発明の第二実施形態にかかるラジアルタービンの別の実施態様を示す部分断面図である。
 以下、本発明の実施形態を、図面を用いて詳細に説明する。
[第一実施形態]
 以下、本発明の第一実施形態にかかるエキスパンジョンタービン(ラジアルタービン)1について図1~図3を参照して説明する。
 図1は、本発明の第一実施形態にかかるエキスパンジョンタービンが用いられているバイナリー発電システムの構成を示すブロック図である。図2は、図1のエキスパンジョンタービン1にラジアルタービン100を適用した部分断面図である。図3は、図2の翼を半径方向外側から見た円筒面への投影図である。
 バイナリー発電システム3は、たとえば、地熱発電を行うシステムとして使われているものである。バイナリー発電システム3には、複数の熱源を有する熱源部5と、2個のバイナリーサイクル7A及び7Bと、エキスパンジョンタービン1、エキスパンジョンタービン1の回転動力によって電力を発生する発電機9とが備えられている。
 熱源部5は、地熱によって加熱された蒸気や熱水をバイナリーサイクル7A,7Bに供給する。熱源部5は2種類の温度が異なる蒸気や熱水T1,T2を供給するように構成されている。
 バイナリーサイクル7A及び7Bは、作動流体である低沸点媒体(流体)を循環させるランキンサイクルで構成されている。低沸点媒体としては、たとえば、イソブタン等の有機媒体、フロン、代替フロン、またはアンモニアやアンモニアと水の混合流体、等が用いられる。
 バイナリーサイクル7A,7Bでは、熱源部5から供給される高温蒸気や熱水によって、低沸点媒体が加熱されて高圧流体となり、エキスパンジョンタービン1に供給される。エキスパンジョンタービン1から排出された低沸点媒体は、バイナリーサイクル7A及び7Bに戻され、再度高温蒸気や熱水によって加熱され、これを順次繰り返す。
 このとき、2つのバイナリーサイクル7A及び7Bでは、同じ低沸点媒体が用いられている。バイナリーサイクル7A及び7Bに供給される高温蒸気や熱水の温度が異なるので、それらからエキスパンジョンタービン1に供給される低沸点媒体の圧力P1、P2は異なる。以下では、圧力P1が圧力P2よりも大きい場合について説明する。
 ラジアルタービン100には、ケーシング11と、ケーシング11に回転可能に支持された回転軸13と、回転軸13の外周に取り付けられたラジアルタービンホイール15と、が備えられている。
 ラジアルタービンホイール15は、回転軸13の外周に取り付けられたハブ17とハブ17の外周面に放射状に周方向に間隔を空けて備えられた複数の翼19とで構成されている。
 ラジアルタービンホイール15の外周端には、半径R1の位置に全周に亘り回転軸13にほぼ平行な主入口27が形成されている。主入口27の外周側には、環状の空間である入口流路31が形成されている。入口流路31の外周側端部には、バイナリーサイクル7Aから供給される圧力P1の低沸点媒体が導入される主流入路29が接続されている。
 入口流路31には、周方向に間隔を空けて配置された複数の翼から構成されるノズル33が設けられている。
 ラジアルタービンホイール15には、主入口27からタービンホイール出口21に向かって流れが流出するように半径方向から軸方向に向かい湾曲した主通路23が形成されている。
 主通路23には、背面側に向かい延在する従通路25が備えられている。主通路23と従通路25とは、一点鎖線で示される主通路23のハブ面の仮想線である合流部47で流れが合流する。言い換えれば、従通路25は、合流部47から分岐され、主通路23の背面側に向かい延在するように形成されている。
 従通路25の背面側の外周端には、主入口27と異なる半径R2の位置に全周に亘る従入口35が形成されている。
 半径R2の位置に設置された従入口35の外周側には、環状の空間である入口流路39が形成されている。入口流路39の外周端には、バイナリーサイクル7Bから供給される圧力P2の低沸点媒体が導入される従流入路37が接続されている。
 入口流路39には、周方向に間隔を空けて配置された複数の翼から構成されるノズル41が設けられている。
 主入口27および従入口35は、回転軸13にほぼ平行になるようにされている。
 このとき、主入口27の半径R1と従入口35の半径R2とは、主入口27のタービンホイール入口周速をU1、従入口35のタービンホイール入口周速をU2とすると、次のように設定される。それぞれの入口圧P1及びP2およびヘッドH1及びH2に対してg・H1≒U12、g・H2≒U22の関係がある。ラジアルタービンホイール15の回転数をN(rpm)とすると、主入口27の半径R1および従入口35の半径R2は、R1≒U1/2・π/(N/60)、R2≒U2/2・π/(N/60)の近傍の値に設定される。
 圧力P2は、圧力P1よりも小さいので、従入口35の半径R2は、主入口27の半径R1よりも小さくなる位置に設けられる。
 従通路25は、合流部47にて主通路23と合流し、主通路23を流れる流量G1と従通路25を流れる流量G2が混合され、タービンホイール出口21より流出する。タービンホイール出口21はほぼ半径方向の線からなる後縁を有する。この後縁は流れが半径内向きの成分を持って流出するように傾斜して構成されていてもよい。
 ラジアルタービンホイール15の翼19には、合流部47で分岐され、従通路25の周方向を区画する分岐通路壁20が形成されている。主入口27から合流部47に至る翼19の背面と、分岐通路壁20のシュラウド側には、背板26が設けられている。隣り合う翼19と、ハブ17と、背板26と、ケーシング11とで、主通路23が形成される。隣り合う翼19の分岐通路壁20と、ハブ17と、背板26の半径方向内向きの面とで、従通路25が形成される。
 翼19は、図3に示されるように主入口27において回転軸13に対してほぼ同一の角度の放射状の翼形状を有し、ラジアルタービンホイール15のタービンホイール出口21に向けて、回転軸13に対して翼の中心線XLが放物線状に大きくなるという翼形状とされている。この転向点は、合流部47の近傍である。
 分岐通路壁20は、翼19の主入口27側の部分である主入口部および背板26の遠心力を受け止めるため、合流部47に位置する翼19をハブ側へ延長した位置に設置され、その角度が主入口部の翼19とほぼ一致するように構成されている。したがって、分岐通路壁20は、回転軸13に対してほぼ同一の角度の放射状の翼形状とされている。
 なお、遠心力による翼19の分岐通路壁20に作用する応力が十分小さい場合には、翼19の主入口部の角度と分岐通路壁20の角度とが食い違うようにされてもよい。
 主通路23および従通路25はタービンホイール出口21に向かうに連れて主通路23の翼19の高さと従通路25の分岐通路壁20の高さとが共に高くなるように構成されており、主通路23を流れる低沸点媒体の流れ49および従通路25を流れる低沸点媒体の流れ51は、タービンホイール出口21に向かうに連れて流量容積が増加しながら順次低圧になる。
 図2には、ラジアルタービンホイール15内を通る流体の等圧線が一点鎖線で示されている。
 半径R2は、従入口35から供給され、合流部47に至る流体の圧力が、主通路23の合流部47を通る流体の圧力と略同一となるように設定されている。
 ケーシング11には、主入口27と従入口35との間に、一面が入口流路39の通路壁を構成し、他面が背板26との間隙が小さくなるように調整されたケーシング壁53が備えられている。
 以下、このように構成された本実施形態にかかるラジアルタービン100の動作について説明する。
 バイナリーサイクル7Aから供給される圧力P1の低沸点媒体は、主流入路29から入口流路31を通ってノズル33によって流量、流速を調整され、流量G1の低沸点媒体が主入口27から主通路23に供給される。このとき、ラジアルタービンホイール15に供給される低沸点媒体の圧力はPN1である。この圧力PN1の低沸点媒体は、ラジアルタービンホイール15の出口圧Pdまで連続的に圧力が低下しながらラジアルタービンホイール15から流出し、ラジアルタービンホイール15が取り付けられている回転軸13に回転動力を発生させる。
 このとき、バイナリーサイクル7Bから供給される圧力P2の低沸点媒体は、従流入路37から入口流路39を通ってノズル41によって流量、流速を調整され、流量G2の低沸点媒体が従入口35から従通路25に供給される。このとき、この従入口35から従通路25に供給される低沸点媒体の圧力PN2は、低沸点媒体が従通路25を流れる間に減圧され、主通路23における合流部47位置における圧力に略一致するようにされる。主入口27と従入口35との間は、主通路23の背板26との間でクリアランスが小さくなるように間隙調整されたケーシング壁53が備えられているので、ホイール入口にて圧力PN1と圧力PN2の圧力の異なる低沸点媒体を用いても主入口27からの圧力の高い低沸点媒体が従入口35の方へ漏れるのを抑制し、漏れを低減することができる。
 合流部47において従入口35から流入した流量G2の低沸点媒体は、主入口27から供給された流量G1の低沸点媒体と混合される。主通路23と従通路25とは、翼19によって連続して形成されるので、これらの通路を通る流体は滑らかに混合されることができる。
 混合された低沸点媒体は、ラジアルタービンホイール15のタービンホイール出口21から流出される。流量G1および流量G2が合わさった流量の低沸点媒体が、ラジアルタービンホイール15を介して回転軸13に回転動力を発生させる。
 回転軸13の回転駆動によって発電機9が電力を発生させる。
 このように、バイナリーサイクル7A,7Bからの圧力の異なる低沸点媒体を、それぞれラジアルタービンホイール15の主入口27および従入口35に供給することによって、単一のラジアルタービンホイール15によって回転動力として取り出すことができる。
 これにより、本実施形態にかかるラジアルタービン100は、複数のエキスパンジョンタービンあるいは複数のラジアルタービンホイールを備えるエキスパンジョンタービンに比べて部品点数を低減することができ、製造コストを低減することができる。
 なお、第一実施形態では、ラジアルタービンホイール15にシュラウドが設けられていないが、必要に応じてシュラウドを取り付けるようにしてもよい。
 このようにすると、主通路23における低沸点媒体の漏れ損失を低減することができ、タービン効率を高くすることができる。
 第一実施形態のように、従入口35が回転軸13にほぼ平行に構成されていると、従入口35から導入される低沸点媒体は半径方向に移動することになるので、低沸点媒体は主通路23に合流するために軸方向に転向される必要がある。
 この場合、図4に示されるように、従入口35を回転軸に対して傾斜させるようにしてもよい。
 このようにすると、従入口35は、回転軸13に対し傾斜されているので、従入口35から導入される低沸点媒体は、導入された時から軸方向の速度成分を有していることになる。このため、回転軸13に沿っている従入口35に比べて、軸方向に転向するための部分を小さくできるので、従通路45の軸方向長さを小さくすることができ、エキスパンジョンタービン1を小型化することができる。
 第一実施形態では、ラジアルタービンホイール15の構造において、主入口27および従入口35のハブ面が回転軸13に対してほぼ垂直の面で構成されているが、これに限定されない。たとえば、ハブ面が回転軸13に対して傾斜していてもよいし、さらに、それに加えて翼前縁が回転軸に対して傾斜していてもよい。
 第一実施形態では、従入口35から導入される低沸点媒体の圧力P2が、主入口27から導入される低沸点媒体の圧力P1よりも低いので、従入口35は主入口27よりも半径方向で内側に設けられている。しかし、従入口35と主入口27の半径方向における位置関係はこれに限定されない。
 たとえば、従入口35の圧力P2が主入口27の圧力P1よりも大きい場合には、図5に示されるように、従入口35が主入口27よりも半径方向で外側に設けられることもある。
 この場合、ケーシング壁53は、一面が主通路23および背板26の外壁面に対向するように通路壁を構成し、他面が従通路25の翼先端とのクリアランスが小さくなるように間隙調整されている。
 第一実施形態では、2つのバイナリーサイクル7A,7Bを持つ、バイナリー発電システム3に適用するとして説明したが、エキスパンジョンタービン1の用途はこれに限定されない。
 たとえば、図6に示されるように、1つのバイナリーサイクル7Cを有するバイナリー発電システム3にも適用できる。これはバイナリーサイクル7Cから圧力の異なる低沸点媒体を取り出してエキスパンジョンタービン1によって動力を回収する。
 また、図7に示されるプラントシステム2でエキスパンジョンタービン1を用いるようにしてもよい。プラントシステム2には、たとえば、ボイラプラント4で、複数、たとえば、3つの圧力の異なる蒸気(流体)を取り出してエキスパンジョンタービン1によって動力を回収するものである。
 プラントシステム2としては、各種産業プラントであり、たとえば、化学プラントにおいて分離や混合が行われるプロセスの混合過程に使用されても良い。
[第二実施形態]
 次に、本発明の第二実施形態にかかるエキスパンジョンタービン1について、図8を用いて説明する。
 第二実施形態は、タービンホイールの製造方法に関する構成が第一実施形態のものと異なるので、ここではこの異なる部分について主として説明し、前述した第一実施形態のものと同じ部分については重複した説明を省略する。
 なお、第一実施形態と同じ部材には同じ符号を付している。
 図8は、本発明の第二実施形態にかかるラジアルタービン100を示す部分断面図である。
 本実施形態では、従通路55は、軸方向で組み合わされている第一のラジアルタービンホイール(タービンホイール)57に設けられた貫通通路69と第二のラジアルタービンホイール(第二のタービンホイール)59に形成された翼73の間の通路74で形成されている。
 言い換えれば、第一実施形態におけるラジアルタービンホイール15が、第一のラジアルタービンホイール57および第二のラジアルタービンホイール59に分割されていることになる。
 第一のラジアルタービンホイール57は、第一実施形態のラジアルタービンホイール15における主通路23の背板26を含みタービンホイール出口21までの領域に相当し、第二のラジアルタービンホイール59は、それ以外の領域に相当している。
 第一のラジアルタービンホイール57は、回転軸13の外周に取り付けられたハブ61とハブ61の外周面に放射状に間隔を空けて備えられた複数の翼63とで構成されている。翼63は、主入口27からタービンホイール出口65に向かうに連れて順次高さが高くなるように構成され、タービンホイール出口65では半径方向に直線状に立設されている。なお、タービンホイール出口65は流れが半径内向きの成分を持って流出するように傾斜して構成されていてもよい。
 翼63を円筒面に投影した形状は、主入口27において回転軸13に対してほぼ同一の角度の放射状の翼形状を有し、第一のラジアルタービンホイール57のタービンホイール出口65に向けて、回転軸13に対して翼の中心線が放物線状に大きくなるという翼形状とされている。この角度が大きくなる位置は、図8に翼面に沿って等間隔な線を付記しているように、位置Aのあたりから始まっている。言い換えると、翼63は、従来よく用いられているラジアル翼と同じ構造をしている。
 隣り合う翼63と、ハブ61と、背板26と、ケーシング11とで、主通路67が形成される。
 主通路67の外周端には、第一実施形態と同様に、全周に亘る主入口27が形成され、バイナリーサイクル7Aから供給される圧力P1の低沸点媒体が導入される。
 ハブ61には、周方向に間隔を空けて、それぞれ各主通路67に対応する位置に、背板26から主通路67に至る複数の貫通通路69が形成されている。
 貫通通路69は、ほぼ直線の矩形ダクト状の空間であり、長手方向はほぼ軸方向とされている。貫通通路69は、翼63が無いハブ面の延長部を示すハブ仮想線70で主通路67に開口している。
 第二のラジアルタービンホイール59は、回転軸13の外周に取り付けられたハブ71とハブ71の外周面に放射状に周方向に間隔を空けて備えられた複数の翼73とで構成されている。
 翼73は、従入口35から下流に向かうに連れて順次高さが高くなるように構成され、出口では半径方向に直線状に立設されている。隣り合う翼73と、ハブ71と、背板26の内周面とで形成される通路74は、高さが下流に向かうに連れて高くなる。翼73は、通路74が各貫通通路69に連通される位置に形成されている。これにより、通路74および貫通通路69は一体化された通路、すなわち、従通路55を構成する。
 ハブ71は、ハブ61にインロー部82によって組み合わせる構造とされ、所定の位置に配置される。これにより、ハブ71とハブ61との同芯度を担保することができる。ハブ73は、たとえば、回転軸13にハメアイ構造とすることによって、インロー部82を用いないようにしてもよい。
 ハブ71は、ハブ61にボルト75によって固定して取り付けられる。これにより、第二のラジアルタービンホイール59は、第一のラジアルタービンホイール57の所定の位置に強固に取り付けられ、一体化される。
 翼73の外周端には、第一実施形態と同様に、全周に亘る従入口35が形成され、バイナリーサイクル7Bから供給される圧力P2の低沸点媒体が導入される。
 翼73の枚数は、ラジアル翼63の枚数と同じとされている。さらに、第二のラジアルタービンホイール59の翼73と第一のラジアルタービンホイール57の翼面として作用する貫通通路69の周方向の両壁面との繋ぎ目において、翼の表面が滑らかに繋がるように、形成される。このようにすると、第二のラジアルタービンホイール59から第一のラジアルタービンホイール57へ低沸点媒体が流入する部分での構造の段差や流れに対向する前縁がなくなるので、低沸点媒体は第二のラジアルタービンホイール59から第一のラジアルタービンホイール57の流路へ滑らかに流入する。
 なお、ラジアル翼73の枚数とラジアル翼63の枚数とを異ならせてもよい。
 このように、第一のラジアルタービンホイール57は従来用いられている通常のラジアルタービンホイールの構造と略同一とできるので、従来と同様に機械加工で製造することができる。また、貫通通路69はほぼ直線の矩形ダクト状の空間であるので、第一のラジアルタービンホイール57の背面からボールエンドミル等によって容易に加工することができる。第二のラジアルタービンホイール59は、比較的単純な翼形状であるので、従来と同様に機械加工で製造することができる。
 これにより、主通路67および従通路55の表面の粗さを滑らかに加工できるので、エキスパンジョンタービン1の効率低下を抑制することができる。
 このように構成された第二実施形態にかかるラジアルタービン100の動作については基本的に第一実施形態と同様であるので、ここでは簡単に説明する。
 バイナリーサイクル7Aから供給される圧力P1の低沸点媒体は、ノズル33によって流量、流速を調整され、流量G1の低沸点媒体が主入口27から主通路67に供給される。
 一方、バイナリーサイクル7Bから供給される圧力P2の低沸点媒体は、ノズル41によって流量、流速を調整され、流量G2の低沸点媒体が従入口35から第二のラジアルタービンホイール59、すなわち、従通路55に供給される。供給された低沸点媒体は、第二のラジアルタービンホイール59で減圧され貫通流路69に流入する。貫通流路69に流入した低沸点媒体は、さらに減圧され、主通路57に供給され、主通路67を通る主入口27から供給された低沸点媒体と混合される。
 混合された低沸点媒体は、第一のラジアルタービンホイール57のタービンホイール出口65から流出される。両通路を通る流量が合わさった流量の低沸点媒体が、第一のラジアルタービンホイール57を介して回転軸13に回転動力を発生させる。
 回転軸13の回転駆動によって発電機9が電力を発生させる。
 このとき、主入口27と従入口35との間は、主通路57の背板部26とケーシング壁53との間でクリアランスが小さくなるように調整された間隙が備えられているので、圧力の異なる低沸点媒体を用いても主入口27からの圧力の高い低沸点媒体が従入口35の方へ漏れるのを抑制し、漏れを低減することができる。
 このように、バイナリーサイクル7A,7Bからの圧力の異なる低沸点媒体を、それぞれ第一のラジアルタービンホイール57の主入口27および第二のラジアルタービンホイール59の従入口35に供給することによって、一体化したタービンホイールによって回転動力として取り出すことができる。
 これにより、第二実施形態にかかるラジアルタービン100は、複数のエキスパンジョンタービンあるいは複数のラジアルタービンホイールを備えるエキスパンジョンタービンに比べて部品点数を低減することができ、製造コストを低減することができる。
 第二実施形態では、図8に矢印で示したように、主通路67を流れる低沸点媒体と従通路55を流れる低沸点媒体との合流部では、従通路55を流れる低沸点媒体は略軸方向に流れ、主通路67を流れる低沸点媒体は内側に傾斜した方向に流れている。
 このため、両方の低沸点媒体が衝突して、若干とはいえ混合ロスが発生する可能性がある。
 これを解消するために、たとえば、図9に示されるように合流する部分におけるハブ61の傾斜を小さくして、ハブ61面と貫通通路59の半径方向外側の面のなす角度δを小さくするようにしてもよい。あるいは、主通路67と貫通通路69とが合流する場所を主ラジアルタービンホイール57の軸方向下流に位置させるようにして、角度δを小さくするようにしてもよい。
 このようにすると、主通路67を流れる低沸点媒体と従通路55を流れる低沸点媒体との流れ方向の偏差が小さくなるので、衝突に伴う混合ロスを低減させることができる。
 なお、本発明は以上説明した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形を行ってもよい。
1 エキスパンジョンタービン
11 ケーシング
13 回転軸
15 ラジアルタービンホイール
19 翼
23 主通路
25 従通路
26 背板部
27 主入口
33 ノズル
35 従入口
41 ノズル
53 ケーシング壁
57 第一のラジアルタービンホイール
59 第二のラジアルタービンホイール
61 ハブ
67 主通路
69 貫通通路
100 ラジアルタービン

Claims (5)

  1.  半径方向から軸方向に湾曲しつつ順次翼高さが高くなる主通路を備え、外周側に位置する主入口から前記主通路に半径方向の流れを主成分として旋回して流入する流体の旋回エネルギーを回転動力に変換し、前記旋回エネルギーを放出した流体を軸方向に吐出するタービンホイールを備えるラジアルタービンであって、
     前記タービンホイールは、前記主入口よりも半径方向内側の位置に、前記主通路のハブ面から分岐され前記主通路の背面側に向かって延在する従通路を備え、
     該従通路の外周端には、前記主入口と異なる半径方向位置とされ、前記主入口から供給される流体の圧力とは異なる圧力の流体が供給される従入口が形成され、
     前記主入口と前記従入口との間は、前記主通路を構成する前記タービンホイールの背板とケーシングとの間で調整された間隙で区切られていることを特徴とするラジアルタービン。
  2.  前記従通路は、前記主通路を形成する翼が前記背板をまたいで延長して形成されていることを特徴とする請求項1に記載のラジアルタービン。
  3.  前記従入口は、回転軸に対し傾斜されていることを特徴とする請求項1または2に記載のラジアルタービン。
  4.  前記従通路は、前記主通路と対応する位置に前記タービンホイールのハブを軸方向に貫通するように設けられた複数の貫通流路と、該貫通流路の上流側に配置された第二のタービンホイールと、で構成されていることを特徴とする請求項1から3のいずれかに記載のラジアルタービン。
  5.  前記第二のタービンホイールは、前記タービンホイールに固定して取り付けられていることを特徴とする請求項4に記載のラジアルタービン。
PCT/JP2011/058418 2010-12-07 2011-04-01 ラジアルタービン WO2012077365A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/392,609 US8425182B2 (en) 2010-12-07 2011-04-01 Radial turbine
CN2011800035429A CN102667063B (zh) 2010-12-07 2011-04-01 径流式涡轮机
KR1020127005048A KR101204631B1 (ko) 2010-12-07 2011-04-01 래디얼 터빈
EP11818938.0A EP2597256A4 (en) 2010-12-07 2011-04-01 RADIAL TURBINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010272765A JP4885302B1 (ja) 2010-12-07 2010-12-07 ラジアルタービン
JP2010-272765 2010-12-07

Publications (1)

Publication Number Publication Date
WO2012077365A1 true WO2012077365A1 (ja) 2012-06-14

Family

ID=45851272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058418 WO2012077365A1 (ja) 2010-12-07 2011-04-01 ラジアルタービン

Country Status (6)

Country Link
US (1) US8425182B2 (ja)
EP (1) EP2597256A4 (ja)
JP (1) JP4885302B1 (ja)
KR (1) KR101204631B1 (ja)
CN (1) CN102667063B (ja)
WO (1) WO2012077365A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916377B2 (ja) * 2011-12-27 2016-05-11 三菱重工業株式会社 過給機用タービン及び過給機の組立方法
JP2013249746A (ja) * 2012-05-30 2013-12-12 Mitsubishi Heavy Ind Ltd 二圧式ラジアルタービン
JP5909163B2 (ja) * 2012-08-27 2016-04-26 三菱重工業株式会社 二圧式ラジアルタービンの運用方法
US10677077B2 (en) * 2017-03-01 2020-06-09 Panasonic Corporation Turbine nozzle and radial turbine including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135718A (en) * 1980-03-04 1981-10-23 Bosch Gmbh Robert Supercharger for internal combustion engine
JPS58114844U (ja) * 1982-01-30 1983-08-05 いすゞ自動車株式会社 過給装置
JPS613996U (ja) * 1976-05-13 1986-01-11 マシ−ネンフアブリ−ク・アウグスブルク・ニユルンベルク・アクチエンゲゼルシヤフト 流体機械用羽根車
JPH01277627A (ja) * 1988-03-31 1989-11-08 Daimler Benz Ag 内燃機関用の排気ガスターボ過給機
JPH01285607A (ja) 1988-05-07 1989-11-16 Hisaka Works Ltd ハイブリッドバイナリー発電システム
DE102005019937B3 (de) * 2005-04-29 2006-05-18 Daimlerchrysler Ag Turbine mit einem Turbinenrad für einen Abgasturbolader einer Brennkraftmaschine und Abgasturbolader für eine Brennkraftmaschine
JP2007192129A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp ターボチャージャおよびタービンホイール
JP2008503685A (ja) 2004-06-25 2008-02-07 ダイムラー・アクチェンゲゼルシャフト 内燃機関用の排気ガスターボチャージャ及びそれを備えた内燃機関

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755769A (fr) * 1969-09-04 1971-02-15 Cummins Engine Co Inc Corps de turbine, notamment pour turbo-compresseur a gaz d'echappement
DE2618194A1 (de) * 1975-04-28 1976-11-11 Garrett Corp Turbomaschine
JPS58114844A (ja) 1981-12-28 1983-07-08 Mitsubishi Heavy Ind Ltd 数値制御ホブ盤におけるワ−クテ−ブルの回転速度設定方法
DE3346472C2 (de) * 1982-12-28 1991-09-12 Nissan Motor Co., Ltd., Yokohama, Kanagawa Radialturbine mit veränderlicher Leistung
JPS613996A (ja) 1984-06-15 1986-01-09 Mitsubishi Heavy Ind Ltd 熱交換器用フインおよびその製造方法
DE3908285C1 (en) * 1989-03-14 1990-06-07 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Turbine wheel of an exhaust turbocharger for an internal combustion engine with radial and/or mixed-flow gas feed
DE19857234C2 (de) * 1998-12-11 2000-09-28 Daimler Chrysler Ag Vorrichtung zur Abgasrückführung
DE10152804B4 (de) * 2001-10-25 2016-05-12 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
CN201137516Y (zh) * 2007-12-25 2008-10-22 孙宇 半圆形双流道涡轮增压器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613996U (ja) * 1976-05-13 1986-01-11 マシ−ネンフアブリ−ク・アウグスブルク・ニユルンベルク・アクチエンゲゼルシヤフト 流体機械用羽根車
JPS56135718A (en) * 1980-03-04 1981-10-23 Bosch Gmbh Robert Supercharger for internal combustion engine
JPS58114844U (ja) * 1982-01-30 1983-08-05 いすゞ自動車株式会社 過給装置
JPH01277627A (ja) * 1988-03-31 1989-11-08 Daimler Benz Ag 内燃機関用の排気ガスターボ過給機
JPH01285607A (ja) 1988-05-07 1989-11-16 Hisaka Works Ltd ハイブリッドバイナリー発電システム
JP2008503685A (ja) 2004-06-25 2008-02-07 ダイムラー・アクチェンゲゼルシャフト 内燃機関用の排気ガスターボチャージャ及びそれを備えた内燃機関
DE102005019937B3 (de) * 2005-04-29 2006-05-18 Daimlerchrysler Ag Turbine mit einem Turbinenrad für einen Abgasturbolader einer Brennkraftmaschine und Abgasturbolader für eine Brennkraftmaschine
JP2007192129A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp ターボチャージャおよびタービンホイール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597256A4

Also Published As

Publication number Publication date
KR101204631B1 (ko) 2012-11-23
JP2012122378A (ja) 2012-06-28
US20120163966A1 (en) 2012-06-28
EP2597256A4 (en) 2013-07-31
CN102667063A (zh) 2012-09-12
CN102667063B (zh) 2013-05-01
JP4885302B1 (ja) 2012-02-29
KR20120083877A (ko) 2012-07-26
EP2597256A1 (en) 2013-05-29
US8425182B2 (en) 2013-04-23

Similar Documents

Publication Publication Date Title
JP5449219B2 (ja) ラジアルタービン
US8727713B2 (en) Rotor oscillation preventing structure and steam turbine using the same
US8348608B2 (en) Turbomachine rotor cooling
JP5909163B2 (ja) 二圧式ラジアルタービンの運用方法
JP2012154283A5 (ja)
JP4885302B1 (ja) ラジアルタービン
JP6018368B2 (ja) 先端流路輪郭
JP7038526B2 (ja) 回転機械用ガイドベーンアセンブリおよびその組み立て方法
US10774667B2 (en) Steam turbine and methods of assembling the same
JP2012041924A (ja) ハブ流路輪郭
WO2012077359A1 (ja) ラジアルタービン
KR20150080911A (ko) 증기 터빈 및 증기 터빈 조립 방법
JP2012122377A5 (ja)
EP3748130B1 (en) Axial flow rotary machine
JP5582802B2 (ja) 流体流通構造
JP5832393B2 (ja) 二圧式ラジアルタービン
JP2011241812A (ja) 半径流反動蒸気タービン
JP2012062876A (ja) 動翼だけの半径流反動蒸気タービン
JP5698888B2 (ja) 半径流蒸気タービン
JP2011157934A (ja) 流体機械
JP2013249746A (ja) 二圧式ラジアルタービン

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127005048

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13392609

Country of ref document: US

Ref document number: 2011818938

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE